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Abstract

Land-cover mapping consists of determining the type and usage of particular tracts of
land, and is often accomplished with remote sensing and classifiers. The maps generated
with land-cover analysis are used for applications that include space-based Intelligence,
Surveillance and Reconnaissance (ISR); Geospatial Intelligence (GEOINT); and Intelligence
Preparation of the Operational Environment (IPOE).

Land-cover classifiers frequently employ different types of input data, such as imagery
obtained from several types of sensors—including Synthetic Aperture Radar (SAR), Li-
DAR, and optical satellites—as well as ancillary datasets such as Digital Elevation Models
(DEMs). However, it can be challenging to determine which inputs have the greatest impact
on the accuracy of the classifier, as well as assess how important each input is relative to
the others.

In this work, a method of quantifying the relative importance of each input is developed
and demonstrated using previously developed land-cover classifiers. The proposed method
employs concepts from game theory and relies on the Shapley value, which provides a
quantitative assessment of each input’s importance in terms of its average contribution to
the accuracy of the classifier. The approach described herein thus provides a robust method
of determining which types of images and image-derived products are most important in
classifying terrain.
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Significance for defence and security

Land-cover maps are used for applications that include space-based Intelligence, Surveil-
lance and Reconnaissance (ISR); Geospatial Intelligence (GEOINT); and Intelligence Prepa-
ration of the Operational Environment (IPOE). Potential benefits of this work for the Cana-
dian Armed Forces (CAF) include increased quality and lower cost of land-cover maps in
these applications. This work contributes to improving the design of the classifiers that
generate the maps, as well as optimizing the selection of input data for these classifiers
while maintaining a sufficiently high performance.
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Résumeé

La cartographie de la couverture terrestre consiste & déterminer le type et 'utilisation
de différentes parcelles de terrain. Elle est souvent réalisée avec la télédétection et des
classificateurs. Les cartes générées avec I'analyse de la couverture terrestre sont utilisées
pour des applications comprenant le renseignement, la surveillance et la reconnaissance
spatiales (RSR) ; l'intelligence géospatiale (GEOINT) ; et la préparation du renseignement
de environnement opérationnel (PREO).

Les classificateurs de couverture terrestre utilisent souvent différents types de données d’en-
trée, telles que des images obtenues & partir de plusieurs types de capteurs — y compris le
radar a synthése d’ouverture (RSO), le LiDAR et les satellites optiques — ainsi que des
données auxiliaires tels que les modeéles altimétriques numériques (DEM). Cependant, il
est parfois difficile de déterminer quelles données d’entrée ont le plus grand impact sur
Pexactitude des résultats, ou d’évaluer I'importance de tous les données d’entrée les uns par
rapport aux autres.

Dans ce travail, une méthode pour quantifier I'importance relative de chaque donnée d’entrée
est développée et démontrée & ’'aide de classificateurs de couverture terrestre développés
précédemment. La méthode proposée emploie des concepts de la théorie des jeux et utilise
sur la valeur de Shapley, qui fournit une évaluation quantitative de 'importance de chaque
donnée d’entrée en termes de sa contribution moyenne a I'exactitude du classeur. L’approche
décrite dans ce document donne une méthode robuste pour déterminer quels types d’images
et quels produits dérivés d’images sont les plus importants pour la classification du terrain.
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Importance pour la défense et la sécurité

Les cartes de couverture terrestre sont utilisées pour des applications dans le renseignement,
la surveillance et la reconnaissance spatiale (RSR) ; I'intelligence géospatiale (GEOINT) ; et
la préparation du renseignement de ’environnement opérationnel (PREO). Les avantages
potentiels de ce travail pour les forces armées canadiennes (FAC) incluent une qualité accrue
et une réduction du cofit des cartes d’occupation du sol dans ces applications. Ce travail
contribue & l'amélioration de la conception des classeurs automatiques qui générent les
cartes, ainsi qu’a 'optimisation de la sélection des variables pour ces applications, tout en
maintenant une performance suffisamment élevée.
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1 Introduction

Classification problems in remote sensing often involve using multiple kinds of imagery
and image-derived products to perform categorization tasks on portions of the image. One
common classification problem is land-cover mapping, which consists of determining the
type and usage of particular tracts of land [1]. Land-cover maps are used for applications
in space-based Intelligence, Surveillance and Reconnaissance (ISR); Geospatial Intelligence
(GEOINT); and Intelligence Preparation of the Operational Environment (IPOE) [2].

