
Defence Research and Development Canada
Contract Report
DRDC-RDDC-2018-C058
March 2018

CAN UNCLASSIFIED

CAN UNCLASSIFIED

Integration of Adversarial Behaviour Prediction
in COA-T

Laurence Olivier Marion-Ouellet
Michel Mayrand
OODA Technologies Inc.

Prepared by:
OODA Technologies Inc.
4710 rue St-Ambroise, suite 226
Montreal, QC H4C 2C7

PSPC Contract Number: W7707-145677 TA19
Technical Authority: Allan Gillis, DRDC – Atlantic Research Centre
Contractor's date of publication: February 2018

Template in use: Normal.dotm

© Her Majesty the Queen in Right of Canada (Department of National Defence), 2018

© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2018

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule to
the Defence Production Act.

Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the
Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the
national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence)
makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy,
reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing
in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any
reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so
using it or relying on it. Canada does not assume any liability in respect of any damages or losses arising out of or in connection
with the use of, or reliance on, any information, product, process or material included in this document.

RISOMIA Call-up 19: Integration
of Adversarial Behaviour

Prediction in COA-T

Prepared by

OODA Technologies

Laurence Olivier Marion-Ouellet and Michel Mayrand

February 23, 2018

OODA Technologies Inc.

4710 rue St-Ambroise, suite 226

Montréal, QC, Canada, H4C 2C7

Tel: 514-903-4747

www.ooda.ca

 Page 2

Table of Content

1 INTRODUCTION .. 1

1.1 DOCUMENT PURPOSE ... 1
1.2 PRODUCT SCOPE .. 1
1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ... 1

2 ARCHITECTURE ... 2

2.1 ARCHITECTURE SCOPE ... 2
2.2 BANDIT ARCHITECTURE .. 2
2.3 BANDIT/COA-T ARCHITECTURE ... 4

3 BANDIT USER GUIDE .. 5

3.1 INSTALLATION ... 5
3.2 RUNNING BANDIT .. 8
3.3 RUNNING THE BANDIT EXAMPLES ... 9
3.4 THE METOC DATA LAYER ... 11

4 BANDIT/COA-T DESIGN .. 12

4.1 MODIFICATIONS TO BANDIT .. 12
4.2 DATA MODEL FOR THE INPUT ... 12
4.3 DATA MODEL FOR THE OUTPUT .. 13
4.4 MONITORING.. 14

5 BANDIT/COA-T USER GUIDE... 15

5.1 REQUIREMENTS .. 15
5.2 STARTING THE COAT-BANDIT .. 15
5.3 DEVELOPER GUIDE ... 16

6 CONCLUSION... 17

6.1 BANDIT AS A COAT INTEGRATION TEST .. 17

ANNEX A: BIBLIOGRAPHY ... 18

ANNEX B: APPLICATION.PROPERTIES SAMPLE AND CONFIGURATION FOR COAT-BANDIT 19

ANNEX C: DATA EXAMPLE FOR BANDITREQUEST INPUTS .. 20

EXAMPLE OF AN INPUT BANDITREQUEST MESSAGE, SERIALIZED .. 20

ANNEX D: ORIGINAL NRLSCENARIO EXAMPLE ... 21

User Manual for COAT-BANDIT Page 1

1 Introduction

This Call-up investigates the recently acquired BANDIT tool and how it can be integrated into the COA-T

environment. BANDIT is an agent-based computational platform, which is designed to evaluate scenarios

with an emphasis on modeling different types of illegal behaviour and the interaction between agents. The

platform consists of an agent behaviour modelling system and a multi-agent maritime simulator. The

platform allows defining a number of scenarios through a simple configuration JSON input in the web

interface and it offers the means to run these scenarios in a single or batch mode and evaluate the results as

single or aggregate data sets respectively.

1.1 Document Purpose

The objective of this document is to provide information on how the BANDIT platform works and how it

can be incorporated it in the COA-T environment. Section 2 focuses on the architecture of both the original

BANDIT product and the COAT version created during this call-up. Section 3 covers BANDIT only, its

installation, notes, etc. Section 4 performs an analysis of our COAT module for BANDIT. Section 5 is a

general user guide for COAT-BANDIT and Section 6 concludes the document.

1.2 Product Scope

The platform can be used to model various contemporary phenomena, primarily focusing on maritime drug

smuggling in the Caribbean and in the Eastern Pacific. It can also model the migrant activity in the

Mediterranean and estimate areas of high probability of migrant transits.

Here is a partial list of the features (claimed by Blindspot) for BANDIT [Blindspot - 2017]:

 The BANDIT is able to simulate not only water surface vessels and submarines, but also various

aerial assets, such as UAVs or reconnaissance airplanes including their endurance.

 The user can also model equipped sensors with their range and probability of object detection.

 The BANDIT platform is able to work with various geographical features such as shore lines,

navigable water bodies, etc. The platform also integrates support for meteorological and

oceanographic data from various sources such as NOAA or Copernicus.

 The BANDIT platform is designed to simulate up to thousands of agents in one simulation instance.

Each agent is simulated individually and inter-agents interactions are possible.

 Once you have prepared your agents in the BANDIT platform, you can execute the simulation in a

batch mode (Monte-Carlo).

1.3 Definitions, Acronyms and Abbreviations

AIS: Automatic Identification System

BANDIT: Behavioural Agents for Drug Interdiction

BSM: Behaviour System Model

DB: Database

DRDC: Defence Research and Development Canada

IDE: Integrated Development Environment

MSA: Maritime Situational Awareness

NRL: Naval Research Laboratory

User Manual for COAT-BANDIT Page 2

2 Architecture

2.1 Architecture scope

Defence Research and Development Canada (DRDC) Atlantic Research Centre is developing a prototyping

framework called the Course of Action Testbed (COA-T) to assist with research into naval planning tools.

