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1 DATA MODELS 
1.1 Collection Task (CT) Data Model (1st draft) 

The collection task data model is designed to support the multi-satellite imagery collection scheduling problem, as 
described in “Implement Plan Sched 2016-2017 v2 16 Dec 16.docx”. Data is structured in a tuple <R, C, Sppt, 
Obj, A, M, CONS > where: 

 R: set of requests; 
 C: set of collection assets (collectors); 
 Sppt: set of supporting resources – typically, ground stations; 
 Obj: collection tasking objective (open-loop multi-satellite collection scheduling); 
 A: Action space/set; and 
 M: Matches between tasks and collection sensor package capabilities. 

1.1.1 Design Overview 

All Java code related to the data model is packaged under ca.gc.rddc.discover.commons.* packages, in 
the DiscoverCommons module. Until real data is available (namely from CSIAPS), the following design was 
observed. It is expected to change to meet actual data interface once the latter is ready: 

 There is a set of classes for each type of object/container required by the scheduling problem: 

o Those are detailed in the remainder of this data model section; and 

o A single class, DataSet (see 1.1.3 Data set), serves as the data provider and provides access to 
all others, exception for the objective function (see 1.1.8 Collection tasking objective). 

 A set of interface classes offers a read-only access to the external data (whether accessed directly 
through some yet-to-be-defined mechanism, or first converted to an in-memory representation): 

o Their names and the data they give access to (while not containing it) follow the data model 
described in this section; and 

o See ca.gc.rddc.discover.commons.dataaccess and associated generated Javadoc. 

 A parallel set of classes was developed, at least temporarily, to implement each of the above interfaces 
with an in-memory read-writable representation: 

o See ca.gc.rddc.discover.commons.inmemory and associated generated Javadoc;  

o To allow the processing of very large data sets, the well-known performance-oriented (speed and 
memory footprint) fastuil library was chosen to implement internal maps and sets. See 
http://fastutil.di.unimi.it; and 

o To import data from an external source (format used by Wang et al. [1]), a separate package 
contains required class to convert into DISCOVER data model. See 
ca.gc.rddc.discover.commons.externaldata.wang. 
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 Several state-less data computations and manipulations were gathered together: 

o They are used by all DISCOVER solvers to make sure that the same concepts are executed the 
same way across solvers; 

o Some of them may eventually be offered by an external service instead of being 
computed/estimated from the data; and 

o See ca.gc.rddc.discover.commons.datautils and associated generated Javadoc. 

Given the temporary and/or likely-to-change-shortly nature of this design regarding external data access, 
available work effort was limited (in agreement with all involved parties) such that: 

 The dataaccess and inmemory packages have little to no logic. In-code documentation and unit 
tests cover all classes but are pretty lean: 

o Completion is postponed until the design is stable; and 

o This document nevertheless provides necessary documentation. 

 Other packages are documented and covered by proper unit tests. 

1.1.2 How to read this section 

Color/font key for the remainder of this data model section: 

 Current implementation: 

o name: type : implementation details, and corresponding original text from Implementation 
Plan. 

 Original text from Implementation Plan, not implemented yet; and 

 Data already left out in the original implementation Plan (for future tasks/versions). 

Data types are inspired from Java and JSON types to allow for easy conversion between data sources. For the 
sake of simplicity and interoperability, types are limited to the following base types to compose other types: 

 int: a 32-bit signed integral value; 

 double: a 64-bit floating point value (IEEE 754 compliant); 

 string: any text; 

 type[]: a collection of items of type type. Actual underlying structure (linked list, array, etc.) is 
irrelevant, unless otherwise specified; 

 key_type -> value_type:  a collection that is specifically a mapping from keys to values. Unless 
otherwise specified, keys are assumed to be unique and sorting (or lack thereof) is irrelevant; 

 type in [n, m]: a value of type type, bounded by n and m (n and m are included/excluded depending 
on the bracket orientation). Bounding is logical only, per specification, and is not enforced in the code; 
and 
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 named_type: a composite type named named_type, with its decomposition: 

o member1: type1; 
o member2: type2; and 
o … 

1.1.3 Data set 

DataSet:  
 requestData: RequestData : see 1.1.4 Set of requests (tasks); 

 collectorData: CollectorData : see 1.1.5 Set of collection assets (collectors); 

 matchData: MatchData : see 1.1.6 Sensor–task matchmaking; 

 constraintData: ConstraintData : see 1.1.7 Constraints set; and 

 predefinedTaskPlans: String -> TaskPlan[] : see 1.1.9 Pre-Defined Task Plans. 

Other parts of the tuple (from the imagery collection scheduling problem) that are not yet implemented are listed 
in 1.1.8 Collection tasking objective. 

1.1.4 Set of requests (tasks) 

An imaging request (or order) refers to a specific area interest (AOI) to be surveyed or covered by a space-borne 
sensor and can be de-decomposed in a single (primitive) or multiple (compound) survey tasks through a task 
generation process. An AOI is either defined as a spot (small target) or a polygon referring to a primitive and 
compound task respectively. A polygon can be decomposed in multiple strips corresponding to satellite swaths 
intersecting the AOI during a given orbit. A strip defines a simple or primitive task composing the request (task 
generation) to be covered for a single satellite. A spot is assumed to be covered by a single strip.  

RequestData: 
 tasks: Task[] : the list of all submitted tasks. 

A task structure derived from a request for information (RFI) along with its related attributes and requirements 
may be defined as follows: 

Task: 

 id: string : ID of this task, unique within RequestDB.tasks; 

 areaOfInterest: AreaOfInterest : the AOI for this task; 

 Type/goal (e.g. detect, locate, track, classify, identify, confirm, monitor, search, assess outcome, 
surveillance/survey, reconnaissance): 

o Mission tasks: survey, monitoring, tracking, search, detection, classification, identification, 
confirmation and outcome assessment.  

 Complexity (task leaf nodes): 

o Primitive (mono); and 
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o Compound (non-primitive/abstract/decomposable – e.g. stereo). 

 priority: double in [0.0, 1.0]: Priority-nominal relative task value (value of information -
information need –driven; 

 Indicators, measure of performance (MOP) and measure of effectiveness (MOE) for goal achievement 
(e.g. quality of service (QoS), coverage, probability of detection, resolution, uncertainty, value of 
information (VoI) measure – e.g. National Imagery Interpretability Rating Scales (NIIRS)-like along with 
related thresholds); 

 Collection requirements: 

o Imaging completion time window (mission/customer -driven); 

o NIIRS –  NIIRS rating requirement: 

- Hint on proper resolution mode (beam/waveform). 

o Resource capability requirements; 

o Observation quality:  

- Observation angle; or  

- Acceptable incidence angle interval (min/max off nadir angle). 

o State conditions (e.g. environmental prerequisites, luminosity - sun orientation); 

o Direction (ascending/descending/none -orbits); and 

o Single/multiple possible observations per task (e.g. detection, confirmation), and periodicity - 
repeat cycle (e.g. once a day). 

 Task tree/network (tree/directed acyclic graph – task structure decomposition): 

o Task dependencies and relationships (gathered information impacting/feeding other tasks) 
derived from the intelligence requirements management (IRM) process (assumed to be available 
– e.g. from CSIAPS); 

o Nominal value attached to an abstract IR parent node (request) is broken down among IR 
children nodes and propagated down to the task leaf nodes for which a collection tasking plan is 
required. Translating information needs, the basic/original intelligence collection tasking mission 
(request) derived from CCIRM commander’s critical information requirements and the IRM 
process defines the root of the tree structure; and 

o The overall collection value (value of information) combines nominal value and quality of 
information/service associated with a task collection plan. It sums contributions over leaf IR node 
(task) collection values.  
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AreaOfInterest: 

 type: enum {SPOT, POLYGON_AREA} : The type of this AOI. Spot targets are always fully covered 
by corresponding opportunities, while polygon area may require one or more opportunities for a complete 
coverage (may also not possibly be fully covered). 

 Specification: vertex coordinates and centroid. 

1.1.5 Set of collection assets (collectors)  

CollectorData: collection assets. Space-borne platforms or spacecraft vehicles, namely Earth observation 
satellites: 

 platforms: Platform[] : list of all available platforms; and 

 sensors: Sensor[] : list of all known sensors from all platforms. Identical sensors on different 
platforms may or may not be duplicated in this list. 

Platform: 

 id: string : ID of this platform, unique within CollectorDB.platforms; 

 name: string : human readable name (for simulation purposes, may be removed at a later time); 

 Payload: single sensor; 

 Range, altitude, speed, period, autonomy/endurance; 

 maxEnergyBudget: double : budget per orbit typically in Joules. Maximum budget, actual budget on 
a given orbit (it may be lower); 

 maxObservationTime: double : observation time per orbit in seconds. Maximum observation time 
as an estimation of thermal constraints. Actual value on a given orbit can be lower; 

 maxObservationCount: int : maximum number of observations per orbit. Actual allowed number 
of observations on a given orbit can be lower; 

 maxMemoryStorage: double : memory storage in MB (?). Maximum usable. Actual value on a given 
orbit can be lower; and 

 Communication bandwidth. 

Sensor: 

 id: string : ID of this sensor, unique within CollectorDB.sensors; 

 Types: optical (e.g. panchromatic, hyper/multi -spectral, infrared), AIS synthetic aperture radar – SAR; 

 Phenomenology and modalities (e.g. acoustic, optical, infrared); 
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 Visibility (field of view/footprint), capability: 

o Range; 

o Mode number of bands: 

 Spectral and spatial resolution sensors (beam waveforms, mode, bands); and 

 Swath width, parameter configuration. 

o Min/max off nadir angle. 

 Observation model (likelihood function, performance vs operational conditions): 

o Conditional probability distribution (probability of correct observation, false-alarm rate, given 
state/environmental conditions - clouds, weather forecast). 

1.1.6 Sensor–task matchmaking  

Determines feasible sensor package/resource capability and task requirements pairings. Typically achieved 
through semantic matchmaking, knowledge-based reasoning and/or classification analysis. 

MatchData: 

 opportunities: Opportunity[] : Sensor-task matchmaking assumed to be provided by CSIAPS.  

Matching depends on many factors including: 

 Cost; 

 Asset capability: 

o sensor range effectiveness, technical characteristics, day/night operations reporting timeliness, 
geolocation accuracy, durability, sustainability, vulnerability. 

 Environment task and requirements: 

o Operations conditions, task coverage, impact of adversarial planning, obstacles, weather, 
contingencies, kinematics, terrain obscuration, effective concealment, camouflage, and 
deception, risk, threat activity and behaviors; 

o NIIRS level or rating (imagery collection)/ resolution mode; 

o Duration, imaging time windows; 

o Sensor requirements: conditions: 

 Optical: weather, energy (sun visibility), target visibility and look angles; and 

 Beam waveform (resolution). 
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 Performance profile:  

o Feasible sensor-task performance model - sensor-task assignment quality/score; 

o Intelligence source performance profile – observation models; and 

o Collection probability of success. 

Opportunity: feasible sensor-task pairings and measures of performance: 

 id: string : ID of this opportunity, unique within MatchDB.opportunities; 

 taskId: string: task ID in requests.tasks; 

 platformId: string: platform ID in collectors.platforms; 

 sensorId: string: sensor ID in collectors.sensors; 

 startTime: double : in seconds, time of acquisition start from a given referential (e.g. 0 = now). 
Resource must have completed its transition/slewing before that time; 

 endTime: double : in seconds, end time of acquisition; 

 coverage: double in [0.0, 1.0] : relative area coverage; 

 probability: double in [0.0, 1.0]: probability of success. Always 1.0 in current 
implementation; 

 quality: double in [0.0, 1.0]: expected image quality. Always 1.0 in current implementation; 

 cost: double : in $, imagery cost (for this whole image); and 

 Opportunity and mutual conflicts. 

1.1.7 Constraints set 

Constraints set are defined along three separate dimensions, namely, task, resource and temporal. This 
separation is conceptual and not directly reflected in data models. 

ConstraintData: 

Task: 

 Fairness between customer requests; 

 maxTotalCost: double : maximum imaging acquisition cost overall; 

 Overall energy budget; 

 areaOverlaps: TaskAreaOverlap[] : for each opportunity pair (in MatchDB) for this task, this 
gives the overlap area, relative to the total AOI: 
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o Note: to reduce size, this array store pairs only once. For example, an overlap between 
opportunities “opp5” and “opp23” can be stored either as {“opp5”,”opp23”} or {“opp23”,”opp5”}. 

 taskConstraints: string -> TaskConstraint : per-task constraints (one per task). Map key is 
the task ID. 

Resource: 

 Asset inventory; 

 Task visibility (per orbit); 

 revolutionPeriod: double : in seconds, revolution period for all satellites and all orbits, currently 
assumed to be the same. Will eventually be explicit for each platform (and perhaps each orbit); 

 platformCapacities: string -> PlatformCapacity : satellite platform capacity (one per 
satellite). Map key is the platform ID; 

 Utilization/deployment: 

o Sensor interference or sensor mixes contingencies; 

o Environment: weather conditions: 

 Cloud cover. Some sensors cannot see through clouds. Not only do clouds cover much 
of the Earth at any given time, but some locations are nearly always cloudy. 

o Routine operations: 

 periodic maintenance, recharging batteries, on-board data processing, orbit corrections, 
uplink. 

Conflicting opportunity over single platform utilization due to contention between observation 
opportunities (e.g. mutual exclusion of competing concurrent sensing actions over 
waveforms/beam modes). 

Temporal: 

 Set-up time: start-up, shutdown, recovery, altitude stability, processing, replanning; 

 transitions: OpportunityTransition[]:  

o Note: transition time, slewing (rates)/moving duration to switch between consecutive observation 
angles from a predecessor to a successor opportunity task. Transition between look angles can 
be achieved through instruments mounted on motors that can point either side-to-side (cross-
track), forward and backward along the track, or rotate to point their instruments in any direction 
(agile satellites); 

o This array only contains OpportunityTransition instances from an opportunity Oi an 
opportunity Oj where: 

 Oi and Oj occur on the same platform; 
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 Oj starts after Oi; and 

 Oj occurs no more than one revolution period after Oi (beyond that time gap, transition 
information is deemed irrelevant). 

o If a transition from Oi to Oj is not found, it can be assumed that transition duration is 0.0 (either 
because it does not apply or is deemed irrelevant). 

 Time windows/intervals:  availability/serviceability: 

o Service – task imaging (customer requirement); 

o Conflicting opportunities (time window overlaps); 

o Dissemination –images downlink (image delivery to customers for consumption); 

o Visibility – task opportunity visibility for imaging (agile satellite); and 

o Downlink to specific ground station network nodes. 

 Information age – maximum delay between observation and download; 

 timeHorizon: double : in seconds, scheduling time horizon (e.g. 24 hours * 3600). 

TaskAreaOverlap: area overlap between two opportunities on the same task:  

 opportunityId1: string : first opportunity ID in MatchDB.opportunities; 

 opportunityId2: string : second opportunity ID in MatchDB.opportunities; 

 area: double : area overlap relative to the total AOI. For example, for two opportunities with relative 
coverage 0.5 and 0.8, overlap would be within 0.3 to 0.5 (i.e. not greater than any of those two, and large 
enough so that arithmetical sum of those areas less the overlap is <= 1.0); 

 quality: double : compound quality of  both opportunities. Always 1.0 in current implementation. 

TaskConstraint: various constraints that apply to a specific task: 

 Energy budget; 

 Basic task collection requirements; 

 Task precedence (e.g. survey, detect, track, identify and confirm sequence); 

 Single (successful observation assumption - probability of success = 1) or multiple observations/visits per 
task (e.g. detection, confirmation); 

 Preemptive or not; 

 maxCost: double : allowed budget; 

 minCoverage: double in [0.0, 1.0]: area coverage threshold (relative to original AOI); and 
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 Probability of detection/ entropy thresholds (quality of information/service task requirements). 

PlatformCapacity:  

 Revolution period T  for each orbit (currently in ConstraintDB.revolutionPeriod); 

 Payload; 

 Communication (uplink, downlink): bandwidth, communication cost rate, downlink energy consumption; 

 UAV endurance; and 

 orbits: PlatformOrbitCapacity[] : per orbit data (one PlatformOrbitCapacity instance 
for each orbit  of the platform). 

PlatformOrbitCapacity: data for a given orbit  of a platform: 

 startTime: double : in seconds, the orbit start time for that platform. Time referential is not specified 
but it is the same for all platforms in a DataSet; 

 endTime: double : in seconds, the orbit end time for that platform. It is excluded from the current orbit  
and typically the same as the next orbit start time. Time referential is not specified but it is the same for all 
platforms in a DataSet; 

 memoryStorage: double : in MB, W : memory storage capacity in orbit . limited on-board data 
storage. Images are stored in a solid-state recorder (SSR) until they can be sent to the ground; 

 imagingMemoryRate: double : in MB/s, w  memory consumption rate by observation time in orbit 
; 

 energyBudget: double : in Joules, E : energy capacity in orbit .; 

 imagingEnergyRate: double : in J/s, eo : energy consumption rate by observation time in orbit ; 

 transitionEnergyRate: double : in J/s, es    energy consumption rate for task transition time (see 
OpportunityTransition) by a sensor in orbit . This does not apply to the platform/sensor-specific 
set-up time, only transition time; 

 maxObservationCount: int : c : maximum number of sensor openings in orbit .; 

 maxObservationDuration: double : thermal: maximum satellite imaging time per orbit; and 

 setupDuration: double : base set-up time for any observation. Can be 0.0 on some platform/orbit. 
Does not include any transition time (must be computed separately on an opportunity-to-opportunity 
basis).  

