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Abstract  

This Scientific Report investigates the limitations of traditional supervised traffic classification techniques 
on classification performance such as accuracy, precision, and recall when there is only limited 
knowledge available about the traffic, especially an adversary’s encrypted traffic. To improve the 
classification performance under the above scenario, a new modified naïve Bayes kernel (MNBK) 
classifier is proposed based on optimal weight-based (OWB) kernel bandwidth selection. The proposed 
OWB kernel bandwidth selection algorithm can make a more accurate learning model for traffic 
classification compared with the traditional classifiers. By generating several possible major traffic types 
in tactical edge networks, we demonstrate that the proposed MNBK classifier not only improves the 
classification performance on the existing classes significantly, but also detects unknown traffic with very 
high accuracy, precision, and recall compared with the traditional classifiers. In addition, a learning 
classification model is proposed based on MNBK, that processes received ongoing real time traffic and 
updates the classification table periodically. Generally speaking, with more and more accurate 
information retrieved from received real time traffic, the proposed real time classification model should 
improve the classification performance over time compared with the traditional classifiers that do not 
consider the ongoing received traffic. This has been demonstrated with our classification performance 
evaluation. 

Significance to defence and security  

Traffic analysis plays a very important role in signal intelligence, cyber, and electronic warfare. It has 
been used to provide valuable intelligence with accurate information about cyber targets. The results from 
traffic analysis can be used to support decision making in the battlefield such as target selection, cyber 
effects, smart jamming, or destruction. For this reason, the accuracy of information prediction through 
traffic analysis becomes a key factor in mission success.  

In this Scientific Report, we present a modified naïve Bayes kernel classifier (MNBK) to improve the 
traffic classification performance of well-known existing supervised traffic classifiers with less 
knowledge of the adversary’s traffic, which is very practical under battle scenarios. The proposed MNBK 
classifier has much better classification performance in predicting and detecting unknown traffic that does 
not belong to the classes contained in the training data, and significantly increases the overall 
classification accuracy compared with the traditional classifiers.  

This work is important to the defence and security community. It presents a practical traffic classification 
approach to improve classification performance and detect unknown traffic with very high accuracy, 
precision, and recall, as in tactical scenarios where only limited knowledge about the adversary’s traffic 
may be available. 
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Résumé  

Le présent rapport traite des limites au rendement des techniques traditionnelles de classification du trafic 
supervisé en ce qui a trait à l’exactitude, à la précision et au rappel lorsqu’on dispose de peu 
d’information sur le trafic, particulièrement sur le trafic crypté d’un adversaire. Le rapport présente 
également une nouvelle méthode de classification naïve bayésienne modifiée basée sur la sélection de la 
taille du noyau selon une pondération optimale afin d’améliorer le rendement en matière de classification 
dans un tel cas. Le nouvel algorithme de sélection de la taille du noyau nous permettra d’instaurer un 
modèle d’apprentissage pour la classification du trafic qui sera plus précis que les modèles traditionnels. 
En générant plusieurs grands types de trafic pour les réseaux tactiques en périphérie, la méthode proposée 
permettra non seulement d’améliorer considérablement le rendement en matière de classification à l’aide 
des classes existantes, mais également de détecter le trafic inconnu avec beaucoup plus d’exactitude, de 
précision et de facilité de rappel que les méthodes traditionnelles. Un nouveau modèle de classification 
par apprentissage est proposé. Celui-ci est fondé sur une méthode naïve bayésienne modifiée qui 
permettra de traiter le trafic en temps réel et de mettre à jour périodiquement le tableau de classification. 
Globalement, au fur et à mesure que l’on recueillera de l’information de plus en plus exacte provenant du 
trafic en temps réel le modèle proposé permettra avec le temps d’améliorer le rendement de la 
classification par rapport aux modèles traditionnels  qui ne tiennent pas compte du trafic continu,  comme 
l’a démontré notre évaluation du rendement en matière de classification. 

Importance pour la défense et la sécurité  

L’analyse du trafic revêt une très grande importance dans le renseignement d’origine électromagnétique, 
de même que dans la guerre électronique et cybernétique. Elle fournit de précieux renseignements, entre 
autres des précisions sur les cybercibles. Les résultats d’analyse du trafic peuvent aider à la prise de 
décisions sur le champ de bataille, notamment pour sélectionner les cibles, déterminer les conséquences 
sur le plan informatique,  procéder au brouillage intelligent et détruire les cibles. L’exactitude de la 
prédiction d’information grâce à l’analyse du trafic est devenue un facteur clé dans la réussite des 
missions.  

Dans le présent rapport, on propose une version modifiée d’une méthode naïve bayésienne pour améliorer 
le rendement obtenu grâce aux méthodes supervisées existantes connues, lesquelles nécessitent  moins de 
connaissance du trafic de l’adversaire. Ceci s’avère fort pratique dans les scénarios de bataille. 
Comparativement aux modèles traditionnels, celui qui est proposé affiche un meilleur rendement en 
matière de classification, permet de détecter et de prévoir plus facilement le trafic inconnu qui n’entre pas 
dans les classes de données d’apprentissage et d’améliorer considérablement l’exactitude générale de la 
classification.  

Les travaux décrits dans le présent rapport sont importants pour la communauté du domaine de la défense 
et de la sécurité. Ils proposent une démarche pratique pour améliorer le rendement en matière de 
classification, de détection du trafic inconnu, d’exactitude, de précision et de facilité de rappel, comme 
dans les scénarios tactiques dans lesquels on ne dispose que de peu d’information sur le trafic de 
l’adversaire. 
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1 Introduction 

Traffic analysis is “the process of intercepting and examining messages in order to deduce information 
from patterns in communication” [1]. It is a very important and basic part of signal intelligence and 
electronic warfare, and has been used to provide valuable intelligence with accurate estimation of the 
targets’ intentions and actions such as their locations, movements, roles, network structure, and 
communication patterns by intercepting and examining the adversary’s network communication. With 
advances in processing speed, traffic analysis can obtain more in-depth knowledge on what type of traffic 
packets and data are flowing through a network even when the traffic is encrypted and cannot be 
decrypted. The information resulting from traffic analysis can be used to support decision making in the 
battlefield such as target selection, cyber effects, smart jamming, or destruction. Therefore the accuracy 
of information prediction in traffic analysis is a key factor in mission success.  

One of the important techniques used to improve prediction accuracy in traffic analysis is machine 
learning. In general, the larger and more comprehensive the set of training data has, the more information 
that can be inferred from the testing (or real time) data. However, effective machine learning is usually 
very difficult in the battlefield because there is not enough training data and knowledge of the adversary’s 
traffic. In addition, it is hard to find correct and accurate patterns of the traffic if the training data only 
contains partial knowledge of the traffic. This problem is likely to exist in the battlefield nowadays since 
most adversaries’ traffic is assumed to be protected by encryption or other methods.  

One of the research areas in traffic analysis is traffic classification. Traffic classification can be used to 
support both offence and defence in tactical networks such as protocol attacks and automated intrusion 
detection, etc. Traditional conventional approaches in traffic classification rely on the deep inspection of a 
packet’s header information (e.g., IP address, port number) [2–4] or payload information (e.g., protocol 
signatures) [3–5]. Nowadays, this information is usually protected by the adversary’s network and the 
only available information intercepted from the adversary’s network might be packet timing and length. 
By studying the traffic’s statistical properties with these limited data, many new traffic classification 
technologies combined with machine learning techniques were proposed in the last decade [6–16], where 
Bayesian methods [11–16] have become mainstream and known as simple yet effective. As we mentioned 
above, with limited training data and knowledge of the adversary’s traffic, accurate, real time, and 
continuous traffic classification are still open challenges. 

In this report, in order to improve the traffic classification accuracy, precision, and recall, we investigate 
the limitations of the naïve Bayesian classifier [11–13] and Gaussian kernel density estimation (KDE) 
[17] in traffic classification based on packet lengths. In contrast to the traditional naïve Bayes kernel 
estimation (NBK) [13], which uses rules of thumb [18] or optimal solve-the-equation plug-in [17, 19] 
approaches for bandwidth selection in KDE, we propose an optimal weight-based (OWB) method in 
bandwidth selection for constructing a classification model with a Gaussian kernel distribution. We adapt 
the supervised NBK approach to detect unknown traffic. By selecting several possible major traffic types 
(generated by the BreakingPointTM traffic generator [20]) in tactical edge networks, we demonstrate that 
the new proposed traffic classification technology not only improves the prediction accuracy, precision, 
and recall significantly but also detects unknown traffic. We further discuss how to use the new proposed 
traffic classification technology for real-time and continuous classification, and its related performance.  

https://en.wikipedia.org/wiki/Communication
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The rest of the report is organized as follows. The background and related work on traffic analysis and 
classification, machine learning, and naïve Bayes kernel estimation are briefly introduced in the next 
section. In Section 3, a modified naïve Bayes kernel classifier (MNBK) is presented based on a new 
optimal weight-based kernel bandwidth selection algorithm. In addition, a classification learning model 
based on probability rather than probability density, and new traffic detection and prediction is introduced 
into the proposed MNBK classifier. In Section 4, the traffic classification performance of the proposed 
MNBK classifier is evaluated and compared with other traditional NBK classifiers based on encrypted 
wireless traffic generated with the BreakingPoint traffic generator. In Section 5, the application of MNBK 
to both real time and continuous traffic classification is discussed. Finally, concluding remarks are given 
in Section 6. 
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2 Background and related work 

In this section, we briefly introduce some background and related research on traffic analysis, traffic 
classification, machine learning, and naïve Bayes classifier with Gaussian kernel density distribution. 

2.1 Traffic analysis and classification 

Traffic analysis has been used in the military since World War I when the telegraph was used in 
communication [21]. For instance, during First World War, British Room 40 got very valuable 
information about German ships, such as their positions and major fleet operations, by intercepting 
and examining signals and wireless traffic among German ships, Zeppelins, and shore stations. The 
French Army identified German combat groups and their locations by intercepting and comparing 
different call-signs, signal strength, and activity categorizations. At that time, the British and French 
signal intelligence organizations had the advantage of thorough knowledge about the German 
communication systems.  