The CoA-T framework has been architected around a client/server message based communications backbone

using elements of the Simulation Interoperability Standards Organization (SISO)/ North Atlantic Treaty

Organization (NATO) Coalition Battle Management Language (CBML) and Military Scenario Definition

Language (MSDL) standards to define message formats.

The intent of the CoA-T is to facilitate research and demonstration of technologies to support command

teams in the development and assessment of courses of action. As such it is expected that the plug and play

architecture will support a wide variety of possible tools.

DRDC has access to a simulation of pirate and smuggler behaviour, developed from work initially done by

NATO, called BANDIT (Behavioural Agents for Drug Interdiction). BANDIT is configured to work as a

server responding to client requests. The scope of this project is to support the implementation of BANDIT

on the COA-T local area network and configure COA-T to generate and display BANDIT related data.

2.2 BANDIT Architecture

BANDIT is an agent-oriented time-stepped simulation framework that was created to model maritime piracy

and smuggling.

Simulations in this model are run in three steps. First, the scenarios are either randomly sampled from given

parameter distributions or directly set as the input. Second, the scenarios are executed while logging

important events and trajectories of the agents. Finally, the events are post-processed and output data is

created.

The process of simulation execution in BANDIT uses two main components, the environment and the agents.

In the environment, the state variables are stored and changed by the commands from the agents. The agents

obtain information concerning their surroundings from the environment. The connection between the agents

and the environment is mediated by the controller interface.

The BANDIT platform is intended to be run as a web service on the simulation server. It awaits a request to

execute a simulation given by the scenario specification. A typical scenario describes Monte Carlo

simulation by specifying a number of iterations and which parameters of the simulation are specified as

random distributions. From a single scenario multiple simulation instances are sampled and executed. Results

are then statistically processed.

User Manual for COAT-BANDIT Page 3

Figure 1 - Bandit platform architecture.

The BANDIT platform consists of two main components: the simulator and the agent behaviour models. The

simulator is responsible for simulation of the virtual world, whereas the behaviour models control simulated

vessels using artificial intelligence – planning the actions, reacting to the inputs, etc. These components are

strictly separated and all communication is through a specified interface. This approach allows a component

to be replaced, should the need arise, and to test the behaviour models independent of the simulation.

Figure 1 depicts the main modules of the BANDIT platform. The environment represents physical items in

the simulated world. It consists of two components: storages and the model:

1. Storage: The storage is an aggregate data structure responsible for keeping the actual state variables

of the simulated entities. The state variables describe the physical part of the virtual simulated world,

i.e., the environment and the parameters describing the modeled agents.

2. Model: The model describes the dynamics of the system. At each simulation step, each model is

called with the update of the simulation time. The model is then responsible for updating the storage

with new state variables. The variables are updated based on the modeled behaviour, i.e., on the

actions of the agent.

3. Controller: The controller is an interface between the agent and the environment. It forwards

sensory information from the environment to the agent and propagates action calls from the agent to

the environment.

For more detailed information on Bandit architecture see [Hrstka-2015A].

User Manual for COAT-BANDIT Page 4

2.3 BANDIT/COA-T Architecture

This section describes the steps needed to achieve the following two goals of integrating BANDIT

into COAT.

1. Make BANDIT services accessible from the COAT system.

2. Create a proof of concept to check if the integration of external systems is possible with

COAT.

Transforming BANDIT from a web service to an ActiveMQ service required the building of a new

module, DRDC-Coat. Built with a Spring architecture, its main application has essentially a single

responsibility at start up: get a connection to ActiveMQ and establish a listener on a topic.

This listener then consumes the messages published to its topic and when it spots a Bandit Request,

calls the server module to perform a simulation. To accommodate this difference of input types

between a JSON sequence containing the whole scenario and an ActiveMQ request, new functions

were added to some classes in server, performing the same actions as before but using inputs

coming from our listener and filling the rest with defaults.

Due to BANDIT’s structure, getting the simulation results is a bit harder than simply setting our

information in a function’s structured output. Blindspot’s “modular structure” rather creates threads

which (slowly) produce the output. During testing, code that accessed this expected output right at

the end of the simulation resulted in error (Since the output was not ready yet).

As a workaround, the consumer starts a simulation and gets an accompanying UUID. It then starts a

loop that continuously checks if an output has been produced with a corresponding UUID in our

SimulationRunner. When it does, this output is sent to a producer as data to be given to the

appropriate topic. This loop also has a timeout feature, in case errors happening during the

simulation prevent the creation of an output.

As a final note, while it was possible to get BANDIT working through the COAT interface, it is

possible that BANDIT itself may not be the best choice. The original kmz outputs it generates are

corrupted, its structure is sibylline, and its working scenarios do not use its advertised capabilities.

The difference between BANDIT and simply interpolating a smuggler’s route (Since startDate,

waypoints and smuggler’s speed all need to be inputted in BANDIT) with a margin of error is the

addition of weather data and its effect on smugglers’ behaviour. Without a working METOC

provider however, BANDIT does not seem to possess any advantage over simple dead reckoning

with margins of error, for now.

DRDC might realize that the BANDIT services that are now accessible from COAT may seem

narrow when compared to the claims from Blindspot concerning BANDIT (modular, allows

simulation of complex behaviours between agents, etc.). However, the product delivered to DRDC

does not allow for everything listed.