OpportunityTransition: data pertaining to the transition from an opportunity to another, occurring on the 
same platform: 

 fromId: string : the ID of the first opportunity in MatchDB.opportunities; 
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 toId: string : the ID of the next opportunity in MatchDB.opportunities; and 

 duration: double : in seconds, required transition time (slewing and/or other delays) to be ready for 
second opportunity. Does NOT include platform/sensor-specific set-up time.  

1.1.8 Collection tasking objective 

The collection tasking objective (open-loop multi-satellite collection scheduling) has no data in the current 
implementation. As such, it is not part of the provided data set. It is, however, provided through a set of functions, 
for the currently implemented part.  

ObjectiveFunction: no data yet, only code: 

 Single objective: max expected value of information collection task. Not provided as data in current 
implementation but rather through DISCOVER objective function upper bound (see section 2 Objective 
Function); 

 Multiple objectives: weighted sum: 

o Relative weights (sum = 1); 

o Expected task value (over [0,1]); 

o Imaging cost ($) (table lookup – from CSIAPS); 

o Demand satisfaction (number of serviced tasks); and 

o Lateness, resource and energy consumption, risk exposure, make span. 

1.1.9 Pre-Defined Task Plans 

The data set allows to specify pre-defined plans for some tasks. There can be more than one possible plan for 
any given task. 

Those plans may come either from external data sources or from different solver. For instance, QUEST can 
handle spot targets but may only handle tasks with large polygon AOI if there are pre-defined plans for those (i.e. 
it may only choose one item to cover a task, either an opportunity or a pre-defined plan). On the contrary MOSAIC 
is designed to generate plans for a single large area task. Therefore, in a two-step process, MOSAIC could 
generate plans for non-spot tasks, add them to the data set, and feed that to QUEST. 

MY-PICC and GATHER do not support pre-defined plans (they simply ignore them) and only QUEST is meant to 
use them. This is not yet fully implemented but should be in a future revision. MOSAIC is currently the only 
potential source (yet to be fully implemented too), as none of the simulation data (as described in section 6) 
provides pre-defined plans. Therefore, current implementation uses a simplistic approach, where pre-defined 
plans are a map from task IDs to a list of TaskPlan for each of them. 

TaskPlan: simple task plan: 

 taskId: string : the ID of the related task; and 

 opportunities: Opportunity[] : the list of all opportunities in the task plan. Those are direct in-
memory references to opportunities in the current data set. 
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1.1.10 Not implemented yet 

 Sppt: set of supporting resources – typically, ground stations: 

o Image downlink scheduling is ensured through a ground station network. Ground station and 
relay node attributes: 

 Locations; 

 Mask (maximum communication range); and 

 Communication bandwidth and channels. 

 A: Action space/set:  

o Sensing actions/controls: 

 Mode (waveforms/beams and bands), polarization, and other control actions; and 

 Sensor orientation (camera/antenna pointing angles along some rotation axes – roll pitch, 
yaw). 

1.2 Collection Plan (CP) Data Model (1st draft) 

There are no precise usage/functional requirements for the collection plan so far, although some are obviously 
expected. As such, a collection plan is merely defined as a solver output for now, and further design will apply 
along with forthcoming requirements. 

In detail: 

 All CP-related Java classes are packaged along with data model classes, under the DiscoverCommons 
module: 

o See ca.gc.rddc.discover.commons.dataaccess. 

 CollectionPlan is the main class; and 

 Current implementation is trivial  

CollectionPlan: solver result: 

 taskPlans: String -> TaskPlan : the unique task plan for each covered task (i.e. with at least one 
selected opportunity). 
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2 OBJECTIVE FUNCTION 

This function implements an evaluation of a collection plan with regards to the collection tasking objective (open-
loop multi-satellite collection scheduling). It represents the “value of information” for a given collection plan, which 
solvers aim to maximize. It is used directly by all solvers, except for CPLEX (IBM ILOG CPLEX Optimizer, a 
software MIP solver package)-based solvers. The latter rather rewrites it as sets of linear constraints.  

2.1 Mathematical model 
2.1.1 Data  

Functions use the following data variables: 

 P : set of all satellites orbits/passes : 

o Sorted in chronological order. Whether they are sorted by satellite then time, or by time then 
satellite, is implementation-defined and does not affect the model, as long as they are at least 
chronologically sorted for any given satellite. 

 R : set of candidate requests r, each defining a target (spot) or polygon area (region) of interest (AOI) to 
be covered: 

o Each request r is decomposed in a set of tasks; 

o A compound request includes more than one task; and 

o A spot request generally corresponds to a single primitive request involving one task. However, 
some primitive request/task requirement might require more than one task, e.g. a stereo task 
necessitating an Ascending and a Descending imaging collection. 

 rS : set of tasks/subtasks s composing request r: 

o In current implementation, task and requests are assimilated, as if there was only one task per 
request, and solvers deal directly with tasks as if they were requests. 

 0rsV : normalized nominal value of request-task (r, s): 

o Within [0, 1] 

 rsO : set of imaging opportunities o, for request-task (r, s) during orbit : 

o Sorted chronologically on their imaging start time. 

 rsA AOI associated with request-task (r, s): 

o In current implementation, it is not described in geographic terms. It is only assumed to exist and 
as such is bound to the constant 1 in formulas below. 

 rsoA (= oA ): partial area coverage of rsA , resulting from intersection of rsA opportunity o strip area on 

orbit : 
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o In current implementation, such partial coverage is not described in geographic terms. It is rather 

provided as a relative coverage to rsA , within [0, 1]. 

 ''orsoA (= 'ooA ): partial area coverage of rsA , resulting from the intersection of rsoA  and ''rsoA : 

o As with rsoA , provided as a relative coverage to rsA , within [0, 1]. 

 rsop (= op ): probability of imaging success associated with opportunity o on orbit  for request-task (r, s): 

o Within [0, 1] 

 rsoq (= oq ): estimated imaging opportunity normalized quality associated with opportunity o on orbit  for 
request-task (r, s): 

o Within [0, 1] 

 ''orsoq (= 'ooq ): composed imaging opportunity quality associated with intersecting opportunity o and o’ 

strip areas related to orbit  and ’ respectively, for request-task (r, s): 

o Within [0, 1] 

 rsox (= ox ): binary variable indicating whether opportunity o is selected (1) or not (0) in a given collection 

plan. That opportunity services request-task (r, s) in orbit  

 Plan: the set of all rsox  over P , R , all rS  and all rsO .  

2.1.2 Formulas 

Ultimately, solvers aim to maximize the value of PlanObj , the objective value of a full collection plan. But in the 
process, they also need parts of it for localized or incremental calculations. The objective function is thus 
decomposed into the following functions: 

Plan objective value: 

  0,max
Rr Ss

rsPlan
r

ObjObj  

 Lower bound: 0inf PlanObj  

 Upper bound: 
Rr Ss

rsPlan
r

ObjObj supsup  
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Request-Task objective value: 

  )(
'

'
'

''''
'

0
'rs rs rs rsOo

oo
Oo

oooooooo
rs

oo
ooo

rs

o
rsrs xxqqqpp

A
Axqp

A
AVObj  

 Where 'oo  ensures that opportunity intersections are counted only once over all opportunities for the 
given request-task; 

 Lower bound: unbounded.  

o Result can be negative if for one or many opportunities, the sum of contributions from 
intersections (second term) is greater than the opportunity own contribution (first term). 

 Upper bound: 
rs rsOo

oo
rs

o
rsrs qp

A
AVObj ,1minsup 0  

o This is a conservative theoretical upper bound, where all associated opportunities are selected; 

o It assumes only positive opportunity contributions, without subtracting intersections; and 

o It limits the sum to 1, as if the request-task AOI was fully covered with maximum quality and 
probability. 

Opportunity differential objective value:  

 Solvers often have to compare opportunities to add/remove them to/from a plan while building the latter. 
The differential objective value gives the variation of the associated request-task objective value when an 
opportunity is added/removed; 

  )(
'

'
'

''''
'

'rs rs

oo
Oo

oooooooo
rs

oo
ooo

rs

o
rso xxqqqpp

A
Axqp

A
ADiffObj  

 Lower bound: unbounded, as with request-task objective value; 

 Upper bound: 1; and 



Joint I2 S&T Capability UNCLASSIFIED 
  

Date:  26 January 2018 
Open-Loop Collection Tasking  
DCN:  2066C.022-REP-01-OLCT Rev. 02 Page 26 

 

 
 
Proprietary Information. 
Use or disclosure of this data is subject to the Restriction of the 
title page of this document. 
 

UNCLASSIFIED 
   

 

 While this looks similar to rsObj  summed terms rsObj  is not directly the sum of all associated 

rsoDiffObj  . Indeed, in such sum, opportunity intersections would be counted twice, as the above only 

restricts 'o  with 'oo  instead of  'oo . However, in an iterative process where opportunities are 

added/removed (i.e. where ox  are set/reset) one by one, rsObj  can effectively be computed with the 

sum of all rsoDiffObj .with varying ox  on each iteration. 

Single opportunity value: 

 Merely the value of an opportunity, as if it was alone as part of a task (no overlap); 

 ooo
rs

o
orso xqp

A
AObjObj  

 Bounded to [0, 1]. 

Request-Task relative coverage: 

 Provides the relative coverage of a request-task AOI by a set of opportunities associated to that request-
task; 

 
rs rs rs rsOo

oo
Oo

oo
rs

oo
o

rs

o
rs xx

A
Ax

A
AelCovR

''
'

'
'

'

'

 

 This is derived from the request-task objective value, but it considers only the covered area, no matter the 

quality and assuming it is effectively covered (as if 1oo qp ); 

 Lower bound: unbounded. Although counter-intuitive, coverage can be negative, as with request-task 
objective value and for the same numerical reasons.  

o This is a numerical artifact because above formula does not compute actual union of coverage 
from all opportunities. Indeed, it only considers first order intersections (pairwise) but not higher-
order intersections (three-by-three, four-by-four, etc.); and 

o A real-world description of AOIs (such as geographic coordinates) could fix this issue, although 
the request-task objective value would have to be computed accordingly as well, for consistency. 

 Upper bound: 1. 

2.1.3 Wang objective function variant 

For the sake of comparison among solvers and with external sources, a Wang-specific objective function is used 
to work with Wang data sets (see section 6.2 Wang data sets). Wang data sets don’t have relative coverage (only 
spot targets, task coverage is assumed to be 1.0 on all opportunities) nor quality in their opportunities (assumed 
to be 1.0 as well).  
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Therefore, the Wang objective function is similar to the above DISCOVER objective function but only considers 
task nominal values and opportunity probabilities. This nevertheless allows for some refinement as a proper task 
value can be computed for more than two opportunities. In comparison, DISCOVER task value calculation is 
otherwise limited to an estimation, because overlaps between opportunities are limited to pairwise intersections in 
the data set model. The formulas, below, become rather simple:  

Plan objective value: 

 
Rr Ss

rsPlan
r

ObjObj  

 Lower bound: 0inf PlanObj  

 Upper bound: 
Rr Ss

rsPlan
r

ObjObj supsup  

Request-Task objective value: 

  )1(10
rs rsOo

oorsrs xpVObj  

 Lower bound: 0inf rsObj   

 Upper bound:  )1(1sup 0
rs rsOo

orsrs pVObj  

o Just like request-task objective value, but assuming all opportunities are selected ( 1ox  for all 
opportunities). 

Opportunity differential objective value:  

  )1(11
'

'
'

''
'rs rs

oo
Oo

ooorso xppDiffObj  

 Bounded to [0, 1] 

Single opportunity value 

 ooorso xpObjObj  

 Bounded to [0, 1] 

Request-Task relative coverage 

 Trivial: it is 1 if at least one opportunity is selected for that task, 0 otherwise. 
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2.2 Java Implementation 

Package ca.gc.rddc.discover.commons.dataaccess contains the interface ObjectiveFunction which 
provides the definition of above functions.  

Implementation of those functions, as described above, is found in package 
ca.gc.rddc.discover.solvers.common in DiscoverObjectiveFunction class (and 
WangObjectiveFunction for the Wang variant). It is a straightforward formula translation to Java code, except 

for the binary rsox  variable. Java methods are rather defined to accept the set of selected opportunities 
themselves as input parameters. 

Separating the interface from the implementation allows for solvers to be reused with different objective functions, 
as there could be in the future, as long as they implement the same interface. 

2.3 Test and Validation 

Given the fairly trivial nature of such functionalities, a thorough coverage via unit tests is enough to assess code 
validity. 
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3 CPLEX-BASED MODELS/SOLVERS  

This section focuses on an exact algorithm solver in DISCOVER named QUEST (QUadratically constrained 
cplEx-based Solver (Scheduler) Technology) and a more advanced version of this model, RE-CVEST (delayed 
REward Collection Value cplEx-based Scheduler Technology). RE-CVEST is only a model improvement of the 
original model of QUEST so that it can solve very large size and complex problems. This section also discusses a 
sub-module of QUEST called MOSAIC (Mixed/multi Overlapping Sub-Area composition Coverage) solver which 
finds feasible plan for large areas. All those algorithms aim to solve parts of the Multi-Satellite Collection 
Scheduling Problem (MSICSP), as stated in the Statement of Work.  

3.1 Summary 

In short, the MSICSP integrates three well-studied problems, namely determining tasks to cover (coverage 
problem), using what resources (assignment problem) and when (scheduling problem), all of that while respecting 
limited resource constraints. Given a set of tasks to service over a multi-period horizon, a MSICSP solver aims at 
finding a feasible combination of imaging opportunities such that total collection value is maximized. 

As a reminder, each image acquisition request has associated AOI coverage plan(s). Each AOI coverage plan 
consists of strip(s). The strips may be overlapping. Each strip has one or more opportunities to be imaged during 
scheduling horizon [0, T]. Each opportunity of a strip allows the acquisition of the entire strip. Each opportunity 
has certain properties inherited from requirements of the request.  

An imaging opportunity is thus associated to a task request and the geographic fraction of its AOI, a satellite and 
sensor (resolution/mode) that performs it, a time window and a probability of success (presence of clouds for 
instance). 

 

Figure 1:  Scheduling scenario 

Furthermore, the MSICSP involves operational constraints such as maximum energy available, maximum 
memory storage, thermal constraint, total budget available, budget per task and maximum number of opening 
constraints. 
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In the proposed algorithm, in order to improve the possibility of completing tasks given variable opportunities 
probability, we account for the scheduling of each task over multiple resources and establish a novel non-linear 
mathematical model. The novelty of this approach lies in exploring the mathematical structure to have both linear 
(Coarse-Grained) and quadratic (Fine-Grained) models. The Coarse-Grained model deals with the user default 
plans while the Fine-Grained model solves the problem without any default plans. QUEST explores these two 
mixed mathematical models (Coarse-Grained and Fine-Grained) to tackle this problem. Also, QUEST can 
compute a very tight upper bound of the problem which is very useful for any other approach or algorithm in order 
to know solution quality. 

This problem can be modeled as a multi-network-flow problem with resource constraints, a well-known model 
which is NP-Hard combinatorial optimization problems. They have been successfully used in structured Vehicle 
Routing and combinatorial optimization problems, involving ground vehicles. The specific objective of the QUEST 
project is to demonstrate that exact algorithms can as well be applied to these problems involving multiple aerial 
multi-satellite image scheduling.  

The algorithm is fully implemented as part of the QUEST solver, and experiments were conducted to validate 
feasibility, robustness, and efficiency of this approach. QUEST-specific code is available under: 

 DiscoverSolvers module; and 

 ca.gc.rddc.discover.solvers.mypicc package. 

We show that our Zero Half Cuts combined with branch-price-and-cut algorithm clearly outperform a state-of-the-
art branch-and-cut algorithm on the hard instances. Experimental results based on the Wang Data and Berger 
Data test generator (harder instances) show that the solutions of our models perform better than those of previous 
studies and provide very good upper-bound of the original problem, and we also reveal the strengths and 
weaknesses of the proposed algorithms while solving different size and complexity instances. Finally, a series of 
test examples and comparisons are given out, which demonstrate clearly that our algorithm performs better than 
five heuristics approaches. The potential collection value gains range from 15 to 30% compared to the best 
heuristic solution.  

Project Goal: Develop collection management decision support capabilities for effective and efficient satellite 
resource utilization and enhanced intelligence collection capabilities, through the development of relevant 
concepts, models, and algorithms. 

3.2 Problem Description 

The problem addressed by QUEST is a very difficult scheduling problem. First, the original objective function is 
not linear. Second, the operational constraints are resource constraints (total budget to perform all tasks, thermal 
budget, maximum opening, energy budget, memory budget and maximum budget per task). Finally, energy 
constraint is one of the most difficult, because it involves all variable arcs of the acyclic graph of an orbit (too 
many arcs in some instances of acyclic-graph). In this project, we exploit the mathematical structure of this 
problem in a non-obvious way in order to make it linear and/or quadratic so that to be able to use the power of 
existing well-known exact algorithms to tackle this problem.  