Traffic analysis played a significant role in signals intelligence when wireless communication became 
popular in the military. Back in World War II, traffic analysis provided more valuable intelligence and 
accurate predication at recognizing the fingerprints of devices and operators. For example, in 1941 British 
identified and confirmed that a German Air Force unit contained nine planes by intercepting and 
reconstructing the network structure of the German Air Force radio, which gave very accurate estimation 
of the strength of the German Air Force [22].  

Along with advanced research and the development of computer and machine learning technologies, 
nowadays traffic analysis is used to support both offence and defence in the cyber security domain. For 
instance, traffic analysis has been widely used in automated intrusion detection systems, reconstruction of 
the adversary’s tactical networks, target selection, smart jamming, etc. [23–27]. In addition, with more 
and more advanced security protection applied in adversaries’ network communications, it becomes much 
harder than before to get deep knowledge of the packet contents just by inspection of the intercepted 
traffic packets directly. Traffic analysis becomes a more and more important tool to gain more knowledge 
about adversaries’ network communications without effort in breaking their security systems such as 
encryption. Traffic classification is one of the important traffic analysis tools for detecting and predicting 
known and unknown traffic types (or patterns) based on statistical properties of network communications.  

2.2 Machine learning in traffic classification 

Machine learning is known as a powerful technique for data mining and knowledge discovery. It has been 
used in many applications such as medical diagnosis [28–29], handwriting pattern recognition [30–31], 
search engines [32–33], traffic classification [6–16], and so on. There are several basic types of machine 
learning techniques used in traffic classification. For instance, supervised, unsupervised, rule-based, and 
so on, where supervised and unsupervised learning are the major learning techniques used in traffic 
classification [4]. In this work, we focused on a mainstream traffic classification technique—naïve Bayes 
classification which uses supervised learning to construct a learning model and classify traffic. In 
addition, we use only the packet length as raw data to evaluate the performance of the proposed MNBK 
classifier, i.e., how much the new classifier can improve on the traffic classification compared with the 
traditional methods.  
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Supervised machine learning consists of two phases: a training phase and a testing phase. In the training phase, 
supervised learning techniques construct a classification model based on the provided training dataset. In the 
testing phase, the classification techniques predict new instances based on the classification model built in the 
training phase. The classification model is constructed based on a function which maps input features from the 
training dataset to output classes, i.e., the output classes are pre-defined in the training dataset and controlled 
by the function. This function is the key to the classification model in supervised machine learning. To find a 
function that can best predict the results for any new instances is a challenge. 

There are many supervised learning classification algorithms which use different ways to construct 
classification models, for instance, naïve Bayes Tree [34], Bayesian network [35], naïve Bayes with 
kernel density estimation [13], C4.5 decision tree [36]. In this work, we investigated naïve Bayes kernel 
estimation in traffic classification, which can construct a multimodal classification model to reflect the 
real distribution of more complex data with multiple modes.  

2.3 Naïve Bayes classifier with kernel distribution 

The naïve Bayes kernel density classification method is a generalization of the naïve Bayes classifier and 
uses the Gaussian kernel distribution for probability estimation instead of using the standard Gaussian (or 
normal) distribution. The naïve Bayes classifier with the normal distribution has limitations to construct 
multimodal classification models for complex data with multiple modes.  

2.3.1 Naïve Bayes classifier 

The naïve Bayes classifier is a simple classification technique based on applying Bayes Theorem with 
independence assumptions between features. The theory of naïve Bayes applied to traffic classification is 
explained below. 

Consider a training dataset containing n traffic packet samples X = {x1, x2, …, xn} where each packet xi may 
have multiple attributes such as length, timing, and so on. Assume there are k known classes C = {c1, c2, …, ck} 
in the training dataset X. Based on the assumptions such as naïve independence and Gaussian (normal) 
distribution of the attributes in the naïve Bayes classifier, the following probability density equation1 is 
used to estimate the probability density of a traffic packet y which comes from a testing dataset 

𝑓(𝑦|𝑐𝑖) =
1

√2𝜋𝜎𝑖
2

𝑒
−
(𝑦−𝜇𝑖)

2

2𝜎𝑖
2
            for    𝑖 = 1, 2, …𝑘 (1) 

where i and i are the mean and standard deviation of the packets belonging to class ci and are calculated 
based on the training dataset with the following equations 

                                                      
1 This density equation is based on standard normal distribution, i.e., each traffic packet contains one attribute only. 
For packets containing multiple attributes, the more complex multivariate normal distribution is required (see more 
details in [37]). 
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𝜇𝑖 = 
1

𝑁𝑐𝑖
 ( ∑ 𝑥𝑠
𝑥𝑠:𝐶(𝑥𝑠)=𝑐𝑖

)            for    𝑖 = 1, 2, …𝑘 (2) 

and 

𝜎𝑖 = √
∑  (𝑥𝑠 − 𝜇𝑖)

2
𝑥𝑠:𝐶(𝑥𝑠)=𝑐𝑖

𝑁𝑐𝑖
            for    𝑖 = 1, 2, …𝑘 (3) 

where C(xs) = ci stands for the instance xs belonging to the class ci and 𝑁𝑐𝑖 is the total number of traffic 
packets belonging to the class ci in the training dataset, which means ∑ 𝑁𝑐𝑖 = 𝑛

𝑘
𝑖=1 . 

Based on Bayes Theorem, the posterior probability that a testing traffic packet y belongs to the class ci 
(denoted by P(ci|y)) can be calculated with the following equation2 

𝑃(𝑐𝑖|𝑦) =  
𝑝(𝑐𝑖) ∗ 𝑓(𝑦|𝑐𝑖)

∑ 𝑝(𝑐𝑗)
𝑘
𝑗=1 ∗ 𝑓(𝑦|𝑐𝑗)

      for   𝑖 = 1, 2, …𝑘 (4) 

where p(ci) is the prior probability of the class ci calculated with the following equation based on the 
training dataset 

𝑝(𝑐𝑖) =  
𝑁𝑐𝑖
𝑛
                               for    𝑖 = 1, 2, …𝑘 (5) 

In the testing dataset, a testing traffic packet y is classified into a class ci if P(ci|y) = max{P(cj|y): 
j =1,2,…,k}. 

Although the naïve Bayes classifier has worked quite well in many real-world situations [38], it would 
cause large errors if the real situation is multimodal, i.e., it does not even approximately satisfy the 
assumption of a Gaussian distribution. For instance, the Figure 1 shows the relative frequency distribution 
of the JabberChat traffic3 and the probability density calculated under normal distribution, i.e., JabberChat 
fitted normal density. Obviously, the Jabberchat fitted normal distribution (red line) in Figure 1 does not 
match the JabberChat traffic (blue line). One of the solutions to construct a multimode model and match 
the real traffic in machine learning is to use Gaussian kernel density distribution, which will be discussed 
in Section 2.3.2. 
                                                      
2 Actually Equation (4) is not really correct because f(y|ci) calculated with Equation (1) is a probability density, 
rather than a probability. However, many popular machine learning tools (e.g., RapidMiner) use it that way. We will 
use probability instead of probability density in our new method in this work. 
3 The JabberChat traffic is generated with the BreakingPoint traffic generator. It is encrypted and forwarded from 
one wireless router to another. The traffic data is collected through wireless eavesdropping using WiresharkTM and 
AirpcapTM. 
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Figure 1: Comparison of the relative frequency distribution of the JabberChat data traffic  

with the JabberChat fitted normal density. 

2.3.2 Gaussian kernel density distribution 

Naïve Bayes kernel estimation uses the following Gaussian kernel density equation4 to estimate the 
probability density of a new testing traffic packet y instead of using the normal density shown in 
Equation (1) 

𝑓(𝑦|𝑐𝑖) =  
1

𝑁𝑐𝑖
 ∗  ∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑦−𝑥𝑠)

2

2𝑡𝑖
2

)

         for 𝑖 = 1, 2, …𝑘      

𝑥𝑠:𝐶(𝑥𝑠)=𝑐𝑖

 (6) 

where ti is referred as the kernel bandwidth of the Gaussian kernel distribution. The difference in the 
Gaussian kernel density is that all individual samples (xs) and the kernel bandwidth (ti) in the kernel 

( 1

√2𝜋𝑡𝑖
2
𝑒
−
(𝑦−𝑥𝑠)

2

2𝑡𝑖
2 ) are used for the probability density calculation instead of using the mean (i) and 

standard deviation (i) in the normal density. The naïve Bayes kernel density classification uses Equation (4) 
for posterior probability calculation as that in the naïve Bayes classifier. As stated in [13], the naïve Bayes 
kernel classification performs much better in situations when the normality assumption is strongly violated. 

In the Gaussian kernel density, the selection of the kernel bandwidth plays a very important role in the 
accuracy of the probability density construction. Much research [17–18, 40–42] has been done on kernel 
bandwidth selection in the past. The most popular kernel bandwidth selection algorithms applied in 
machine learning tools (e.g., Matlab, RapidMiner) are rules-of-thumb (ROT) based on [18] and 
solve-the-equation (STE) based on [17]. We will discuss the kernel bandwidth selection in Section 3.1. 
                                                      
4 The Gaussian kernel density equation is used for one-dimensional traffic data. For packets containing multiple 
attributes (m-dimensions), the more complex nonparametric kernel density distribution is required (see more details 
in [39]). 
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3 Modified naïve Bayes kernel classifier 

In this section, we discuss some limitations in the traditional kernel bandwidth selection of the naïve 
Bayes kernel classifier for traffic with packet length data, which we can collect from encrypted wireless 
channels without decrypting the packet. We propose a new weight-based kernel bandwidth selection 
algorithm to improve the kernel probability density pattern constructed by the training data and to 
construct the learning model with probability rather than probability density. At the end of this section, 
we introduce our methods for “unknown” 5 traffic detection in our modified naïve Bayes kernel classifier. 

