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Abstract  

Under the DRDC Joint Intelligence Collection and Analysis Capability (JICAC) project, this report 

proposes a formal multi-satellite intelligence collection scheduling deterministic decision model. A 

detailed description of the optimization model highlighting novelties is given. The underlying 

mathematical formulation is a mixed-integer quadratic programming model mapping intelligence requests 

to collection asset imaging opportunities in order to optimize collection value (value of information), 

subject to a variety of novel task, opportunity, capacity, temporal and cost constraints. Departing from 

known approaches, the new decision model is based on a new coverage approximation scheme to handle 

possible imaged area overlap while demonstrating desirable objective function convexity property making 

local optimal solution a global problem solution. The latter condition enables the utilization of powerful 

exact problem-solving techniques and the fast computation of a bound on the optimal solution, allowing 

sound comparative performance assessment over various problem-solving methods. The report also 

discusses the connection with ongoing decision models, potential problem-solving approaches expected 

to successfully solve the collection scheduling problem, and natural problem extensions. 

Significance to Defence and Security  

This report characterizes a new multi-satellite intelligence collection scheduling problem decision model, 

applicable to space-based intelligence, surveillance and reconnaissance. This work is suitably aligned 

with the RADARSAT Constellation Mission (RCM) project follow-on initiatives and some Canadian 

Armed Forces (CAF) priority on persistent intelligence, surveillance and reconnaissance in the Arctic and 

the North as well as all domain situation awareness to timely propose enhanced intelligence collection 

tasking solution. Part of an ongoing effort, it constitutes a first building block in the development of new 

science and technology approaches to provide near optimal intelligence collection for low density, high 

demand deployable collection assets, anticipated to be beneficial for the CAF. 
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Résumé  

Sous la gouverne du projet de Capacité de Cueillette et d’Analyse de Renseignement Inter–armées ou 

« Joint Intelligence Collection and Analysis Capability » (JICAC) de RDDC, ce rapport propose un 

modèle déterministe de décision formel d’ordonnancement multi-satellites de cueillette du renseignement. 

Une description détaillée du modèle ainsi que les innovations proposées sont présentées. La formulation 

mathématique sous-jacente est un modèle de programmation quadratique mixte mettant en 

correspondance des requêtes de renseignements à des opportunités d’imagerie de ressources de cueillette 

afin d’optimiser la valeur de l’information cueillie, sujet à une nouvelle variété de contraintes de tâches, 

d’opportunités, de capacité, temporelles et de coûts. Se distinguant des approches connues, le modèle de 

décision proposé mise sur un nouveau schéma de calcul d’approximation de couverture prenant compte 

du chevauchement possible de régions imagées, permettant ainsi d’exploiter la propriété de convexité du 

problème d’optimisation résultant. Cette propriété permet l’accès à des méthodes exactes de résolution 

très efficaces ainsi que le calcul rapide d’une borne à la solution optimale supportant une évaluation 

comparative plus objective de différentes techniques de résolution. Le rapport discute également du lien 

avec les modèles de décision existants, des approches et algorithmes applicables pouvant potentiellement 

résoudre le problème d’ordonnancement, ainsi que les extensions naturelles du problème. 

Importance pour la défense et la sécurité  

Ce rapport caractérise un nouveau modèle de décision d’un problème d’ordonnancement multi-satellites 

de cueillette du renseignement applicable au renseignement, la surveillance et reconnaissance effectués à 

partir de l’espace. Ce travail est parfaitement aligné avec les initiatives de suivi du projet « RADARSAT 

Constellation Mission » (RCM) et des priorités des Forces Armées Canadiennes (FAC) telles la 

persistance du renseignement, la surveillance et reconnaissance dans l’Arctique, et le nord ainsi que 

l`éveil situationnel de multiples domaines, visant à proposer une solution améliorée de planification de 

cueillette du renseignement. Il constitue un premier jalon dans le développement de nouvelles approches 

de science et technologie aspirant à une cueillette du renseignement quasi optimale pour des ressources 

déployables de faible densité en forte demande, conduisant à des bénéfices anticipés pour les FAC. 
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1 Introduction 

Cost-effective space-based intelligence collection tasking targeted to suitable CAF Intelligence, 

Surveillance and Reconnaissance (ISR) application domains is key to maintain persistent multi-domain 

situational awareness over the Canadian territory, including the North region. Ultimately aimed at 

efficiently bridging the gap between information need and information-gathering, near-optimal resource 

management is primarily motivated by limited reasoning intelligence collection capability, 

cost-effectiveness, resource limitations, a low density high demand collection asset (satellite) and 

time-constrained uncertain environment. 

DRDC is developing new intelligence collection technology concepts and automated decision 

support/planning capabilities applicable to satellite constellation resource management to support 

collection management awareness, space-based intelligence collection tasking enhancement and near 

optimal resource allocation. Based on a problem statement recently proposed in [1] to contextualize 

Multi-Satellite Intelligence Collection Scheduling, this document presents a formal mixed-integer 

quadratic programming problem formulation. The proposed deterministic problem model translates a 

satellite collection scheduling decision process leading to map a set of intelligence requests to a set of 

collection asset imaging opportunities to maximize collection value (value of information), subject to a 

variety of side constraints. Targeted to space-based ISR application domains, the new convex 

optimization problem model demonstrates computational complexity reduction with respect to commonly 

available state-of-the-art models, making possible the utilization of exact problem-solving methods in 

some cases, while providing a bound on the optimal solution. On top of traditional feature constraints 

largely reported in open literature, the promoted model introduces additional specifications, such as 

suitable task coverage thresholds, optional task mutual exclusion, task precedence, joint value task 

composition, imaging/service time windows, and, thermal constraints over individual and average orbits. 

The connection with ongoing decision models, potential problem-solving techniques and future model 

refinement are then briefly discussed. This work has been conducted under the DRDC JFD 4 Joint 

Intelligence Collection and Analysis Capability (JICAC) project between December 2015 and June 2016. 

