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1 DATA MODELS
11 Collection Task (CT) Data Model (1% draft)

The collection task data model is designed to support the multi-satellite imagery collection scheduling problem, as
described in “Implement Plan Sched 2016-2017 v2 16 Dec 16.docx”. Data is structured in a tuple <R, C, Sppt,
Obj, A, M, CONS > where:

1.1.1

R: set of requests;

C: set of collection assets (collectors);

Sppt: set of supporting resources — typically, ground stations;

Obyj: collection tasking objective (open-loop multi-satellite collection scheduling);

A: Action space/set; and

M: Matches between tasks and collection sensor package capabilities.

Design Overview

All Java code related to the data model is packaged under ca.gc.rddc.discover.commons. * packages, in
the DiscoverCommons module. Until real data is available (namely from CSIAPS), the following design was
observed. It is expected to change to meet actual data interface once the latter is ready:

There is a set of classes for each type of object/container required by the scheduling problem:

(@]

(@]

Those are detailed in the remainder of this data model section; and

A single class, Dataset (see 1.1.3 Data set), serves as the data provider and provides access to

all others, exception for the objective function (see 1.1.8 Collection tasking objective).

A set of interface classes offers a read-only access to the external data (whether accessed directly
through some yet-to-be-defined mechanism, or first converted to an in-memory representation):

(@]

[e]

Their names and the data they give access to (while not containing it) follow the data model
described in this section; and

See ca.gc.rddc.discover.commons.dataaccess and associated generated Javadoc.

A parallel set of classes was developed, at least temporarily, to implement each of the above interfaces
with an in-memory read-writable representation:

o Seeca.gc.rddc.discover.commons.inmemory and associated generated Javadoc;

o To allow the processing of very large data sets, the well-known performance-oriented (speed and
memory footprint) fastuil library was chosen to implement internal maps and sets. See
http://fastutil.di.unimi.it; and

o To import data from an external source (format used by Wang et al. [1]), a separate package
contains  required class to convert into DISCOVER data  model. See
ca.gc.rddc.discover.commons.externaldata.wang.

Proprieta_\ry Information_. ) ) » UNCLASSIFIED
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e Several state-less data computations and manipulations were gathered together:

o They are used by all DISCOVER solvers to make sure that the same concepts are executed the
same way across solvers;

o Some of them may eventually be offered by an external service instead of being
computed/estimated from the data; and

o Seeca.gc.rddc.discover.commons.datautils and associated generated Javadoc.

Given the temporary and/or likely-to-change-shortly nature of this design regarding external data access,
available work effort was limited (in agreement with all involved parties) such that:

e The dataaccess and inmemory packages have little to no logic. In-code documentation and unit
tests cover all classes but are pretty lean:

o Completion is postponed until the design is stable; and
o This document nevertheless provides necessary documentation.
e Other packages are documented and covered by proper unit tests.
1.1.2 How to read this section
Color/font key for the remainder of this data model section:
e  Current implementation:

o name: type : implementation details, and corresponding original text from Implementation
Plan.

e Original text from Implementation Plan, not implemented yet; and

Data types are inspired from Java and JSON types to allow for easy conversion between data sources. For the
sake of simplicity and interoperability, types are limited to the following base types to compose other types:

e int:! a 32-bit signed integral value;
e double: a 64-bit floating point value (IEEE 754 compliant);
e string: any text;

e type[]: a collection of items of type type. Actual underlying structure (linked list, array, etc.) is
irrelevant, unless otherwise specified;

e key type -> value_ type: a collection that is specifically a mapping from keys to values. Unless
otherwise specified, keys are assumed to be unique and sorting (or lack thereof) is irrelevant;

e type in [n, m]:a value of type type, bounded by n and m (n and m are included/excluded depending
on the bracket orientation). Bounding is logical only, per specification, and is not enforced in the code;
and

E;Oepg?:iai‘;ycllgsfﬁ:zz}i?r:'s data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5
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e named_type: a composite type named named_type, with its decomposition:

o memberl: typel;
o member2: type2;and

o

11.3 Data set

DataSet:
e requestData: RequestData :see 1.1.4 Set of requests (tasks);

e collectorData: CollectorData :see 1.1.5 Set of collection assets (collectors);

e matchData: MatchData :see 1.1.6 Sensor-task matchmaking;

e constraintData: ConstraintData :see 1.1.7 Constraints set; and

e predefinedTaskPlans: String -> TaskPlan[] :see 1.1.9 Pre-Defined Task Plans.

Other parts of the tuple (from the imagery collection scheduling problem) that are not yet implemented are listed
in 1.1.8 Collection tasking objective.

114 Set of requests (tasks)

An imaging request (or order) refers to a specific area interest (AOI) to be surveyed or covered by a space-borne
sensor and can be de-decomposed in a single (primitive) or multiple (compound) survey tasks through a task
generation process. An AQOI is either defined as a spot (small target) or a polygon referring to a primitive and
compound task respectively. A polygon can be decomposed in multiple strips corresponding to satellite swaths
intersecting the AOI during a given orbit. A strip defines a simple or primitive task composing the request (task
generation) to be covered for a single satellite. A spot is assumed to be covered by a single strip.

RequestData:
e tasks: Task[] : the list of all submitted tasks.

A task structure derived from a request for information (RFI) along with its related attributes and requirements
may be defined as follows:

Task:
e id: string : ID of this task, unique within RequestDB.tasks;
e areaOfInterest: AreaOfInterest : the AOI for this task;

e Type/goal (e.g. detect, locate, track, classify, identify, confirm, monitor, search, assess outcome,
surveillance/survey, reconnaissance):

o Mission tasks: survey, monitoring, tracking, search, detection, classification, identification,
confirmation and outcome assessment.

o Complexity (task leaf nodes):

o Primitive (mono); and

E;(;p:)i:e:;;ydg&rgi}im.s data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5
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o Compound (non-primitive/abstract/decomposable — e.g. stereo).

e priority: double in [0.0, 1.0]: Priority-nominal relative task value (value of information -
information need —driven;

e Indicators, measure of performance (MOP) and measure of effectiveness (MOE) for goal achievement
(e.g. quality of service (QoS), coverage, probability of detection, resolution, uncertainty, value of
information (Vol) measure — e.g. National Imagery Interpretability Rating Scales (NIIRS)-like along with
related thresholds);

e Collection requirements:

o

Imaging completion time window (mission/customer -driven);
NIIRS — NIIRS rating requirement:
- Hint on proper resolution mode (beam/waveform).
Resource capability requirements;
Observation quality:
- Observation angle; or
- Acceptable incidence angle interval (min/max off nadir angle).
State conditions (e.g. environmental prerequisites, luminosity - sun orientation);
Direction (ascending/descending/none -orbits); and

Single/multiple possible observations per task (e.g. detection, confirmation), and periodicity -
repeat cycle (e.g. once a day).

e Task tree/network (tree/directed acyclic graph — task structure decomposition):

@)

Task dependencies and relationships (gathered information impacting/feeding other tasks)
derived from the intelligence requirements management (IRM) process (assumed to be available
—e.g. from CSIAPS);

Nominal value attached to an abstract IR parent node (request) is broken down among IR
children nodes and propagated down to the task leaf nodes for which a collection tasking plan is
required. Translating information needs, the basic/original intelligence collection tasking mission
(request) derived from CCIRM commander’'s critical information requirements and the IRM
process defines the root of the tree structure; and

The overall collection value (value of information) combines nominal value and quality of
information/service associated with a task collection plan. It sums contributions over leaf IR node
(task) collection values.

Ersoep(r)i?:iai;yclgsfs:reni}i?r:'s data is subject to the Restriction of the U N C LASSI F I E D T H /.\ L E s
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AreaOfInterest:

e type: enum {SPOT, POLYGON AREA} : The type of this AOI. Spot targets are always fully covered
by corresponding opportunities, while polygon area may require one or more opportunities for a complete
coverage (may also not possibly be fully covered).

e Specification: vertex coordinates and centroid.

11.5 Set of collection assets (collectors)

CollectorData: collection assets. Space-borne platforms or spacecraft vehicles, namely Earth observation
satellites:

e platforms: Platform[] : list of all available platforms; and

e sensors: Sensor[] : list of all known sensors from all platforms. Identical sensors on different
platforms may or may not be duplicated in this list.