Based on a non-deterministic setting (uncertainty of cloud) in which image acquisition is characterized by a 
probability of successful observation, the single episode (static) multi-satellite collection scheduling/tasking can be 
stated as follows: given a set of information requests translating task areas of interest to be observed 
(weighted/valued tasks), a set of non-agile heterogeneous satellites (collection assets), and a set of imaging 
opportunities, the problem consists in allocating collection assets to imaging observation task opportunities in 
order to maximize expected collection value or profit over all requests and a specific time horizon, subject to a set 
of constraints (e.g. mission, task, operational, collector, supporting resource, communication, capacity, temporal 
and cost). 
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3.3 Motivation and Context 

Multi-mission (satellite) collection scheduling with automated and integrated utilization of heterogeneous satellite 
sensors would result in the increased performance of intelligence collection beneficial to a variety of operations 
including:  

 Maritime surveillance and ship detection; 

 Arctic land surveillance; 

 Environmental sensing; and 

 Search and rescue.  

There are many other applications: 

 Satellite communications, where tasks are communication intervals between sets of satellites and ground 
stations; 

 Earth observation, where tasks are observations of spots on the Earth by satellites; and 

 Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. 

Examples: 

 ESA’s Tracking Station Network (ESTRACK) had 30 satellites and 40 antennas;  

 NASA’s Deep Space Network (DSN) had 35 satellites and 13 antennas (with 425 requests per week); 
and 

 Air Force Satellite Control Network (AFSCN) had 100 satellites and 16 antennas (with 500 requests per 
day). 

The design and development of the centralized system with the tools for generating optimized multi-mission 
collection schedules would allow the integrated utilization of Canadian satellite resources and it would have the 
potential of increasing the overall operational performance by 25-40% ( [2]and [3]). These potential gains are 
confirmed by this study for big and hard problem instances. 
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3.4 Literature Survey 

The following table includes this work along with previous work. 
 
Table 1: Summary of the Literature on Image Acquisition Scheduling for Multi-Satellite 
Collection Scheduling 

Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Exact Algorithms 

Hall and 
Magazine [4] 

1994 1S  Dynamic programming 
algorithm with a 
bounding by either 
Lagrangian relaxation or 
relaxation of some 
constraints 

200 
targets 

 

Gabrel and 
Vanderpooten 
[5] 

2002 1S,  
4O,  
Non-agile 

Maximize the 
number of high 
priority shots; 
Maximize demand 
satisfaction; and 
Minimize satellite use 
to prevent wear. 

Model: multi-criteria path 
problems over an acyclic 
graph. Algorithm: the 
label-setting shortest 
path algorithm for 
generating all efficient 
paths, followed by an 
interactive session. 

 Less than an hour 
running time 

This work 2017 3S, 
21O, 
Non-Agile 

Maximize the 
number of high 
priority and quality 
shots; and 
Maximize demand 
satisfaction. 

Model: Coarse-grained 
and Fine-grained over an 
acyclic graph. Algorithm: 
MIPs and QMIP 

160, 200 
tasks 

Less than one 
minute 

This work 2017 3S, 
42O, 
Non-Agile 

Maximize the 
number of high 
priority and quality 
shots; and 
Maximize demand 
satisfaction. 

Model: Coarse-grained 
and Fine-grained over an 
acyclic graph. Algorithm: 
MIPs and QMIP 

160, 200 
tasks 

Less than one 
minute 

This work 2017 3S, 
15O, 
Non-Agile 

Maximize the 
number of high 
priority and quality 
shots; and 
Maximize demand 
satisfaction 

Model: Delayed rewards 
over an acyclic graph. 
Algorithm: MIPs with 
strategy to find good 
integer solution. 

300 tasks Less than 2 minutes 

Greedy  
Muraoka et 
al.  

1998 1S, 
ASTER 

Ranking function 
consists of 12 
elements. 

Greedy: one by one 
request is scheduled. 
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Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Heuristics 

Pemberton 
 

2000 1S  Priority segmentation: 
each sub-problem solved 
to optimality by branch 
and bound. 

 Priority 
segmentation is 
better than greedy 
algorithm that sorts 
tasks by priority and 
schedules them one 
by one.  

Frank et al. 2001 1S Ranking: priority and 
contention (how 
many opportunities a 
request has). 

Greedy hill-climbing 
search with stochastic 
variations to escape local 
optima. Algorithm based 
on constraint-based 
interval planning. 

  

Metaheuristics 

Bensana et 
al. [6] 

1996 1S,  
1O or mO, 
SPOT 5 with 
3 cameras. 
Mono-image 
and stereo-
image 
requests. 
Non-agile 

 Depth-First Branch and 
Bound, Russian Doll 
Search, Best-First 
Branch and Bound, a 
Greedy Algorithm, and 
Tabu Search. Integer 
Linear Programming 
(ILP) and Valued 
Constraint Satisfaction 
Problem (VCSP) 
formulations. 

13 
instances 
1S1O, 
and 7 
instances 
1SmO 

Tabu Search 
performed best in 
general, Russian 
Doll Search 
performed best for 
the one orbit case, 
but failed in six of the 
seven instances in 
the multiple orbit 
cases.  

Gabrel et al. 
[7] 

1997 1S,  
Non-agile 

 An approximate method 
with discrete times, an 
approximate method with 
cont. time and greedy 
algorithm based on the 
longest path algorithm, 
and an exact method 
branch and bound 
approach with a depth-
first search strategy 

 The continuous-
time approximation 
algorithm averaged 
within 7% of optimal. 
The discretized time 
algorithm performed 
very close to the 
continuous 
approximate one. 

Wolfe and 
Sorensen [8] 

2000 1S and 2S  Hill-climbing, 
Look-ahead algorithm, 
Genetic algorithm with 
look ahead. 
Defined the problem as a 
window-constrained 
packing problem. 

Time 
horizon: 
One week 

Genetic algorithm 
performed the best. 
Needed longer run 
times. Look-ahead 
algorithm may be 
more practical for 
large problem 
instances. 

Vasquez 
and Hao, 
2001 [9] 
 

2001 1S,  
Non-agile 

 Tabu search together 
with “logic-constrained” 
knapsack formulation. 

 Better than tabu 
search of [6] 
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Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Lemaitre et 
al. 
[10] 
 

2002 1S,  
1O,  
with stereo-
images.  
Agile 
satellite 

 Greedy algorithm, 
dynamic programming 
algorithm, constraint 
programming, and local 
search algorithm. 
Greedy and dynamic 
algorithm ignored stereo 
images. 

6 problem 
instances 

Only mono-images: 
dynamic 
programming 
approach was the 
best performer; 
Stereo-images 
included: local 
search methods 
were the best. 

Globus et al. 
[2] 

2003 1S and 2S,  
Agile 
Optical, 
included (as 
for SAR): 
access, 
slew, and 
dwell times.  
Considered: 
on-board 
data storage 
and downlink 

Minimize:  
- Weighted sum of 
unscheduled image 
priorities; 
- Total slew time; and 
- Sum of slew angles 
of scheduled images. 

Genetic algorithm, 
Simulated annealing,  
Stochastic hill-
climbing,  
Iterated sampling. 

4200 
imaging 
targets 
with 
priorities 
1 to 5 

Simulated annealing 
was the best. 

Globus et al. 
[11] 

2004 2S and 3S,  
Optical 
satellites. 
Same as 
Globus et al., 
2003 [2] 

Minimize: 
- Weighted sum of 
unscheduled image 
priorities; 
- Mean slew time; 
and  
- Mean of off-nadir 
pointing angles of 
scheduled images. 

Genetic algorithm (13 
variations), 
Simulated annealing,  
Stochastic hill-climbing,  
Squeaky wheel.  

10 
instances, 
2100*m 
targets 
with 
priorities, 
m - 
number of 
satellites 

Simulated annealing 
was the best, closely 
followed by hill 
climbing. Genetic 
algorithm was the 
worst. 

Cordeau and 
Laporte 

2005 1S,1O 
Agile 
satellite 

Piecewise-linear 
convex with respect 
to the proportion of 
the polygon’s area 
being acquired 

Tabu search. Allowed 
infeasibility by relaxing 
the time window 
constraints.  
Upper bound: column 
generation procedure 
solving the linear 
program relaxation. 

ROADEF 
2003 
competitio
n 

Tabu search 
achieved near-
optimal solutions. 
Compared to upper 
bound. 

Lin et al. [12] 2005 1S,  
China/ 
Taiwan 
ROCSAT II 
(FORMOSA
T II) 

 Lagrangian relaxation 
and linear search  

 Lagrangian 
relaxation is better 
when compared to 
simple tabu search. 

Lin and 
Chang [13] 

2005 1S  Hybrid approach: 
Lagrangian relaxation 
with a tabu search based 
feasibility adjustment. 

 Hybrid better than 
Lin et al., 2005 [12] 
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Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Bianchessi 
et al. [14] 

2007 2S, 
PLEIADES 
(French), 
Optical, 
Agile.  
Priority, 
consecutiven
ess of strips 
from one 
polygon 
request 

Maximize weighted 
function of utilities 
assigned to users;  
linear with respect to 
the proportion of the 
polygon’s area being 
acquired  
 

Tabu search partly 
based on [Cordeau and 
Laporte, 2005]. 

Time 
horizon: 
24 hours 

The same as 
[Cordeau and 
Laporte, 2005] 

Wang et al. 
[15] 

2009 3S,  
mO 

 Tabu search heuristics 
embedded in ILOG 
Dispatcher and a 
greedy-based algorithm 
called “conflict-avoided 
heuristic”. 

 Tabu search 
resulted in better 
solutions. Running 
time for their largest 
instance, the greedy 
took 50 seconds, 
while tabu search 
took 3499 seconds. 

Wang et al. 2010 mS 
FORMOSAT 
5, Taiwan  

Multi-criteria  Genetic algorithm. 
Problem simplified by a 
division in limited 
numbers of single-orbit 
scheduling problems.  

20 targets Not provided 

Nelson [3] 2012 2S,  
2O, 
SAR satellite 
constellation
s: Walker, 
Target 
priorities 

 Three-step approach: 
cluster-route-schedule. 
Clustering groups 
imaging targets. Routing 
step uses column 
generation – in sub-
problems each satellite is 
separately. Scheduling 
step for each satellite 
separately uses time-
space networks and 
heuristics. 

8,250 
targets 
4,271 
could be 
imaged 
within 208 
min time 
horizon (2 
revolution
s) 

768 clusters formed 

Wu et al. 
[16] 
 
 

2013 4S, mO,  
1day sch. 
hor.; 
Semi-agile 
(only roll) 
Spot target 
tasks. 
Priorities.  

Maximize profit Adaptive simulated 
annealing with dynamic 
clustering.  
Compared to ant colony, 
tabu search, genetic 
algorithm, simulated 
annealing with static 
clustering, highest priority 
first alg. 

100-1000 
targets, 
1d 

Adaptive simulated 
annealing with 
dynamic clustering. 
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Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Xiaolu et al. 2014 mS, mO, 
Semi-agile 
(only roll) 
Energy and 
memory are 
considered. 
Max 
continuous 
imaging time 
is 
considered. 

Maximize profit Decomposition algorithm: 
one sub-problem is the 
assignment of a task to 
an opportunity and the 
other sub-problem is the 
merging of tasks into an 
observation. The 
problems are solved 
iteratively until stopping 
criteria is met. MIP is 
proposed for scheduling 
observations for 
collection of satellites. 

Random 
instances: 
uniform, 
collective, 
and 
mixed.  
63 inst: 
100-600 
req, 2-8 
sat -> 
200-4300 
opp  

The proposed 
decomposition 
algorithm is better 
than simulated 
annealing: around 
25% better and up to 
50% for some 
instances.  
Operational in China 
Satellite 
Management Center. 

Tangpattanakul 
et al. 

2015 
 

Agile.  
Includes 
stereo 
requests and 
polygon 
requests 

Multi-criteria: max 
profit + max fairness 
(by minimizing the 
maximal difference 
between the user 
profits) 

Iterated indicator-based 
multi-objective local 
search. 

Modified 
ROADEF 
2003  

 

Wang et al. 
[1] 

2015 mS, mO, 
Semi-agile 
(only roll) 
Uncertainty 
of clouds 

Maximize expected 
profit 

Exact: Decomposition 
with master problem 
solved by enumeration 
and sub-problems by 
dynamic programming.  
Heuristics: for generating 
feasible solution to sub-
problems. Master still 
solved by enumeration. 

Three 
satellites. 
Planning 
horizon: 
from 6h to 
24h. 
Number 
of 
requests 
from 10 to 
160. 

Compares to Liao et 
al., 2007 [17] model 
solved by CPLEX. 
Generates better 
solutions.  

Malladi et al. 2015 mS, mO, 
Semi-agile 
(only roll)  

Maximize priority Model-based meta-
heuristic (matheuristic). 
MIP. Also, modeling as a 
new cluster-restricted 
maximum weight clique 
problem. 

 Compares to 
CPLEX.  
Real-world problems 
instances. Also 
BOSHLIB and 
DIMACS 
benchmarks. 

Constraint Programming (CP) 
Verfaillie et 
al. [18] 

1996 1S,  
1O,  
Non-agile 

 Russian Doll algorithm 
to improve search for an 
opt solution in CP; 
Depth-first search branch 
and bound. 

8 
instances, 
30 min 
time limit 

Russian Doll 
algorithm solved all 
instances to 
optimality, while 
branch and bound 
did not solve any. 

Lemaitre et 
al. [19] 

2000 1S,  
Agile 
satellite 

 Constraint 
programming (OPL 
Studio Framework), 
Local search (LS) 

7 
instances; 
Stop 
criteria: 
CP: 5 
min, LS: 2 
min 

Local search 
algorithm was better 
than CP. 
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Authors Year Satellite(s) Objective  Method Problem 
size Solution Quality 

Bounds 
Gabrel and 
Murat [20] 
[21] 

2003, 
2006 

1S, 
1O,  
SPOT 5, 3 
cameras, 
On-board 
memory,  
Non-Agile  

 Vertex-path formulation 
with a column 
generation procedure. 

Up to 300 
targets 

Bounds generally 
within 10% of 
optimality compared 
to Bensana et al., 
1996 [6]. 
2006: show that the 
bounds are tighter 
than linear 
relaxation. 

Vasquez 
and Hao [22] 

2003 1S,  
mO, 
SPOT 5,  
Non-agile 

 Using tabu search the 
problem is partitioned 
into sub-problems, which 
are solved exactly by an 
iterative enumeration 
algorithm. 

 Equal or better than 
Gabrel and Murat, 
2003 [20]. Upper 
bounds less than 3% 
from lower bounds. 

Benoist and 
Rottembourg 
[23] 

2004 Agile 
satellites 

 Prize Collecting 
Traveling Salesman 
Problem with Time 
Windows, enhanced 
with valid inequalities 
based on task interval 
reasoning and a Russian 
Doll Search approach. 

20 
instances 
with 300-
500 
targets 

With valid 
inequalities: 22% 
gap. With Russian 
Doll search: 12% 
gap, took several 
hours. 

Bianchessi 
et al. [14] 

2007 2S, 
PLEIADES 
(French), 
Optical, 
Agile.  
Priority, 
consecutive-
ness of strips 
from one 
polygon 
request 

Maximize weighted 
function of utilities 
assigned to users;  
linear with respect to 
the proportion of the 
polygon’s area being 
acquired. 

Column generation 
based on set partitioning. 
Branch and price. 

Time 
horizon: 
24 hours 

The same as 
[Cordeau and 
Laporte, 2005] 

 

3.5 Graph and Orbit Description 

Graph (orbit network – acyclic directed graph) reduction consideration: consider opportunity node (r,s,o) transition 
over a limited period only (state/task transition ending beyond that period is assumed unlikely to occur and will be 
ignored). For instance, a finite number of k immediate successors might be considered. 

Source (b) and Sink (e) nodes in G (V , A ): 111bx , 111ex  

V  : set of opportunities {(r,s,o)} in orbit  V  =O = rs Ors ) 

A set of arcs connecting node (r,s,o) to  node (r’,s’,o’), reflecting feasible transition (between opportunities) in 
orbit   
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Graphs are built separately for each platform: 

Platform 1 

   ...   …  …    
 
Platform 2 

…     
 
Platform 3 

 

 
 

…. 

Mathematic model can be found in [24]. 

3.6 Original problem 
3.6.1 Notation 

H: time horizon 

SAT: set of heterogeneous earth observation satellites 

Tsat : satellite sat revolution period 

: collection of orbits/revolution/track/passes/path  in {1,..,| |}= |SAT|*| sat| (nb orbits per sat).  

 Orbits are sorted in increasing order; 
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 | sat| = sup (H/  Tsat); 

 (t, sat) (t-1)|SAT| + sat    t  H Tsat , sat SAT during cycle t; 

 sensors:  electro-optical (EO), infrared (IR) or synthetic aperture radar (SAR); 

  can be partitioned in ascending and descending orbits: A D; and 

 Dir: sat direction (A/D = ascending and descending orbit). 

rs: collection of orbits/revolution/track/pass  related to task (r,s). rs   

T :  satellite orbit  revolution period 

R: set of candidate requests r (defining a target (spot) or polygon area (region) of interest (AOI) dimension Ar to be 
covered with beam [waveform] B).  