To classify terrain in the context of land-cover mapping with remote sensing, a classifier
might use different types of input data, such as imagery obtained from several types of
sensors—including Synthetic Aperture Radar (SAR), LIDAR, and optical satellites—as well
as ancillary datasets such as Digital Elevation Models (DEMs). These inputs are henceforth
referred to as “variables” [1, 3, 4, 5|; in the context of classification, these are also called
“features” in other works [6, 7, 8].

Classification is commonly accomplished using machine-learning algorithms (e.g., random
forest, support vector machines, neural networks). While these algorithms are capable of
handling high-dimensional data (i.e., with hundreds or thousands of variables), it has been
demonstrated that reducing the number of variables in land-cover classifiers is necessary
to reduce noise and overfitting, as well as increase computational speed [1]. Because some
sensors and data processing functions may result in a more accurate classification under
different classification scenarios, it is important to find the optimal set of variables in each
case.

Several criteria are available to determine which variables are the most important in a
particular classification scenario. In random forest classification, importance values are most
commonly assessed using Mean Decrease in Accuracy (MDA) or Mean Decrease in Gini
(MDG) [9]. While these metrics provide some measure of relative importance, neither the
MDA nor MDG accounts for correlations between variables [10], or addresses cases in which
the usefulness of one variable depends on whether or not another variable is present. Other
methods such as Principal Component Analysis (PCA) are available to perform feature
selection [6, 7, 8], but these do not necessarily reduce the dimensionality of the dataset or
provide guidance as to why particular features are more or less important than others.

This work presents a method of quantifying the relative importance of different variables
(i.e., different image types and image-derived products) in the context of land-cover map-
ping. The proposed method relies on a measure known as the Shapley value and employs
concepts from game theory. The Shapley value provides a quantitative assessment of the
importance of each variable in terms of the average contribution it makes to classification
accuracy.

The remainder of this manuscript is structured as follows:

e Section 2 provides a technical description of the Shapley value, including the concepts
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from game theory that are needed to define it as well as the equations that are required
to calculate it.

e Section 3 applies the Shapley value method to several previously published land-cover
classifiers [1, 3, 4, 5], in each case quantifying the influence of different image types
and image-derived products on classification accuracy.

e Section 4 contains some additional discussion on the avantages, limitations, and prac-
tical applications of the Shapley value method.

e Section 5 provides a short conclusion and summary of findings.

2 The Shapley Value Method

The approach employed in this manuscript is based on treating each variables as a “player”
in a collaborative game, in which the objective is to maximize the accuracy of the classifier.
The contribution of each variable to the objective is quantified using the Shapley value,
a metric proposed in 1953 by mathematician Lloyd Shapley in the context of cooperative
game theory [11, 12]. In this section, the definition of the Shapley value as used in this work
is developed, along with the relevant concepts from game theory needed to define it.

2.1 Input profiles

Consider a cooperative game involving a number p of players, numbered 1 through p. Sup-
pose that each player can either choose to participate in the game or not. This participation
information is called an “input profile,” and may be represented with a vector containing p
elements, where a given element is “0” if the corresponding player does not participate in
the game and is “1” if they do.

For a given input profile Z, the number of participating players is denoted as |Z|. Addition-
ally, the following special input profiles are defined:

e The null input profile, denoted 0, corresponds to no players participating in the game,
and is represented by a vector of zeros.

e Single-participant input profiles are denoted €}, and represent the input profile where
only player k participates in the game (thus, by definition, |é;| = 1).

e The all-participant input profile, denoted I, corresponds to all players participating
in the game, and is represented by a vector of ones.