Platform:
e id: string : ID of this platform, unique within CollectorDB.platforms;
e name: string : human readable name (for simulation purposes, may be removed at a later time);
e Payload: single sensor;
e Range, altitude, speed, period, autonomy/endurance;

e maxEnergyBudget: double : budget per orbit typically in Joules. Maximum budget, actual budget on
a given orbit (it may be lower);

e maxObservationTime: double : observation time per orbit in seconds. Maximum observation time
as an estimation of thermal constraints. Actual value on a given orbit can be lower;

e maxObservationCount: int : maximum number of observations per orbit. Actual allowed number
of observations on a given orbit can be lower;

e maxMemoryStorage: double : memory storage in MB (7). Maximum usable. Actual value on a given
orbit can be lower; and

e Communication bandwidth.

Sensor:
e id: string : ID of this sensor, unique within CollectorDB.sensors;
e Types: optical (e.g. panchromatic, hyper/multi -spectral, infrared), AlS synthetic aperture radar — SAR;

e Phenomenology and modalities (e.g. acoustic, optical, infrared);
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e Visibility (field of view/footprint), capability:
o Range;
o Mode number of bands:
= Spectral and spatial resolution sensors (beam waveforms, mode, bands); and

= Swath width, parameter configuration.

o Min/max off nadir angle.
e Observation model (likelihood function, performance vs operational conditions):

Conditional probability distribution (probability of correct observation, false-alarm rate, given

O
state/environmental conditions - clouds, weather forecast).

1.1.6 Sensor—task matchmaking

Determines feasible sensor package/resource capability and task requirements pairings. Typically achieved
through semantic matchmaking, knowledge-based reasoning and/or classification analysis.
MatchData:

= opportunities: Opportunity[] : Sensor-task matchmaking assumed to be provided by CSIAPS.
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Opportunity: feasible sensor-task pairings and measures of performance:

1.1.7

id: string : ID of this opportunity, unique within MatchDB.opportunities;
taskId: string: task ID in requests. tasks;

platformId: string: platform ID in collectors.platforms;
sensorId: string: sensorIDin collectors.sensors;

startTime: double : in seconds, time of acquisition start from a given referential (e.g. 0 = now).
Resource must have completed its transition/slewing before that time;

endTime: double :in seconds, end time of acquisition;
coverage: double in [0.0, 1.0] : relative area coverage;

probability: double in [0.0, 1.0]: probability of success. Always 1.0 in -current
implementation;

quality: double in [0.0, 1.0]: expected image quality. Always 1.0 in current implementation;
cost: double :in$, imagery cost (for this whole image); and
Opportunity and mutual conflicts.

Constraints set

Constraints set are defined along three separate dimensions, namely, task, resource and temporal. This
separation is conceptual and not directly reflected in data models.

ConstraintData:

Task:

Fairness between customer requests;
maxTotalCost: double : maximum imaging acquisition cost overall;
Overall energy budget;

areaOverlaps: TaskAreaOverlap[] : for each opportunity pair (in MatchDB) for this task, this
gives the overlap area, relative to the total AOI:
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@)

Note: to reduce size, this array store pairs only once. For example, an overlap between

opportunities “opp5” and “opp23” can be stored either as {*opp5”,

”

opp237} or {“opp23”,”0pp5”}.

e taskConstraints: string -> TaskConstraint : per-task constraints (one per task). Map key is
the task ID.

Resource:

e Asset inventory;

e Task visibility (per orbit);

e revolutionPeriod: double : in seconds, revolution period for all satellites and all orbits, currently
assumed to be the same. Will eventually be explicit for each platform (and perhaps each orbit);

e platformCapacities: string -> PlatformCapacity : satellite platform capacity (one per
satellite). Map key is the platform ID;

e Utilization/deployment:

@)

Temporal:

Sensor interference or sensor mixes contingencies;
Environment: weather conditions:

= Cloud cover. Some sensors cannot see through clouds. Not only do clouds cover much
of the Earth at any given time, but some locations are nearly always cloudy.

Routine operations:

= periodic maintenance, recharging batteries, on-board data processing, orbit corrections,
uplink.

Conflicting opportunity over single platform utilization due to contention between observation
opportunities (e.g. mutual exclusion of competing concurrent sensing actions over
waveforms/beam modes).

e Set-up time: start-up, shutdown, recovery, altitude stability, processing, replanning;

e transitions: OpportunityTransition[]:

o Note: transition time, slewing (rates)/moving duration to switch between consecutive observation
angles from a predecessor to a successor opportunity task. Transition between look angles can
be achieved through instruments mounted on motors that can point either side-to-side (cross-
track), forward and backward along the track, or rotate to point their instruments in any direction
(agile satellites);

o This array only contains OpportunityTransition instances from an opportunity Oi an
opportunity Oj where:

= Qi and Oj occur on the same platform;
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= Qj starts after Oi; and

= Qj occurs no more than one revolution period after Oi (beyond that time gap, transition
information is deemed irrelevant).

o If a transition from Oi to Oj is not found, it can be assumed that transition duration is 0.0 (either
because it does not apply or is deemed irrelevant).

Time windows/intervals: availability/serviceability:
o Service — task imaging (customer requirement);
o Conflicting opportunities (time window overlaps);
o Dissemination —images downlink (image delivery to customers for consumption);
o Visibility — task opportunity visibility for imaging (agile satellite); and
o Downlink to specific ground station network nodes.
Information age — maximum delay between observation and download;

timeHorizon: double :in seconds, scheduling time horizon (e.g. 24 hours * 3600).

TaskAreaOverlap: area overlap between two opportunities on the same task:

opportunityIdl: string : first opportunity ID in MatchDB.opportunities;

opportunityId2: string : second opportunity ID in MatchDB.opportunities;

area: double : area overlap relative to the total AOI. For example, for two opportunities with relative
coverage 0.5 and 0.8, overlap would be within 0.3 to 0.5 (i.e. not greater than any of those two, and large

enough so that arithmetical sum of those areas less the overlap is <= 1.0);

quality: double : compound quality of both opportunities. Always 1.0 in current implementation.

TaskConstraint: various constraints that apply to a specific task:

Energy budget;
Basic task collection requirements;
Task precedence (e.g. survey, detect, track, identify and confirm sequence);

Single (successful observation assumption - probability of success = 1) or multiple observations/visits per
task (e.g. detection, confirmation);

Preemptive or not;
maxCost: double : allowed budget;

minCoverage: double in [0.0, 1.0]: area coverage threshold (relative to original AOI); and
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e Probability of detection/ entropy thresholds (quality of information/service task requirements).

PlatformCapacity:

e Revolution period Tp for each orbit (currently in ConstraintDB.revolutionPeriod);

e Payload;

e Communication (uplink, downlink): bandwidth, communication cost rate, downlink energy consumption;

e UAV endurance; and

e orbits: PlatformOrbitCapacity][]

for each orbit p of the platform).

PlatformOrbitCapacity: data for a given orbit p of a platform:

per orbit data (one PlatformOrbitCapacity instance

e startTime: double :in seconds, the orbit start time for that platform. Time referential is not specified
but it is the same for all platforms in a DataSet;

e endTime: double : in seconds, the orbit end time for that platform. It is excluded from the current orbit
and typically the same as the next orbit start time. Time referential is not specified but it is the same for all

platforms in a DataSet;

e memoryStorage: double : in MB, Wp: memory storage capacity in orbit p. limited on-board data
storage. Images are stored in a solid-state recorder (SSR) until they can be sent to the ground;

e imagingMemoryRate: double
P

e energyBudget: double :in Joules, Ep: energy capacity in orbit p.;

in MB/s, wp memory consumption rate by observation time in orbit

e imagingEnergyRate: double :in J/s, eop: energy consumption rate by observation time in orbit p.;

e transitionEnergyRate: double :inJ/s, esp energy consumption rate for task transition time (see
OpportunityTransition) by a sensor in orbit p. This does not apply to the platform/sensor-specific

set-up time, only transition time;

e maxObservationCount: int : cp: maximum number of sensor openings in orbit p.;

e maxObservationDuration: double : thermal: maximum satellite imaging time per orbit; and

e setupDuration: double : base set-up time for any observation. Can be 0.0 on some platform/orbit.
Does not include any transition time (must be computed separately on an opportunity-to-opportunity

basis).