 Each request r is decomposed into a set of tasks. A compound request includes more than one task. A 
spot request generally corresponds to a single primitive request involving one task. However, some 
primitive request/task requirement might require more than one task (e.g. a stereo task necessitating an 
Ascending and a Descending imaging collection (visit/observation) for suitable data analysis purposes); 

 In some simple settings (e.g. single homogeneous constellation), a request (polygon area) may be 
decomposed into a set of sub request s (e.g. strips (rectangle) s of length ls and width wB defined along 
Earth meridian as near as polar orbit satellites are considered). Requests (r,s,B) are sorted increasingly 
by earliest starting times. Composite task examples include mosaic-based imaging, multitask mission 
decomposition, large area coverage (area decomposition in sub-areas); 

 Task perspective: 

o RP: set of primitive requests r having a single task (target) (s=1); 

o RC: set of composite requests r having multiple tasks s (e.g. task package, polygons or complex 
structure of targets/polygons); 

o 
cp RRR

; 

o Ru  RC: set of composite requests for which individual request value contribution requires 
servicing all composing task s as a unit; 

o RL: set of requests having piecewise linear value contributions; and 

o R : other complex tasks (spot target) requiring pre-defined plans. 

 Resource perspective: 

o R : set of complete/partial requests (tasks) in corridor (track) visibility of orbit  (R  R) matching 
sensor orbit  capability (feasible pairing – matching). Partially visible requests are included. 

Sr: set of task s (e.g. sub-request or strips – sub-areas/regions composing an AOI if defined accordingly) 
composing request r (or, set of subtasks s composing task request r) 
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[ r , r ]: completion time window for servicing (imaging) request r (including related tasks)  

[ rs , rs ]: completion time window for servicing (imaging) request r and related task (assumption: rrs ,

rrs ) 

PREC: set of partially ordered task pairs (r,s; r’,s’) having a precedence relationship with one another: (r,s) 
r',s' . e.g. detection > tracking > identification; or detection>confirmation tasks, stereo imaging task or 

subtasks 

A delay might even be necessary to account for information (observation outcome) dissemination/task flow, 
pre-planning and uplink (revised plan) latencies during plan execution. 

ME: set of mutually exclusive task pairs 

CONFL: conflicting opportunity over a task  

VISrs : binary visibility matrix indicating if request r task s is within sensor footprint/field of view (projected sat track 
area) of orbit visrs = 1 if (r,s)  R : i.e. if task (r,s) is visible to orbit (zero otherwise). 

Vr0: nominal value of request r 

Vrs0: nominal value of request-task (r,s). Valuation is assumed to respect utility theory axioms (large polygon 
areas may define a single task (not many) as many collection opportunities are required to cover the 
corresponding area). Apportionment of request r value over tasks s. 

o Vr0 =  s Vrs0 

THRrsprop _ : Minimal coverage task (r,s) ratio requirement (covered area proportion – e.g. 70%) 

grso  (or rso ): pointing/look angle for task (r,s) for imaging opportunity o during orbit

rsrs , : look angle intervals (near/far incidence angle) for task s request r 

O: collection of all opportunities ( rs Ors or O ) 

Ors: (collection of) opportunity (all possible orbits) for task (r,s). | Ors |  |Sat|*| sat| for non-agile sat

O : (collection of) opportunities (over all tasks) during orbit O  |= |R  | for non-agile sat) 

o O  = O A  O D 

o O A: ascending orbit direction opportunity set 

o  O
D: descending orbit direction opportunity set 

Ors : set of collection opportunities for request r task s during orbit
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o Opportunity = {identifier, task, B in feasible {B}, look angle, time interval, orbit- related sensor, pass 
direction (Ascending/Descending), MOP [covered area, probability of success….]} 

o orbit implicitly determines sat direction Dir 

o On agile satellite: 

o Ors ={ors ID), r,s, B, tsrso   [ rso , rso ], dros  terso - tsrso const, grso  tsrso  , Dir, }  

o [ rso , rso ]: starting time windows for servicing subtask (r,s) (agile satellite) with imaging 
opportunity o 

o grso  stands for antenna/camera pointing angle. Typically EO, not the case for SAR (rather binary 
left/right looking) or AIS sensor sat. 

o On non-agile satellite: 

o Ors = { ors ID), r,s, B, grso rso , [tsrso , terso ], Dir, }        xrso  visrs  

o Reminder: visrs if sensor orbit  match task (r,s) request requirements, otherwise visrs 0 

o E.g. image orientation (incidence angle) – rso in rsrs , , capability sensor-task, sun 
illumination 

TWrs  = [tsrs  , ters ]: time window (start time, end time) of task s associated with request r for imaging opportunity 
o during orbit For non-agile satellites, tsrso  , terso  < are predetermined constants whereas these quantities 
are variables for agile satellites.  

rs: set of user-defined (sub) task plans rs  for covering (sub) task (r,s) (r R , rs={1,2,….,| rs|)  - a (sub) task 
plan is a subset of collection imaging opportunities selected  from a given set Ors ( rs refers to a family of 
subsets of Ors targeting sub task (r,s)) 

rs = { rs1, rs2, …, rs ,…, rs| rs|} = { rs }  rs={1,2,….,| rs|, 

rs  : (sub) task plan  defining a subset of collection imaging opportunities for covering task (r,s) (r R ) 

rs   ={ rs 1, rs 2, …., rs | rs |}  

drso duration of task (r,s) imaging for opportunity o over orbit ters -  tsrs const) 

Resource (time, memory, energy) capacity and consumption rates (power) per collector activity (imaging/obs, 
comm/downloading): 

o W : memory storage capacity in orbit    

o w : memory consumption rate by an observation in orbit   

o E : energy capacity in orbit    
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o eo : energy consumption rate by an observation in orbit   

o es : energy consumption rate for task transition by a sensor in orbit 

o   constant task transition time by a servicing satellite on orbit  (includes required time for opening (a  

) the sensor in orbit 

o sl  : slewing rate 

o '''0 osrsortt  variable task transition time by a servicing satellite on orbit  from task (r,s) opportunity 
o to task (r’,s’) opportunity o’. 

o 0t : set-up time for imaging opportunity transition 

o ''' osrsort : Transition time (e.g. ''' osrsort = | grso  - gr’s’o’  |  /  sl

o c  : maximum number of times for a satellite opening its sensor in orbit 

o  : maximal  (absolute) and average acceptable imaging time over orbit  imposed by thermal capacity 
constraints

o sat : maximal average acceptable imaging time over orbit  imposed by thermal capacity constraints

Ars  AOI associated with task s, request r 

rsq : estimated imaging quality associated with collection plan  (multiple asset opportunities) for task s from 

request r characterized by predetermined plans (r R   , e.g.  Ars  /Ars; 1-< Ers >/Ers0, rankrs  /rankmax) 

rsp : probability to successfully execute plan  (multiple asset opportunities) for task s from request r 

characterized by predetermined plans (r R  ) 

succ
rsop : probability of success in imaging request r task s area, over opportunity o in orbit 

o e.g. an EO observing a target area under partial cloud conditions

rsoq (= rsq ) : estimated imaging opportunity normalized quality associated with opportunity o on orbit  for task 
s from request r 

o Task-dependent, account for incidence angle imaging quality, or resolution obtained for different beam 
mode whenever imaging entirely a spot target area, etc. e.g. an EO observing a remote area or involving 
a large incidence angle. 

''orsoq : composed imaging opportunity quality associated with intersecting opportunity o and o’ strip areas 

related to orbit  and ’ respectively. 
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""'' oorsoq : composed imaging opportunity quality associated with intersecting opportunity o, o’ and o” strip areas 

related to orbit , ’ and ” respectively. 

rsoc : first-order quality of information/service (utility) contribution to the collection value of task s, request r, 
based upon relative covered areas and observation probability of success associated with imaging 
opportunity o and orbit . 

o 

rso

obsquality

succ
rso

rs

rso
rso qp

A
A

c
]1,0[_  

o Arso opportunity strip area coverage of task s, request r AOI associated with opportunity o on orbit .  

o 
strip

rsoA : imaging strip area (swath) coverage associated with opportunity o on orbit  for task s from 
request r (  Arso ) 

''orsod : 2nd-order quality of information/service (utility) contribution to the collection value of task s, request r, 
using relative mutual opportunity strip area coverage intersection and observation probability of success 
associated with opportunity o on orbit and, opportunity o’ on orbit ’ respectively. 

o 
''''

''
'' orso

succ
rso

succ
rso

rs

orso
orso qpp

A
A

d
 

o Arso  o’ ’  area coverage of task s, request r AOI resulting from mutual opportunity o and o’ strip areas 
intersection related to orbit , and ’ respectively. 

""'' oorsoe : ''orsod : 3rd-order quality of information/service (utility) contribution to the collection value of task s, 
request r, using relative mutual opportunity strip area coverage intersection and observation probability of 
success associated with opportunity o on orbit  opportunity o’ on orbit ’ , and opportunity o” on orbit ” 
respectively. 

o 
""''""''

""''
""'' oorso

succ
rso

succ
rso

succ
rso

rs

oorso
oorso qppp

A
A

e
 

o Arso  o’ ’o” ”  area coverage of task s, request r AOI resulting from mutual opportunity o, o’ and o” strip 
areas intersection related to orbit , ’ and ” respectively.  

rsotcos : f (swath area 
strip

rsoA , B(o) , product type: resolution,…; svc provider ) 

o e.g. )(),),(( 0rsArs cresolutionoBm strip

rso  
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Decision variables: 

o visitrs: binary variable indicating that tasks (r,s) have been visited (at least once); 

o x r s o  : binary variable indicating whether task s  from request r is scheduled to be serviced by 
opportunity o on orbit .  

o Many opportunities might be required; 

o Many separate tasks s compose a request r when disparate collection activities are required to 
fulfill r. Note in that case, that a single task s (primitive) is necessary to specify a large AOI 
request r, for which, multiple (possibly overlapping, or, disjoint) opportunities (and their 
corresponding possibly non-disjoint related strip) must be simply combined to satisfactorily cover 
(r,s); and 

o A plan is a set of disjoint/overlapping opportunity assigned to a task. Note that strip opportunities 
are simply duplicated for different opportunities emerging from identical satellite constellation 
members. 

o tsrso  continuous variable referring to start time of tasks (r,s) for imaging opportunity o on orbit 

o z r s o  o’ ’ : binary variable indicating whether task s  from request r is scheduled to be serviced by 
opportunity o on orbit and opportunity o’ on orbit ’ 

o u r s o r' s' o’   : orbit  network flow binary decision variable indicating a transition between task s under 
request r opportunity o and task s’ under request r’ opportunity o’ in orbit  i.e. (r’,s’) will be executed 
after (r,s) 

o number u var  ½ ( r,s ||Ors  

o Piecewise linear objective function contribution over request r : 

o The objective function contribution for request r RL is linearly defined over vr (mir vr + bir). Ranging 
in [0,1] vr is divided in pre-defined intervals i from a set Ir 

o qir : binary variable indicating interval i of the piecewise linear objective function value contribution 
for servicing request r 

o lir: continuous variable over [0,1] reflecting piecewise linear contribution on interval i to the value 
of  request r  

o All task service requirements under request r Ru R 

o wur: binary variable reflecting all task s service requirements for task r impacting the value of 
request r 

o Xrs: binary variable indicating if task s from request r is serviced 

o vr: continuous variable over [0,1] capturing the value of request r  

o wrs : binary plan variable referring to the selection of plan  among possible plans in the set rs to 
cover task (r,s). The null plan is included. rs {0} 
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3.6.2 Constraints and Objective 

These following constraints are taken into account when building the Graph network. 

Transition: (agile sat (time windows); non-agile sat have fixed ts values [unnecessary]). 

1)1(
_

'''0'''''' MttdtsuMts
timetransition

osrsor

te

rsorsoosrsorosr

rso

 

o Note: if time windows are discretized in the acyclic graph, all opportunities have a fixed time and that 
constraint is unnecessary. 

Time window constraints:  

rsorsorsorsorso xtsx   Opportunity time window 

rsorsrsorsorsorsors xxdtsx   Completion time window for request r and related task s 

T
SAT

SAT
T

SAT
SAT

rsorso 1
mod

,
mod

rsorsorsorsorso tedtsT
SAT

SAT
;1

mod
 For non-agile satellite 

Objective function: 

Rr Ss
rsorsorso

r

rso
r

r rs

xpq
A

A
VMAX 110  (1) 

rso

R

r

S

s o
osrsor xu

r

' ' '
'''  (2) 

Flow conservation: 
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" " "
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Energy Constraint: 

Ettesu

tsteeox

osrsor
bRr

AVG
Aosrrso

Ss Oo eRr Ss Oo
osrsor

rsorso
Rr Ss Oo

rso

r rs r sr

r rs

'''0
}{

),(
))'''(),((

}{' ' '
'''

' ''

)(

 (4) 

Memory storage capacity:  

Wxtstew
R

r

S

s Oo
rso

d

rsorso

r

rs
rso

 (5) 

Max number of sensor openings c   by orbit: orbit capacity 

cx
R

r

S

s Oo
rso

r

rs
 (6) 

Image acquisition costs: financial capacity (cost is proportional to resolution x coverage) 

maxcoscos txt
R

r

S

s Oo
rsorso

r

rs

  (7) 

Maximum Image acquisition cost: financial capacity per task 

maxcoscos

0)_inf,(

rs

rs
rs

strip
rsoproductoBrs

txt
Oo

rso

cAm

rso  (8) 

Thermal constraints (max imaging time by orbit; average max imaging time by orbit): 

( t, sat) (t-1) |SAT|  +  sat    t  H Tsat , sat SAT 

R

r

S

s Oo
rsorso

r

rs

xd    (9) 

}1,0{,''' rsoosrsor xu  (10) 
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The objective (1) is to maximize the expectation value of the profits of the executed tasks under uncertainties of 

clouds, in which 
rs

rsorso xp11  denotes the completion probability for task (r,s) when it is scheduled to 

multiple orbits and this quantity is multiplied by a weight which combines the quality, priority and the proportion of 
the area covered by the opportunity. The set of constraints (2) indicate if the task (r,s) is visited or not (or covered 
by an opportunity). The set of constraints (3) that are flow conservation constraints ensure that the number of 
predecessors is equal to the number of successors for each task. Constraints (4) compute the energy 
consumption of the task sequence for each orbit, and enforce that the energy consumption must be less than or 
equal to the capacity. Constraints (5) check that the memory consumption of the scheduled tasks cannot exceed 
the memory capacity for each orbit. Constraints (6) check that the task sequence for each orbit does not exceed 
the given capacity of the orbit. Constraints (7) specify that the total tasks covered by all orbits do not exceed the 
total budget available. Constraints (8) specify that the sequence of tasks covered by an orbit does not exceed the 
total budget available for this task. Constraints (9) compute the time consumption for imaging task sequence for 
each orbit is less than or equal to the available time dedicated to image (image capacity). Finally, constraints (10) 
set that all implicated variables are integers. 

3.7 QUEST 

Unfortunately, the master problem above (objective function 1) is still neither linear nor quadratic, and thus we 
cannot apply successfully existing solvers or algorithms.  

Taking advantage of the problem structure, the first remark is that for a given task, a limited number of visits are 
enough to make the probability of success close to one. This leads to an approximate model in which we limit the 
number of visits to 1, 2 or 3 depending on the initial probability of success. Also, we divided tasks into two sets of 
tasks: tasks with plans, we modeled it as coarse-grained model and tasks without plans; we modeled it as a fine-
grained model. In the first model we keep the constraints above (2-10) and only the objective function is changed 
to as follows: 

PCPC Rr
r

Rr
r

RRRr
r vvvMAX
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Complex task (fine-grained modeling): 
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3.8 RE-CVEST 

QUEST Model quickly reaches its capacity. In the case of coarse-grained model the capacity is quickly reached 
because of the exponential number of possible plans. As each variable corresponds to a plan this leads to a 
model of exponential variables thus very difficult to solve. As for the fine-grained model, it leads to a limited 
number of variables and the fact that multiple visits to a task lead to both positive and negative contributions in the 
objective function. This fact has the effect of causing the relaxed solution to be far from the MIP solution. This is 
the reason why we have developed a new model that exploits the advantages of both previous models while 
avoiding inconvenient of both approaches. This allowed us to succeed in solving bigger problems.  

We develop a new mathematical model which provides good upper bound and can solve large size combinatorial 
optimization problems. This model is derived from the quadratic model by introducing new variables which find 
how many times a given task is visited (this maximum number of visits is limited to 2-3) and add the right positive 
contribution to the objective function. This model is based on delayed-reward approach which does not impose 
any number of visits on a given task but reward only the first 1 or 2 or 3 visits. The remained visits are rewarded 
correctly only on the final solution. The constraints 2 to 10 are unchanged; the objective function is transformed as 
follows respectively on the case of two or three visits:  
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3.9 Methodology and Solution Approach 

It is well known that linear programming problems and integer programming problems are very difficult to solve. In 
fact, none efficient general algorithm is known for their solution. Given our inability to solve integer programming 
problems efficiently, it is natural to ask whether such problems are inherently “hard”. Complexity theory 
overcomes insight on this question. It provides us with a class of problems with the following property: if a 
polynomial time algorithm exists for any problem in this class, then all integer programming problems can be 
solved by a polynomial algorithm, but this is considered unlikely. Algorithms for integer programming problems 
rely on two basic concepts: Relaxation and Branch-and-Bound. There are three main categories of algorithms for 
integer programming problems:  

 Exact algorithms that guarantee to find an optimal solution, but may take an exponential number of 
iterations. They include cutting planes, branch-and-bound, and dynamic programming; 

 Heuristic algorithms that provide a suboptimal solution, but without a guarantee on its quality. Although 
the running time is not guaranteed to be polynomial, empirical evidence suggests that some of these 
algorithms find a good solution faster; and 

 Approximation algorithms that provide in polynomial time a suboptimal solution together with a bound on 
the degree of sub-optimality. 

