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Abstract  

The design of a military vehicle is a complex science that requires the careful consideration of factors, 
such as armour protection that is essential for survivability, while considering the need to conceive a 
lightweight and economical vehicle. Therefore, predicting the material behavior and damage until failure 
is of primary importance when evaluating the vulnerability of military platforms and could influence the 
optimization of protection systems. In this report, the aim is to investigate the effect of modifying several 
constitutive and damage models that could be used to simulate the damage behavior of Aluminium (Al) 
6061-T6 using the LS-DYNA hydrocode. Several models are compared numerically and their 
strengths/weaknesses are presented. The Johnson-Cook constitutive model and GISSMO damage models 
were combined and the effects of varying several parameters are presented. Since defence applications 
involve several failure modes, further studies should be performed to investigate the material response 
under various triaxialities and the mesh dependency in order to simulate accurately the damage/failure of 
Aluminium 6061-T6.  

Significance to defence and security  

The development of novel concepts and designs of military platforms is increasingly becoming dependant 
on modeling and simulations that are performed to support their development. Therefore, it becomes 
essential to predict adequately the damage and failure that occur in the materials. The modeling of the 
evolution of damage and failure is a challenge itself as it depends, for example, on the mechanical and 
thermal properties of each material, their sensitivity to the strain rates and temperatures, and how they are 
dynamically solicited. The development of an accurate damage and failure model is thus very important 
when evaluating the dynamic behavior of military protection systems under extreme loads such as against 
threats effects.  
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Résumé  

La conception d’un véhicule militaire est une science complexe qui requiert un examen approfondi de 
facteurs, tels que l’armure de protection qui est essentiel à la surviabilité, tout en considérant le besoin de 
concevoir un véhicule léger et économique. C’est pourquoi, prédire le comportement et le dommage 
jusqu’à la rupture des matériaux est de première importance lorsqu’on évalue la vulnérabilité de 
plateformes militaires et peut ainsi influencer l’optimisation des systèmes de protection. Dans ce rapport, 
l’objectif est d’investiguer plusieurs modèles constitutifs et d’endommagement qui pourraient être utilisés 
pour simuler l’endommagement de l’Aluminium 6061-T6 avec l’hydrocode LS-DYNA. Plusieurs 
modèles sont comparés numériquement et leurs forces/faiblesses sont présentées. Le modèle constitutif de 
Johnson-Cook a été combiné au modèle d’endommagement de GISSMO et l’effet de varier la valeur de 
plusieurs paramètres est présenté. Étant donné que les applications militaires impliquent plusieurs modes 
de rupture, des études complémentaires devraient être réalisées pour investiguer la réponse du matériau 
soumis à des triaxialités différentes et la dépendance au maillage dans le but de simuler adéquatement 
l’endommagement/rupture de l’Aluminium 6061-T6.  

Importance pour la défense et la sécurité  

Le développement de nouveaux concepts et la conception de plateformes militaires sont de plus en plus 
dépendants de la modélisation et simulations qui sont effectuées pour appuyer leur développement. C’est 
pourquoi, il devient essentiel de prédire adéquatement le dommage et la rupture qui se produit dans les 
matériaux. La modélisation de l’évolution du dommage et la rupture est un défi en soi parce qu’elle 
dépend, par exemple, des propriétés mécaniques et thermiques de chaque matériau, de leur sensibilité au 
taux de déformation, à la température, et comment ils sont sollicités dynamiquement. Le développement 
d’un modèle d’endommagement et de rupture fidèle est donc très important lorsqu’on évalue le 
comportement en dynamique de systèmes de protection contre les effets des menaces.  
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1 Introduction 