OpportunityTransition: data pertaining to the transition from an opportunity to another, occurring on the

same platform:

e fromId: string:the ID of the first opportunity in MatchDB. opportunities;
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e toId: string:the ID of the next opportunity in MatchDB.opportunities; and

e duration: double : in seconds, required transition time (slewing and/or other delays) to be ready for
second opportunity. Does NOT include platform/sensor-specific set-up time.

1.1.8 Collection tasking objective

The collection tasking objective (open-loop multi-satellite collection scheduling) has no data in the current
implementation. As such, it is not part of the provided data set. It is, however, provided through a set of functions,
for the currently implemented part.

ObjectiveFunction: no data yet, only code:

e Single objective: max expected value of information collection task. Not provided as data in current
implementation but rather through DISCOVER objective function upper bound (see section 2 Objective
Function);

e Multiple objectives: weighted sum:
o Relative weights (sum = 1);
o Expected task value (over [0,1]);

o Imaging cost ($) (table lookup — from CSIAPS);

1.1.9 Pre-Defined Task Plans

The data set allows to specify pre-defined plans for some tasks. There can be more than one possible plan for
any given task.

Those plans may come either from external data sources or from different solver. For instance, QUEST can
handle spot targets but may only handle tasks with large polygon AOI if there are pre-defined plans for those (i.e.
it may only choose one item to cover a task, either an opportunity or a pre-defined plan). On the contrary MOSAIC
is designed to generate plans for a single large area task. Therefore, in a two-step process, MOSAIC could
generate plans for non-spot tasks, add them to the data set, and feed that to QUEST.

MY-PICC and GATHER do not support pre-defined plans (they simply ignore them) and only QUEST is meant to
use them. This is not yet fully implemented but should be in a future revision. MOSAIC is currently the only
potential source (yet to be fully implemented too), as none of the simulation data (as described in section 6)
provides pre-defined plans. Therefore, current implementation uses a simplistic approach, where pre-defined
plans are a map from task IDs to a list of TaskP1lan for each of them.

TaskPlan: simple task plan:
e taskId: string:the ID of the related task; and

e opportunities: Opportunity[] : the list of all opportunities in the task plan. Those are direct in-
memory references to opportunities in the current data set.
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1.1.10 Not implemented yet

o Sppt: set of supporting resources — typically, ground stations:

o Image downlink scheduling is ensured through a ground station network. Ground station and

relay node attributes:

= Locations;

=  Mask (maximum communication range); and

=  Communication bandwidth and channels.

e A: Action space/set:

o Sensing actions/controls:

= Mode (waveforms/beams and bands), polarization, and other control actions; and

= Sensor orientation (camera/antenna pointing angles along some rotation axes — roll pitch,

yaw).

1.2 Collection Plan (CP) Data Model (1% draft)

There are no precise usage/functional requirements for the collection plan so far, although some are obviously
expected. As such, a collection plan is merely defined as a solver output for now, and further design will apply

along with forthcoming requirements.

In detail:

e All CP-related Java classes are packaged along with data model classes, under the DiscoverCommons

module:

o Seeca.gc.rddc.discover.commons.dataaccess.

e CollectionPlan is the main class; and

e Current implementation is trivial

CollectionPlan: solver result:

e taskPlans: String -> TaskPlan : the unique task plan for each covered task (i.e. with at least one

selected opportunity).
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2

OBJECTIVE FUNCTION

This function implements an evaluation of a collection plan with regards to the collection tasking objective (open-
loop multi-satellite collection scheduling). It represents the “value of information” for a given collection plan, which
solvers aim to maximize. It is used directly by all solvers, except for CPLEX (IBM ILOG CPLEX Optimizer, a
software MIP solver package)-based solvers. The latter rather rewrites it as sets of linear constraints.

21
211

Mathematical model
Data

Functions use the following data variables:

P : set of all satellites orbits/passes p:
o Sorted in chronological order. Whether they are sorted by satellite then time, or by time then

satellite, is implementation-defined and does not affect the model, as long as they are at least
chronologically sorted for any given satellite.

R : set of candidate requests r, each defining a target (spot) or polygon area (region) of interest (AOI) to
be covered:

o Each request ris decomposedin a set of tasks;
o A compound request includes more than one task; and

o A spot request generally corresponds to a single primitive request involving one task. However,
some primitive request/task requirement might require more than one task, e.g. a stereo task
necessitating an Ascending and a Descending imaging collection.

S : set of tasks/subtasks s composing request r:

o In current implementation, task and requests are assimilated, as if there was only one task per
request, and solvers deal directly with tasks as if they were requests.

V,SO: normalized nominal value of request-task (r, s):
o  Within [0, 1]

Omp: set of imaging opportunities o, for request-task (r, s) during orbit p:
o Sorted chronologically on their imaging start time.

A,‘S: AOI associated with request-task (r, s):

o In current implementation, it is not described in geographic terms. It is only assumed to exist and
as such is bound to the constant 1 in formulas below.

Am,p (= AO): partial area coverage of Ars, resulting from intersection of A,S opportunity o strip area on

orbit p

E;oepgffiai]gzllonsfﬁ:zz}i?r:é data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5

title page of this document.




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 24

o In current implementation, such partial coverage is not described in geographic terms. It is rather

provided as a relative coverage to Ars , within [0, 1].

A = Aoo' ): partial area coverage of A,AS, resulting from the intersection of A, and Arso'p':

rsopo'p' ( sop

o As with A,wp, provided as a relative coverage to A,S , within [0, 1].

Ds0p (= D,y ): probability of imaging success associated with opportunity o on orbit p for request-task (r, s):
o Within [0, 1]

500 (= q,): estimated imaging opportunity normalized quality associated with opportunity o on orbit o for

request-task (r, s):

o Within [0, 1]

’

4 50p0p' (=4 ): cOMposed imaging opportunity quality associated with intersecting opportunity o and o

strip areas related to orbit p and p’ respectively, for request-task (r, s):

o Within [0, 1]

Xrsop (5 X, ): binary variable indicating whether opportunity o is selected (1) or not (0) in a given collection

plan. That opportunity services request-task (r, s) in orbit p.

o Plan: the setofall X,;,, over P, R ,all s, andall O,Sp.

2.1.2 Formulas

Ultimately, solvers aim to maximize the value of Objplan, the objective value of a full collection plan. But in the

process, they also need parts of it for localized or incremental calculations. The objective function is thus

decomposed into the following functions:

Plan objective value:

° ObjPlan = max Z ZObjr590

reR ses,

o Lower bound: inf Obj,,, =0

e Upper bound: supObyj,,,, = ZZsup Obj

reR seS,
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Request-Task objective value:

A A
® Objrs = I/;"sO z Z AO poQ()xo - Z Z ADO p()po'(q() + Q()' - QO()')'X:O'X:Oy
peP,; 0€0,, rs p'eP, 0'€0,y, Lyg

e Where 0<0' ensures that opportunity intersections are counted only once over all opportunities for the
given request-task;

e Lower bound: unbounded.

o Result can be negative if for one or many opportunities, the sum of contributions from
intersections (second term) is greater than the opportunity own contribution (first term).

. : A
¢ Upper bound: supObj, =V, min| 1, Z z = Polo

peP, 0€0, Ars

rsp

o This is a conservative theoretical upper bound, where all associated opportunities are selected;
o Itassumes only positive opportunity contributions, without subtracting intersections; and

o It limits the sum to 1, as if the request-task AOI was fully covered with maximum quality and
probability.

Opportunity differential objective value:
e Solvers often have to compare opportunities to add/remove them to/from a plan while building the latter.

The differential objective value gives the variation of the associated request-task objective value when an
opportunity is added/removed,;

) ) A, A,
® DﬁObjl‘sop = A_poqo o ZP ; A popa'(qo + qu' - qou')‘xo‘xo'
rs p'eP, 0'€0,, “lyg

e Lower bound: unbounded, as with request-task objective value;

e Upper bound: 1; and
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e While this looks similar to Objm summed terms Obj,.s is not directly the sum of all associated

Dlﬁ@bj,,mp . Indeed, in such sum, opportunity intersections would be counted twice, as the above only
restricts o' with 0#0' instead of 0<o0'. However, in an iterative process where opportunities are

added/removed (i.e. where X, are set/reset) one by one, Objrs can effectively be computed with the

sum of all Dl'ﬁ@bjmp .with varying X, on each iteration.