The report is outlined as follows. Chapter 2 briefly summarizes the targeted Multi-Satellite Collection 

Scheduling problem at hand, depicting its main novelties. A mixed-integer quadratic programming model 

formulation is then introduced in Chapter 3. It presents key data structure representations and the 

corresponding mathematical model. Chapter 4 discusses prospective methods and algorithms to solve the 

problem as well as future problem complexity refinements naturally envisioned. Finally, a conclusion is 

given in Chapter 5, briefly summarizing the main findings and the proposed way ahead. 
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2 Multi-Satellite Collection Scheduling  

2.1 Background  

A brief introduction to the satellite scheduling problem and its premise is described in [2]–[5]. Related 

work includes contributions pioneered by Lemaître et al. on the satellite planning/scheduling problem. An 

early survey was published in [6]–[7]. Based upon a low density high-demand collection asset premise, 

the general problem is known to be computationally hard, requiring exponential resources or run-time. 

For convenience purposes, early work mainly focused either on a single sensor satellite or small and 

homogeneous constellation problem settings. In most reported cases, it predominantly deals with simple 

point (spot) target observation tasks, and relies on new task clustering and preprocessing strategies to 

mitigate computational complexity. A more contemporary comprehensive technical survey on satellite 

image acquisition scheduling may be found in [8]–[11] and [4], respectively. Alternate work relates to 

downlink scheduling [12]–[14] and, joint observation and downlink scheduling optimization using 

combined [15]–[16] and decomposition [17] schemes coupled to approximate methods. Satellite 

scheduling contributions for some dynamic settings are also reported in [18]–[24]. Accordingly, task 

demand, priority, dominance and density, and/or mixed ground/on-board scheduling strategies are 

exploited to manage uncertainty and resolve conflicts in adjusting a flexible precomputed solution. 

Open-loop satellite planning/scheduling has traditionally been connected to knapsack, time-constrained 

longest path, coverage path planning, constraint satisfaction, graph-based and mathematical programming 

problem formulations respectively, as reported in [4], [11]. Coverage path planning [25] is naturally 

well-suited for satellite surveying tasks. But most research contributions largely assume perfect coverage 

and sensing capability (no false alarms), as well as unbounded resources. A recent survey on coverage 

literature is given in [25]. Vasquez et al. [26]–[27] and Wolfe et al. [28] formulated satellite scheduling as 

the 0-1 knapsack problem under limited constraints. Original constraint satisfaction problem formulations 

and variants have been alternatively proposed by Lemaître et al. [29] and Verfaillie et al. [30]. 

Graph-based approaches using directed acyclic graph model [31]–[32], graph coloring [33]–[34], 

multi-objective frameworks [8], [21], [16], [35] have also been exploited to handle satellite scheduling. 

Finally, many approaches relying on a mathematical programming framework have been developed for 

satellite scheduling, first ignoring key memory and energy capacity constraints, as stated by Benoist et al. 

[36], Habet et al. [37]–[39] and Lemaître et al. [7]. Building from the original work, Liao et al. [40]–[41], 

Lin et al. [42]–[45] and Marinelli et al. [14] extended problem modelling introducing time-indexed integer 

programming formulations. Alternate integer programming models exploiting network flow [46]–[49], and 

longest path problem with time windows [50] formulations have also been suggested. A variety of related 

problem-solving approaches and variants ranging from operations research, artificial and computational 

intelligence techniques to heuristic methods have been developed and or adapted. Most popular 

metaheuristic methods include tabu search, genetic algorithms and ant colony, local search, hill-climbing 

and simulated annealing. Greedy algorithms, iterative and constructive solution methods and other multi-

stage priority and conflict-avoidance -based heuristics have concurrently been developed. In counterpart, 

advocated exact methods include mathematical programming techniques, and branch and bound 

algorithms. However, most reported research contributions mainly focus on homogeneous satellites and 

single constellation settings, deal predominantly with point target tasks, and design new task clustering 

and preprocessing strategies to mitigate computational complexity. By and large, they mostly ignore large 

area coverage, complex task structure, joint value task composition, minimal task coverage thresholds, 

optional task mutual exclusion, task precedence, imaging/service time windows and satellite thermal and 
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duty cycle constraints. Thus far, the proposed attempts to capture a multiple-visit imaging task (e.g., large 

areas of interest) have mainly introduced nonlinear modelling intricacies, leading to serious 

computational and solution quality limitations.  

2.2 Problem  

Based on the problem statement introduced in [1], a deterministic decision model is proposed for an 

open-loop, centralized, deterministic, multi-satellite Earth Observation intelligence collection tasking 

(image acquisition) problem. In that problem setting, a predetermined mission goal/task decomposition 

structure along with related tasks is assumed to be known in advance. Specified by the collection 

manager, the structure reflects information needs translating intelligence request breakdown derived from 

commander’s critical information requirements. Hierarchical value apportionment over the goal/task 

structure from the root to the leaf nodes are assumed to be known as well. Accordingly, as displayed in 

Figure 1, it proposes a weighted task decomposition structure combining composite or abstract requests 

capturing new spatial and temporal dependencies, reflecting more realistic mission complexity. In Figure 1, 

vk is the value associated to goal/task node k. The notion of value is made more explicit in Chapter 3. 

 

Figure 1: Mission/task decomposition tree structure. Goals are assigned values hierarchically from the 

root to the leaves, distributing parent node values over child nodes (value apportionment). The problem 

objective is to allocate collection assets to maximize collection value translating serviced intelligence 

requests over all leaf nodes. Collection value of information is expressed in terms of  

nominal task value and expected quality of information/collection to be collected. 

The open-loop collection problem focuses on low-density high demand assets and involves a single 

episode. Focusing on image acquisition scheduling, multi-satellite collection tasking can be stated as 

follows: given a set of information requests (areas of interest to be observed) properly translated in 
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weighted tasks, a set of heterogeneous collection assets, supporting resources such as ground stations, a 

collection tasking objective, a set of constraints defined over mission, task, operational, collector, 

supporting resource, communication, capacity, temporal and cost, the problem consists in allocating 

collection assets owned by single/multiple stakeholders to imaging observation task opportunities, over a 

predetermined time horizon to optimize single or multiple objectives. A typical objective consists of 

maximizing the value of information (collection value).  

