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1 Introduction

There is an ongoing research program at Defence Research and Development Canada (DRDC) Suffield
Research Centre (SRC) to explore electromagnetic (EM) scattering from linear conductors to better
understand the physical phenomena governing this effect. The purpose of this contract is to provide
technical expertise to supplement the efforts at DRDC by furthering the research on EM scattering through
experimental and theoretical means.

The need to detect linear conductors is pertinent to military and commercial interests. A number of
commercial applications would benefit from a reliable method to detect buried infrastructure such as
wires, pipes, rods and other infrastructure critical to the delivery of crucial services to consumers.
Detection of these conductors would help to significantly reduce the number of occurrences resulting in
interruptions to power, water and communications services that result from excavation operations. This
would directly result in time and money savings for businesses and consumers alike and help alleviate
associated safety and environmental concerns.

A principal factor in buried conductor detection is consideration of the ground properties. In particular,
the conductivity and relativity permittivity of the soil can have impacts on the propagation of transmitted
waves and reradiated fields (C-CORE 2013), as well as the resonances that can be developed in a length
of conductor (C-CORE 2014) for schemes which exploit this.

This work has been carried out under Task Authorization (TA) 4 entitled “Ground Properties Sensor.” This
TA is authorized under contract No. W7702-175832/001/EDM with DRDC Suffield.

1.1 Scope

This report provides an overview of the work carried out to develop and test a sensor capable of
measuring ground properties, in particular the conductivity and permittivity. The sensor design is
described in detail. Test results from a functional test are also presented demonstrating the proof of
concept. Future improvements are also recommended such that a more field-ready prototype could be
designed and implemented.

1.2 Definitions

Acronym Definition
ADC Analog Digital Converter
CoTS Commercial Off-The-Shelf
DDS Direct Digital Synthesizer
DRDC Defence Research and Development Canada
EM Electromagnetic
GUI Graphical User Interface
ITU International Telecommunications Union
PC Personal Computer
PCB Printed Circuit Board
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Acronym Definition
RF Radio Frequency
SRC Suffield Research Centre
TA Task Authorization
TRL Technological Readiness Level
usB Universal Serial Bus
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2 Background

An ongoing program at DRDC SRC involves the detection of linear conductors on the surface or below the
ground using electromagnetic sensing methods. The properties of the ground have a large impact on the
viability of such detection schemes. A couple of examples where the importance of ground properties has
arisen in prior contracts are listed below:

e Foraproposed detection scheme involving exploiting transmitters of opportunity (C-CORE 2013),
the ground properties dictate the propagation of the transmitted ground wave. That is, a more
conductive ground (i.e., wetter ground) allows better ground wave transmission and a higher
received field at a given range (International Telecommunications Union 2007).

e A more conductive ground is less conducive to penetration of primary radiated fields for
applications of buried conductors (C-CORE 2013, 2014). Hence it will limit the degree to which the
primary field will induce currents in the conductor, as well as the strength of the secondary field
received back above the surface.

e Ground properties also have a significant effect on the effective conductor length when
determining the resonant frequencies for methods which exploit this phenomenon (C-CORE
2014).

There is therefore great value in a priori knowledge of the surrounding ground properties when designing
or implementing a detection scheme. The ground properties can be fed into models which predict the
behaviour of conductors in the presence of radiated fields, and thereby streamline the synthesis of a
detection scheme. The properties could also be used as inputs for a detection system to optimize its
performance in a particular locale.
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3 Prototype Design

The design of the proof-of-concept prototype is largely based on that proposed in a prior report (C-CORE
2017). This design comprises two major sections: a transmitter which injects a steady radio frequency (RF)
currentinto the ground with two probes, and a receiver which receives a resulting field across two probes.
The schematics for this design are in drawing DEA-1336-1000 found in Appendix A.