3.1 Traditional kernel bandwidth selection 

In the naïve Bayes kernel classifier, the kernel bandwidth is a key factor for constructing an accurate 
probability density model. The most popular kernel bandwidth selection algorithms are rules-of-thumb 
[18] and solve-the-equation [17], which are applied in many machine learning tools. They are briefly 
described below. 

1. Rules-of-thumb (ROT) kernel bandwidth (ti) selection is based on the following equation 

𝑡𝑖  =  (
4

3𝑁𝑐𝑖
)

1
5

∗ 𝜎𝑖                    for    𝑖 = 1, 2, …𝑘 (7) 

where i can be calculated from Equation (3), i.e., using the standard deviation. It can also be 
calculated with the following equation, i.e., using median absolute deviation (MAD) 

𝜎𝑖  =  1.4826 ∗ 𝑀𝐴𝐷{𝑥𝑗: 𝐶(𝑥𝑗) = 𝑐𝑖}          for    𝑖 = 1, 2, …𝑘 (8) 

We call ROT bandwidth calculated with standard deviation “ROTs,” and the ROT bandwidth calculated 
with median absolute deviation “ROTm.” ROTm usually performs better than ROTs since MAD is a 
more robust statistic and is more resilient to outliers in a dataset than the standard deviation.  

2. Solve-the-equation (STE) kernel bandwidth selection is based on the following equation 

𝑡𝑖  =  (
1

2𝑁𝑐𝑖√𝜋||𝑓"||
2
)

2
5

                 for    𝑖 = 1, 2, …𝑘 (9) 

where ||f || is estimated by the L-stage direct plug-in bandwidth selector (see details in [17]). 

                                                      
5 Here “unknown” traffic means that the traffic does not belong to any class contained in the training dataset, i.e., 
new detected traffic. Traditional supervised learning and traffic classification technologies do not provide this 
capability. 
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Figure 2 depicts the probability densities of the JabberChat traffic under three kernel bandwidths: 
ROTs, ROTm, and STE. The figure shows that all three probability densities constructed with 
different kernel bandwidths reflect multimodal distribution features of the traffic data rather than the 
single mode constructed with the normal distribution assumption and shown in Figure 1. In addition, 
there is a huge difference among the three probability densities, which means kernel bandwidth 
selection has a big impact on constructing an accurate probability density and, further, an accurate 
learning model.  

 
Figure 2: Comparison of the relative frequency distribution of the JabberChat traffic  

with the kernel probability density of the traffic under different kernel bandwidths. 

Figure 2 also shows that all kernel bandwidth selections have difficulty in constructing an accurate 
probability density for traffic classification with packet length data, i.e., they do not match the relative 
frequency distribution of the traffic.  

First, the kernel bandwidth calculated with ROTs is too big, which makes the probability density too 
smooth and covers almost every packet, although this is better than the normal density shown in Figure 1. 
A very smooth probability density model can predict that many packets from other classes fall into its 
class, i.e., increase the false positive rate (or Type I errors).  

The probability density constructed based on ROTm is much better than the probability density 
constructed based on ROTs (see Figure 3 for details) since it is a close match to the relative frequency 
distribution of the traffic data. The ROTm model is still too smooth compared with the relative frequency 
distribution of the traffic data and does not match the distribution pattern of the traffic at all, especially 
the packets with length from 150 bytes to 250 bytes (in Figure 3). 
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Figure 3: Comparison of the relative frequency distribution of the JabberChat traffic with the probability 

kernel density of the traffic based on ROTs and ROTm kernel bandwidths. 

The kernel bandwidth calculated based on STE is too small, which makes the probability density very 
sharp. The constructed probability density does not match the relative frequency distribution of the traffic 
well (see Figure 4, which plots the same data from Figure 3 on a larger y-axis). Generally speaking, a 
very sharp probability density model can wrongly predict that many of its own packets belong to other 
classes, i.e., increase the false negative rate (or Type II errors). 

 
(a) Relative Frequency Distribution.                                         (b) Probability Density based on STE. 

Figure 4: Comparison of (a) the relative frequency distribution and (b) probability kernel  
density of the JabberChat data traffic based on STE kernel bandwidth. 

In traffic classification, the main goal is to reduce both false positive rate and false negative rate (i.e., Type I 
and Type II errors), which results in an increase in accuracy, precision, and recall in traffic classification.  
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3.2 Optimal weight-based kernel bandwidth selection  
In order to make the constructed probability density reflect the relative frequency distribution of the 
traffic, we propose an optimal weight-based (OWB) kernel bandwidth selection algorithm. The OWB 
bandwidth selection is a straightforward and simple bandwidth selection method, and consists of three 
steps: packet weight sorting, major packet selection, and kernel bandwidth estimation.  

OWB Step 1: Packet Weight Sorting 

Sort packet weights (or relative frequencies) in the training dataset for each class ci (i=1, 2, …k) based on 
their packet lengths. Note that in this report, we assume there are k classes in the training dataset, i.e., i=1, 
2, …k for all equations.  

a. Assume Xi = {xs: C(xs) = ci} are all traffic packets belonging to the class ci in the training 
dataset and there are m different packet length {li1, li2, …, lim} in Xi. 

b. Calculate the weights of all packets in Xi based on their packet lengths for the class ci using 
the following equation 

𝑤(𝑙𝑖𝑗) =  
𝑁𝑙𝑖𝑗
𝑁𝑐𝑖

                           for  𝑗 = 1,2,…𝑚 (10) 

where 𝑁𝑙𝑖𝑗 is the total number of packets with packet length 𝑙𝑖𝑗 in Xi . 

c. Sort the weights of all packet lengths in Xi in descending order to get Wi = {w(li1), w(li2), …, 
w(lim)} where Li ={li1, li2, …, lim} are the different packet lengths in Xi whose weights are in 
descending order.  

OWB Step 2: Major Packets Selection 

In order to make the constructed probability density match the relative frequency distribution of most 
traffic packets, we select packets based on the following rules.  

a. Set a weight threshold (Wth ≥ 50%, default is 50%) for major packet selection. 

b. Choose packet length from Li in descending weight order (i.e., lij for j = 1, 2, 3, …, m, 
depending on how many major packets are selected) based on OWB Step 1 c); calculate the 
total weight of the packets with length 𝑙𝑖𝑗 and 𝑙𝑖𝑗 ± 1, i.e., packets with 1 byte length 
difference6 with 𝑙𝑖𝑗 

𝑤𝑖𝑗 = ∑ 𝑤(

1

𝑧=−1

𝑙𝑖𝑗 + 𝑧)                for   𝑗 = 1, 2, … ,𝑚 (11) 

                                                      
6 Considering only packets with 1 byte length difference has the goal of making the probability density neither too 
smooth nor too sharp.  
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Note that weights w(l) are used only once for all j and are counted in the packet weight 
calculation with the highest weight. 

c. Choose the smallest u in the following equation 

∑𝑤𝑖𝑗

𝑢

𝑗=1

> 𝑊𝑡ℎ           for  𝑢 = 1, 2, … ,𝑚 (12) 

and let  

𝑊𝑡𝑜𝑡𝑎𝑙 =∑𝑤𝑖𝑗

𝑢

𝑗=1

 (13) 

All packets with the lengths 𝑙𝑖𝑗 and 𝑙𝑖𝑗 ± 1 (for j =1, 2, …, u) are selected for kernel bandwidth 
estimation used in OWB Step 3. In this way, over 50% of the packets with high relative 
frequency are selected for the kernel bandwidth estimation. 

OWB Step 3: Kernel Bandwidth Estimation 

Based on OWB Step 2, packets with lengths in {𝑙𝑖1, 𝑙𝑖2, … , 𝑙𝑖𝑢} and {𝑙𝑖1 ± 1, 𝑙𝑖2 ± 1,… , 𝑙𝑖𝑢 ± 1} are 
selected for our Gaussian kernel bandwidth estimation.  

The following probability equation is constructed to estimate the probability of each selected packet 
𝑙𝑖𝑗 (j=1, 2, …, u) and its neighboring packets 𝑙𝑖𝑗 ± 1, i.e., packets with 1 byte length difference with 𝑙𝑖𝑗, 
based on the Gaussian kernel distribution and related kernel bandwidth ti, 

𝑝(𝑡𝑖 , 𝑙𝑖𝑗) = ∫

(

 
1

𝑁𝑐𝑖
∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑥−𝑥𝑠)

2

2𝑡𝑖
2

)

 

𝑥𝑠:𝐶(𝑥𝑠)=𝑐𝑖
)

 𝑑𝑥

𝑙𝑖𝑗+2

𝑙𝑖𝑗−2

    for 𝑗 = 1…𝑢 (14) 

where xs are all individual samples belonging to the class ci in the training dataset. 

Similar to Equation (11), if any probability p(t,l) is included in Equation (14), it is included only once and 
counted in the probability calculation of the packet with the highest weight. In addition, to compute the 
probability of a packet, we calculate its integral from its 1 byte shorter length packet to its 1 byte longer length 
packet based on its probability density equation, i.e., ∫  

𝑙+1

𝑙−1
for a packet with length l. Equation (14) calculates 

the total probability of three continuous packets {𝑙𝑖1 − 1, 𝑙𝑖𝑗 , 𝑙𝑖𝑗 + 1}, i.e., ∫  
𝑙𝑖𝑗
𝑙𝑖𝑗−2

+ ∫  
𝑙𝑖𝑗+1

𝑙𝑖𝑗−1
+ ∫  

𝑙𝑖𝑗+2

𝑙𝑖𝑗
 without 

overlay calculation. 
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For each class ci, a total probability equation related to kernel bandwidth ti is constructed based on all 
probabilities of the selected packets as shown in Equation (15): 

𝑃(𝑡𝑖) =  ∑𝑝(𝑡𝑖, 𝑙𝑖𝑗)

𝑢

𝑗=1

 (15) 

To estimate the kernel bandwidth ti for the class ci, an absolute estimation error7  is set up and a 
maximum kernel bandwidth ti is selected to make ti satisfy the following equation 

|𝑃(𝑡𝑖) −𝑊𝑡𝑜𝑡𝑎𝑙|  ≤  𝜀 (16) 

Figure 5 depicts an example of the proposed Gaussian kernel bandwidth estimation with Equation (16) 
applied to the JabberChat data packets and its supported protocol traffic types. For instance, when the 
absolute estimation error  is set to 1 x 10-3 (i.e., the red horizontal line in the middle of Figure 5), the 
Gaussian kernel bandwidth related to traffic TLS, XMPP, TCP, DNS,8 JabberChat are 0.398, 0.398, 
0.608, 0.646, 1.017 respectively. Figure 5 shows the relationship between kernel bandwidth and 
estimation error as well.  