Figure 2 pictures possible areas of interest to be observed over the course of a satellite pass for different 

beam resolution modes. Imaging task opportunities refer to any possible observation actions of an area of 

interest within the field of view of an orbiting satellite sensor, along with various attributes (e.g., task 

identifier, imaging time interval: start/end time, duration, resolution, satellite identifier and related orbits). 

Opportunity construction for a given task imaging resolution requirement or beam width, is illustrated by 

the generation of parallel ‘strips’ as shown in Figure 3. Accordingly and based on sensor’s field of view, 

basic strips with a corresponding beam width are first sequentially generated along the satellite ground 

track trajectory to meet geographical area of interest (AOI) boundaries. Basic strips are then subdivided to 

naturally synchronize intersecting time intervals, creating additional feasible imaging opportunities 

enriching scheduling flexibility. Figure 4 shows possible strip patterns generated for three satellite passes 

over different AOIs. 

 

Figure 2: Source: RADARSAT-2—Courtesy of the Canadian Space Agency [51]. 
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Figure 3: Large area (polygon defining AOI) coverage decomposition in strips,  

naturally defined along a satellite ground track trajectory. 

 

Figure 4: Task area decomposition into disjoint parallel strips for a given sensor resolution requirement 

is generally constellation/satellite or even possibly orbit-dependent, defining possible overlapping  

areas for multiple satellite constellations. Heterogeneous satellite composition further  

exacerbates the variability of task area decomposition patterns. 

Task area decomposition is opportunity-driven which is satellite and orbit-dependent. This contrasts with 

the limited single “fixed-strip” pattern generated for an arbitrary reference satellite trajectory, traditionally 

advocated in open literature. The latter usually turns out particularly convenient in the case of a unique 

constellation composed of homogeneous satellites since satellite members follow similar trajectories, 

observing near similar areas when sufficiently close to one another. But, imposing a “fixed-strip” pattern 

approach may fall apart, unnecessarily restricting or overlooking real alternate imaging opportunities. 

Such a static area decomposition imposed to multiple and heterogeneous or virtual constellations 

involving various satellite geometries, as illustrated in Figure 4, would make on-board maneuver costly or 

unrealistic, and opportunity coverage calculations very complex. But, these considerations still remain 
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largely ignored in past reported work. In contrast, the current setting promotes generalization, making 

opportunity generation satellite-driven rather than constellation-driven. 

Problem description may be briefly summarized as follows: 

Input:  Requests/orders, goal/task structure, satellite collection assets, time horizon (number of 

orbits/passes/revolutions). 

Goal:  Allocate resources to maximize collection value utility function. 

Task: Preprocessing: Observation request area subdivision in strips. 

Specifications: Target (spot) /area (polygon); area definition along azimuthal and 

elevation coordinates. 

Requirements including National Image Interpretability Rating Scale (NIIRS) rate or 

resolution (waveform/beam—predefines tasks and satellite combinations/parameters); 

mono/stereo. 

Collection assets: Heterogeneous collection platforms and supporting resource (e.g., ground 

station communication asset). 

Imaging opportunity calculation based on satellite propagation model. 

Constraints: Task visibility/precedence/priority, mandatory visits, minimal coverage, mission 

single and cumulative maximum imaging cost, temporal and resource capacity. Temporal 

constraints include set-up/service and imaging duty cycle, time windows, conflicting 

opportunity transition whereas resource capacity constraints comprise energy budget, 

on-board storage and communication. An imaging observation cannot be interrupted. 

Output: collection schedule of image acquisitions/observations. 

Despite prior goal/task decomposition knowledge, satellite-task allocation is not necessarily determined 

in advance. This paves the way to a hybrid/mixed partial planning and scheduling problem approach 

depending whether prior task assignment is known or not. The above collection tasking problem presents 

similarity with well-known operations research “longest path” and capacitated “vehicle routing with time 

windows” (VRPTW) problem variants. In the latter case, the satellite scheduling problem is reduced to a 

constrained VRPTW. Satellites represent vehicles having limited visibility on tasks associated with 

customers, imaging observations are mapped with servicing customers, and orbits correspond to periodic 

vehicle tours or routes, subject to a variety of task and resource capacity constraints (e.g., energy budget, 

on-board memory storage, communication bandwidth). 

2.3 Novelty 

The proposed hybrid decision model combines a classical coarse-grained model component generally 

designed for complex tasks such as large area coverage, in which a limited number of task plans must be 

precomputed, to a fine-grained model component relaxing the need for any predetermined task plans, 

focusing on non-complex tasks and further expanding search space exploration for better solutions. The 
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fine-grained component explicitly embeds task area coverage modelling, rather than relying on complex 

area precomputations. The hybrid approach generalizes point target tasks, introduces composite request 

abstracting primitive request definition and combine multiple related tasks whenever required. It further 

extends the basic concept of homogeneous trailing satellite constellation to any heterogeneous satellite 

constellation configuration to properly and efficiently handle area task coverage, coupling disjoint and 

overlapping strip task decomposition schemes in a single model. 

Largely limited to single constellation and homogeneous satellite collection scheduling problems for 

convenience purposes, currently known model formulations from the open literature fail to explicitly 

capture coverage contributions involving multiple intersecting areas, while being computationally 

prohibitive to generate provably optimal solutions. As a result, problem-solving has primarily been 

restricted to the use of heuristic methods and metaheuristic techniques. In contrast to exclusively develop 

approximate problem-solving techniques to an exact hard problem model, the development of an 

approximate model using exact techniques can be alternately contemplated as well. Featuring 

heterogeneous satellites and constellations, the proposed integer programming optimization model 

includes a composite coverage approximation function combining arbitrarily overlapping imaging 

opportunity/strip areas emerging from various sensor geometry. Accordingly, the proposed reformulation 

permits to capture any overlapping imaging opportunity strip area configurations defining a target/task as 

pictured in Figure 5–6 for multiple concurring satellite opportunities, rather than exclusively relying on 

disjoint contiguous imaging opportunity areas target/task decomposition requirements as shown in  

Figure 3 which negatively impact solution quality by deliberately overlooking alternate potential 

overlapping opportunities. In its simplest form, area coverage second-order approximation consists in 

subtracting the sum of opportunity areas covered from the sum of mutually intersecting areas over all 

covered opportunity area pair combinations. This approach tends to naturally penalize solutions having 

significant area intersections among selected opportunities, alternately encouraging opportunity 

composition presenting minimal overall intersecting areas in covering the targeted area of interest. 