The objective of this report is mainly to investigate the effect of modifying several constitutive and 
damage parameters on the numerical behavior of Aluminium (Al) 6061-T6 while using the LS-DYNA 
hydrocode [1] to perform the finite element simulations. Several parameters of the mat_plastic_kinematic 
and mat_johnson_cook constitutive models are evaluated as well as the effect of modifying several of 
these parameters when combining to a damage model. In the first section, a short description on 
hydrocodes is provided and the governing equations that are resolved during a simulation are provided. 
Then a literature review of various constitutive and damage models are presented. In the following 
section, a summary of experimental work extracted from [2] is presented. This work is used as a reference 
to compare with the simulations results obtained in the present study. The effects of many parameters are 
presented. The Johnson-Cook (JC) constitutive model and Generalized Incremental Stress State 
dependant damage MOdel (GISSMO) were combined and are proposed as a method to simulate the 
damage and failure of Al 6061-T6 when doing simulations with the LS-DYNA hydrocode. Finally, a 
conclusion and some recommendations are presented. 

The following work was performed under the Land Operational Vehicles (LOV) project with the aim to 
provide traineeship and work experience to an undergraduate student. 
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New approaches combining both Lagrange and Eulerian methods have been developed and are called 
“Arbitrary Lagrangian-Eulerian” (ALE) and Simplified ALE (SALE). Combined models make it possible 
to solve problems involving both Lagrangian and Eulerian approaches in the same simulation. The 
conservation equations for both Lagrangian and Eulerian formulations are presented in the following  
sub-sections and were extracted from [5]. 

2.1.1 Mass equation 

Eulerian: 

 (1) 

Lagrangian: 

 (2) 

Where  is the density, u is the volume of material flowing through a defined unit area and t is the time. 

2.1.2 Momentum equation 

Eulerian: 

 (3) 

Where  corresponds to the gradient and P the stresses. 

Lagrangian: 

 (4) 

2.1.3 Energy equation 

Eulerian: 

 (5) 

Where u defines the velocity, P the pressure and E is the internal energy per unit mass. 
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Lagrangian: 

 (6) 

Where V corresponds to the volume. 

2.2 Stress and strain calculations 

The principal stresses in both 2D and 3D may be obtained by solving the roots of the following cubic 
equation [6]: 

 (7) 

Where I are the stress invariants and where the three  solutions are the three principal stresses 
 , and: 

 (8) 

 (9) 

 (10) 

The ASM Handbook [7] defines the engineering stress  as the average longitudinal stress in the 
tensile specimen and is obtained by diving the load applied F divided by the initial area  as provided by 
Equation (11). The engineering strain  is obtained by dividing the variation of the gage length of the 
specimen  by its original length  

 (11) 

 (12) 

Where L is the current length. 

True stress true is given by:  

 (13) 
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2.3 Equations of state 

As discussed previously, an Equation Of State (EOS) is required when the deformation of the material is 
non negligible compared to the pressure that is applied. It relates pressure to density and internal energy. 
It also accounts for changes in irreversible thermodynamic processes such as shock heating [1]. Examples 
of equations of states are provided in LS-DYNA [4] such as a Linear polynomial EOS, also when 
considering the shock velocity a Mie-Grüneisen or Grüneisen EOS can be defined, or when high 
explosives pressure of the detonation products need to be determined a Jones-Wilkens-Lee EOS can be 
used, an Ideal gas EOS when the pressure is determine in low density gas, etc.  

The linear polynomial EOS was used in the simulations of this report. In the linear polynomial EOS, the 
Pressure (P) is given by: 

 (16) 

Where: 

 (17) 

And  is the ratio of current density and reference density [4]. The C values are called the polynomial 
equation coefficients, and E corresponds to the internal energy per unit reference volume. The 
coefficients for the linear polynomial EOS used for Al 6061-T6 are given in Table 1 [6]: 

Table 1: Linear polynomial equation of state parameters for Al 6061-T6 [8]. 

Parameter C0 C1 C2 C3 C4 C5, C6 
Units GPa GPa GPa GPa   

Values 0 74.2 60.5 36.5 1.96  

2.4 Constitutive, damage and failure models 

In order to model plastic deformation and ductile failure, constitutive models can be coupled or 
uncoupled. When plastic deformations and material damage calculations are coupled, failure occurs when 
a certain damage critical value is reached [9]. For uncoupled models, such as the Johnson-Cook material 
model [10], plastic deformation is calculated assuming no damage in the material. The failure criterion is 
based on the stress and strain histories and failure occurs when the critical value is reached [9].  