Single opportunity value:

e Merely the value of an opportunity, as if it was alone as part of a task (no overlap);

. . A
° Ob]rsop = Ob]o = 4 Po4,%,

rs
e Bounded to [0, 1].
Request-Task relative coverage:

e Provides the relative coverage of a request-task AOI by a set of opportunities associated to that request-
task;

e RelCov, = Z Z j" X, — Z Z %xoxo.

|
pEP, 0€0,, | “Irs PP, 0’0 g
0<o0"

e This is derived from the request-task objective value, but it considers only the covered area, no matter the
quality and assuming it is effectively covered (as if P, =(, = 1 );

e Lower bound: unbounded. Although counter-intuitive, coverage can be negative, as with request-task
objective value and for the same numerical reasons.

o This is a numerical artifact because above formula does not compute actual union of coverage
from all opportunities. Indeed, it only considers first order intersections (pairwise) but not higher-
order intersections (three-by-three, four-by-four, etc.); and

o A real-world description of AOls (such as geographic coordinates) could fix this issue, although
the request-task objective value would have to be computed accordingly as well, for consistency.

e Upper bound: 1.
21.3 Wang objective function variant
For the sake of comparison among solvers and with external sources, a Wang-specific objective function is used
to work with Wang data sets (see section 6.2 Wang data sets). Wang data sets don’t have relative coverage (only

spot targets, task coverage is assumed to be 1.0 on all opportunities) nor quality in their opportunities (assumed
to be 1.0 as well).
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Therefore, the Wang objective function is similar to the above DISCOVER objective function but only considers
task nominal values and opportunity probabilities. This nevertheless allows for some refinement as a proper task
value can be computed for more than two opportunities. In comparison, DISCOVER task value calculation is
otherwise limited to an estimation, because overlaps between opportunities are limited to pairwise intersections in
the data set model. The formulas, below, become rather simple:

Plan objective value:

° ObjPlan = Z Z Objrs

reR ses,
«  Lower bound: inf Objpla” =0

e Upper bound: supObyj,,,, = Z Zsup Obj,,

reR seS,

Request-Task objective value:

o Obj, =V ,l1- H H(l_po)‘xo

peP,, 0O

rsp

«  Lower bound: inf Objrs =0

e Upper bound: supObj,, =V, 1- ] [T -p,)

pEPVSOEOI‘Sp
o Just like request-task objective value, but assuming all opportunities are selected (x, =1 for all
opportunities).

Opportunity differential objective value:

e Diffobj,,, =1-(1-p,)[T [10-p.)x,

p'er 0'60”./)v
0#0'

e Bounded to [0, 1]
Single opportunity value
® Objrsop = Objo = poxa

e Bounded to [0, 1]
Request-Task relative coverage

e Trivial: it is 1 if at least one opportunity is selected for that task, 0 otherwise.
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2.2 Java Implementation

Package ca.gc.rddc.discover.commons.dataaccess contains the interface ObjectiveFunction which
provides the definition of above functions.

Implementation of those functions, as described above, is found in package
ca.gc.rddc.discover.solvers.common in DiscoverObjectiveFunction class (and
WangObjectiveFunction for the Wang variant). It is a straightforward formula translation to Java code, except

for the binary X, variable. Java methods are rather defined to accept the set of selected opportunities

themselves as input parameters.

Separating the interface from the implementation allows for solvers to be reused with different objective functions,
as there could be in the future, as long as they implement the same interface.

2.3 Test and Validation

Given the fairly trivial nature of such functionalities, a thorough coverage via unit tests is enough to assess code
validity.
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3 CPLEX-BASED MODELS/SOLVERS

This section focuses on an exact algorithm solver in DISCOVER named QUEST (QUadratically constrained
cplEx-based Solver (Scheduler) Technology) and a more advanced version of this model, RE-CVEST (delayed
REward Collection Value cplEx-based Scheduler Technology). RE-CVEST is only a model improvement of the
original model of QUEST so that it can solve very large size and complex problems. This section also discusses a
sub-module of QUEST called MOSAIC (Mixed/multi Overlapping Sub-Area composition Coverage) solver which
finds feasible plan for large areas. All those algorithms aim to solve parts of the Multi-Satellite Collection
Scheduling Problem (MSICSP), as stated in the Statement of Work.

3.1 Summary

In short, the MSICSP integrates three well-studied problems, namely determining tasks to cover (coverage
problem), using what resources (assignment problem) and when (scheduling problem), all of that while respecting
limited resource constraints. Given a set of tasks to service over a multi-period horizon, a MSICSP solver aims at
finding a feasible combination of imaging opportunities such that total collection value is maximized.

As a reminder, each image acquisition request has associated AOI coverage plan(s). Each AOI coverage plan
consists of strip(s). The strips may be overlapping. Each strip has one or more opportunities to be imaged during
scheduling horizon [0, T]. Each opportunity of a strip allows the acquisition of the entire strip. Each opportunity
has certain properties inherited from requirements of the request.

An imaging opportunity is thus associated to a task request and the geographic fraction of its AOI, a satellite and

sensor (resolution/mode) that performs it, a time window and a probability of success (presence of clouds for
instance).

, Orbits
/

o Satellite

Ground station

Line of sight (LOS)~

/
Conflict”

Figure 1: Scheduling scenario

Furthermore, the MSICSP involves operational constraints such as maximum energy available, maximum
memory storage, thermal constraint, total budget available, budget per task and maximum number of opening
constraints.
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In the proposed algorithm, in order to improve the possibility of completing tasks given variable opportunities
probability, we account for the scheduling of each task over multiple resources and establish a novel non-linear
mathematical model. The novelty of this approach lies in exploring the mathematical structure to have both linear
(Coarse-Grained) and quadratic (Fine-Grained) models. The Coarse-Grained model deals with the user default
plans while the Fine-Grained model solves the problem without any default plans. QUEST explores these two
mixed mathematical models (Coarse-Grained and Fine-Grained) to tackle this problem. Also, QUEST can
compute a very tight upper bound of the problem which is very useful for any other approach or algorithm in order
to know solution quality.

This problem can be modeled as a multi-network-flow problem with resource constraints, a well-known model
which is NP-Hard combinatorial optimization problems. They have been successfully used in structured Vehicle
Routing and combinatorial optimization problems, involving ground vehicles. The specific objective of the QUEST
project is to demonstrate that exact algorithms can as well be applied to these problems involving multiple aerial
multi-satellite image scheduling.

The algorithm is fully implemented as part of the QUEST solver, and experiments were conducted to validate
feasibility, robustness, and efficiency of this approach. QUEST-specific code is available under:

e DiscoverSolvers module; and

e ca.gc.rddc.discover.solvers.mypicc package.

We show that our Zero Half Cuts combined with branch-price-and-cut algorithm clearly outperform a state-of-the-
art branch-and-cut algorithm on the hard instances. Experimental results based on the Wang Data and Berger
Data test generator (harder instances) show that the solutions of our models perform better than those of previous
studies and provide very good upper-bound of the original problem, and we also reveal the strengths and
weaknesses of the proposed algorithms while solving different size and complexity instances. Finally, a series of
test examples and comparisons are given out, which demonstrate clearly that our algorithm performs better than
five heuristics approaches. The potential collection value gains range from 15 to 30% compared to the best
heuristic solution.

Project Goal: Develop collection management decision support capabilities for effective and efficient satellite
resource utilization and enhanced intelligence collection capabilities, through the development of relevant
concepts, models, and algorithms.

3.2 Problem Description

The problem addressed by QUEST is a very difficult scheduling problem. First, the original objective function is
not linear. Second, the operational constraints are resource constraints (total budget to perform all tasks, thermal
budget, maximum opening, energy budget, memory budget and maximum budget per task). Finally, energy
constraint is one of the most difficult, because it involves all variable arcs of the acyclic graph of an orbit (too
many arcs in some instances of acyclic-graph). In this project, we exploit the mathematical structure of this
problem in a non-obvious way in order to make it linear and/or quadratic so that to be able to use the power of
existing well-known exact algorithms to tackle this problem.

