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Abstract  

This Scientific Report (SR) documents an epidemic model known as SIR (Susceptible-Infected-Removed 

units). We derive an approximated solution to the differential equations that define the SIR model. Unlike 

the exact SIR solution, the approximate solution is analytical and has a close form expression. We use this 

approximate model as an inspiration to cyber defence. Such a model allows us to investigate the 

characteristics of the propagation of electronic viruses. That is, we can determine the number of 

susceptible units, the number of infected unit and the number of removed units as a function of time. This 

information will eventually permit the defence to find ways to eradicate a virus attack.  

Significance to defence and security  

Biological diseases have been known to man since time immemorial. Nowadays, we also encounter 

electronic viruses. Since we live in an electronic world, electronic viruses cause billions of dollars of 

damage each year, Ref [1], in addition to security breaches and loss of confidential information. If a virus 

attacks a task group, it can make the defence fire in the wrong direction, at the wrong time and at the 

wrong target. So it is important that we understand how virus propagates in a network that is under attack. 

We are inspired by an epidemic model known as the SIR (Susceptible-Infected-Removed) model defined 

by a set of differential equations. The SIR model allows us to determine the number of susceptible units 

that can be infected, the number of infected units that can spread infections and the number of removed 

units (those recovered from infection). The current SIR model has no known analytical solutions and 

hence requires numerical solutions which make it inconvenient to study the SIR units as a function of 

time especially if the parameters that define the SIR differential equations vary from one defence system 

to another or vary with time within the same system. However, we derive an approximate (new) model of 

SIR which has an analytical solution and all the features of the original SIR model.  

The new model is a tool that can be used to plan for an electronic virus attack and find ways to defend 

against such an attack. That is, we can determine the number of units such as computers or defence 

system components that are infected and how long the infection lasts. Eventually, this will affect the 

defence effectiveness especially against an astute enemy that launches simultaneously a missile attack as 

well as a cyber-attack against a task group for example. If the command and control system is infected, 

key measures of effectiveness such as the probability of raid annihilation is expected to be affected. 

The scientific contribution to this report is the operational research modelling of a virus propagation. The 

model that we analyze contains all the essential elements of a generic virus propagation yet at the same 

time does not involve detailed aspects of specific virus infections which makes it an ideal operational 

research tool to investigate the time scale of an infection and its remedy. We are able to derive an 

approximate solution that is analytical and therefore very useful in defence planning. The novelty of the 

solution lies in the concavity and the simplicity of the functional approximation of the differential 

equations both of which are not known in the open literature to the best of our knowledge.  
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Résumé  

Ce rapport scientifique fait état d’un modèle épidémique appelé SIR (Sensible-Infecté-Retiré). Nous obtenons 

une solution approximative aux équations différentielles qui définissent le modèle SIR. Contrairement à la 

solution SIR exacte, la solution approximative est analytique et elle a une expression en forme fermée. Nous 

utilisons ce modèle approximatif comme inspiration pour la cyberdéfense. Un tel modèle nous permet d’étudier 

les caractéristiques de la propagation de virus électroniques. C’est-à-dire que nous pouvons déterminer le nombre 

d’unités sensibles, le nombre d’unités infectées et le nombre d’unités retirées en fonction du temps. Cette 

information permettra ensuite à la défense de trouver des façons d’éradiquer une attaque virale. 

Importance pour la défense et la sécurité  

L’être humain connaît les maladies biologiques depuis la nuit des temps. De nos jours, nous sommes 

également confrontés à des virus électroniques. Étant donné que nous vivons dans un monde électronique, les 

virus électroniques causent des milliards de dollars de dommages chaque année, Réf. [1], en plus des atteintes 

à la sécurité et de la perte de renseignements confidentiels. Si un virus attaque un groupe opérationnel, il peut 

inciter la défense à tirer dans la mauvaise direction, au mauvais moment ou sur la mauvaise cible. Il est donc 

important que nous comprenions comment les virus se propagent dans un réseau qui subit une attaque. 