The universe of input profiles, denoted T, represent the set of all possible input profiles—
i.e., all possible combinations of participants—for the game being played. For example, for
a three-player game, the universe is

T = {{0,0,0};{0,0,1};{0,1,0};{0,1,1};
{110=0}§{110=1}§ {1=1=0}§{1=1=1}}' (1)
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In general, a game with p players will have 2P input profiles in its universe. For the previous
example, p = 3, and so the universe contains 23 = 8 input profiles.

2.2 Characteristic function

Let g(Z) represent the outcome of the cooperative game for an input profile Z. Here it is
assumed for simplicity that the game outcome can always be represented as a single, non-
negative number called the “score” (i.e., the score may be positive or zero), and that higher
scores correspond to more desirable outcomes. The Shapley value method also assumes that
the score resulting from no players participating in the game results in a score of 0, which
means that the function g must satisfy g([_j) = 0. Under these assumptions, the function g
is referred to as the “characteristic function” of the game.

2.3 Marginal contribution

For an input profile Z in which a player k is marked as a non-participant (i.e., for which
z = 0), the marginal contribution made by player k to the profile Z is defined as

m(Z, k) = g(Z + é) — 9(Z). (2)

That is, the marginal contribution is the difference between the score for the profile Z if
player k were added as a participant (accomplished by adding the single-participant profile
€l to the vector Z), minus the score for the actual profile Z (which does not have player
k participating). This may be thought of as the “value added” by player k for the specific
input profile Z. Note that the marginal contribution of a player may be negative if adding
them as a participant results in a lower score than when they do not participate.

2.4 Shapley set

For a given player k in a game with universe T, define the Shapley set Q(T', k) to be the
set of all input profiles in the universe of the game for which the player is marked as a
non-participant. As an example, in a three-player game (the universe of which is given in
Equation 1), the Shapley set for the second player would be

Q(T,2) = {{0,0,0}; {0,0,1}; {1,0,0}; {1,0,1}}. (3)

2.5 Shapley value

Using the aforementioned concepts and definitions, the Shapley value of a player k in a
cooperative game with p players and a universe of T' is defined mathematically as follows:

I
FQ(T k) p:

DRDC-RDDC-2019-R301 3



Note that the units of the Shapley value are the same as those of the game’s character-
istic function, as defined in Section 2.2. For the present application, this function would
correspond to the accuracy of the classifier on its testing data.

The interpretation of Equation 4 is that the Shapley value considers all of the ways that a
given player could contribute to the game by adding together all of the possible marginal
contributions for that player using appropriate weighting coefficients. From the perspec-
tive of probability theory, the Shapley value can be thought of as the “expected value”
of a player’s contribution to the game. Scenarios in which the player reduces the score of
the game by participating are accounted for in the calculation, since these correspond to
negative marginal contributions.

2.6 Advantages and desirable properties of the Shapley value

The Shapley value has a number of properties that are desirable for a fair and just metric
of player contribution.

e Non-discrimination: Players with identical contributions to the game will also have
identical Shapley values (i.e., the labels or ordering of the players does not matter). In
the case of land-cover classification, this property ensures that the naming or ordering
of the variables in the dataset does not influence the importance attributed to them
by the method.

e Efficiency: The Shapley value distributes the total score across all players in the
game, in that the sum of the Shapley values of all players is equal to the score that
occurs when all players participate:

> S(k) = g(1). ()
k=1

In classification, the highest accuracy is typically achieved when all available variables
are used. This property therefore allows the accuracy of each variable to be expressed
in terms of its contribution towards this maximum value. Note that this property does
not hold for partial sums of Shapley values (i.e., the sum of the Shapley values for a
subset of the players would not necessarily equal the characteristic function for the
input profile containing only those players).

e Marginality: Players that contribute more to the game are assigned higher Shapley
values, and a player that does not contribute will be assigned a Shapley value of zero.
For the present application, this property ensures that variables that contribute more
to overall accuracy will receive proportionally higher Shapley values, and variables
that make no contribution will receive a value of zero.