2.4.1 Elastic plastic model 

The mat_plastic_kinematic material model in the LS-DYNA hydrocode is a basic model which defines 
the behavior of the material model using two curves, one defining the elastic region of a material (also 
defined by the Young’s modulus), and the other one defines the linear plastic behavior of the material 
from the yield stress to the ultimate tensile strength using a simplified representation of the plastic region, 
called ETAN. Element are deleted using a failure criteria once they exceed a given strain [4]. This failure 
strain does not necessarily directly correspond to the deformation at failure, because it is mesh dependant. 
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The plastic hardening modulus (Eh) is obtained using the Young’s Modulus (E) and the tangent modulus 
(called ETAN or ET) is calculated as follows [4, 11]: 

 (18) 

 (19) 

 (20) 

Where y is defined by the stress at the yield point. 

In addition, this model is capable of considering strain rate effects using the Cowper-Symonds model. 

 (21) 

It is important to use the true stress and true strain curves and not the engineering stress and engineering 
strain curves when calibrating the parameters. 

2.4.2 Johnson-Cook model 

Johnson and Cook [10] proposed the following model consisting of experimentally determined 
constants , B, C, n and m, which yields a Von Mises equivalent flow stress: 

 (22) 

Where  is a reference strain rate which may be assumed equal to 1 for simplicity,  is the effective 
plastic strain, and T* is the unit-less temperature: 

 (23) 

Where  is the reference temperature of the material (ambient temperature), and  is the melting 
temperature of the material. 

The first set of brackets represents the strain sensitivity, the second represents strain rate sensitivity, and 
the final bracket group is temperature sensitivity. 



8 
 

Parameter

Tab

Mat

OFHC

Cartrid

Nick

Armc

1006
2024
Alum

7039 A

4340

S-7 to
Tungst

(0,07Ni

The stres
deformatio
order for i

In the firs
is the e

The follow
determine

2.4.2.1 

A quasi-s
parameter
obtained b

rs for various 

ble 2: Johnson

terial Hard

Rock

C Copper F-

dge brass F-

kel 200 F-

co iron F-

6 steel F-
4-T351 
minium B-

luminium B-

0 steel C-

ool steel C-
ten alloy 
i, 0,03Fe) C-

s equation a
on of a mater
it to be delete

st bracket, 
effective plast

wing sub-sec
e the paramete

Step 1: Q

static tensile 
rs B and n w
by doing a cur

materials are

n-Cook param

dness Density 

kwell kg/m3 

-30 8960 

-67 8520 

-79 8900 

-72 7890 

-94 7890 

-75 2770 

-76 2770 

-30 7830 

-50 7750 

-47 17000 

above will h
rial, but, it tak
ed.  

 is the ratio 
tic strain rate 

ction was ext
ers from expe

Quasi-static

test must b
which fulfill t

rve of best fit

e listed in Tab

meters for var

Specific 
heat t

J/kg·K 

383 

385 

446 

452 

452 

875 

875 

477 

477 

134 

help produce
kes a failure e

of pressure 
and  is the

tracted from 
erimental data

 tensile test

be conducted 
he requireme
t.  

  

  

ble 2. 

rious materia

Valu
Melting 

temperature 
K M

1356 

1189 1

1726 1

1811 1

1811 3

775 2

877 3

1793 7

1763 1

1723 1

e a simulatio
quation to de

over effectiv
e dimensionle

[12] and pre
a for an armou

t 

to determin
ents of the fir

ls ( =1s-1) e

ues 
0 B 

MPa MPa 

90 292 

112 505 

163 648 

175 380 

350 275 

265 426 

337 343 

792 510 

539 477 

506 177 

on that repre
etermine at wh

ve stress (triax
ess temperatur

sents an exam
ur steel. 