After compiling and playing around with BANDIT, out of ten or so scenario types, only a single

one was found to be in working order. The web service that was delivered to us only allows for a

User Manual for COAT-BANDIT Page 5

very specific “nrl_example.json” scenario for a smuggler following waypoints in the Caribbean Sea.

All effects of the weather on its route are disabled. Its behaviour or “tarping” (Hiding in the day,

full speed during the night) is less appropriate for North American smugglers. Considering those

limitations which were discovered during development, it was decided to move away from JSON

inputs and to create an easier to understand BanditRequest object holding the customisable

parameters.

All other examples were tested, with or without modifications to their structure, which resulted in

errors and program crashes. It seems that Blindspot was contracted by NRL to provide a very

specific type of scenario and modified BANDIT for the specific purpose of their partnership.

Anything else was left off and could be obsolete in terms of compatibility.

3 BANDIT User Guide

3.1 Installation

This section contains the instructions for installing and running the original BANDIT service. These

instructions were tested in a Linux (Ubuntu) environment but can be replicated on Windows 7, 8 or 10. One

can use the Cygwin environment on Windows for executing these instructions.

3.1.1 Prerequisites

The following tools are required before installing BANDIT:

 Java 8:

o On Linux Ubuntu: sudo apt-get install software-properties-common

sudo apt-add-repository ppa:webupd8team/java

sudo apt-get update

sudo apt install oracle-java8-installer

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

o On Windows: see https://java.com/en/download/faq/java_win64bit.xml

 Maven 3.3.9 or higher

o On Linux Ubuntu: sudo apt-get install maven

o On Windows: see https://maven.apache.org/install.html

 Scala compiler 2.11.8 or higher

o On Linux Ubuntu: sudo apt-get install scala

o On Windows: see https://www.scala-lang.org/download/

 Eclipse or IntelliJ

o IMPORTANT: As BANDIT is a mix of Java AND Scala, you will need to add the Scala

plugin for Eclipse or IntelliJ.

https://java.com/en/download/faq/java_win64bit.xml
https://maven.apache.org/install.html
https://www.scala-lang.org/download/

User Manual for COAT-BANDIT Page 6

3.1.2 Unpacking the original BANDIT bundle

First, unzip Bandit:
unzip DRDC-bandit.zip

BANDIT is composed of three directories:

 common: a series of utility libraries created by Blindspot.

 metoc: data layer code for retrieving Meteorological and Oceanographic (METOC) data from the US

Navy Fleet Numerical Meteorology and Oceanography Center.

 bandit: The main webservice application.

Bandit uses some of the Blindspot utility libraries (directory common) and the METOC data layer (directory

metoc). These are separate projects, upon which BANDIT depends.

The language content of all the modules from this package can be described as follows:

Table 1: Analysis of Bandit code in terms of coding languages and lines of code

Language Number of Files Lines of comment Lines of code

Java 232 3191 13432

Scala 36 103 1273

Maven 25 101 1673

HTML 64 80 13721

XML 89 0 3557

CSS 5 1 317

Javascript 1 0 31

Total 452 3476 34004

3.1.3 Setting up your Maven environment

All the dependencies (including Scala) can be downloaded through the Maven build process which requires

Internet access. If you do not have Internet access and want to compile offline, you will have to copy in your

home the entire tree layout of the Maven repository (~/.m2) from a user who had access to Internet and has

compiled the code. For the COA-T/BANDIT version, we provided a copy of the M2 Java/Maven libraries

necessary for running BANDIT should the instructions below does not work.

BANDIT needs a library for generating KML outputs. This library is forked from the official version (BSD

license), which supports Google's track element (trajectories with timestamped points, that Google Earth is

able to animate). This library is on the Czech Technical University Maven repository. To access it, we need

to use the settings.xml file provided within the BANDIT bundle, which you place into .m2 directory in your

home directory:

cp settings.xml ~/.m2

3.1.4 Compiling the code

To compile the code, use the maven command:

cd common

mvn install

User Manual for COAT-BANDIT Page 7

cd ../metoc

mvn install

cd ../bandit

mvn install

The compilation will download any Java/Scala library dependencies. At the end of each compilation, all sub-

sections in the summary output at the end should say SUCCESS. Before going further, any error should be

addressed.

3.1.5 Troubleshooting

Because of the dependency of the Czech Technical University Maven repository, it is recommended keeping

a back up (.m2/repository/cz part) in case the repository is not maintained anymore.

In such a case or if you have problems in establishing an internet connection with the Czech Technical

University Maven repository, you may encounter the following error:

[ERROR] Failed to execute goal on project planners: Could not resolve

dependencies for project cz.blindspot.bandit:planners:jar:1.0-SNAPSHOT:

Failed to collect dependencies at

de.micromata.jak:CustomJavaAPIforKml:jar:2.2.0-SNAPSHOT: Failed to read

artifact descriptor for de.micromata.jak:CustomJavaAPIforKml:jar:2.2.0-

SNAPSHOT: Could not transfer artifact

de.micromata.jak:CustomJavaAPIforKml:pom:2.2.0-SNAPSHOT from/to atg-repo

(http://jones.felk.cvut.cz/artifactory/repo): Not authorized ,

ReasonPhrase:Unauthorized. -> [Help 1]

That specific library can be downloaded from:

https://github.com/agents4its/mobilitytestbed/blob/master/mobilitytestbed/lib/CustomJavaAPIforKml-

2.2.0.jar

Create the following directory path:

~/.m2/repository/de/micromata/jak/CustomJavaAPIforKml/2.2.0-SNAPSHOT

and manually install the library in your local Maven repository. Copy the JAR file in that location, rename it

CustomJavaAPIforKml-2.2.0-SNAPSHOT.jar and create in the same directory a metadata file which

contains the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<metadata modelVersion="1.1.0">