 
Figure 5: The results of Gaussian kernel bandwidth estimation based on the proposed  

OWB method and applied to the JabberChat and its supported protocol traffic. 
                                                      
7 In this work, we choose three decimal places for , i.e.,  = 0.001, when considering ROTm in Equation (8) using four 
decimal places in previous research literatures. We found that it requires significant computational effort when using 
higher precision. Three decimal places are good enough for the kernel bandwidth estimation based on packet length data.  
8 TLS is Transport Layer Security Protocol; XMPP is Extensible Messaging and Presence Protocol; TCP is 
Transmission Control Protocol; DNS is Domain Name System. 
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Figure 6 depicts (a) the relative frequency distribution of the JabberChat training data compared with (b) the 
Gaussian kernel probability density based on the proposed OWB kernel bandwidth selection, (c) the Gaussian 
kernel probability density based on the solve-the-equation kernel bandwidth selection, and (d) the Gaussian 
kernel probability density based on the median absolute deviation ROT kernel bandwidth selection. 

 
(a) Relative frequency distribution of the JabberChat traffic.                  (b) Probability density of the traffic with OWB. 

 
(c) Probability density of the traffic with STE.                           (d) Probability density of the traffic with ROTm. 

Figure 6: Comparison of (a) the relative frequency distribution of the JabberChat traffic with  
(b) the Gaussian kernel probability density based on the OWB kernel bandwidth  
selection, (c) the probability density based on the STE bandwidth selection, and  

(d) the probability density based on the ROTm bandwidth selection.  

Figure 6 shows that the Gaussian kernel probability density pattern constructed with the proposed OWB 
kernel bandwidth selection method is much closer to the relative frequency distribution of the training 
data compared with the other kernel probability density patterns constructed based on the traditional 
kernel bandwidth selection algorithms such as ROTm and STE. 

3.3 Learning model construction with probability  

As we mentioned in Section 2.3.1, some machine learning tools use the probability density (rather than 
probability) for learning model construction, which may have a negative impact on prediction accuracy. 
In this work, we prefer using probability of packets to construct the learning model rather than using 
probability density since the constructed learning model with probability is consistent with Bayes 
Theorem used in the naïve Bayes classifier and Equation (4). In addition, with traffic packet length data, 
it is easy for us to calculate the probability of a packet by computing its integral applied to the Gaussian 
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kernel probability density equation since packet lengths are discrete data and we can easily choose the 
lower and upper limits (i.e., 1 byte difference in nature) for calculating their integral rather than 
continuous data such as timing.  

Based on the above reasons, the following conditional probability for each testing packet is proposed for 
constructing the learning model with packet length data for our traffic classification 

𝑓(𝑦|𝑐𝑖) =
1

2
∫

(

 
1

𝑁𝑐𝑖
∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑥−𝑥𝑠)

2

2𝑡𝑖
2

)

 

𝑥𝑠:𝐶(𝑥𝑠)=𝑐𝑖
)

 

𝑦+1

𝑦−1

𝑑𝑥         for  𝑖 = 1, 2, … , 𝑘 (17) 

where xs are all individual samples belonging to the class ci in the training dataset. The probability of a 
testing packet y given the class ci is calculated by the integral of the Gaussian kernel density equation 
with the proposed OWB kernel bandwidth ti. The lower and upper limits of the integral is set as 1 byte 
shorter length (y-1) and 1 byte longer length (y+1) respectively. The probability is normalized by the total 
integral of all packets,9 i.e., ∑ (∫  

𝑦+1

𝑦−1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ) = 2, such that the total probability of all packets equals to 
1, i.e., ∑ 𝑓(𝑦|𝑐𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 = 1. 

The conditional probability f(y|ci) of each testing packet y calculated by Equation (17) is applied into the 
naïve Bayes classifier, i.e., Equation (4). The posterior probability P(ci|y) of each testing packet y related 
to each class ci can be calculated and, further, a learning model can be constructed. 

3.4 Traffic classification and unknown traffic prediction 

For traffic classification based on packet length data, we modified the traditional naïve Bayes kernel 
classifier by introducing “unknown” traffic detection. The modified naïve Bayes kernel classifier 
(MNBK) consists of five steps: OWB kernel bandwidth estimation, posterior probability calculation, 
traffic class prediction, and “unknown” traffic detection. 

MNBK Step 1: OWB Kernel Bandwidth Estimation 

The kernel bandwidth ti related to class ci is calculated using the optimal weight-based kernel bandwidth 
selection algorithm described in Section 3.2.  

MNBK Step 2: Posterior Probability Calculation 

For each testing packet y, its conditional probability f(y|ci) is calculated based on Equation (17) and the 
OWB kernel bandwidth ti from MNBK Step 1. Then, its posterior probability P(ci|y) related to each class 
ci is calculated based on the naïve Bayes classifier, i.e., Equation (4).  

                                                      
9 The integral is calculated by ∫  

𝑦+1

𝑦−1
for packet y having half overlay with the integral ∫  

𝑦

𝑦−1
of packet y-1, and another half 

overlay with the integral ∫  
𝑦+2

𝑦
 of packet y+1. Therefore, the total integral for all packet y is ∑ (∫  

𝑦+1

𝑦−1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ) = 2. 
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Note that in Equation (17), the ez value will be set to zero by the computer when the exponent z is too 
small since each computer (both hardware and software) has its limitations when processing digits. On 
our computer, the ez value is set to zero when ez < 4.9407*10-324. Therefore, the conditional probability 
value f(y|ci) could be computed as zero and the denominator in Equation (4) could be computed as zero as 
well. Under either situation, we set P(ci|y) to zero. We could set a higher threshold value for ez (e.g., 
10-100) to decide whether f(y|ci) should be zero or not. However, we do not discuss the zero threshold 
setting in this report and leave it for possible future research. 

MNBK Step 3: Traffic Classification 

For a testing packet with length y, choose the maximum posterior probability from all posterior 
probabilities related to each class (P(ci|y) for i =1,2,…,k) with the following equation 

𝑃𝑚𝑎𝑥(𝑦) = max{𝑃(𝑐𝑖|𝑦): 𝑖 = 1,2,… , 𝑘} (18) 

Predict the classification of the testing packet y based on the following traffic classifier  

𝐶(𝑦) = {
𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑐𝑙𝑎𝑠𝑠       𝑖𝑓    𝑃𝑚𝑎𝑥(𝑦) = 0                                     

𝑐𝑖                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑓 𝑃(𝑐𝑖|𝑦) = 𝑃𝑚𝑎𝑥(𝑦)
 (19) 

Equation (19) means that the packet y belongs to “unknown” class if 𝑃𝑚𝑎𝑥(𝑦) = 0. Otherwise, it belongs 
to the class ci if 𝑃(𝑐𝑖|𝑦) =  𝑃𝑚𝑎𝑥(𝑦). 

MNBK Step 4: “unknown” Traffic Detection 

This step is to detect “unknown” traffic that wrongly predicted to class ci in MNBK Step 3 and to 
reclassify them to the “unknown” class. Figure 7 depicts the differences between the traditional classifiers 
and the proposed MNBK classifier on traffic classification and “unknown” traffic detection.  

In Figure 7, the traditional supervised classifiers have no difference with work reported in the existing 
literature, i.e., using labelled training data as input and a machine learning algorithm to build the learning 
model. Each testing packet is assigned/predicted to a traffic class based on the learning model.  

The MNBK classifier adds an extra procedure to the traditional supervised classifiers at the end, i.e., 
“unknown” traffic detection. The procedure for the “unknown” traffic detection is to investigate the 
predicted packets from MNBK Step 3, identify exceptional packets that are wrongly predicted to an 
existing traffic class, and reclassify them as “unknown” traffic class. The “unknown” traffic detection is 
based on comparing the difference of the testing packet’s kernel densities under the predicted results and the 
training data respectively. Other unidentified testing packets stay with the original predicated traffic class. 
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Figure 7: The different procedures between the traditional supervised classifiers and  

the proposed MNBK classifier on traffic classification. 

Assume 𝑋𝑖′ = {𝑥𝑖1′ , 𝑥𝑖2′ , … , 𝑥𝑖𝑁𝑐𝑖′
′ } are the packets predicted to class ci in the testing dataset and  

𝐿𝑖
′ = {𝑙𝑖1

′ , 𝑙𝑖2
′ , … , 𝑙𝑖𝑚′

′ } are all different packet lengths in 𝑋𝑖′ with their weights 𝑤(𝑙𝑖𝑗′ ) arranged in 
descending order.  

Calculate the kernel density of each packet with length 𝑙𝑖𝑗′  related to class ci based on the testing data 
using the following equation 

𝑓𝑡𝑒
′ (𝑙𝑖𝑗

′ |𝑐𝑖) =
1

𝑁𝑐𝑖
′ ∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑙𝑖𝑗
′ −𝑥𝑖𝑧

′ )2

2𝑡𝑖
2

)

   

𝑁𝑐𝑖
′

𝑧=1

   for  𝑗 = 1,2, …𝑚′ (20) 

where ti is the OWB kernel bandwidth selected based on the training data in Section 3.2. 

Equation (20) gives us the kernel densities {𝑓𝑡𝑒′ (𝑙𝑖1′ |𝑐𝑖), 𝑓𝑡𝑒′ (𝑙𝑖2′ |𝑐𝑖),… , 𝑓𝑡𝑒′ (𝑙𝑖𝑚′
′ |𝑐𝑖)} related to each packet 

length in {𝑙𝑖1′ , 𝑙𝑖2′ , … , 𝑙𝑖𝑚′
′ } for the testing dataset. 