 

ne the yield 
rst bracket (s

DRDC-

extracted from

n C

 

0.31 0.0

0.42 0.0

0.33 0.0

0.32 0.0

0.36 0.0

0.34 0.0

0.41 0.0

0.26 0.0

0.18 0.0

0.12 0.0

esents the e
hat strain an e

 

xiality). In th
re, as defined

mple of the 

stress , a
strain sensitiv

RDDC-2018-

m Meyer [5]. 

C m 

  

025 1.09 

009 1.68 

006 1.44 

060 0.55 

022 1.00 

015 1.00 

010 1.00 

014 1.03 

012 1.00 

016 1.00 

elastic and p
element will f

he second bra
d previously [4

steps to follo

and the hard
vity). B and 

-R198 

plastic 
fail in 

(24) 

acket, 
4]. 

ow to 

(25) 

ening 
n are 



DRDC-RD
 

2.4.2.2 

Conductin
possible to

2.4.2.3 

Variable s
bracket of

DDC-2018-R1

Step 2: V

ng tensile and
o obtain param

Figure

 Step 3: E

strain rate te
f Equation (29

198 

Variable tria

d combined-lo
meters D1, D2

e 3: Variation

Effect of str

ests are condu
9)). 

xiality tests

oading tests o
2, and D3 for t

n of Failure S

rain rate 

ucted to find

  

  

s 

on specimens
the first brack

train with tria

d C (second 

s to induce va
ket group of th

 

axiality extra

bracket of E

 

arying triaxial
he failure stra

 

 
cted from [12

Equation (28)

 

lities shall m
ain equation. 

2]. 

)) and D4 (se

9 

ake it 
 

(26) 

(27) 

econd 

(28) 

(29) 



10 
 

Figure 4

Figur

Figure 6

4: Stress-strain

re 5: Variation

: Variation of

n curves as a 

n of stress wi

f failure strai

  

  

function of s

th log of strai

in with ln of s

  
train rate ext

 
in rate extrac

 
strain rate ext

DRDC-

tracted from [

cted from [12]

tracted from [

RDDC-2018-

[12]. 

]. 

[12]. 

-R198 



DRDC-RD
 

2.4.2.4 
Tensile te
Equations

The JC str
componen

All the n
substitutio

Applying 

Plotting th
results suc

DDC-2018-R1

Step 4: E
sts at various 

s (30) and (31

ress equation 
nts: 

necessary con
on to the origi

the log functi

he data from
ch as the ones

198 

Effect of tem
temperatures
). 

is rearranged

nstants of th
inal JC equati

ion and a few

m the tensile t
s in Figure 8. 

mperature 
s are conducte

d in such a ma

his equation 
ion yields: 

w manipulation

tests conduct
The slope of 

  

  

ed to obtain th

anner that K 

have been 

 

ns yields: 

ted at variabl
f the linear cur

he temperatur

 

corresponds t

 

obtained pre

 

le temperatur
rve obtained c

re-sensitive m

 

to its non-tem

eviously. Ap

re on a log s
corresponds t

m and D5 valu

mperature sen

pplying the a

scale should 
to the constan

11 

ues of 

(30) 

(31) 

nsitive 

(32) 

above 

(33) 

(34) 

yield 
nt m. 



12 
 

In order to
unit-less t

Figure 7:

Figure 8

o obtain the f
emperature 

Stress-strain

8: Graph plot

final missing 
 and a line o

n curves as a f

tted to find tem

value  fro
of best fit is ap

  

  

function of tem

mperature co

m the strain e
pplied. 

mperature ex

onstant m extr

equation, fail

DRDC-

 
xtracted from 

 
racted from [1

lure strain is p

RDDC-2018-

[12]. 

