
Defen
Contract
DRDC-R
Novembe

Shar

Alexei Zen

Michael C
u

Prepared
University
27 King's

Technical
Contracto

ce Rese
t Report
DDC-2018-
er 2018

rik 3.0

nin

Matthew Lakier
Chen
u Minna W

University of Toronto

by:
y of Toronto
College Cir, T

Authority: S
r's date of pu

earch an

C212

Design

Toronto, ON M

hadi Ghajar-K
blication: Nov

nd Deve

CAN U

CAN UNCLA

n Prop

M5S 3H7

Khosravi
vember 2017

lopment

UNCLASSIFIE

ASSIFIED

posal

t Canad

ED

a

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada using the Schedule to the
Defence Production Act.

Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the
Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the
national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence)
makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy,
reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing
in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any
reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so
using it or relying on it. Canada does not assume any liability in respect of any damages or losses arising out of or in connection
with the use of, or reliance on, any information, product, process or material included in this document.

© University of Toronto, 2018

2

Table of Contents

Executive Summary .. 4

1 Requirements .. 5

1.1 Problem Statement ... 5

1.2 Background .. 5

1.3 Stakeholders ... 7

1.4 Functions .. 7

1.5 Objectives ... 8

1.6 Constraints .. 10

1.7 Optional Feature Requests ... 11

1.8 Service Environment .. 12

2 Design Alternatives ... 12

2.1 Architecture .. 13

2.1.1 Selection of Architecture .. 18

2.2 Data Storage Alternatives... 19

2.2.1 Sharik’s Data Model ... 19

2.2.2 Data Model - Comments, Notifications, Subscriptions, and Auditing 22

2.2.3 Database Alternatives ... 24

2.2.4 Data Storage Alternative Selection ... 25

2.3 Front-end Frameworks ... 25

2.3.1 Feature Scope .. 26

2.3.2 Performance Benchmarks ... 26

2.3.3 Learning Curve ... 27

2.3.4 Selection .. 29

2.4 CSS Frameworks .. 29

2.4.1 Selection .. 30

2.5 Back-End/REST API Frameworks .. 30

2.5.1 Decision Criteria ... 30

2.5.2 Selection .. 31

2.6 Web Server ... 31

2.6.1 Selection .. 31

2.7 Operating System ... 32

3

2.7.1 Selection .. 32

2.8 User Interface ... 32

2.8.1 Data Entry Ideation ... 33

2.8.2 Slide Creation Ideation ... 39

2.8.3 Slide Creation Data Model.. 41

2.8.4 Navigation within Mission .. 41

2.8.5 Evaluation of User Interface Alternatives ... 42

3 Project Management Plan ... 44

4 Conclusion .. 46

5 References ... 47

 Glossary .. 50

 Pair-wise Comparison Chart.. 52

 Email confirmation of objective list priority ordering ... 53

 Email confirmation of client preferences for alternative ... 54

 Example webpage layout for UI ... 55

 Design of Hierarchical Mission Navigation ... 57

 Nielsen's Ten Heuristics for User Interface Design ... 58

 Thirteen Principles of Display Design ... 59

 Relational Model Primer .. 61

 Sharik Model In-Depth .. 64

4

Executive Summary
This design proposal addresses the improvement of Sharik – a web-based intelligence sharing
tool that is employed by the client DRDC. The client has requested a redesign of Sharik to
address scalability and usability issues.

The Requirements section of this document details the framing of the design problem in terms of
the problem statement, stakeholders, functions, objectives, constraints, and service environment.
This section was formulated based on client consultation, research into standardized practices,
and the design team’s prior experience.

The Design Alternatives section details the design iteration process. It deconstructs the design
problem into high-level architectural views, low-level software component views, and the UI
design view. Each iteration process began by producing solution alternatives, which were either
surveyed from existing designs or produced from heuristics, which was followed by the
elimination of unviable alternatives based on requirements highlighted in the Requirements
section. Once the design team exhausted the solution alternative space following one or many
iterations, either one design alternative was chosen or if necessary, riskier design decisions were
left open in expectation of new information later in the implementation phase that would inform
a better decision. The implementation of the chosen alternatives is outlined at a high-level in the
Project Management Plan section.

The engineering team is planning to move forward with developing a web application, accessible
by browser. Sharik will be structured in three distinct components: client-side, server-side, and
database. A single page application architecture was chosen to be used with technologies such as
Vue.js and Java’s Spring framework.

Three core features were identified as data-entry, proposition visualization within a concept map,
and collaborative slide editing which will be implemented in time for the client’s focus group
during early March 2018. This will evaluate the viability of the tool the design team builds. The
Project Management Plan and constraints in the Requirements section reflect the prioritization of
the core features. Certain constraints, deemed not essential to the scope of this project’s focus
group deadline, were moved out of the constraints section to make sure the team can meet the
requirements of the client on time.

5

1 Requirements
1.1 Problem Statement
DRDC (the client) has built a web-based intelligence sharing tool called Sharik. It aims to
provide the ability for intelligence analysts to collaborate on intelligence gathering and sharing.

The client has asked the engineering team to redesign the web based tool from the ground up to
address scalability and usability issues. This means the engineering team needs to design a
software solution which includes the data models, architecture, back-end processes and user
interfaces for analysts to interact with. The client has also made clear that the solution must be
able to serve multiple users distributed geographically across the world (i.e. over a network). The
client will host a focus group for the solution’s intended users in mid-March, for which the team
is required to deliver several fully functional core features as outlined in the constraints.

1.2 Background
The Canadian Armed Forces (CAF) need tools to support their intelligence analysts who deal
with many various sources and types of information at scale. Collators or collection assets are the
personnel who forward such information to the analysts who then process and produce shareable
intelligence [1].

Intelligence analysis has become bottlenecks for other countries such as EU members, and the
UK [2]. Intelligence analysis tools like Sharik can help make the analyst's tasks more efficient,
thus making the intelligence lifecycle (IC) process more streamlined.

There are 4 stages to the intelligence lifecycle: Direction, Collection, Processing, and
Dissemination. During the Direction stage, the Commanding Officer (CO) of the operation
provides the Commander’s Critical Information Requirements (CCIRs), which are then assigned
to a group of information officers and their subordinates. This group breaks down each CCIR
into many Priority Intelligence Requirements (PIRs) which are all part of an Intelligence
Collection Plan (ICP). The Collection stage involves breaking down the PIRs into Information
Requirements (IRs) for analysts to work on. The analyst will then forward this IR to a collator or
make a Request For Information (RFI) to an external department. During the Processing stage,
analysts combine the results of the IRs to answer the PIR. Finally, once a PIR or a set of PIRs
have been answered, the results go through the Dissemination stage, in which the intelligence is
shared through some medium (e.g., verbally, files). The structure of the ICP is depicted below in
Figure 1. Note from the bottom box of Figure 1 that the Sharik project space provides the ability
to add notes, wikis, propositions (relationships), and other data for intelligence items that are a
part of the ICP (see Appendix A for detailed definitions) [1].

6

Figure 1. The hierarchical decomposition of IC elements in Sharik. The Sharik tool allowed users to upload an ICP

which breaks down to the corresponding sub-elements: Mission, CCIR, PIR. In this case the above intelligence
elements depict an intelligence mission revolving around the hypothetical flooding in Guayana. As can be seen the
intelligence mission is then decomposed into various intelligence sub-elements which help accomplish the mission.

The intelligence items on the far left are used as defining elements, where the rest of the elements address the
mission in some way. Sharik’s previous version did not function in the exact way as shown above (a revision to how
the ICP is structured has made the previous version of Sharik outdated). In this version of the ICP, PIRs can be part
of many CCIRs (the far right PIR is part of two CCIRs), along with notes and propositions having the ability to be

part of multiple PIRs as well (depicted by the shared pool in between the project spaces).

Based on conversations with the client, Sharik has focused on the latter three stages of the
intelligence lifecycle by providing analysts with data entry components, relationship
visualizations between intelligence items (Concept Map feature or CMap), and presentation slide
generation to share intelligence.

The client would like to address a list of usability and responsiveness issues found through a
usability study of the initial iteration of Sharik involving five intelligence analysts. These include
bugs in the UI, backend processing taking too long (2–3 seconds) along with scalability, and
design issues.

7

1.3 Stakeholders
The design should also take into consideration the needs and requirements from the following
stakeholders.

• Intelligence analysts: Intelligence analysts will use Sharik to assist with sensemaking.
The tool will allow them to analyze information and prepare it for dissemination in less
time. The tool should maximize the data-entry speed, minimize presentation creation time
of analysts, and allow collaboration between analysts to make sense of large volumes of
information.

• Collectors: Collectors provide information to analysts, and may do so using Sharik. The
tool should provide a means for collectors to share the information they have collected
with intelligence analysts.

• Commander(s): Commanders will create ICPs which are ingested by the tool and
decomposed into CCIRs and PIRs. They will receive intelligence results from analysts in
the form of several slides. The tool should assist analysts in creating slides that are clear
and relevant to the commanders.

• DRDC (including Shadi Ghajar-Khosravi and Peter Kwantes): DRDC would like to
reduce the amount of time intelligence analysts spend searching for information and
therefore maximize the amount of time that can be dedicated to analysis. Also, DRDC
would like the intelligence information to remain secure by retaining all data on DRDC
servers. They will communicate with the team to ensure that the tool addresses the needs
of the intelligence analysts. The tool will be deployed to help achieve these goals.

• Future code maintainers: The created tool will need to be maintained and extended in
future iterations. The implementation of the tool should be understandable and extensible
for future code maintainers, using practices such as code documentation and unit tests.

• Capstone team: The Capstone team will design and prototype the tool, communicating
regularly with the client to ensure that requirements properly reflect the needs of the
analysts, and that tool prototypes satisfy the requirements. The team will use its
collective, multi-disciplinary (electrical and computer engineering and industrial
engineering) knowledge to produce an optimal solution given the project timeline.

1.4 Functions
The functions of this tool should allow multiple analysts to access, input, analyze, and transform
information required for the intelligence cycle. Specifically, it should:

• Allow collaboration of analysts through the Sharik environment
• Create storage and retrieval mechanisms for intelligence information
• Enable analysts to enter data as notes and propositions
• Transform information into easy-to-understand visual concept maps
• Allow analysts to access tools that support the dissemination process such as

collaboratively-built slideshow presentations

8

1.5 Objectives
The project is guided by the following list of objectives and their corresponding secondary
objectives to maximize design quality and user satisfaction. These objectives were chosen after
analysis of client need and usability feedback data, and then matching them to appropriate design
for excellence criteria, metrics, and definitions in ISO/IEC 25010:2011 and ISO/IEC 25023:2016
– international standards for evaluating software quality [3] [4].

Criteria and metrics were chosen based on relevancy to the tool to be designed, and to match
achievable expectations for what the team can measure in this design project. Finally, a pair-wise
comparison chart was created to compare priorities between each pair of objectives (see
Appendix B). The order of objectives listed below is from highest to lowest priority.

Design for
Excellence
(DfX)

Sub-category
for DfX

Metric ID Target for Project Measurement Function

Performance
Efficiency

Time Behavior PTb-5-G/Mean
throughput

An increase in the
mean throughput of
jobs completed by a
factor of two relative
to existing design.
We define a job as a
typical use case of
Sharik (e.g. inputting
a note).

PTb-1-G/Mean
response time

An increase in mean
response time of page
loads by a factor of
two relative to
existing design

Usability Learnability ULe-1-G/User
guidance
completeness

100% of functionality
described in user
documentation and/or
help facility

ULe-2-S/Entry
fields defaults

100% of applicable
entry fields have
placeholder data to
express the format
and variety of
expected data

9

ULe-3-S/Error
messages
understandability

100% of error codes
state the reason of
occurrence and
suggest ways of
resolution

Operability UOp-2-
G/Message
clarity

100% of messages
delivered to the user
convey clear
outcomes or
instructions to the
user

User interface
aesthetics

UIn-1-
S/Appearance
aesthetics of user
interfaces

Decrease average
user interface and
overall design issues
by a factor of two by
increasing satisfying
interactions with the
user

Maintainability Testability MTe-1-G/Test
function
completeness

50% of code is
covered by tests

Reliability Maturity RMa-3-
G/Failure rate

Typical use cases
experience failures
(as defined in
Appendix A) 0% of
the time in a staging
environment.

Tests will be
performed each time
from a fresh
deployment from
scratch.

