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Abstract  

The results of a series of benchmark simulations in one, two and three dimensions are presented 
to illustrate the capabilities of the Eulerian blast code Chinook (version 195) in simplified underwater 
explosion (UNDEX) scenarios. Attention in this study is focussed on the behaviour of the 
underwater explosion gas bubble. 2D and 3D simulation results for a 1.1 g charge detonated in the 
free field agree well with empirical formulas for gas bubble radius and period for the first bubble 
pulse, whereas 1D simulation results fall short of the expected accuracy. Results for UNDEX near 
a free surface also agree well with empirical formulas in 2D and 3D, and realistic gas bubble 
jetting behaviour is predicted. Fluid-structure interaction simulations with a circular-plate target 
structure were simulated using Chinook coupled with the finite element program LS-Dyna. The 
predicted gas bubble behaviour is realistic for rigid target models, but unrealistic when the target 
plate is flexible. Of the two different coupling schemes used, Chinook’s small deformation 
coupling scheme was more reliable; the large deformation coupling scheme worked consistently 
with rigid target models in 2D, but is prone to numerical problems in 3D. 

 

Significance to defence and security  

Simulation of underwater explosions and their effect on target structures is an important tool for 
improving the survivability of naval platforms to underwater weapons. The present work is part 
of a long-term effort by DRDC to validate the Chinook and LS-Dyna software tools for predicting 
the response and damage of naval platforms in close-proximity underwater explosion scenarios. 
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Résumé  

On présente les résultats d’une série de simulations de référence unidimensionnelles (1D), 
bidimensionnelles (2D) et tridimensionnelles (3D) afin d’illustrer les capacités du logiciel 
eulérien Chinook pour la simulation d’explosions (version 195) dans des scénarios simplifiés 
d’explosions sous-marines (UNDEX). Dans la présente étude, on accorde une attention 
particulière au comportement de la bulle de gaz créée par une explosion sous-marine. Les 
résultats des simulations 2D et 3D pour une charge de 1,1 g qui explose en champ libre 
concordent avec les formules empiriques pour le rayon de la bulle de gaz et la période de la 
première impulsion de la bulle. Les résultats des simulations 1D sont toutefois inférieurs à 
l’exactitude prévue. Les résultats des UNDEX près d’une surface libre concordent également 
avec les formules empiriques en 2D et 3D, ce qui permet de prévoir le comportement réaliste de 
jets de bulles de gaz. Pour les simulations d’interaction fluide-structure à l’aide d’une structure 
cible, laquelle consiste en une plaque circulaire, le logiciel Chinook a été utilisé et jumelé au 
programme de calcul par éléments finis LS-Dyna. Le comportement prévu des bulles de gaz est 
réaliste pour les modèles de cibles rigides, mais irréaliste quand la plaque cible est flexible. De ces 
deux méthodes, le couplage des déformations légères de Chinook a offert la plus grande fiabilité; 
le couplage des déformations importantes a fonctionné de façon constante avec les modèles de 
cibles rigides en 2D, mais avait tendance à éprouver des problèmes numériques en 3D. 

 

Importance pour la défense et la sécurité  

La simulation d’explosions sous-marines et de leurs effets sur les structures cibles constitue un 
outil important pour améliorer la surviabilité des plates-formes navales lorsque des armes  
sous-marines sont utilisées. La présente étude fait partie d’un effort à long terme déployé par 
RDDC afin de valider l’utilisation des logiciels Chinook et LS-Dyna pour prévoir la réaction des 
plates-formes navales et les dommages subis dans des scénarios d’explosions sous-marines 
proches. 
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1 Introduction 

Underwater explosions that are in close proximity to a hull structure are of interest in the study of 
both the vulnerability of naval platforms and the lethality of underwater munitions. The physical 
processes are quite complex, and broadly consist of (1) a shock wave that propagates through the 
water and interacts with the structure; (2) rarefaction waves generated by reflection of the shock 
at free and responding surfaces, creating regions of cavitation in the surrounding water; (3) a gas 
bubble containing the explosion products which goes through cycles of expansion and contraction, 
generating acoustic pulses at the minima; (4) a high velocity water jet formed as a spheroidal gas 
bubble collapses to a toroidal shape. All of these processes contribute to the damage inflicted on a 
naval platform. Many modern examples naval vessels damaged by sea mines are described by 
Webster [1]. The damage to the South Korean patrol vessel ROKS Cheonan inflicted by a torpedo 
is described in detail by Yoon et al [2]. 