As we know that the packet with length li1 has the highest weight for class ci in the training dataset, we 
want to use this packet as a baseline to find the major exceptional packets10 in the predicted class ci. 
Therefore, we need to calculate the kernel density of the packet with length li1 in the testing dataset using 
the following equation 

                                                      
10 Here major exceptional packets are the packets with high relative frequency and wrongly predicted to the class ci. 
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𝑓𝑡𝑒(𝑙𝑖1|𝑐𝑖) =
1

𝑁𝑐𝑖
′ ∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑙𝑖1−𝑥𝑖𝑧

′ )2

2𝑡𝑖
2

)

   

𝑁𝑐𝑖
′

𝑧=1

 (21) 

There are many ways to check the major exceptional packets in the predicted class ci. Here we use the 
ratio and threshold metrics. With the packet li1 as baseline, the kernel density ratio is calculated for each 
packet 𝑙𝑖𝑗′  in 𝑋𝑖′ based on the following equation. 

𝑟𝑖𝑗
′ =

𝑓𝑡𝑒
′ (𝑙𝑖𝑗

′ |𝑐𝑖)

𝑓𝑡𝑒(𝑙𝑖1|𝑐𝑖)
            for  𝑗 =  1, 2,… ,𝑚′ (22) 

A threshold rth can be set to filter the packets we want to investigate. In this work, we set rth = 0.5 for two 
reasons. The packets whose kernel density ratio is over 1 are definitely required for further investigation 
since their densities in class ci are over the density of the peak packet which is identified in the training 
data. Based on the traffic pattern of the class ci, these packets might be wrongly predicted to the class ci. 
In addition, we may miss some major exceptional packets with the ratio just less than 1 if we set the 
threshold to 1. With the threshold set to 0.5, we only miss some minor exceptional packets.11 If the 
threshold rth is set too low, it may increase false negatives and cause extra computational effort. Further 
research is required to determine the best value of the threshold rth, but we defer that to possible future 
work. In this work we did not find any exceptional packets whose ratio 𝑟𝑖𝑗′  is less than 1 under our 
scenarios, i.e., the traffic generated and collected based on BreakingPoint traffic generator (see details in 
Section 4). 

Assume {𝑙𝑖1′ , 𝑙𝑖2′ , … , 𝑙𝑖𝑣′ } are selected packet lengths for further investigation. To estimate whether these 
selected packets are exceptional to class ci or not, we compare their density ratios in the training dataset. 
The density ratio rij of each selected packet 𝑙𝑖𝑗′  based on the training data can be calculated with the 
following equation 

𝑟𝑖𝑗 =
𝑓𝑡𝑟
′ (𝑙𝑖𝑗

′ |𝑐𝑖)

𝑓𝑡𝑟(𝑙𝑖1|𝑐𝑖)
                             for  𝑗 = 1, 2, … , 𝑣 (23) 

where v  𝑚′ 

𝑓𝑡𝑟
′ (𝑙𝑖𝑗

′ |𝑐𝑖) =
1

𝑁𝑐𝑖
∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑙𝑖𝑗
′ −𝑥𝑖𝑧)

2

2𝑡𝑖
2

)

 

𝑁𝑐𝑖

𝑧=1

      for  𝑗 = 1, 2, … , 𝑣 (24) 

and 
                                                      
11 Minor exceptional packets are the packets with low relative frequency and wrongly predicted to the class ci. 
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𝑓𝑡𝑟(𝑙𝑖1|𝑐𝑖) =
1

𝑁𝑐𝑖
∑

(

 
1

√2𝜋𝑡𝑖
2

𝑒
−
(𝑙𝑖1−𝑥𝑖𝑧)

2

2𝑡𝑖
2

)

 

𝑁𝑐𝑖

𝑧=1

 (25) 

For the selected packets {𝑙𝑖1′ , 𝑙𝑖2′ , … , 𝑙𝑖𝑣′ }, two different density ratios {𝑟𝑖1′ , 𝑟𝑖2′ , … , 𝑟𝑖𝑣′ } and {𝑟𝑖1, 𝑟𝑖2, … , 𝑟𝑖𝑣} 
are calculated based on the predicted class in the testing dataset and real class in the training dataset 
respectively. We reclassify the packets with length 𝑙𝑖𝑗′  to “unknown” class if their density ratio 𝑟𝑖𝑗′  in the 
predicted class is much bigger than the density ratio 𝑟𝑖𝑗 in the class from the training data. Therefore, we 
need another threshold Rth for reclassification. The reclassification for the packets with length in 
{𝑙𝑖1
′ , 𝑙𝑖2

′ , … , 𝑙𝑖𝑣
′ } is based on the following equation 

𝐶(𝑙𝑖𝑗
′ ) = {

𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑐𝑙𝑎𝑠𝑠   𝑖𝑓  𝑅𝑖𝑗 ≥ 𝑅𝑡ℎ
𝑐𝑖                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         for  𝑗 =  1, 2, … , 𝑣 (26) 

where 

𝑅𝑖𝑗 =
𝑟𝑖𝑗
′

𝑟𝑖𝑗
            for  𝑗 =  1, 2, … , 𝑣 (27) 

For the reclassification threshold Rth, if it is too small, it may cause more false negatives since it can 
wrongly reclassify the correct class ci packets to “unknown” class. If it is too big, it may still reduce a 
certain number of false positives but it may miss many “unknown” class packets and retain them in the 
class ci. Therefore, finding the best threshold for Rth is another challenge and needs further research. In 
this work, we set Rth to 40. Based on our testing, we found that there is not much difference when setting 
Rth between 10 and 40 under our scenarios, i.e., using the traffic generated and collected based on 
BreakingPoint traffic generator in Section 4. 
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4 Performance of modified naïve Bayes classifier 

In this section, we set up a testbed to generate and collect several encrypted traffic types transmitted over 
wireless channels in tactical edge networks, and to demonstrate the performance of our modified naïve 
Bayes kernel classifier.   

4.1 Encrypted traffic data collection 

To evaluate the performance of our proposed modified naïve Bayes kernel classifier, we set up a testbed 
as shown in Figure 8.  

 
Figure 8: A testbed to generate and collect encrypted traffic through wireless channel. 

The testbed uses the BreakingPoint [20] traffic generator to generate different traffic types consisting of 
single application traffic such as voice call, or mixed application traffic such as voice, video, chat, etc. 
The BreakingPoint controller is used to configure the traffic generation. The generated traffic will be 
transmitted over the wireless channel between two wireless routers, which apply encryption to the on-air 
data. A wireless sniffer is set up in a standalone computer with Airpcap and Wireshark for wireless traffic 
eavesdropping. The traffic collected in the eavesdropping computer is the encrypted traffic data but it can 
be decrypted with the encryption key for performance evaluation.  

In this work, four traffic applications are considered in our evaluation. They are JabberChat, voice call, 
video call, and file transfer, which represent similar major traffic applications such as instant messaging 
and file sharing in tactical edge networks. To complete communications for each application with the 
BreakingPoint traffic generator, other supported protocols may be involved during communication as 
well. For example, for JabberChat traffic, other protocols such as DNS, TCP, TLS, and XMPP are used as 
well to support its communication. The BreakingPoint traffic generator can deliver a dynamic and 
realistic pattern for each application. This is the main reason we use it in our work. 

4.2 Training data labelling and testing data prediction 

In the training phase, each training traffic packet is collected with its encrypted packet length and is 
labelled with a traffic class based on its decrypted packet. Therefore, all training data packets are labelled 
with correct traffic class and are recorded with encrypted packet length.  
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In the testing phase, each testing traffic packet is collected with its encrypted packet length as well for 
traffic classification. There is no need to label the testing traffic packets for the traffic classification. 
However, to evaluate the performance of the traffic classification such as predictive accuracy, we need to 
know its correct traffic class for each encrypted testing packet. This correct traffic class information for 
each encrypted testing packet can be retrieved from its decrypted packet. 

4.3 Traffic classification performance metrics 

The most important metric to differentiate (or evaluate) different traffic classification techniques is the 
predictive accuracy value, i.e., the percentage of the correct decisions made by the classification 
techniques on testing traffic packets. There are many metrics for evaluating a traffic classifier’s accuracy 
from different angles, for instance, precision, recall, true positive, false positive, true negative, false 
negative, etc. In this work, we use three popular metrics—accuracy, precision, and recall for our 
performance evaluation. In addition, we extend the traditional binary-class classification metrics (see 
Table 1) to multiple-class classification metrics (see Table 2) for metric calculation. 

Table 1: The traditional binary-class classification metrics for accuracy, precision, and recall.  

  True Condition   

Positive Negative 

Predicted 
Condition 

Positive True Positive (tp) False Positive (fp) Precision= 𝒕𝒑

𝒕𝒑+𝒇𝒑
 

Negative False Negative (fn) True Negative (tn)  

 Recall= 𝒕𝒑

𝒕𝒑+𝒇𝒏
  Accuracy= 𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏
 

For multiple classes, the true positive 𝑡𝑝𝑐𝑖 for class ci could be the true negative 𝑡𝑛𝑐𝑗 for class cj. To 
simplify the table, we use only the true positive for each class. Similarly, the false positive 𝑓𝑝𝑐𝑗𝑖 for the 
predicted class ci under the true class cj, could be the false negative 𝑓𝑛𝑐𝑖𝑗 for the predicted class cj under 
the true class ci. To simplify the table, we use only the false positive for all classes. The traffic 
classification metrics for multiple-class classification are described below. 
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Table 2: The multiple-class classification metrics for accuracy, precision, and recall calculation. 