Recoverability RRe-1-G/Mean
recovery time

Average time to re-
initiate operation
after a failure is
below five minutes

10

Functional
Suitability

Functional
Completeness

FCp-1-
G/Functional
coverage

Maximize the
proportion of the
specified optional
feature functions that
are implemented (see
Section 1.7)

No goal is set as any
time remaining after
meeting preceding
objective goals will
be spent here

1.6 Constraints
A list of mandatory constraints was grouped into data-entry, dissemination, business rules, and
logistics. These are what the final solution must have. Three core features were discovered in
client consultations which are needed for the client’s early March focus group trial which are:
data-entry of notes and propositions, visualizing of propositions into a CMap, and slide
generation. The list below describes the core features and other needed supporting constraints.

Data-Entry:

Data-entry constraints have to do with the method in which analysts will input data into Sharik.

1. Shall have logical intelligence components represented in the tool (PIR, IR, CCIR,
Mission).

2. Shall have the ability to attach files and website links to propositions and notes.
3. Shall have note and proposition metadata that keeps track of time of submission and that

links content to the contributing analyst.
4. Shall provide an auditing feature which will allow users to see changes to notes or

propositions.
5. Shall contain file management to allow for the creation of a common pool of files that

can be shared between CCIRs; proposition and note attachments would come from this
pool.

Dissemination:

Dissemination constraints have to do with the visualization and presentation of the relationships
within the data.

1. Shall have the ability to place information from PIRs into a presentation slideshow.
2. Shall have a concept map feature for visualizing propositions graphically to obtain a

“common intelligence picture” (i.e. a visual map of the relationships between different
entities among collected information). Shall have include the ability to filter propositions
by user and properties.

11

Business Rules:

Business rules are operations available and constraints that apply to individuals, teams and
organizations. For example, a business rule could be “only individuals named Bob can switch
teams” and this would be enforced in software by checking this condition whenever some
individual requests a team switch. Some of the business rules are outlined below (this list is
expected to change as the project progresses):

1. Only admins (not regular users) may add users to teams of missions.
2. Only admins may create, modify, or delete Missions; all users may create, modify, and

delete CCIRs and PIRs.
3. Anyone can register in the Sharik system without the assistance of an admin.
4. PIRs shall be able to belong to multiple CCIRs within the same mission.
5. Notes and propositions shall be able to belong to multiple PIRs, or be unassigned. If a

note or proposition is unassigned, then it shall be possible to add it to a mission for later
assignment to a PIR.

6. Propositions shall be editable by all analysts, whereas notes shall only be editable by the
creator.

Logistics:

Logistic constraints deal with constraints characterizing the surroundings of the solution.

1. Shall be affordable by DRDC: Third-party tools may be used for hosting of services.
However, initial costs and operation costs shall total CAD$0 (ignoring electrical and
staffing costs).

2. Shall be suitable for use on a laptop or desktop computer
a. Shall display optimally for all screens with a resolution above or equal to XGA

(1024x768) [5]
b. Shall have a user interface dependent only on conventional hardware input

devices (i.e., mouse/touchpad, and keyboard)
3. Shall not experience failure when the number of concurrent users is at least 4.
4. Shall not require wireless internet connection to run due to the service environment

detailed in Section 1.7.
5. Shall not use third-party systems outside DRDC’s environment (e.g. do not send data to

Google Drive).

1.7 Optional Feature Requests
The following three requests were initially specified as constraints in the Project Requirements.
In refining the project plan, the design team determined that there is a considerable amount of
uncertainty with respect to the amount of time that certain features will take to implement in the
original constraint section. The team relabelled the following constraints as optional to ensure
that we can meet a certain set of core features in time for a focus group conducted by the client
as mentioned earlier in the constraints. If time permits, these will be the features the team will
tend to first.

12

1. Implement a commenting system to allow analysts to comment on propositions and notes
2. Implement a notification system that would notify analysts on changes to subscribed

notes or propositions.
3. Implement a timeline view presented to visualize the dates when a proposition has

occurred

The client would also like the following features if time permits.

1. Implement geo-map feature, including the ability to:
a. Add locations to notes and propositions based on the MGRS (Military Grid

Reference System)
b. Display notes and propositions on a map or globe visualization

2. Implement the ability to save Requests-For-Information as PDFs
3. Implement the ability to save screenshots of concept maps generated by Sharik
4. Implement a communication system that would facilitate real-time messaging between

analysts
5. Implement a timeline synchronization with the state of the concept map
6. Implement the ability to mark propositions or notes for future inclusion into a

presentation

1.8 Service Environment
This section will briefly outline the traits of the physical and virtual environments the tool will
operate in.

Physical/Virtual Environment:

• Indoors inside an office.
• LAN networks, absent of wireless internet connection.
• One laptop screen per analyst to run Sharik (no extra monitor).
• Possibility of cyber-thieves.
• Browsers used at DRDC are Internet Explorer version 11.

People:

• Intelligence analysts and anyone who may be with them, who may possibly be fatigued
and/or stressed and may make human errors (as per conversation with client).

• Other DRDC employees or non-DRDC visitors who may be in the vicinity, outside of the
user’s group who may be interested in this project (as per conversation with client).

2 Design Alternatives
The following section will break down the various design alternatives that could be considered in
achieving the requirements of the project. Each section will conclude with a selection or leave
open certain parts of the selection process for later investigation.

The proposed solution must be able to allow communication between geographically distributed
users, provide the functions as listed in Section 1.4 and meet the constraints of the project while

13

using the objectives for selection. This includes storing information persistently, coordinating
information retrieval and input from users, and providing the ability to disseminate information
through slides and concept maps. The users of the system were described to be desktop users
with access to a joint LAN network.

2.1 Architecture
Before discussing the alternatives regarding specific software frameworks or languages, the
possible architecture alternatives are discussed below.

To narrow down the set of architectural solutions, only 3-tier web architectures will be
considered due to the design team having the most experience with them, and because they are
among the most common architectures for creating an application for users over a network today
[6] [7] [8]. Some definitions and explanation of a 3-Tier (sometimes referred to as N-Tier) web
architecture based solution are presented below (definitions compiled from [6] [8] [9]).

• The web server is the machine which runs the core components of the application. It is
responsible for maintaining connections with users over the internet and executing the
functionality and business rules (domain logic) for the application (Logic Tier). It also is
responsible for security and accessing other services such as data sources.

• A layer is a set of software components and assets which all focus on implementing one
part of the domain logic of an application. For example, within the web server there could
be a layer (e.g. several code files) dedicated to handling the network connections that
users make with the server. These layers interact with each other with well-defined
interfaces (software contracts on how to communicate between layers).

• A tier is a machine or set of machines which hosts one or more layers. For instance, the
components above could all be hosted on the same tier, having all their layers run on one
machine in different processes. A Tier can be thought of as being a physical separation
between software components which aim to solve one set of tasks for the
application/system.

• The client is a user machine, in this case, the machine of an intelligence analyst,
accessing a web page by connecting with the web server (a different tier). This client runs
a browser (like Internet Explorer), which renders and displays the user interface for the
client to interact with (Presentation Tier). The term client usually refers to the browser
program itself when in the context of software components interacting with each other.
Most modern browsers support HTML, CSS and JavaScript, the staples of web interface
development.

• Data sources are responsible for storing and retrieving data efficiently for an application
(Data Tier). These are usually hosted on a separate machine from the web server.

• A service is an exposed layer (e.g. over some protocol over a network) which handles
performing an action or returning data to a calling application. Users normally do not
interact with a service but rather with a user interface which could be using a service
behind the scenes.

14

• The front-end is any component related to the user interface of the application (e.g. UI
component layout, logic for handling button clicks, hiding certain components from
view).

• The back-end is any component related to process running on a machine that runs
operations related to manipulating data, connecting users, and performing other
integration processes between machines. Its main goal is usually to perform the required
actions initiated by a user.

• A framework is a set of software tools used in developing certain parts of an application.
It provides a software structure to accomplish the goals of the developer and usually
reduces the amount of work a developer would need to do to accomplish their goal
without the framework. An example would be a user interface framework like on
Windows. Standardized components such as buttons, drop downs, and forms are already
provided to the developer (and need not be written from scratch).

Below is a diagram which should help visualize the main components of the 3-Tier web
architecture. The approach is used in modern companies today and reinforced by state-of-the-art
literature as well [6] [8].

Figure 2. The three tiers displayed here correlate from top to bottom as the client, web server, and data source tiers
in a 3-tier web architecture. As can be seen the Presentation tier in this diagram is a terminal requesting all the sales

made last year. The Logic tier handles the processing of this request and queries the Data tier. It then handles
returning the response to the Presentation tier for it to then be displayed. Taken from [8].

15

Given this general architecture choice there exist two main alternatives. These alternatives stem
from two well-known methodologies to designing a web based application. The first is a multi-
page application and the other is a single page application [10]. The concept of how each differs
is illustrated below.

Figure 3 A contrast between the two alternatives for web based applications. Note how in the traditional or multi-
page lifecycle each user action over HTTP makes the server return a new HTML page (UI). With a single page
application (SPA) only the first request is needed to load the client-side script to then perform all Presentation tier
functions. Subsequent calls to the server only request data through the AJAX protocol returning data formatted in
the JSON standard which the Presentation tier integrates into the UI. The Data tier is omitted from the above
diagram for brevity. Taken from [10].

The full look end-to-end view of both above alternatives is shown below in two figures. These
figures map out each tier and some of the possible layers that one could expect to see in each
architecture.

16

Figure 4 This diagram illustrates the traditional structure of a multi-page application. The browser performs HTTP
requests to the web server to obtain an HTML page (HTML pages contain the description of what the page should
look like along with the data to display when rendered by a browser). The generation of the HTML code is done on
the web server in the presentation layer. As can be seen the presentation layer can interact with other layers around it
to obtain the appropriate information to incorporate into its HTML response to the user. In this case the web server
returns the current missions of a user. Each new action the user wants to perform will result into another call to the
web server with a new HTML response [10].

17

Figure 5 The above figure depicts the single page application approach where the web server returns JSON data
responses instead of HTML pages. This approach helps decouple the development cycles of the frontend and
backend teams [10]. In the above call sequence, it is assumed the user has already loaded the application with an
initial call to server, then to render the homepage, the front-end framework initiates two calls to fetch the data it
needs (get the current user’s name and the missions they are a part of). Note no other data is requested unlike in the
traditional approach which sends back the same HTML structure each time even if only the data changes (e.g. user is
now Alice, still send back entire HTML page again like in Figure 4). All HTML manipulation and generation is left
to the client-side code, which makes the back-end architecture and tools easier to change since there are no
dependencies between the two except for the JSON data formats between them [10].

18

2.1.1 Selection of Architecture
The engineering team will use the single page application architecture as it provides the most
value in contrast to the multi-page approach in regards to the following perspectives [11] [12]
[13] [10]:

• System Extensibility - The web server will be exposing a set of JSON endpoints. These
endpoints expose Sharik’s data model but also expose actions that can be performed (e.g.
uploading a file). This allows third party systems within DRDC to programmatically
leverage these endpoints for future integration with their intelligence communities and
software systems which allows for automated software processes (e.g. automatically
uploading intelligence reports from department X every night into Sharik without the use
of a user interface, only need to know the endpoint where to send data to). This helps
maximize the maintainability objective.

• Familiarity - The engineering team has more experience developing enterprise level
JSON endpoints than multi-page web applications. This factors into how quickly the
team can get started and the amount of learning it would take to start producing code and
deliverables. This minimizes the initial risk the engineering team takes on, due to the
reduced learning curve of the approach, and allow to achieve more project requirements.

• Productivity & Design Flexibility - Both back-end and front-end teams are free to work
autonomously, decreasing synchronization chokepoints in the development process and
allowing maximum flexibility to technology changes (due to the tight timeframe the
architecture needs to allow for quick development and failure cycles). The only point
where both teams need to collaborate are the JSON endpoints that the back-end
developers need to make for the front-end developers to use to enable users of the
application to achieve what they need. This helps maximize the maintainability objective.

• Performance – The single page architecture allows for more efficient data transfer
between back-end and front-end. Furthermore, the architecture allows for a more
responsive user interface due to the use of a front-end framework and the single page
paradigm. This helps maximize the performance efficiency objective.

The two alternatives presented above serve as a guiding reduction of scope for the latter sections
which look at alternatives for each corresponding component within the architectures. This
includes the user interface on the client, the front-end frameworks used to create the user
interface, the back-end frameworks used to create the web server with, and finally the data
sources to be used to store Sharik's data.