3.1 Transmitter

The transmitter uses a direct digital synthesizer (DDS) module (U3) controlled by a microcontroller to
generate a transmission frequency. The relevant portion of the schematic is shown in Figure 1. The
prototype is set up to generate a lower frequency (100 kHz) and a higher frequency (1 MHz). The
microcontroller directs the DDS to switch between these two frequencies at roughly one second intervals.
That is, one second of 100 kHz, followed by one second of 1 MHz, and then repeated indefinitely. This is
because it was noted in a prior report that conductivity is more easily measured at lower frequencies, and
permittivity at higher frequencies. Note that the DDS is provided in an evaluation board, which has all the
necessary support components and interfacing circuitry. For a future iteration of this prototype, a custom
printed circuit board (PCB) could be created that incorporates the necessary elements of the evaluation
board.

+VCC_TXUT VDD Us M1
Via  Vout g 4 { vpp RAQANO (il Ll avpp  acND i:—_L
D - 2 RAVANI [aiS 1 pvbp  DGND
o 3 { vss  RAVANYCVREFVREF. |ai— -

RA3/AN3VREF+/CIOUT [<15 i “ 2
RAY/ANATOCKIC20UT <<t SCK 10UT F—n—
&b RASMCLR/VPP <% SDA

RBOINT/CCPI

RAG/OSC2CLED [ 2 | FSYNC o
DDS_Module
RB1/SDISDA [<ig

RA7/OSCI/CLKI =it

s

RB2SDORX/DT ,,%7

= : THOCTX RB3/PGM/CCP1 [ i
v v L] RB4/SCE/SCL <=

RB3/3S/TX/CK. <<

J: BT1 v @D = RB6/ANS/PGC/T10SO/TICKI
Battery 12V | E &o RE7/ANGPGDTIOSI =
- PICIGESS-E/P
U1 VCC TX

Figure 1. Microcontroller and DDS circuitry.

The output signal of the DDS module is then fed into a series of operational amplifier circuits which behave
as a current source amplifier. The relevant portion of the schematic is depicted in Figure 2. U3 and U4 are
standard inverting amplifiers—two are required to split the desired gain in order to keep their individual
gains well below the 200 MHz gain bandwidth product of the LM7171. U5 is a non-inverting amplifier
which senses the current passing through the two probes (P1 and P2). This output is added to the summing
node formed by R3 and R5 to give feedback to the amplifier U4. The result is an amplifier which strives to
maintain a consistent RF current through the two probes. The series resistance R6 is added to the
anticipated ground resistance. This “bias” resistance ensures greater compliance of the current source.
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Figure 2. Operational amplifier circuitry.

A signal transformer (T1) with a unity turn ratio is used to magnetically isolate the current signal used in
feedback. This is then supplied at P3 to be connected to the data acquisition system (Section 3.3). The
intention is to provide a phase reference so that phase information can be used for determining ground
permittivity.

3.2 Receiver

The receiver comprises a straightforward differential amplifier circuit (U8) to amplify the received signal
across P4 and P5 to levels that can be accepted within the dynamic range of the data acquisition system.
The relevant circuitry is found in Figure 3. For this prototype system, a gain of 100 was arbitrarily selected;
it can easily be changed by adjusting R13 and R14. The output is presented on P6.

Note that the receiver and the transmitter are powered from different batteries to ensure that there is
no direct coupling of the transmitted signal to the receiver. Also, both receiver and transmitter circuitry
were enclosed in metal cases to shield the circuitry from external interference.
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u2 -VCC_RX n

R12
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Figure 3. Receiver circuitry.

3.3 Data Acquisition System

For this prototype, a PicoScope 2206B personal computer (PC)-based oscilloscope was used as the data
acquisition system. It allows simultaneous capture of two signals: the received signal itself from P6, and
the reference signal from P3. It is connected to a laptop PC via Universal Serial Bus (USB), and draws its
power from the USB port.