Nous avons été inspirés par un modèle épidémique appelé SIR (Sensible-Infecté-Retiré), défini par un 

ensemble d’équations différentielles. Le modèle SIR nous permet de déterminer le nombre d’unités sensibles 

qui pourraient être infectées, le nombre d’unités infectées qui peuvent répandre les infections et le nombre 

d’unités retirées (celles qui ne sont plus infectées). Le modèle SIR actuel ne comprend aucune solution 

analytique et, par conséquent, il exige des solutions numériques, ce qui le rend inapproprié pour l’étude des 

unités SIR en fonction du temps, surtout si les paramètres qui définissent les équations différentielles SIR 

varient d’un système de défense à un autre ou varient avec le temps dans un même système. Cependant, nous 

pouvons dériver un (nouveau) modèle SIR approximatif qui a une solution analytique et toutes les 

caractéristiques du modèle SIR original. 

Le nouveau modèle est un outil pouvant être utilisé pour se prémunir contre une attaque par un virus électronique 

et trouver des façons de se défendre contre une telle attaque. C’est-à-dire, nous pouvons déterminer le nombre 

d’unités (ordinateurs ou composants d’un système de défense) qui sont infectées, ainsi que la durée de l’infection. 

En fin de compte, cela aura une incidence sur l’efficacité de la défense, surtout contre un ennemi astucieux qui, 

par exemple, lancerait simultanément une attaque par missiles et une cyberattaque contre un groupe de défense. 

Si le système de commandement et de contrôle est infecté, on s’attend à ce que des mesures essentielles de 

l’efficacité soient touchées, comme la probabilité d’anéantissement des raids. 

La contribution scientifique à ce rapport est la modélisation de recherche opérationnelle de la propagation d’un 

virus. Le modèle que nous analysons contient tous les éléments essentiels d’une propagation générique d’un 

virus, mais sans tenir compte des aspects détaillés d’infections par un virus particulier, ce qui en fait un outil 

de recherche opérationnelle idéal pour étudier l’échelle de temps d’une infection et de son remède. Nous 

sommes en mesure de dériver une solution approximative qui est analytique et, par conséquent, très utile dans 

la planification de la défense. La nouveauté de la solution se trouve dans la concavité et la simplicité de 

l’approximation fonctionnelle des équations différentielles, deux éléments qui, au meilleur de nos 

connaissances, ne se trouvent nulle part dans la documentation libre d’accès. 
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1 Introduction 

“Infectious diseases have been a part of the human condition since time immemorial” Ref [2]. Nowadays, 

we also encounter electronic viruses which can attack computers and networks. The nature of data 

communication allows electronic viruses to propagate data rates ranging from kilobits per second to 

gigabits per second. Hence a network could be infected in a matter of minutes. To prepare defence against 

viruses, we need to be able to model the process of infection. Our inspiration is owed to the modelling of 

epidemiology. 

Ref [2]: “Mathematical epidemiology has its roots in 1760, when Daniel Bernoulli formulated and solved 

a model for smallpox. In 1906, Hamer used a discrete-time model of measles to understand recurrent 

epidemics.” Clearly, there is an available body of knowledge in the mathematics of infectious diseases.  

We encounter computer viruses and hackings every day and very much in every field of work. There are 

lots of speculations on the potential damages of a cyber-attack. Below is a list of examples: 

a. A car’s accelerator can be disabled, Ref [3]; 

b. A car can unintended accelerate, brake or steer, Ref [4]; 

c. A sniper rifle can be deactivated or change its target, Ref [5]; and 

d. The fact that North Korea’s missile launches were failing too often may be due to  

US cyber-attacks, Ref [6]. 

Some of the above examples may be real and some of them may be purely hypothetical and even false. 

But whatever their veracities are, cyber defence is real. It was even mentioned in the presidential debate 

between Hilary Clinton and Donald Trump, Ref [7]. It is not hard to imagine what would happen if a 

weapon system is infected. For example, the weapon system can fire in the wrong direction, at the wrong 

target and at the wrong time.  

The economic impact of crimes in cyberspace is also speculated. Below are two examples. 

a. The cost of crimes in cyberspace is estimated to be 445 billion USD, Ref [8]; and 

b. US, China and Germany, three of the four largest economies in the world, lost more than 

200 billion USD, Ref [9].  