The reason why a Mixed Integer Linear Problem is hard to solve lies in the fact that the gap is very large (see 
Figure 2). That is the case when there are many competitions between variables in the objective value that lead to 
a Lagrangian relaxation which is a far from feasible integer solution. Due to the exponential growth in the size of 
such a tree, exhaustive enumeration would quickly become hopelessly computationally expensive for MIPs. 

By examining the output of the branch-and-bound algorithm, one can often identify the cause(s) of the 
performance problem. 

For our problem QUEST, we made the following remarks: 

i) The first Lagrangian relaxation linear problem solution U0 is very bad and very far from the MIP solution; 
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ii) Fortunately, the second phase iteration in the RE-CVEST model, CPLEX provides very tight upper-bound 
U2 by using Zero-half cuts. Zero-half cuts are based on the observation that when the left-hand side of an 
inequality consists of integral variables and integral coefficients, then the right-hand side can be rounded 
down to produce a zero-half-cut. By using intensively these cuts we get a very tight upper bound; 

iii) Each time CPLEX adds a cut, the sub-problem is re-optimized. ILOG CPLEX repeats the process of 
adding cuts at a node until it finds no further effective cuts; 

iv) This upper-bound is used in the feasible solution search phase as a heuristic. This heuristic consists of 
setting to zero any variable which is close to zero in the relaxation in U2. This setting is done via the 
callable library of CPLEX by using our own heuristic algorithm. And solve again the derived sub-problem. 
This leads to a very good solution value where the gap is close to zero. Finally, we leave MIP branch-
and-cut algorithm achieves the remaining steps of MIP solving; and 

v) Depending on how hard is the initial problem (kSAT is close to 10), we impose a stopping criterion (gap 
<=5%). 

 

Figure 2:  Branch-and-bound Algorithm 

3.10 Large Area Coverage Problem – MOSAIC 

This mathematical model consists of a particular case of QUEST/RE-QUEST model where the number of tasks is 
equal to one and that task is very large. With the difficulty to solve this problem in many situations, we designed a 
solution methodology which solves this problem with a gap less than or equal to 5%. The approach consists of 
2 steps which are called set covering and blocks holes method (SCBH): 

1. Solve a first linear model which consists of covering the largest area with non-overlapping spot targets as 
much as possible. If o and o’ overlap, then add: 

1''rsorso xx  (overlap free constraint) '',,',,, rsrsr OoOoSsRr  
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With this objective function: 
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2. Remove all overlap free constraints. And solve a second linear model which blocks the remaining holes 
while minimizing overlapping.  
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We use the natural upper bound of this problem (by determining the effective area covered by spot targets). We 
show that we can solve very large size problems (more than 1000 spot targets) with a gap less than or equal to 
5%. 

3.11 Results, Tests and Comparisons 

The features or aspects of the mathematical model that is novel, useful and not obvious: 

 Some constraints are surplus, i.e. we can remove many of them and keep only one with a tighter upper 
bound which reduces the complexity and size of the problem definition; 

 The objective function is not linear but depending on the probability of taking the image under uncertainty 
(cloud) a maximum number of three visits are sufficient to reduce the uncertainty and increase the 
probability of success close to one. In many cases this maximum number of visits can be limited to two or 
one. This remark reduces considerably the size of the combinatorial space and makes the problem 
solvable; 

 A network acyclic graph is used in order to reduce the number of variables and to speedup branch-and-
bound algorithmic phase; 

 Highly flexible through user definition of complex tasks and resource usage: recurring and non-recurring 
tasks, resource constraints, set-up times, predecessor constraints, etc.; and 

 To address large problem instances, different strategies are used, for example by fixing or removing non-
promising opportunities (which are not interesting anymore in the Lagrangian relaxation, i.e. integrality 
constraints and the very difficult energy constraints are relaxed) in order to prune and reduce the large 
feasible space of very large size problem instances. 
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Wang data validation with small size instances (our results are compared to Wang exact solution): In all problem 
instances, QUEST found a solution in a few seconds (less than 30 seconds) with a gap less than 1%. To evaluate 
our model and algorithm, we performed experiments on Wang data and by using our own data generator and 
compared the scheduling schemes generated by different methods namely MY-PICC and GATHER fast and slow. 
The results of experimental simulations validated the impact (in terms of the complexity) of the total number of 
times a task is visible. The comparisons and analysis performed in this study demonstrated that the total number 
of times a task is visible by satellites is an important and main factor which determines the solvability. When the 
total number of times a task is visible by satellite is less than or equal to 10, our approach which is based on a 
barrier algorithm can improve the robustness of the produced schedules. 

3.12 Limitations of the Approach 

Because this problem is a very hard constrained resource combinatorial optimization problem, our experimental 
simulation with RE-CVEST shows that our solution approach has a natural limitation when we considered more 
than 300 tasks with more than 10 opportunities for each of them. This means that we have plenty of tasks which 
are visible to many of satellites. 

Computational study 1:  

 40 problem instances provided by Wang data input requests; 

 Stopping criteria: optimality (gap = 0); and 

 Solutions for most of the instances within 1% of the upper bound in less than 1 minute. 

Computational study 2:  

 100 problems instances provided by Berger data input requests (randomly generated); 

 Stopping criteria: optimality (gap <= 5%); and 

 Solutions for most of the instances within 5% of the upper bound in less than 5 minutes. 
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3.13 Conclusion 

In this section, by modeling mathematically the uncertainties of clouds, we formulated the presence of clouds as 
stochastic events. Due to these possible uncertainties of clouds, a task that is scheduled (may be more than one) 
will be completed at the highest probability of success as possible (close to one). This fact leads to an original and 
first model which is not linear. We exploited the structure of the problem in order to make it linear in our first 
approximated model Coarse- and Fine-grained (CFG). This CFG model is very good but has big limitations and 
fails in solving large size instances. The reason is that Coarse-grained model needs plenty of integer variables 
(due to the presence of a large number of possible plans) while Fine-Grained model must consider overlaps 
between area. The penalty of this overlaps creates a competition between the integer variables. This has the 
effect of artificially increasing the gap and makes the problem very hard to solve. In the last mathematical model 
(RE-CVEST model), we eliminated this competition and we managed to solve problems by exploiting the 
information contained in the Lagrangian relaxation problem (which we know that its solution is a good upper 
bound because there is no competition between integer variables). We use a heuristic in order to speed-up 
solution finding by setting to zero all variables which are close to zero in the Lagrangian relaxation problem. We 
also use Barrier algorithm which is proven to be the best algorithm to solve Lagrangian relaxation problems. Also, 
we use Branch-and-cut (-and-price) algorithms which belong to the most successful techniques for solving mixed 
integer linear programs and combinatorial optimization problems to optimality (or, at least, with certified quality).  

If a task is visited more than 3 times, the contribution of next visits is very small to the point that it can be ignored 
in the original model. The last mathematical model (RE-CVEST model) is the best model which can solve very 
large size problem and combinatorial problems (more than 500 tasks) in less than 5 minutes with a gap less than 
or equal to 5%. The Lagrangian relaxation also provides a very good upper-bound of this problem. From the 
simulation experiments, we verified the superiority of our robust last model compared with the heuristics which 
provides a solution with no idea of the solution quality and the upper-bound. Finally, we compared RE-CVEST 
with five heuristics. The solution of RE-CVEST ranked better by more than 15% and in some instances 30% 
(compared to the best of these 5 heuristics). 

In the first step of our MOSAIC approach, which consists of two steps Mixed Integer Linear Model, we added a 
batch of constraints which allow us to cover the largest area with no overlap areas (i.e. overlap between selected 
opportunities equals zero for every two sub-area in the solution). Finally, we tackled the problem in the second 
phase by filling all the remaining holes created by fixing some opportunities we find in the first step (solution) with 
the minimum overlap with these fixed opportunities. The experimental result shows that we can solve a very large 
area with a very tight gap fewer than 5% compared to the upper-bound (this upper-bound is given by the largest 
area we can cover by using all opportunities).  

3.14 Future Work 

Following from this work, the following steps are required to develop a fully functional and operational 
DISCOVER: 

 Explore new algorithms in order to solve very large size and harder instances (up to 10,000 opportunities 
and up to 1000 tasks with up to 10 multi-visits on many tasks); and 

 Providing start lp solution (from GATHER for example) of CPLEX in order to reduce runtime. 

Future work could account for virtual constellation of non-trailing heterogeneous satellites and other types of 
platforms (e.g. unmanned aerial vehicles), additional mission/operation constraints (e.g. mandatory task, task 
precedence) and multiple objectives in order to enrich the problem and make it more realistic. An alternate 
research direction aims at exploring dynamic re-tasking, building upon the anytime property naturally shown by 
genetic algorithms. Finally, we have to revisit the model in order to take account downlink scheduling constraints.  
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4 HEURISTICS MODELS/SOLVERS 
4.1 MY-PICC - Time-weighted variant 
4.1.1 Description 

MY-PICC  is a MYopic Planning-based Image aCquisition heuristiC. 

This simple heuristic is inspired from Verfaillie et al. [10]. It is a greedy heuristic to select collection opportunities 
(matches between imaging tasks and platforms/sensors that can perform it) from per-orbit opportunity graphs.  

In accordance with our data model, satellites are hereafter referred to as platforms.  

Here are heuristic key points and definitions to complement the pseudo-code in section 4.1.2. 

4.1.1.1 Time Frame 

 All times are relative to the time horizon, i.e. within [0.0, horizon[: 
o Until this heuristic is applied on real data, this is a fictitious time frame; and 
o With real data, time 0.0 could be “now” for instance, or any other user-specified reference. 

 This heuristic divides the time frame into orbits:  
o For now, all platforms are assumed to have the same revolution period. 

4.1.1.2 Opportunity Graph 

 Vertices are the set of opportunities for a specific platform that start within a given time frame (here an 
orbit duration); 

 Edges are directed and are the set possible transitions from an opportunity to another: 

o When building the graph between opportunities A and B, only the time constraint determine 
feasibility: 

 B start time >= A end time + AB transition duration + B set-up time. 

o When running the heuristic, other constraints (energy, memory, cost, etc.) can make an edge 
infeasible. Constraints are essentially found in the data model, see section 1.1.7 Constraints set. 
Calculation of constrained value may also depend on already selected opportunities, i.e. not 
computed only from a single opportunity or transition. 

 On the first orbit, the start point is a virtual opportunity at time 0.0, without any transition constraint to any 
other opportunity, i.e. an edge exists from that virtual start vertex to every opportunity of the graph; 

 On other orbits, the start point is the last selected opportunity for that platform (typically in the previous 
orbit, or before if none were selected in the previous orbit): 

o Note: it is possible for an opportunity A to start in an orbit and end in the next, and thus conflict 
time-wise with an early opportunity B in the next orbit. If opportunity A becomes the start vertex of 
the next orbit, it will not have edges to all other opportunities of the graph (i.e. not with B or other 
early opportunities). 
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4.1.1.3 Opportunity Selection Criterion 

This criterion computes the value of a candidate opportunity for potential selection into a collection plan. It 
requires knowing: 

 Current opportunity; 
 Candidate opportunity (potential successor of current); 
 Previously selected opportunities; and 
 Data set where opportunities are initially from (for data on corresponding tasks, area overlaps, etc.). 

Candidate opportunity value = added value / time delta 

Where: 

 time delta = candidate opportunity end time – current opportunity end time: 

o This includes platform idle time, transition duration, and candidate opportunity execution.  

 added value = candidate Opportunity differential objective value: 

o Opportunity differential objective value is defined in section 2.1.2 Formulas; and 

o Roughly, this is the opportunity contribution to the whole collection value, given that opportunity 
and previously selected opportunities. 

4.1.1.4 Output 

Heuristic output is a collection plan. In essence, this is a list of selected opportunities (see 1.2 Collection Plan 
(CP) Data Model (1st draft). 

4.1.2 Pseudo-code 

solutionPlan   
For each platform p do 
 currentp  nil 
end For 

For orbit in 1 ... (horizon / orbitDuration) do 
  

timeFrame  [ orbit * orbitDuration, (orbit+1) * orbitDuration ] 
 For each platform p do 
  Create opportunity graph Gp:   

vertices  currentp {opportunities from dataSet for p and start within timeFrame}  
   edges  {time-wise possible transitions} 
 end For 
 
 While (currentp has at least one successor for at least one platform p) do 
  candidates   
  For each platform p do 
   Remove from Gp all infeasible outgoing edges from currentp    
   candidates  candidates {successors of currentp in Gp} 
  end For 
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  If candidates   then 
   For each opportunity opp in candidates do 
    criterionopp  (re-)compute Opportunity selection criterion for opp  
   end For 
   Select opportunity opp from candidates that maximizes criterionopp 
   solutionPlan  solutionPlan  opp 
   currentp  opp, where p: platform of opp. 
  end If 
 end While 
end For 
 
For each task t do 
 taskOpporunities  {opportunities from solutionPlan for t} 
 If (total coverage for taskOpportunities) < requiredTaskCoveraget then 
  Remove each of taskOpporunities from solutionPlan 
 end If 
end For 
 
return solutionPlan 

4.1.3 Input Data 

This heuristic requires all data in the current implementation of the Collection Task Data Model (see section 1.1). 
As such the solver simply requires an interface to such data.  

Given the lack of both real data and service interface for now, simulated data is used as described in section 6.1 
Generated Random Input Data. Data is thus loaded from JSON or text files into an in-memory implementation of 
the data model, then fed to the solver. 

4.1.4 Java Implementation 

Implementation is split in three parts: 

 Solver-specific code: 

o DiscoverSolvers module; and 

o ca.gc.rddc.discover.solvers.mypicc package. 

 Opportunity graphs (common to different solvers): 

o DiscoverSolvers module; 

o ca.gc.rddc.discover.solvers.common package; 

o In its own class, OpportunityGraph; 

o Design notes: 

 To allow for the processing of very large graphs, the performance-oriented (speed and 
memory footprint) grph library was chosen to contain an underlying graph structure. See 
http://www.i3s.unice.fr/~hogie/software/index.php?name=grph. 
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 Calculations and data: 

o Common to different solvers and other modules; and 

o DiscoverCommons module. 

Solver-specific code has only two classes: 

 MyPiccHeuristic: the main solver class: 

o Other classes from the same package (MyPiccGraphVisitor. 
MyPiccGraphVisitConstriants and others), are actually inner workings of the heuristic that 
were broken down into those few classes to ease maintenance and unit testing. Those have 
package visibility and are not meant to be used outside the context of the heuristic without some 
refactoring. 

 MyPiccHeuristicListener: a listener interface: 

o The solver classes support having listeners that are kept informed of the inner heuristic workings 
as it runs (updated selection criterion value, selected opportunities, rejected edges, etc.). 

See source code (from the DiscoverSolvers and DiscoverCommons modules) and its documentation for 
more details. 

4.1.5 Test and Validation 

So far, the solver is part of a Java library and is not yet integrated within or to other services/applications. 
Therefore, there isn’t any integration test yet. The solver is thus tested and validated through the following: 

 Functional integrity/validation: automated unit tests (Junit framework); 

 Performance/usability: manual test run with an in-house test console application (see section 6.5 Solver 
Launcher Console); and 

 Manual validation: manual test runs with the in-house test console, augment some solver-specific output, 
and manual examination of that output. 

4.1.5.1 Unit Tests 

Running them requires a development environment.  

In some tests, using an actual data set is more relevant than using mocked components. Those tests mostly use 
the same small-scale generated data set (see section 6.4.2 Small-scale Non-random Data Generation) as well as 
variants of it (i.e. data is modified in the unit test code only where such variants are to be tested). This data set is 
packaged as a JSON file resource along with the source code (and therefore available in the DiscoverSolvers 
module). Also, on top of their respective test-specific validations, those tests use a generic “solution feasibility 
test” to assert the solution validity and consistency. 

4.1.5.2 Performance/usability 

There is no precise benchmark/performance target for this solver, but the overall performance seems subjectively 
quite acceptable so far, given results in 4.1.6 Results. 
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4.1.5.3 Manual Validation 

The manual validation was done through: 

 Analyzing the reported collection plan on the console; 

 Analyzing the “verbose” output of the solver: 

o Gathered via a solver listener implemented in the test console application. 

 Looking at some generated opportunity graphs: 

o Gathered via a solver listener implemented in the test console application; and 

o Opportunity graphs also have vertices and edges colored/labeled according to intermediate 
results within the solver, i.e. they depict some of the inner workings. For example, here is this 
small graph from one of the platform/orbit of the medium set (most are much larger), with 
highlights on selected opportunities and rejected edges: 

 

Figure 3:  Example of MY-PICC Applied on Opportunity Graphs 

 All the above was mostly done on medium-size set (the same as in the performance testing above) and 
the small-scale generated data set used for unit testing. 
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4.1.6 Results 

Solver is tested (test bench and input data) with generated data as described in section 6 Simulation Data and 
Test bench. Using those data sets, results are: 

Table 6:  MY-PICC (Time-Weighted) Solver Results 

Data Set 
Result Collection Plan  Solver Run Time 

(seconds) Absolute Value % of Upper 
Bound Total cost (k$) 

Small (Wang) 6.668 75.3 N/A 0.006 
Medium 48.14 71.3 463 0.162 
Medium-large 153.1 72.9 1449 1.69 
Large 541.7 77.3 4551 25.0 

 

Results with Wang data sets are reported in section 7 Solvers Comparative Results. 