 <groupId>de.micromata.jak</groupId>

 <artifactId>CustomJavaAPIforKml</artifactId>

 <version>2.2.0-SNAPSHOT</version>

 <versioning>

 <snapshot>

 <localCopy>true</localCopy>

 </snapshot>

 <lastUpdated>20171015215114</lastUpdated>

 <snapshotVersions>

 <snapshotVersion>

https://github.com/agents4its/mobilitytestbed/blob/master/mobilitytestbed/lib/CustomJavaAPIforKml-2.2.0.jar
https://github.com/agents4its/mobilitytestbed/blob/master/mobilitytestbed/lib/CustomJavaAPIforKml-2.2.0.jar

User Manual for COAT-BANDIT Page 8

 <extension>jar</extension>

 <value>2.2.0-SNAPSHOT</value>

 <updated>20171015215114</updated>

 </snapshotVersion>

 <snapshotVersion>

 <extension>pom</extension>

 <value>2.2.0-SNAPSHOT</value>

 <updated>20171015215114</updated>

 </snapshotVersion>

 </snapshotVersions>

 </versioning>

</metadata>

3.2 Running BANDIT

3.2.1 Prerequisites

To run BANDIT, it is recommended to use a development tool such as Eclipse or IntelliJ. In both cases, you

will need to install the Scala plugin in order to process the Scala code. Using an IDE creates an easier process

when trying to catch unsatisfied dependencies, but it is also possible to take advantage of Maven’s lifecycle

to build an executable jar file. To do so, maven commands “mvn clean package” will need to be run in the

server subfolder. The approach taken by OODA was rather to use the IDE, which grants more insight into

BANDIT’s structure.

For IntelliJ: In the Configure Menu, select Plugins, then, click on Browse JetBrains Plugins. In the search

field, type Scala, in the result list, select Scala and click the Install button on the right side. Click the Restart

IntelliJ IDEA button.

For Eclipse: Download the fully configured IDE for Scala at http://scala-ide.org/

3.2.2 Import the Maven code in the IDE

For IntelliJ: Create a project form existing sources. Select the DRDC-Bandit/bandit directory. Select the

radio button for Import project from external model and below, select Maven. Click Next. In addition to the

default selections, select the Search for projects recursively and Import Maven projects automatically. Select

Next three times. In the SDK panel, select one (JDK 1.8) if not already done. Click Next. Click Next and

Finish.

3.2.3 Starting the BANDIT server

For IntelliJ: Select the menu Run->Run…->Edit Configurations. Deploy the left Default list and select

Application. In the right panel, input the following entries:

 Main class: cz.blindspot.bandit.server.Webservice

 VM options: -Dcz.blindspot.bandit.configuration="/$YOUR_INSTALLATION_DIR/DRDC-

bandit/bandit/local.conf"

 Working directory: $YOUR_INSTALLTION_DIR/DRDC-bandit/bandit

 Use classpath of module: select the server directory

 JRE: Select the Default

Above the bottom box, click the “+” sign and add “Build”.

http://scala-ide.org/

User Manual for COAT-BANDIT Page 9

Finally, click “Run”. The output of the run will be displayed at the bottom of the IntelliJ window. Resolve

any errors that are displayed in that area.

If an error says that the port number is already in use, modify line 21 of file:
server/src/main/java/cz/blindspot/bandit/server/Webservice.java

and change the port number 8080 for another which is free and restart the application.

Uncomment line 14 of files:
server/src/main/java/cz/blindspot/bandit/server/IssueSimulationServlet.java

server/src/main/java/cz/blindspot/bandit/server/DownloadResultServlet.java

and add
import javax.servlet.annotation.WebServlet;

in the top import section of each file and restart the server.

3.2.4 How to test the server

The BANDIT web service is used in two different ways. The first is to serve as an API interface

using the GET command. The second is to provide a simple web application for inputting the

information.

To test the server, open a browser and enter the link:

http://0.0.0.0:8080/simulation/json-input.html

You should now see the BANDIT interface for inputting simulation parameters.

3.3 Running the BANDIT examples

Note that this section concerns the unmodified original BANDIT program. Some features have been

modified or disabled in order to accommodate delivery of a jar for simulation in the North Atlantic

zone.

The first modification is to disable the WaterPolygons. While they provide useful information about

the shorelines, necessary to make accurate simulations, their data is absent for zones outside the

Mediterranean and Caribbean seas and cause errors for examples in the North Atlantic.

To fix this issue, calls to the class WaterPolygonProvider’s isInWater function now simply return
true no matter the position instead of performing a check against its data, which resulted in
NullException for positions outside of its zones. Therefore, due to its absence of data for zones out
of the Carribean and Meditterenean seas, we had to disable the WaterPolygon service.

It is also necessary to allow outputs to be created in North America. In the post-processing module,

/src/main/java/cz/blindspot/bandit/postprocessing/HeatGrid, a new bounding box for North America

can be created (private static final BoundingBox NORTHAMERICA_BOUNDING_BOX =

BoundingBox.fromEsriCoords(38, 285, 40, 66, 0.5, 0.5);) and used in the HeatGrid.create function.

http://0.0.0.0:8080/simulation/json-input.html

User Manual for COAT-BANDIT Page 10

3.3.1 Scenario List

The current BANDIT module responsible for the web service, “server”, only works for scenarios

following the general structure of an NRLScenario: a boat, typically of type “GoFast”, follows an

itinerary. The boat goes at full speed during the night and stops during the day, covered by a blue

tarp in order to avoid detection. Using BANDIT to predict the movements of drug smugglers using

such a strategy made sense; due to wind and current effects, the position of the smugglers can be

estimated. The scenarios were built by accessing structures of shorelines describing where boats

could go in the Caribbean (A boat going through an island does not make much sense). Some

possible features were the addition of fishermen on the sea and regular patrols by the coast guard or

police. The trajectory of the smugglers would be modified by these other boats.