In addition to the extent of a cyber-attack, it is common knowledge that such an attack does not 

necessarily require a lot of resources as cited from Ref [10] below: 

Cyberattacks are not resource-intensive, which renders them even more dangerous 

because no practical requirement exists to limit the attackers to being members of 

organized and well-funded sources such as a nation’s military. 

This is also recognized officially by NATO as cited from Ref [11] below: 
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Cyber threats and attacks are becoming more common, sophisticated and damaging. The 

Alliance (NATO) is faced with an evolving complex threat environment. State and  

non-state actors can use cyber-attacks in the context of military operations. 

Given the currency and extent of cyberattacks, we investigate the infection of viruses on a network using an 

epidemic model. It is certainly not the first time that cybersecurity is modelled by epidemiology, Refs [12][13]. 

There are several such models. To name a few: the SEIR model (Susceptible-Exposed-Infected-Removed), 

the SIR model (Susceptible-Infected-Removed), the SI model (Susceptible-Infectious) and the SIS model 

(Susceptible-Infectious-Susceptible), Ref [14].  

The difference between the first two, the SEIR model and the SIR model, is that the former simulates the 

exposed phase where an individual can be infected but is not infectious, Ref [15]. It is often possible to 

neglect the exposed phase which leads to the SIR model, Ref [14] where an individual can be susceptible, 

infected or recovered. Susceptible units are those that can be infected. Infected units are those that can 

infect other units. And Removed units are those that are no longer infected (recovered units). 

In contrast to the SIR model, the SI model does not account for the recovered phase. The SI model is 

usually appropriate for plants. Once the plants are infectious, they will remain infectious and eventually 

die, Ref [14]. The remaining model, i.e. the SIS model, is appropriate for sexually transmitted diseases. 

Once an individual recovers, he/she is again susceptible to infection, Ref [14]. 

Based on the nature of the cyber defence scenarios that we consider: suitability of the level of details, 

rapid dissemination of the infection (time scale is short, Ref [16]) and the fact that a recovered unit is not 

susceptible to infection once the virus is known and there is a software that can neutralize the virus, we 

choose to examine the SIR model as a cyber defence model. 

Similar to most of the epidemic models, the SIR model does not have analytical solutions. Hence, it only 

has numerical solutions which make it inconvenient (but not impossible) to analyze and to predict the 

extent of the infection. However, we were able to find an approximate solution that is analytical. And we 

will show in future work that the approximated SIR model is useful in planning against cyberattacks.  

Section 2 presents a SIR model. Section 3 derives an approximated differential equation to the SIR 

model. Section 4 derives an approximated solution which is a solution to the approximated differential 

equation. Section 5 analyzes the results. Section 6 provides the characteristics of the approximated 

solution. We conclude in Section 7.  

This report draws extensively from Ref [17]. The significance to defence and security statement of this 

report is original. Section 6 of this report contains original material that is not in Ref [17] except for the 

long term results to the SIR model. Discussion of the numerical results regarding the use of look up tables 

is also original. Conclusion is also substantiated. Generally, there are more details in this report as well as 

the fact that interpretations to military applications are made obvious. 

Before we delve into the details of the report, we state below the assumptions: 

a. It is possible for a red force to hack into the defence system and put a virus in the defence 

system; 

b. The defence is partially disabled if not completely during the infection; 
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c. The nature of cyber vulnerabilities may be simulated by biological epidemic models 

(Refs [18][19]) but with a different time scale; and 

d. Further studies/experiments can refute the model and/or determine the parameters of the 

epidemic models. 

Note that the epidemic models described above are simple and deterministic. There are also stochastic 

models (Ref [20]) but they are even more complicated mathematically and are not necessarily better for 

our purpose than the SIR model. In fact, there are a multitude of computer viruses such as benevolent 

viruses, file infectors, macro viruses, etc. (Ref [21]). Each of them behaves differently. It would be 

impossible to model all of them. 