12]. 

plotted again

-R198 

nst the 



DRDC-RD
 

Figur

Many auth
the strain 

2.4.3 

Armstrong
structures
dislocation
dislocation
barriers (i
the yield 
basically d
they propo
for Hexag
structures 

However, 
metals un
activation
would atte
suitable f
Oxygen-F
the strain 
results of
Langer-Bo
until a stra
until the tr

DDC-2018-R1

re 9: Failure 

hors such as L
rate sensitivit

Zerilli-Arm

g and Zerilli 
. In Fully C
ns, and the t
n density. Fo
.e., Peierls int
stress of FC
determined b
osed the Zeri
gonal Closed
[17]. Alumin

Voyiadjis an
nder high tem

area. Over ti
empt to comp
for strain rat
Free High Con

rate exceeds 
f various dam
ouchbinder-L
ain rate of rou
ransition zone

198 

strain vs. dim

Lesuer et al. [
ty of Alumini

mstrong m

[16] found th
Centred Cubi
thermal activ
r Body Centr
ternal stress),

CC metals is 
by strain rate 
lli-Armstrong

d Pack (HCP
nium is a FCC

nd Abed [19] 
mperature and
ime, Voyiadji
pensate for th
tes below 
nductivity (OF

a certain val
mage models
Lookman (LB
ughly  or 
e of OFHC C

mensionless te

[13], Manes e
ium 6061-T6 

model 

hat the disloca
ic (FCC) me
vation area d
red Cubic (BC
, such that the
determined m
hardening an

g (ZA) model
P) metals wh
C metal [18]. 

pointed out t
d that this m
is and Abed [

hese shortcom
. Folla

FHC) copper
lue [17]. Figu
s. It can be 

BL) and Nema
 after

opper. 

  

  

emperature to

et al. [14] and 
can be neglec

ation mechan
etals, disloca
decreases with
CC) metals, d
e thermal acti
mainly by st
nd temperatur
l with differe

hich owns mi

that the ZA m
model does no

[19] and othe
mings. Howev
ansbee and K

and some oth
ure 10 presen
observed tha
at-Nasser-Li 
r which the Z

o find D5 para

d Toussaint an
cted in certain

nisms of meta
ations must t
h plastic stra
dislocations m
ivation area is
train hardenin
re softening. 
ent constitutiv
ixed characte

model is not a
ot include the
ers proposed v
ver, this mode
Kocks [20] f
her FCC meta
nts their expe
at for this m
(NNL) mode

Zerilli-Armstr

 
ameter extrac

nd Bouamoul 
n strain rate r

als varied bas
traverse the 
ain because o
must overcom
s not related w
ng, but that 
Based on the

ve forms for F
eristics of th

applicable to t
e strain rate 
variations of 
el, and its var
found that th
als increases 
erimental resu
material, the 
els give the b
rong becomes

cted from [12]

[15] showed 
range.  

sed on their c
barriers of f
of the increa

me Peierls-Na
with strain. H
of BCC met
ese considera
FCC and BCC
he BCC and 

the deformati
effect on the
the ZA mode

riants are gene
he flow stre
dramatically 
ults comparin
Gao-Zhang 

best approxim
s the most acc

13 

]. 

that 

rystal 
forest 
ase in 
abarro 
Hence, 
tals is 
ations, 
C and 

FCC 

ion of 
ermal 
el that 
erally 

ess of  
when 

ng the 
(GZ),  

mation 
curate 



14 
 

Although 
explain th
not very c

Zerilli-Arm
ordnance 

It defines 

It should b
BCC meta

Note: 

Where  
used. 

Figure 10:

a number of
his sudden ris
clear accordin

mstrong is a 
design calcul

flow stress as

be stressed th
al equation w

will equal 1

: Experimenta

f models hav
se, the physic
ng to Gao and 

rate and tem
ations [4]. 

s: 

hat the above 
hen n is set to

, 1 x  or

al data and si
strain rates (

ve been propo
cs of the dislo

Zhang [17]. 

mperature sen

equation is sp
o zero. 

r 1 x  if

  

  

imulation resu
([17] extracte

osed based o
ocation gener

nsitive plastic

pecifically fo

f seconds, mi

ults of sample
ed [20]). 

on Dislocation
ration at extre

city model wh

or FCC metals

 

 

illiseconds or

DRDC-

 
es failing at v

n Density Ev
emely high st

hich is some

 

s, and corresp

 

r microsecond

RDDC-2018-

various  

volution (DD
train rates are

etimes preferr

ponds to the b

ds are respect

-R198 

DE) to 
e still 

red in 

(35) 

below 

(36) 

tively 



  

DRDC-RDDC-2018-R198 15 
 

  

 (37) 

The relationship between heat capacity (specific heat Cp) and Temperature (T) may be characterized by a 
cubic polynomial equation as follows: 

 (38) 

Where G are constants to be determined. The optional fully viscoplastic formulation will require more 
computing, but gives improved results [4]. 