A complex example of this would be where a smuggler’s boat sees a fisherman and becomes

attracted to it in order to query information regarding the police’s whereabouts. The smuggler

would then avoid the area where the police is present.

However, the only working NRL scenario that was implemented in the server seems to only focus

on a single boat following a series of waypoints. The weather information is also not considered due

to the deactivation of the METOC provider by Blindspot Solutions.

The other BANDIT scenarios (Migrants going through the Mediterranean or smuggler being

tracked by a surveillance drone) do not work on the web interface. It seems that the web interface

could also accept scenarios of type “Transshipment”, where two smugglers exchange cargo, but

traces of how to build such a scenario are absent.

3.3.2 How to Run an example

After starting the web server (server/src/main/java/cz/blindspot/bandit/server/

Webservice.java, main function), an input text box appears at address

http://0.0.0.0:8080/simulation/json-input.html, where you can copy/paste the nrl_example (The only

one working) scenario itself. The parameters of a NRLScenario do not follow BANDIT’s own

template (available at DRDC-bandit\bandit\scenarios\src\main\resources\

schema\scenario-schema.json), meaning the exact nature of every input parameters stays

nebulous, as described by BANDIT’s phase 1 report: “Unfortunately the specifications are not

released to public, hence we cannot include them in this report.”. This is probably due to a desired

compatibility with inputs from NRL, which could be restricted/classified.

Notwithstanding these problems, a simple nrl_example for a GoFast boat was present, in folder

DRDC-bandit\bandit\scenarios\src\main\resources. The “GF” in targetType indicates

what type of vessel is simulated.

Copy-pasting it into the text box of the web page and pressing the start button will begin the

simulations. When they are done, the page displays a clickable link to download the final results

(this feature is broken in the version of Bandit supplied). To access the results, one needs to go in

DRDC-bandit\results\ and find the appropriate folder according to the simulation timestamp.

In this folder, an output.kmz file is present (Which will be corrupted, possibly due to changes in

User Manual for COAT-BANDIT Page 11

the kmz structure/libraries since the release of bandit) and an output.json in zipped format. If

the simulation is unsuccessful, both these files will be absent, replaced by an error text file.

It is also possible that a simulation can execute correctly but with an output full of missing data

(Described by a -999 value). This problem was encountered when trying to run waypoints in the

Northern Atlantic, since the expected area of operations was the Caribbean. The software therefore

tried to input North Atlantic data into a totally incompatible grid resulting in the missing data in a

grid. The final version delivered by OODA replaced this inadequate Caribbean zone by one

covering the North Atlantic, much more useful for Canadian applications.

3.3.3 Issues with BANDIT

Following the reading of the phase 1 report by the BANDIT developers [Hrstka-2015B], it seems

BANDIT is intentionally obfuscated. No real user guide, no readme, no comments in the code and

only a single runnable example. It is possible that such difficulties are due to an agreement between

Blindspot and NRL or because Blindspot is used to building the scenarios as a service to clients

rather than delivering BANDIT as an actual product ready to be used.

3.4 The METOC Data Layer

3.4.1 Description

METOC was implemented in BANDIT to give accurate information about the weather, in order to influence

the behaviour of smugglers or other agents. However, due to deactivation of the provider, a “dummy”

METOC provider is currently used, which seems to offer no wind and no wave without regard to the actual

climate.

3.4.2 Development status

The web API was tailored for the need of the first user of BANDIT, namely NRL. However

BANDIT was designed as a modular application, so the server module is actually quite thin. So if

we need our own web API, we can create a new module with an API that would suit our use case

(using for example Dropwizard framework to set up the web layer). Some examples can be found in

the demo-scenarios module.

Since the primary customer for Bandit was NRL, the MetocProvider was designed to be used with

METOC server. The METOC server is an application that was running on the Czech Technical

University side and was periodically downloading METOC forecast from the NRL. BANDIT used

this information to run the simulation. Because the project is now closed, the METOC server is now

useless. We have also connected to Copernicus service, but it was not fully integrated.

The creators of BANDIT have extracted an interface MetocProvider and created

DummyMetocProvider which allows the code to compile and run without the METOC data (no

METOC output from BANDIT). In order to make BANDIT work with METOC data, you need to

implement your own MetocProvider.

User Manual for COAT-BANDIT Page 12

4 BANDIT/COA-T Design

4.1 Modifications to BANDIT

In order to accommodate scenarios where the waypoints were located in the North Atlantic, some

modifications had to be made. One the first problems encountered was the absence of

WaterPolygons (Shoreline data). These therefore had to be disabled. Avoiding land masses

therefore becomes the job of wisely choosing waypoints. If one wishes, it could be possible to try to

recreate WaterPolygon data from OpenStreetMap map files, which seems to be the original source.

The process Blindspot used to transform the OSM files into a code compatible structure was

however not investigated in this callup.

Some modifications also had to be applied to the dummy METOC provider. The original service

was built in order to check different sources depending on the position of the simulation. Since the

North Atlantic was never considered as a zone of operations, the dummy provider did not cover it,

which has been fixed.

Of course, one of the main modifications brought to BANDIT was the addition of a module,

responsible for integration in the COAT system. Its main systems are a consumer and a producer.