Simulation of all of the physical processes and the resulting damage is a complex undertaking. 
Compressible hydrodynamics methods are generally required for the shock wave and acoustic 
pulse and their interactions with the structure and the surrounding fluid. These processes are rapid, 
and typically require numerical simulations with small grid cells and small time steps. The expansion 
and contraction of the gas bubble is a comparatively slow process, except near the minima of the 
bubble radius, when the surface of the bubble moves very rapidly. Compressible hydrodynamic 
methods offer the most general utility for simulating the full range of loading and response 
processes. Since Mader [3] first used a particle-in-cell method to simulate bubble collapse in 2D, 
coupled Eulerian-Lagrangian (CEL) and arbitrary Lagrangian Eulerian (ALE) methods [4] have 
become the preferred methods for gas bubble simulations involving fluid-structure interaction. A 
number of researchers have had success with modelling the interactions of a gas bubble with a 
nearby structure using incompressible hydrodynamic methods, originally applied by Blake et al 
[5] to transient cavities and by Best [6] to explosion bubbles. However, incompressible methods 
are inherently unable to assess the combined damage effects from the shock and the gas bubble, 
which is of interest in most military applications.  

Defence Research and Development Canada (DRDC) has invested considerable effort in the 
simulation of close-proximity underwater explosion (UNDEX) effects on naval platforms, as part 
of its collaboration under a Project Arrangement under the Canada/Netherlands/Sweden 
Memorandum of Understanding (MOU). Central to this work is the accurate prediction of the 
loading on and response of targets in small-scale experiments. DRDC uses the Eulerian blast code 
Chinook, developed by the Applied Technology group of Lloyd’s Register (formerly Martec 
Limited), and LS-Dyna, a commercial finite element analysis (FEA) code developed by Livermore 
Software Technology Corporation, for its close-proximity UNDEX simulations. These two codes, 
when run in coupled mode, provide a CEL solution method in which the Eulerian code Chinook 
computes the blast pressures and associated fluid motions, and the Lagrangian code LS-Dyna 
computes the target response.  

The coupled Chinook/LS-Dyna method has been used in recent years to simulate UNDEX 
experiments involving both submerged, and floating targets [7]–[14]. The main focus of these 
simulations has been predicting the response of the target and the behavior of the explosion gas 
bubble. These simulations have shown a number of inconsistencies with what is observed in the 
experiments, especially in the loading and the behaviour of the gas bubble. For example, in 
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simulations of floating box experiments [15], the gas bubble predicted for 1.1 g nitroamine 
(RDX) detonator charges had a significantly smaller radius and period than what was observed in 
experiments. Bubble collapse and jetting behaviour often differed from the experiments, as well. 
Better agreement with experiment has been achieved in a recent study of the same floating box 
experiments, however [16].  

Because of the earlier inconsistencies, a series of benchmark test problems were created for testing 
the function of Chinook and LS-Dyna in simplified UNDEX scenarios. These simulations allow 
basic characteristics of the explosion gas bubble, like radius and period, to be compared with 
empirical or measured values. This allows the adequacy of grids used with Chinook to be evaluated 
in 1D, 2D and 3D, as well as the effectiveness of mapping field variables from 1D to 3D grids, or 
2D to 3D grids to increase accuracy and reduce computations. Included in these benchmarks are 
simulations involving UNDEX in close-proximity to a simple axisymmetric target plate with 
varying levels of rigidity and restraint applied to the model.  

For all the simulations, Chinook Version 195 [17] and LS-Dyna Version 971 (single precision) 
[18] were used. Chinook simulations were typically run in parallel mode with 30 processors. Most 
of the simulations were run on a Dell Precision T7600 workstation running 64-bit Windows 7 or 
on an IBM 80-core shared-memory server running CentOS 6.2.  

The objectives of the present work are to (1) determine grid cell sizes needed to give accurate 
radius and period data for the explosion gas bubble; (2) identify modelling deficiencies in Chinook 
through comparison of results over a range of similar problems with identical material and 
modelling parameters; and (3) to establish a series of standard problems for benchmarking future 
versions of Chinook.  

