
DEFENCE DÉFENSE
&

Defence R&D Canada – Atlantic

Copy No. _____

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

Converting VMSA Federates through

Polka 2.0

HLA 1.3 to IEEE 1516

Briand Gaudet
SG Software Solutions Incorporated

Prepared by:
SG Software Solutions Incorporated
75 Bristol Avenue
Stillwater Lake, Nova Scotia B3Z 1E9

PWGSC Contract No: W7707-078006/001/HAL
Contract Scientific Authority: Tania E. Randall, 902-426-3100 ext 283

Contract Report

DRDC Atlantic CR 2008-020

June 2008

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

This page intentionally left blank.

Converting VMSA Federates through
Polka 2.0
HLA 1.3 to IEEE 1516

Briand Gaudet
SG Software Solutions Incorporated

Prepared by:
SG Software Solutions Incorporated
75 Bristol Avenue
Stillwater Lake, Nova Scotia B3Z 1E9

Contract number: W7707-078006/001/HAL
Contract Scientific Authority: Tania E. Randall, 902-426-3100 ext 283

The scientific or technical validity of this Contract Report is entirely the responsibility of the contractor and the
contents do not necessarily have the approval or endorsement of Defence R&D Canada.

Defence R&D Canada – Atlantic
Contract Report
DRDC Atlantic CR 2008-020
June 2008

Author

Original signed by Briand J. Gaudet

Briand J. Gaudet

Approved by

Original signed by Francine Desharnais for

J. S. Kennedy

Head, Maritime Information and Combat Systems

Approved for release by

Original signed by Calvin Hyatt

Calvin Hyatt

DRP Chair

© Her Majesty the Queen as represented by the Minister of National Defence, 2008

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2008

DRDC Atlantic CR 2008-020 i

Abstract

Version 1.3 of the High Level Architecture (HLA) specification was developed by the
Defence Modeling and Simulation Office (DMSO) in the 1990s. A more robust standard,
IEEE 1516, was proposed in 2000.

Defence R&D Canada – Atlantic’s (DRDC Atlantic’s) current strategic focus dictates a move
towards the newer standard, to allow the Virtual Combat Systems (VCS) group to take
advantage of newer tools and an expanded application programming interface (API).

This document describes the differences between HLA 1.3 and IEEE 1516, and the steps
required to migrate a federate from 1.3 to 1516. As well, it describes the Polka 2.0 framework,
which is a tool used to develop federates that are both version- and vendor-independent.

ii DRDC Atlantic CR 2008-020

Résumé

La version 1.3 de la spécification de l’architecture de haut niveau (HLA) a été élaborée dans
les années 1990 par le Defence Modeling and Simulation Office (DMSO). Une norme plus
robuste, la IEEE 1516, a été proposée en 2000.

L’orientation stratégique actuelle de R et D pour la défense Canada – Atlantique (RDDC
Atlantique) exige qu’on adopte progressivement la nouvelle norme afin de permettre au
groupe des systèmes de combat virtuel de profiter d’outils plus récents et d’une interface de
programmation d’applications (API) améliorée.

Ce document décrit les différences entre la HLA 1.3 et l’IEEE 1516, ainsi que la démarche
nécessaire afin de faire migrer les fédérés de la norme 1.3 à la norme 1516. Le document
décrit aussi le cadre Polka 2.0, un outil qui sert à développer des fédérés indépendants de la
version et des fournisseurs.

DRDC Atlantic CR 2008-020 iii

Executive Summary

Converting VMSA Federates through Polka 2.0: HLA 1.3 to IEEE 1516.

Gaudet, B.J.; DRDC Atlantic CR 2008-020; Defence R&D Canada –
Atlantic; June 2008.

Background: The Virtual Maritime Systems Architecture (VMSA) is a framework for
distributed simulations based on the High Level Architecture (HLA) as defined by the
Defence Modelling Simulation Office (DMSO). VMSA was originally developed by the
Australian Defence Science and Technology Organisation (DSTO) and is now in use by all of
The Technical Co-operation Program (TTCP) countries including Canada.

The original HLA specification (HLA 1.3) aimed to describe a federate’s interface to the Run
Time Infrastructure (RTI), but various vendors have implemented this specification in slightly
different ways. The newer IEEE 1516 standard provides more features, flexibility and
functionality. Most importantly, it firmly describes an interface to the RTI that must be
adhered to by vendors. As a result, a federate that is developed to use the IEEE 1516 standard
should be vendor-independent.

Principal results: The differences between HLA 1.3 and IEEE 1516 were explored. A basic
methodology for migration from 1.3 to 1516 was designed and implemented in the Polka
framework. This required significant changes to the original Polka 1.1 framework and enables
all Polka-derived federates to become 1516-compliant. The new version of Polka is referred to
as “Polka 2.0”.

Significance of results: DRDC Atlantic now has a methodology for the migration of HLA
1.3 federates to the IEEE 1516 standard. As well, the Polka 1.1 framework was modified to
allow Polka-derived federates to connect to either a 1.3 or 1516 RTI, independent of the RTI
vendor.

Future work: Future work may include extending the Polka 2.0 vendor-specific classes to
handle more RTIs, such as PoRTIco and the version-specific classes to handle the upcoming
HLA standard referred to as ‘HLA Evolved’.

iv DRDC Atlantic CR 2008-020

Sommaire

Converting VMSA Federates through Polka 2.0: HLA 1.3 to IEEE 1516.

Gaudet, B.J.; DRDC Atlantic CR 2008-020; R et D pour la défense
Canada – Atlantique; juin 2008.

Contexte : L’architecture des systèmes virtuels maritimes (VMSA) est une structure de
simulations distribuées qui utilise l’architecture de haut niveau (HLA) telle qu’elle est définie
par le Defence Modelling Simulation Office (DMSO). La VMSA a été élaborée en premier
lieu par l’Australian Defence Science and Technology Organisation (DSTO) et est maintenant
utilisée par tous les pays membres du programme de coopération technique (TTCP), y
compris le Canada.