Custom software with a simple graphical user interface (GUI) was written for the PicoScope to facilitate
recording measurements. A screenshot is seen in Figure 4. It allows the user to enter the lower and higher
frequencies that should be examined. The defaults are 100 kHz and 1 MHz as outlined in Section 3.1,
however, it is possible to reprogram the microcontroller if other frequencies are desired. The software
captures a stream of 100,000 samples at a rate of 20.833 MS/s for both the received signal channel and
the reference signal channel. The discrete Fourier transform is calculated at the two frequencies specified
for each channel. The magnitude and phase of the Fourier coefficient is recorded in the specified file, for
both frequencies, and for both channels.

-

o5 Ground Properties Sensor Recording App =NRN X
Low Frequency: 100000 Hz
High Frequency: 1000000 Hz
Output File: —test.csv Browse...
(Status)

Figure 4. Measurement recording software GUI.
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3.4 Frame

Construction of the frame proposed in a prior report was not attempted owing to cost constraints. The
frame for this prototype was constructed from 2x4 and 2x2 dimensional lumber. The completed assembly
is shown in Figure 5.

Figure 5. Setup of ground properties sensor.

The frame is 1m x 1m as prescribed in the background report (C-CORE 2017). The frame is mounted to a
pair of wheels to allow easy movement over the ground. Four “legs” are hinged from each of the corners
of the frame, and have a metal caster at the bottom of each. These casters are the probe terminals used
for the transmitter and receiver. Each caster is electrically connected to the center conductor of an RF
connector. This allows easy attachment of a cable from the caster to the receiver input terminals or
transmitter output terminals. By having the legs hinged, it is possible to move the sensor frame and have
the casters maintain contact with the ground at all times regardless of minor perturbations in the ground
surface.
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4 Testing

The functioning of the ground properties sensor was verified by taking readings for the same region of
ground but with different properties. The ground properties were artificially altered by pouring 7.5 litres
of water on the ground under and immediately surrounding the sensor frame with a watering can. This
corresponds to a rainfall event of approximately 7.5 mm. The test results below are categorized for drier
ground (before the watering) and wetter ground (after the watering).

4.1 Drier Ground

The measured voltages and phase differences for both 100 kHz and 1 MHz operation on drier ground are
summarized in Figure 6. Note that these graphs have the appearance of a square wave since the
microcontroller alternates the frequencies according to Section 3.1 (indeed it can be seen that for the two
different frequencies of operation, the square waves would complement each on the time axis). By
inspection of the graphs, the average received signal for 100 kHz operation is approximately 650 mV over
the duration of this trial, and the average phase difference between the transmitted and received field is
about 80°. For 1 MHz operation, the average received signal is approximately 75 mV over the duration of
this trial, and the average phase difference between the transmitted and received field is about 22°.
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Figure 6. Results for the drier ground test.

4.2 Wetter Ground

The measured voltages and phase differences for both 100 kHz and 1 MHz operation on wetter ground
are summarized in Figure 6. Note that these graphs have the appearance of a square wave since the
microcontroller alternates the frequencies according to Section 3.1 (indeed it can be seen that for the two
different frequencies of operation, the square waves would complement each on the time axis). By
inspection of the graphs, the average received signal for 100 kHz operation is approximately 800 mV over
the duration of this trial, and the average phase difference between the transmitted and received field is
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about 80°. For 1 MHz operation, the average received signal is approximately 85 mV over the duration of
this trial, and the average phase difference between the transmitted and received field is about 18°.

Received Signal (100 kHz) Received Signal (1 MHz)

1000 T 100 T T
800 SRl eRslalE ] 80 | H ]
S S
£ 600 1 E 60t ]
(0] (0]
g g
5 400 1 = 40 1
> >
200 1 20 [ 1
0 _— . . . 0 . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
) Reference Signal (100 kHz) 15 Reference Signal (1 MHz)
s I |
> > 1r 1
E E
(0] 1 4 (0]
D D
g g
2 Sost ]
05 1
0 . . . 0 , .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)
100 Received Phase Difference (100 kHz) o5 Received Phase Difference (1 MHz)
< 80 AN NN Onnnn 1 T20¢ 1
Q (0] M
o (8]
§ 60 f E E 15 b i
[ [0
b5 &
© ©
o 40f 1 o 10} 1
(2] [2]
®© ©
L £
o 20f 1 o 5f 1
0 . . . . 0 . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)

Figure 7. Results for wetter ground test.