The organization of the report is as follows. Section 2 provides an overview of the theory of 
explosion gas bubbles. Section 3 describes the 1D benchmark simulations. Section 4 describes all 
of the 2D simulations; including free-field, free surface and fluid-structure interaction (FSI) 
simulations. Section 5 describes all of the 3D simulations including free-field, free surface and 
FSI cases. A discussion of the results and of the strengths and weaknesses of the software is given 
in Section 6. Final conclusions and recommendations are provided in Section 7.  
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2 Theory of explosion gas bubbles 

The products of an underwater explosion initially remain trapped in a gas bubble, unless the 
explosion occurs so close to the surface that the explosion products are immediately vented to the 
atmosphere. The initial high pressure of the explosion products causes the bubble to expand and 
displace the surrounding water. As the bubble expands, the pressure inside the bubble drops and 
eventually falls below the ambient pressure in the water due to the inertia generated in the 
surrounding water. In the free field, away from the free surface, seabed, and solid objects, the 
maximum radius attained by the nearly spherical bubble during the first pulse, ܣଵ

∗ , is given by the 
similitude formula [19]: 

ଵܣ
∗ ൌ ଺ܭ

ܹଵ/ଷ

ܼଵ
ଵ/ଷ (1)

where W is the charge mass; ܼଵ ൌ 	10.1 ൅ ݀ଵ	is the hydrostatic pressure head in metres of the 
bubble at maximum expansion; ݀ଵ is the depth of the bubble in metres at maximum expansion; 
and K6 is an empirical constant. An asterisk (*) is used to distinguish empirical quantities from 
the numerical predictions of the same quantities presented in the following sections of this report. 

Once maximum expansion is reached, the bubble begins to collapse during which time its shape 
may become less spherical, due to instabilities in the contracting bubble surface [20]. At minimum 
extent, the bubble may have a highly distorted shape. At this time it radiates an impulsive pressure 
wave to the surrounding fluid with an associated loss of energy from the bubble. For bubbles in 
the free field, this occurs at time  

ଵܶ
∗ ൌ ହܭ

ܹଵ/ଷ

ܼଵ
ହ/଺ (2)

where K5 is an empirical constant [19]. For gas bubbles near the free surface, a correction to the 
bubble period is necessary. Snay [21] gives the following formula for the nth bubble period: 

௡ܶ
∗ ൌ 0.374 ߬

ሺݎ௡ܹܳሻଵ/ଷ

ܼ௡
ହ/଺ ൬1 െ α

∗௡ܣ

݀௡
൰ (3)

where ߬ is a dimensionless reduced period; ݎ௡ is the fraction of energy retained in the bubble 
during the nth pulse; ܳ is the energy per unit mass of the explosive; ܼ௡ is the hydrostatic pressure 
head for the nth pulse; ܣ௡∗  is the maximum bubble radius in the nth pulse; ݀௡ is the depth of the nth 
bubble pulse; and α is a surface correction factor. Snay gives a value of α of 0.2.  

Adapting Snay’s equation for ଵܶ
∗ using (1) and (2) gives the following form, in which ܭହ is used 

in place of 0.374	߬ሺݎଵܳሻଵ/ଷ: 

ଵܶ
∗ ൌ ହܭ

ܹଵ/ଷ

ܼଵ
ହ/଺ ൬1 െ α

ଵܣ
∗

݀ଵ
൰ (4)
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The empirical formula for bubble radius (1) does not require a surface correction. Where multiple 
bubble pulses are generated by a single UNDEX event, the maximum radius of each successive 
pulse is given by Snay as 

∗௡ܣ ൌ 1.733 ܽ௠
ሺݎ௡ܹܳሻଵ/ଷ

ܼ௡
ଵ/ଷ  (5)

where ܽ௠ is a dimensionless reduced maximum radius and the other terms are the same as for (3). 
Comparing this equation with (1) gives  

଺ܭ ൌ 1.733 ܽ௠ሺݎଵܳሻଵ/ଷ (6)

With this result, (5) can be rewritten to express the bubble radii of successive pulses in terms of 
the energy ratio ݎ௡/ݎଵ: 

∗௡ܣ ൌ ଺ܭ ൬
௡ݎ
ଵݎ
൰
ଵ/ଷ ܹଵ/ଷ

ܼ௡
ଵ/ଷ  (7)

Using (3), the ratio of the nth to the first bubble period can be derived as [20] 