  True Condition Classes   

c1  c2 … ck 

Predicted 
Condition 

Classes 

c1 𝑡𝑝𝑐1  

(𝑡𝑛𝑐𝑗:𝑗≠1) 

𝑓𝑝𝑐21 

(𝑓𝑛𝑐12) 

 𝑓𝑝𝑐𝑘1  

(𝑓𝑛𝑐1𝑘) 

Precision=
𝒕𝒑𝒄𝟏

𝒕𝒑𝒄𝟏+∑ 𝒇𝒑𝒄𝒊𝟏𝒊
 

c2  𝑓𝑝𝑐12 

(𝑓𝑛𝑐21) 

𝑡𝑝𝑐2  

(𝑡𝑛𝑐𝑗:𝑗≠2) 

 𝑓𝑝𝑐𝑘2  

(𝑓𝑛𝑐2𝑘) 

Precision=
𝒕𝒑𝒄𝟐

𝒕𝒑𝒄𝟐+∑ 𝒇𝒑𝒄𝒊𝟐𝒊
 

…      

ck 𝑓𝑝𝑐1𝑘 

(𝑓𝑛𝑐𝑘1) 

𝑓𝑝𝑐2𝑘 

(𝑓𝑛𝑐𝑘2) 

 𝑡𝑝𝑐𝑘  

(𝑡𝑛𝑐𝑗:𝑗≠𝑘) 

Precision=
𝒕𝒑𝒄𝒌

𝒕𝒑𝒄𝒌+
∑ 𝒇𝒑𝒄𝒊𝒌𝒊

 

 Recall=
𝒕𝒑𝒄𝟏

𝒕𝒑𝒄𝟏+∑ 𝒇𝒑𝒄𝟏𝒊𝒊
 

Recall=
𝒕𝒑𝒄𝟐

𝒕𝒑𝒄𝟐+∑ 𝒇𝒑𝒄𝟐𝒊𝒊
 

 Recall=
𝒕𝒑𝒄𝒌

𝒕𝒑𝒄𝒌+
∑ 𝒇𝒑𝒄𝒌𝒊𝒊

 
Accuracy=

∑ 𝒕𝒑𝒄𝒊
𝒌
𝒊=𝟏

∑ 𝒕𝒑𝒄𝒊
𝒌
𝒊=𝟏 +∑ 𝒇𝒑𝒄𝒊𝒋𝒊𝒋

 

 Accuracy: The percentage of all true positive traffic packets predicted to each class (i.e., all 
correctly classified packets) among the total number of traffic packets examined. 

 Precision for Class ci: The percentage of the true positive traffic packets predicted to class ci (i.e., 
correctly classified packets to class ci) among the total number of traffic packets predicted to class ci. 

 Recall for Class ci: The percentage of the traffic packets correctly classified to class ci among the 
total number of packets belonging to class ci. 

4.4 Performance of modified naïve Bayes kernel classifier 

In this section, we generate and collect single application traffic as training data12 and multiple application 
traffic as testing data13 to evaluate and compare the classification performance of the proposed modified 
naïve Bayes kernel classifier (MNBK) with the traditional naïve Bayes kernel classifiers. The traditional 
naïve Bayes kernel classifiers use different kernel bandwidth selections such as ROTs, ROTm, and STE. 
These classifiers are named as NBK-ROTs, NBK-ROTm, and NBK-STE classifier respectively. 
                                                      
12 Note that in this report, single application traffic contains the application’s data packets and its related supporting 
protocol packets, i.e., the single application traffic contains multiple classes as well but with one application class 
only. For example, the single JabberChat application traffic contains the JabberChat data packets and its related 
supporting protocol packets such as DNS, TCP, TLS, and XMPP. So, the traffic contains five classes: JabberChat, 
DNS, TCP, TLS, and XMPP. 
13 Note that here multiple application traffic contains the multiple application data packets and their related 
supporting protocol packets. 
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To evaluate the performance of the four classifiers, the single JabberChat application traffic is generated 
in the training phase. The encrypted JabberChat packets and related supporting protocol traffic are 
collected and labelled as training data. In the testing phase, the mixed applications such as JabberChat, 
voice, video, and file transfer are generated. Their encrypted packets and related supporting protocol 
traffic are collected as testing data for traffic classification. The performance of the traffic classification is 
based on the comparison of the predicted results and the correct traffic class. As the training data only 
contains the JabberChat data and related supporting protocol traffic packets, the classifiers could predict 
other application data such as voice, video, and file transfer and their related supporting protocols which 
are not labelled in the training dataset as “unknown” traffic. 

Figure 9 depicts the classification accuracy of the four different classifiers. The classification accuracy is 
calculated for all packets correctly classified to JabberChat, its related supporting protocols, i.e., DNS, 
TCP, TLS, and XMPP, and “unknown” traffic, i.e., voice, video, and file transfer packets. 

 
 Figure 9: The classification accuracy of the proposed MNBK classifier compared  

with other traditional NBK classifiers. 

The figure shows that the proposed MNBK classifier increases the classification accuracy by over 40% 
compared with the traditional NBK kernel classifiers. Even using the single attribute, i.e., packet length, 
the MNBK classifier can reach 93% accuracy but the traditional NBK classifiers can only reach less than 
50% accuracy. This result shows that the proposed MNBK classifier can correctly detect most “unknown” 
traffic. The traditional NBK classifiers predict most of the “unknown” packets to the classes contained in 
the training dataset, e.g., the NBK-ROTs and NBK-ROTm classifiers predict most “unknown” traffic to 
JabberChat and the NBK-STE classifier predicts most “unknown” traffic to XMPP. 

Detailed information about these classifications is shown in Figure 10. 
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(a) Traffic classification with MNBK.                                     (b) Traffic classification with NBK-ROTs. 

  
        (c) Traffic classification with NBK-ROTm.                           (d) Traffic classification with NBK-STE. 

Figure 10: The traffic classification detail information of the proposed MNBK classifier  
compared with other traditional NBK classifiers. 

In the figure, the MNBK classifier detects “unknown” traffic with much better recall and precision 
compared with the other three classifiers. For recall on “unknown” traffic detection, the MNBK classifier 
can correctly detect 95% of the “unknown” traffic, the NBK-STE classifier only detects 16% of the 
“unknown” traffic, both the NBK-ROTs and NBK-ROTm classifiers do not detect any “unknown” traffic. 
For precision on “unknown” traffic prediction, the MNBK classifier makes 1% mistakes on predicted 
“unknown” traffic, the NBK-STE classifier makes 57% mistakes on predicted “unknown” traffic. Both 
the ROTs and ROTm classifiers wrongly predict all “unknown” traffic to others. 

Figure 11 depicts the classification precisions of the four classifiers on testing data, where DNS, TCP, 
TLS, and XMPP are the supporting protocols for the JabberChat communications.  

 
Figure 11: The classification precisions of the four classifiers on the mixed multiple  

application traffic as testing data. 
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Figure 11 shows that the traditional NBK classifiers with ROTs and ROTm kernel bandwidths cannot 
detect any “unknown” traffic. Both methods have very low precisions on the JabberChat data traffic (less 
than 30%), i.e., they cause very high false positives on the JabberChat packet prediction. The traditional 
NBK classifier with the STE kernel bandwidth has better precision compared with NBK-ROTs and 
NBK-ROTm. It detects certain “unknown” traffic, though with low precision (around 43%), and increases 
the prediction precision to 57% on the JabberChat data traffic. The proposed MNBK classifier is the best 
among the four classifiers. It increases the prediction precision to 77% on the JabberChat data traffic. For 
the “unknown” traffic, it reaches 99% precision, i.e., very low false positive on “unknown” traffic 
detection. The reason for this result is that the traditional NBK classifiers wrongly predict many 
“unknown” and XMPP packets as JabberChat packets (see Figure 10), resulting in very low precision on 
JabberChat packet prediction. The proposed MNBK classifier can effectively differentiate them, 
especially the JabberChat and “unknown” packets, and classify them to the correct classes.  

For the related supporting protocol traffic prediction, all traditional NBK classifiers have very low 
precision on TLS and XMPP traffic, i.e., resulting in high false positive rate on these traffic packets. This 
low precision result is caused by these three traffic classes (JabberChat, TLS, XMPP) having overlay 
packets with the same or very close packet lengths. When the packets under different classes overlay each 
other or are too close, classifiers with only one attribute (e.g., length) may classify them to one class and 
make mistakes (i.e., false positive). A good classifier with only one attribute can improve the 
classification precision on closely related packets that do not have an overlay (e.g., MNBK). A bad 
classifier cannot differentiate these close packets, resulting in classifying them to one class and producing 
higher false positive rate (e.g., NBK-ROTs, NBK-ROTm, and NBK-STE). In addition, any classifier with 
only one attribute cannot differentiate the packets with overlay, resulting in predicting them to one class 
with false positives. This is the reason that the proposed MNBK still makes mistakes on some traffic 
packet prediction. A better solution is to research multiple attributes classification techniques, which are 
not discussed in this report. 

Figure 12 depicts the classification recall of the four classifiers on testing data. In this figure, MNBK, 
NBK-ROTs, and NBK-ROTm have very high recall (over 98%) on the JabberChat data traffic, i.e., they 
have very low false negative rate on the JabberChat packet prediction. However, both NBK-ROTs and 
NBK-ROTm have zero recall on the “unknown” traffic, i.e., they have 100% false negative rate on the 
“unknown” traffic prediction. The NBK-STE classifier has around 16% recall on the “unknown” traffic 
which is better than NBK-ROTs and NBK-ROTm but it reduces the recall on the JabberChat data packet 
prediction to 55% as a trade-off. The proposed MNBK classifier not only has over 99% recall on the 
JabberChat traffic data but also increases the recall to over 95% on the “unknown” traffic, i.e., it results in 
very low false negative rate on both the JabberChat and “unknown” traffic packets. This is because the 
traditional NBK classifiers predict the majority “unknown” traffic packets to other existing classes 
contained in the training dataset, resulting in very low recall on “unknown” traffic packet prediction. The 
proposed MNBK classifier can effectively differentiate “unknown” traffic from the existing classes and 
correctly detect “unknown” traffic packets.  
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Figure 12: The classification recall of the four classifiers on the mixed  

multiple application traffic as testing data. 