How good does this solver perform in regard to a generated collection plan cannot be assessed from absolute 
results alone. Those probably depend on how much simulated data is fit or not for that particular solver and that 
does not tell exactly how it could behave with real-life data. It can be said, however, that collection value is 
significantly lower than GATHER and QUEST (on spot targets, large areas are not supported by QUEST) on any 
tested data set so far, although it runs significantly faster as well (and much more so). 

4.2 MY-PICC - Plain-value variant 
4.2.1 Description 

This is exactly like the Time-weighted variant of MY-PICC, except that the opportunity selection criterion (see 
section 4.1.1.3 Opportunity Selection Criterion) is simply: 

 candidate opportunity value = added value. 

Instead of: 

 candidate opportunity value = added value / time delta. 

This difference is implemented as an option flag in MyPiccHeuristic class. 

Everything else from the other heuristic (description, pseudo-code, input data, test and validation, etc.) still applies 
here. 

4.2.2 Results 

Solver is tested (test bench and input data) with generated data as described in section 6 Simulation Data and 
Test bench. Using those data sets, results are: 
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Table 7:  MY-PICC (Plain-Value) Solver Results 

Data Set 
Result Collection Plan  Solver Run Time 

(seconds) Absolute Value % of Upper 
Bound 

Total Cost (k$) 

Small (Wang) 6.178 69.8 N/A 0.003 
Medium 50.91 75.4 484 0.078 
Medium-large 171.6 81.6 1611 1.62 
Large 572.0 81.6 3816 22.3 

 

As with the other MY-PICC variant, results with Wang data sets are reported in section 7 Solvers Comparative 
Results. 

On generated data sets, results are slightly better in general than the Time-weighted variant of MY-PICC: 

 Better collection value; 
 Lower cost; and 
 Faster run time. 

On Wang data sets though, as presented in section 7 Solvers Comparative Results, collection value is 
significantly lower. 

 On generated data sets, this can be explained by higher resource contention, especially on larger sets: 
PV can reach most-valued opportunities per orbit in most orbits, while TDW is likely to reach global limits 
earlier (task budget for instance) and thus be stuck with less-valued opportunities accepted in early orbits; 

 On less constrained data set, such as Wang data sets, TDW fares better compared to PV. PV misses 
many opportunities and reaches the end of the time horizon while still far from constraints.  

Obviously, those remarks hold only for the tested data sets, and may not be generalized to real-life data.  
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5 METAHEURISTICS MODELS/SOLVERS 
5.1 GATHER 
5.1.1 Novelty  

GATHER  is a Genetic Algorithm-based collecTion schedulER. 

Based on PMX variants extensions:  

 Provides search guidance of the solution space using a satellite collection graph (satellite collection 
network flow) in new genetic operators to exploit natural opportunity (opp) precedence, which facilitates 
solution recombination and child production of timely collection opportunity sequences (time constraint 
violation reduction) in individual solutions: 

 The implicit high satellite collection (imaging opportunities) graph connectivity is exploited to 
efficiently repair temporal constraint violations. 

 Maintain a minimum proportion of feasible ( ) / unfeasible (1- ) sub-population solutions to better 
search/explore the solution space (escape local extrema); 

 Exploit a serviceability matrix to crossover dissimilar orbits (from same or different satellites) sharing 
common serviceable tasks –dissimilar orbits selection proportional to a shared common task proportion; 

 Mutator: change the collection opportunity sub-path using G (V = O , A ) graphs to easily replace a 
feasible sequence (oi oj, oj ok, ok ol, ….) and reconnect to the terminal collection opportunity path 
segments with minimal repair; 

 Fitness: includes objective (Obj) and constraint violations; and 

 Provides a better-quality solution than the best-known heuristic if the latter is used to generate initial 
population of feasible solutions (changing initial opportunity node to visit). 
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5.1.2 Definitions 

In accordance with our data model, satellites are hereafter referred to as platforms.  

5.1.2.1 Population 

 A population individual is a chromosome, and inversely, the population is a set of such chromosomes;  

 The population size is invariant over generations; 

 Initial population individuals are generated from a genetic pool in the Genome (see 5.1.2.3 Genome); and 

 On each generation, a minimal proportion of the population individuals is repaired using the 
ChromosomeSolutionRepair mutator (see 5.1.3.2 Chromosome Solution Repair).  

5.1.2.2 Individual 

In its whole, a chromosome is a multi-satellite collection schedule solution, that is, a set of ‘collection opportunity 
paths’ across platform orbits for all platforms that can be put together in a collection plan.  

Chromosome composition: 

 Each chromosome is made of a list of alleles (one on each locus, i.e. each position on a chromosome), 
each being tied to a gene; 
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 A gene describes a given locus on a chromosome: 

o In this solver, genes are tied to a single platform and a single orbit, collectively called .in this 
section. For example: the gene at locus 13 is associated with orbit 3 of platform 1, for which a few 
opportunities are available: 

time 

o Other -related invariant data are pre-computed in the gene, such as the platform-orbit collection 
opportunity graph G (V = O ,, A = legal chronological transitions), where O imposes a partial 
natural order on precedence (based on the opportunity start time) on its elements: 

 

o Genes are stored in the genome, and only referenced to by alleles and chromosomes. 

 An allele is the current value (genetic code) of a gene on a chromosome: 

o In this solver, alleles represent a chronologically feasible (and potentially empty) set of 
opportunities, i.e. an opportunity path  in the opportunity graph G  of the corresponding gene: 

jiaaAooOo ijijjii }1,0{.},{),(;  

),(}..1{][)1()(,....,,...., )()1()()2()1( AVVGfromttimelinettooooo tt

 

o For example, alleles on locus 13 could contain opportunities 45, 17 and 69 (from the global list of 
all opportunities), all of which (in that order) form a valid path in the opportunity graph of genes on 
locus 13. 

 Genes in genome and alleles in chromosomes are sorted by platform then by orbit, as illustrated below: 

),(:|....||....|| 21 AVVGinpathoppwhere
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Chronological feasibility: 

 On a given platform, an opportunity must start in time after the platform is ready for it (according to the 
previous opportunity end time, transition and set-up delays, etc.); 

 Applies locally (within each allele): 

o Imposed by allele definition. 

 Applies globally (between alleles): 

o Chronological criteria must hold between the last opportunity of an allele and the first of the next 
allele, only if those alleles are from consecutive orbits on the same platform; and 

o Imposed by a mandatory chronological repair in genetic operators. 

 In a population, chromosomes are always chronologically feasible. 

Solution feasibility: 

 Despite chromosomes being chronologically feasible in the population, a chromosome may nevertheless 
be infeasible as a collection plan solution 

o It may fail meet various data set constraints; and 
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o See 1.1.7 Constraints set, for global, platform and per-orbit constraints.  

 Chromosomes can be repaired for such feasibility, as described in 5.1.3.2 Chromosome Solution Repair. 

5.1.2.3 Genome 

The genome is the genetic pool. It contains all genes, each of them describing alleles in chromosomes. Also, for 
each gene, the genome contains a list of valid alleles. 

Allele validity is defined as: 

 Chronologically feasible; and 

 Solution-feasible on local scale (this allele only), but not once it joins others on a chromosome: 

o That is, if it were to be the only allele on a chromosome, the chromosome would be solution-
feasible, as defined in 5.1.2.2 Individual. 

The genome used in this algorithm is not complete: 

 It lists several valid alleles for each gene, but not all possible alleles (obvious combinatory issue); and 

 Typically used to generate an initial population with a decent genetic code, or by some mutators to 
replace an allele with a valid one later on when evolving the population. 

The list of valid alleles for each gene is created using the heuristic method (see 4.1 MY-PICC - Time-weighted 
variant) applied on a platform-orbit opportunity graph independently. This heuristic is deterministic and thus only 
generates a single possible path for a given graph. Therefore, various opportunity nodes in the graph are used as 
the visit starting point to generate various alleles.  

5.1.2.4 Fitness 

Given that a chromosome has a one-to-one mapping to a collection plan, part of it fitness value can be evaluated 
using the objective function (see 2 Objective Function): 

Fitness: 

= bonus (collection value) – malus (constraint violation penalty) 

= collection value –  * constraints violation proportion  

 Where the constraints violation proportion is the ratio of counted constraint violations over the 
possible total number of potential violations; and 

 Where  is set to the plan objective value upper bound to balance the relative weights of the 
bonus and malus. 
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Given a large enough M value, the above tanh is used to approximate an on/off constraint violation: 

otherwise
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Note: spot targets (
rsrso AA =1) multi-visits are implicitly discouraged by the objective function. 

5.1.2.5 Serviceability 

Given a task r and an orbit , the serviceability matrix is defined as: 

otherwise
orbitovereserviceablrtaskif

rsvc
0
1

),(  

A task is serviceable if at least one opportunity in an orbit covers that task. Also, for the sake of simplicity, we 
define orbit  as an orbit on a specific platform, i.e. orbits from different platforms occurring at the same time are 
attributed a different . In other words,  is akin to the locus in the genome and chromosome. 

5.1.3 Generations 

Key points: 

 Children pair generation: 

o Two parents produce two children, initially clones of both parents: 

 Parents are randomly picked according to a rank-based probability. See 5.1.3.1 Parent 
Selection. 

o Children undergo a sequence of zero to many genetic transformations through genetic operators: 

 Genetic operators to apply are chosen randomly; 

 Each available operator can be applied at most once, with some probability to be applied; 

 Operators application order is random; and 

 Operators are chained: an operator output (two children) is taken as the next operator 
output (two parents).  

o All operators are responsible to repair children for chronological feasibility (not solution feasibility) 
on output, as described in 5.1.2.2 Individual: 

 The chronological repair is performed both within alleles and between consecutive alleles 
on the same platform; 

 Problematic opportunities are removed from alleles until the whole chromosome is 
chronologically sound; and 
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 When an opportunity needs to be removed in a pair of conflicting opportunity, either one 
is chosen in a probabilistically random fashion. Each is attributed a probability 
proportional to its single opportunity value, and the randomly picked opportunity is kept 
(other is removed). That is, the least-valued opportunity is more likely to me removed. 

 Elitism is applied to keep a portion of the fittest individuals from the previous generation. The remaining of 
the population is completed with the fittest individuals from the new generation; 

 Algorithm stops when one of the following conditions is met (all of those are verified simultaneously): 

o The value of the fittest individual (best computed fitness value) did not improve significantly (as 
defined below) over the last n generations: 

 A simple linear regression is performed over the fittest individual fitness value from each 
of the last n generations. Only generations where the best fitness value is positive are 
used (normally always the case, except for theoretical corner cases); 

 Generations are mapped to the x-axis: [n-1 generations earlier, latest generation] is 
mapped to [0, 1]; 

 Fitness values are mapped to the y-axis: [0, max fitness] is mapped to [0, 1]; and 

 Stop condition is met when the regression slope is smaller than a specified threshold. 

 Both the slope threshold and the number of generations are specified as solver 
parameters.  

o Failure to generate individuals with positive fitness value over the first n generations (theoretical 
corner case, very unlikely in reality); or 

o Hard-limit on generation count. 

5.1.3.1 Parent Selection  

A rank-based fitness scaling scheme inspired by Potvin & Bengio (The Vehicle Routing Problem with Time 
Windows Part II: Genetic Search) is used (fitness-based parent selection strategy, etc.). In the current 
implementation, the last paragraph in the above approach is not applied. 
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5.1.3.2 Chromosome Solution Repair 

For a chromosome to represent a feasible solution, it must observe both implicit physical time constraints 
(chronological feasibility) and explicit constraints from the data set. While chronological feasibility is mandatory 
and enforced as generated children go through genetic operators, solution feasibility is mandatory only for the 
final single returned solution. From a generation to another, the population contains both solution-feasible and 
solution-infeasible chromosomes to have both viable solutions and a diverse genetic pool. 

Solution feasibility is defined by satisfying various constraints, essentially listed in the data model (see section 
2.1.7 Constraints set). Within a chromosome, constraint violations occur either when: 

 Exceeding capacities: 

o Orbital platform capacity: energy, memory, thermal; 

o Task capacities: cost; and 

o Overall capacity: total budget. 
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 Not meeting minimum requirements: 

o Minimal task coverage; and 

o Other requirements, not yet implemented in this algorithm: 

 Mandatory task visits; 

 Precedence task constraints; and 

 Stereo/concurrent observation/cross-cueing/change-anomaly detection. 

While exceeded capacities can be fixed by removing some opportunities from alleles, unmet requirements would 
be met by adding opportunities. Choosing which one to add/remove is not trivial. Furthermore, opportunities may 
need to be removed to fix an artificial paradox: for a given task, as the number of opportunities covering that task 
increases, the task objective value (and area coverage) may numerically decrease. This paradox makes minimum 
requirement evaluation unreliable and hinders the ability to select proper opportunities to remove to fix exceeded 
capacities.  

Therefore, the solution repair process has to be divided into a few steps: 

 Address the coverage and objective value calculation paradox; 
 Fix exceeded orbital/task constraints; 
 Fix unmet minimum requirements; and 
 Fix exceeded global constraints. 

Coverage and Objective Value Calculation Paradox 

In reality, adding an opportunity may either increase the total coverage or at worst not bring anything new (if the 
area covered by that opportunity is already fully covered by others). The same goes for task and collection value. 
However, the current coverage calculations, derived from the objective function considers only opportunity 
individual coverage and pairwise overlaps, but not three-way or more overlaps. See section 2.1.2 Formulas for 
task value and relative area coverage. As such, an opportunity for which the sum of pairwise overlaps with other 
planned opportunities is greater than its own coverage will decrease the overall coverage. The same occurs to 
task objective value given reasonable p and q values.  

To fix this paradox, some opportunities need to be removed until remaining opportunities have an overall positive 
contribution to the task value and coverage. There is no way to know which opportunity effectively brings a 
positive or negative contribution since this contribution depends on other opportunities currently selected 
(opportunity value and overlap values). Therefore, all opportunities currently selected in a chromosome have their 
respective Opportunity differential objective value computed (see section 2.1.2 Formulas as well). This provides at 
least a hint on opportunities that are more likely than others to bring a positive/negative contribution.  

The opportunity with the worst contribution is removed, then contributions of remaining opportunities are 
recomputed, and the process repeats. It stops when removing the worst opportunity would not increase task 
objective value anymore. It can also stop earlier, if current task objective value (using remaining opportunities) is 
greater or equal to the best single opportunity value. In other words, although task value could perhaps be 
improved further by removing opportunities, reaching the best single opportunity value is considered fair enough, 
and helps preserve some genetic diversity. 
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Note that such paradox may not exist anymore in a future version of this software, if: 

 Opportunity coverage is expressed in actual area geographic coordinates instead of in a simple area 
coverage relative to a task area of interest; and 

 Collection value is computed accordingly. 

As a side effect, fixing this paradox also effectively reduces constraints violations and reduces the need to delete 
opportunities in the next steps below. 

Fix exceeded orbital and task constraints 

Orbital capacity issues are resolved by removing opportunities locally in each allele (i.e. independently on each 
platform/orbit pair). Opportunities to remove are selected randomly but with a relative probability equal to: 

1 - single opportunity value × task nominal value 

In other words, opportunities that probably contribute less individually (actual overall contribution also depends on 
opportunity overlaps, which is not computed here) are more likely to be removed. Process is repeated until all 
orbital constraints are met. Removing them randomly-yet-probabilistically instead of deterministically preserves 
genetic diversity while aiming at maximizing collection value.  

Task constraints (only maximum budget for now) are dealt with after orbital constraints, since meeting them 
involves removing opportunities across the whole chromosome, on a per-task basis. Obviously, it may happen 
that orbital repairs already fixed task constraints as a side effect. Opportunities to remove are selected in a similar 
fashion that with orbital constraints, but across the whole chromosome instead of within a specific allele. 

Fix Unmet Minimum Requirements 

Obviously, fixing such requirements by adding tasks would compete with previous repairs. Therefore, unmet task 
requirements are rather fixed by removing all opportunities related to offending tasks, effectively rejecting entire 
tasks from the solution. The improvement of the overall collection value thus relies on the whole genetic algorithm 
to bring back in some chromosomes, in a later generation, enough opportunities to meet minimum requirements, 
if even possible. 

Fix Exceeded Global Constraints 

At this point, only the overall budget constraints remain to be satisfied. Again, to avoid breaking previous repairs, 
the simplest thing to do is to remove complete tasks, starting with the least valued/most expensive tasks. That is, 
tasks, along with their currently selected opportunities, are sorted according to:  

task objective value / task cost 

Tasks with the lowest ratio are removed until budget constraints are met. A more advanced heuristic could cherry 
pick opportunities across tasks that can be removed without breaking again any previous repair, but this isn’t 
implemented yet. 