It has been proven that the Shapley value is the only metric of player contribution that
satisfies all three of the above properties [11, 12].
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3 Application to Sensor Selection in Land-Cover
Classifiers

In this section, the practical application of the Shapley value is demonstrated for three
example use cases involving land-cover classification based on images acquired with different
types of remote sensors (radar, optical, LIDAR, etc.) as well as image-derived products such

as DEMs.

In terms of the game theoretic concepts described in Section 2, in each of these cases the
objective of the “game” is to maximize land-cover classification accuracy, and the “players”
of the game are the different inputs (images and image-derived products) available to the
classifier. The objective of the Shapley value analysis is to assess the individual contribution
of each input to the accuracy of the land-cover classifier, and thus provide a quantitative,
relative measure of the importance of each input to the classification task at hand.

The three example use cases discussed in this section are described below.

e Section 3.1 examines the overall accuracy of a land-cover classifier developed by White
et al. [3] and used over Alfred Bog. Three input variables are considered: SAR imagery,
optical imagery, and a Digital Elevation Model (DEM).

e Section 3.2 studies the performance of a land-cover classifier developed using data
from Millard and Richardson [1] and from Behnamian et al. [4], also from Alfred Bog.
Three input variables are considered: SAR imagery, optical imagery, and LiDAR.
Accuracy is considered both overall and for each of three land-cover classes.

e Section 3.3 examines the performance of the land-cover classifier developed by Banks
et al. [5]. The two input variables considered are SAR imagery and optical imagery,
and accuracy is assessed both overall and for each of seven land-cover classes.

In all three cases, random forest classifiers were used to perform land-cover classification.

3.1 Alfred Bog with SAR, optical imagery, and DEM data (White et
al., 2017)

In this first example use case, the individual contributions of SAR imagery, optical imagery,
and DEM data to land-cover classification accuracy are quantified in the context of a study
performed by White et al. [3]. The area studied is Alfred Bog, a boreal peatland complex
with an area of over 10,000 acres (40 km?) located near Alfred, ON, Canada (see Figure 1
of White et al. [3]).

Classifier design and accuracy

White et al. employed a supervised random forest classifier, with 330 training points and
1000 trees generated for each model. The land-cover classes employed by White et al. were
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taken from a previous study by Millard and Richardson [1]. In total, five different land-cover
classes were distinguished (agriculture, forest, fen, open bog, and treed bog); however, for
the purposes of this example, only the overall accuracy of the classifier across all five terrain
classes is considered.

Table 1 reproduces the overall accuracy achieved by the White et al. land-cover classifier
on its testing data for all combinations of the following three variables:

e A Synthetic Aperture Radar (SAR) image of the area from RADARSAT-2 collected
on May 2, 2014 in the Wide Fine Quad 1 (FQIW) mode;

e An optical image of the area from Landsat-8 collected on April 24, 2014 and ordered
as a Landsat surface reflectance product; and

e DEM data obtained from the Shuttle Radar Topography Mission (SRTM).

Since there are three inputs in this case, a total of eight combinations are possible. As stated
in Section 2.2, the accuracy achieved when none of the inputs are used (i.e., for the null
input profile) is taken to be zero. This corresponds to assuming that most of the variation
in the output classes is explained by the inputs, and that random chance does not play a
significant role in the performance of the classifier (see, however, the discussion in Section 4
for ways to compensate for the effect of random chance when this is not the case). The
overall accuracy values for the remaining seven combinations—i.e., those that include at
least one input—are listed in Table 1.

Table 1: Overall accuracy achieved by the land-cover classifier reported in Table A1 of
White et al. [3] on the testing dataset for different combinations of SAR, optical, and
DEM input data. The case where none of the inputs are used is assumed to yield an

accuracy of zero per Section 2.2.