 

Figure 5: Overlapping imaging opportunities (strips) for a given resolution for two mutually crossing 

satellite ground tracks moving downward. A satellite pass is assumed to show three opportunities. A 

5-opportunity coverage plan {t1,t3,t1,t2,t3} is illustrated, minimizing intersecting areas.  

A third-order approximation would further add area contributions from all intersecting opportunity triplet 

combinations to improve overall coverage precision. Based on a reasonable assumption over typical 
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solution quality expectations, which consists in focusing on low order coverage contributions to minimize 

desirable area intersections as much as possible, the advocated coverage approximation is 

computationally convenient while significantly decreasing the number of decision variables otherwise 

required. The approach could further be adapted to restrict consecutive collection asset observations to the 

most likely feasible opportunity transitions whenever required resulting in prospective computational 

gains. Unsuitable transitions involving distant task opportunities or incurring prohibitive delays are 

simply disregarded in advance. 

 

Figure 6: Overlapping imaging opportunities/strips for a given sensor resolution resulting  

from three different concurring satellite passes (left/R, right/G, up/Y), reflected  

through different tones, over a large area of interest. 

The proposed mixed-integer quadratic collection scheduling (tasking) network flow problem 

reformulation extends classical models while reducing combinatorial complexity. The model presents 

suitable objective function and constraint convexity properties (see Chapter 3), making well-known 

powerful optimization technology at our disposal to optimally solve large problems or compute optimality 

gap. The approach assumes a predefined mission decomposition scheme reflecting a hierarchical goal 

structure. At each level, a nominal value reflecting priority on information need is attached to a goal node. 

Nominal value apportionment is achieved from the top level goal down to the task level. Lower level 

goals correspond to collection tasks. Multiple objectives are currently represented via a single main 

objective along with subordinate objectives alternatively described as constraints. The decision model 

introduces the notion of quality of information/service coupled to partial task completion/satisfaction, 

heterogeneous satellites from multiple constellations, overlapping imaging opportunities. It includes 

primitive and compound tasks while incorporating multiple task coverage requirement. The network flow 

formulation alternately makes use of a collection graph to conveniently capture feasible opportunity 

transition and facilitate constraint expressivity, implicitly encoding conflicting opportunity or certain time 

constraints. The proposed decision model presents a variety of new constraints, including task precedence 

or mutual exclusion; opportunity transition including conflicting opportunity over consecutive orbits 

which improperly remain largely ignored in literature; satellite utilization/imagery budget or cost, 

resource, as well as orbital and average satellite duty cycle. Moreover, in cases where opportunity 

transition time impacting energy budget constraints is transition-independent (e.g., satellite-dependent 

constant as for synthetic aperture radar satellites) computational gains are further expected due to a 
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reduction in the number of decision variables required. The underlying approach also questions and 

revisits common task priority handling practice, often arbitrarily imposing task partial ordering to 

schedule orders, regardless of alternate factors such as task opportunity contention reflecting the number 

of opportunities that can possibly service a task. The basic principle of priority is meant to be a conflict 

resolution or a tie-breaking mechanism, and not a discrimination policy being improperly used as a 

precedence constraint to partially order task or to preempt task when unnecessary. Finally, contrarily to 

most state-of-the-art reported work, the new problem model formulation provides a solution quality 

/collection value upper bound which can be rapidly computed from the relaxed problem decision model 

(decision variable integrity relaxation), presenting an objective measure to compute optimality gap to 

properly compare relative performance from alternate techniques.  
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3 Mixed-Integer Quadratic Programming 

Model Formulation 

A mixed-integer quadratically-constrained problem formulation for the deterministic open-loop decision 

problem described in Section 2 is proposed. It revisits standard nonlinear collection tasking problem 

modelling resulting to a mixed-integer quadratic program (MIQP). The MIQP model exploits an 

acceptable second or third-order approximation to estimate coverage calculations while reducing 

undesirable area opportunity intersections or overlap leaning towards unnecessarily increasing 

redundancies and cost. The formulation relies on a directed acyclic graph representation to depict possible 

imaging observation moves for each satellite revolution and, a mathematical model to explicitly capture 

decision problem objective and constraints. The graph representation proves particularly convenient to 

easily specify problem constraints in the decision model. 

3.1 Collection Graph Representation  

A satellite network representation pictured under the form of a directed acyclic graph is exploited to 

capture satellite observation moves/collection opportunities over a given orbit as illustrated in Figure 7. 

The collection opportunity network proves very convenient to significantly simplify constraint modelling 

during problem model construction. It implicitly reflects conflicting intra-orbit opportunity transition 

constraints. Such constraints comprise orbit duration or itinerary path length, legal moves, and single 

satellite orbit/path solution. Multiple disconnected subtours over a given orbit are prohibited. Let H be the 

time horizon, SAT be a set of heterogeneous earth observation satellites sat = 1,2,…,|SAT|, and Tsat be 

the satellite sat revolution period. Orbit (t, sat) is satellite (sat) and cycle (t) -dependent where sat 

SAT and t  HTsat. Let R be the set of requests r with nominal value Vr0 and, R the set of 

complete/partial feasible requests (tasks) in corridor visibility of orbit  (R R) matching sensor orbit 

 capability, Sr the set of task s with nominal value Vrs0 composing request r (Vr0= ∑s Vrs0), O the set of 

image acquisition opportunities o over orbit , and Ors the set of opportunities associated to request r and 

task s during orbit (O= rs Orsrespectively. Opportunities are generated using a special purpose 

software calculating feasible imaging options based on satellite kinematics, on-board sensor 

characteristics and geometry. The basic directed acyclic graph description can then be summarized as 

follows. Let G=(V, A) be a directed acyclic graph coupled to satellite orbit  ={1,...,||} where 

|| = |SAT|*H/ Tsat. V denotes a set of vertices reflecting satellite opportunities {o(r,s)} in orbit 

V=O). Alternatively, A designates theset of arcs (o,o’) connecting o(r,s) to o’(r’,s’), encoding 

feasible opportunity transition in orbit where o, o’V. An arc may alternately reflect a specific 

collector decision regarding the next imaging move to execute. A partial view of a satellite orbit network 

is exhibited in Figure 8. 
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Figure 7: Ground track projection of a satellite moving to the right over a given orbit. A 

network representation is used to capture possible observations or collection opportunities. A node 

reflects an imaging opportunity o whereas an arc connecting two nodes translates timely feasible,  

legal transition moves between two consecutive opportunities o and o’. For clarity purposes,  

only a subset of feasible transitions has been shown.  