The team will include in the project plan on certain allocations of time which will provide certain
gateways within the project on whether the single page application architecture is working. If the
initial iterations of the architecture do not work, then the engineering team will switch to other
technologies or use the multi-page application approach.

19

2.2 Data Storage Alternatives
This section will explore the means for storing information along with detailing what Sharik will
be storing. The data that would need to be stored by Sharik needs to be able to be organized
logically and have interfaces to query for information within the data source. These methods
need to be supported by existing libraries and use commonly used vendors of storage systems so
that the engineering team can leverage these systems as ready to go solutions to decrease
development time.

A database meets this need and is also one of the most common patterns for an organization to
store their data with [14]. Organizations such as IBM, Microsoft and many other companies use
databases [14]. File systems are also the most widely used form of storing files as can be seen
through the various implementations of operating systems such as Windows and Linux [14].

Both these databases and file systems have many distinctive designs and implementations. Some
common databases will be explored and listed for later selection.

Specific file systems will not be explored as they are not a major component in the design since
they need to just store files (no advanced search or other functionality is needed), therefore any
standard file system will do for the initial iterations unless issues are discovered [14].

File systems usually do not play a significant role, unless designing large scalable systems for
millions of users and is irrelevant especially in the preliminary stages of most software
development. This is especially true for applications which are used by a few dozen users
through human initiated interactions such as Sharik. In previous industry experience, when
designing a real-time streaming system which synchronized filesystems in real-time across
machines, the major bottlenecks were in the algorithms and data structures rather than the
specific file system at use which have been refined over decades.

2.2.1 Sharik’s Data Model
Sharik’s data model is relational and contains many relations such as Users, Propositions, Notes,
and many others. Each of these relations represents a logical entity within the Sharik
environment which will be stored. These relations are also known as tables (see Appendix I for a
description of the relational model).

The relational model best suits this type of data because the underlying data models are bounded,
known well in advance and contain restrictions and associations with one another which need to
be manipulated with precision [15] [14] [16]. Also, the design team is the most familiar with the
relational model and has successfully used relational databases in the past. A partial model of
Sharik is shown below in a relational database diagram. The model was generated through
multiple client consultations and translation of the original design of Sharik's features to the new
set of requirements presented in this project.

20

Figure 6 The partial data model for the required features for the new version of Sharik. Note this diagram omits
features of Sharik that will not be implemented as they are deemed irrelevant. This diagram maps out how certain
tables will be associated with one another. Note the model omits some association arrows between tables for
conciseness. An attribute with a capitalization on each word indicates it is a foreign key to another table (e.g.
User_ID refers to the ID column of Users). See Appendix J for a description of each attribute and all associations
not seen here.

21

The following will describe each group of tables in the figure above and its purpose within the
Sharik environment. The environment can be divided between two models, the model as dictated
by DRDC's Intelligence Collection Plan (something we cannot change) and the model used to
enable Sharik's features for processing the Intelligence Collection Plan. Note that the following
is a high-level summary (for full detail see Appendix J):

• Intelligence Collection Plan Model
o The Missions table, Critical Commander's Information Requirements (CCIRS)

table, Priority Information Requirements (PIRS) table, and Information
Requirements (IRS) table are used to represent the hierarchical structure of the
intelligence lifecycle as depicted earlier in Figure 1. Each has their own specific
fields, consisting mainly of metadata like creation time, who created the element
and various other display data like the title of the element. There are also
secondary tables which map out ICP element associations (e.g. which PIRs
belong to which CCIRs by using the CCIR-PIRS table).

• Sharik Model
o The Users table stores usernames and passwords for analysts and admins of

Sharik and is used when creating new accounts and logging in.
o The Mission Membership table tracks which user has been assigned to which set

of missions. Once assigned to a mission the user automatically is assumed to be
part of all sub-elements of the mission (CCIR, PIR, IR and Sharik components).

o The Notes table represents the concept of a Sharik note which is a text based entry
with various metrics and sources attached to it like credibility ratings and file or
web based sources through URLs (e.g. website links). There is also an ability to
add tags to notes for easier querying later (e.g. look for all notes relating to
murder by filtering all notes tagged with “murder”). Many other tables support
this table by storing files, URLs and so on.

o The Propositions table enables analysts to log relationships between intelligence
entities (Assassin killed Target). The table allows to mark each record with a
direction of association (unidirectional/bidirectional) along with associating each
proposition with many notes, URL sources, tags, file sources, dates of when the
relationship took place, and the ability to add free form properties through a
key/value scheme (e.g. key: location, value: Toronto). Many other tables support
this table by storing files, URLs and so on.

The above relational diagram is an alternative to modelling the data. Small style decisions can be
made to change whether some tables are merged or not, however it is not deemed significant
enough to detail in this document as it would provide virtually the same functionality (ability to
retain data with certain attributes). Therefore, alternatives for the relational diagrams will only be
discussed which provide major functional differences. The next few alternatives will focus
around the rest of Sharik’s data storage needs which are Comments, Notifications, Subscriptions,
and Auditing.

22

2.2.2 Data Model - Comments, Notifications, Subscriptions, and Auditing
Below is an alternative for modelling the rest of Sharik's required features (without the slide
generation which is covered in a later section) which adds the ability to track changes made to
Notes and Propositions. Comments, Notifications and Subscriptions are also shown below even
though they have been moved out of the constraints (they are the next highest priority after the
constrains so they will be discussed). This alternative shall be called the coarse grain auditing
option.

Alternative: Coarse Grain Auditing

Figure 7 Depicts the Notification, Comment, and Audit models. These tables enable the tracking of changes made to
a Note or Proposition. Attributes and other associated tables are removed from Notes, Propositions, and Users to
make the diagram clearer.

23

From the above figure, a user can comment on each Note and Proposition many times through
the respective comment tables. Furthermore, the model enables a user to subscribe (subscription
tables) to specific notes or propositions and receive notifications for them (e.g. a change was
made to a Note). The Notification table keeps track of what notifications have been viewed,
when they were issued, and to whom they are addressed to. Also, it provides a link attribute to be
able to store links to certain pages or components that the user should go to if clicked.

The audit tables in this alternative only allow for coarse grain auditing – when a change happens
on a Note or Proposition, only a description can be stored explaining what happened, which
prevents a user interface showing the differences between certain attributes between changes
since this is not saved (e.g. can only track “User1 changed Note1”, but does not offer exactly
which attribute was changed or to what it changed to). This is how Sharik originally operated.
The audit tables also track when the change happened through the date column.

An alternative however exists to the Audit model, which is presented below and can track all
changes between each attribute. This alternative shall be called the fine grain auditing option.

Alternative: Fine Grain Auditing

24

Figure 8 Another alternative for tracking audits for the Notes and Propositions tables. In this alternative two other
tables exist which track the full history of a Note or Proposition. The user id of the editor and date of the change are
tracked along with all the other attributes of a Note or Proposition. Some tables are removed for brevity as in
previous figures. Note this does not enable tracking of all attributes that changed since the above diagram does not
show history tables of the other associated tables to Notes and Propositions (e.g. Proposition, Notes) which is
explained below. Note the other tables remain the same as in the previous alternative.

This alternative provides the Sharik tool the ability to track all changes made to an attribute in a
Note or Proposition. This means the current state of a Note or Proposition is kept in the Notes
table and Propositions table, with all its changes up to that point being a separate record in the
respective history tables (fine grain auditing). This approach can potentially use a lot of storage
space if a Note or Proposition is modified many times as an exact copy of the record is made per
modification.

Another concern is that the above alternative does not show history tables for other relations
which were associated with Notes or Propositions, and would require investigation on how to
make sure if these associated records get deleted how one would then keep track of this within
the history tables.

For instance, if we had a Proposition with a file linked to it through the PropositionFiles table,
when that file is deleted how would one log the change made in the PropositionHistory table (the
file is now non-existent)? This implies that one would have to make sure nothing is ever deleted
off the system, adding more complexity for bookkeeping and using more storage space (to be
able to recover the exact state and look at a discrete time).

A slight variant on the above approach is to only track the difference between changes to have a
smaller storage impact. This is like how Git works (a version control system for software or any
other set of files), which uses a lot of complicated data structures and formats to solve the
inefficient storage problem [17]. This will most likely require using some database specific
functions or software libraries to achieve better storage performance.

2.2.3 Database Alternatives
To be able to create and store these relational models a relational database will be used since
they are designed specifically for this task [14] [16]. Due to the constraints, only relational
database vendors which are free will be considered for storing Sharik's data.

There are few popular options that exist for relational database alternatives as most companies
stick to a select few as seen from experience in large companies (most Fortune 500 companies
use DB2 or Oracle) with other companies going with the free MySQL database. The three
alternatives that will be considered which are free and are the top three relational databases as
ranked by a set of well-defined metrics are (as of November 2017) [18] [19]:

1. MySQL (Score: 1322)
2. PostgreSQL (Score: 380)
3. SQLite (Score: 113)

The rankings above used the following metrics to rank and score them [20]:

25

• number of mentions of the system on websites (Google, Yandex, Bing)
• Google Trends statistics
• frequency of technical discussions about the system (Stack Overflow, DBA Stack

Exchange)
• number of job offers, in which the system is mentioned (Indeed, Simply Hired)
• number of profiles in professional networks, in which the system is mentioned (LinkedIn,

Upwork)
• relevance in social networks (number of Tweets)

Note that the overall rank (compared to databases of all types) of MySQL is 2nd, PostgreSQL is
4th and SQLite is 7th. The scores indicate the relative popularity of the system, so for example
MySQL is around 3.5 times more popular on each individual metric than PostgreSQL [20].

2.2.4 Data Storage Alternative Selection
From the above sections, the engineering team will implement the core Sharik model presented
in Figure 6 as it provides all the required relations to meet the core features of the project such as
the ICP elements, users, notes and propositions. The engineering team will further ideate with
the client on the specific columns that the data model needs to store and what type of data they
can take on as the project progresses.

The next choice of alternative for the team is to do the coarse grain auditing approach. Due to the
level of difficulty and unknowns presented in the fine grain auditing option the team opts to
select the coarse grain auditing option. This is to reduce risk within the project and still be able to
abide by the auditing constraint.

The fine grain option would bloat the database with many history tables and possibly add more
code needed to maintain those tables and bookkeeping processes, adding more points of failure
within the system. However fine grain auditing would be beneficial to add in the future to Sharik
as it would provide the ideal auditing granularity for an intelligence application as mentioned in
client consultations (accountability and traceability of user actions around sensitive intelligence).
This however was not deemed important in the requirements for the focus group trial, but noted
as a required feature for future iterations of the tool (outside of the current scope).

MySQL will be used to store Sharik’s relational model due to it being ranked the highest
amongst the free database vendors and having been used by DRDC successfully in the past. The
ranking as mentioned in 2.2.3 was based off metrics which indicate how well known the
database is and supported by the software development community. Choosing a database that is
widely used helps the engineering team leverage already existing documentation, best practices,
as well as providing the client the maximum opportunity to find developers for the future to
continue maintaining the system the engineering team will deliver (maximizes maintainability
objective).

2.3 Front-end Frameworks
In web development, the front-end refers to the parts of the code that manifest in visible web
elements for the user. Creating rich and dynamic user interfaces is possible with just plain

26

JavaScript, but adopting a framework dramatically decreases development time by providing
constructs for common programming idioms and hiding implementation details of prolific web
design patterns.

The enormous amount of innovation occurring in the current ecosystem surrounding JavaScript
has resulted in a wealth of choice in terms of workflow and design philosophies but has also
made it difficult to find consensus on best practices. Due to the amount of fragmentation, we
only explore a subset of the most popular frameworks.

Table 1 This table provides a quick overview of the frameworks we chose to explore in detail.

Framework Release Year GitHub Repo Stars as
of 17/11/08

Angular 2 2016 29,793
React 2013 80,560
Vue 2014 73,079

2.3.1 Feature Scope
Front-end frameworks normally are specialized to provide libraries for the view component of an
application, but some frameworks are designed to handle web functionality across a wider range
of domains. Choosing a more fully featured framework may allow us to conserve mental effort
by freeing us from the obligation to choose other components of the architecture, but may reduce
the amount of flexibility in case we require a more custom design for our needs. In this case, we
would have to find other components to perform things like form validation in the case of React
and Vue.