It is seen that the recorded values are different for the different ground conditions. Also, the reference
signal is approximately 2 mV for 100 kHz operation and 1.3 mV for 1 MHz operation across both soil
conditions. Further discussion of these results is presented in section 5.1 after explanation of the
calculations.

10
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5 Calculation of Ground Properties

Given the measurements for current on the transmitter, and a voltage on the receiver, it is possible to
calculate the impedances at the two different frequencies. From these it is then possible to calculate the
relative permittivity and the conductivity of the ground.

Calculation of the ground impedances is straightforward (C-CORE 2017):

v (1)
Z_I

This should result in calculated impedances for the lower frequency (Z;) and the higher frequency (Zy).
In addition, there is an impedance calculated from the geometry and the frequency, defined as (C-CORE
2017):

1<1+1 1 1) (2)

where,
& = permittivity of free space
w = angular frequency
r;; = distance between transmitter probe 1 and receiver probe 1
r,, = distance between transmitter probe 2 and receiver probe 2
r1, = distance between transmitter probe 1 and receiver probe 2
r,; = distance between transmitter probe 2 and receiver probe 1

In the current application, the first two distances are 1 m and the second two are 1.414 m. Hence:

_2-42 (3)

0 degw

The complex permittivity is represented as (C-CORE 2017):

jo
=&+ 27 ()
wEg

And for lower and higher frequencies can be calculated as:

27, jo (5)
FoL Zy ¢ W&y
27 o
SC,H=_0_1=8+ ] (6)
Zy WHEg

11
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Taking the magnitudes of the right hand sides of equations (5) and (6) and subtracting them:

o \2 o\ [2Z YA z (7)
(o) - (o) = () - ()
W& WhHEy Zy Zy

For the present application, wy = 10w, . Hence equation (7) can solved for conductivity as:

2 (8)

(ZZ0 1)2 (220 1)
O-~(A)L£0 ZL ZH

Back substitution in the magnitude of (5) and solving for relative permittivity yields:
27, z o \2
- [ -2
Zy W&y

Note that the back substitution could also be applied to equation (6).

(9)

5.1 Application of Calculations to Prototype

For the prototype, it is noted that the receiving amplifier has a nominal gain of 100, and the measured
reference signalis across a 1 kQ resistor. Thatis, a 1V signal represents 1 mA. For convenience, the results
from Sections 4.1 and 4.2 are summarized in Table 1, and presented with better precision resulting from
averaging the readings over time.

Table 1. Summarized ground properties sensor test results.

. d Lower Frequency (100 kHz) Higher Frequency (1 MHz)
roun
Condition Received PhasS diff. Reference Received Phas? diff. Reference
(mV) () (mV) (mV) (°) (mV)
Drier 671 79.8 1.95 72.0 21.4 1.30
Wetter 808 80.0 1.92 84.4 18.4 1.30

Itis noted that the reference signal is much lower than the nominal 0.5 mA to 1 mA operation, by a couple
orders of magnitude. One explanation is that the ground contact was not secure enough between probe
and the soil, and hence a larger-than-expected impedance was encountered leading to non-compliance
of the current source. Regardless, the ground properties were calculated in each case, according to the
method outlined in Section 5. These are presented in Table 2.

12
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Table 2. Calculated ground properties.

Ground Condition Permittivity (relative) Conductivity (S/m)
Drier 1.98 1.80x 10°
Wetter 1.55 1.42 x10°

The calculated values are low, however within order-of-magnitude agreement with values for ground
properties outlined in a ground wave propagation ITU report (International Telecommunications Union
2007). However, the trend is reversed from what would be anticipated. That is, the wetter ground should
have higher values for permittivity and conductivity.