Based on a non-deterministic setting (uncertainty of cloud) in which image acquisition is characterized by a
probability of successful observation, the single episode (static) multi-satellite collection scheduling/tasking can be
stated as follows: given a set of information requests translating task areas of interest to be observed
(weighted/valued tasks), a set of non-agile heterogeneous satellites (collection assets), and a set of imaging
opportunities, the problem consists in allocating collection assets to imaging observation task opportunities in
order to maximize expected collection value or profit over all requests and a specific time horizon, subject to a set
of constraints (e.g. mission, task, operational, collector, supporting resource, communication, capacity, temporal
and cost).
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3.3 Motivation and Context

Multi-mission (satellite) collection scheduling with automated and integrated utilization of heterogeneous satellite
sensors would result in the increased performance of intelligence collection beneficial to a variety of operations
including:

e Maritime surveillance and ship detection;
e Arctic land surveillance;
e Environmental sensing; and
e Search and rescue.
There are many other applications:

e Satellite communications, where tasks are communication intervals between sets of satellites and ground
stations;

e FEarth observation, where tasks are observations of spots on the Earth by satellites; and
e Sensor scheduling, where tasks are observations of satellites by sensors on the Earth.

Examples:
= ESA’s Tracking Station Network (ESTRACK) had 30 satellites and 40 antennas;

= NASA’s Deep Space Network (DSN) had 35 satellites and 13 antennas (with 425 requests per week);
and

= Air Force Satellite Control Network (AFSCN) had 100 satellites and 16 antennas (with 500 requests per
day).

The design and development of the centralized system with the tools for generating optimized multi-mission
collection schedules would allow the integrated utilization of Canadian satellite resources and it would have the
potential of increasing the overall operational performance by 25-40% ( [2]and [3]). These potential gains are
confirmed by this study for big and hard problem instances.
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3.4

Literature Survey

The following table includes this work along with previous work.

Table 1: Summary of the Literature on Image Acquisition Scheduling for Multi-Satellite

Collection Scheduling

Authors | Year |Satellite(s) |Objective Method Froblem | sotution Quality
Exact Algorithms
Hall and 1994 | 1S Dynamic programming | 200
Magazine [4] algorithm with a targets
bounding by either
Lagrangian relaxation or
relaxation of some
constraints
Gabreland | 2002 | 1S, Maximize the Model: multi-criteria path Less than an hour
Vanderpooten 40, number of high problems over an acyclic running time
[3] Non-agile | priority shots; graph. Algorithm: the
Maximize demand label-setting shortest
satisfaction; and path algorithm for
Minimize satellite use| generating all efficient
to prevent wear. paths, followed by an
interactive session.
This work 2017 | 3S, Maximize the Model: Coarse-grained | 160, 200 | Less than one
210, number of high and Fine-grained over an| tasks minute
Non-Agile priority and quality | acyclic graph. Algorithm:
shots; and MIPs and QMIP
Maximize demand
satisfaction.
This work 2017 | 3S, Maximize the Model: Coarse-grained | 160, 200 | Less than one
420, number of high and Fine-grained over an| tasks minute
Non-Agile priority and quality acyclic graph. Algorithm:
shots; and MIPs and QMIP
Maximize demand
satisfaction.
This work 2017 | 3S, Maximize the Model: Delayed rewards | 300 tasks | Less than 2 minutes
150, number of high over an acyclic graph.
Non-Agile priority and quality | Algorithm: MIPs with
shots; and strategy to find good
Maximize demand integer solution.
satisfaction
Greedy
Muraoka et | 1998 | 1S, Ranking function Greedy: one by one
al. ASTER consists of 12 request is scheduled.
elements.
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Authors | Year |Satellite(s) |Objective Method Froblem | sotution Quality
Heuristics
Pemberton | 2000 | 1S Priority segmentation: Priority
each sub-problem solved segmentation is
to optimality by branch better than greedy
and bound. algorithm that sorts
tasks by priority and
schedules them one
by one.
Frank etal. |2001 | 1S Ranking: priority and | Greedy hill-climbing
contention (how search with stochastic
many opportunities a| variations to escape local
request has). optima. Algorithm based
on constraint-based
interval planning.
Metaheuristics
Bensana et | 1996 | 1S, Depth-First Branch and | 13 Tabu Search
al. [6] 10 or mO, Bound, Russian Doll instances | performed best in
SPOT 5 with Search, Best-First 1S10, general, Russian
3 cameras. Branch and Bound, a and 7 Doll Search
Mono-image Greedy Algorithm, and | instances | performed best for
and stereo- Tabu Search. Integer 1SmO the one orbit case,
image Linear Programming but failed in six of the
requests. (ILP) and Valued seven instances in
Non-agile Constraint Satisfaction the multiple orbit
Problem (VCSP) cases.
formulations.
Gabrel etal. | 1997 | 1S, An approximate method The continuous-
[71 Non-agile with discrete times, an time approximation
approximate method with algorithm averaged
cont. time and greedy within 7% of optimal.
algorithm based on the The discretized time
longest path algorithm, algorithm performed
and an exact method very close to the
branch and bound continuous
approach with a depth- approximate one.
first search strategy
Wolfe and | 2000 | 1S and 2S Hill-climbing, Time Genetic algorithm
Sorensen [8] Look-ahead algorithm, horizon: | performed the best.
Genetic algorithm with | One week| Needed longer run
look ahead. times. Look-ahead
Defined the problem as a algorithm may be
window-constrained more practical for
packing problem. large problem
instances.
Vasquez 2001 | 1S, Tabu search together Better than tabu
and Hao, Non-agile with “logic-constrained” search of [6]
2001 [9] knapsack formulation.
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Authors | Year |Satellite(s) |Objective Method Froblem | sotution Quality
Lemaitre et | 2002 | 1S, Greedy algorithm, 6 problem| Only mono-images:
al. 10, dynamic programming | instances | dynamic
[10] with stereo- algorithm, constraint programming
images. programming, and local approach was the
Agile search algorithm. best performer;
satellite Greedy and dynamic Stereo-images
algorithm ignored stereo included: local
images. search methods
were the best.
Globus et al.| 2003 | 1S and 2S, | Minimize: Genetic algorithm, 4200 Simulated annealing
2] Agile - Weighted sum of | Simulated annealing, imaging |was the best.
Optical, unscheduled image | Stochastic hill- targets
included (as | priorities; climbing, with
for SAR): - Total slew time; and| Iterated sampling. priorities
access, - Sum of slew angles 1to5
slew, and of scheduled images.
dwell times.
Considered:
on-board
data storage
and downlink
Globus et al.| 2004 | 2S and 3S, | Minimize: Genetic algorithm (13 10 Simulated annealing
[11] Optical - Weighted sum of | variations), instances,| was the best, closely
satellites. unscheduled image | Simulated annealing, 2100*m | followed by hill
Same as priorities; Stochastic hill-climbing, | targets climbing. Genetic
Globus et al.,| - Mean slew time; Squeaky wheel. with algorithm was the
2003 [2] and priorities, | worst.
- Mean of off-nadir m -
pointing angles of number of
scheduled images. satellites
Cordeau and 2005 | 15,10 Piecewise-linear Tabu search. Allowed ROADEF | Tabu search
Laporte Agile convex with respect | infeasibility by relaxing | 2003 achieved near-
satellite to the proportion of | the time window competitio| optimal solutions.
the polygon’s area | constraints. n Compared to upper
being acquired Upper bound: column bound.
generation procedure
solving the linear
program relaxation.
Lin et al. [12] 2005 | 1S, Lagrangian relaxation Lagrangian
China/ and linear search relaxation is better
Taiwan when compared to
ROCSAT Il simple tabu search.
(FORMOSA
TII)
Lin and 2005 | 1S Hybrid approach: Hybrid better than
Chang [13] Lagrangian relaxation Lin et al., 2005 [12]

with a tabu search based

feasibility adjustment.