Table 2 [21] The following table shows the various features of the frameworks we chose to explore.

 Angular 2 React Vue

View/Templating ✔ ✔ ✔

Router ✔ ✔ ✔

Form processing ✔

Form validation ✔

HTTP communication ✔

2.3.2 Performance Benchmarks
We compare the relative performance of each framework to a vanilla JavaScript (plain)
implementation which is depicted in the far-right column as the best achievable performance.
Vue.js is the most performant of the frameworks while Angular 2 is the least.

27

Figure 9 [22] The following table shows performance results for the frameworks we chose to explore with a lower
level implementation of the performance tests written in plain JavaScript as reference. Each performance test
involved an update of an UI element or a data element in response to a keyboard key press.

JavaSc ript Framewo rk
Per forman ce Test

an gular
v4. 1.2-key ed

reac t
v15. 5.4-
key ed

vu e v2.3.3-
key ed

van illajs -
key ed

cr ea te rows

Dura tion fo r c rea ting 1000 rows a fte r the p age loaded .

193. 09 7.88
(1.39)

188. 9310.93
(1.36)

166. 688.63
(1.20)

138. 47 5.80
(1.00)

rep lace all rows

Dura tion fo r u pda ting a ll 1000 rows o f the tab le (with 5 warmup ite ra tions).

197. 37 5.25
(1.33)

201. 036.40
(1.36)

168. 494.98
(1.14)

148. 01 4.47
(1.00)

par tial update

Time to u pda te the text o f e very 10th row (with 5 warmup ite ra tions).

12. 984.47
(1.00)

16. 482.30
(1.03)

17. 332.90
(1.08)

14. 154.73
(1.00)

sel ect row

Dura tion to h ighlight a row in res pons e to a c lick on the row. (with 5 warmup
ite ra tions).

3.392.30
(1.00)

8.763.37
(1.00)

9.311.66
(1.00)

10. 104.68
(1.00)

swap rows

Time to s wa p 2 rows on a 1K tab le . (with 5 wa rmup ite ra tions).

13. 431.04
(1.00)

14. 660.90
(1.00)

18. 291.52
(1.14)

11. 431.13
(1.00)

remo ve row

Dura tion to remove a row. (with 5 warmup ite ra tions).

46. 133.18
(1.09)

47. 223.20
(1.12)

52. 632.69
(1.24)

42. 821.91
(1.01)

cr ea te man y rows

Dura tion to c rea te 10,000 rows

1946 .02 41.79
(1.46)

1852 .36 29.03
(1.39)

1587 .52 33.89
(1.19)

1331 .13 22.16
(1.00)

ap pen d rows to lar ge tab le

Dura tion fo r a dd ing 1000 rows on a tab le of 10,000 rows .

324. 63 10.08
(1.13)

345. 6210.40
(1.20)

399. 4610.98
(1.39)

295. 31 12.82
(1.03)

cl ea r rows

Dura tion to c lea r the tab le filled with 10.000 rows .

379. 94 11.25
(2.17)

398. 388.25
(2.28)

254. 515.03
(1.46)

174. 77 4.19
(1.00)

star tu p time

Time fo r load ing , pa rs ing a nd s ta rting u p

84. 342.64
(2.08)

69. 982.85
(1.73)

56. 552.48
(1.39)

40. 559.54
(1.00)

sl owd own geo met ric mean 1.31 1.30 1.22 1.00

2.3.3 Learning Curve
Determining learning curve is difficult as it depends heavily on gathering many opinions from
many different developers. Thankfully we have the 2016 and 2017 State of JavaScript survey
results [23] [24], which was answered by over 9000 and 20,000 JavaScript developers
respectfully. The survey results show that interest in Vue.js is growing the fastest, but React.js

28

currently holds the greatest amount of interest. Angular 2 lags in terms of interest in all regards
and causes the most amount of developer dissatisfaction. We currently have one member with
some Vue.js experience.

In each of the following plots, the results of the 2016 and 2017 surveys are shown from left to
right order percentages of people who 1) Never heard of it, 2) Heard of it, but not interested, 3)
Heard of it, would like to learn, 4) Has used it, would not use it again, and 5) Would use it again.

Figure 10 Usage of Vue.js in 2016 Figure 11 Usage of Vue.js in 2017

Figure 12 Usage of Angular 2 in 2016 Figure 13 Usage of Angular 2 in 2017

 Figure 15 Usage of React.js in 2017

We also cautiously refer to the Comparison with Other Frameworks located on the Vue.js
website [25], which lists some of the difficulties associated with React.js such as learning JSX to
replace HTML and learning build systems to replace simply inserting a script tag to reference
Vue.js. We recognize the possibility of bias, but are assured by the involvement of the React.js
(the competitor) community in writing this document on GitHub.

Figure 14 Usage of React.js in 2016

29

2.3.4 Selection
We opt to move forward with using Vue.js because of its above-average performance
benchmarks to help meet our time behavior requirements, and significant community interest in
the framework and prior experience within our team to help meet learnability requirements. Even
though React is currently more popular, when totalling the number of people who “Would use it
again” and the people who “Heard of it, would like to learn”, Vue’s popularity is on par with
React having a total of 85% and Vue having a total of 71%.

2.4 CSS Frameworks
CSS frameworks are related to front-end frameworks in that they deal with web elements that are
visible to the user, but are different in that front-end frameworks deal with the mechanism of
operation for UI elements whereas CSS frameworks deal with the appearance of UI elements.

Using a CSS framework in favor of plain CSS gives developers access to pre-styled UI elements
to reduce the amount of time needed to achieve a certain aesthetic. As with front-end JavaScript
frameworks, there is a wealth of choice, but in contrast, one CSS framework is pre-dominant –
Twitter’s Bootstrap.

As CSS frameworks deal with mainly aesthetics, the use of one over the other is highly
subjective. There does not appear to be a best practices guide so the approach this design team
took was to gather the results of a Google query of “top CSS framework” and aggregate the
votes. The following table was constructed after surveying the following 8 blogs:

1. https://medium.com/@thomasmarciniak/top-css-frameworks-to-follow-in-2017-51d283dd00fb
2. https://three29.com/best-css-frameworks-2017/
3. http://www.discoversdk.com/blog/top-10-css-frameworks
4. https://www.markupbox.com/blog/top-5-popular-css-frameworks-of-2017/
5. https://www.catswhocode.com/blog/lightweight-css-frameworks-2017
6. http://www.cssnewbie.com/12-awesome-css-frameworks-for-your-next-project/
7. https://hackernoon.com/top-5-most-popular-css-frameworks-that-you-should-pay-attention-to-

in-2017-344a8b67fba1
8. https://www.keycdn.com/blog/front-end-frameworks/

Table 3 This table contains the number of mentions of each CSS framework across the eight blogs that were
surveyed. Bootstrap is both the oldest and most popular framework of the top five frameworks mentioned.

CSS
Framework

Release
Year

GitHub Stars as of 17/11/08 Mentions in First Page of Blog Post Results
When Googling “top CSS framework”

Pure 2013 17693 7
Bootstrap 2011 117415 6
Bulma 2016 21395 5
Materialize 2014 29720 5
Milligram 2015 6553 5

https://medium.com/@thomasmarciniak/top-css-frameworks-to-follow-in-2017-51d283dd00fb
https://three29.com/best-css-frameworks-2017/
http://www.discoversdk.com/blog/top-10-css-frameworks
https://www.markupbox.com/blog/top-5-popular-css-frameworks-of-2017/
https://www.catswhocode.com/blog/lightweight-css-frameworks-2017
http://www.cssnewbie.com/12-awesome-css-frameworks-for-your-next-project/
https://hackernoon.com/top-5-most-popular-css-frameworks-that-you-should-pay-attention-to-in-2017-344a8b67fba1
https://hackernoon.com/top-5-most-popular-css-frameworks-that-you-should-pay-attention-to-in-2017-344a8b67fba1
https://www.keycdn.com/blog/front-end-frameworks/

30

2.4.1 Selection
We opt to move forward with Twitter Bootstrap due to its much higher popularity and
community support as well as our team’s prior experience with Twitter Bootstrap that push it
ahead of all other frameworks in terms of learnability and maturity.

2.5 Back-End/REST API Frameworks
Server-side processing attempts to reduce the load on the client or browser by performing
expensive computation before sending the results to be rendered. This can be in the form of static
HTML pages being sent or simply the results of a database interaction. Like the previous
frameworks discussed, back-end frameworks work to reduce the amount of development time
through abstracting common design patterns used by developers.

With the much greater diversity of frameworks used on the server-side compared to the client-
side due to multiple viable languages for server-side rendering, we limited our search to one
open-source framework per language. The chosen frameworks were heavily biased toward
frameworks we had prior experience followed by their popularity among the community. Less
popular frameworks that were successors of a previous framework were chosen over their
predecessors.

Table 4 This table contains the most popular back-end framework for each of the most popular server-side
technologies currently used in the web. Popularity ranking was determined from a third-party source that ranked
frameworks based on their GitHub stars and the prevalence of questions pertaining to the framework [26]. To get the
best possible representation of languages used in back-end frameworks, we consulted a third-party source [27].

Framework Represented
Language

Framework
Popularity
Ranking

Language for building
REST API Popularity

Release Year

Ruby on Rails Ruby 3 6 2005
Django Python 6 5 2005
Laravel PHP 8 2 2011
Spring Java 9 3 2002
Express Node.js 10 1 2010

2.5.1 Decision Criteria
From the shortlist of frameworks, we borrow selected criteria from Mozilla on how to best
choose a framework. [28] We rank them based on our own objectives with the accompanying
rationale:

1. Effort to learn:
We emphasize this the highest as we have a limited amount of time and relatively no
overlap in terms of web development experience. To get every member of our team to the
same level of expertise, we require easy frameworks to learn. Existing experience must
also be considered because having other teammates to teach the framework will also
significantly lower the barrier to entry.

2. Whether or not the framework encourages good development practices:

31

As we are putting the emphasis on speed, we realize we may be making sub-optimal
infrastructure and component decisions. Therefore, we hope to develop modular code that
can be swapped in and out depending on future needs.

3. Batteries included vs. get it yourself:
Due to the limited time and the lack of experience with professional web development
within the team, frameworks that include by default many tools and libraries are preferred
to reduce amount of time for new features.

Table 5 [29] [30] This table contains a qualitative evaluation of each framework regarding the three criteria outlined
above compiled from various web sources.

Framework Effort to learn Encourages Good
Development
Practices

Batteries Included

Ruby on Rails High (We have SMEs
on our team)

Yes Yes

Django Low Yes Yes
Laravel Low (We have SMEs

on our team)
Yes Yes

Express Medium No No
Spring Low (We have SMEs

on our team)
Yes Yes

2.5.2 Selection
We opt to move forward with Spring due to the greater proficiency with Java present on our
team than any other language, which is an immense factor in its learnability, and the long history
of the framework and language, which contributes to its maturity. We choose not to consider
Ruby on Rails due to a previous member’s poor experience with the framework and not to
consider Django or Express due to the complete lack of experience in our team. Most of the
mentioned frameworks have similar levels of popularity and follow similar design principles, so
these factors are not considered in this decision.

2.6 Web Server
A web server is the component of a website that handles HTTP requests, allowing a web
application to send and receive data.

2.6.1 Selection
Of the 1,815,237,491 websites surveyed by the Netcraft monthly web server survey, the top
open-source web servers in terms of market share were Apache at 18.23% and NGINX at
17.48% [29]. However, if we are to move forward with Java-based server-side technologies, we
must use Java application servers such as Apache Tomcat or JBoss. We opt to move forward
with either Apache Tomcat if we are to pursue Java-based server-side languages or NGINX if we
are to pursue other server-side languages due to team members possessing prior experience with
those two specific web servers aiding its learnability.

32

2.7 Operating System
The operating system is the software that all other components mentioned so far runs on. We
posit that there are two alternatives for the choice of operating system: Windows or Linux. We
exclude others because either they are too niche to be considered or are proprietary and would
incur additional costs without any meaningful benefit.

2.7.1 Selection
From experience, Linux has proven to be a more developer friendly environment to host web
applications. Many configuration management tools and virtualization technologies that expedite
application deployment and setup are catered to Linux and the design team is more familiar with
Linux than Windows contributing to its learnability. Linux is also easily accessible on most
cloud offerings such as AWS and Digital Ocean while Windows is not making it better for
operability. This will be useful for providing a live ongoing demo to interested parties, for the
design team to easily setup their developer environments, and for keeping configuration
differences between development environment and the live production environment for Sharik
minimal. We opt to use Ubuntu as it is the most popular distribution of Linux and thus will have
the most community support [30].