La spécification HLA d’origine (HLA 1.3) avait pour but de décrire l’interface entre les
fédérés et l’Infrastructure valorisée à l’exécution (IVA), mais les différents fournisseurs ont
adopté cette spécification de façons légèrement différentes. La norme IEEE 1516, plus
récente, offre plus de flexibilité et de fonctionnalité. Et surtout, elle décrit de façon formelle
l’interface à l’IVA que les fournisseurs doivent adopter. Par conséquent, un fédéré développé
selon la norme IEEE 1516 devrait être indépendant du fournisseur.

Principaux résultats : Les différences entre la HLA 1.3 et l’IEEE 1516 ont été étudiées, puis
une méthode fondamentale a été conçue et mise en place pour la migration de la norme 1.3 à
la norme 1516 à l’aide de la structure Polka. Par conséquent, il a fallu apporter des
changements importants à la version originale Polka 1.1, ce qui a permis à tous les fédérés
dérivés de Polka de se conformer à l’IEEE 1516. La nouvelle version de Polka se nomme
Polka 2.0.

Importance des résultats : RDDC Atlantique possède maintenant une méthode pour la
migration de fédérés HLA 1.3 à la norme IEEE 1516. De plus, la structure Polka 1.1 a été
modifiée pour permettre aux fédérés dérivés de Polka de se connecter à un IVA 1.3 ou 1516,
sans égard au fournisseur d’IVA.

Travaux futurs : Parmi les travaux envisagés dans l’avenir, on pourrait procéder à
l’élargissement des classes spécifiques des fournisseurs de Polka 2.0 afin de traiter d’autres
IVA, tels que PoRTIco et les classes spécifiques de certaines versions afin de se conformer à
la norme prévue « HLA évoluée ».

DRDC Atlantic CR 2008-020 v

Table of contents

Abstract.. i

Résumé ... ii

Executive Summary ... iii

Sommaire ... iv

Table of contents .. v

List of tables ... vii

Document revision history... viii

1. Introduction ... 1

2. Migration Methodology ... 2
2.1 Differences Between 1.3 and 1516 ... 2

2.1.1 Libraries... 2
2.1.2 Types ... 2
2.1.3 Time Representation .. 3
2.1.4 Factories .. 4
2.1.5 Miscellaneous .. 4

2.2 Migration Details .. 6
2.2.1 Step 1 – Change Libraries ... 6
2.2.2 Step 2 –Type Conversion .. 7
2.2.3 Step 3 – Convert LogicalTime and LogicalTimeInterval 7
2.2.4 Step 4 – Use the Factory Methods ... 7
2.2.5 Step 5 – Creation of RTI Ambassador .. 7
2.2.6 Step 6 – Replacement of tick() .. 7
2.2.7 Step 7 – Conversion of Exception Classes .. 7

3. Polka 2.0 Technical Description .. 8
3.1 Introduction .. 8

3.1.1 Compliance .. 8
3.2 Description ... 8
3.3 Functional Description of Models, Classes and Interfaces 9

3.3.1 UniversalRTIAmbassador ... 9
3.3.2 UniversalFederateAmbassador .. 9
3.3.3 QueuedFederateAmbassador ... 10

vi DRDC Atlantic CR 2008-020

3.3.4 ModelFederateAmbassador ... 10
3.3.5 ModelRTIAmbassador .. 10
3.3.6 data.Universal* .. 10
3.3.7 UniversalLogicalTime, UniversalLogicalTimeInterval 11

3.4 Overall Functional Description .. 11
3.4.1 HLA Version Independence .. 11
3.4.2 RTI Vendor Independence .. 11
3.4.3 Automatic Marshalling and De-marshalling of Data 11
3.4.4 Queuing of Incoming Calls to Prevent Concurrency Errors 12
3.4.5 Encapsulation of Federation Data in an Object Model 12

3.5 Integration and Testing ... 12
3.6 Future Development ... 13

4. Progress Towards 1516 ... 14

References .. 17

List of symbols/abbreviations/acronyms/initialisms .. 19

Distribution list ... 21

DRDC Atlantic CR 2008-020 vii

List of tables

Table 1. Document Revision History. ... viii

Table 2. 1516 Types and Corresponding 1.3 Types. .. 2

Table 3. Comparison of LogicalTime and LogicalTimeInterval Interfaces. 3

Table 4. Factory Retrieval Methods in RTIambassador. .. 4

Table 5. Corresponding HLA 1.3 and IEEE 1516 Exceptions. .. 5

Table 6. Deleted HLA 1.3 Exceptions. ... 6

Table 7. New IEEE 1516 Exceptions. .. 6

Table 8. Polka 2.0 Compliance. .. 8

viii DRDC Atlantic CR 2008-020

Document revision history

Table 1. Document Revision History.

DATE VERSION SUMMARY OF CHANGES

6 February 2008 1.0 First release

DRDC Atlantic CR 2008-020 1

1. Introduction

To date, there have been two major specifications for the High Level Architecture (HLA):
HLA 1.3 and IEEE 1516. Most of the Virtual Maritime Systems Architecture (VMSA) [1]-
based federates in use at Defence R&D Canada – Atlantic (DRDC Atlantic) were written to
the 1.3 specification. An initiative is underway at DRDC to convert all existing federates to
the 1516 standard.

Section 2 of this document examines the differences between the two specifications and
describes a methodology for converting from HLA 1.3 to IEEE 1516.

Section 3 of this document provides a technical description of the Polka 2.0 framework. Polka
2.0 is an evolution of the Polka 1.1 framework [2]. Specifically, Polka 2.0 allows any federate
developed using Polka to connect to either a 1.3-compliant or a 1516-compliant Run Time
Infrastructure (RTI).

The work referred to in the document is essentially independent of the RTI implementation
being used. There currently exist several commercial and non-commercial RTI products.
Specific support for RTI implementations offered by MÄK Technologies [3] and Pitch [4] has
been integrated into Polka 2.0. Other RTI products are easily supported, with minor additional
work required to handle any ways in which they may differ from the established 1.3 or 1516
standards.