 

Figure 8: Directed acyclic graph illustrating opportunities and feasible transitions for a given satellite 

orbit. The top network diagram shows opportunities A-E (N=5) and all possible legal transitions. 

Fictitious origin (o) and destination (d) location nodes are artificially introduced to conveniently define 

legitimate paths in the graph. The network shown at the bottom is a simplified subnetwork keeping  

most likely possible transition moves in order to reduce computational complexity.  

An integer binary decision variable xrso related to node visit o(r,s)  V defines a basic satellite path’s 

construct. Accordingly, path solution for satellite orbit  includes vertex o(r,s) when xrso= 1. These 

decision variables are coupled to continuous ‘resource’ decision variable tsrsoreferring to the start time of 
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imaging task (r,s) over opportunity o and orbit Flow decision variables ursor's'o’ characterizing 

opportunity transition from o(r,s) to o’(r’,s’) are however required to represent variable resource 

consumption constraints (e.g., energy budget). The variable assignment ursor's'o’ =1 indicates a transition 

between task s from request r over imaging opportunity o and task s’ from request r’ over imaging 

opportunity o’ during orbit where (o(r,s), o’(r’,s’)) A. Therefore, a feasible satellite path may be 

built traveling along arcs connecting o to d nodes, instantiating flow decision variables. Constraints on 

resource variables tsrso prevent unsuitable solution generation composed of disjoint subtours to occur 

during path construction. The resulting network structure depicting a directed acyclic graph may then be 

used to construct a legal satellite path solution for a given orbit through a temporal sequence of binary 

integer flow decision variable instantiations. In order to reduce computational complexity, the original 

acyclic graph may be further revisited, restricting consecutive satellite observations to most likely 

opportunity transitions. Accordingly, opportunity transitions involving unacceptable delays are 

deliberately ignored. This is exemplified in the bottom diagram of Figure 8. Preliminary network/graph 

generation and exploitation allows simplifying decision model construction substantially. 

3.2 Collection Tasking Mathematical Model 

The proposed mathematical collection tasking decision model is a convenient quadratic approximation of 

the decision model and the nonlinear objective function commonly used in the literature [4]. It relaxes a 

non-convex problem model to a convex formulation, approximating collection value. The proposed 

convexity property emerges from the semi-definite positive matrix used to describe the quadratic 

formulation. That property guarantees a local optimal solution to be a global optimum. The basic idea 

exploits the fact that total coverage resulting from n swaths may be expressed as a sum of contributions 

involving all possible i
th
–order (i = 1..n) overlap combinations, corresponding to i swaths intersection 

terms. Accordingly, a polynomial approximation implicitly constraining location coverage to a limited 

number of visits to minimize overlap contributions turns out to be sufficient and quite acceptable in 

practice to efficiently estimate quality of collection (area coverage) and guide solution space exploration 

for small area targets. As a result, a second order decomposition scheme may therefore be used to 

estimate coverage for any feasible candidate collection task plan, significantly reducing combinatorial 

complexity while relaxing the need for a parallel strip AOI decomposition structure, usually restricted and 

valid only for traditional trailing satellite constellations. 

3.2.1 Parameters and Variables 

The parameters and variables used to specify the basic problem model formulation are described as 

follows: 

Parameters: 

H: time horizon 

SAT: set of heterogeneous earth observation satellites. A satellite may be agile or non-agile. 

The former refers to a platform having multiple degrees of freedom in motion and 

control whereas the latter denotes a satellite that can simply maneuver in a single 

rolling dimension perpendicular to the orbit direction. 

Tsat: satellite sat revolution period, sat SAT 

: collection of orbits/revolution/track/pass/path  {1,..,||}= |SAT|*|sat| (number of 

orbits per satellite). Orbits are sorted in increasing order. 
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|sat| = ⌈𝐻 Δ𝑇𝑠𝑎𝑡⁄ ⌉ 
(t, sat)  cycle t  HTsat , sat SAT  

Sensors: electro-optical (EO), infrared (IR) or synthetic aperture radar (SAR) 

 can be partitioned in ascending and descending orbits: AD 
rs: collection of orbits/revolution/track/pass  related to task (r,s). rs  

sat: collection of orbits for satellite sat 

T: satellite orbit  revolution period 

R: set of candidate requests r. A request r defines either a point target (spot) or a polygon 

area (region) Ar to be covered with beam (waveform) B. Each request r is decomposed 

into a set Sr of tasks. A point target generally corresponds to a primitive request 

comprising a single task whereas a compound request includes a set of tasks s. 

Ar: area of interest (AOI) of request r 

Ars: area of interest of strip task s under request r, associated with area of interest Ar  

R: set of complete/partial requests in orbit  corridor (track) visibility (R R) and 

matching sensor orbit  capability (feasible pairing—matching). Partially visible 

requests are included. 

R: set of generally complex requests coupled with optional predefined (user-defined) 

collection plans to select from  

Rstereo: set of imaging requests demanding two nearly concurrent observations from different 

perspectives (stereo). (Note that sophisticated stereo requests presenting complex 

observation conditions rather impose r  R) 

Tstereo,r: acceptable delay between observations to satisfy a stereo request r 

Sr set of task s composing request r (e.g., subareas/regions/strips composing an AOI) 

[ r , r ] 
completion time window for servicing (imaging) request r and related tasks 

VISrs: binary visibility matrix indicating if task s under request r is within sensor 

footprint/field of view (projected sat track area) over orbit. visrs= 1 if r R and 

task s is visible to orbit , assuming on-board sensor successfully matches task 

requirements, otherwise visrs0. 