2.8 User Interface
In this section, user interface design alternatives were brainstormed, refined, and evaluated
through a heuristic evaluation method that will be described in detail. Experienced UI designers
often conduct a heuristic evaluation on preliminary designs, revise the design prototypes, then
conduct usability testing [31]. Furthermore, literature suggests that heuristic evaluation followed
by revisions improves the design by 50% every iteration, which the team believes to be adequate
at this stage [31]. Due to time considerations, only heuristic evaluation is included in this
document. Usability testing will be performed before the Design Critique, as detailed in the
Project Plan section at the end of this document.

The user interface of the proposed solution was divided into high-urgency and low-urgency
elements to be designed. This decision was based on how many iterations were likely to be
needed when designing the given UI element, as well as client priorities. Further, some aspects
of the user interface have few variants in practice (e.g. login screens), among which none add
significant value to this project. The following subsections address the most urgent UI design
decisions, such as the method for data entry and the method for slideshow creation. While the
design decision on placement of UI elements within the webpage will be among the most
apparent to the end user, deciding between the few permutations in which this can be done is not
an urgent priority compared to the design work of the UI elements themselves. Therefore, for the
purposes of designing the UI elements in context, we developed one possible layout of the
webpage, depicted in Appendix E.

The CMap is a high-priority aspect of the user-interface. Despite this, the prototyping of the
CMap has been deferred because the Sharik user study did not reveal significant problems with
its realization in the initial version of Sharik. Emphasis has instead been focused on more
problematic features of the initial Sharik version, or features that were not present in the initial
version.

33

Table 6 Urgency classification of the design of user interface elements. Superscripts indicate the reason for deferral
(1: Choosing among divergent solutions offers minimal value to the solution, 2: Low priority based on client
feedback, 3: Optional feature, 4: Requires further discussion with client)

High Urgency Defer to Design Critique
Presentation creation Editing of entities1
Data entry Note display tab1

Post-creation editing
of notes and
propositions

 Administrative user management1

Representation of
mission hierarchy

 Login screen1

Filesystem UI CMap1
 CMap timeline2
 Help button2
 Space for pictures, PDF previews, etc. in propositions1,4

 User profile1,4
 Commenting system (i.e. subscription and viewing comments)1,2
 Inputting of types for properties1
 CMap filtering of propositions and entities1
 Header bar (i.e. My PIRs, notifications)1,4
 Revision history3

To prototype the UI elements of the proposed solution, we created low-fidelity prototypes, which
are comparatively fast easy pen and paper designs consisting of drawings, or low-fidelity digital
designs (called wireframes) depending on which option was quicker. Early use of low fidelity
methods of prototyping user interfaces makes modifications less time-consuming during
usability testing. Furthermore, users who are performing the evaluation give more substantive
feedback regarding the functionality of the prototypes rather than on minute details such as
typeface [31].

2.8.1 Data Entry Ideation
The existing user study on Sharik conducted by DRDC [32] identified that the data-entry step in
the original prototype of Sharik was a bottleneck in the workflow of analysts. The existing
sidebar used for data entry had two text fields that were often confused. Additional metadata
such as attachments could not be specified via the sidebar, resulting in analysts spending
additional time specifying such metadata using the point-and-click form of data-entry.
Furthermore, the existing data-entry methods did not facilitate analysts with providing data in the
correct format, or with autocompleting pre-existing entities stored in the system.

To address the challenges with data-entry in Sharik, an ideation session was conducted in which
we diverged on possible methods for the data-entry of propositions and notes. After the ideation
session, we identified four general categories of options for data-entry elements:

• “Breadcrumb”/Command-line (Figure 16, Figure 17, Figure 18, Figure 19): The analyst
types either a note or a proposition within the single provided textbox. As the user types,

34

the system infers the semantical meaning of the text and provides drop-down lists of
autocompletion results. Based on the options selected in the drop-down lists, the system
can determine whether the text represents a proposition or a note, and will store it as
such. Metadata such as attached files can be specified using an uncommon token (i.e., a
keyboard character that represents a concept) such as “@” or “#” followed by the type of
metadata and the content of the metadata. Because the metadata type is specified, the
system can provide autocompletion for metadata.

• Point-and-click form: The analyst enters data in labelled form fields by selecting the field
with the mouse and then typing the content. The client expressed that this option would
impede the data entry of analysts too severely. Therefore, we will not consider this option
any further.

• Through CMap (Figure 21): Analyst uses the mouse clicks and drags to create and
modify propositions in place in the CMap; note entry would be implemented using one of
the other 3 options.

• Free-form text (Figure 20): This option is most like the existing quick-access
functionality in Sharik [1]. The analyst types either a note or a proposition within the
single provided textbox. If the text starts with a predetermined token such as “NOTE” or
“Note”, the system is to assume that a note follows. Otherwise, the system is to assume
that a proposition follows. The system would assume the note title is on the same line as
the “NOTE” token, and that the content of the note follows on a new line. Metadata such
as attached files would be input using a point-and-click form.

We designed the four method categories to support the input of all note and proposition metadata
(e.g., date, place, attached files) along their content. We envision that proposition and note
editing will be performed in the same fashion as initial input, rather than via a limited-
functionality quick entry for input followed by a full-functionality form-based input method for
editing. By enabling the input of metadata, we will be able to eliminate this duality, thereby
rendering the user interface more consistent, and less reliant on point-and-click based input
which the client wished to minimize [32].

35

Figure 16 A proposition is entered through command-line style. Here, an analyst begins the creation of a proposition
by typing in the name of an entity, which is autocompleted. This process continues with the entry of a linking phrase

and a second entity.

36

Figure 17 A note is attached to a proposition within the command-line style. The analyst types in a special token to

prompt the autocompletion of existing notes.

37

Figure 18 A file and additional properties are attached to a proposition within the command-line style.

Autocompletion operates in a similar fashion to the autocompletion for notes.

Figure 19 A note is entered through command-line style. The system can infer that the input is a note, because the

mandatory concepts and linking phrase of a proposition have not been included.

38

Figure 20 The free-form scheme for proposition and note entry operates using a free-form text box. When an analyst
types “NOTE”, the system will automatically register the input as a note (otherwise it is registered as a proposition).

Text on the same line as “NOTE” is registered as the title of the note. The syntax of the proposition would be an
adaptation of the proposition syntax from the initial version Sharik.

Figure 21 Process Diagram for proposition entry through the CMap. The analyst would right-click inside of the

CMap window to bring up the pop-up menu (e.g. where they can choose to add an entity), type in the entity name,
right-click the second entity to connect to, then the type in a name for the proposition connection.

39

2.8.2 Slide Creation Ideation
Collaborative slide creation was one of the two most important priorities for DRDC. Following
an ideation session, we identified three different alternatives for slide creation. Table 7 compares
between these three different slide creation options. The options themselves are roughly depicted
in Figure 22, Figure 23, and Figure 24. While the options refer to PPT files, Microsoft
PowerPoint software, and Microsoft OneDrive, these technologies merely serve as an example
implementation of those options. Within each option, there may be alternative technologies that
achieve the same goal of storing slides, editing slides, and sharing content, respectively.

Should the Custom In-Browser slide creation option (Figure 24) be chosen, there are three sub-
alternatives that relate to the way in which propositions and notes are linked within the
presentation slides. Once a proposition or note is dropped into the custom slides, it (a) becomes
plain text, (b) becomes non-editable from the Slide window, but the user can remove it by
deselecting the proposition or note currently shaded in the dropdown window as shown in Figure
24, or (c) is completely linked to the Sharik database, and updates whenever the user refreshes
the web page in the browser.

Figure 22 PPT + OneDrive: The analyst opens PowerPoint 2016 software that is pre-installed on his/her computer,
as this version allows for collaborative editing. Depending on security settings on their laptop, the analyst may be
required to sign into his/her pre-created OneDrive account to connect to the collaborative environment from inside

PowerPoint 2016. Once signed in, they create or open a shared PPT from within a shared OneDrive folder
(dedicated to Sharik presentations) that all analysts have access to. Once the PPT is open in PowerPoint 2016, an

analyst can use macros to load specific Sharik content (e.g. propositions, notes) into the slides. All changes will be
seen real-time by collaborating analysts. More generally, this option could be implemented using alternative online

slide creation software or libraries which could be hosted internally by DRDC.

40

Figure 23 PPT + Lock: Multiple analysts may want to edit one PPT, but only the first analyst who clicks to open the
PPT file from Sharik will be able to “lock” (i.e. temporarily gain exclusive access to) the PPT and be able to edit it.
Sharik grants this first analyst access to the PowerPoint, downloads the file to the analyst’s laptop and automatically
opens it in the PowerPoint software. The analyst can use macros to load specific Sharik content (e.g. propositions,
notes) into the PowerPoint. Once done editing, the analyst saves inside PowerPoint, closes the file, and uploads it

back to the Sharik server. This “unlocks” the PPT, re-enabling edit access for other analysts.

Figure 24 Custom In-Browser + Slide Lock: Propositions, notes, and files are displayed, and can be dragged into
slides in the slide deck. Text boxes can be added by clicking the “Add Text” button and then typing in content.

41

Table 7 Slide creation options: “Real-time” refers to real-time collaboration between multiple analysts on editing
slides (as opposed to file or slide-granularity locking). “Does not need (new) desktop software” refers to e.g., the
PowerPoint 2016 software that allows for real-time slide collaboration. “Does not need online sign-in (security)”
refers to the need to sign-in to an external server such as Microsoft OneDrive to enable real-time collaboration on
slide creation and editing. Lastly, “Many design features” refers to the presence of many editing features available
for creating and editing slides (e.g. positioning textboxes, language check) within a slide deck. Many features that
are normally available in PowerPoint software will not be available in the Custom In-Browser option. (* OneDrive
would require an online sign-in, however, open-source online slide-creation tools could enable the real-time
collaboration of analysts if they have sufficient support for Sharik integration).

Feature PPT+OneDrive PPT+Lock Custom In-Browser
Real-time ✓ ✗ ✓
Does not need (new) desktop
software

✗ ✗ ✓

Does not need online sign-in
(security)

✗* ✓ ✓

Many design features ✓ ✓ ✗

2.8.3 Slide Creation Data Model
Based on the alternatives for the custom in-browser feature, the plain-text alternative's data
model would have columns for the slide number and the content. Alternatives in which notes,
and propositions are linked to slides (i.e., sub-alternatives (b) and (c) as discussed in Section
2.8.2) would require similar data to data depicted in Table 8 to store slide information. The client
has specified that the editing features required within slide editing are adding textboxes and files,
and formatting text colour and size (Appendix D). A markup language such as HTML (as
depicted in Table 8) could be used to fulfill this requirement. This implementation would be
comprehensive because it is able to accommodate any of the three sub-alternatives described
above.

Table 8 This is an example of the data model table that stores the content for the slide deck. The RichText column
would contain information about the content of the slide as well information about any propositions and properties
contained in the slide. Other tables are not shown as more information is needed on the exact semantics of the slide
feature.

Slide RichText
(e.g. XML, including proposition ID, proposition property ID, font type, size, colour,

content, and html tag)
1 <prop id="123abcde-e372-a375-dfd7-abcdef123467" properties="123abcde-e372-

a375-dfd7-abcdef123467" > <span style="font-face:Arial;color:black;font-
size:18px"> This proposition helped us come to this conclusion.

2.8.4 Navigation within Mission
To gain a better understanding of how Missions, CCIRs, and PIRs could be accessed and
modified, we iterated on a UI that presents these elements in a hierarchical fashion. A wireframe
of the UI is presented in Figure 25. Appendix F shows the interface at different steps of the
process we took to evolve from the tab-based navigation in the initial version of Sharik towards a
hierarchical navigation scheme.

42

After speaking further with analysts, the client informed us that PIRs are usually established after
notes and propositions have already been created. Therefore, the client also would like for PIRs
to be sharable between CCIRs and notes and propositions to be sharable between PIRs.
Therefore, we will add a way for the analysts to access a shared pool of unassigned PIRs,
propositions, notes, and entities as we refine the design. The hierarchical structure will remain
valuable – repeat PIRs will appear within different CCIRs, and repeat propositions, notes, and
entities will appear within in different PIRs.