We are well aware that there is definitely a difference between computer viruses and biological viruses, 

Ref [22]. But that does not mean epidemic models are not useful in modelling cyber defence. For 

example, Refs [18][19] make use differential equations that are similar to epidemic models to examine 

cyber vulnerabilities.  

Ultimately, we aim to determine the effects of a cyber-attack on the effectiveness of the defence and not 

the details of the infection in the sense that we are looking for orders of magnitudes for the number of 

susceptible units, the number of infected units and the number of removed units as well as the duration of 

the infection. In essence, if there is a virus in the system and if there is a remedy to that virus and both of 

them can be modelled or bound by the parameters in the SIR model then the solution to the SIR model 

can be useful to the planning of cyber defence. This solution will enable the comparison the efficiency 

between cyber defence software against known viruses. Knowing the magnitudes of the duration of the 

infection and the magnitudes of the number of components that are affected will help determine the 

changes in defence effectiveness. This is critical especially against an astute enemy who could launch a 

missile attack at the same time as a cyber-attack. It is not hard to imagine how things can go wrong to a 

net centric defence when the command and control is infected even if for a short time. Key measures of 

effectiveness such as the probability of raid annihilation will definitely be affected. 
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2 SIR Model of Epidemics 

The SIR model is well understood, Ref [2]. It is assumed in the SIR model that the population is 

homogeneous. That is, each type of unit has the same behaviour. For example, each *healthy* unit has the 

same rate of infection. Such homogeneity is easy to model mathematically as shown in Eqn (1). In reality, 

there is no reason for a population or a network to be homogeneous. Such a population can be broken 

down into smaller groups each having its own characteristics. In terms of connectivity, homogeneity can 

occur when any unit is in contact with any other units, Ref [23]. This interpretation can be seen when we 

consider a finite population for example four units in which one of them is infected. If the infection rate is 

the same for all susceptible units then all units must be in contact with all other units. Otherwise, by 

changing the initial infected unit to another unit, we will not have the same infection rate. This 

corresponds to a complete graph (Ref [24]) which is a graph where every node is linked to any other 

nodes. In other words, this is a totally connected network. Clearly, the spread of a virus depends on the 

topology of the network, Refs [25][26]. That is, infections could occur only if an infected node is 

connected to another node. Therefore, we can consider the SIR model as the worst case scenario, i.e. an 

infected node can infect any other nodes. We could also think of the SIR model as an attack at the central 

node which is connected to all of the other nodes: something an astute enemy would do. It is defined by a 

set of differential equations as shown below: 

dS
aSI

dt

dI
aSI bI

dt

dR
bI

dt

 

 



 (1) 

where S is the number of units that are susceptible to infections, I is the number of units infected and R
is the number of units removed from infection, i.e. they are no longer infected; a  is the rate of infection 

and b  is the rate of recovery (Figure 1). N S I R    is a constant in the SIR model. That is, the total 

population is fixed. We scale ' / , ' / ' /S S N I I N and R R N   . Hence, 0 ', ', ' 1S I R   and

     / / / / 1S N I N R N N N    . For convenience, we use S  for 'S , etc. In the context of 

computer viruses, S  is the number of susceptible units, I  is the number of infected units and R  is the 

number of removed (recovered) units. 

 

Figure 1: An SIR model. 
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In spite of the simplicity of Equation (1), there are no known analytical solutions. However, we could 

infer from Equation (1) that there are two equilibrium points where the RHS of Equation (1) are equal to 

zeroes. The first equilibrium point occurs when 0I I  , S S N   and R R N S   . The second 

equilibrium occurs when 0aS b   or /S S b a   which implies that / 0dI dt   which makes

I I N   but S  is decreasing due to /dS dt . Therefore it is not a stable equilibrium. 