௡ܶ
∗

ଵܶ
∗ ൌ ൬

௡ݎ
ଵݎ
൰
ଵ/ଷ

൬
ܼଵ
ܼ௡
൰
ହ/଺ ൬1 െ α

∗௡ܣ

݀௡
൰

൬1 െ α
ଵܣ
∗

݀ଵ
൰

 (8)

Similarly, using (5) or (7), the ratio of the nth to the first bubble radius can be derived as  

∗௡ܣ

ଵܣ
∗ ൌ ൬

௡ݎ
ଵݎ
൰
ଵ/ଷ

൬
ܼଵ
ܼ௡
൰
ଵ/ଷ

 (9)

These formulas take into account energy losses due to the bubble pulse and other dissipation 
mechanisms, ݎ௡, the effect of bubble migration, ܼ௡, and the surface effect, α. Theoretical values 
for the energy ratios determined by Snay [21] are ݎଶ	 ⁄ଵݎ ൌ 	0.35	and ݎଷ	 ⁄ଵݎ ൌ 	0.185 for a  
non-migrating free-field bubble. 

The simulations undertaken in this study all involve 1.1 g RDX detonator charges, for which the 
values of the empirical constants are ܭହ ൌ 2.232 and ܭ଺ ൌ 3.740 in SI units, based on 
unpublished data obtained from Naval Surface Warfare Center Carderock Division. Table 1 
summarizes empirical values calculated with the above formulas for the first three bubble pulses. 
Results are given for the “free field” case in which surface effects are neglected, and the “free 
surface” case, in which the surface correction factor is included.  
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Table 1: Empirical values for bubble radii and periods. 

 Free field Free surface 

Bubble depth (m) 0.0 0.3 

ଵܣ
∗ (m) 0.179 0.177 

ଶܣ
∗  (m) 0.126 0.125 
ଷܣ
∗  (m) 0.102 0.101 

ଵܶ
∗ (ms) 33.7 28.7 

ଶܶ
∗ (ms) 23.7 21.2 

ଷܶ
∗ (ms) 19.2 17.5 
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grid size ܺோ ൅ ܺா is approximately 100 m for grid series 1, 2 and 3, and about 30 m for grid 
series 4. The total grid size was selected so that reflections from the end of the grid will not 
influence the bubble behaviour in the time duration of interest. The overall grid dimension was 
reduced for grid series 4 to reduce the number of grid cells.  

Table 2: 1D benchmark grids for 1.1 g RDX detonator. 

Grid  Regular grid Extended grid Total grid 

 XR (m) N Cell size 
ΔXR (mm) 

ξ NE XE XR + XE N+NE 

1a 0.25 1250 0.2 0.1 113 104.66 104.91 1363 
1b 0.25 1250 0.2 0.05 207 102.19 102.44 1457 
1c 0.25 1250 0.2 0.02 465 101.77 102.02 1715 
1d 0.25 1250 0.2 0.01 860 100.01 100.26 2110 
1e 0.25 1250 0.2 0.005 1569 100.60 100.85 2819 
1f 0.25 1250 0.2 0.002 3460 100.64 100.89 4710 
1g 0.25 1250 0.2 0.001 6220 100.13 100.38 7470 

2a 0.25 2500 0.1 0.1 120 101.98 102.23 2620 
2b 0.25 2500 0.1 0.05 221 101.17 101.42 2721 
2c 0.25 2500 0.1 0.02 500 101.77 102.02 3000 
2d 0.25 2500 0.1 0.01 925 100.36 100.61 3425 
2e 0.25 2500 0.1 0.005 1707 100.13 100.38 4207 
2f 0.25 2500 0.1 0.002 3805 100.30 100.55 6305 
2g 0.25 2500 0.1 0.001 6915 100.38 100.63 9415 

3a 0.25 5000 0.05 0.1 128 109.30 109.55 5128 
3b 0.25 5000 0.05 0.05 235 100.15 100.40 5235 
3c 0.25 5000 0.05 0.02 535 101.77 102.02 5535 
3d 0.25 5000 0.05 0.01 995 100.70 100.95 5995 
3e 0.25 5000 0.05 0.005 1847 100.66 100.91 6847 
3f 0.25 5000 0.05 0.002 4151 100.14 100.39 9151 
3g 0.25 5000 0.05 0.001 7605 100.08 100.33 12605 

4a 0.25 10000 0.025 0.1 122 30.85 31.10 10122 
4b 0.25 10000 0.025 0.05 225 30.74 30.99 10225 
4c 0.25 10000 0.025 0.02 509 30.41 30.66 10509 
4d 0.25 10000 0.025 0.01 944 30.31 30.56 10944 
4e 0.25 10000 0.025 0.005 1744 30.11 30.36 11744 
4f 0.25 10000 0.025 0.002 3900 30.32 30.57 13900 
4g 0.25 10000 0.025 0.001 7100 30.20 30.45 17100 
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Table 3: Equation of state parameters. 