The consumer is responsible for listening to any BANDIT request message on an ActiveMQ topic

and to start the simulation runs with the inputs provided in the message’s body. The producer

publishes the answers that are extracted from the simulation results to ActiveMQ.

In order to provide for more efficient testing, an input system for scenarios has been created. The

expected input message is a JSON-serialized BanditRequest object. This means that both JSON

strings and Java Objects will be accepted as inputs, allowing for greater versatility.

4.2 Data model for the input

Table 1: ActiveMQ Data Model for Inputs

JMS Part Name (String) Value (Object) Value Type Comment
Header JMSType “BANDIT_REQUES

T”

String

Properties

RequestId Unique ID of the

request

String

Body (JSON

serialized

BanditReque

st java

object)

speed Speed in knots double

speedUncertainty Speed uncertainty

in knots

double

startDate TimeStamp of the

start of the

simulation

String Format: YYYY-

MM-

DDTHH:MM:S

SZ

startUncertainty Uncertainty on the

startDate, in hours

int

User Manual for COAT-BANDIT Page 13

missionLength Unknown, in hours int

missionLengthUncertai

nty

Unknown, in hours int

waypoints Expected route of

the smuggler

List<LatLo

n>

An array of

the waypoints

uncertainties Uncertainty

surrounding the

exact position of the

waypoints, in

nautical miles(?)

List<double

>

An array of

the

uncertainties

Table 1 features the input parameters for a BANDIT_REQUEST message, published on the topic

C2.REQUESTS. While some parameters are obvious, others like missionLength and its uncertainty

are not clear at first glance and could very well simply not be considered in an NRLScenario,

despite their presence in the original example.

Deeper digging through the code shows that missionLength is at least not used as an upper bound on

the simulation’s timetable. It is automatically set to its default of 10 days. Another possibility (hard

to explore due to the code’s structure) is that this parameter is supposed to represent the vessel’s

autonomy. Indeed, in some scenarios on Blindspot’s website, BANDIT’s advertised capabilities

include the ability to simulate the behaviour of migrant’s boats without enough fuel trying to

traverse the Mediterranean Sea. Necessary to these simulations is the presence of a factor describing

how long a boat can run before running out of fuel which could possibly be our missionLength. This

is, however, only a hypothesis.

4.3 Data model for the output

Table 2: ActiveMQ Data Model for Output

JMS Part Name

(String)

Value (Object) Value Type Comment

Header JMSType “BANDIT_ANSWER” String
Properties

RequestId Unique ID of the

request

String This RequestId

comes from the

Request message

Body (JSON

formatted

String)

“0” Probability grid at

time 0

JSON heat grid Represents the

startDate

“3” Probability grid at

time 0 + 3 hours

JSON heat grid

“t” Probability grid at

final time t

JSON heat grid t being a multiple

of 3.

The output BANDIT_ANSWER messages, visible at Table 2, are currently being published on topic

C2.REQUESTS_DATA and are built as an array of heatgrid elements. These elements possess the

following data model:

 A description of the grid’s location (LowerLat, LowerLon, and number of Lat and Lon

elements and their size)

User Manual for COAT-BANDIT Page 14

 The time it covers, as a timestamp

 The grid itself (Currently 66 longitudes per 40 latitudes) filled with a probability.

It is important to know that the probabilities being talked about here are not probabilities in a

statistical sense and do not sum to 1 (A decision made by Blindspot). Therefore, this value should

me more used as a general relative reference in order to evaluate where a boat might be.

This HeatGrid is built from the results of a batch of simulations which vary the parameters taken as

inputs according to their uncertainties. As time advances, the smugglers in some of these

simulations will have reached their destination and are therefore removed from the batch. When all

of them have arrived, BANDIT outputs its equivalent of missingData: -999, rather than

probabilities.

4.4 Monitoring

According to the ActiveMQ Design Document for COAT, each system incorporated into this
Testbed must possess a HeartBeat service, in order to allow monitoring. COAT-BANDIT therefore
has a ScheduledExecutorService scheduler. Its role, at startup, is to make sure the task
“beat” is done every 10 seconds. This task is defined as a call to the function
Producer.SendHeartBeat(). It is in this function that the heartbeat MapMessage itself is
created and sent to the topic SYSTEM.STATUS.

Its properties are the following:

Table 3: ActiveMQ Data Model for HeartBeat

JMS Part Name (String) Value (Object) Value

Type

Comment

Header JMSType “HEARTBEAT” String

Contents UPTIME How long has the app

been running (In seconds)
Double

APP_NAME" “DRDC-BANDIT” String

CLIENT_ID “d55d2e20-0285-4f1e-

9a08-713438b76c26”
String Currently

hardcoded in the

function

HOST_NAME Name of the machine

running the application
String

HOST_IP IP of the machine running

the application
String

APP_INFO “” String

PUBLISHED Expected value:

“C2.REQUESTS”
String

SUBSCRIBED Expected value:

“C2.REQUESTS_DATA”
String

STATUS “NORMAL” String No error

messages have

been

implemented, yet

User Manual for COAT-BANDIT Page 15

5 BANDIT/COA-T User Guide

5.1 Requirements

Since the deliverable is a single executable JAR containing all dependencies, the only requirement

is java 1.8. To start the COAT-BANDIT:

1. Make sure your ActiveMQ service is active and that the port 8079 is free. (Can be modified

in DRDC-bandit/bandit/server/src/main/java/cz/blindspot/bandit/server/ Webservice.java)

2. The dependencies needed for the project are the same as the ones described in section 3.1.1.

3. If you don’t have ActiveMQ installed, a simple implementation is a docker instance (if you

have Docker installed):

a. docker pull webcenter/activemq:latest (to be done only once)

b. docker run --name='activemq' -it --rm -e 'ACTIVEMQ_MIN_MEMORY=512' -e

'ACTIVEMQ_MAX_MEMORY=2048' -P webcenter/activemq:5.14.3

5.2 Starting the COAT-BANDIT

5.2.1 By recompiling

1. Go to DRDC-Bandit/bandit/DRDC-Coat/src/main/resources and open the

application.properties file. Modify the values in order to reflect the topics used, ActiveMQ

IP + port and its login information.