If 0S is the initial value of S at time zero and 0 /S b a  then there will be an epidemic as / 0dI dt  . 
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3 Approximated Differential Equations to the SIR 
Epidemic Model 

We note that from Equation (1), R  is uniquely determined by I . So we focus on S and I  because once 

we solve for S and I , we can readily solve for R . The first two equations of Equation (1) can be 

combined to give: 

dI dS
bI

dt dt
    (2) 

We define 

   
0

0

t

f t I t dt   (3) 

Integrating Equation (2), we get: 

S I b f C      (4) 

where C  is a constant of integration. Since 

1 lndS d S
aI

S dt dt
    (5) 

We get 

afdf
S bf C Ae

dt

      (6) 

where A  is a constant parameter. If we assume that there is 0I  infection at time zero and there are no 

removed units then these are the boundary conditions: 
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   

 

 

0

0

0

0

0 0

0

0 0

0

0

1

0

f I t dt

df
I I

dt

S S

S I

R

 

 



 





 

(7) 

This means that 

0

1

A S

C




 (8) 

Hence, 

01 afdf
bf S e

dt

    (9) 

There are two roots to the RHS of Equation (9): 

/0
1

/0
2

1 1
1,

1 1
0,

a b

a b

aS
f f W e

b a b

aS
f f W e

b a b





 
    

 

 
    

 

 (10) 

where W  is the Lambert function. Lambert function is shown in Figure 2. For real x , there are two 

branches. The first branch is shown in blue and corresponds to  0,W x  while the second branch is 

shown in yellow and corresponds to  1,W x . 
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Figure 2: Lambert function. 

Since the arguments of  W x for 1f  and 2f  are negative, we can infer that the Ws  embedded in 1f  and

2f  are also negative based on Figure 2. Simple calculus dictates that 0 0 /uS ue S e    where /u a b . 

From Equation (1), there are two cases. First, if  1a b u   then the number of infected units will 

decrease right away. That is, the infection will die out with time. Second, if  1a b u   then the 

number of infected units will increase at least at time zero. Therefore, we will focus on the second case 

because the virus will infect the system which is the scenario that we are interested in. Since 0 1S  , we 

reason that: 

 00, 1uW S ue       (11) 

Hence 

/0
2

1 1
0, 0a baS a b u

f f W e
b a b ab bu

    
      

 
 (12) 

From Ref [27], the second order approximation of  1,W x  is given by: 

𝑊(−1,−𝑒−1−𝑧
2/2) ≈ −1 − 𝑧 (13) 

Equating 

0 1 2 3 4

10

5

0 x

W

Lambert function
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21 /1

0

z ue S ue    (14) 

We obtain: 

 02 ln ln 1z S u u      (15) 

If 𝑆0 ≈ 1 then by using a Taylor expansion, we get 

 
  

2

31
1 1

3

u
z u O u


      (16) 

As a result 

𝑊(−1,−𝑒−1−𝑧
2/2) ≈ −𝑢 − (𝑢 − 1)2/3 (17) 

Hence 

 
2

/0
1

11 1
1, 0

3

a b
uaS

f f W e
b a b a


 

       
 

 (18) 

The above holds in general for 00 1S  .  

We observe that the RHS of Equation (9) is concave. That is, 

    
1

2 2

x y
RHS RHS x RHS y

 
  

 
 (19) 

Equivalently, 
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   

    
 

 
 

 

?
2

0 0 0

?
2

?
2

2
/2 /2

1
1 1 1

2 2

1

2

1
0 2

2

0

x y
a

ax ay

x y
a

ax ay

x y
a

ax ay

ax ay

x y
b S e bx S e by S e

e e e

e e e

e e




 




 




 

 


       

  

 
    

 

 

 (20) 

Because the RHS of Equation (9) is concave, we approximate it by a quadratic function. That is, 

1 − 𝑏𝑓 − 𝑒−𝑎𝑓 ≈ 𝑐(𝑓 − 𝑓1)(𝑓 − 𝑓2) (21) 

where 1f  and 2f  are given by Equation (10). Additionally, we determine c  by minimizing the
2 , i.e. 