One explanation for this builds upon the explanation for the low reference current. Assuming poor ground
contact, the transmitter probes are basically acting as a dipole radiating very near the ground. The
receiver probes would also be acting as a receiving dipole. In the absence of a significant induced current
in the ground, the only received voltage would be owing to a reception of a ground wave from the
radiating transmitter dipole. According to the ITU report (International Telecommunications Union 2007)
propagation of a ground wave is aided by wetter ground; that is, a received field for a given distance would
be higher for wet ground than dry ground. It is entirely possible that a ground properties sensor could be
designed and optimized based on this operating principle; however, for the current application, it
represents off-nominal behavior and is only an explanation which fits the observed data.
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6 Followup Testing

Upon delivery to DRDC Suffield, the prototype exhibited some off-nominal behavior. It was sent back to
C-CORE for examination and modifications where necessary. These are identified and explained below.

First, it was noticed that the output from the signal transformer was very noisy. This was traced back to
cold solder joints in the assembly. These were fixed; however it was noticed that the output levels for the
signal transformer at the lower frequency (100 kHz) were much lower than anticipated. It was decided to
remove this transformer as it added an element of uncertainty to the performance of the prototype. The
original intention was to have magnetic isolation of the two different power supplies—one each for the
transmitter and receiver—thereby eliminating the risk of coupling of the transmitted current through the
ground connections. However, upon further experimentation with the design, it was concluded that the
received signal was much stronger than any of the observed coupling, and hence the isolation was
deemed no longer necessary.

Second, the observed voltage across a test 10 kQ resistor was both low and dependent upon frequency.
It is noted that the output is a current source, and hence a lower load resistor would result in a lower
voltage. Also, the observed frequency dependence was a result of oscilloscope loading: use of a high-
impedance 10x probe revealed that the outputs at both 100 kHz and 1 MHz were the same.

Finally, it was noted that the output voltage levels at 1 MHz were very low once connected through the
bare coaxial RG59 cables. This was traced to the fact that these cables have a distributed capacitance per
length; over a length of 1 meter, this capacitance is significant enough to provide a parallel shunt
impedance with the intended load, and hence the observed voltage levels dropped. To combat this, it is
recommended that the prototype be used with bare wire as the probes. A further iteration of the design
could address this.

6.1 Testing with a Resistor Bridge

It is useful to provide a baseline test which is not dependent on soil type so as to ensure proper operation
of the prototype. This test was a bridge of resistances which modelled a distributed impedance of the
ground, seen in Figure 8.
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TX+ > { RX+
24 k
R1 R3
24 k 24 k
R4
TX- > { RX-
24 k

Figure 8. Resistor bridge for testing.

Note that the input impedance of the receiver also factors into the calculation, and manifests itself as a
parallel resistance across RX+ and RX-. It can be shown using straightforward circuit analysis that the
anticipated voltage across RX+ and RX- is:

v = _RZls (10)
out T 3R + 47

Where R is the bridge resistor size (24 kQ), Z is the input impedance (78 kQ) of the receiver, and I is the
current of the source. The results are shown in Figure 9. It was measured that for the 100 kHz signal, the
current is 71 pA, and the output voltage was 0.343 V, which gives good agreement according to the
formula above. It was measured that for the higher frequency, there was a higher measured voltage for
the same current source. This could be explained by the fact that there was a parasitic inductance in the
test setup; the leading phase difference lends corroborates this explanation. This would lead to a higher
observed voltage. It is deemed that for a proof-of-concept, where order-of-magnitude agreement is
sought, this is still satisfactory. This is something that could be addressed in a further iteration of the
prototype.
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Figure 9. Test results for 24 kQ resistor bridge.
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6.2 Testing in a Bucket of Damp Sand