PRECrsr’s’: binary matrix mapping partially ordered task pairs (r,s; r’,s’), defining a precedence 

relationship. PRECrsr’s=1 imposes (r,s) to precede( r’,s’).  

ME rsr’s’: binary matrix mapping mutually exclusive task pairs (r,s) and (r’,s’), imposing to 

service at most one conflicting task 

Vr0: nominal value of request r ranging over [0,1] 

Vrs0: nominal value of request-task (r,s). ∑ Vrs0𝑠∈𝑆𝑟
= Vr0.

 
For a coverage request, 

Vrs0=Vr0
Ars

Ar
 

proprs_THR: minimal relative task (r,s) area coverage threshold (proportion) requirement  

rso: pointing/look angle for imaging task (r,s) opportunity o on orbit

tsrso  imaging task (r,s) opportunity o start time (s) on orbit 

terso  imaging task (r,s) opportunity o end time (s) on orbit 

ors: imaging/collection task (r,s) opportunity o on orbit. It is defined as follows: 

<identifier o.ID, request r, task s, beam mode B, look/incidence angle rso,  

time interval [tsrso, terso], satellite direction (Ascending/Descending) Dir,  

orbit > = < o.ID, r, s, B, rso, [tsrso, terso], Dir, >
O: set of all collection opportunities (rs Ors or O) 
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Ors: set of collection opportunities (over all possible orbits) for task (r,s) 

O: set of collection opportunities (over all tasks) during orbit 

Ors: set of collection opportunities for request r task s during orbit

drso: imaging task (r,s) opportunity o duration (dwell time) (terso- tsrsoover orbit 

 : orbital imaging duty cycle period—maximal (absolute) cumulative imaging time (s) 

deemed acceptable over orbit  imposed by thermal capacity constraints 

sat : 
maximal average imaging time (s) over orbit  imposed by thermal capacity 

constraints

W: memory storage capacity (memory units) in orbit   

w: memory consumption rate (memory units/s) by an observation in orbit   

E: energy capacity (Joule) in orbit   

eo: energy consumption rate (Joule/s) by an observation in orbit  

es:  energy consumption rate (Joule/s) for task transition by a sensor in orbit 

0t : set-up time (s) for imaging opportunity transition 

''' osrsort : transition time (s) from task (r,s) collection opportunity o to task (r’,s’) collection 

opportunity o’, over orbit  posterior to the set-up phase. 

(e.g., ''' osrsort = | rso - r’s’o’|/sl for an optical satellite, where sl is the slewing rate 

related to orbit  

sat

c

osrsort ''' : 
transition time(s) over consecutive orbits sat and (sat for a same satellite platform 

sat (e.g.,   satsatsat
slt osrrsosat

c

osrsor   1''''''   for an optical satellite  

satooCONFL ' : binary matrix mapping time-conflicting opportunity pairs over consecutive orbits sat 

and (+1)sat for a satellite sat where osat and o’(+1)sat. 

  satsatsat srosroCONFL  )1,','('),,(  = 1 indicates mutually exclusive imaging opportunities 

if 
 

CONFLooSATsat

SsSsRrrtttets

satsat

satrr

c

osrsorrsoosr satsatsatsat





)',(,,)1(

,,',,', ''''0)1('''




 

rs: set of user/pre -defined (sub) task plans {rs} that can cover (sub) task (r,s) 

(rR, rs={0,1,2,….,|rs|), rs = {,rs1, rs2, …, rs ,…, rs|rs|} = {rs} , 

where  represents the null plan.  

rs : th
 (sub) task plan defining a subset of collection imaging opportunities selected from a 

given set Ors to achieve/cover task (r,s) (rR) - rs ={rs1, 


rs2, …., rs|rs|}  

Arso area coverage, overlapping area of interest Ars defining task s under request r, 

associated with opportunity o on orbit  
strip

rso
A

 : 
imaging strip area (swath) coverage associated with opportunity o on orbit  for task s 

from request r (
strip

rso
A

 ≥ Arso) 

Arso o’’ : overlapping area between opportunity o, orbit and, opportunity o’, orbit ’, over the 

area of interest Ars associated with task s under request r 

costrso: imaging opportunity o cost associated with task s, request r during orbit  

costrs max: imaging budget available for request r, task s 

costmax: overall imaging budget available 
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Decision variables: 

vr: continuous variable over [0,1] capturing the collection value of request r  

visitrs: binary variable indicating if task s under request r has been visited over the time 

horizon. visitrs {0,1} 

wrs: binary variable referring to the selection of plan  among possible plans in the set rs 

to cover task (r,s).  

xrso: binary variable indicating whether task s under request r is scheduled to be serviced 

by opportunity o on orbit xrso≤ visrs 

zrsoo’’ : binary variable indicating whether task s under request r is scheduled to be serviced 

by opportunity o on orbit and, opportunity o’ on orbit ’ 

ursor's'o’: orbit  network flow binary decision variable, indicating a transition between 

imaging task s under request r opportunity o and, imaging task s’ under request r’ 

opportunity o’, in orbit  i.e., (r,s) imaging precedes (r’,s’) image acquisition

The decision model is given as follows: 


Rr

rvmax  (1) 

Subject to the constraint set: 

Complex task (coarse-grained model): 





 RrwVv
r rsSs

rsrsr  
 

0
 

(2) 

rsrsrsrsr

Oo

rso

rs

rs SsRrxw
rs rsrs

  
 



 





 




},,...,2,1{,,
1

 (3) 

rrs SsRrw
rs




,1 



  
(4) 
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Non-complex task (fine-grained model): 

   
















 

RRr

xxxx
DxCVv

rs rs rs rsrs rsr

oo

Oo Oo

rsorsorsorso

orso

Oo

rsorso

Ss

rsr

|

2
)','(),(

' '