      
2 2

1 2

0

min 1

f

a f

c
df c f f f f b f e            (22) 

which is the same as 

     

       

        

2

2

2

2

1 2

0

1 2 1 2

0

2 2

1 2 1 2

0

1 0

1 0

1 0

f

af

o

f

af

o

f

af

o

d
df c f f f f bf S e

dc

df c f f f f bf S e f f f f

df c f f f f f f f f bf S e







      

        

        







 (23) 

This yields: 

    

    

2

2

1 2

0

2 2

1 2

0

1

f

af

o

f

df f f f f bf S e

c

df f f f f

    



 





 (24) 
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There is actually a close form expression for c . It can be obtained by performing the integrals in the 

numerator and in the denominator above. However, it is not particularly illuminating so we keep 

Equation (24) the way it is. Observe that the integrals in Equation (24) are integrated from 0f   to

2 0f f   since we know that   0f t   as shown in Equation (3). By doing so, we discard all negative 

values of f which are not physical values. That is, the value of c  is not affected by the value of f  when 

f  is negative. 

We plot the exact 
df

dt
 in Equation (9) and the quadratic function in Equation (21) that approximates 

df

dt
 

in Figure 3. It can be seen that the approximation is very similar to the exact 
df

dt
. Both of them are 

concave functions with a maximum between 1f  and 2f .  

 

Figure 3: Derivative of f . 

For illustration, we assume the following values in Figure 3: 

0

5

1

2

1/ 2

1/ 3

0.99999

5.99991 10

1.74847

a

b

S

f

f









  



 (25) 

Note that the above approximation was also reported in Ref [17]. 

0

0.01

0.02
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0.04
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0.07
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df/dt 

f 

df/dt as a function of f 

Exact

Quadratic
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4 Approximated Solution to the SIR Epidemic Model 

We now solve for  f t  using the quadratic approximation: 

  1 2

df
c f f f f

dt
    (26) 

This is a simple differential equation that can be solved using: 

  1 2

df
dt

c f f f f


 
 (27) 

Ref [28], Integrating: 

1

2

1
ln

f f
t C

f f

 
  

  
 (28) 

where C  is a constant parameter and  1 2 0c f f     assuming that 0c  , 1 0f   and 2 0f   . 

Raising Equation (28) as a power of an exponential, we get: 

1

2

tf f
A e

f f


 


 (29) 

where A  is a constant parameter. Since  0 0f  , this yields: 

1

2

f
A

f
   (30) 

Solving for f : 

 2

2 1

1

/

t

t

f e
f

f f e





 

 

 (31) 
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We can now obtain  I t : 

   
 

 

2

1 2 1 2

2

2 1

t

t

cf f e f fd
I t f t

dt f f e






 



 (32) 

From Equation (5) and the boundary conditions in Equation (7), we get an expression for  S t : 

   
0

af t
S t S e


  (33) 

From Equation (1) and the boundary conditions in Equation (7), we get an expression for  R t : 

   R t bf t
 

(34) 

Note that the above solution was also reported in Ref [17]. 
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5 Results 

We plot I  as a function t  in Figure 4. I  increases as a function of time then reaches a maximum and 

then decreases as a function of time. The blue curve corresponds to the exact solution obtained 

numerically while the red curve corresponds to the approximated solution. The two have the same shape 

and the same asymptotic behaviours as time gets large. In addition, the approximated solution is slightly 

shifted to the right. The maximum number of infected units is about 6.2  percent of the population as I  

is normalized. The input parameters are shown in Equation (25). Note that we did not give a unit for the 

time as we do not know the coupling parameters a  and b . Once we obtain the values for the coupling 

parameters, we will be able to extract the unit of time. This will be done in the future. 

 

Figure 4: Number of infected units as a function of time. 

Similarly, we plot S  as a function of t  in Figure 5. It is a decreasing function of time. The blue curve 

corresponds to the exact solution while the red curve corresponds to the approximated solution. The two 

have the same shape and the same asymptotic behaviours as time gets large. That is, S  reaches constant 

value that is not zero for large time. In addition, the approximated solution is slightly shifted to the right. 

The same behaviours occur when we plot R  as a function of t  as shown in Figure 6. It is an increasing 

function of time and reaches a non-zero value as time gets large. We plot the SIR units as a function of 

time for the exact model in Figure 7 and for the approximate model in Figure 8. As time gets large, the 

SIR units in both cases reach steady values. 
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Figure 5: Number of susceptible units as a function of time. 