For the related supporting protocol traffic prediction, all four classifiers have very low recall rates on TLS 
and XMPP traffic, resulting in high false negative rate on these traffic predictions. The main reason for 
such performance is the same as that explained in the classification precision part, i.e., many TLS and 
XMPP packets’ lengths approximately equal or are close to those of the JabberChat packets, resulting in 
wrongly predicting to the JabberChat class. Since they are the application supporting protocols and there 
are not many in the traffic compared with the JabberChat data packets, it does not have much effect on 
the classification recall of the JabberChat data packet prediction. 

There are two main reasons for the MNBK classifier having better classification performance than other 
when considering all three major evaluation metrics. The first one is that, as discussed in Section 3, the 
learning model constructed by the MNBK classifier is closer to the real distribution of the training data. 
The second reason is that the MNBK classifier considers the packet distribution in the testing data as well 
to inspect exceptional packets and detect “unknown” packets during traffic prediction (see the difference 
between MNBK and the traditional supervised classifiers in Figure 7).  

In addition, the different learning models can make a big difference on the posterior probability 
calculation for testing traffic packets, which affects the classification accuracy, precision, and recall. 
Generally speaking, a better learning model can give a more accurate posterior probability for each 
testing traffic packet during traffic classification. Figure 13 depicts the posterior probabilities for each 
testing traffic packet predicted under different classes and learning models. Figure 13 shows the 
background of Figures 9–12 for each packet prediction. We can see that the posterior probability related 
to “unknown” traffic is zero for each packet length under both NBK-ROTs and ROTm classifiers, 
insulting in both classifiers missing the “unknown” traffic detection. NBK-STE predicts certain 
“unknown” traffic but makes more mistakes on the JabberChat traffic prediction as a trade-off. The 
proposed MNBK classifier produces good classification results on both of the JabberChat and “unknown” 
traffic packets. 



  

26 DRDC-RDDC-2018-R196 
 

  

 
(a) Posterior probability of testing packets with MNBK.           (b) Posterior probability of testing packets with NBK-ROTs. 

 
(c) Posterior probability for testing packets with NBK-ROTm.    (d) Posterior probability for testing packets with NBK-STE. 

Figure 13: The posterior probability of testing traffic packet under different classes  
and predicted by the four different classifiers. 

To demonstrate the classification performance of the proposed MNBK technique with different training 
data, we use single video application traffic as the training data14 and the same multiple application traffic 
used in Figure 9–12 as the testing data. We then compare the classification results with other traditional 
classifiers. Figures 14 (a), (b), and (c) depict the classification accuracy, precision, and recall of the four 
classifiers. 

Figure 14 shows that the proposed MNBK classifier has even better performance on classification 
accuracy, precision, and recall when using the single video application traffic as the training data 
compared with the results from Figures 9–12. Under this scenario, all three traditional classifiers miss the 
“unknown” traffic prediction. In addition, they result in huge false positive rates (i.e., very low precision) 
on the video traffic prediction as well though their recall is very good. The MNBK classifier increases the 
classification accuracy by over 50% compared with others (less than 40%). It predicts and classifies both 
the video and “unknown” traffic packets by over 98% in accuracy, precision, and recall. 

                                                      
14 Note that here single video application traffic contains the video data packets and its related supporting protocol 
packets: DNS, TCP, and HTTP. 
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(a) Accuracy                                      

 
(b) Precision                                                                                  (c) Recall 

Figure 14: The classification accuracy, precision, and recall of the four classifiers on the  
same mixed multiple application traffic used in Figure 9–12 as testing data but using  

the single video application traffic as training data. 

Generally speaking, the proposed MNBK classifier has much better performance in predicting and 
detecting unknown traffic packets that do not belong to the classes contained in the training data, and it 
increases the classification accuracy, precision, and recall of the existing classes as well.  
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5 Real time and continuous traffic classification 

In this section, we discuss how to apply the proposed MNBK classifier to real time and continuous traffic 
classification [4] and compare its classification performance with other traditional classifiers.  

5.1 Real time traffic classification 

It is straightforward to apply the traditional supervised classifiers such as NBK-ROTs, NBK-ROTm, and 
NBK-STE to real time traffic classification with the packet length attribute. First, unlike other attributes 
such as timing, packet lengths are discrete integers and have limited sizes. The posterior probability 
P(ci|y) of each testing packet with length y related to each class ci can be pre-calculated with Equation (4) 
based on the training data. Therefore, each testing packet with length y can be pre-classified to a class 
based on Section 2.3 and a predefined classification table15 can be constructed for all testing packet 
lengths based on learning model and training data (see Figure 15). For real time traffic classification with 
these traditional supervised classifiers, once a real time traffic packet is received, it can be assigned to a 
class immediately based on the packet length and the predefined classification table. 

It is a little different for applying the proposed MNBK classifier to real time traffic since MNBK 
considers the distribution features of the ongoing testing data and detects some exceptional packets as 
“unknown” traffic. This means the MNBK classifier requires the continuous computation for “unknown” 
traffic detection/reclassification based on real time traffic. To make the continuous computation more 
efficient, we can set a reclassification investigation point16 to limit the number of reclassification 
computations, where the time interval of two adjacent investigation points should be longer than the 
reclassification computation time. In addition, based on Section 3.4, Step 5, only attributes based on 
Equations (20), (21), and (22) are required for recalculation since they use the testing data. Other 
attributes based on Equations (23), (24), and (25) can be pre-calculated since they are based on the 
training data. The procedure to use the MNBK classifier in real time traffic is described below. 

Assume {T1, T2, T3, … } are reclassification investigation points with time interval Tintvl. As in the 
traditional supervised classifiers, MNBK first constructs a predefined classification table for each testing 
packet based on the training data with MNBK Step 1–4 in Section 3.4. The MNBK classifier assigns each 
arriving packet to a class in real time based on the predefined classification table as well. The difference 
is that at each reclassification investigation point, the MNBK classifier recalculates the probability 
density of each packet based on all received real time traffic (i.e., testing data), reclassifies some 
exceptional packets, and updates the predefined classification table. The newly arrived real time traffic is 
classified based on the updated classification table. Figure 15 depicts the differences between the 
traditional supervised classifiers and the proposed MNBK classifier on real time traffic classification.  

In Figure 15, the predefined classification table is created based on learning model and packet length, and 
added to both the traditional supervised classifiers and the MNBK classifier for real time traffic 
classification. The predefined classification table can predict a real time received packet to a traffic class 
                                                      
15 Predefined classification table is a table which matches a packet to a class based on its length. The predefined 
classification table is created based on the learning model and training data.  
16 Reclassification investigation point is a time point to investigate the already received and predicted real time 
traffic packets, to find wrongly predicted packets, and to update and correct the predefined classification table used 
for predicting ongoing future real time packets. 



  

DRDC-RDDC-2018-R196 29 
 

  

immediately without much delay since there is no more computation required for the prediction. For the 
real time MNBK classifier, different to Figure 7, it needs to periodically update the predefined 
classification table at each reclassification investigation point.   

 
Figure 15: The different procedures between the traditional supervised classifiers  

and the proposed MNBK classifier on real time traffic classification. 

The basic rule of this real time MNBK classification model is that the learning model never changes. The 
reclassification is based on the comparison of the cumulated real time traffic at each reclassification 
investigation point to the original training dataset. Therefore, the real time traffic does not introduce or 
build extra error into the learning model. The real time traffic might introduce errors into the predefined 
classification table and affect the classification performance due to wrong prediction of the exceptional 
packets. Along with more and more cumulated real time traffic available, i.e., more accurate information 
retrieved from the traffic, this error will become smaller and smaller.  

Figure 16 depicts the average classification accuracy17 of real time traffic with Tintvl = 10s under different 
classifiers, where the training data is the single JabberChat application traffic (i.e., JabberChat data plus 
its supporting protocols). The real time traffic is the mixed multiple application traffic (i.e., multiple 
application data plus their supporting protocols), and the reclassification investigation point for MNBK is 
set to every ten seconds. Figure 16 shows that without considering the testing data (i.e., ongoing real time 
traffic) the MNBK classifier is just marginally better than other traditional classifiers, e.g., the average 
classification accuracy from zero to ten seconds in Figure 16. However, MNBK improves a lot once it 
updates the predefined classification table based on the received real time traffic at the first 
reclassification investigation point.  

                                                      
17 Average classification accuracy is the classification accuracy of all real time traffic received within a time 
interval. We use this classification accuracy value as the average classification accuracy within that time interval 
since time is a continuous variable and we cannot calculate classification accuracy at all time points. In addition, we 
want to investigate the classification performance under different time intervals as well. 
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In addition, we can see that the average classification accuracy may change under each ten second time 
interval for each classifier. This is understandable since the traffic is different under each ten second 
interval. For example, at the last ten second interval in Figure 16, i.e., from 40s to 50s, the classification 
accuracy of NBK-ROTs, NBK-ROTm, and NBK-STE drop significantly. This drop is caused by the 
“unknown” traffic occupying the majority traffic at the last ten second interval. The traditional NBK 
classifiers wrongly predict them to the existing classes contained in the training dataset, which cause 
lower classification accuracy during this time interval compared with the classification accuracies during 
other time intervals. In contrast, the classification accuracy of the proposed real time MNBK classifier 
increases in the last ten second time interval. This result is caused by that there are fewer traffic types, 
i.e., JabberChat, TCP, and “unknown,” in the last ten second time interval, and these traffic packets have 
fewer overlay or too close packets compared with traffic among JabberChat, TLS, and XMPP contained 
in the other time intervals. Therefore, the proposed MNBK classifier can differentiate the traffic 
appearing in the last ten second time interval very well and make fewer mistakes on prediction compared 
with other time intervals which contain TLS and XMPP traffic.  

 
Figure 16: The average classification accuracy per ten second on the real time mixed multiple 

application traffic as testing data under different traffic classifiers. 

Figure 17 depicts the average precision of the real time JabberChat data and “unknown” data traffic over 
each ten second time interval under different classifiers. Figure 17 shows that MNBK has much better 
precision in predicting “unknown” traffic compared with other traditional classifiers. It does not do a 
good job on JabberChat traffic in the first ten second time interval, i.e., without considering the testing 
data. However, it improves a lot once it updates its classification table based on the received real time 
traffic at the first reclassification investigation point.  