''

2

''

''0

'































 
     





     

rs

orso

orso

rs

rso

rso
A

A
D

A

A
C

''

'',






   

(5) 

Minimal coverage:  

rrs

Oo

rso

rs

SsRRrvisitx
O

rs rs

rs

 
  



,|
1









 

 
(6) 

   

rrsTHRrs

oo

Oo Oo

rsorsorsorso

rs

orso

Oo

rso

rs

rso

SsRRrvisitprop

xxxx

A

A
x

A

A

rs rs rs rsrs rs













 
     





   

,|

2

_

)','(),(

' '

''

2

''''

'
















 

 

(7) 

Task Precedence: 

 

'''

''''''''

''''

''

',

,',,',1







 

srrs

osrosrrso

osr

rsorso

srsr

OoOo

Rrrxxx
ts

dts
PREC
















 

 (8) 

''''

,

'''''' ',',,',', 



 


srrr

Oo

rsoosrsrsr OoSsSsRrrxxPREC
rs

 


 
(9) 
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Mutual Task Exclusion: 

'''

'''''''

'

,',',,',
1

1




 



sr

rr

Oo

rso

rs

osrsrsr

Oo

SsSsRrrx
O

xME
rs



  
   (10) 

Orbit task visibility constraints: 

  rsrrsrso OoSsRrvisx  ,,,
 (11) 

Conflicting opportunities over consecutive orbits for a particular satellite platform: 

 

satsat

satsatsat

srrssat

rrosrrsooo

OoOo

SATsatSsSsRrrxxCONFL

)1(''

')1(''''

',,

,,',,',1














 (12) 

Stereo imaging/observations: 

'111''1 ',,',,     srsrrsstereoosroosr OoOoRrxz  (13) 

'11''1''1 ',,',,     srsrrsstereoosroosr OoOoRrxz  (14) 

stereo

Oo

osr Rrx
rs sr

 
 





2
1

1







 (15) 

)','(),(

' '

''11

1 '11

2

oo

stereo

Oo Oo

oosr

Oo

osr Rrzx
rs sr rs srrs sr



 







 



   



 

      
   (16) 

  

'11

,''11''11

',

,',,32



 









srsr

rsstereorstereoosrosrosrors

OoOo

RrTxxtsts
 (17) 
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Energy constraints over orbit :  

 

  


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Euttes

xtsteeo

oRr

AVG

Aosrrso
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 (18) 
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 

rsrrso

Rr Ss Oo

osrsor OoSsRrxu
r sr

  
  

,,,
' ' '

'''

'''

 (19) 

Opportunity flow conservation:  

),(,))"""(),'''((),(,))'''(),((

0

" "" """
"""''''''



 



 


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

  



  

    

osrosrosrrso

Rr rSs srOo
osrosr

Rr rSs rsOo
osrsor uu

 

                                                                          ''' ',,',' srr OoSsRr   

(20) 

  11 1111 do xx  (21) 

Image acquisition cost: 

maxcostxcost
Rr Ss Oo

rsorso

r rs

   
   



 

 (22) 

rrs
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rsorso SsRrcostxcost
rs

 
 

,max






 (23) 

On-board memory storage capacity: 
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  



 

Wxtstew
Rr Ss Oo

rsorsorso

r rs

 (24) 
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Imaging duty cycle: 

 
  

 

 Rr Ss Oo

rsorso

r rs

xd
 (25) 

Average imaging duty cycle over multiple consecutive orbits: 


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tt Rr Ss Oo
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 (26) 

Decision variables: 
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





Rrw

Rrv

OoOoSsRrz

OoSsOoSsRrrvisitxu

rs

r

rsrsrsrorso

srrrsrrsrsoosrsor









}1,0{
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'''

''''''

 (27) 

The quadratically constrained program consists of maximizing collection value of servicing a set of 

requests composed of tasks, as described in (1) subject to linear constraints (2)–(4), (6), (8)–(27) and 

quadratic constraints (5) and (7). Inequality (2) captures the collection value of complex tasks given 

predefined feasible task collection plans to choose from. Imaging opportunity assignments composing 

such a plan is reinforced by (3), while equation (4) ensures that at most a single plan is selected. In 

contrast, approximate collection value of a non-complex task is expressed by the quadratic constraint set 

(5). It accounts for individual imaging opportunity coverage and, all opportunity pair partial coverage 

overlap combinations. Note that equation (5) could be directly integrated in the objective (1) as well. 

Minimal approximate relative task coverage requirement is depicted through constraint sets (6)–(7). Note 

that (5) and (7) can be linearized, substituting the quadratic expression [.] reflecting the product 

𝑥𝑟𝑠𝑜𝜌𝑥𝑟𝑠𝑜′𝜌′ , by the integer variable 𝑧𝑟𝑠𝑜𝜌𝑜′𝜌′  along with the constraint sets 

𝑧𝑟𝑠𝑜𝜌𝑜′𝜌′ ≤ min(𝑥𝑟𝑠𝑜𝜌 , 𝑥𝑟𝑠𝑜′𝜌′) and 𝑧𝑟𝑠𝑜𝜌𝑜′𝜌′ ≥ 𝑥𝑟𝑠𝑜𝜌 + 𝑥𝑟𝑠𝑜′𝜌′ − 1 respectively. This is otherwise 

implicitly achieved by commercial solvers during a preprocessing phase. Constraint sets (8)–(9) capture 

task precedence relationships (e.g., detection (r,s) must precede identification (r’,s’)) whereas constraint 

set (10) ensures mutual task exclusion on some limited, partially ordered tasks. Inequality (11) translates 

intrinsic request/task visibility over some satellite orbits limiting the number of decision variables. In 

contrast to acyclic graphs implicitly capturing feasible intra-orbit imaging opportunity transitions, legal 

opportunity transitions over two consecutive orbits for a given satellite is explicitly handled through 

constraint set (12). This may occur for a specific satellite connecting the last and the first observations 

from consecutive orbits respectively. Those constraints are easily generated using consecutive same 

satellite path collection networks to identify mutually exclusive (time-conflicting) inter-orbit imaging 
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opportunity pairs. It should be noted that this condition remains largely ignored from published decision 

models, leading possibly to unfeasible solutions. Primitive stereo imaging constraints are governed by 

equations (13)–(17), in which both observations must take place almost simultaneously. Sophisticated 

stereo imaging requests are rather managed as complex tasks through predefined possible task collection 

plans, as depicted trough constraint sets (2)–(4). Constraint sets (18)–(19) govern energy budget/capacity 

over satellite orbit . Energy consumption essentially originates from imaging and transition activities. 