In the LS-DYNA hydrocode, these initial uncoupled constitutive models will very often include some 
form of failure criterion or criteria. These constitutive models may also be combined to damage models 
and/or to other failure models such as the mat_add_erosion or Generalized Incremental Stress State 
dependant damage MOdel (GISSMO). These damage/failure models allow to predict fracture, spalling 
and the formation of shear bands.  

2.4.4 Cockcroft-Latham Ductile failure criterion 

The Cockcroft-Latham ductile failure criterion is defined in [21]. 

 (39) 

 = Maximum principal stress 
 = equivalent strain 

 

By adjusting the equation, we can obtain: 

 

 

(40) 

The value I represents the normalized damage value, which varies from 0 to 1. It is calculated at each 
point of a FE analysis, when a point reaches an I value of 1, it is deleted [4]. More details are provided in 
the reference [21]. 
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2.4.5 GISSMO—Generalized Incremental Stress State dependent damage 
MOdel 

The Generalized Incremental Stress State dependant damage MOdel (GISSMO) is represented by the 
following formula [4]: 

 (41) 

Where: 

D is the current damage (0 < D < 1, where 0 is an intact element and 1 is a destroyed element) 
 is the increment of plastic strain, n is the experimentally determined damage exponent,  is the 

fracture strain as a function of ,  is the triaxiality which is defined as the ratio of hydrostatic (  and 
Von Mises  stress. 

The GISSMO model has also an instability parameter: 

 (42) 

Where: 

 is the equivalent plastic strain to instability, it is a function of triaxiality. 

When F is equal to zero, the material behaves in an elastic manner, when it is equal to 1, the damage 
affects the stress in the following manner:  

 (43) 

Where: 

 is the damage value at the moment F becomes 1 (  may be set to zero). m is the “fading 
exponent” which must be calibrated to experimental results.  is the effective stress. 

It can be observed that by setting  to zero, and m to one, that the Lemaitre damage model [22] is 
obtained. 

As a reminder, the damage law from Lemaitre [22] takes the form below, and is based on the idea that the 
effective stress of a plastically deformed material is a function of its true area which consists of both 
intact material, and failed material. 
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the other hand, will only implement a single instability and single fracture curve to define material 
behavior [24]. An example of comparison of these two models is presented in [25, 27]. 

In the DIEM model, damage initiation is a variable that will evolve until it reaches the critical value of 1, 
after which, damage evolution begins. 

The ductile damage initiation indicator is defined by: 

 (47) 

Where  is a function of triaxiality and strain rate and represents the plastic strain at onset of damage.  

Upon  reaching 1, the damage variable D affects the stresses. In DIEM, failure takes place when  
D = 0.99, after which, the element is assumed to have no load-carrying capacity. Damage evolution is 
expressed as: 

 (48) 

Where  and  are the plastic displacement and the plastic displacement at failure, respectively. On the 
surface, using Lemaître’s equation rather than equation (52) makes it appear that some freedom in the 
calibration of results is being sacrificed. However, the plastic displacement at failure may be programmed 
as a function of triaxiality and damage. The end result is something resembling the damage fading 
exponent in GISSMO. 

The evolution of the plastic displacement is defined as: 

 (49) 

Where l is the characteristic length of the element. This parameter is introduced as a way to correct the 
energy dissipation error due to mesh dependency [24]. 

DIEM will also allow the definition of a shear damage initiation indicator. The plastic strain at onset of 
damage is now a function of the shear stress function, , instead of triaxiality. 