2 DRDC Atlantic CR 2008-020

2. Migration Methodology

The formal specifications for HLA 1.3 and IEEE 1516 can be found in [5] and [6],
respectively. The information in this section that refers to specific details of a particular
version can be found in these specification documents. However, the 1516 document does not
discuss how the 1516 standard differs from the 1.3 standard. Information in this section which
is of a comparative nature has been collected and analyzed by the author.

2.1 Differences Between 1.3 and 1516
This section aims to identify any differences between HLA 1.3 and 1516 that a federate
developer should be aware of.

2.1.1 Libraries
The 1.3 and 1516 versions of the RTI interface may reside in the same Java library (in
the case of MÄK), or in separate ones (in the case of Pitch). In any case, the Java
package prefix for 1.3 classes is hla.rti, whereas the package prefix for 1516 is
hla.rti1516. It should be noted that the Defence Modelling and Simulation Office
(DMSO) 1.31 implementation has a package prefix of hla.rti13.java1.

2.1.2 Types
Many of the data items that were represented by integers in 1.3 have been assigned
their own dedicated classes in 1516. Table 2 provides a complete list of 1516 data
classes and their 1.3 equivalents.

Table 2. 1516 Types and Corresponding 1.3 Types.

1516 TYPE 1.3 TYPE
AttributeHandle
AttributeHandleSet
AttributeHandleValueMap
AttributeRegionAssociation
AttributeSetRegionSetPairList
DimensionHandle
DimensionHandleSet
FederateAmbassador
FederateHandle
FederateHandleRestoreStatusPair
FederateHandleSaveStatusPair
FederateHandleSet
InteractionClassHandle
LogicalTime
LogicalTimeInterval
MessageRetractionHandle
MessageRetractionReturn
MobileFederateServices
ObjectClassHandle
ObjectInstanceHandle

int
AttributeHandleSet
ReflectedAttributes
n/a
n/a
int
n/a
FederateAmbassador
int
n/a
n/a
FederateHandleSet
int
LogicalTime
LogicalTimeInterval
EventRetractionHandle
EventRetractionHandle
MobileFederateServices
int
int

1 The DMSO 1.3 standard is less strict than the HLA 1.3 standard.

DRDC Atlantic CR 2008-020 3

OrderType
ParameterHandle
ParameterHandleValueMap
RangeBounds
RegionHandle
RegionHandleSet
ResignAction
RestoreFailureReason
RestoreStatus
RTIambassador
SaveFailureReason
SaveStatus
ServiceGroup
TimeQueryReturn
TransportationType

int
int
SuppliedParameters
n/a
Region
n/a
ResignAction
n/a
n/a
RTIambassador
n/a
n/a
n/a
LogicalTime
int

2.1.3 Time Representation
As shown in Table 2, both versions of the RTI specification make use of
LogicalTime and LogicalTimeInterval interface classes for time specification.
Even though the class names remained the same, the methods required to implement
these interfaces differ significantly, as shown in Table 3.

Table 3. Comparison of LogicalTime and LogicalTimeInterval Interfaces.

INTERFACE METHODS

hla.rti.LogicalTime
void decreaseBy(LogicalTimeInterval i)
void increaseBy(LogicalTimeInterval i)
LogicalTimeInterval subtract(LogicalTime t)
boolean isEqualTo(LogicalTime t)
boolean isGreaterThan(LogicalTime t)
boolean isGreaterThanOrEqualTo(LogicalTime t)
boolean isLessThan(LogicalTime t)
boolean isLessThanOrEqualTo(LogicalTime t)
void setInitial()
void setFinal()
void setTo(LogicalTime t)
boolean isInitial()
boolean isFinal()
int encodedLength()
void encode(byte[] bytes, int offset)

hla.rti1516.LogicalTime
LogicalTime add(LogicalTimeInterval i)
LogicalTime subtract(LogicalTimeInterval i)
LogicalTimeInterval distance(LogicalTime t)
boolean equals(Object t)
int compareTo(Object t)
int hashCode()
String toString()
boolean isInitial()
boolean isFinal()
int encodedLength()
void encode(byte[] bytes, int offset)

hla.rti.
LogicalTimeInterval

boolean isEqualTo(LogicalTimeInterval i)
boolean isGreaterThan(LogicalTimeInterval i)
boolean isGreaterThanOrEqualTo(LogicalTimeInterval i)
boolean isLessThan(LogicalTimeInterval i)
boolean isLessThanOrEqualTo(LogicalTimeInterval i)
void setZero()
void setEpsilon()
void setTo(LogicalTimeInterval t)
boolean isZero()

4 DRDC Atlantic CR 2008-020

boolean isEpsilon()
int encodedLength()
void encode(byte[] bytes, int offset)

hla.rti1516.
LogicalTimeInterval

boolean isZero()
boolean isEpsilon()
LogicalTimeInterval subtract(LogicalTimeInterval i)
int compareTo(Object i)
Boolean equals(Object i)
int hashCode()
String toString()
int encodedLength()
void encode(byte[] bytes, int offset)

2.1.4 Factories
In 1.3, many object classes provided constructors for creating new instances of
objects. In 1516, all object instances that are required to call the RTI are created using
a factory class within the RTI interface. Each factory class is accessed through a
method call in the RTI ambassador. These factory retrieval methods are listed in
Table 4.

Table 4. Factory Retrieval Methods in RTIambassador.

RETRIEVAL METHODS
getAttributeHandleFactory()
getAttributeHandleSetFactory()
getAttributeHandleValueMapFactory()
getDimensionHandleFactory()
getDimensionHandleSetFactory()
getFederateHandleFactory()
getFederateHandleSetFactory()
getObjectInstanceHandleFactory()
getParameterHandleFactory()
getParameterHandleValueMapFactory()
getRegionHandleSetFactory()

2.1.5 Miscellaneous
The order of some parameters in RTI ambassador and federate ambassador methods
have changed. Fortunately, since these parameters have generally changed from
integers to the specific classes used in 1516, errors in parameter order are quickly
resolved.