To test the apparatus, the leads were placed in a 5-gallon bucket of damp sand arranged in a 10cm x 10cm
square. The results are shown in Figure 10. The relevant averaged data are summarized in Table 3.
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Figure 10. Results for damp sand.
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Table 3. Data for damp sand.
. d Lower Frequency (100 kHz) Higher Frequency (1 MHz)
roun
Condition Received PhasS diff. Reference Received Phasi.- diff. Reference
(mV) () (mV) (mV) () (mV)
Damp sand 92.2 15.8 53.8 26.4 38° 61.8

Following the calculation procedure in Section 5, it was found that the magnitude of the permittivity was
37.2 and the conductivity was 5 x 10 S/m. In addition, a second method of calculation provided by LRDC
(elaborated upon in Appendix B) was shown to produce results of, at 100 kHz:

2Z (11)
=————1=256-j939
© T JwColZP? J
and
2& COS
_Z0C0Sh _ g 10-4 (12)
GolZ|
And at 1 MHz:
2Z (13)
=————1=232-j309
© T JwColZP? J
and
2& COS
_ 20 _ 0017 (14)
GolZ|

The agreement between the two methods is good for conductivity at the low frequency, and permittivity
at the higher frequency. According to the ITU ground propagation report (International
Telecommunications Union 2007), these results are very roughly in alignment with their characterization
of medium dry ground, which has a relative permittivity of 15 and a conductivity of 0.001.

6.3 Testing in a Bucket of Dry Sand

The same bucket of sand was allowed to dry out, and a series of measurements were taken again. The
measurements are presented in Figure 11.
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Figure 11. Results for dry sand.

A summary of the results of the calculations using the various methods is shown in Table 4.

19



Modeling and Experimental Support for Detection of Linear Conductors, Task

G\ C C o re Authorization 4: Ground Properties Sensor
[ ]
| DRDC Suffield

Report no: R-17-038-1336 Revision 1.1 March, 2018

Table 4. Calculation results for dry sand.

Calculation Method Permittivity (relative) Conductivity (S/m)
Section 5 52.7 0.001
Appendix B — 100 kHz 81-j175 9.72 x 10
Appendix B — 1 MHz 58.5-j7.8 4.36 x10*

Once again, the agreement between the two methods is good for conductivity at the low frequency, and
permittivity at the higher frequency. Note that, as in Section 5.1, these results appear counterintuitive:
the drier sand has a notably higher relative permittivity and conductivity. Still further testing and analysis
will be required to explain this discrepancy.
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7 Conclusions and Recommendations

A prototype was constructed that was intended to prove the concept of measuring ground properties
with the methods outlined in a prior report (C-CORE 2017). The prototype was built with basic commercial
off-the-shelf (COTS) components and modules. It was then deployed in the field and was tested for
functionality in a realistic environment.

The prototype was found to have discriminated between different soil types, as evidenced by the different
readings for drier and wetter ground. However, its behaviour was off-nominal. This had originally been
attributed to poor ground contact. Further re-testing revealed that the prototype measured at least order-
of-magnitude realistic ground characteristics, but once again showed trends that were contrary to
expectation: that is, higher permittivity and conductivity values for drier conditions.

In addition, there are a number of improvements that could be considered for a future iteration of the
sensor. These are enumerated below.

e The probes could be designed to have better ground contact. It was found from intermediate
testing of the prototype components that contact on top of grass is not as reliable as contact with
the soil itself. This could be remedied by replacing the smooth casters with spiked wheels or some
other means of ensuring penetration into the soil. In addition, a coil or additional weight could be
added to the probe legs to add pressure and ensure ground contact.

e The design of the mechanical frame detailed in the prior report (C-CORE 2017) could be
implemented. Due to cost constraints in this contract, it was not possible to fabricate that frame.
The design could be updated to include the ground penetrating wheels noted above.