2. Compile the following:

a. In DRDC-Bandit/common: mvn clean install

b. In DRDC-Bandit/metoc: mvn clean install

c. In DRDC-Bandit/bandit: mvn clean install

d. In DRDC-Bandit/bandit/DRDC-Coat: mvn clean package

3. Launch the program: java -jar DRDC-Coat/target/DRDC-Coat-1.0-

SNAPSHOT.jar

4. COAT-BANDIT is now waiting for an input request.

5. Use the BanditRequester Eclipse project to send an input. Outputs will be sent to the topic

specified in application.properties.

5.2.2 Using the delivered jar

1. Go to the directory containing the .jar file in a command window.

2. Type java -jar DRDC-Coat/target/DRDC-Coat-1.0-SNAPSHOT.jar and

press enter.

3. In order to use different settings than the default values (Concerning ActiveMQ IP:Port,

login information and the topic to use), it is possible to do so without recompiling. Please

check Annex B for such instructions.

User Manual for COAT-BANDIT Page 16

5.3 Developer guide

5.3.1 BanditRequester

The BanditRequester project has been created to facilitate the sending of ActiveMQ requests to

BANDIT. It contains a BanditRequest class, which is the same as the one present in the DRDC-

BANDIT module. In the main function, such a BanditRequest is generated and filled with inputs.

The final instruction is then to send it to the producer which serializes this java object before

sending it to the topic.

The BanditRequester also features a consumer, which listens on the expected topic of the BANDIT

outputs. This allows us to confirm that the simulation is complete and has outputted valid results on

the appropriate topic. A second consumer also exists, which listens to the exact requests the

BanditRequester sends out. This can prove useful if one wishes to emulate BanditRequest objects

without going through the actual creation of a java object. Annex A has more details on the

structure.

5.3.2 Final note about COAT-BANDIT

BANDIT cannot currently be considered a finished product. While it promises a modular

architecture and the ability to simulate different scenarios, actually making these run without any

information appears to be a time-consuming task, made harder by the absence of help from the

original developers.

User Manual for COAT-BANDIT Page 17

6 Conclusion

6.1 Bandit as a Coat integration test

While the obstacles to make BANDIT work were many, which therefore had an impact on the

COAT integration, this code delivery and report should not discourage DRDC from trying to add

other services into COAT.

Java applications with great documentation on the necessary structures to run it are the perfect

candidates to be integrated into COAT. BANDIT did not fit this description. Another difficulty

encountered was the continued use of JSON objects in the code. Rather than parse the JSON once

and create workable java objects, the JSON objects are kept, manipulated and often transformed

into InputStreams making it hard to modify or insert values. This decision was probably made to

keep BANDIT flexible, but when only a single example is working this can be considered a moot

point.

In conclusion, BANDIT has been successfully integrated into the COAT structure, but with possibly

disappointing results due to the original condition of BANDIT. Nonetheless, this call-up can be

used as a learning experience for choosing future services to include in COAT.

User Manual for COAT-BANDIT Page 18

Annex A: Bibliography

[Hrstka-2015A] HRSTKA, O., et al. Agent-based Approach to Illegal Maritime

Behavior Modeling. Scientific Journals of the Maritime University of

Szczecin. 2015, 42(114), 101-111. ISSN 2392-0378. Available from:

http://repository.am.szczecin.pl/handle/123456789/754

[Hrstka-2015B] HRSTKA, O., et al. BANDIT (Behavioral Agents for Drug

Interdiction)

Phase 1 Report. Internal Report for NRL. 2015. CAGE: 3D97G,

DUNS: 361049704

[DRDC Halifax-

2017]

DRDC Halifax, COAT ActiveMQ Design – v1.4, 01DB-PSA Design

Document – ActiveMQ, Internal Report for COAT Development, 2017.

[Blindspot-2017] Blindspot-Solutions, Bandit – Platform Overview, Retrieved from

http://blindspot-solutions.com/bandit/

http://repository.am.szczecin.pl/handle/123456789/754
http://blindspot-solutions.com/bandit/

User Manual for COAT-BANDIT Page 19

Annex B: Application.properties sample and configuration for

COAT-BANDIT

Here an example for the application.properties file of COAT-BANDIT is available. It is located in
DRDC-BANDIT/bandit/DRDC-Coat/src/main/ressources

jsa.activemq.topic=C2.REQUESTS

jsa.activemq.broker.url=tcp://localhost:61616

jsa.activemq.topic.answer=C2.REQUESTS_DATA

jsa.activemq.broker.username=admin

jsa.activemq.broker.password=admin

spring.jms.pub-sub-domain=true

Logging.level=DEBUG

If one wishes to use different values than the ones provided above, it is possible to override these
when starting the jar application, by inserting them as environment variables, as so:

java -jar DRDC-Coat-1.0-SNAPSHOT.jar --jsa.activemq.broker.url=tcp://192.168.99.99:61616

--jsa.activemq.topic.answer=C2.OTHER_OUTPUT_TOPIC

User Manual for COAT-BANDIT Page 20

Annex C: Data example for BanditRequest inputs

Example of an input BanditRequest message, serialized

properties = {_type=ca.drdc.coat.model.BanditRequest, requestID=8d8d2980-723b-4263-8d37-

bcd5edc7a64d}, readOnlyProperties = true, readOnlyBody = true, droppable = false,

jmsXGroupFirstForConsumer = false, text =

{"startUncertainty":72,"missionLength":48,"missionLength" : ...T15:27:04Z"}}

As one can see, the actual message is contained in the “text” portion of the ActiveMQ message. The

_type property specifies to the consumer that the object contained here must be deserialized by this

particular class. This structure is due to the nature of JMS producers and consumers.