Tait equation (water) [25] JWL (RDX explosive) [26] 

ρ0 1000.0 kg/m3 ρ 1659 kg/m3 
P0 101,325 Pa A 495.1 GPa 
B 3000 atm B 7.21 GPa 
n 7.14 C 1.62 GPa  
m 5.00 R1 4.387 
αc 0.05 R2 0.9954 
E0 354 kJ/kg ω 0.3469 

  E0 5877.9 kJ/kg 

Note that the Tait and JWL parameters in Table 3 were not determined under the same conditions 
as empirical constants ܭହ and ܭ଺ introduced in the similitude formulas in Section 2, and this could 
be a minor source of discrepancy.  

3.3 Other control parameters 

Several parameters are used to control the Chinook solver, determine the time step size, and 
control Chinook’s multimaterial calculations. These are summarized in Table 4 and Table 5. All 
the Chinook simulations in this report use the values given in these two tables. 

Table 4: Chinook solver parameters. 

Parameter Value 

Solver type 2 (HLLC) 

Time marching method 0 (Single stage, first-order accurate) 

Spatial order of accuracy 1 (Second-order accurate approximation) 

Gradient type 0 (Green-Gauss) 

Compression limiter 0 (First-order accurate space) 

Table 5: Chinook time step and multimaterial parameters. 

Parameter Value 

Courant number 0.5 

Tolerance 1×10-8 

Maximum number of iterations 200 

Pressure cutoff 1000.0 Pa 

Scale factor 2.0 
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The average of the maximum radii is within 2.1% of the empirical radius, and the predicted bubble 
period is within 1.5% of the empirical value, for all five of the grids. Even the coarsest 2D grid, 
with only 29,115 cells, gives a more accurate result than the finest 1D grid used in Section 3. The 
maximum horizontal radius is always slightly larger than the maximum radius in the vertical 
direction, and this is likely due to the initial cylindrical charge shape.  

Table 7: 2D free field model results for the first bubble pulse. 

Grid ܣଵ௫(m) ܣଵ௬ (m) ܣଵ/ܣଵ
∗  ଵܶ (ms) ଵܶ/ ଵܶ

∗ 

FF1 0.1786 0.1753 0.989 33.51 0.996 

FF2 0.1781 0.175 0.987 33.40 0.993 

FF3 0.1781 0.1752 0.988 33.39 0.992 

FF4 0.1781 0.1742 0.985 33.34 0.991 

FF5 0.1768 0.1732 0.979 33.15 0.985 

Table 8 gives the results for the second bubble pulse, where the average radius of the second pulse 
is ܣଶ ൌ ሺܣଶ௫ ൅  ଶ௬ሻ/2. The second pulse radius converges to a value that is slightly less thanܣ
80% of the first pulse, and for grid FF1 is approximately 10% greater than the empirical value ܣଶ

∗ . 
For grid FF1, the second bubble period is close to 85% of the first bubble period, but is nearly 
20% larger than the empirical value.  

Table 8: 2D free field model results for the second bubble pulse. 

Grid  ܣଶ௫(m) ܣଶ௬ (m) ܣଶ/ܣଵ ܣଶ/ܣଶ
∗  ଶܶ (ms) ଶܶ/ ଵܶ ଶܶ/ ଶܶ

∗ 

FF1 0.1385 0.1407 0.789 1.108 28.29 0.844 1.193 

FF2 0.1351 0.1373 0.771 1.081 27.86 0.834 1.175 

FF3 0.1336 0.1362 0.764 1.070 27.72 0.830 1.169 

FF4 0.1313 0.1341 0.752 1.053 27.44 0.823 1.157 

FF5 0.1258 0.1281 0.725 1.007 26.72 0.806 1.127 

Figure 9 gives a sequence of images showing the gas bubble expansion and contraction during the 
first bubble pulse. The bubble is seen to maintain a nearly spherical shape throughout its first 
expansion and collapse, and only at the bubble minimum, near 33.5 ms, can a significant distortion 
from the spherical shape be noted. The second bubble pulse (Figure 10) is similar but with a 
smaller maximum radius. Figure 12 shows the pressure time history at the monitor point location 
shown in Figure 11. The pressure time history indicates the large reduction in the peak pressures 
between the first and second collapse.  
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4.3.2 Rigid-free target model 