Input variables used Accuracy (%)
DEM only 78
Optical only 50
Optical + DEM 80
SAR only 49
SAR + DEM 71
SAR + Optical 59
SAR + Optical + DEM 82

A flowchart illustrating the Shapley method as applied to this example is presented in
Figure 1.
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Figure 1: Flowchart illustrating the Shapley method as applied to the example use case
of Section 3.1. Here, three input variables (N = 3) are available to perform land-cover
classification: SAR imagery, optical imagery, and a DEM. A classifier is then trained,

validated, and tested for each possible combination of these inputs, except for the case of

no inputs; hence, a total of 2V — 1 = 7 classifiers are developed. Finally, the overall
accuracy values for the classifiers are used to compute the Shapley value of each input
variable with Equation 4.

(" ~\

Input variables Variable 1 Variable 2 Variable 3
(N=3) (SAR imagery) (optical imagery) (DEM)

\. J/

4 ' )

Classifier 1 Classifier 2 Classifier 3 Classifier 4
(SAR only) | | (optical only) | | (DEM only) | | (SAR + optical)

Classification
(2N-1=7)

Classifier 5 Classifier 6 Classifier 7
(SAR + DEM) (optical + DEM) (SAR + optical + DEM)

N _/

]

fahnakpib:‘ey value Shapley value for Shapley value for Shapley value
(N= 319 SAR imagery optical imagery for DEM
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Table 2: Shapley values (contribution to overall accuracy) for SAR imagery, optical
imagery, and the DEM, based on the values reported in Table 1.

Input variable Shapley value (%)
SAR imagery 10.4

Optical imagery 35.4
DEM 36.3

Shapley value analysis and interpretation

Using the data in Table 1, the Shapley values for each of the three inputs (SAR, optical,
and DEM) were computed using Equation 4. The results are reported in Table 2.

As mentioned in Section 2.5, the Shapley values represent the average contribution of each
input variable to the accuracy of the classifier, when all possible combinations of variables
are considered. Hence, the first row of Table 2 shows that using the SAR imagery in the
classifier increases the overall accuracy by 10.4%; similarly, incorporating the optical im-
agery adds 35.3% to overall accuracy, while adding the DEM contributes 36.3% to overall
accuracy. Additionally, as expected per the efficiency property of the Shapley value stated in
Equation 5, the sum of all three Shapley values in Table 2 is 82.1%, which (within rounding
error) matches the overall accuracy of 82% reported in Table 1 for when all three input
variables are used.

The Shapley values in Table 2 show that the optical imagery from Landsat-8 as well as the
SRTM DEM data each contribute over three times more to classification accuracy than the
SAR image from RADARSAT-2, although the SAR image does make a positive contribution
to accuracy as well. This is in agreement with the conclusions of White et al., who reported
that “while models with just Landsat-8 and SRTM data were able to achieve acceptable
accuracies, the addition of SAR variables did increase overall accuracy” [3]. The Shapley
value analysis presented here thus provides a quantifiable metric—mamely, the anticipated
contribution of each input variable to classifier accuracy—that supports this qualitative
conclusion.

3.2 Alfred Bog with SAR, optical imagery, and LiDAR (Millard and
Richardson, 2015)

In this second example use case, the individual contributions of SAR imagery, optical im-
agery, and LiDAR data to land-cover classification accuracy are evaluated both overall and
by land-cover class. The location studied is Alfred Bog, the same area analyzed in the
previous example (Section 3.1).

8 DRDC-RDDC-2019-R301



Classifier design and accuracy

The training data used herein were the same as the data used by Millard and Richard-
son [1] and by Behnamian et al. [4]. However, for the purposes of simplifying the present
example, the seven land-cover classes were merged into three larger classes: agriculture,
forest, and wetland. A set of 500 randomly located pixels (with a minimum point spacing
of 8 m) distributed throughout the study area were selected, resulting in a training dataset
with low spatial autocorrelation (Moran’s I of 0.11) [1]. In this work, all 500 points were
used in training, and the accuracy after bootstrap aggregation is reported (i.e., out-of-bag
accuracy). Full details on training data extraction are described in Section 2.2 of Millard
and Richardson [1]. A random forest classifier was trained on the aforementioned dataset;
for all of the classifications, the randomForest package in R 3.5.1 software was used with
10,000 trees and mtry set to the square root of the number of predictor variables.