The tick() method of the 1.3 RTI ambassador has been replaced by the 1516
evokeCallback() and evokeMultipleCallbacks() methods.

Many exceptions implemented in HLA 1.3 map directly to identically-named
exceptions in IEEE 1516. However, there are quite a few exceptions that do not
correspond directly, as shown in Table 5. In addition, there are a set 1.3 exceptions
that have no equivalents in 1516 (Table 6), and a set of entirely new 1516 exceptions
(Table 7).

Any exceptions deleted from 1.3 are due to a change in interfacing (e.g.,
ArrayIndexOutOfBounds is deleted because 1516 does not use array indices in its
method calls).

DRDC Atlantic CR 2008-020 5

New 1516 exceptions are a result of new services being offered, or an expansion of
functionality from existing 1.3 services.

As well, the DMSO 1.3 Java bindings used byte arrays to represent logical time and
Object for the tag parameter. These have been replaced with LogicalTime and
byte arrays, respectively for both non-DMSO 1.3 (i.e., strict HLA 1.3) and 1516.

Table 5. Corresponding HLA 1.3 and IEEE 1516 Exceptions.

HLA 1.3 EXCEPTION IEEE 1516 EXCEPTION
AttributeNotKnown
CouldNotOpenFED
CouldNotRestore
DimensionNotDefined
EnableTimeConstrainedPending
EnableTimeConstrainedWasNotPending
EnableTimeRegulationPending
EnableTimeRegulationWasNotPending
ErrorReadingFED
FederateLoggingServiceCalls
FederationTimeAlreadyPassed
InteractionClassNotKnown
InteractionParameterNotKnown
InvalidExtents
InvalidFederationTime
InvalidOrderingHandle
InvalidRetractionHandle
InvalidTransportationHandle
ObjectAlreadyRegistered
ObjectClassNotKnown
ObjectNotKnown
RegionInUse
RegionNotKnown
SynchronizationLabelNotAnnounced
TimeAdvanceAlreadyInProgress
TimeAdvanceWasNotInProgress
TimeConstrainedWasNotEnabled
TimeRegulationWasNotEnabled

AttributeNotRecognized
CouldNotOpenFDD
CouldNotInitiateRestore
RegionDoesNotContainSpecifiedDimension
RequestForTimeConstrainedPending
NoRequestToEnableTimeConstrainedWasPending
RequestForTimeRegulationPending
NoRequestToEnableTimeRegulationWasPending
ErrorReadingFDD
FederateServiceInvocationsAreBeingReportedViaMOM
LogicalTimeAlreadyPassed
InteractionClassNotRecognized
InteractionParameterNotRecognized
InvalidDimensionHandle
IvalidLogicalTime
InvalidOrderType
InvalidMessageRetractionHandle
InvalidTransportationType
ObjectInstanceNameInUse
ObjectClassNotRecognized
ObjectInstanceNotKnown
RegionInUseForUpdateOrSubscription
RegionNotCreatedByThisFederate
SynchronizationPointLabelNotAnnounced
InTimeAdvancingState
JoinedFederateIsNotInTimeAdvancingState
TimeConstrainedIsNotEnabled
TimeRegulationIsNotEnabled

6 DRDC Atlantic CR 2008-020

Table 6. Deleted HLA 1.3 Exceptions.

ArrayIndexOutOfBounds
ConcurrentAccessAttempted
EventNotKnown
FederateNotSubscribed
FederateWasNotAskedToReleaseAttribute
InvalidResignAction
ObjectClassNotSubscribed
SpaceNotDefined

Table 7. New IEEE 1516 Exceptions.

AttributeNotSubscribed
AttributeRelevanceAdvisorySwitchIsOff
AttributeRelevanceAdvisorySwitchIsOn
AttributeScopeAdvisorySwitchIsOff
AttributeScopeAdvisorySwitchIsOn
FederateHasNotBegunSave
FederateUnableToUseTime
IllegalName
IllegalTimeArithmetic
InteractionRelevanceAdvisorySwitchIsOff
InteractionRelevanceAdvisorySwitchIsOn
InvalidAttributeHandle
InvalidFederateHandle
InvalidInteractionClassHandle
InvalidObjectClassHandle
InvalidOrderName
InvalidParameterHandle
InvalidRangeBound
InvalidRegion
InvalidServiceGroup
InvalidTransportationName
MessageCanNoLongerBeRetracted
NoAcquisitionPending
ObjectClassRelevanceAdvisorySwitchIsOff
ObjectClassRelevanceAdvisorySwitchIsOn
ObjectInstanceNameNotReserved

2.2 Migration Details
Migration of a Java federate from 1.3 to 1516 was done using the Eclipse
development environment, as the Eclipse integrated development environment (IDE)
immediately highlights all naming and linkage errors.

2.2.1 Step 1 – Change Libraries
To begin the migration, exclude any 1.3 libraries from the Java federate’s project, and
replace them with the 1516 versions of the libraries. In the case of the MÄK RTI, both
the 1.3 and 1516 classes are contained in the same library. Delete any import
statements that refer to 1.3 classes or packages. The standard naming of these have the
hla.rti package prefix. In the case of the DMSO bindings, the 1.3 packages all
begin with hla.rti13.java1.

DRDC Atlantic CR 2008-020 7

At this point, Eclipse will report many errors. In most cases, you can right-click on the
indicated error line and choose to import the new 1516 class that implements the
object you are trying to use. All 1516 packages begin with hla.rti1516.

2.2.2 Step 2 –Type Conversion
Convert any references to 1.3 types into the corresponding 1516 types that replace
them, as listed in Table 2.

2.2.3 Step 3 – Convert LogicalTime and LogicalTimeInterval
If you are currently using the 1.3 LogicalTime and LogicalTimeInterval
implementation, you will need to modify them to support the 1516 implementations.
The different method signatures were shown in Table 3. The classes that implement
LogicalTimeFactory and LogicalTimeIntervalFactory will likewise need to
be updated to provide the 1516 versions of both time-related interfaces.