Figure 25 A hierarchical navigation UI enables an analyst to see which Mission, CCIR, and PIR is active. Tabs for
changing the main view are associated with their respective level within the hierarchy. The content of the Missions,
CCIRs and PIRs can be changed by hovering over the respective block and clicking edit, then modifying inline.
Mission, CCIR and PIR fields (e.g. Unit, DTG) subject to change as data model is refined.

2.8.5 Evaluation of User Interface Alternatives
As outlined in Section 1.5 Objectives, the categories for usability evaluation are learnability,
operability, and aesthetics. The measurement according to the metrics we have defined will
require a user evaluation on an operational product. Instead we use a form of preliminary user
interface evaluation to estimate the usability of a conceptual design.

A useful preliminary evaluation is a heuristic evaluation, where two to four several HCI
specialists evaluate how well the design adheres to interface design heuristics and principles
[31]. The heuristic evaluation can be less expensive and time-consuming than a usability test,
and each cycle of evaluation and redesign enhances performance by around 50 percent [31]. The
heuristic evaluation first identifies the most relevant interface design principles that address the
tasks the product is meant to support from the guidelines in Appendix G and the display and
control principles in Appendix H. For our evaluation, we eliminated several of the heuristics
because either the options were not yet detailed enough to be adequately evaluated by the
heuristics, or the heuristics evidently did not allow for the options to be differentiated.

We have represented the heuristic evaluation in the form of Pugh charts, which are a multi-
criteria comparison chart used to compare options relative to a baseline. Since different HCI
experts will be likely to discover a different set of problems, two members with HCI experience

43

in our Capstone design team evaluated the designs independently. We used the Pugh charts to
select preferred options among the alternatives. A Pugh chart encompassing data entry is
presented in Table 9, and slide creation in Table 10. The names in the column titles correspond
to the option names in Sections 2.8.1 and 2.8.2.

Table 9 Pugh Chart for selecting among data entry options. Each alternative contains two columns for each HCI
expert's independent evaluation. Free-form was initially chosen as baseline, however was generally ranked lower
than the other two options. To facilitate a more detailed comparison, Breadcrumb was instead chosen as baseline.
“0” represents approximately equivalent to baseline; “-” represents less favourable; “+” represents more favourable.

Heuristic Breadcrumb Free-form CMap
Visibility of system status 0 0 - 0 0 +
Match between system and the real
world

0 0 - - + +

User control and freedom 0 0 0 + - +
Error prevention 0 0 - - - -
Recognition rather than recall 0 0 - - 0 -
Shortcuts and accelerators 0 0 0 - - -
Aesthetic & minimalist design 0 0 + + 0 -
Help users recognize, diagnose, and
recover from errors (e.g. typo)

0 0 - - - -

Make designs legible 0 0 - 0 + -
Redundancy gain 0 0 0 - + +
Replace memory with visual
information: knowledge in the world

0 0 - - 0 +

Principle of predictive aiding 0 0 - - - -
Total 0 0 -7 -6 -2 -2

Table 10 Pugh Chart for selecting among slide creation options. Each alternative contains two columns for each HCI
expert's independent evaluation. “0” represents approximately equivalent to baseline; “-” represents less favourable;
“+” represents more favourable.

Heuristic Custom In-Browser PPT+Lock PPT+OneDrive
Visibility of system status (e.g.
real-time)

0 0 - - + +

User control and freedom 0 0 + + + +
Recognition rather than recall 0 0 - - - -
Shortcuts and accelerators 0 0 + + + +
Aesthetic & minimalist design 0 0 - - - -
Principle of pictorial realism
(symbolic vs actual slide
design)

0 0 + - + +

Principle of consistency 0 0 - + - +
Total 0 0 -1 -1 +1 +3

44

As can be seen in Table 9, both the Breadcrumb option and CMap option perform better against
the chosen metrics, with the Breadcrumb option having the slight edge. The client has also
voiced appreciation for the Breadcrumb option. Considering this, we will proceed to refine the
Breadcrumb option for inclusion in the solution. If time permits, the CMap option can be also
included, which would increase the Redundancy Gain of the solution, in line with the Thirteen
Principles of Display Design (Appendix H).

Table 10 suggests that all three options are similar in performance against the metrics. However,
the PPT+Lock option does poorly in “Visibility of system status”, which is a key criterion for an
effective real-time collaborative tool. Therefore, we will not explore this option any further.

After the initial divergence cycle for slide creation, the client imposed the additional constraint
that hosting of slides not be done on an external server for security reasons (Appendix D).
Therefore, the use of OneDrive and other external hosting services has been eliminated by this
constraint. However, an open-source self-hosted cloud solution remains a feasible option. This
option will be further considered along with the Custom In-Browser option, for which the client
has stated a preference (Appendix D). When re-evaluating these options, risk will have to be a
consideration due to the complexity of implementing real-time slide editing functionality from
scratch.

In a latter phase of the project, a full heuristic evaluation will be conducted on the detailed
designs that will be created for the alternatives chosen above, in which potential usability
problems will identified when the design violates one or more of the heuristics.

3 Project Management Plan
The design team will continue meeting with the client and supervisor in regular weekly meetings
as deemed necessary. We structure our deliverables into bi-weekly deadlines.

For the rest of the project, the team will split into two autonomous teams. The front-end team
will focus on UI and CSS frameworks. The back-end team will focus on data models, and
backend logic. A Gantt chart is presented on the next page detailing this.

The project faces 2 major deadlines, both of which have certain expectations. Through client
consultations the engineering team has identified that data-entry, the CMap, and slide generation
are considered the core features of the project. These core features are placed ahead of the other
features which were stated in the constraints. The two dates of interest which factor in the core
components needed are:

• Week of February 5th, 2018: Design critique of engineering team’s product so far.
Should have several core components ready for demonstration (e.g. note entry,
proposition entry, CMap, slide generation)

• March 1st – March 15th, 2018: Expected client focus group trial on engineering team’s
version of Sharik. Important client date for project exposure to other DRDC members and
decision makers. Should have a stable software deployment hosted for DRDC to use
during trial. Should have all core components (data-entry, CMap, slide generation).

45

46

4 Conclusion
In summary, DRDC is looking to create a tool to support the collaborative sensemaking of
intelligence analysts. A user study conducted on an initial prototype of such a tool revealed
aspects for improvement. In line with these aspects, we have proposed a solution that focuses on
allowing rapid entry of intelligence data into the system, the visualization of intelligence data,
and the creation of presentation slides to facilitate its dissemination.

The proposed solution encompasses the following components:

• A single page web architecture which involves a browser, web server and database
• A MySQL database to store Sharik’s data along with a file system to store uploaded

digital assets. The data models will incorporate client feedback as the project progresses.
• A Vue.js framework for rendering the user interface on the browser (runs on the browser)

that the analyst uses. Vue.js is based on JavaScript. Twitter’s Bootstrap CSS framework
will be used alongside Vue.js.

• A Spring Java framework for the back-end software processes (this will be running on the
web server).

• The breadcrumb option for data entry UI.
• The PPT+OneDrive and custom in-browser options for collaborative slide creation UI.

We will refrain from using external hosts for slide decks due to security concerns as
expressed by the client.

It is noted that the core features of the project which are data-entry, the CMap, and slide
generation must be stable by the planned focus group trial by early March 2018.

To augment the central goals of the project, the design aims to support many simultaneous
analysts and will strive to implement supplementary feature requests if time permits. Once the
design proposal is reviewed by the project supervisor and the client, the design team will begin
the implementation stage of the project.

47

5 References

[1] S. Ghajar-Khosravi and P. Kwantes, "Sharik 2.0: The Design and Development of a Web-
Based Tool to Support Collaborative Sensemaking," DRDC-RDDC, Toronto, ON, Aug.
2017.

[2] M. Townsend, "How a crippling shortage of analysts let the London Bridge attackers
through | UK news | The Guardian," 11 June 2017. [Online]. Available:
https://www.theguardian.com/uk-news/2017/jun/10/london-bridge-attackers-intelligence-
overload. [Accessed 12 October 2017].

[3] ISO, "ISO/IEC 25010:2011 Systems and software engineering: Systems and software
Quality Requirements and Evaluation (SQuaRE): System and software quality models,"
ISO, Geneva, 2011.

[4] ISO, "ISO/IEC 25023:2016 Systems and software engineering: Systems and software
Quality Requirements and Evaluation (SQuaRE): Measurement of system and software
product quality," ISO, Geneva, 2016.

[5] S. Sinofsky, "Scaling to different screens – Building Windows 8," 21 March 2012.
[Online]. Available: https://blogs.msdn.microsoft.com/b8/2012/03/21/scaling-to-different-
screens/. [Accessed 6 October 2017].

[6] Microsoft, "Chapter 20: Choosing an Application Type," Oct 2009. [Online]. Available:
https://msdn.microsoft.com/en-us/library/ee658104.aspx. [Accessed 23 Nov 2017].

[7] G. S. Palani, "Cloud or desktop? Compare and contrast applications," 18 April 2011.
[Online]. Available: https://www.ibm.com/developerworks/cloud/library/cl-
cloudordesktop/index.html. [Accessed 22 Nov 2017].

[8] Stackify, "What is N-Tier Architecture? How It Works, Examples, Tutorials, and More,"
21 Aug 2017. [Online]. Available: https://stackify.com/n-tier-architecture/. [Accessed 22
Nov 2017].

[9] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2002.

[10] M. Wasson, "Single-Page Applications: Build Modern, Responsive Web Apps with
ASP.NET," Nov 2013. [Online]. Available: https://msdn.microsoft.com/en-
us/magazine/dn463786.aspx. [Accessed 22 Nov 2017].

[11] A. Zolciak, "SPA vs MPA. What Are the Pros and Cons?," 19 Aug 2017. [Online].
Available: https://insanelab.com/blog/web-development/spa-vs-mpa-single-multi-page-
application-pros-cons/. [Accessed 22 Nov 2017].

48

[12] BBVAOPEN4U, "REST API: What is it, and what are its advantages in project
development?," 23 March 2016. [Online]. Available:
https://bbvaopen4u.com/en/actualidad/rest-api-what-it-and-what-are-its-advantages-
project-development. [Accessed 22 Nov 2017].

[13] S. Shimanovsky, "Multi page web applications vs. single page web applications," 9 July
2015. [Online]. Available: http://www.eikospartners.com/blog/multi-page-web-
applications-vs.-single-page-web-applications. [Accessed 22 Nov 2017].

[14] M. Wasson and R.-B. Lee, "Choose the right data store," 9 Aug 2017. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-
overview. [Accessed 22 Nov 2017].

[15] J. Homan, "Relational vs. non-relational databases: Which one is right for you?," 6 April
2014. [Online]. Available: https://www.pluralsight.com/blog/software-
development/relational-non-relational-databases. [Accessed 22 Nov 2017].

[16] M. Wasson, "Criteria for choosing a data store," 9 Aug 2017. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/data-store-
comparison. [Accessed 22 Nov 2017].

[17] K. Rangadurai, "Git Internals - How Git works," 22 Jan 2015. [Online]. Available:
https://www.linkedin.com/pulse/git-internals-how-works-kaushik-rangadurai/. [Accessed
22 Nov 2017].

[18] DB-Engines, "Popularity of open source DBMS versus commercial DBMS," Nov 2017.
[Online]. Available: https://db-engines.com/en/ranking_osvsc. [Accessed 22 Nov 2017].

[19] DB-Engines, "DB-Engines Ranking of Relational DBMS," Nov 2017. [Online]. Available:
https://db-engines.com/en/ranking/relational+dbms. [Accessed 22 Nov 2017].

[20] DB-Engines, "Method of calculating the scores of the DB-Engines Ranking," Nov 2017.
[Online]. Available: https://db-engines.com/en/ranking_definition. [Accessed 22 Nov
2017].

[21] G. Bakradze, "Choosing the Best Front-end Framework," Toptal, 14 September 2017.
[Online]. Available: https://www.toptal.com/javascript/choosing-best-front-end-
framework. [Accessed 18 November 2017].

[22] S. Krause, "Interactive Results," 29 May 2017. [Online]. Available:
http://www.stefankrause.net/js-frameworks-benchmark6/webdriver-ts-results/table.html.
[Accessed 19 November 2017].

[23] S. Greif, "Front-end Frameworks," 11 October 2016. [Online]. Available:
http://stateofjs.com/2016/frontend/. [Accessed 18 November 2017].