Table 3 shows the accuracy achieved by the Millard and Richardson land-cover classifier for
all seven combinations of the following three inputs (excluding the null input profile):

e A Synthetic Aperture Radar (SAR) image of the area from RADARSAT-2 image
collected on May 2, 2014 in the Fine Quad 1 (FQ1) mode;

e An optical image of the area from Landsat-8 collected on April 24, 2014 and ordered
as a Landsat surface reflectance product; and

e A LiDAR dataset collected on May 14, 2014 using point cloud upscaled to 8 m,
with a total of 28 LiDAR terrain and vegetation derivatives computed (full details
on the LiDAR dataset collection, processing, and derivatives are given in Millard and

Richardson [1]).

Table 3: Accuracy achieved by the land-cover classifier on the testing dataset used by
Millard and Richardson [1] and by Behnamian et al. [4] for different combinations of SAR,
optical, and LiDAR input data.

Accuracy (%) by input data used
Land- A
and-eover - Accuracy (S = SAR, O = optical, L = LiDAR)
type type
L (0] L+O S S+L S+0 S+0+L
. User’s 83.6 485 86.2 920 971 928 971

Agriculture

Producer’s | 88.2 65.1 87.1 91.3 94.8 904 95.1

User’s 70.1 46.3 694 552 T84 552 754
Forest

Producer’s | 76.4 58.5 79.5 66.7 84.7 67.9 835

User’s 875 T7.6 871 949 947 945 951
Wetland

Producer’s | 82.2 61.9 835 91.1 945 916 94.1
All Overall 83.7 624 844 885 934 886 93.2
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In additional to overall accuracy, Table 3 also provides both user’s and producer’s accuracy
for each class of land-cover. The user’s accuracy refers to how accurate the classifier is when
it determines that the land-cover is of a particular type, and thus provides an indication
of what accuracy a user might expect when the classifier is given new input data and
categorizes it as being of that type; in other applications, this is called the precision or
the “positive predictive value” of the classifier. On the other hand, the producer’s accuracy
indicates how well the classifier performed for a particular land-cover type in the test data
set; in other applications, this is called the sensitivity or the “true positive rate” of the
classifier. The relevance of each accuracy type depends on the intended usage of the classifier:
if the goal is to classify the testing dataset as accurately as possible, the producer’s accuracy
is most relevant; on the other hand, if the goal is to classify images that are similar to (but
not part of) the testing set, then the user’s accuracy is of concern.

Shapley value analysis and interpretation

Using the data in Table 3, the Shapley values for each of the three inputs (SAR, optical,
and LiDAR) were computed using Equation 4. The results are reported in Table 4.

Table 4: Shapley values (contribution to accuracy) for SAR, optical, and LIDAR input
data, based on the values reported in Table 3. The highest Shapley value in each row is
highlighted in bold.

Land-cover Accuracy Shapley value (%)
type type SAR Optical LiDAR
) User’s 18.7 40.1 38.3

Agriculture

Producer’s 22.9 35.6 36.6

User’s 9.6 32.7 33.1
Forest

Producer’s 15.5 35.0 32.9

User’ 28.5 33.1 33.5
Wetland e

Producer’s 23.3 35.8 34.9
All Overall 222  35.7 35.3

The Shapley values in Table 4 show that optical imagery and LiDAR data contribute
more to accuracy than SAR imagery in all cases. However, the input data source with the
highest Shapley value varies according to the terrain class as well as the intended usage of
the classifier. For example, if the classifier is to be used for classifying agricultural land-
cover in new images as accurately as possible, optical imagery is ranked slightly higher
than LiDAR, since it contributes 1.8% more to user’s accuracy. On the other hand, if the
goal is to classify agricultural land as accurately as possible within the existing dataset and
only one input can be chosen, LIDAR contributes 1% more to producer’s accuracy than the
optical imagery. Note that these differences are relatively small, and may not be statistically
significant; however, performing an assessment of statistical significance is beyond the scope
of the present work.