2.2.4 Step 4 – Use the Factory Methods
As previously noted, many of the 1516 types cannot be directly constructed. They are
defined as interfaces that are implemented using vendor-specific classes. These types
need to be constructed using the factory classes retrieved via methods found in the
1516 version of RTIambassador (see Table 4).

2.2.5 Step 5 – Creation of RTI Ambassador
The RTI ambassador used in the federate must also be constructed using a factory.
The proper method is:

hla.rti1516.RTIambassador ra =
 hla.rti1516.jlc.RtiFactoryFactory.getRtiFactory().getRTIambassador();

2.2.6 Step 6 – Replacement of tick()
Any references to the tick() method of the 1.3 RTIambassador have to be
replaced by the evokeCallback() or evokeMultipleCallbacks() methods of
the 1516 version.

2.2.7 Step 7 – Conversion of Exception Classes
Any RTI exceptions raised or handled by your federate will have to be updated to
match those used in the 1516 standard. Refer back to Tables 5, 6 and 7 for the
appropriate changes.

8 DRDC Atlantic CR 2008-020

3. Polka 2.0 Technical Description

3.1 Introduction

Polka 2.0 is a framework that provides a simplified interface to the RTI. Since it acts
as a buffer between the federate code and both the RTI ambassador and federate
ambassador, Polka 2.0 removes the federate’s dependence on both version-specific and
vendor-specific code.

Polka 2.0 is an evolution of Polka 1.1, which relied on the DMSO implementation of
HLA 1.3. Polka 2.0 was developed using Java (SDK 1.4.2) and the Eclipse 3.1.0 IDE.

3.1.1 Compliance

Table 8 summarizes the compliance for this framework.

Table 8. Polka 2.0 Compliance.

 VERSION COMMENTS

Programming Language Java (SDK 5.0)

FOM Any

RTI MÄK 1.3 and 1516, Pitch 1516

Platform Windows XP, Intel processors Since this is a pure Java framework
and makes no use of native libraries it
should run on any Java compatible
platform. It has only been tested on
Windows XP.

3.2 Description

Polka 2.0 abstracts the interface that a federate has to the RTI. It automatically reads in
the Simulation Object Model (SOM) and uses it to encode and decode data sent to and
received from the RTI. Versions 1.3 and 1516 of the RTI interface are abstracted out,
so that any Polka 2.0 federate can connect to either version. All vendor-specific code is
also integrated into Polka 2.0, so that Polka 2.0 federates are vendor-independent.

All RTI function calls are made by a model layer, which provides a persistent object-
oriented view of the federation object model. RTI call-backs (i.e., the federate
ambassador functions) are also processed by the model layer.

An additional VMSA layer has been built into Polka 2.0, so that the VMSA
synchronizations and tag usage are automated whenever a federate is descended from

DRDC Atlantic CR 2008-020 9

the VMSAFederate class. Similar domain-specific layers, such as RPR, could also be
added. See Figure 1.

Figure1. Abstraction Layers in Polka 2.0

3.3 Functional Description of Models, Classes and Interfaces

The main classes that implement the federate are described below.

3.3.1 UniversalRTIAmbassador

This class implements a common interface to both the 1.3 and 1516 versions
of RTIambassador. Calls to the methods of this class are redirected to the
proper RTIambassador, depending on the version specified in the
constructor. Any method parameters that changed between the 1.3 and 1516
versions use the universal data classes defined in Polka 2.0 (see
data.Universal*, below). Method return types are also abstracted using
the universal data types.

3.3.2 UniversalFederateAmbassador

This class implements the FederateAmbassador interfaces for both 1.3 and
1516 versions of the RTI. As a result, it can act as a federate ambassador for
either RTI version. Whenever its call-back methods are called by the RTI,
UniversalFederateAmbassador repackages the parameters as universal
data types (see data.Universal*, below) and forwards the call to the
QueuedFederateAmbassador. To abstract the RTI version being used, 1.3

VMSA Federate

Generic VMSA Federate

Model Federate

Universal RTI
Ambassador

Universal Federate
Ambassador

HLA 1.3 RTI IEEE 1516 RTI

RPR Federate

Generic RPR Federate

10 DRDC Atlantic CR 2008-020

and 1516 variations of the same call-back call the same
QueuedFederateAmbassador method.

3.3.3 QueuedFederateAmbassador

This class adds all federate ambassador call-backs into a queue for future
processing. This is done to avoid concurrency errors when invoking an RTI
ambassador method from within a federate ambassador call-back. The
call-back queue is processed after the tick() (or evokeCallbacks())
method completes. Each call-back method executes a matching
ModelFederateAmbassador method for processing.

3.3.4 ModelFederateAmbassador

This class moves the incoming federate ambassador call-backs into the data
model’s context. For example, updates to the attributes of object instances are
applied to an internal representation of that object. If the federate has
requested to be notified when an object instance is updated,
ModelFederateAmbassador will handle this.

3.3.5 ModelRTIAmbassador

This class provides the federate with a variety of methods for calling the RTI.
The parameters to these methods are generally “model” parameters, that is,
they refer to the model’s representation of the federation objects, object
classes, attributes, parameters and interactions. ModelRTIAmbassador
translates these representations into universal data types and calls the
appropriate UniversalRTIAmbassador method.

3.3.6 data.Universal*

These classes represent the various parameters and return types used to call
the RTI ambassador and receive call-backs via the federate ambassador. By
using the universal types, the federate (and model) can execute in either 1.3
or 1516 mode without knowing which RTI version is in use.

Each universal type can be constructed using either the 1.3 or 1516
version of the type it represents (e.g. either Integer or
hla.rti1516.AttributeHandle, for UniversalAttributeHandle).
The appropriate data is then accessed by UniversalRTIAmbassador
via get13() or get1516() methods, depending on which actual RTI
ambassador is being used. Methods in UniversalFederateAmbassador
also repackage all their parameters as universal types before passing them on
to the federate.