 

Figure 6: Number of removed units as a function of time. 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

S 

Time 

Number of susceptible units as a 
function of time 

Exact

Approximation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

R 

Time 

Number of removed units as a 
function of time 

Exact

Approximation



  

16 DRDC-RDDC-2017-R213 
 

  

 

Figure 7: Number of susceptible, infected and removed units as a function of time. 

 

Figure 8: Number of susceptible, infected and removed units as a function of time. 

One could argue that we can solve the original model numerically and store the results in look up tables 

instead of using an approximate & analytical model. There are at least four reasons not to use look up 

tables. First, the parameters a  and b    2O N  need to be parametrized in order to obtain S , I  and R  

  O N  as a function of time t    O N  with specific boundary conditions   O N . This necessitates 

a complexity of at least  5O N  as opposed to  O N  for the time span of the analytical model. Second, 

the ranges of the parameters a  and b are not always known ahead of time and hence it is not always 
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possible to have look up tables for unexpected values of a  and b . This, however, is not a problem for 

the analytical model. Third, as shown in the next section, we can determine the properties of the infection 

analytically such as the maximal number of infections  maxI  or the time when the infection dies out

 I  . This gives insights into the process of infection and the remedy to such an infection. Fourth, as 

shown above, the approximate analytical solution is very accurate and reproduces all of the features of the 

original model.  

Note that these results were also reported in Ref [17]. 
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6 Properties of the Approximated Solution 

6.1 Number of infected units 

From basic calculus, the maximum of  I t  occurs at: 

2

1

1
ln

f
t

f

 
  

  
 (35) 

where 0
d

I
dt

 . Hence, 

max
4

c
I    (36) 

We can determine when   maxI t I  , i.e. before the peak and after the peak: 

 

 

2

1 2 1 2

max2

2 1

t

t

cf f e f f
I

f f e







 



 (37) 

Let 1 2/ tf f e    , where   satisfies: 

 
2

1 22 2 1 0
f f

c 


 
    

 
 

 (38) 

which generates: 

   
2

2 2

1 2 1 22 2 4

2

c c
f f f f

 


   
         
   

  
(39) 

This corresponds to: 
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2

1

ln
f

t
f
 

 
  

 
 (40) 

6.2 Limits as t   

To investigate the long term effects of the system, we evaluate the SIR as time tends to infinity. 

 
 

 

2

1 2 1 2

2

2 1

lim lim 0

t

t t t

cf f e f f
I t

f f e



  


 



 (41) 

 

 2

2 1 2

1

/

0 0lim lim

t

t

f e
a

f f e af

t t
S t S e S e





 


  

 
   

(42) 

 
 2

2

2 1

1
lim lim

/

t

tt t

f e
R t b bf

f f e



 

 
 

 
 (43) 

Note that the long term effects were also reported in Ref [17]. 

6.3 Further corrections 

We note the quadratic approximation is symmetrical with respect to the vertex of the corresponding 

parabola. We could add another modelling parameter   to mimic the asymmetry of Equation (9). For 

example, we could modify Equation (26) to: 

  1 2

1

c f f f fdf

dt f

 



 (44) 

The expression 1 f  induces the asymmetry. The parameters c  and   can be derived by minimizing 

the 
2 . 
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  
 

  
 

2

2

2

1 2

0

2

1 2

0

1 0
1

1 0
1

f

af

o

f

af

o

c f f f fd
df bf S e

dc f

c f f f fd
df bf S e

d f



 





  
     

 

  
     

 





 (45) 

This modifies Equation (27): 

 

  1 2

1 f df
dt

c f f f f




 
 (46) 

Integrating both sides of Equation (46), we get: 

   1 1 2 21

2

ln ln1
ln

f f f f f ff f
t C

f f

             
  

 (47) 

where C  is a constant of integration. We can raise both sides of Equation (47) as powers of e . That is, 

   1 1 2 2ln ln1

2

f f f f f f tf f
e Ae

f f

         





 (48) 

where A  is a constant of integration. The correction for asymmetry emerges as: 

   1 1 2 2ln lnf f f f f f
e
          (49) 

We expect   to be small since the quadratic function is very similar to Equation (26) as shown in 