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

THALES




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 35
Authors | Year |Satellite(s) |Objective Method Froblem | sotution Quality
Bianchessi | 2007 |2S, Maximize weighted | Tabu search partly Time The same as
et al. [14] PLEIADES | function of utilities based on [Cordeau and | horizon: |[Cordeau and
(French), assigned to users; Laporte, 2005]. 24 hours | Laporte, 2005]
Optical, linear with respect to
Agile. the proportion of the
Priority, polygon’s area being
consecutiven| acquired
ess of strips
from one
polygon
request
Wang et al. {2009 | 3S, Tabu search heuristics Tabu search
[15] mO embedded in ILOG resulted in better
Dispatcher and a solutions. Running
greedy-based algorithm time for their largest
called “conflict-avoided instance, the greedy
heuristic”. took 50 seconds,
while tabu search
took 3499 seconds.
Wangetal. {2010 | mS Multi-criteria Genetic algorithm. 20 targets| Not provided
FORMOSAT Problem simplified by a
5, Taiwan division in limited
numbers of single-orbit
scheduling problems.
Nelson [3] |2012 |2S, Three-step approach: 8,250 768 clusters formed
20, cluster-route-schedule. | targets
SAR satellite Clustering groups 4,271
constellation imaging targets. Routing | could be
s: Walker, step uses column imaged
Target generation — in sub- within 208
priorities problems each satellite is| min time
separately. Scheduling | horizon (2
step for each satellite revolution
separately uses time- s)
space networks and
heuristics.
Wu et al. 2013 |4S, mO, Maximize profit Adaptive simulated 100-1000 | Adaptive simulated
[16] 1day sch. annealing with dynamic |targets, |annealing with
hor; clustering. 1d dynamic clustering.
Semi-agile Compared to ant colony,
(only roll) tabu search, genetic
Spot target algorithm, simulated
tasks. annealing with static
Priorities. clustering, highest priority]
first alg.
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Authors | Year |Satellite(s) |Objective Method Froblem | sotution Quality
Xiaolu et al. {2014 | mS, mO, Maximize profit Decomposition algorithm:| Random | The proposed

Semi-agile one sub-problem is the |instances:| decomposition

(only roll) assignment of a task to | uniform, | algorithm is better

Energy and an opportunity and the collective, | than simulated

memory are other sub-problem is the | and annealing: around

considered. merging of tasks into an | mixed. 25% better and up to

Max observation. The 63 inst: | 50% for some

continuous problems are solved 100-600 |instances.

imaging time iteratively until stopping |req, 2-8 | Operational in China

is criteria is met. MIP is sat -> Satellite

considered. proposed for scheduling | 200-4300 | Management Center.
observations for opp
collection of satellites.

Tangpattanakul| 2015 | Agile. Multi-criteria: max | Iterated indicator-based | Modified
etal. Includes profit + max fairness | multi-objective local ROADEF

stereo (by minimizing the search. 2003

requests and| maximal difference

polygon between the user

requests profits)

Wang etal. |2015 | mS, mO, Maximize expected | Exact: Decomposition Three Compares to Liao et
[1] Semi-agile | profit with master problem satellites. | al., 2007 [17] model

(only roll) solved by enumeration | Planning | solved by CPLEX.

Uncertainty and sub-problems by horizon: | Generates better

of clouds dynamic programming. | from 6h to| solutions.
Heuristics: for generating | 24h.
feasible solution to sub- | Number
problems. Master still of
solved by enumeration. |requests

from 10 to
160.
Malladi et al.| 2015 | mS, mO, Maximize priority Model-based meta- Compares to

Semi-agile heuristic (matheuristic). CPLEX.

(only roll) MIP. Also, modeling as a Real-world problems
new cluster-restricted instances. Also
maximum weight clique BOSHLIB and
problem. DIMACS

benchmarks.
Constraint Programming (CP)
Verfaillie et | 1996 | 1S, Russian Doll algorithm | 8 Russian Doll
al. [18] 10, to improve search for an | instances,| algorithm solved all

Non-agile opt solution in CP; 30 min instances to
Depth-first search branch| time limit | optimality, while
and bound. branch and bound

did not solve any.
Lemaitre et | 2000 | 1S, Constraint 7 Local search
al. [19] Agile programming (OPL instances;| algorithm was better
satellite Studio Framework), Stop than CP.
Local search (LS) criteria:
CP: 5
min, LS: 2
min
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Authors | Year | Satellite(s) | Objective Method Froblem | sotution Quality
Bounds
Gabrel and | 2003, | 1S, Vertex-path formulation | Up to 300 | Bounds generally
Murat [20] |2006 |10, with a column targets within 10% of
[21] SPOT 5, 3 generation procedure. optimality compared
cameras, to Bensana et al.,
On-board 1996 [6].
memory, 2006: show that the
Non-Agile bounds are tighter
than linear
relaxation.
Vasquez 2003 | 1S, Using tabu search the Equal or better than
and Hao [22] mO, problem is partitioned Gabrel and Murat,
SPOT 5, into sub-problems, which 2003 [20]. Upper
Non-agile are solved exactly by an bounds less than 3%
iterative enumeration from lower bounds.
algorithm.
Benoist and | 2004 | Agile Prize Collecting 20 With valid
Rottembourg satellites Traveling Salesman instances | inequalities: 22%
[23] Problem with Time with 300- | gap. With Russian
Windows, enhanced 500 Doll search: 12%
with valid inequalities targets gap, took several
based on task interval hours.
reasoning and a Russian
Doll Search approach.
Bianchessi | 2007 |2S, Maximize weighted | Column generation Time The same as
et al. [14] PLEIADES | function of utilities based on set partitioning. | horizon: | [Cordeau and
(French), assigned to users; Branch and price. 24 hours | Laporte, 2005]
Optical, linear with respect to
Agile. the proportion of the
Priority, polygon’s area being
consecutive- | acquired.
ness of strips
from one
polygon
request
3.5 Graph and Orbit Description

Graph (orbit network — acyclic directed graph) reduction consideration: consider opportunity node (r,s,0) transition
over a limited period only (state/task transition ending beyond that period is assumed unlikely to occur and will be
ignored). For instance, a finite number of kimmediate successors might be considered.

Source (b) and Sink (e) nodes in G,(V,, A): x,, ,=1,x

=1

ellp

V, : set of opportunities {(r,s,0)} in orbit p( V,, =0, = Uy Oys,)

A, : set of arcs connecting node (r,s,0) to node (r’,s’,0’), reflecting feasible transition (between opportunities) in

orbit p.
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GV, Ay
[VoI=N [A,] <N(N-1)/2
. CR)
A —=
D1
|
— 1
B3) B
— Verfaillie et al. 2013
GV A
Complexity Reduction: ,’V"p,'=N [Akp,r < N(k+2) — (k2+k)/2
limited task opportunity transition over adjustable o
horizon parameter k e
Graphs are built separately for each platform:
Platform 1
Mathematic model can be found in [24].
3.6 Original problem
3.6.1 Notation
H: time horizon
SAT: set of heterogeneous earth observation satellites
AT, : satellite sat revolution period
P: collection of orbits/revolution/track/passes/path pin {1,..,| A}= |SAT|*| Psat| (nb orbits per sat).
e Orbits are sorted in increasing order;
Proprietgry Information_. ) ) » U NC LASSI FIED
Use or discl f this dat bject to the Restriction of th
tiﬂs::arg;sgf(:rs];rzgcun:znﬁa is subject to the Restriction of the T H A L E 5




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 39

b |Psat| = sup (H/A Tsat);

o p(t sat) = (t-1)|SAT| + sat te{l,2,.., HATsy }, sat e SAT during cycle &

e sensors: electro-optical (EQO), infrared (IR) or synthetic aperture radar (SAR);

e P can be partitioned in ascending and descending orbits: P=P, U Pp; and

e Dir: sat direction (A/D = ascending and descending orbit).

P collection of orbits/revolution/track/pass p related to task (r,s). Ps< P

T,. satellite orbit p revolution period

R: set of candidate requests r(defining a target (spot) or polygon area (region) of interest (AOI) dimension A, to be
covered with beam [waveform] B).

e Each request r is decomposed into a set of tasks. A compound request includes more than one task. A
spot request generally corresponds to a single primitive request involving one task. However, some
primitive request/task requirement might require more than one task (e.g. a stereo task necessitating an
Ascending and a Descending imaging collection (visit/observation) for suitable data analysis purposes);

e In some simple settings (e.g. single homogeneous constellation), a request (polygon area) may be
decomposed into a set of sub request s (e.g. strips (rectangle) s of length /s and width wg defined along
Earth meridian as near as polar orbit satellites are considered). Requests (r,s,B) are sorted increasingly
by earliest starting times. Composite task examples include mosaic-based imaging, multitask mission
decomposition, large area coverage (area decomposition in sub-areas);

e Task perspective:

o

o

Rp: set of primitive requests r having a single task (target) (s=1);

Rc: set of composite requests r having multiple tasks s (e.g. task package, polygons or complex
structure of targets/polygons);

R=R, RC;

R, < Rc: set of composite requests for which individual request value contribution requires
servicing all composing task s as a unit;

R,: set of requests having piecewise linear value contributions; and

R, other complex tasks (spot target) requiring pre-defined plans.

e Resource perspective:

o

R, set of complete/partial requests (tasks) in corridor (track) visibility of orbit p (R,< R) matching
sensor orbit p capability (feasible pairing — matching). Partially visible requests are included.