10 DRDC-RDDC-2019-R301



3.3 Arctic terrain with SAR and optical imagery (Banks et al.,
2017)

As a final example use case for Shapley values in the context of land-cover classification,
the individual contributions of SAR imagery and optical imagery to classification accuracy
are assessed in the context of a study performed by Banks et al. [5]. The area considered in
this study spans over 40,000 km? and is located in the Canadian Arctic over the Northwest
Passage, within the Kitikmeot region of Nunavut (see Figure 1 of Banks et al. [5]).

Classifier design and accuracy

Banks et al. employed a supervised random forest classifier, with 1000 trees generated for
each model. A total of seven land-cover classes were studied (see Table 5 or 6 for the list of
classes), and 250 sites per class spaced at least 100 m apart were selected for training and
validation.

Table 5 reproduces the overall accuracy achieved by the land-cover classifier for all three
combinations of the following two inputs (excluding the null input profile):

e Synthetic Aperture Radar (SAR) images of the area from RADARSAT-2 collected
during August and September of 2014 in Wide Fine Quad Polarization mode (only
one image per area was used); and

e Optical images of the area from Landsat-5 collected during August of 2009, 2010, and
2011, with atmospheric correction applied (only one image per area was used).

Shapley value analysis and interpretation

Using the data in Table 5, the Shapley values for each of the two inputs (SAR and optical)
were computed using Equation 4. The results are reported in Table 6.

The Shapley values in the last row of Table 6 show that, from an overall perspective, SAR
imagery from RADARSAT-2 and optical imagery from Landsat-5 make similar contribu-
tions to the overall accuracy of the classifier (45.4% and 47.2%, respectively). However,
examining the Shapley values associated with the different classes in Table 6 reveals that
the two types of imagery serve complementary purposes in several cases: optical imagery
is the most important contributor for classifying water, bedrock, and tundra, while SAR
is the most important contributor for sand/mud as well as pebble/boulder (as mentioned
previously in Section 3.2, assessing the statistical significance of these differences is be-
yond the scope of the present work). This is in agreement with the findings of Banks et
al., who concluded that “optical and SAR data provide relevant and complementary in-
formation” [5]. Section 5.1 of their report provide a more detailed physical explanation
of why RADARSAT-2 performs better than Landsat-5 for some classes and vice-versa for
others, based on factors such as surface roughness, incidence angle, polarization, and image
resolution [5].
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Table 5: Accuracy achieved by the land-cover classifier reported in Table 10 of Banks et
al. [5] on the testing dataset for different combinations of SAR and optical input data.

Accuracy (%) by input data used
Land-cover type Accuracy type
SAR only Optical only SAR + Optical

User’s 97.6 94.0 98.8
Water

Producer’s 96.4 84.8 96.5

User’s 74.7 80.7 94.0
Sand /Mud

Producer’s 69.7 77.9 94.0

) ) User’s 78.3 61.4 91.6

Mixed Sediment

Producer’s 69.9 70.8 86.4

User’ 63.9 88.0 88.0
Pebble/Boulder

Producer’s 79.1 88.0 93.6

User’ 88.0 72.3 95.2
Bedrock sers

Producer’s 90.1 85.7 95.2

User’s 83.1 83.1 89.2
Wetland

Producer’s 80.2 80.2 89.2

User’s 84.3 77.1 91.6
Tundra

Producer’s 86.4 69.6 93.8
All Overall 79.5 81.4 92.6
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Table 6: Shapley values (contribution to accuracy) for SAR and optical input data, based
on the values reported in Table 5. The highest Shapley value in each row is highlighted in

bold.