The rigid-free model uses a *MAT_RIGID material model in LS-Dyna, but is free to undergo 
rigid body motion. The target model is coupled to the Chinook analysis using both the small 
deformation coupling scheme, in which LS-Dyna velocities are passed to Chinook; and the large 
deformation coupling scheme, in which LS-Dyna velocities are passed to Chinook and the 
position of the fluid-structure interface is updated at regular intervals. A gravity load was applied 
to the target model during the LS-Dyna analysis to balance the hydrostatic forces acting on the 
partial submerged target. The simulations performed are summarized in Table 14. 

Table 14: Summary of 2D rigid-free target FSI simulations. 

Name Coupling Chinook 
grid 

Coupling 
interval (µs) 

Simulation 
duration (ms) 

RF-S Small FS3 0.5 65.5 

RF-L Large FS3 0.5 56.1 

The pressure time history at the centre of the circular plate is shown in Figure 27 and Figure 28 
for simulation RF-S and RF-L, respectively. These plots show that the peak pressure associated 
with the first collapse are similar for RF-S and RF-L; while for the second collapse, the peak 
pressures differ by more than a factor of 3. The time history of the impulse per unit area imparted 
to the target plate at the plate centre is also given in these two figures. The changes in impulse, 
differ somewhat for the first pulse, but are quite similar for the second pulse. The change in 
impulse is generally not well correlated with the peak pressure value. The results also show that 
significant differences in the loading experienced by the target plate can result from the different 
coupling schemes. For example, the total change in impulse over the two pressure pulses is about 
3000 Pa-s greater for simulation RF-S.  

The fluid velocity at the two collapse events is shown in Figure 29 and Figure 30. This shows that 
the velocities of the re-entrant jet during the first collapse are much larger than the subsequent 
water jetting at the second collapse. The half-width of the jet is in both cases about 20 mm, which 
is narrower than the one seen with the rigid-fixed target.  
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5.3.6 Summary 

Table 26 summarizes the first bubble pulse radius and period results in four 3D FSI simulations. As 
in the 2D FSI simulations, there is a marked degradation in the quality of the bubble radius 
predictions in comparison to what was predicted in the free-field and free-surface simulations. 
Variability in the bubble period was also seen in the FSI simulations, but results could only be 
obtained for the rigid-fixed and rigid-free cases. As in the 2D FSI simulations, the behaviour of the 
gas bubble overall seems to be very sensitive to the amount of restraint and rigidity of the target, 
since other modelling parameters among the various FSI simulations are identical.  

Table 26: Summary of the properties of the first bubble pulse in 3D FSI simulations. 

Case Coupling ܣଵ௫ (m) ܣଵ௬ (m) ܣଵ௭ (m) ܣଵ/ܣଵ
∗  ଵܶ (ms) ଵܶ/ ଵܶ

∗ 

Rigid-fixed Small 0.1743 0.1576 0.1737 0.952 34.67 1.197 

Rigid-free Small 0.1769 0.1658 0.1764 0.977 29.87 1.036 

Fixed Small 0.1596 0.1498 0.1596 0.883 - - 

Free Small 0.1690 0.1344 0.1695 0.890 - - 
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6 Discussion 

The benchmark simulations described in this report revealed a number of strengths and weaknesses 
of Chinook in application to underwater explosion simulations. Most of these have previously been 
observed in other simulations but have not been widely reported on.  

In the 1D benchmark problems, it was noted that Chinook is very slow to converge as the cell size 
and grid expansion factor are reduced. Even with highly refined grids, the maximum bubble 
radius and bubble periods differ from empirical values by 3%. Much better convergence was 
observed with 2D and 3D free-field simulations, which suggests a more fundamental deficiency in 
the 1D modelling. This could be related to the internal, structured gridding method used in Chinook 
(only used in this study for 1D simulations), or it could be related to the way spherical symmetry 
is implemented in Chinook.  