S, set of task s (e.g. sub-request or strips — sub-areas/regions composing an AOI if defined accordingly)
composing request r (or, set of subtasks s composing task request r)
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[@, , w,]: completion time window for servicing (imaging) request r (including related tasks)

[@,,, @] completion time window for servicing (imaging) request r and related task (assumption: @,, = @,. ,

rs?
Wrs = Wr )

PREC: set of partially ordered task pairs (r,s; r,s’) having a precedence relationship with one another: (r,s)

>> (r',s"). e.g. detection > tracking > identification; or detection>confirmation tasks, stereo imaging task or

subtasks

A delay might even be necessary to account for information (observation outcome) dissemination/task flow,
pre-planning and uplink (revised plan) latencies during plan execution.

ME: set of mutually exclusive task pairs
CONEFL.: conflicting opportunity over a task

VIS,s,: binary visibility matrix indicating if request r task s is within sensor footprint/field of view (projected sat track
area) of orbit p. vis,,= 1if (,5) € R, i.e. if task (r,s) is visible to orbit p (zero otherwise).

V,o: nominal value of request r

V.so: nominal value of request-task (r,s). Valuation is assumed to respect utility theory axioms (large polygon
areas may define a single task (not many) as many collection opportunities are required to cover the
corresponding area). Apportionment of request r value over tasks s.

o Vp= Z s Viso

pProp,. . - Minimal coverage task (r,s) ratio requirement (covered area proportion —e.g. 70%)
Grsop (OF Ors0p): poiNting/look angle for task (r,s) for imaging opportunity o during orbit p
[Qm 9”]: look angle intervals (near/far incidence angle) for task s request r

O: collection of all opportunities (s O, 0r U, 0,)
Oys: (collection of) opportunity (all possible orbits) for task (r,s). | O | £ |Sat|*| Psa| for non-agile sat
O,: (collection of) opportunities (over all tasks) during orbit p. (|0, |= R, | for non-agile sat)

o 0,=0/'v0)

o 0, ascending orbit direction opportunity set

o  0,” descending orbit direction opportunity set

O/, set of collection opportunities for request r task s during orbit p
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o Opportunity = {identifier, task, B in feasible {B}, look angle, time interval, orbit- related sensor, pass
direction (Ascending/Descending), MOP [covered area, probability of success....]J}

o orbit pimplicitly determines sat direction Dir

o On agile satellite:

o Ors,o ={Orsp(|D)1 rs, B, tsrso,o € [Qrwpy Z)rmp 1, dI'OSp: terSOp' tsrsopz const, Grsopl tsrsop ), Dir, p}

o lw,.,,, Emp]: starting time windows for servicing subtask (r,s) (agile satellite) with imaging

= rsop

opportunity o

o rsop Stands for antenna/camera pointing angle. Typically EO, not the case for SAR (rather binary
left/right looking) or AIS sensor sat.

o On non-agile satellite:
o OrSp = { Orsp (|D), r,s, B, Grsop :erso,a: [tSfSOpv terSOp]! Dir, p} Xrsop < ViSI’Sp

o Reminder: vis,, =1 if sensor orbit p match task (r,s) request requirements, otherwise vis., =0

o E.g. image orientation (incidence angle) — G, in [Qm,@rs, capability sensor-task, sun

illumination
TWis, = [tsrs, , ters,]: time window (start time, end time) of task s associated with request r for imaging opportunity
o during orbit p. For non-agile satellites, s, , té;so, < 7, are predetermined constants whereas these quantities
are variables for agile satellites.
I,s: set of user-defined (sub) task plans s, for covering (sub) task (r,s) (reR, ¢e®,={1,2,....,|[1s|) - a (sub) task

plan is a subset of collection imaging opportunities selected from a given set O,s (I, refers to a family of
subsets of O, targeting sub task (r,s))

s = { s, Trs2s v Trsgr--or Trsiirs} = 17sgt @€P={1,2,....,|TT|,

s - (SUD) task plan ¢ defining a subset of collection imaging opportunities for covering task (r,s) (reR,)
Tlrsg ={0”rsq;1, Oﬁrwz, ceey Oﬂrsq)lzrjsq)l}

drs0p : duration of task (r,s) imaging for opportunity o over orbit p: (ter, - tSs,) = const)

Resource (time, memory, energy) capacity and consumption rates (power) per collector activity (imaging/obs,
comm/downloading):

o W, memory storage capacity in orbit p
o w,.memory consumption rate by an observation in orbit p

o E,: energy capacity in orbit p

E;oepgffiai]gzllonsfﬁ:zz}i?r:é data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5

title page of this document.




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 42

o eo, energy consumption rate by an observation in orbit p
o es, energy consumption rate for task transition by a sensor in orbit p

o 0, . constant task transition time by a servicing satellite on orbit p (includes required time for opening (a,
) the sensor in orbit p)

o sl,:slewing rate

o Atop + At
o to task (r,s’) opportunity o’.

variable fask transition time by a servicing satellite on orbit p from task (r,s) opportunity

rsor's'o'p

o Afy,: set-up time for imaging opportunity transition

o At : Transition time (e.9. A?,,..,., = | Grsop = Grsop | 1 Sl,)

rsor's'o'p
o C,: maximum number of times for a satellite opening its sensor in orbit p

o 1,: maximal (absolute) and average acceptable imaging time over orbit p imposed by thermal capacity
constraints

o ;W: maximal average acceptable imaging time over orbit p imposed by thermal capacity constraints
A,s: AOI associated with task s, request r

Grsp- estimated imaging quality associated with collection plan ¢ (multiple asset opportunities) for task s from
request r characterized by predetermined plans (reR;, , €.9. Arsy [Ars: 1-< E;so>/E s, rank;s, [rankmay)

Drsp’ probability to successfully execute plan ¢ (multiple asset opportunities) for task s from request r

characterized by predetermined plans (reR,)

succ ,

P50, - Probability of success in imaging request r task s area, over opportunity o in orbit p

o e.g.an EO observing a target area under partial cloud conditions

Drsop (= q”p) : estimated imaging opportunity normalized quality associated with opportunity o on orbit p for task
s from request r

o Task-dependent, account for incidence angle imaging quality, or resolution obtained for different beam
mode whenever imaging entirely a spot target area, etc. e.g. an EO observing a remote area or involving
a large incidence angle.

Drsoporp - composed imaging opportunity quality associated with intersecting opportunity o and o’ strip areas

related to orbit p and p’ respectively.
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9 rsopo'plop” - composed imaging opportunity quality associated with intersecting opportunity o, o’ and o” strip areas

related to orbit p, p’and p” respectively.

c. . first-order quality of information/service (utility) contribution to the collection value of task s, request r,

rsop *

based upon relative covered areas and observation probability of success associated with imaging
opportunity o and orbit p.

rsop succ

crsop = A p rsop qrsop

s Y
o quality_obs€[0,1]

o Arsop Opportunity strip area coverage of task s, request r AOI associated with opportunity o on orbit p.

o Aj::i: imaging strip area (swath) coverage associated with opportunity o on orbit p for task s from

request r (= Arsop)

d,,sopo,p,: 2"-order quality of information/service (utility) contribution to the collection value of task s, request r,

using relative mutual opportunity strip area coverage intersection and observation probability of success
associated with opportunity o on orbit p, and, opportunity o’ on orbit p’ respectively.

_ Arsopo'p' succ _suce
rsopo'p' T A prsopprso'p'qrsopo'p'
o) rs

o Awsopop: area coverage of task s, request r AOI resulting from mutual opportunity o and o’ strip areas
intersection related to orbit p, and p’ respectively.

€, sopo'plo"p" - drwpo,p.: 3"-order quality of information/service (utility) contribution to the collection value of task s,

request r, using relative mutual opportunity strip area coverage intersection and observation probability of
success associated with opportunity o on orbit p, opportunity o’ on orbit o’ , and opportunity 0” on orbit p”
respectively.