5.1.4 Genetic operators 
5.1.4.1 Recombination – Same Orbit XSO 

Same orbit collection opportunity path recombination between two parents. 
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Main operations: 

 Select random orbit in both P in P’ parents, with their opportunity paths  and ’  in their respective 
corresponding allele; 

 Select crossover opportunity point o  (P) from P; and 

 Find the earliest o’ (P’: ’ ) > o (P: ) and swap sub-paths to generate a child orbit X  respecting 
opportunity transition constraints (start time precedence) – legal repair using valid transition from A if 
required. 

SO( P( 1, 2 ...  ... | |)  X  P’( ’1, ’2 ... ’  ... ’| |) )  Pc ( 1, 2 ... 
X

  ... | |) ,  Pc’( ’1, ’2 ... ’X  ... ’|P|)   

 

5.1.4.2 Recombination - Orbit Swap XOS  

This operator exchanges ‘full orbit collection opportunity path’ solution between corresponding similar platforms 
from 2 parent solutions P and P’, i.e. it exchanges corresponding alleles between two chromosomes:      ’  

OS( P( 1, 2,… …, | |)  X  P’( ’1, ’2,… ’ …, ’| |) )  Pc ( 1, 2,… ’ …, | |) ,  Pc’( ’1, ’2,… …, ’| |) 

5.1.4.3 Mutation – Cross-Orbit XCO  

This mutator aims to reduce the same task coverage across different orbits. It is applied independently on each 
parent to produce offspring, i.e. it does not mix genetic content between them.  

Main operations: 

 Select two dissimilar orbits ’ sharing common tasks among their potential opportunities (from all 
possible opportunities in the genome, not only those from current alleles in parents): 

o Select pair at random but give higher priority to pairs of orbits sharing more serviceable tasks, i.e. 
proportional to |O ’| where: 

 O ’: set of shared serviceable task r such that svc(r, ) * svc(r, ’) = 1. 
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o Probability of selecting ’ from all possible pairs is proportional to 'O . 

 Remove potentially shared task opportunities from either orbit with the hope that they might pop back in 
the other in the last step: 

o In , remove opportunities for shared tasks that are not found in ’, and inversely for ’ and .; 
and 

o For opportunities of shared tasks found in both orbits, remove either one probabilistically, based 
on single opportunity value. 

 Add as many opportunities as possible in both  and ’ independently as follows: 

o Consider all opportunities not already in  and that were not previously removed; 

o Sort them by ‘value’ (most valued first); and 

o Try to add them one by one, but reject those that can’t fit the current graph when added. 

5.1.4.4 Mutation – Sub-Path 

This operator is applied independently on each parent to produce offspring, i.e. it does not mix genetic content 
between them. In a random allele, it removes a part of it (a collection opportunity sub-path ) and bridges 
remaining segments with time-wise possible opportunities from the opportunity graph. 

P ( 1, 2 …  … | |)  (P)  P ( 1, 2 …  … | |)     

)()1()()2()1( ,....,,...., ooooo tt

)()()1()()1()2()1( ....,',....,',,...., ooooooo ktkttt  

:      

: ’ADE’      :  ‘ABCE’ 
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The sequence to remove is determined from a contention-based random start point and a fully random length: 

 Each opportunity in the allele refers to a task (target) r, typically a different task for each opportunity; 

 Each opportunity is given a relative probability to be chosen, proportional to contention over r (Cr): 

o 
otherwise

overeserviceablrif
rsvcrsvcC

C
Cp r

r
r

r
r 0

1
),(),(  

 The higher that relative probability, the higher the odds of selecting that opportunity as the sequence start 
point; and 

 Sequence length is uniformly random over the length of the allele segment that follows that start point. 

Replacement opportunities are selected randomly from time-wise possible opportunities for that orbit, favouring 
opportunities with a low task serviceability over the complete time horizon: 

 The two remaining allele segments (before and after the removed sequence), each of which is potentially 
empty, define the time bounds for replacement opportunities: 

o Orbit time bounds are used for empty segments.  

 From the opportunity graph vertices, each opportunity within time bounds is a replacement candidate, 
regardless of existing edges between vertices; 

 Candidate opportunities are added individually, each with probability rp1 , reusing rp  computed above; 
and 

 A chronological repair (see 5.1.3 Generations) is applied on the allele to remove, if needed, opportunities 
that violate time constraints. 

5.1.4.5 Mutation – Full Path 

This operator is applied independently on each parent to produce offspring, i.e. it does not mix genetic content 
between them. It selects a random gene then replaces its whole allele with a randomly selected feasible allele 
from the gene allele pool (same pool that is used to generate the initial population, see 5.1.2.3 Genome). 

5.1.5 Pseudo-code 
5.1.5.1 Initial population 

Once the genome is created (as described in section 5.1.2.3), the initial population can be created: 

population  
For 1 ... populationCount do 

chromosome  
For locus in 0 ... geneCount-1 do 
allelePool  {possible alleles for gene # locus from genome} 
chromosome  chromosome  random allele from allelePool 

end For 
compute fitness for chromosome  
population  population  chromosome  



Joint I2 S&T Capability UNCLASSIFIED 
  

Date:  26 January 2018 
Open-Loop Collection Tasking  
DCN:  2066C.022-REP-01-OLCT Rev. 02 Page 76 

 

 
 
Proprietary Information. 
Use or disclosure of this data is subject to the Restriction of the 
title page of this document. 
 

UNCLASSIFIED 
   

 

end For 
Sort population on decreasing chromosome fitness 

5.1.5.2 Genetic evolution loop 

Once the initial population is created, the main loop of the genetic algorithm kicks in to generate the solution 
collection plan: 

While stop condition is not met, do 
children  
For 1 ... populationCount/2 do 

parent1, parent2  two ranked-based probabilistic random elements from population 
 
operatorsToApply  {probabilistic random selection from allAvailableOperators} 
Shuffle operatorsToApply 

 
child1  replicate parent1 
child2  replicate parent2 
For each operator in operatorsToApply do 

Apply operator to (child1, child2) 
end For 
 

 compute fitness for child1 
 compute fitness for child2 
 

children  children  {child1, child2} 
end For 
 
Sort children on decreasing chromosome fitness 
eliteCount  elitismRatio * populationCount 
newPopulation  {eliteCount first elements of population}  

 {(populationCount – eliteCount) first elements of children} 
 
toRepair  repairRatio * populationCount 
For each chromosome in {toRepair random elements from newPopulation} do 

Repair chromosome for partial solution feasibility 
compute fitness for chromosome  

end For 
 
Sort newPopulation on decreasing chromosome fitness 
population  newPopulation 

end While 
 
For each chromosome in population do 

Repair chromosome for full solution feasibility 
end For 
Sort population on decreasing chromosome fitness 
bestChromosome  first element of population 
solutionPlan  {all opportunities from bestChromosome} 
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5.1.6 Input data 

This heuristic requires all data in the current implementation of the Collection Task Data Model. See section 1.1. 
As such the solver simply requires an interface to such data.  

Given the lack of both real data and service interface for now, simulated data is used as described in section 6.1 
Generated Random Input Data. Data is thus loaded from a JSON file into an in-memory implementation of the 
data model, then fed to the solver. 

5.1.7 Java Implementation 

Implementation is split in three parts: 

 Solver-specific code: 

o DiscoverSolvers module; 

o ca.gc.rddc.discover.solvers.gather package; and 

o ca.gc.rddc.discover.solvers.gather.geneticoperators package. 

 Opportunity graphs: 

o Common to different solvers; 

o DiscoverSolvers module; 

o ca.gc.rddc.discover.solvers.common package; 

o In its own class, OpportunityGraph; and 

o Design notes: 

 To allow for the processing of very large graphs, the performance-oriented (speed and 
memory footprint) grph library was chosen to contain an underlying graph structure. See 
http://www.i3s.unice.fr/~hogie/software/index.php?name=grph. 

 Calculations and data model: 

o Common to different solvers and other modules; and 

o DiscoverCommons module. 

Solver-specific code if further split into several classes: 

 ca.gc.rddc.discover.solvers.gather package: 

o GatherGeneticAlgorith: the main algorithm class; 

o GatherGeneticAlgorith: a listener interface: 

 The main solver class supports having listeners that are informed of the inner workings 
as it runs (chosen parents, created children, etc.); and 



Joint I2 S&T Capability UNCLASSIFIED 
  

Date:  26 January 2018 
Open-Loop Collection Tasking  
DCN:  2066C.022-REP-01-OLCT Rev. 02 Page 78 

 

 
 
Proprietary Information. 
Use or disclosure of this data is subject to the Restriction of the 
title page of this document. 
 

UNCLASSIFIED 
   

 

 This was only barely exploited so far in the development. Might be removed in a future 
version if not really used. 

o Various functional components of the algorithm extracted as separated classes 
(ChromosomeSolutionRepair, SingleOpportunityEvaluator, etc.); and 

o Genetic data classes (Chromosome, Gene, etc.). 

 ca.gc.rddc.discover.solvers.gather.geneticoperators package: 

o One class per operator, such as MutatorSubPath; and 

o Other helper classes used by operators only. 

While most concepts explained in this document translates to closely equivalent code (such as 
List<Opportunity> to represent opportunity graph sub-paths in alleles), some mathematical concepts are not 
as much straightforwardly translated. For example, the serviceability matrix is implemented as a list of serviceable 
tasks in each Gene instance, for both convenience and performance reasons. 

See the source code (from the DiscoverSolvers and DiscoverCommons modules) and its documentation for 
more details. 

5.1.8 Test and Validation 

So far, the solver is part of a Java library and is not yet integrated within or to other services/applications. 
Therefore, there isn’t any integration test yet. The solver is thus tested and validated through the following: 

 Functional integrity/validation: automated unit tests (Junit framework); and 

 Performance/usability: manual test run with an in-house test console application (see section 6.5 Solver 
Launcher Console). 

5.1.8.1 Unit tests 

Running them requires a development environment.  

In some tests, using an actual data set is more relevant than using mocked components. Those tests mostly use 
the same small-scale generated data set (see section 6.4.2 Small-scale Non-random Data Generation) as well as 
variants of it (i.e. data is modified in unit test code only where such variants are to be tested). This data set is 
packaged as a JSON file resource along with the source code (and is therefore available in the 
DiscoverSolvers module). Also, on top of their respective test-specific validations, those tests use a generic 
“solution feasibility test” to assert solution validity and consistency. 

5.1.8.2 Performance/Usability 

There is no benchmark/performance target for this solver. Overall performance seems acceptable in most cases 
(less than one minute), but might not be very usable with large data sets (several minutes) in an interactive 
scenario. It is worth nothing that execution times may largely vary according to algorithm parameters, but 
improving the run time that way also adversely affects resulting collection plan value. See results and discussion 
in 5.1.9 Results. 
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5.1.9 Results 
5.1.9.1 Algorithm parameters 

Several parameters in this solver may largely affect results. Those were reasonably tuned for various test data, 
but no fine tuning was performed for real-life data. Indeed, currently used data sets are generated and may not be 
representative of real-life data. Nevertheless, a “slightly better but much slower” configuration variant for GATHER 
was used with Wang data sets (in section 7 Solvers Comparative Results), and parameters were fine-tuned for 
that case.  

By default, values are set to commonly used values in genetic algorithms, with minimal tweaks in cases that 
needed it most. Default parameters values are: 

 Population size: 

o 30. 

 Parent-picking ranking values (highest to lowest ranking value ratio): 

o 4.0; and 

o This generates ranking values from 0.4 to 1.6, as described in 5.1.3.1 Parent Selection. 

 Individual probability for each genetic operator: 

o Recombination – Same Orbit: 0.50; 

o Recombination – Orbit Swap: 0.50; 

o Mutation – Cross-Orbit: 0.50;  

o Mutation – Sub-Path: 0.25; and 

o Mutation – Full Path: 0.25. 

 Minimum solution repair ratio: 

o 0.50; and 

o The aim was to use a fairly low value, such as 0.25 to preserve genetic diversity. However, at first 
glance, results are somewhat poorer on the largest data set with low values (this was not 
investigated at this stage). On the contrary, a higher value does not seem to affect (neither for 
better nor worse) results on other data sets. Overall, this repair has a very high incidence on the 
result, as discussed in 5.1.9.4 Chromosome repair influence. 

 Elitism ratio: 

o 0.07, i.e. 2 individuals in the current population. 
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 Stop conditions: 

o Maximum number of generations to allow near-identical fitness for the fittest individual: 

 50; and 

 Lower value reduces run time, but also hinders improvements over heuristic solvers that 
this algorithm tries to leverage.  

o Fitness difference threshold for above ‘near-identical’ fitness: 

 0.1%; and 

 Higher threshold reduces run time, but reduces result values as with the previous 
parameter. 

o Hard limit on generation count: 

 Unlimited. 

5.1.9.2 Slower variant for Wang data 

GATHER was used with an alternate configuration on the complete Wang data to see how close this non-
deterministic algorithm could get to QUEST, albeit with longer running times (see section 7 Solvers Comparative 
Results). 

Default parameters were reused, except for: 

 Population size: 

o 150: this maintains a fuller genetic pool without having to rely solely on some mutators to bring 
back by chance some less-valued genetic material (opportunities). Although some opportunities 
can have a lower value when compared to other in specific cases (such as opportunity conflicts 
regarding time or other constraints), they might bring better value overall when selected with and 
without some others; 

 Minimum solution repair ratio: 

o 0.65: for some reason, this value yields better output collection value; 

 Stop conditions: 

o Maximum number of generations to allow near-identical fitness for the fittest individual: 

 500: wait longer to make sure population is really not improving much;  

o Fitness difference threshold for above ‘near-identical’ fitness: 

 0.01%: 10 times stricter than default value. 
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5.1.9.3 Execution results on generated data 

Given the random nature of this algorithm, the solver is run 5 times on each data set, and results are averaged in 
Table 8 below. Nonetheless, minimum and maximum returned collection plan values are reported to show that 
variance is quite low on that regard, except for the largest data set. Also, GATHER givers better results than MY-
PICC, except again for the largest data set. Causes for such discrepancies were not investigated at this stage. 

Results on Wang data sets are found in section 7 Solvers Comparative Results, along with results from other 
solvers. 

Table 8:  GATHER Solver Results 

Data Set 

Result Collection Plan 
Average 

Solver Run 
Time 

(seconds) 

Absolute Value Average % 
of Upper 
Bound 

Average 
Total Cost 

(k$) Min Max Average 

Small (Wang) 7.245 7.245 7.245 81.8 N/A 0.204 
Medium 59.47 59.98 59.69 88.4 509 3.41 
Medium-large 192.9 198.3 195.5 93.1 1539 27.5 
Large 533.2 566.2 549.8 78.5 3404 205 

 

5.1.9.4 Chromosome repair influence 

Given the high task opportunities contention over limited resources (satellites and their constraints), especially in 
the largest set, the chromosome solution repair mutator seems to have a significant influence on the result.  

Indeed, once repaired, chromosome fitness increases significantly, making repaired chromosomes more and 
more likely to be chosen as parents for the next generation. Within a few generations only, those repairs 
propagate through the population more than anything else. Most of its influence is thus from how it is 
implemented (for example, fixing the “more is less paradox”, or opportunity selection criteria for removal).  

Given this repair is so strong, it could potentially defeat other benefits of using genetic algorithms. Further 
investigation is warranted to evaluate how much imbalance it actually brings and what could be done against it if 
needed. 
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6 SIMULATION DATA AND TEST BENCH 

Given the lack of real data (except for some foreign data that follow a simpler data model [1]), most solvers are 
developed and tested with generated data. Data is either: 

 Generated through an in-house console application (described in section 6.4 Data generator application): 

o Used by MY-PICC and GATHER; 

o Once generated, the same sets are reused for testing; and 

o See section 6.1 Generated Random Input Data. 

 From the author of [1], hereafter called Wang data:  

o Used by MY-PICC, GATHER and QUEST; and 

o See section 6.2 Wang data sets. 

Also, since solvers are not yet integrated into a back-end service, they are only provided within a Java library. As 
such, solvers are launched manually via an in-house test console application (see section 6.5 Solver Launcher 
Console).  

6.1 Generated Random Input Data 

Three sets were generated with the following common features (detailed in section 6.4.3 Large-scale random data 
generation): 

 Three platforms (satellites), each with the same number of orbits and the same revolution period; 

 Orbital constraints (memory, energy, thermal) and global constraints (task budget, global budget) are 
restrictive enough so that they are easily exceeded; 

 A mix of spot and large area targets, with many opportunities spread across many orbits; 

 Individual opportunities can cover anything from almost nothing to the whole task area (a lot of overlaps). 
Their probability field is random but their quality field is fixed to 1; and 

 Varying number of tasks between sets, with the number of orbits and total budget adjusted accordingly. 

All three data sets are stored as JSON files. On top of that, a small Wang data file (not part of Wang data sets in 
the next section, although from the same source) was added for the sake of comparison. It differs slightly from the 
above data sets: 

 Only spot targets tasks: each opportunity covers 100% of the task it is associated to; 

 No budget restriction (task and global); and 

 No thermal constraint. 
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The following table summarizes data sets: 

Table 9:  Generated Test Input Dataset 

Name 
Number of 
orbits (for 

each platform) 
Number of 

tasks 
Total number 

of 
opportunities 

Total 
budget (k$) 

Estimated 
Upper 
Bound 

Data set file 
size (MB) 

Small (Wang) 7 30 36 N/A 8.852 0.13 
Medium 43 100 2080 750 67.52 8.35 

Medium-large 100 300 16187 2300 210.1 180 
Large 140 1000 72938 7500 700.6 2013 

 
The upper bound is estimated according to formulas in section 2.1.2 Formulas. 