Land-cover type

Accuracy type

Shapley value (%)

SAR Optical

User’ 476 51.2
Water sers

Producer’s 42,4 54.1

User’s 50.0 44.0
Sand/Mud

Producer’s 51.1 429

) User’s 37.3 54.2

Mixed Sediment

Producer’s 43.7 42.7

User’s 56.0 31.9
Pebble /Boulder

Producer’s 51.2 424

User’ 39.8 55.4
Bedrock sers

Producer’s 45.4 49.8

User’ 44.6 44.6
Wetland Sere

Producer’s 44.6 44.6

User’s 42,2 49.4
Tundra

Producer’s 385 55.3
All Overall 45.4 47.2

DRDC-RDDC-2019-R301
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4 Discussion

In the land-cover classification examples described in the previous section, the Shapley value
provides a quantitative means of comparing the importances of different input variables
by providing the average contribution of each variable to classification accuracy on the
test data. Moreover, the Shapley value is expressed in the same units as the quantity to
be maximized—in this case, land-cover classification accuracy on a scale of 0 to 100%—
and thus lends itself to a relatively straightforward interpretation. The Shapley value also
accounts for cases where the usefulness of one input variable depends on the presence or
another variable.

One potential limitation of using the Shapley value approach for single-input selection is that
the number of classifications that must be performed scales exponentially with the number
of inputs, since for N inputs, 2V —1 classifications are required. However, in most land-cover
classification scenarios—including the three example cases in Section 3—only three or four
types of imagery and image-derived products are considered (e.g., SAR, optical, LiDAR,
DEM). For this number of input variables, the effect of the exponential scaling does not
present a significant overhead.

As discussed in Section 2.2, the Shapley value method assumes that the null input profile
(i.e., when no inputs are given to the classifier) makes no contribution to the accuracy
of the classifier. This corresponds to assuming that most of the variation in the output
classification may be adequately explained by the inputs, and that random chance does not
play a significant role in the performance of the classifier. However, if the impact of random
chance on classification accuracy is of concern—for example, if the baseline performance of
the classifier is already relatively low and is close to what would be expected from random
chance alone—it is possible to compensate for this effect in the Shapley method. Specifically,
the null input profile may be assigned an accuracy of 1/n where n is the number of classes
(i.e., the accuracy achieved by random chance alone). This baseline accuracy could then be
subtracted from all of the accuracy values used in the computation. The Shapley values so
obtained would provide a more conservative estimate of the importance of each variable,
but may overestimate the influence of random chance on the results in cases where the
classifier inputs are strongly correlated with the output classes.

The Shapley value only answers the question of which single player (in this case, a single
image type or image-derived product) out of all of those available is the most important.
However, once a player is chosen for use in classification (i.e., once the participation of that
player is no longer optional), the Shapley values should be recomputed with this player
definitively included (i.e., only considering input profiles that have a “1” for the included
player). At that point, the second-most important player may no longer be the one that
had the second-highest Shapley value previously. One instance in which this can occur is
when the two players with the highest Shapley values are correlated, meaning that only one
of them is actually needed by the classifier (for example, if two images provide reasonably
similar data, or if one input is just a scaled version of another).

14 DRDC-RDDC-2019-R301



Because all of the inputs in Tables 2, 4, and 6 have positive Shapley values, each input makes
a positive contribution to classifier accuracy. Hence, from the sole perspective of maximizing
the accuracy of the classifier, using all of the available variables would achieve the best
outcome. However, as discussed in Section 1, this may lead to overfitting, increased accuracy
solely due to chance correlations, and/or a classifier that requires too many computational
resources to be practical. Moreover, cost or other resource limitations may mean that only so
many choices of input data are available (e.g., only one sensor between SAR or LiDAR can be
employed, or cost constraints require choosing between a SAR image and an optical one). For
these reasons, selecting the most important input data sources of those available is critical.
As mentioned in Section 2.6, Shapley values provide a framework for making this selection
in a way that is optimal and fair, in the game-theoretic sense of being non-discriminatory,
efficient, and marginal in how gains in accuracy are attributed to the different input data
sources.

5 Conclusion

This study demonstrates that Shapley values provide a framework for quantifying the rel-
ative importance of different sensor types (e.g., radar, optical, LIDAR) and image-derived
products (such as Digital Elevation Models, DEMs) in land-cover classification problems.
The approach described herein provides a robust method of determining which types of
images and image-derived products are most important in classifying terrain, and provides
a quantitative foundation for further investigations into the physical mechanisms that un-
derlie the mapping process.
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