49

[24] S. Greif, "The State Of JS 2017 Results Preview," 5 October 2017. [Online]. Available:
https://medium.com/@sachagreif/the-state-of-js-2017-results-preview-acbd2885da7f.
[Accessed 19 November 2017].

[25] "Comparison with Other Frameworks — Vue.js," 12 October 2017. [Online]. Available:
https://vuejs.org/v2/guide/comparison.html. [Accessed 19 November 2017].

[26] HotFrameworks, "Web framework rankings | HotFrameworks," 21 October 2016. [Online].
Available: https://hotframeworks.com/. [Accessed 18 November 2017].

[27] D. Gilling, "Popular languages for building RESTful APIs based on our usage data
Moesif’s Musings on Software," Moesif, 12 August 2017. [Online]. Available:
https://www.moesif.com/blog/engineering/api-analytics/Popular-Languages-For-Building-
RESTful-APIs-Based-On-Our-Usage-Data/. [Accessed 18 November 2017].

[28] Mozilla, "Server-side web frameworks - Learn web development | MDN," 1 September
2017. [Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/Server-
side/First_steps/Web_frameworks. [Accessed 18 November 2017].

[29] Netcraft, "October 2017 Web Server Survey," 26 October 2017. [Online]. Available:
https://news.netcraft.com/archives/2017/10/26/october-2017-web-server-survey-13.html.
[Accessed 21 November 2017].

[30] Slashdot, "Survey Finds Most Popular Linux Laptop Distros: Ubuntu and Arch - Slashdot,"
9 July 2017. [Online]. Available: https://linux.slashdot.org/story/17/07/08/2346248/survey-
finds-most-popular-linux-laptop-distros-ubuntu-and-arch. [Accessed 19 November 2017].

[31] C. Wickens, J. Lee, Y. Liu and S. Gordan Becker, An Introduction to Human Factors
Engineering 2nd edition, Pearson Education, 2004, p. Chapter 8.

[32] S. Ghajar-Khosravi, S. Gibbon and P. Kwantes, "Usability and Usefulness Evaluation of
Sharik 2.0," Defence Research and Development Canada, Toronto, 2017.

[33] J. Nielson and L. Mack, "Heuristic evaluation," Usability Inspection Methods, 1994b.

[34] "7 Best Frameworks For Web Development in 2017," 22 May 2017. [Online]. Available:
https://gearheart.io/blog/7-best-frameworks-for-web-development-in-2017/. [Accessed 15
November 2017].

[35] T. Gray, "What’s The Best Restful Web API Framework? – Part 5 | OptimalBI,"
OptimalBI, 28 November 2016. [Online]. Available:
https://optimalbi.com/blog/2016/11/28/whats-the-best-restful-web-api-framework-part-5/.
[Accessed 17 November 2017].

50

Glossary

Detailed definitions of terminology

Concept Map: A visual map of entities with relationships drawn between them. Used for
visualizing propositions.
Failure: The inability for any Sharik function to run as intended.
Note: Free-form textual information with supplementary files/URLs supporting
credibility. Also has other attributes such as reliability and credibility scores as defined in
Appendix J.
Proposition: A relationship between entities (e.g. people, places), along with additional
details represented as properties (Appendix J).

Definitions of Design for Excellence (DfX) and Sub-categories for DfX [3]

1. Design for Performance Efficiency: performance relative to the amount of resources used
under stated conditions

a. Time Behaviour: degree to which the response and processing times and
throughput rates of a product or system, when performing its functions, meet
requirements

2. Design for Usability: the degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use

a. Learnability: degree to which a product or system can be used by specified users
to achieve specified goals of learning to use the product or system with
effectiveness, efficiency, freedom from risk and satisfaction in a specified context
of use

b. Operability: degree to which a product or system has attributes that make it easy
to operate and control

c. User interface aesthetics: degree to which a user interface enables pleasing and
satisfying interaction for the user

3. Design for Maintainability: degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers

a. Testability: degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met

4. Design for Reliability: degree to which a system, product or component performs
specified functions under specified conditions for a specified period of time

a. Maturity: degree to which a system, product or component meets needs for
reliability under normal operation

b. Recoverability: degree to which, in the event of an interruption or a failure, a
product or system can recover the data directly affected and re-establish the
desired state of the system

51

5. Design for Functional Suitability: degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions

a. Functional Completeness: degree to which the set of functions covers all the
specified tasks and user objectives

52

Pair-wise Comparison Chart

Note:

1. The binary decisions are based on conversations with the client and the client document
and the final objective list ordering has been confirmed with the client through email
communication (see Appendix C).

2. To add more clarity, levels are identified by different shades.

Figure 26 Comparison of the ten objectives

53

Email confirmation of objective list priority ordering

54

Email confirmation of client preferences for alternative

55

Example webpage layout for UI

Figure 27 One possible layout for the UI layout of the solution. Navigation controls are at the top of the page. Data
entry controls are in the middle of the page. Information about the currently selected tab is at the bottom of the page.

56

Figure 28 The contents of the file tab displayed in the centre of the page. Details such as filename, file upload date,

creator, and file type are presented.

57

Design of Hierarchical Mission Navigation

Figure 29 Iterations of layouts for the hierarchical navigation of missions. (a): The teams and files tabs are

associated with the CCIR display, and PIR tabs are nested one level below. (b, c): Various ways of presenting the
CCIR and PIR tabs along with buttons to change the active Mission, CCIR, and PIR. (d): Rearranged version of (c)

that presents Missions, CCIR, and PIR as dropdown boxes rather than tabs.

58

Nielsen's Ten Heuristics for User Interface Design

The below set of heuristics were derived by Jakob Nielsen, a prominent figure in user-centered
design, from a factor analysis of 249 usability problems to maximum explanatory power [33].

1. Visibility of system status: The system should always keep users informed about what is
going on, through appropriate and timely feedback, especially when the system takes control, or
an action is taken.

2. Match between system and the real world: The system should speak the users' language,
rather than in system-oriented terms. It should follow real-world conventions, making
information appear in a natural and logical order.

3. User control and freedom: User should be able to undo and redo, stop browser processing at
any time, and go back to a previous step.

4. Consistency and standards: Users should not have to wonder whether different words,
actions, or commands mean the same thing.

5. Error prevention: Careful design prevents errors from occurring in the first place. If this is
not possible, the design should minimize the negative consequences of errors and help users
recover from their errors. A good error message explicitly indicates a problem, precisely
describes that problem, and offers constructive advice in human-readable language that doesn’t
blame the user.

6. Recognition rather than recall: See and point, not remember and type

7. Shortcuts and accelerators: Provide accelerators for experts that do not get in the way of
novices

8. Aesthetic & minimalist design: Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors: Error messages should be
expressed in plain language (no codes), precisely indicate the problem, and constructively
suggest a solution.

10. Help and documentation: Help or documentation should be easy to search, be task-specific,
and list steps to be carried out.

https://www.nngroup.com/articles/error-message-guidelines/

59

Thirteen Principles of Display Design

The following thirteen heuristics are compiled in the An Introduction to Human Factors
Engineering textbook. Some of the following thirteen principles conflict, so judgement is
required to assess when exceptions are beneficial and should occur [31].

Perceptual Design Principles:

1. Make designs legible: Avoid issues with contrast, visual angle, illumination, noise, and
masking.

2. Avoid absolute judgement limits: Avoid having the user distinguish between more than
five different levels of a variable.

3. Top-down processing: People perceive based on their experience. If a signal is presented
contrary to expectations (e.g. a warning message for an unlikely event), it will likely be
ignored unless more evidence of that signal is presented in the immediate context.

4. Redundancy gain: A message is more likely to be interpreted correctly when the same
message is expressed more than once, especially in alternative physical forms (e.g. print
and pictures, color and shape).

5. Discriminability: Similarity causes confusion: Use discriminable elements: When
confusion could be serious, unnecessary similar features should be deleted and dissimilar
features should be highlighted.

Mental Model Principles:

6. Principle of pictorial realism: A display should look like the variable it represents.
7. Principle of the moving part: Moving elements of a display should move in a spatial

pattern and direction that is compatible with the user's mental model of how the
represented element moves in the physical system.

Principles based on attention:

8. Minimizing information access cost: Keep frequently accessed sources close to each
other to reduce the user's need to "move" their selective attention.

9. Proximity compatibility principle: Keep information sources that need to be mentally
integrated for a task close or linked by a common color or line (but not cluttered or
overlapping).

10. Principle of multiple resources: If possible, divide large amounts of information across
resources (e.g. present visual and auditory information concurrently rather than all
visually or all auditory).

Memory Principles:

11. Replace memory with visual information: knowledge in the world: Users should not
be required to retain important information solely in working memory or retrieve it from
long-term memory.

60

12. Principle of predictive aiding: Reduce resource-demanding cognitive tasks by replacing
them with simpler reactive tasks by predicting future conditions.

13. Principle of consistency: Aim to design displays that are consistent with what the user
has been using or is using concurrently.

61

Relational Model Primer

The relational model organizes information into tables. Each table contains attributes (known as
columns). Records are stored as rows within the table which provide certain values for the
defined columns. For instance, say we had a table named Artists which stores musical artists. It
has an ArtistID (to uniquely identify the row or artist by a uniquely assigned number), a name
column to store the artist’s name, and a date of birth column to store when the artist was born.
Below is an example of the schema for the table; a schema defines the structure of a table.

Artists Table
ArtistID
name
Date of birth (DOB)

A realization of this table where data is populated or inserted into this schema is when values are
provided for each of the columns defined above and inserted as a row. An example is given
below. Each row is sometimes called a record or instance of an artist (extracting the row will
produce the set or tuple of columns that represent an artist in the data model).

ArtistID name DOB
1 Michael Jackson August 29, 1958
2 Malcolm Mitchell Young January 6, 1953
3 Madonna Louise Ciccone August 16, 1958

In the above example if we were to query for the artist with id equal to 1 we would get the first
row as the result (Michael Jackson). The notion of a column or set of columns that identify the
row uniquely are called a primary key. In this case we have defined that we wish to have the
ArtistID column as the primary key.

Primary keys are used to link data to other tables without repeating the same information in
another table (normalization, the production of schemas which achieve a mathematical form
which reduces data redundancy or achieves other characteristics). If we now add an Albums
table, we see that we must now link an artist with many albums (due to the domain requirements,
artists can have zero or more albums attributed to them). This is illustrated below.

62

In this schema, the arrow signifies that for each artist record that it can be associated with many
or zero albums (the circle and trident). The vertical line on the arrow near the Artists table
signifies for each album there may only be one artist, a constraint we wish to enforce. This is
done by adding a foreign key column to Albums, namely ArtistID, which refers to the primary
key in the Artists table ArtistID. Foreign keys in general are primary keys from another table to
which you would like to associate with and be able to join two tables later when running queries.
A realization is shown below with mock data.

Artists Table

ArtistID name DOB
1 Michael Jackson August 29, 1958
2 Malcolm Mitchell Young January 6, 1953
3 Madonna Louise Ciccone August 16, 1958

Albums Table

AlbumID ArtistID name Release date
1 1 Thriller November 14, 1983

2 1 Bad August 31, 1987
3 2 Back in Black 25 July 1980

As seen above the Albums table links back to the artist who made the album by including the
artist id in the foreign key column (ArtistID). For example, if we wanted to retrieve all albums
for Michael Jackson we would simply request to join both tables (combine columns making a
row longer) by joining rows only where the ArtistID in the Artists table is equal to 1 (Michael
Jackson’s assigned id in our case) and where the rows in the Albums table has its ArtistID also
equal to one. This operation runs for each row in each table, thus it will produce up to the
number of records in the albums table. We would get “x” number of rows for “x” number of
albums for a single artist.

63

The result of this query or request results in a new table (not actually defined in the model but
created in a sense on the fly).

Resulting schema of the query

Artists.ArtistID Artists.name Artists.DOB Albums.AlbumID

Albums.ArtistID Albums.name Albums.Release
date

1 Michael
Jackson

August 29,
1958

1 1 Thriller November 14,
1983

1 Michael
Jackson

August 29,
1958

2 1 Bad August 31,
1987

As seen above, two rows were returned as expected since Michael Jackson had only two
associated albums (Thriller and Bad) saved in the model. We can see that the columns between
the two tables merged and are available for inspection for each row result.

It can be noted that the model defined above allows for an artist record to exist but have no
associated albums yet (maybe they are a new artist, or we have not uploaded all their data yet) as
is the case for Madonna (there are no album records with Madonna’s artist id).