DRDC Atlantic CR 2008-020 11

3.3.7 UniversalLogicalTime, UniversalLogicalTimeInterval

These two interfaces are used throughout both UniversalRTIAmbassador
and UniversalFederateAmbassador, to represent both 1.3 and 1516
LogicalTime and LogicalTimeInterval variables. Each interface
extends both the corresponding 1.3 and 1516 interfaces. Any class that
implements one of these universal interfaces therefore satisfies the
requirements of both RTI versions.

3.4 Overall Functional Description
As an application framework, Polka 2.0 performs five significant functions for
federates:

• HLA version independence;
• RTI vendor independence;
• Automatic marshalling and de-marshalling of data;
• Queuing of incoming calls to prevent concurrency errors; and
• Encapsulation of federation data in an object model.

3.4.1 HLA Version Independence

Through the use of universal data types, universal time representations and
universal RTI interfaces, Polka 2.0 removes any dependency on the HLA
version from the federate. The HLA version, either 1.3 or 1516, is passed to
the UniversalRTIAmbassador on start-up. Thereafter, any version-specific
processing is handled by either UniversalRTIAmbassador or the version-
specific methods of UniversalFederateAmbassador.

3.4.2 RTI Vendor Independence

The IEEE 1516 standard is specific enough to guarantee vendor transparency
when writing code to interface with a 1516 RTI. There are some variations
between vendors in their implementation of the HLA 1.3 specification. The
VendorSpecific interface and its vendor-specific implementations
(Specific_MaK and Specific_Pitch, as of this writing) allow the
development of customized code to deal with these variations. The vendor
name is supplied to UniversalRTIAmbassador on start-up to choose the
appropriate VendorSpecific implementation.

3.4.3 Automatic Marshalling and De-marshalling of Data

Neither HLA 1.3 nor IEEE 1516 explicitly define the format of binary data
used to send attribute updates and interaction parameters between federates.
Polka 2.0 reads in the SOM file to determine the basic data types of both
attributes and parameters. The binary transfer format used for these basic data

12 DRDC Atlantic CR 2008-020

types is defined in the Federation Agreement. Polka 2.0 allows the developer
to include a library of encoder/decoders for these basic data types that
conform to the Federation Agreement. Polka 2.0 then automates the encoding
and decoding of all federate data, using the basic data types as building
blocks.

3.4.4 Queuing of Incoming Calls to Prevent Concurrency Errors

Particularly in HLA 1.3, if a federate makes a call to the RTI during an
instance of a FederateAmbassdor call-back, a concurrency error is raised.
This is a common source of federate errors, particularly amongst
inexperienced HLA developers. To prevent this situation, Polka 2.0 inserts all
FederateAmbassador call-backs into a queue and only processes them
after all call-backs have been delivered.

3.4.5 Encapsulation of Federation Data in an Object Model

Polka 2.0 provides an object-oriented view of federation objects and
interactions to the federate. This structure is deduced from the SOM file. Any
RTI calls from the federate are initiated through this object model, and all
federate call-backs are integrated with the model before they are passed on to
the federate.

3.5 Integration and Testing
Polka 2.0 federates have been tested in a complex VMSA federation. The Polka 2.0
federates in the federation were Damage2, Vision3, JMotion [7], Mogwai [8],
JACKBridge [9] and Gunnery [10]. The federation also consisted of the Execution
Manager [11] and Horizon [12] federates and was run with the MÄK RTI (version
2.4). The Execution Manager federate was developed by Defence Science and
Technology Organisation (DSTO) and works specifically with HLA 1.3 federates, but
not IEEE 1516 federates. The Horizon HLA plug-in is also built as an HLA 1.3
federate. Since a VMSA federation cannot be run without the Execution Manager, it
is not possible at this time to fully test the success of the 1516 portions of Polka 2.0.
However, all of these federates have been executed in an HLA 1.3 federation and all
Polka 2.0 federates behaved exactly as required. Since the premise behind adapting
Polka federates to work in an HLA 1.3 federation is the same as that behind adapting
Polka federates to work in a 1516 federation, it is expected that the main functionality
is correctly built. Small, 1516-related bug fixes may however be required once the
federation can be fully tested in a 1516 environment.

2 This federate is new and has not yet been fully documented.
3 This federate is new and has not yet been fully documented.

DRDC Atlantic CR 2008-020 13

3.6 Future Development

As mentioned in Section 3.5, two HLA 1.3-based federates need to be updated to IEEE
1516 before a test of a complete 1516-compliant VMSA federation can be performed.
The following are required:

• An IEEE 1516-compliant version of the VMSA Execution Manager federate is
required to test any VMSA federation in 1516 mode; and

• An IEEE 1516-compliant version of the Horizon VMSA plug-in is required to
run the Horizon federate in a 1516 federation.

Future work may include extending the Polka 2.0 vendor-specific classes to handle
more RTIs, such as PoRTIco and the version-specific classes to handle the upcoming
HLA standard referred to as ‘HLA Evolved’.

14 DRDC Atlantic CR 2008-020

4. Progress Towards 1516
With the completion of Polka 2.0, many of the VMSA federates in use at DRDC
Atlantic are now IEEE 1516-compliant. In addition to those mentioned in Section 3.5
(i.e., Damage, Vision, JMotion, Mogwai, JACKBridge, and Gunnery), these include:

• Detailer [13], a data logging federate;

• JSound [14], a federate that produces unique sounds for some VMSA
interactions;

• COMDAT bridge [15], a federate that allows the Multi-Source Data Fusion
(MSDF) component of the Command Decision Aid Technology (COMDAT)
project to receive raw tracks and return fused tracks from/to VMSA;

• DRDC ESM [16], a simplistic Electronic Support Measures (ESM) federate
based on truth data;

• IFF [17], an Identification Friend Foe (IFF) federate; and

• GCCS [18], a federate which allows tracks to be shared between platforms in
Global Command and Control System (GCCS) format.