The average classification precision changes significantly in the last ten second time interval compared 
with other time intervals, especially the NBK-STE classifier. As we mentioned above, there are only three 
traffic types, i.e., JabberChat, TCP, and “unknown,” during the last time interval. For the traditional NBK 
classifiers, the prediction errors occur in JabberChat and “unknown” traffic in the last time interval 
compared with errors occurring for more traffic types in other time intervals. For the NBK-STE classifier, 
it correctly predicts the JabberChat traffic but wrongly predicts all “unknown” traffic to the XMPP class, 
resulting in very high precision on JabberChat packets but very low precision on “unknown” traffic 
compared with its classification precision in other time intervals. NBK-ROTs and NBK-ROTm classifiers 
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wrongly predict all “unknown” traffic to JabberChat class in the last time interval, resulting in lower 
precision on JabberChat compared with the precision in the other time intervals since “unknown” is the 
majority traffic in the last time interval. The proposed MNBK classifier increases the precision on 
JabberChat in the last time interval because there are no TLS and XMPP packets in the last time interval; 
these packets appeared in the previous time intervals and were mainly predicted to JabberChat, resulting 
in lower precision.  

 
Figure 17: The average classification precision per ten second on the real time JabberChat  

data and “unknown” data traffic under different traffic classifiers. 

Figure 18 depicts the average classification recall of the real time JabberChat data and “unknown” data 
traffic over each ten second time interval under different classifiers. Figure 18 shows that without 
considering the testing data all classifiers have low recall on “unknown” traffic. However, the MNBK 
classifier has a huge improvement after updating its classification table at the first reclassification 
investigation point based on the received real time traffic. The reason of this improvement is that MNBK 
detects the exceptional packets at the first reclassification investigation point based on the received real 
time traffic. 

 
Figure 18: The average classification recall per ten second on the real time JabberChat  

data and “unknown” data traffic under different traffic classifiers. 
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To demonstrate the classification performance of the different classifiers under different training data, we 
choose another single application traffic—video and its related supporting protocol traffic—as the 
training data. Figure 19 depicts the average classification accuracy of the different classifiers on the real 
time mixed multiple application traffic based on the single video application traffic as the training data. 
Figure 19 shows that the MNBK classifier has much better accuracy performance than other traditional 
classifiers even during the first ten second time interval. In addition, the classification accuracy of the 
traditional NBK classifiers decreases a lot in the last time interval, i.e., from 40s to 50s. This is because 
there is no video traffic during the last time interval and the traditional NBK classifiers wrongly predict 
all “unknown” traffic to the existing classes contained in the training dataset, resulting in lower 
classification accuracy compared with the previous time intervals that contained video traffic. This 
demonstrates that with less knowledge about the testing traffic, the classification performance of the 
traditional classifiers decreases a lot. However, this will not have much effect on the classification 
performance of the proposed MNBK classifier. 

 
Figure 19: The average classification accuracy per ten seconds on the same real time  

mixed multiple application traffic as testing data under different traffic classifiers  
but using the single video application traffic as training data. 

Figure 20 depicts the average classification precision of the real time video data and “unknown” data 
traffic over each ten second time interval under different classifiers. Figure 20 shows that MNBK has 
much better precision performance on predicting both the video and “unknown” traffic compared with 
other traditional classifiers. In addition, the classification precision of the traditional NBK classifiers on 
video traffic reduces to zero at the last time interval. This classification precision drop is caused by that 
the traditional NBK classifiers predict certain (part or all, depending on the classifier) “unknown” traffic 
to video traffic but there is no video traffic in the last time interval.  
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Figure 20: The average classification precision per ten seconds on the real time  

video data and “unknown” data traffic under different traffic classifiers. 

Figure 21 depicts the average classification recall performance of the real time video data and “unknown” 
data traffic over each ten second time interval under different classifiers. Figure 21 shows that the MNBK 
classifier has very good recall performance on both the video and “unknown” traffic. Other traditional 
classifiers have very poor recall performance on “unknown” traffic even though they have pretty good 
recall on the video traffic. This poor performance on recall is caused by that the traditional NBK 
classifiers predict all “unknown” traffic to other existing classes contained in the training dataset resulting 
in 0% recall on the “unknown” traffic.  

 
Figure 21: The average classification recall per ten seconds on the real video data  

and “unknown” data traffic under different traffic classifiers. 

Generally speaking, both the training data and testing data can affect the classification performance of 
traffic classifiers, especially the traditional classifiers. With less knowledge of the testing data contained 
in the training data, the classification performance of the traditional classifiers decreases a lot since they 
are not good on detecting new “unknown” traffic. The proposed MNBK classifier has much better overall 
classification performance on accuracy, precision, and recall compared with other traditional classifiers, 
especially on detecting and predicting “unknown” traffic types.  
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5.2 Continuous traffic classification 

Continuous traffic classification uses a continuous machine learning algorithm to update the classification 
model based on the continuing arrival of real time traffic. Generally speaking, it should improve the 
classification performance in terms of accuracy, precision, and recall compared with the traditional traffic 
classification techniques without considering the continuous ongoing traffic. Figure 22 illustrates a 
continuous traffic classification model with the proposed MNBK classifier. The continuous traffic 
classification can be used on real time traffic classification as well. In contrast to the real time classification 
model described in Figure 15, the continuous traffic classification will consider the distribution of the real 
time traffic received during previous time interval, use the result to update the learning model, and further 
update the predefined classification table based on the updated learning model. The newly arrived real time 
traffic will be classified based on the newly updated classification table.  

The advantage of this classification model is that it introduces and integrates the distribution pattern of 
the “unknown” traffic into the learning model. However, the continuous traffic classification might 
introduce errors into the original learning model. The error could be accumulated over time with more 
and more received real time traffic and go out of control. Therefore, two important technologies will be 
left for further research. The first one is error measurement and control, i.e., how to measure and control 
the introduced error in each updating of the learning model. The second one is efficiency, i.e., how to 
efficiently integrate the new distribution feature of the real time traffic into the learning model with 
minimum computation resources and less classification error. 

 
Figure 22: The continuous traffic classification model based on the proposed MNBK classifier. 
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6 Conclusions and future research 

Traffic analysis plays a very important role in cyber and electronic warfare. It has been used to provide 
valuable intelligence about targets and to support decision making in the battlefield such as target 
selection and cyber effects. Therefore, the accuracy of information prediction in traffic analysis becomes 
a key factor in mission success.  

This report discussed the limitations of the existing well-known supervised traffic classification 
techniques when there is limited knowledge about the testing data. Such a problem is practical in the 
battlefield where it is almost impossible to have full knowledge of the adversary’s traffic, especially 
traffic protected with encryption. To improve the traffic classification performance under the above 
scenarios and to detect unknown traffic that does not belong to the classes contained in the training data, 
we presented a modified naïve Bayes kernel classifier (MNBK) based on an optimal weight-based 
(OWB) kernel bandwidth selection algorithm. The classification performance of the proposed MNBK 
classifier was demonstrated with the traffic generated by the BreakingPoint traffic generator and 
outperformed traditional classifiers it was compared against. The MNBK classifier not only improves the 
classification accuracy, precision, and recall significantly but also detects unknown traffic with very high 
precision and recall performance. In addition, the real time and continuous classification have been 
discussed by applying our approach to real time traffic.  

The following topics have not been addressed in this report and will be left for possible future research. 
Several optimal thresholds selection related to “unknown” traffic investigation and detection are not 
discussed in Section 3.4, in particular: zero conditional probability threshold for f(y|ci), exceptional packet 
selection threshold rth for “unknown” traffic investigation, and reclassification threshold Rth for 
“unknown” traffic detection. Several topics related to continuous classification need further research, 
such as error measurement and control for learning model updating, efficient learning model integration 
with real time traffic, etc.  
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List of symbols/abbreviations/acronyms/initialisms  

DNS Domain name system 

HTTP Hypertext transfer protocol 

KDE Gaussian kernel density estimation 

MNBK Modified naïve Bayes kernel classifier 

NBK Naïve Bayes kernel estimation 

OWB Optimal weight-base kernel bandwidth selection 

ROT Rules-of-thumb 

ROTm Rules-of-thumb bandwidth selection with median absolute deviation 

ROTs Rules-of-thumb bandwidth selection with standard deviation 

STE Solve-the-equation 

TCP Transmission control protocol 

TLS Transport layer security 

XMPP Extensible messaging and presence protocol 
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Le présent rapport traite des limites au rendement des techniques traditionnelles de classification 
du trafic supervisé en ce qui a trait à l’exactitude, à la précision et au rappel lorsqu’on dispose 
de peu d’information sur le trafic, particulièrement sur le trafic crypté d’un adversaire. Le 
rapport présente également une nouvelle méthode de classification naïve bayésienne modifiée 
basée sur la sélection de la taille du noyau selon une pondération optimale afin d’améliorer le 
rendement en matière de classification dans un tel cas. Le nouvel algorithme de sélection de la 
taille du noyau nous permettra d’instaurer un modèle d’apprentissage pour la classification du 
trafic qui sera plus précis que les modèles traditionnels. En générant plusieurs grands types de 
trafic pour les réseaux tactiques en périphérie, la méthode proposée permettra non seulement 
d’améliorer considérablement le rendement en matière de classification à l’aide des classes 
existantes, mais également de détecter le trafic inconnu avec beaucoup plus d’exactitude, de 
précision et de facilité de rappel que les méthodes traditionnelles. Un nouveau modèle de 
classification par apprentissage est proposé. Celui-ci est fondé sur une méthode naïve 
bayésienne modifiée qui permettra de traiter le trafic en temps réel et de mettre à jour 
périodiquement le tableau de classification. Globalement, au fur et à mesure que l’on recueillera 
de l’information de plus en plus exacte provenant du trafic en temps réel le modèle proposé 
permettra avec le temps d’améliorer le rendement de la classification par rapport aux modèles 
traditionnels  qui ne tiennent pas compte du trafic continu,  comme l’a démontré notre 
évaluation du rendement en matière de classification. 

 
 

  
 