Those data sets are available in Annex A of this document: 

 2066C.022-REP-01-OLCT Rev. 02 - Annex A - Generated test data.7z 

6.2 Wang data sets 

Those test data sets come from the author of [1]. They share those common features: 

 Three platforms with their own parameters (energy and slewing rates for instance); 

 120, 160 or 200 tasks with a few opportunities each, over 7 or 14 orbits per platform (21 or 42 total 
distinct orbits): 

o All combinations of the above, with 10 data set instances per combination. 

 Only spot targets tasks: each opportunity covers 100% of the task it is associated to; 

 Opportunities have varying probabilities but fixed quality (1.0);  

 No budget restriction (task and global); and 

 No thermal constraint. 

For the purpose of comparing solvers, energy and memory constraints from Wang data sets are multiplied by 7.0 
at run-time.  

Those data sets are available in Annex B of this document: 

 2066C.022-REP-01-OLCT Rev. 02 - Annex B - Wang test data.7z 

6.3 Test bench 

Solvers are launched manually via an in-house test console application (see section 6.5 Solver Launcher 
Console).  
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Functional correctness aside, solvers are expected to perform in a reasonable amount of time. What is 
reasonable or not is not specified in current uses cases and requirements. Also, running times depend on input 
data, and actual simulated data may not be a representative sample of future real-life data. Nevertheless, solvers 
are benchmarked to provide ballpark figures on their performance-wise usability. For the comparison, they run on 
a virtual machine featuring workstation performances: 

 8 virtual CPUs at 2.30GHz (from an Intel Xeon E5-2620 v3); 
 64 GB RAM; and 
 Typical SSD on the hypervisor. 

Also, JVM parameters are left at their default, except for: 

 -Xmx48G: allow up to 48 GB for the memory heap for most demanding cases (never actually occurred). 

Loading times for generated data set files (see section 6.4) are not included in each solver performance 
benchmark. For the record, they are roughly linear with file size:  

(1) Wang data, Small and Medium data set: less than 1 second; 

(2) Medium-large data set: 3 seconds; and 

(3) Large data set: 25 seconds. 

6.4 Data generator application 

This application is not a deliverable and is only documented here for the purpose of future characterization of this 
data, compared to real-world data.  

6.4.1 Application overview 

This application can generate data to cover a few scenarios: 

 Small (human-computable scale) and non-random data to test solvers functionalities (namely unit 
testing): 

o Generates an in-memory DataSet (see section 1.1.3 Data set) and serializes it into a JSON file 
that can be loaded by the solver launcher console (see section 6.5 Solver Launcher Console); 
and 

o See section 6.4.2 below. 

 Somewhat random data with large numbers of tasks and opportunities to test solver performance and 
feasibility: 

o Generates an in-memory DataSet and serializes it into a JSON file that can be loaded by the 
solver launcher console (see section 6.5 Solver Launcher Console); and 

o See section 6.4.3 below. 
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 Wang-format random data: a small to large-scale data set, which follows the model described in [1]. 
Typically used to compare the Quest solver (see section 3 CPLEX-based Models/Solver) results with 
original results from [1]: 

o Generates a file in Wang format. 

Source code is found in DiscoverSolver module, under 
ca.gc.rddc.discover.solvers.utils.dataSet package. However, given its in-house test/development 
tool status: 

 Development time/effort was limited to: 

o No unit test; 

o In-code documentation limited to on-the-spot explanations and comments; and 

o Design/overview documentation limited to this section of this document. 

 Low user configurability: 

o Wang-format data generator takes parameters from the command line; and 

o Other generators take parameters from static values in dedicated Java classes. Data is easily 
modifiable, yet it can only be changed in a development environment where the application can 
be rebuilt. 

6.4.2 Small-scale Non-random Data Generation 

This small-scale data set contains three similar tasks, each with four opportunities scattered on two orbits and two 
platforms. Unit tests typically take it as is or modify it slightly on the fly to test specific features. 

Here are then main parameters and how they were chosen. See the source code for more details and remaining 
parameters: 

Time frame: 

 Two 100-minute orbits. 

Satellites (platforms and sensors): 

 Two platforms, with one sensor each; and 
 Set-up time: 0.0 on the first, 35.0 on the second (set with duplicated opportunity time offset, see below). 

Tasks: 

 Same task duplicated two more times (three tasks on total), with respective priorities 0.5, 1.0 and 0.8.; 
 Simple AOI to cover with one or more opportunities; 
 Budget: $5,000 per task; 
 Overall budget: $13,000; and 
 Minimum relative coverage constraint: 0.65. 
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Opportunities: 

 For each task, four opportunities covering partially the AOI: 

o Named a, b, c and d thereafter: 

 Orbit Platform Start time End 
time 

Relative 
coverage Cost 

a 0 1 1000 1030 0.22 1800 
b 0 0 2000 2060 0.42 1400 
c 1 1 10000 10020 0.24 1000 
d 1 0 11000 11010 0.70 2500 

 From a task to the other generated opportunities are duplicated and then offset by 50.0 seconds: 

o A simulated transition time of 30.0 seconds is in effect only from opportunities of task 0 to 
opportunities of task 1. Other transitions have their transition time equal to 0.0: 

 Rationale: this makes some but not all transitions infeasible (only those where transition 
+ set-up time > 50.0). 

o Start and end times were chosen so that the four opportunity graphs (see below) are different, 
even when merely duplicating and offsetting opportunities from a task to the other. 

 Overlaps: 

o Opportunity coverages were “drawn” on a 50-unit grid, representing the AOI; 

o Simply counted relevant coverage/overlaps units, each worth 0.02 of relative AOI coverage: 

.b.d .b.d .b.d .b.d .b.d .b.. .b..  

.b.d .b.d .b.d .b.d .b.d .b.. .b..  

.b.d .b.d .b.d .b.d .b.d ab.. ab..  

...d ...d ...d ...d ...d a... a...  

..cd ..cd ..cd ..cd ...d a... a...  

..cd ..cd ..cd ..cd ...d a... a...  

..cd ..cd ..cd ..cd ...d a... a... a... 
 
For a minimal solver testing challenge, the above contains:  

 Opportunity d fully overlaps opportunity c; 

 No opportunity covers everything by itself: 

o Only a few opportunities combinations can meet the minimum task relative coverage requirement. 
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 Costs/budgets were set so that only two or three opportunities per task could be selected: 

o The best selection given cost constraint (opportunities a and d), is not the earliest opportunity; 
and 

o The best selection can’t be done on all tasks given the overall budget. 

This results in the following opportunity graphs: 

 Note: actual generated opportunities all have unique IDs. They are named here a, b, c and d for each 
task for explanation purposes only. 

Table 10:  Examples of Opportunity Graphs 

 Platform 0 Platform 1 

Orbit 
0 

 
Opportunity ‘b’ on each task 

 

 
Opportunity ‘a’ on each task 

 

Orbit 
1 

 
Opportunity ‘d’ on each task 

 

 
Opportunity ‘c’ on each task 

 
 

 

6.4.3 Large-scale random data generation 

Random data is generated with some constant parameters and several others controlling the amount of 
randomness. If follows a few key points: 

 Starts with a few constants: 

o Time horizon and orbit period (for now, the same for all platforms); 
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o Number of tasks; and 

o Platform-related: how much of them, their sensors, and nominal values (boundaries or averages) 
for some features. Those values are to be refined by random later (in per-orbit platform capacities 
for instance). 

 Platforms and sensors are generated first; 

 Tasks are then generated: 

o For now, tasks are “simple” tasks. They do not require to be composed from more than one 
subtask to be worth something (such as stereo imaging that has no value if only “side” of the task 
could be performed); and  

o About half (in current tests) of tasks are spot targets (every opportunity covers 100% of the task 
AOI), while the rest have large polygon AOI. 

 On each orbit across the time horizon, platform capacities are computed with some randomness from 
their nominal feature values; 

 On each orbit across the time horizon, and for each task, an opportunity can be added or not following 
some probability: 

o Some tasks have higher probability than others; 

o Start/end times are random but are quantized (rounded off) to increase likelihood of a time-based 
collision in solvers. Some jitter is then added to also allow for some “very close yet possible to do 
both” opportunities; and 

o Platform/sensors are assigned at random, although some opportunities are sometimes duplicated 
on the same platform to simulate the fact that CSIAPS or other system could return several 
opportunities for the same platform/task match. For instance, the imaging of the same target at a 
given time could be done with various sensor modes on the same platform. 

 Opportunity coverage is random, but is also translated into a simulated coverage in a sort of bitmap 
(actually a plain boolean array): 

o For example, a 50% coverage would turn on half of the bitmap units; 

o All relative coverages use the same bitmap resolution (e.g. 100 units); and 

o Pair-wise opportunity coverage area overlap is then directly counted from a logical AND over two 
bitmaps (counting only corresponding units that are “on” on both bitmaps). This effectively 
simulates real area intersections. 

 The rest of data is generated with controlled randomness. 

6.4.4 Wang-format data generator 

Here are the few steps used to generate data: 

1. Determine |R| set of tasks; Vr0 = Ranr  

2. Determine number of effective orbits eff |R|/ eff = <#task/orbit> 
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3. Determine number of opportunities per tasks: k|SAT|  (k|SAT| eff ) 

 k   k(target task latitude | spatial distribution) = 1
2

1max latitude
k  

4. {O construction: opportunity distribution per orbit eff  

For r R 
j=0 
For i = 1.. k|SAT|   

p (oi(r)  eff / { o1 , o2,…, oi-1} eff – j) –populate 
j=j+1 

end for i 
end for r 
k|SAT| / eff =  # opp task r/orbit 
|R| (k|SAT|) / eff =  # opp/orbit = | O | dT  

5. Contention ‘c’/complexity/connectivity proportional to 1 large, eff small: 

maxminmax

minminminminmax

max

min20~

max
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maxmaxmaxmaxmax

maxmaxmin
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6.5 Solver Launcher Console 

This is not a deliverable and is only minimally documented here.  

6.5.1 Overview 

The console is a small command-line Java application. Its sole purpose is to call one of the implemented solvers 
with a given data set and some options. It is a temporary solution, expected to be replaced with an API/service 
interacting with CSIAPS.  

In its current state: 

 Application is launched from a development environment: 

o It is not deployable; 

o Runs the class ca.gc.rddc.discover.solvers.utils.console.App as a Java 
application; and 

o Runs it without arguments to get help on valid command-line parameters.  

 Application reads data set from either one of: 

o Native JSON serialized data set (namely, from generated data set, see section 6.4 Data 
generator application); 

o Foreign text data samples (conforming to model in [1]) converted on-the-fly; or 

o Wang-style data generated on the fly. 

 One of the available solvers is instantiated, according to the command-line options; 

 Data sets and additional command-line options are forwarded to the solver; 

 Solver is run and generates a “collection plan”; 

 A rough report of that collection plan is printed to the console, including: 

o All selected opportunities, sorted by platform then by orbit; 
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o All selected opportunities (same as above), sorted by tasks along with relative coverage and cost 
for that task; 

o A summary of the collection plan (objective value over its estimated upper bound); and 

o For example: 

Plan, by platform and orbit: 
P0, orbit 0: 1:{Opp00001:2000, } 
P0, orbit 1: 2:{Opp00007:11050, Opp00011:11100, } 
P1, orbit 0: 2:{Opp00004:1050, Opp00008:1100, } 
P1, orbit 1: 1:{Opp00002:10000, } 
 
Plan, by task: 
Task ID: priority, relative coverage, cost, selectedOpportunities 
Task0000: 0.500, 0.660,   2400.00, 2:{ Opp00001:0, Opp00002:1, } 
Task0001: 1.000, 0.920,   4300.00, 2:{ Opp00007:1, Opp00004:0, } 
Task0002: 0.800, 0.920,   4300.00, 2:{ Opp00011:1, Opp00008:0, } 
 
Summary 
Plan vlaue: 1.986 / 2.300 (86.35%) 
Cost:    11000.00 

6.5.2 Design and Implementation 

Code is split into a few self-explanatory classes in DiscoverSolver module, all under a few 
ca.gc.rddc.discover.solvers.utils.console.* test packages (under /src/test/java). Those 
mostly glue application command-line options to solver classes. See source code and its inline documentation for 
more details. 
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7 SOLVERS COMPARATIVE RESULTS 

MY-PICC, GATHER and QUEST solvers were compared using Wang data sets (see section 6.2 Wang data sets) 
since they all could tackle this kind of data. MY-PICC and GATHER can address a broader set of problems 
(namely large area targets and their individual opportunities, as well as more constraints), and so can QUEST 
(mostly its ability to take on input pre-defined task plans made from several opportunities across the data set). 
Wang data sets are therefore the common denominator.  

Tests were performed on the test bench described in 6.3 Test bench.  

7.1 DISCOVER vs WANG Objective Function 

As explained in section 2.1 Mathematical model, the DISCOVER objective function covers tasks value as well as 
opportunities probability, quality and relative coverage of the task area. It fails, however, to compute a proper 
value whenever there are more than two opportunities for the same task. It rather computes an approximation 
which is equal or lower than the theoretical value. On the other hand, the WANG objective function, a variant of 
the former, considers only task value and opportunities probability (which is enough for Wang data sets) but does 
compute the proper collection value for such data, no matter how many opportunities are selected for a task. 

QUEST translates the DISCOVER objective function (see section 2.1.2) into a CPLEX model. As such, most of 
the source code itself of the solver implements this translation. Other solvers simply use a direct implementation 
(see section 2.2) of these objective function formulas and can thus accept any objective function that is 
decomposed into the same sub-objective function, such as the WANG objective function variant. 

Solver comparison was therefore performed using both objective functions, albeit with the following caveats: 

 DISCOVER objective function: 

o All solvers try in their own way to maximize the collection value (or parts of it), although attempts 
become suboptimal whenever there are three or more opportunities on any given task; and 

o Collection value of the result exhibits the same sub-optimality. 

 WANG objective function: 

o QUEST solver tries to maximize value using DISCOVER objective function because it is hard-
coded to do so. Final collection value is, however, computed using WANG objective function: 

 Resulting collection value is equal or greater than it would be with DISCOVER, but equal 
or less than it would be, had a WANG objective function variant of QUEST been 
available.  

o Other solvers use the WANG objective function both for maximizing the collection value and 
computing it at the end. Result is thus optimal in regard to each solver, but comparison with 
QUEST is not perfect. 

7.2 Solvers configurations 

The following configurations were compared: 

 QUEST: 

o The latest available version. 
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 MY-PICC:  

o Both variants are tested: Time-Weighted (TW) and Plain-Value (PV). 

 GATHER:  

o Tested with two configurations: default and slow variant (as described in sections 5.1.9.1 and 
5.1.9.2 respectively); and 

o Given the random nature of this solver, run times and collection values are averaged over 5 runs.   

7.3 Result Summary 

Full results are available in Annex C of this document: 

 2066C.022-REP-01-OLCT Rev. 02 - Annex C – Solver comparison n Wang data sets.xlsx 

Note that numerical collection values in this annex were all multiplied by 10 at the end, so as to be comparable 
with [1]. Indeed, our solvers normalize the task nominal value (within [0.1, 1] in this case), while Wang data sets 
use [1, 10]. This obviously does not affect relative value comparison between solvers. 

Table 11:  Comparison summary using DISCOVER objective function 

 QUEST GATHER 
(default) 

GATHER 
(slow) 

MY-PICC 
(TW) 

MY-PICC 
(PV) 

Average Collection Value 
relative delta over QUEST  0.1% 3.2% -19.6% -35.5% 

Average run time (second) 0.320 0.761 18.250 0.007 0.006 
 

Table 12:  Comparison summary using WANG objective function 

 QUEST GATHER 
(default) 

GATHER 
(slow) 

MY-PICC 
(TW) 

MY-PICC 
(PV) 

Average Collection Value 
relative delta over QUEST  -2.1% 0.8% -21.2% -37.3% 

Average run time (second) 0.309 0.577 13.352 0.006 0.006 

7.4 Discussion 

MY-PICC (both variants) is incredibly faster than others, but fails to give good results which such data sets, worse 
that it was with random generated data sets. It might have to do with inherent characteristics of the set, such as 
opportunities temporal density, number of opportunities per task, the lack of discriminating values (only task value 
and opportunity probability), etc. This could be investigated at a later time. 

GATHER default performs well with reasonable running times (about twice as long as QUEST), but the slow 
variant is much slower (20-25 times) for a marginally better collection value (about 3%). Depending on actual 
requirements in the fields, both are nevertheless viable options.  
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Surprisingly, GATHER performs better than QUEST on some data sets, even on average for the DISCOVER 
objective function. It was expected that QUEST could find the single optimal collection value, but obviously it 
doesn’t. This may be caused by a trade-off between result optimality and resource usage (execution time, 
memory). Also given the suboptimal QUEST result when using WANG objective function, it was expected that 
other solvers would fare slightly better (compared to their respective difference with QUEST using DISCOVER 
objective function), but it was the opposite by about 2%. This warrants future investigation. 
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