Figure 3. Expanding Equation (49) as a Taylor series in f , we get: 

     

 

 1

1 1 2 2

2

2
ln ln 1 1 2

1 22

1
2

f

f f f f f f

f

f f f f
e

f ff







       
  

  
 

 (50) 

Substituting the above into Equation (48), we get: 
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 

 

 1

2

2

1 1 2 1

1 2 22

1
2

f

t

f

f f f f f f
Ae

f f f ff








     
   

   

 (51) 

We observe that the zeroth order correction, 
 

 

1

2

1

2

f

f

f

f






, can be absorbed into the parameter A . That is, 

 

 

1

2

1

1

1

2

f

f

f
A

f










 instead of 1

2

f
A

f

 
  
 

. The first order (linear) correction, i.e.  O f , is zero because 

there is no f  term. The first nontrivial correction is the second order term, i.e.  2O f . Therefore, by 

scaling A we get a correction to the first order. The correction  2O f  will be presented in the future. 

Another approach to induce asymmetry that we have examined is to consider: 

   1 21 1

1 2

df
c f f f f

dt

  
    (52) 

We will report this in a future report. 
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7 Conclusion 

In this SR, we have derived an approximated SIR model and found the corresponding analytical solution. 

We could consider the approximated SIR model itself a SIR model. After all, the exact SIR model is a 

man-made model where the couplings among the susceptible units, the infected units and the removed 

units are parts of the modelling. 

Unlike the exact SIR model and in spite of its simplicity, the analytical nature of the approximate solution 

allows one to determine the long term characteristics of the SIR units, the maximum number of infected 

units and the time when this occurs with only three parameters 1 2, ,c f f  (the three parameters of a 

quadratic function) and the boundary conditions. 1 2, ,c f f  are obtained from the couplings ,a b  of the 

exact SIR model and the boundary conditions.  

We draw a parallelism to Little’s law (Ref [29]) in queuing theory which is very simple but also very 

useful because of its simplicity and applicability to queuing analyses. For this reason, we purposely 

minimize the level of details and do not model the specifics of a virus propagation. 

This allows us to plan for cyber-attacks. Knowing 1 2, ,c f f , we can determine the extent of the damage, 

i.e. the number of infected units, the number of susceptible units and the number of removed units as 

functions of time. These numbers are illustrated in Figure 4, Figure 5 and Figure 6, respectively. They 

show how long the system takes to recover, e.g. when the number of infected units reaches a minimum 

acceptable value after attaining a maximum value.  

A capable enemy would integrate a cyber-attack with a missile attack for example. To counter such a 

combined attack, the defence needs to know the extent of the damage due to the cyber-attack. The 

defence could lose its net centric capabilities and hence may engage the incoming missiles in an 

uncoordinated way or even simply launch its interceptors in the wrong direction. As a result, the defence 

will suffer degradations in its effectiveness, Ref [30]. In real terms, this can be translated into the 

difference between success or failure, life or death. 

In the future, we will examine the impact of such a combined attack where the parameters a  and b  

assume realistic values. We will determine the timeline, the damage to the defence and the change in 

measures of effectiveness such as the probability of raid annihilation due to the integration of a  

cyber-attack and a missile attack. 
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List of symbols/abbreviations/acronyms/initialisms 

a  Rate of infection 

A  Constant of integration 

b Rate of recovery 

c The coefficient of degree two for a parabola equation 

C Constant of integration 

  A parameter that induces asymmetry in the approximate solution 

  Discriminant of a quadratic equation 

DRDC Defence Research and Development Canada 

f Integral of the number of infected units 

1 2,f f   Roots to a differential equation 

I Number of infected units 

0I Number of infected units at time zero 

maxI Maximum number of infected units 

N Total number of units 

R Number of recovered units 

0R Number of recovered units at time zero 

S Number of susceptible units 

0S Number of susceptible units at time zero 

SEIR Susceptible-Exposed-Infected-Removed 

SIR Susceptible-Infected-Recovered model 

SIS Susceptible-Infectious-Susceptible 

SR Scientific Report 

t Time 

W Lambert function 

z A parameter in the expansion of Lambert function 
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