The 2D free field simulations gave bubble radius and period predictions for the first bubble pulse 
that agree well with empirical values, and which show that these fundamental characteristics of 
the bubble are relatively insensitive to coarsening of the grid. Even quite coarse grids produced 
acceptable results, which was not the case in the 1D simulations. Coarse grids, such as the FF4 
grid, are not suitable for predicting shock wave propagation, and much finer grids may be needed 
in simulations when shock and bubble effects are of interest.  

The 2D free surface simulations showed similar bubble radius predictions, and bubble periods 
agreed very well with Snay’s empirical formula including the surface correction factor. In these 
simulations, bubble jetting consistently occurred in a downward direction, which is consistent 
with numerous experimental observations. 

Results for the second pulse showed much more significant discrepancies between predicted and 
empirical values. This is to be expected given that Chinook is based on an inviscid formulation of 
the Navier-Stokes equations. The only mechanisms for energy losses in Chinook are therefore the 
acoustic pulse emitted at the moment of collapse, and numerical losses due to the coarseness of 
the grid. Additional dissipative energy losses associated with the high fluid velocities and 
turbulence and heat transfer to the fluid during each collapse are not accounted for the Eulerian 
formulation used in Chinook. 

In the 2D FSI simulations, some numerical problems were encountered with Chinook. With small 
deformation coupling, the simulations could in all cases be run until well passed the first bubble 
collapse. However, with large deformation coupling, only the simulations with rigid targets ran for 
sufficiently long duration to determine the bubble behaviour. With flexible targets, the simulations 
failed due to numerical overflow shortly after the target plate rebounds from its initial shock 
deflection. With small deformation coupling, the gas bubble was predicted to collapse and jet 
toward the target when the target is rigid; however, the bubble is predicted to jet downward, away 
from the target when the target is flexible.  

Contrary to the flexible target predictions, experiments involving flexible targets of similar size 
and with similar charge size and standoff, exhibit bubble jetting toward the target. It is as though 
with a flexible target, the target acts on the bubble more as a free surface than as a rigid body. The 
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influence of the flexibility of the target on the predicted bubble behaviour is a question that needs 
to be explored further.  

The 3D free field and free surface simulations gave similar results to the 2D axisymmetric cases. 
Most of the 3D simulations were performed by mapping the results from a 2D simulation in the 
early stages of the simulation, and this was found to give good results. Overall, some degradation 
in the bubble radius and period was seen when mapping is performed very early in the development 
of the bubble (0.1 ms).  

In the 3D FSI simulations, only small deformation coupling cases could run successfully. Of these, 
only the two rigid target cases ran to completion; the simulations of the flexible target cases failed 
after the target plates has recovered from the initial deflection response due to the shock wave. 
Significant degradation in the bubble size was noted in all of the 3D FSI cases. These simulations 
all involved mapping from 2D to 3D at 0.1 ms.  

Overall, it is recommended that 1D modelling methods not be used for UNDEX simulations, 
because of the poor convergence seen in these benchmark cases. It is recommended that 2D 
axisymmetric simulations with unstructured grids be used wherever practicable (i.e., when targets 
are axisymmetric), and that these simulations be run from time of detonation (i.e., without mapping 
from 1D). When targets are not axisymmetric, it is necessary to use 3D simulations. But at this 
point, Chinook coupled with LS-Dyna does not appear to be a reliable tool for 3D FSI simulations.  
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7 Conclusion 

The results of a series of benchmark simulations of simplified underwater explosion scenarios 
have been presented with attention focussed on the behaviour of the explosion gas bubble. 
Simulations were conducted using the Chinook software (version 195) using one, two and three 
dimensional models. Fluid-structure interaction simulations were conducted for underwater 
explosions near a circular target plate using Chinook coupled with the LS-Dyna FEM software. 
The overall intent of the simulations was to (1) determine grid cell sizes needed to give accurate 
radius and period data for the explosion gas bubble; (2) identify modelling deficiencies in 
Chinook through comparison of results over a range of similar problems with identical material 
and modelling parameters; and (3) to establish a series of standard problems for benchmarking 
future versions of Chinook. 