One could recreate these messages by building ActiveMQTextMessages and setting the text to the

desired inputs and setting the _type and requestID properties before sending the message.

User Manual for COAT-BANDIT Page 21

Annex D: Original NRLScenario example

{
 "name": "Case3",
 "classification": "Official Use Only (Cat. 3, Export Control/ITAR)",
 "id": "4a120a68-17d3-441b-8d4f-0018039449e4",
 "missingData": -999,
 "targetType": "GF",
 "targetValue": {
 "value": 1000,
 "uncertainty": -999
 },
 "confFactor": 4,
 "targetVelocityKnots": {
 "value": 30,
 "uncertainty": -999
 },
 "targetSubmergedHoursPer24": {
 "value": 0,
 "uncertainty": -999
 },
 "startDate": {
 "value": "2015-04-01T16:27:04Z",
 "uncertainty": 72
 },
 "waypoints": [
 {
 "lat": 9.032112309823082,
 "lon": -76.79953497719063,
 "uncertainty": 20
 },
 {
 "lat": 10.014153613930346,
 "lon": -78.18922587992964,
 "uncertainty": 20
 },
 {
 "lat": 10.154453461144609,
 "lon": -79.6807851101996,
 "uncertainty": 20
 },
 {
 "lat": 9.528798850049062,
 "lon": -81.06918142623961,
 "uncertainty": 20
 },
 {
 "lat": 11.284793517763562,
 "lon": -82.98166891504986,
 "uncertainty": 20
 },
 {
 "lat": 13.722593710261787,

User Manual for COAT-BANDIT Page 22

 "lon": -82.99234709725732,
 "uncertainty": 20
 }
],
 "blueTarpCONOP": 0,
 "iwedge": 1
}

DOCUMENT CONTROL DATA

*Security markings for the title, authors, abstract and keywords must be entered when the document is sensitive

 1. ORIGINATOR (Name and address of the organization preparing the document.
A DRDC Centre sponsoring a contractor's report, or tasking agency, is entered
in Section 8.)

OODA Technologies Inc.
4710 rue St-Ambroise, suite 226
Montreal, QC H4C 2C7
Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

CAN UNCLASSIFIED

 2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

 3. TITLE (The document title and sub-title as indicated on the title page.)

Integration of Adversarial Behaviour Prediction in COA-T

 4. AUTHORS (last name, followed by initials – ranks, titles, etc., not to be used)

Marion-Ouellet, L.O.; Mayrand, M.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

March 2018

 6a. NO. OF PAGES

(Total pages, including
Annexes, excluding DCD,
covering and verso pages.)

24

 6b. NO. OF REFS

(Total references cited.)

4

 7. DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter.)

Contract Report

 8. SPONSORING CENTRE (The name and address of the department project office or laboratory sponsoring the research and development.)

DRDC – Atlantic Research Centre
Defence Research and Development Canada
9 Grove Street
P.O. Box 1012
Dartmouth, Nova Scotia B2Y 3Z7
Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under which
the document was written. Please specify whether project or
grant.)

 01db

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. DRDC PUBLICATION NUMBER (The official document number
by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC-RDDC-2018-C058

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

Public release

 11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

 12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

Behaviour Prediction; Course of Action; BANDIT; COA-T

 13. ABSTRACT/RESUME (When available in the document, the French version of the abstract must be included here.)

	C18-0316-1331 - document_i.pdf
	Table of Content
	1 Introduction
	1.1 Document Purpose
	1.2 Product Scope
	1.3 Definitions, Acronyms and Abbreviations

	2 Architecture
	2.1 Architecture scope
	2.2 BANDIT Architecture
	2.3 BANDIT/COA-T Architecture

	3 BANDIT User Guide
	3.1 Installation
	3.1.1 Prerequisites
	3.1.2 Unpacking the original BANDIT bundle
	3.1.3 Setting up your Maven environment
	3.1.4 Compiling the code
	3.1.5 Troubleshooting

	3.2 Running BANDIT
	3.2.1 Prerequisites
	3.2.2 Import the Maven code in the IDE
	3.2.3 Starting the BANDIT server
	3.2.4 How to test the server

	3.3 Running the BANDIT examples
	3.3.1 Scenario List
	3.3.2 How to Run an example
	3.3.3 Issues with BANDIT

	3.4 The METOC Data Layer
	3.4.1 Description
	3.4.2 Development status

	4 BANDIT/COA-T Design
	4.1 Modifications to BANDIT
	4.2 Data model for the input
	4.3 Data model for the output
	4.4 Monitoring

	5 BANDIT/COA-T User Guide
	5.1 Requirements
	5.2 Starting the COAT-BANDIT
	5.2.1 By recompiling
	5.2.2 Using the delivered jar

	5.3 Developer guide
	5.3.1 BanditRequester
	5.3.2 Final note about COAT-BANDIT

	6 Conclusion
	6.1 Bandit as a Coat integration test

	Annex A: Bibliography
	Annex B: Application.properties sample and configuration for COAT-BANDIT
	Annex C: Data example for BanditRequest inputs
	Example of an input BanditRequest message, serialized

	Annex D: Original NRLScenario example