 (50) 
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3 Summary of Giglio et al. experimentation [2] 

Giglio et al. [2] performed a complete calibration of the Al 6061-T6 using the Bao-Wierzbicki [28] 
approach as the main framework. Experimental tests were performed in pure torsion, biaxial  
torsion-traction and torsion-compression in quasi-static. A summary of the tests are provided in Table 4. 
In this reference, the simulations reproduced these experiments and were performed using the ABAQUS 
software. The main difference between the Johnson-cook failure model and the Bao and Wierzbicki is 
that the latest defined the fracture locus, using different equations to cover a wide range of stress 
triaxiality that are usually only covered partially in the literature, i.e. for a specific test. According to [2], 
the stress triaxiality range is fairly large in ballistic impact simulations.  

Monoaxial tensile tests with smooth round and two different notched round specimens have been carried 
out. Also, multiaxial tests were performed, in pure torsion and mixed tests in torsion/tension and 
torsion/compression. Finally, the height to diameter ratios (h/D) was changed for cylindrical specimens. 
All these tests allowed covering the range of stress triaxiality from -  to 0.4. Monoaxial tests were 
performed for high stress triaxialities (  0.4), mono and multiaxial tests for low stress triaxiality  
(0    0.4) and also, monoaxial upsetting tests were also conducted. Table 4 provides a summary of 
these tests. An electro-mechanical MTS Alliance RF150 machine was used for the mono-axial tests while 
a servo-hydraulic multi axial machine MTS 809 was used for the multi-axial tests. Figure 13 provides the 
drawings of the different specimens. 

Table 4: Summary Giglio et al. experiments results [2]. 

 Type of load Type of specimen Superimposed 
constant load 

Monoaxial Tension Round smooth N/A 
Monoaxial Tension Round notched (Radius 12 mm) N/A 
Monoaxial Tension Round notched (Radius 5 mm) N/A 
Monoaxial Torsion Round smooth N/A 
Multiaxial Torsion Round smooth Traction (4kN) 
Multiaxial Torsion Round smooth Traction (8kN) 
Multiaxial Torsion Round smooth Compression (12kN) 
Monoaxial Compression Cylinder N/A 
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Table 5: Al 6061-T6 constitutive model constants. 

Proerties Symbols Values Units Sources 
Density RO 2700  kg/m3 [2] 
Young’s Modulus E 70  GPa [2] 
Poisson’s Ratio PR 0.33  [2] 
Yield Stress SIGY 270  MPa [2] 
Tangent Modulus ETAN 1.33  GPa [30] 
Strain Rate Parameter C SRC 6500 s-1 [31] 
Strain Rate Parameter P SRP 4  [31] 
Failure Strain FS 0.115354   [2] 

The literature did not provide the failure strain explicitly, therefore, the failure strain was estimated by 
measuring a force/displacement curve; assuming the initial length was the extensometer length. The 
failure strain extracted from Giglio et al. tensile test data [2] agrees with data from  
ASM International [7] for a tensile rod (0.108+), but is significantly lower than Dorbane et al. [32] failure 
strain (0.1806). There was various values obtained when comparing data from other sources but as 
explained previously, the failure strain is mesh dependant. 

The stress-strain curves below were produced by replicating the testing conditions of Giglio et al. 
experiments [2]. The stress is the average Y-stress of the cross-section where initial failure occurs, where 
the average taken between the Y-stress at the core of the sample, and on the outer perimeter. The 
displacement is recorded using a virtual extensometer with a mounting point 12.5 mm above and below 
the centerline. The difference of Y-displacement between the tensile sample core and circumference is 
considered negligible. 

4.1.1 First trials: Varying the hardening parameter 

The first trials used a tangent modulus (ETAN) of 1.33 GPa obtained from the work of Kwon and 
Thompson [30] and a hardening parameter  (Beta) of 0 and 1. The values of 0 and 1 respectively 
correspond to kinematic hardening and isotropic hardening has explained in the LS-DYNA manual [4]. 
An additional intermediate value of 0.13 was also tested in this work. Isotropic hardening (  = 1) is when 
the yield surface retains the same form, but expands with increasing stress [33].  