Graph opportunity flow conservation for orbit is alternatively ensured through constraints sets (20)–(21). 

The latter allows connecting fictitious origin (o) and destination (d) nodes to build feasible satellite orbit 

path (legal sequence of observations). In other respect, inequalities (22)–(23) refer to the overall mission 

and task-specific financial budget (capacity) for image acquisition. An image cost is typically assumed 

proportional to the required task resolution and coverage. The proposed modelling represents a 

convenient approach to alternately cope with the financial problem objective dimension. On-board 

memory storage limitation is governed by constraint set (24). As satellites pass in and out of the Earth’s 

shadow, thermal conditions may fluctuate drastically, imposing constraints on sensor use. Average 

imaging duty cycle constraint restricting maximum cumulative observation time per orbit and over 

multiple consecutive orbits due to thermal conditions, are described by inequalities (25)–(26) 

respectively. Binary integer and continuous decision variables are finally specified in expressions (27). 
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4 Discussion  

The proposed multi-satellite collection scheduling problem formulation can be naturally reduced to the 

single standard constellation problem commonly found in open literature for homogeneous satellite cases. 

Accordingly, such a constellation setting generally involves identical trailing satellite separated by a small 

time lag, therefore naturally duplicating imaging opportunity swaths (perfect overlap) for a given task. A 

task area can then be defined through a set of disjoint parallel strips similar for each satellite member. As 

a result, for problem instances in which single imagery visits are required, the index ‘o’ standing for 

opportunity in the proposed decision model may be alternately substituted for the related ‘fixed’ strip 

occurrence, taking advantage of imaging opportunity area duplication for each constellation satellite. 

Consequently, under disjoint parallel strips opportunity area definition and single visit (e.g., due to perfect 

sensor observation) conditions, mapping notation ‘o’ to a strip area makes no longer quadratic the 

objective function and related constraints, but linear, reducing the approach to a simpler and well-known 

mixed-integer linear programming formulation further subject to a single task visit constraint, and 

exploiting homogeneous constellation collection scheduling problem properties. It is worth noticing 

though, that even in the homogeneous case, partially intersecting feasible opportunity swaths resulting 

from dissimilar neighboring satellite orbits are often deliberately ignored for convenience purposes, 

artificially reducing problem complexity at the expense of optimality. Further exploring feasible task 

opportunity combinations is anticipated to directly impact problem complexity and solution quality. The 

proposed quadratic formulation turns out to be a generalization of the standard single constellation 

multiple homogeneous satellite collection scheduling problem, accounting for mixed satellites and/or 

many constellations. The value of the problem model is intended to be first demonstrated over a single 

large area task use case of interest for comparison purposes, and then, on multiple tasks. 

Scheduling algorithm design will be inspired from operations research and artificial intelligence, namely, 

through the development and reutilization of heuristics, metaheuristics and soft computing procedures 

(e.g., genetic, tabu search, ant colony), including commercially available exact mixed-integer 

programming optimization methods or a combination of them. Problem-solving techniques reutilization 

from related problems such as the multiple knapsack, vehicle routing and constrained longest path and 

variants will also be exploited. Baseline comparison with ongoing user-defined or knowledge-based 

procedures and naïve scheduling heuristics (e.g., highest utility/duration imaging opportunity ratio) will 

be highlighted. Despite available modern optimization machinery/technology able to successfully handle 

large problems, algorithm scalability remains a real challenge and will be handled separately as dictated 

by targeted problem instances.  

The proposed model is intended to pave the way to hierarchical complexity refinement, including 

uncertainty management, task multiplicity and diversity. Problem complexity will eventually expand to 

integrate downlink scheduling. It aims at combining simultaneously satellite imaging and image 

downloading, relying on proper communication asset utilization such as ground stations and 

communication satellites networks. The resulting problem naturally relates to time-constrained pick-up 

and delivery combinatorial optimization problem variants and extensions. 
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5 Conclusion 

In the context of the development of new intelligence collection technology concepts and automated 

decision planning capabilities applicable to satellite constellation to support collection management 

awareness and near-optimal resource management for low density high demand collection asset 

(satellite), a formal multi-satellite intelligence collection scheduling decision model has been presented. 

The proposed mixed-integer quadratic programming model is a mathematical formulation mapping a set 

of intelligence requests to a set of collection asset imaging opportunities to maximize collection value, 

subject to a variety of novel task, opportunity, capacity, temporal, memory and cost constraints. It departs 

from traditionally known and intractable approaches, relying on a new coverage approximation to deal 

with partial area coverage superimposition conferring the objective function and constraints of the 

optimization problem with desirable convexity property. This enables exploitation of available and 

powerful exact problem-solving techniques as well as efficient bound computation on the quality of the 

optimal solution giving credibility and soundness to comparative assessment of computed solutions and 

techniques. The proposed convex optimization problem introduces additional constraints including task 

precedence, temporal and capacity constraints as well as multiple performance threshold requirements. 

Relationship to existing models and promising/potential and problem-solving candidate algorithms have 

also been briefly discussed. 

Future work is envisioned to further extend the decision model to reflect hierarchical problem complexity 

refinements and new features such as virtual satellite constellation heterogeneity, expanded task type 

diversity, uncertainty management and generalized quality of observation. Alternate efforts will consist to 

develop and implement problem-solving concepts and algorithms, conduct performance comparison 

analysis, and investigate practical limitations for possible use cases. Further directions include the 

investigation of problem-solving approach scalability, problem modelling generalization to dynamic and 

distributed settings as well as the growing integration of sensemaking/analysis and resource allocation. 
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