By storing data in rows and creating tables which provide logical separation of entities with
logical associations between each other, the data model or relational schema provides strict
constraints on how data can be inserted and modified. This type of modelling is well suited to
situations where the data is well known and needs to be constrained and follow a specific
structure.

64

Sharik Model In-Depth

The following appendix will describe all columns within each table defined in section 2.2. The
primary keys are highlighted in each table (if more than one is highlighted than that set of
columns is considered the composite primary key – a row can only exist if all values in the set
are unique). The set of table descriptions pertain to the figure below, placed in the appendix for
convenience. Note that attributes with each word being capitalized indicates a foreign key.

65

Users Table

Stores user accounts within the Sharik system.

Column

Description Data Type

ID Uniquely identifying number Number
username The username the user will be

known as and sign in with
Alphanumeric

password The cryptographic hash of the
password. Prevents hackers
from obtaining the clear text
password if the database is
comprised without additional
effort

Alphanumeric

role The role of analyst within the
Sharik environment. Currently
this can be set to one of two
values: “Admin” and
“Analyst”. The specific rights
they have within the
application will be determined
by the client later (e.g. only
admins can create new user
accounts)

Alphanumeric

Missions Table

Stores the missions added to the Sharik system.

Column Description Data Type
ID Uniquely identifying number Number
title The title of the mission Alphanumeric
op_codename The operation codename for

the mission
Alphanumeric

last_update_date The last date the mission was
updated in its attributes

Date

User_ID Foreign key to the Users table.
Indicates who created the
mission

Number

Unit The intelligence unit the
mission is part of

Alphanumeric

int_problem The intelligence problem in
words that the mission is
addressing

Alphanumeric

66

CCIR Table

Stores the Critical Commanders Information Requirements.

Column Description Data Type
ID Uniquely identifying number Number
title The title of the CCIR Alphanumeric
Mission_ID Foreign key to the Missions

table. The mission the CCIR is
part of

Number

last_update_date The last date the CCIR was
updated in its attributes

Date

User_ID Foreign key to the Users table.
Indicates who created the
CCIR

Number

PIR Table

Stores the Priority Information Requirements.

Column Description Data Type
ID Uniquely identifying number Number
title The title of the PIR Alphanumeric
last_update_date The last date the PIR was

updated in its attributes
Date

User_ID Foreign key to the Users table.
Indicates who created the PIR

Number

IRS Table

Stores the Information Requirements.

Column Description Data Type
ID Uniquely identifying number Number
question The question of the IR Alphanumeric

PIR_ID Foreign key to the PIR table.
Indicates which PIR the IR is
for

Number

User_ID Foreign key to the Users table.
Indicates who created the PIR

Number

67

Notes Table

Stores the Sharik Note. Contains references to other resources such as tags, files and URLs.

Column Description Data Type
ID Uniquely identifying number Number
title The title of the intelligence

note
Alphanumeric

body The main content of the
intelligence note goes here

Alphanumeric

File_ID Foreign key to the File table.
Associates a file to the
intelligence note. Only permits
one file to be associated

Number

credibility An enumerated value based on
the credibility of the primary
source of information the note
was generated from (as
defined by the Department of
Defense).

Possible values

• Confirmed by other
sources

• Probably true
• Possibly true
• Doubtful
• Improbable
• Not Credible

reliability An enumerated value based on
the reliability of the primary
source of information the note
was generated from (as
defined by the Department of
Defense)

Possible values

• Completely reliable
• Usually reliable
• Fairly reliable
• Not usually reliable
• Unreliable
• Reliability cannot

be judged
User_ID Foreign key to the Users table.

Indicates who created the Note
Number

URL_ID Foreign key to the URLs table.
Associates a web URL as a
source for the note. Only
permits one URL to be
associated

Number

source_type Indicates the type of the source
of information (e.g. human,
signal)

Alphanumeric

68

Propositions Table

Stores Sharik Propositions. Contains all necessary fields to display visually in Concept Map.

Column Description Data Type
ID Uniquely identifying number Number
first_concept The first concept the

proposition is composed of.
This can be any entity such as
a person, place or thing (e.g.
Toronto, Jason Bourne)

Alphanumeric

second_concept

The second concept the
proposition is composed of.
Same as above.

Alphanumeric

link_type This field specifies whether
the relationship described in
the proposition is a fact,
conjecture or extract. A fact is
deemed as completely true
without supporting sources, a
conjecture is unknown whether
to be true or false and an
extract is a fact backed by
supporting sources. A fact may
change to an extract when
supporting sources are linked
to the proposition and deemed
satisfactory.

Possible Values

• Fact
• Conjecture
• Extract

first_concept_type An enumerated value which
describes what the first
concept type is (Event,
Individual etc.).

Possible values

• Individual
• Place
• Group
• Role
• Thing
• Event

second_concept_type

Same as above except for the
second concept

Possible values
• Individual
• Place
• Group
• Role
• Thing
• Event

link_text The set of words which relate
the first concept to the second
(Toronto is a City)

Alphanumeric

69

User_ID Foreign key to the Users table.
Indicates who created the
proposition

Number

direction An enumerated value which
describes what the direction of
the relationship is for the
proposition between the first
and second concept
(unidirectional, bidirectional).

Possible value
• Unidirectional
• Bidirectional

is_important A marker indicating if the
proposition is important (like
the flagged feature in an email)

Boolean (True/False)

Proposition Dates Table

Stores a set of dates related to a single proposition. Each date indicates when the proposition
occurred. Note cannot insert duplicate dates for the same proposition id as constrained by the

composite primary key.

Column Description Data Type
Proposition_ID Foreign key to the Propositions

table. Indicates the proposition
the date refers to.

Number

date The date when the proposition
occurred

Date

Proposition Properties

Stores a set of extra fields that can be attached to a proposition. Allows to enter free text
properties not already captured by the proposition itself. A property is defined as a unique key

(for the proposition) and a value (key = latitude, value = 78.44 or key = location, value =
Toronto).

Column Description Data Type
Proposition_ID Foreign key to the Propositions

table. Indicates the proposition
the property refers to

Number

key The key of the property Alphanumeric
value The value of the key for the

property
Alphanumeric

70

Files Table

Stores the file paths of files uploaded to Sharik. The actual files are stored on the local file
system of the server. Can be used in notes and propositions as sources.

Column Description Data Type
ID Uniquely identifying number Number
filepath The filepath of the uploaded

file on the server (e.g.
/root/file.txt)

Alphanumeric

type The type of file uploaded Alphanumeric

User_ID Foreign key to the Users table.
Indicates who uploaded the file

Number

URLS Table

Stores web URL sources that analysts can use in notes and propositions.

Column Description Data Type
ID Uniquely identifying number Number
web_url The web URL of the source

(e.g. http://cnn.com)
Alphanumeric

User_ID Foreign key to the Users table.
Indicates who uploaded the
URL

Number

Tags Table

Stores tags used by analysts to mark data into related categories for later querying. Used to tag
notes and propositions.

Column Description Data Type
ID Uniquely identifying number Number
tag_name The name of the tag (e.g. Saudi

Arabia)
Alphanumeric

The above tables summarize the main storage tables without the tables which contain the table-
table associations. All association tables are structured the same way (groups of foreign keys) as
with the Mission Membership being shown below.

71

Mission Membership Table

Stores which users are assigned to what mission. Each row indicates a membership for a user to a
certain mission and a mission to a user.

Column Description Data Type
User_ID Foreign key to Users table.

Indicates who is part of a
mission

Number

Mission_ID Foreign key to Missions table.
Indicates the mission someone
is part of

Number

The rest of the association tables will be described by listing the associations they provide
instead of their descriptions.

Association tables:

• The tables PropositionNotes, PropositionFiles, PropositionURLS, PropositionTags all
provide the ability for many notes, files, URLs and tags to be added to a proposition

• The tables PIRPropositions allows for propositions to be added to multiple different
PIRS, the same is enabled for notes through the PIRNotes table

• The NoteTags table allows the addition of multiple tags to a note
• The CCIR-PIRS table allows the addition of PIRS to many different CCIRs
• The MissionNotes and MissionPropositions allows the addition of many different

propositions and notes to a mission (this allows the addition of notes and propositions to
the system even if there are no PIRS yet as per client requirements). Note that in the
diagram a one-to-many relationship was missing between these tables and the respective
Notes and Propositions tables (one-to-many from Notes/Propositions to the associative
table)

Missing Associative lines:

• The Users table was missing one-to-many relationships between itself and many other
tables such as: All the ICP element tables, Notes, Propositions, Files, and URLS.

DOCUMENT CONTROL DATA
*Security markings for the title, authors, abstract and keywords must be entered when the document is sensitive

 1. ORIGINATOR (Name and address of the organization preparing the document.
A DRDC Centre sponsoring a contractor's report, or tasking agency, is entered
in Section 8.)

University of Toronto
27 King's College Cir, Toronto, ON M5S 3H7

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

CAN UNCLASSIFIED

 2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

 3. TITLE (The document title and sub-title as indicated on the title page.)

Sharik 3.0 Design Proposal

 4. AUTHORS (Last name, followed by initials – ranks, titles, etc., not to be used)

Zenin, A.; Lakier, M.; Chen, M.; Wu, M.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

November 2017

 6a. NO. OF PAGES
(Total pages, including
Annexes, excluding DCD,
covering and verso pages.)

71

 6b. NO. OF REFS
(Total references cited.)

35
 7. DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter.)

Contract Report

 8. SPONSORING CENTRE (The name and address of the department project office or laboratory sponsoring the research and development.)

DRDC – Toronto Research Centre
Defence Research and Development Canada
1133 Sheppard Avenue West
Toronto, Ontario M3K 2C9
Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under which
the document was written. Please specify whether project or
grant.)

05da

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. DRDC PUBLICATION NUMBER (The official document number
by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC-RDDC-2018-C212

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

Public release

 11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

 12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

collaborative sensemaking; Teamwork/Collaboration; Intelligence (Direction, Collection, Processing,
Dissemination); Software Design and Architecture

 13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

ABSTRACT:
All-source analysts collaborate with each other on various information requirements. They receive
different types of information from various collators, integrate and relate those information items to
produce intelligence, and then share the new intelligence items with their peers.
Sharik (SHAring Resources, Information, and Knowledge) is a web-based tool aimed at supporting
collaborative sensemaking among all-source intelligence analysts in distributed command and control
centers. The tool has been designed, developed, and evaluated at DRDC Toronto.
The primary goal of this tool is to support analysts in producing, and more importantly sharing, new
intelligence pieces with their teammates while retaining a high situational awareness of the
intelligence production’s status. Sharik’s features support different stages of the intelligence cycle
including direction, collection, processing, and dissemination.
This report describes the Design Proposal for Sharik 3.0. The report was prepared by the University
of Toronto Engineering students through their University of Toronto Institute for Multidisciplinary
Design & Innovation (UT-IMDI) Capstone Design Project course. The report is focused on the
proposed improvements to Sharik 2.0.

RESUME:
Les analystes toutes sources collaborent entre eux afin de répondre à divers besoins en matière
d’information. Ils reçoivent et intègrent divers types d’information de différents compilateurs et
établissent des liens entre les éléments d’information pour en obtenir du renseignement dont ils
partageront ensuite les éléments avec leurs pairs.
Sharik (SHAring Resources, Information and Knowledge, soit le partage des ressources, de
l’information et des connaissances) est un outil Web qui favorise le raisonnement collaboratif chez les
analystes du renseignement toutes sources disséminés dans les centres de commandement et
contrôle. L'outil a été conçu, développé et évalué à RDDC Toronto.
L’objectif principal de cet outil est d’aider les analystes à produire, certes, mais surtout à partager de
nouveaux éléments d’information avec leurs coéquipiers, tout en conservant une connaissance
élevée de la situation quant à l’état de la production de renseignement. L’outil Sharik permet de
répartir le cycle du renseignement en différentes étapes, dont l’orientation, la collecte, le traitement et
la diffusion.
Ce rapport décrit la proposition de conception pour Sharik 3.0. Le rapport a été préparé par les
étudiants en génie de l'Université de Toronto dans le cadre de leur cours de projet de conception
Capstone de l'Institut pour la conception multidisciplinaire et l'innovation (UT-IMDI) de l'Université de
Toronto. Le rapport est axé sur les améliorations proposées à Sharik 2.0.