In order to model the Bauschinger effect, where a hardening in tension will lead to a softening in 
subsequent compression, the kinematic hardening rule (  = 0) can be used. Here, the yield surface will 
remain the same shape and size, but will translate in stress space [33]. 

                                                      
3 This tangent was too steep and did not replicate the experimental results. Ultimately, 874 MPa was used with 
greater success. 
4 The failure strains obtained from literature had very important variations. 
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Table 6: Johnson-Cook constitutive model parameters.  

Properties Symbols Values Units Sources
Density RO 2700 kg/m³ [2]
Shear Modulus G 26 GPa [2]
Young’s Modulus E 70 GPa [2]
Poisson’s Ratio PR 0.33 [2]
Yield Stress A 270 MPa [2]
Hardening factor B 165.5 MPa [2]
Hardening exponent N 0.222 [2]
Strain Rate Factor C 0.011 [2]
Temperature Exponent m 0a [2]
Melting Temperature TM 925b K [13]
Reference Temperature TR 294b K [2]
Specific Heat CP 890 J/kg K [2]
a Assumed negligible.
b Ignored because m = 0.

When damage was included, the values presented in Table 7 were used in the simulations; otherwise, they 
were all set to zero. 

Table 7: Johnson-Cook damage model parameters. 

Damage Parameters Symbols Values Source
Triaxiality Constant D1 0.77 [13]
Triaxiality Factor D2 1.45 [13]
Triaxiality
Exponential Factor

D3 0.47 [13]

Strain Rate Factor D4 0.011 [2] c [13]
Temperature Factor D5 1.6 [13]
cGiglio et al. (2014) cited the paper from Lesuer et al. (2001) for these
numbers, but the D4 values differ. Lesuer et al. (2001) published “0.0” while
Giglio cited “0.011”.

4.2.1 First Trials: Evaluating effect of damage and erosion activation and 
desactivation 

For these simulations of tensile test, the damage and erosion settings were set in the mat_johnson_cook by 
changing the EROD parameter from 1 to 0, and making the D values equal to 0, or defining their values 
as found in the literature (presented in Table 7). 
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parameters, the simulations should be extended to include other types of loading in order to obtain results 
under different triaxialities. Finally, simulations should be performed and compared with a blast/ballistic 
impact experiment. 

The methodology developed could be used for other materials however; the strain rate components should 
be considered when the materials are strain rate sensitive to extreme loads. 
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5 Conclusion 

The development of novel concepts and designs of military platforms is increasingly becoming dependant 
on modeling and simulations that are performed to support their development. Therefore, it becomes 
essential to predict adequately the damage and failure that occur in the materials when evaluating the 
dynamic behavior of military protection systems under extreme loads such as against threats effects.  

The objective of this report was to find a reliable method to simulate using the LS-DYNA hydrocode the 
behavior, damage and failure of Aluminium 6061-T6 and to investigate the effect of modifying several 
constitutive and damage parameters on the numerical behavior. Since this material is considered strain 
rate insensitive in the strain rates we are interested, results from a quasi-static experimental test from 
Giglio et al. [2] experiments was used as a reference to compare with the simulations results.  

Parameters of the mat_plastic_kinematic and of the mat_johnson_cook constitutive models were 
evaluated as well as the effect of modifying several of these parameters when combining to the 
Generalized Incremental Stress State dependant damage MOdel (GISSMO). Simulations demonstrated 
that different combinations of parameters can be used in order to reproduce the true  
stress-strain behavior during a quasi-static tensile test. 

The Johnson-Cook constitutive model and Generalized Incremental Stress State dependant damage 
MOdel (GISSMO) were combined and are proposed as a method to simulate the damage and failure of  
Al 6061-T6. However, since defence applications involve various failure modes, it is recommended that 
parameters of the constitutive and the damage/failure models, such as the element fading and the scaling 
exponents available in the GISSMO damage model, should be well calibrated as a function of element 
size (to evaluate mesh dependency) and under various triaxalities. Finally, in order to validate the use of 
the material models for defence applications, simulations should be performed and compared with a 
blast/ballistic impact experiments. 
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