However, in addition to the VMSA Execution Manager and Horizon VMSA plug-in
as previously identified, conversion to 1516 is still outstanding for the following
federates which were not developed with Polka:

• SIMDIS [19], a 3-dimensional visual display;

• Tacoma4, a bridge from VMSA to another federation using a different
Federation Object Model (FOM), such as the Real-time Platform Reference
(RPR) FOM;

• JBoard [20], a federate developed in-house (based on DSTO’s Gameboard
federate), which controls the movement of entities along preset paths that are
specified by scripts output by the Scenario Generator [21] tool;

• Torpedo5, a torpedo federate developed in-house for the War-in-a-Box (WIB)
exercise;

• Gremlins[23], a generic radar federate developed by DSTO;

• DSTO ESM [24], an ESM federate developed by DSTO;

• Sonar 3 [25], a sonar federate;

• IntAircraft, a federate developed by Defense Technology Agency (DTA) that
allows Microsoft Flight Simulator to communicate with VMSA.

4 Tacoma has undergone various changes since first developed and up-to-date documentation does not
currently exist.
5 Documentation on this federate does not yet exist. However, documentation on the Horizon plug-in
which interacts with this federate can be found in [22].

DRDC Atlantic CR 2008-020 15

In fact, there are additional federates that are not 1516-compliant which are not listed
here since they are outdated and infrequently used. For any of these non-1516
federates, the methodology described in this document can be used to guide the
conversion process. While the Execution Manager and Horizon VMSA plug-in will
need to be converted in the near future, the remaining federates will most likely be
converted on an ‘as needed’ basis.

Any new federates developed at DRDC Atlantic should use the Polka 2.0 utilities. In
this case, all new federates will automatically be both 1.3 and 1516-compliant.

16 DRDC Atlantic CR 2008-020

This page intentionally left blank.

DRDC Atlantic CR 2008-020 17

References

[1] Canney, S.A. (2002), Virtual Maritime System Architecture Description Document,
Issue 2.00, Virtual Maritime System Document Number 00034, Defence Science
and Technology Organisation, Edinburgh, Australia.

[2] Dillman, B. (2005), The Polka HLA Utilities, (DRDC Atlantic TM 2005-232),
Defence R&D Canada – Atlantic.

[3] MÄK Technologies website: www.mak.com, accessed September 5, 2013.

[4] Pitch website: www.pitch.se, accessed September 5, 2013.

[5] Dynamic Link Compatible HLA API Product Development Group (PDG) (2004),
Dynamic Link Compatible HLA API Standard for the HLA Interface Specification
Version 1.3, Simulation Interoperability Standards Organization, SISO-STD-004-
2004.

[6] Dynamic Link Compatible HLA API Product Development Group (PDG) (2004),
Dynamic Link Compatible HLA API Standard for the HLA Interface Specification
(IEEE 1516.1 Version), Simulation Interoperability Standards Organization, SISO-
STD-004.1-2004.

[7] Hackett, D. and Gaudet, B. (2006), JMotion Federate: User Guide and Technical
Description, (DRDC Atlantic CR 2006-026), Defence R&D Canada – Atlantic.

[8] Gaudet, B. (2007), Mogwai Federate: User Guide and Technical Description,
(DRDC Atlantic CR 2007-151), Defence R&D Canada – Atlantic.

[9] Gaudet, B. (2008), JACK RedEntities and the JACK-VMSA Bridge Federate,
(DRDC Atlantic CR 2008-021), Defence R&D Canada – Atlantic.

[10] Wentzell, T.E. (2006), Gun Control for VBE-E: User Guide and Technical
Description, (DRDC Atlantic TM 2006-245), Defence R&D Canada – Atlantic.

[11] Cramp, A. (2000), Virtual Ship Execution Manager, User Guide 1.00, Defence
Science and Technology Organisation.

[12] Arnold, A., Goold, L., and Haddy, M. (2005), Horizon 3 Developer Guide, Release
3.3, Published by Innovation Science Pty Ltd., Copyright 2005.

[13] Gaudet, B. (2007), Detailer Federate: User Guide and Technical Description,
(DRDC Atlantic CR 2006-239), Defence R&D Canada – Atlantic.

[14] Gaudet, B. (2007), JSound Federate: User Guide and Technical Description, (DRDC
Atlantic CR 2006-241), Defence R&D Canada – Atlantic.

http://www.mak.com/
http://www.pitch.se/

18 DRDC Atlantic CR 2008-020

[15] Gaudet, B. (2007), COMDAT Federate 2.0: User Guide and Technical Description,
(DRDC Atlantic CR 2007-153), Defence R&D Canada – Atlantic.

[16] Gaudet, B. (2007), ESM Federate 1.0 – User Guide and Technical Description,
(DRDC Atlantic CR 2007-149), Defence R&D Canada – Atlantic.

[17] Gaudet, B. (2007), IFF Federate 1.0 – User Guide and Technical Description,
(DRDC Atlantic CR 2007-148), Defence R&D Canada – Atlantic.

[18] Gaudet, B. (2007), GCCS Federate 1.0 – User Guide and Technical Description,
(DRDC Atlantic CR 2007-153), Defence R&D Canada – Atlantic.

[19] Gillis, A. (2005), SIMDIS VMSA Federate: User Guide and Technical Description,
(DRDC Atlantic TM 2005-026), Defence R&D Canada – Atlantic.

[20] Gillis, A. (2007), JBoard VMSA Federate: User Guide and Technical Description,
(DRDC Atlantic TM 2005-027), Defence R&D Canada – Atlantic.

[21] Roger, W.A. (2003), An Enhanced Scenario Generator for the TTCP Virtual
Maritime Systems Architecture, (DRDC Atlantic TM 2003-007), Defence R&D
Canada – Atlantic.

[22] Wentzell, T.E. and Goold, L. (2005), Horizon 3 Torpedo Launcher Plug-in: User
Guide and Technical Description, (DRDC Atlantic TM 2005-209), Defence R&D
Canada – Atlantic.

[23] Munro-Ford, D. (2003), Gremlins Federate User Manual Version 1.2, Defence
Science and Technology Organization.