The results revealed that very fine grids are needed in 1D simulations to get acceptable gas bubble 
radius and period data, and that a 3% error is the best agreement that can be achieved with 
extremely refined 1D grids. The 2D and 3D free-field and free-surface simulations showed that a 
grid cell size of 8 mm was usually sufficient to give results for the first-pulse radius and period 
that are within 2% of the empirical values. Although some of this discrepancy may be attributable 
to inaccuracy in the empirical constants, the better agreement and faster convergence achieved in 
the 2D and 3D simulations strongly suggests that some underlying deficiency in the 1D modelling. 
Further work is needed to determine the accuracy of the empirical constants for he RP-83 
detonators. 

An 8 mm cell size may not be sufficient when a shock wave must be propagated across some part 
of the grid. Finer grids will likely have to be used in this case. Also, when mapping is used in  
3D models, it may be necessary to use smaller cell sizes to ensure that the initial energy in the gas 
bubble is modelled with sufficient resolution at the time of mapping. 

The FSI simulations revealed some numerical issues with Chinook that will have to be resolved in 
future releases. Many of the premature terminations of Chinook are believed to be caused by the 
non-convergence of an iterative method for determining the material density fractions in mixed 
material cells. A possible solution to this problem is to implement a more deterministic scheme 
better suited to UNDEX problems.  

Furthermore, the gas bubble behaviour predicted by Chinook appears to be highly sensitive to the 
degree of restraint and flexibility of the target structure. In particular, the predicted gas bubble 
jetting behaviour was very different for rigid and flexible models. For flexible models, the gas 
bubble appears to behave like a gas bubble next to a free surface. This may be caused by Chinook 
overestimating or incorrectly predicting the cavitation that occurs next to a responding plate. This 
question requires further exploration.  
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List of symbols/abbreviations/acronyms/initialisms  

A, B, C JWL coefficients 

atm Atmospheres 

 ௡௭ Radius of the nth bubble pulse as measured along the x, y, z axisܣ,௡௬ܣ,௡௫ܣ

 ௡ Maximum radius of explosion gas bubble in the nth period or pulseܣ

∗௡ܣ  Maximum radius gas bubble radius (empirical value) 

aM Dimensionless reduced radius 

CFD Computational fluid dynamics 

c Speed of sound in water 

d Charge depth 

dn Depth of gas bubble during nth period or pulse 

DRDC Defence Research and Development Canada 

E Elastic modulus 

FEM Finite element method 

FSI Fluid-structure interaction 

g gram 

g Acceleration of gravity 

GPa Gigapascals 

h1, h2, h3, h4 Grid cell size parameters 

HLLC Harten-Lax-van Leer-Contact (solver) 

J Joules 

JWL Jones-Wilkins-Lee (equation of state) 

K Kelvin 

K5, K6 Empirical constants 

kg kilograms 

m Metres 

mm Millimetres 

MOU Memorandum of Understanding 

ms Milliseconds 

ܰ Number of grid cells in regular grid 

ாܰ Number of cells in extended grid 



  
  

74 DRDC-RDDC-2016-R171 
 
 
  
  

P Pressure 

Patm Atmospheric pressure 

Ph Hydrostatic pressure 

Ptot Total pressure 

P0 Peak pressure 

Pa Pascal 

Q Explosive energy per unit mass  

R Radial distance 

Rm Distance to monitor point location 

rn Fraction of explosive energy in the nth bubble pulse 

ܴଵ, ܴଶ JWL equation coefficients 

RDX Research Department explosive (nitroamine) 

ROKS Republic of Korea Ship 

R&D Research & Development 

s Seconds 

SI Système International 

t time 

Tc Time to peak pressure 

௡ܶ Bubble period of the nth period or pulse 

௡ܶ
∗ Bubble period of the nth period or pulse (empirical value) 

UNDEX Underwater explosion 

 Specific volume ݒ

W Charge weight 

x, y, z Cartesian coordinates 

X,Y,Z Cartesian coordinates 

ܺா Extended grid dimension 

ܺோ Regular grid dimension 

Zn Hydrostatic water head in the nth bubble period  

1D One-dimensional 

2D Two-dimensional 

3D Three-dimensional 

α Surface correction factor 



  
  

DRDC-RDDC-2016-R171 75 
 
 
  
  

 ௖ Cavitation pressure fractionߙ

∆ܺா Extended grid cell size 

∆ܺோ Regular grid cell size 

 Cell size expansion factor ߦ

μs Micro-seconds 

 Poisson ratio ߥ

 Density ߩ

τ Reduced time 

߱ JWL equation coefficient 
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