e The power supply noise could be reduced. It was found in unit testing that harmonics
corresponding to the power supply switching circuitry were present in the received signal
spectrum. These harmonics did not impact the readings for the tests of Section 4 because of the
selected frequencies and tight resolution bandwidth. A higher grade power module for generating
the bipolar supplies required by the operational amplifier circuitry could be used to ensure that
the impacts are minimized.

e A custom PCB could be fabricated for both the transmitter and receiver module as alluded to in
Section 3.1. This would allow integration of other designated hardware and also allow a greater
degree of interfacing. The PicoScope would not be required as custom ADC circuitry could be used
to perform the measurements. The sensor could have on-board storage for the sensor readings
which are then retrieved at a later time, eliminating the need for a designated PC. There could
also be USB access for managing the settings of the sensor.

In addition, the sensor—either the current manifestation or a future iteration—could be examined for
different ground types and conditions. The sensor readings could then be calibrated or otherwise
compared against known ground types. Further testing would be required to demonstrate the proof of
concept and to explain the apparent counterintuitive measurements the prototype makes. Implementing
some or all of these recommendations would result in a more mature design.
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Appendix A: Prototype Schematics
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Appendix B: Theory of Quadrupole Ground Probe Detector
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Theory of Quadrupole Ground Probe Detector

This theory applies to a rectangular array of four probes touching the ground. A current is forced
through two of them and the voltage is measured between the other two. The frequency is low,
so that the process is quasi-static and electrostatic theory is applicable. The ground is conducting
with relative permittivity £and conductivity 0. We assume the conventional time dependence is
of the form €. Then the complex relative permittivity of the ground is given by:

’ . O

WE,

where & is the permittivity of free space.

If this planar array were entirely in free space, we could consider a pair of transmitting probes
with charges +¢q. The potential at a distance r from a single charge is given by:

q
V= 2
dre,r @

Therefore, the potential difference at the receiving probes would be:

:L£L+L_L_LJ )
e, \ 1y 1y Ky By

where the subscripts on 7 indicate the transmitting and receiving probes. Now current is the rate
of change of charge, so that / = jwg, and this permits us to write the transfer impedance of the

array, Zy, as:
z,=2 - (i+i—i—i} . )
I jArme,o\ 1, 1, hy, 1y JoC,

Here, we have introduced a variable of the dimensions of capacitance, Cy, which represents the
transfer impedance of the probes in free space:
4re,

= 5
[1 11 1 j ®)
7+7_7_7
o Iy nhy Iy

In reality, the probes are located at the interface between air and ground. The modifications to
the theory are related to the field from a charge near a dielectric half space. This is described in
most elementary texts. When the charge is located within the dielectric, the electric field can be
deduced by replacing the charge by an effective charge:

g— 24 (6)

e+l

In our case, the charges are on the surface but allowing them to be buried just beneath it makes
no difference because transverse fields (parallel to the surface) are continuous across it. As a
result, the mutual impedance and the mutual capacitance are modified by the factor 2/(+ 1).
Therefore, we have:

— 2ZO

7 =
&c+1

(7)



This can be rearranged to yield:
27, 2

£= -1= — (8)
Z JjoCyZ

Denoting real and imaginary parts of Z by single and double primes, respectively, this yields:

c= %Z;]Z) 1 (9)
JjoC, | Z ]
From (1) we have:
o= 27 1= —2sin ¢ .
oCy | Z] oCy | Z]
(10)
_2g,co08¢
Gl Z]

where ¢ is the phase angle. For capacitances in general, the voltage lags the current, so that the
phase angle is negative. For free space, the phase angle is -90 deg. and |Z| = 1/(wCy). Therefore ¢
=1 and o =0, as expected.

From (5), when the probe geometry is a square of side 1 m, the transfer capacitance, Cy, in free
space is close to 190 pF.



Modeling and Experimental Support for Detection of Linear Conductors, Task

G\ C C 0 re Authorization 4: Ground Properties Sensor
[ ] [
& DRDC Suffield

Report no: R-17-038-1336 Revision 1.1 March, 2018

Appendix C: Revised Schematics
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