[24] Canney, Shane A. (2001), Constructing an Infrastructure to Facilitate Electronic
Support Modelling in the Virtual Ship, DSTO-TR-1159, Defence Science and
Technology Organization, Electronic Warfare Division.

[25] Gillis, A. (2007), Sonar 3 VMSA Federate: User Guide and Technical Description,
(DRDC Atlantic CR 2005-286), Defence R&D Canada – Atlantic.

DRDC Atlantic CR 2008-020 19

List of symbols/abbreviations/acronyms/initialisms

API Application Programming Interface

COMDAT Command Decision Aid Technology

DMSO Defence Modeling and Simulation Office (US Department of
Defence)

DRDC Defence Research and Development Canada

DSTO Defence Science and Technology Organisation

DTA Defense Technology Agency

ESM Electronic Support Measures

FOM Federation Object Model

GCCS Global Command and Control System

HLA High Level Architecture

IFF Identification Friend Foe

MSDF Multi-Source Data Fusion

RPR Real-time Platform Reference

RTI Run Time Infrastructure

SDK Software Development Kit

SOM Simulation Object Model

TTCP The Technical Co-operation Program

VCS Virtual Combat Systems

VMSA Virtual Maritime Systems Architecture

WIB War-in-a-Box

20 DRDC Atlantic CR 2008-020

This page intentionally left blank.

DRDC Atlantic CR 2008-020 21

Distribution list

Document No.: DRDC Atlantic CR 2008-020

 LIST PART 1: Internal Distribution by Centre:

1 Tania E. Randall
1 Mark G. Hazen
1 Allan Gillis
1 Don Coady
1 Glenn Franck
3 DRDC Atlantic Library

8 TOTAL LIST PART 1

 LIST PART 2: External Distribution by DRDKIM

1
1

DRDKIM
Library and Archives Canada

2 TOTAL LIST PART 2

10 TOTAL COPIES REQUIRED

22 DRDC Atlantic CR 2008-020

This page intentionally left blank.

DRDC Atlantic CR 2008-020 23

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a contractor's
report, or tasking agency, are entered in section 8.)

SG Software Solutions Incorporated
75 Bristol Avenue, Stillwater Lake, Nova Scotia
B3Z 1E9

 2. SECURITY CLASSIFICATION
 (overall security classification of the document

including special warning terms if applicable).

UNCLASSIFIED
(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

 3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
 abbreviation (S,C,R or U) in parentheses after the title).

Converting VMSA Federates through Polka 2.0: HLA 1.3 to IEEE 1516

 4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Gaudet, Briand J.

 5. DATE OF PUBLICATION (month and year of publication of
 document)

June 2008

 6a. NO. OF PAGES (total
 containing information Include
 Annexes, Appendices, etc).

 34

 6b. NO. OF REFS (total cited
 in document)

 25

 7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

CONTRACT REPORT

 8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include address).
Defence R&D Canada – Atlantic
PO Box 1012
Dartmouth, NS, Canada B2Y 3Z7

 9a. PROJECT OR GRANT NO. (if appropriate, the applicable research

and development project or grant number under which the document was
written. Please specify whether project or grant).

11bt

 9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written).

W7707-078006/001/HAL

 10a ORIGINATOR'S DOCUMENT NUMBER (the official document

number by which the document is identified by the originating activity.
This number must be unique to this document.)

 DRDC Atlantic CR 2008-020

 10b OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed

by security classification)
(x) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to the

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience
may be selected).

 Unlimited

24 DRDC Atlantic CR 2008-020

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is

highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication
of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R),
or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual).

Version 1.3 of the High Level Architecture (HLA) specification was developed by the Defence
Modeling and Simulation Office (DMSO) in the 1990s. A more robust standard, IEEE 1516,
was proposed in 2000.

Defence R&D Canada – Atlantic’s (DRDC Atlantic’s) current strategic focus dictates a move
towards the newer standard, to allow the Virtual Combat Systems (VCS) group to take
advantage of newer tools and an expanded application programming interface (API).

This document describes the differences between HLA 1.3 and IEEE 1516, and the steps
required to migrate a federate from 1.3 to 1516. As well, it describes the Polka 2.0 framework,
which is a tool used to develop federates that are both version- and vendor-independent.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a

document and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included.
If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and
that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be
indicated as with the title).

VMSA, distributed simulation, HLA 1.3, IEEE 1516

This page intentionally left blank.

	1. Introduction
	2. Migration Methodology
	2.1 Differences Between 1.3 and 1516
	2.1.1 Libraries
	2.1.2 Types
	2.1.3 Time Representation
	2.1.4 Factories
	2.1.5 Miscellaneous

	2.2 Migration Details
	2.2.1 Step 1 – Change Libraries
	2.2.2 Step 2 –Type Conversion
	2.2.3 Step 3 – Convert LogicalTime and LogicalTimeInterval
	2.2.4 Step 4 – Use the Factory Methods
	2.2.5 Step 5 – Creation of RTI Ambassador
	2.2.6 Step 6 – Replacement of tick()
	2.2.7 Step 7 – Conversion of Exception Classes

	3. Polka 2.0 Technical Description
	3.1 Introduction
	3.1.1 Compliance

	3.2 Description
	3.3 Functional Description of Models, Classes and Interfaces
	3.3.1 UniversalRTIAmbassador
	3.3.2 UniversalFederateAmbassador
	3.3.3 QueuedFederateAmbassador
	3.3.4 ModelFederateAmbassador
	3.3.5 ModelRTIAmbassador
	3.3.6 data.Universal*
	3.3.7 UniversalLogicalTime, UniversalLogicalTimeInterval

	3.4 Overall Functional Description
	3.4.1 HLA Version Independence
	3.4.2 RTI Vendor Independence
	3.4.3 Automatic Marshalling and De-marshalling of Data
	3.4.4 Queuing of Incoming Calls to Prevent Concurrency Errors
	3.4.5 Encapsulation of Federation Data in an Object Model

	3.5 Integration and Testing
	3.6 Future Development

	4. Progress Towards 1516