_ “Trsopo'p'o"p"  succ _succ _succ
ersopo'p'o"p" - A prsop prso’p‘prso"p"qrsopo'p'o"p"

o rs

o Arsop opoi a@rea coverage of task s, request r AOI resulting from mutual opportunity o, o’ and o” strip
areas intersection related to orbit p, p’and p” respectively.

Sty

cost, . :f(swatharea 4 ;

rsop * rsop

B(o) , product type: resolution,...; svc provider p)

e m, (B(o),resolution, p)4"" +c,,(p)
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Decision variables:

o visits: binary variable indicating that tasks (r,s) have been visited (at least once);

O X rsop . binary variable indicating whether task s from request r is scheduled to be serviced by
opportunity o on orbit p.

o

o

Many opportunities might be required,;

Many separate tasks s compose a request r when disparate collection activities are required to
fulfill r. Note in that case, that a single task s (primitive) is necessary to specify a large AOI
request r, for which, multiple (possibly overlapping, or, disjoint) opportunities (and their
corresponding possibly non-disjoint related strip) must be simply combined to satisfactorily cover
(r,s); and

A plan is a set of disjoint/overlapping opportunity assigned to a task. Note that strip opportunities
are simply duplicated for different opportunities emerging from identical satellite constellation
members.

o s, cONtinuous variable referring to start time of tasks (r,s) for imaging opportunity o on orbit p

O Z,sopo p - binary variable indicating whether task s from request r is scheduled to be serviced by
opportunity o on orbit p and opportunity o’ on orbit p’

0 Ursorso, - orbit p network flow binary decision variable indicating a transition between task s under
request r opportunity o and task s’ under request r’ opportunity o’ in orbit p ( i.e. (r,s’) will be executed
after (r,s) )

o

number uvar <y, % (3510l °

o Piecewise linear objective function contribution over request r_:

o

The objective function contribution for request re R, is linearly defined over v, (m; v, + b;). Ranging
in [0,1] v, is divided in pre-defined intervals i from a set /,

g;-: binary variable indicating interval i of the piecewise linear objective function value contribution
for servicing request r

Iy» continuous variable over [0,1] reflecting piecewise linear contribution on interval i to the value
of requestr

o All task service requirements under request re R,cR

o wuy, binary variable reflecting all task s service requirements for task r impacting the value of
request r
o X binary variable indicating if task sfrom request ris serviced
o V. continuous variable over [0,1] capturing the value of request r
o W, binary plan variable referring to the selection of plan ¢ among possible plans in the set I, to
cover task (r,s). The null plan is included. pe®,, {0}
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3.6.2 Constraints and Objective

These following constraints are taken into account when building the Graph network.

Transition: (agile sat (time windows); non-agile sat have fixed ts values [unnecessary]).

transition_time

> 1s +d +| A,  + At

rsor’s'o'p) rsop rsop O0p rsor's'o'p

ts... +M(A—u M >>1

r's'o'p

o Note: if time windows are discretized in the acyclic graph, all opportunities have a fixed time and that
constraint is unnecessary.

Time window constraints:

@ % SIS < DpspX

rsop”¥rsop rsop

Opportunity time window

rsop

ox <t +d_x < Z)rs.x. Completion time window for request r and related task s

s rsop rsop rsop ¥ rsop rsop

p—p mod|SAT| — p— pm0d|SAT|
» SO, Drsop +17,
|SAT| |SAT|
@,y = E,,mp < p—p|;14(;1||SAT| py S0 T dmp =te,,, | For non-agile satellite

Objective function:

MAX Z Z VSUP rsop (1 - H (1 - prsap'xrsop )J

r e RseS, pep,.

8| |S.]

ursor's'o'p = xrsop (2)

Flow conservation:

ks, 5, o o
Z Zzursorsop Z Zzurvsvovrnsnonp - re S r’Oe r's'p’pe
r r" 5" o"
((rao) (rau))eA (7r's'o"), (r"s" U”))EA/,
G,(V,.A4,) G,(V,.A4,)
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Energy Constraint:

Z z z xrsopeop (tersop - tsrsop) +

reR seS, 0€0,,,

22 2 2> Z v, (g
reRU{b} 0€0,,, r'eRU{e} s'€S,.0'€0,
((rso), (r 5'0 NeA,
G,(V,.4,)

Memory storage capacity:

Z Z Wp (tersop - tSrsop) rsop - W vp eP

rsp d

rsop

Max number of sensor openings ¢, by orbit: orbit capacity

R |S.|

Zx, <c, VpeP

rsop
r s 0€0,,

p+At

<E Vpepr @

rsor's'o'p ) - Y2l

(6)

Image acquisition costs: financial capacity (cost is proportional to resolution x coverage)

R |S,] [Pl
Zcost < oSt ..

rsop rsop
ro s p oe0,,

Maximum Image acquisition cost: financial capacity per task

P

max
Z Z COS?,,, Xysop = COSE
%/_J

p 0€0,,

strip
mrx(B,infoi produc) Arwp +Cr50

(7)

Thermal constraints (max imaging time by orbit; average max imaging time by orbit):

p(t sat) = (t-1) |SAT|] + sat te{l,2,., H AT }, sat eSAT

R[S ]

ZZ Z drsop rsop < Tp Vp eP

r s 0€0,,

u

e {0,1}

rsor's'o'p? rsop

©)

(10)
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The objective (1) is to maximize the expectation value of the profits of the executed tasks under uncertainties of

clouds, in which (1— H(l—prsapxrsup )j denotes the completion probability for task (r,s) when it is scheduled to
PEL

multiple orbits and this quantity is multiplied by a weight which combines the quality, priority and the proportion of
the area covered by the opportunity. The set of constraints (2) indicate if the task (r,s) is visited or not (or covered
by an opportunity). The set of constraints (3) that are flow conservation constraints ensure that the number of
predecessors is equal to the number of successors for each task. Constraints (4) compute the energy
consumption of the task sequence for each orbit, and enforce that the energy consumption must be less than or
equal to the capacity. Constraints (5) check that the memory consumption of the scheduled tasks cannot exceed
the memory capacity for each orbit. Constraints (6) check that the task sequence for each orbit does not exceed
the given capacity of the orbit. Constraints (7) specify that the total tasks covered by all orbits do not exceed the
total budget available. Constraints (8) specify that the sequence of tasks covered by an orbit does not exceed the
total budget available for this task. Constraints (9) compute the time consumption for imaging task sequence for
each orbit is less than or equal to the available time dedicated to image (image capacity). Finally, constraints (10)
set that all implicated variables are integers.

3.7 QUEST

Unfortunately, the master problem above (objective function 1) is still neither linear nor quadratic, and thus we
cannot apply successfully existing solvers or algorithms.

Taking advantage of the problem structure, the first remark is that for a given task, a limited number of visits are
enough to make the probability of success close to one. This leads to an approximate model in which we limit the
number of visits to 1, 2 or 3 depending on the initial probability of success. Also, we divided tasks into two sets of
tasks: tasks with plans, we modeled it as coarse-grained model and tasks without plans; we modeled it as a fine-
grained model. In the first model we keep the constraints above (2-10) and only the objective function is changed
to as follows:

MAX Zvr = Zvr+ Zvr

re R=RcURp reRq reRp

Subject to:

Complex task (coarse-grained modeling):

Qol, =utility,,
Vr < Z ZVrsOq”goprs(pwrsq) = ZV;SO Z qrs(p pm(pwrsgo re Rﬂ'
seS, ped SES, @ed ——
precomputel
Joreachr,,,
< ! R S ) 1,2,...,|01 17
Wrstp_—z zxrsop re IZ"SE r,gDE rs _{’ EAR rs ’ﬂrs(pe rs
‘ ﬂ’-m(p PeP 0€0,, Ny,
ZWW <1 VreR,seS,
PED,
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Complex task (fine-grained modeling):

( + uv)z—(. + )
V., <Z O{Z zcrvop rmp Z Z Z Z sopo'p rsop xmop s x,sop Xmop .

s€S, peby 0e0,, peb, 0€0,, p'eP'; 0'e0,,,
(p.0)<(p'0")
o 5 f
Zrsopst T X5t )~ Zosapotr = Xt
A 5 )
peb oeor\'p peP' 0 EOH;J p'eP’ 0 EOV\/)
(p,0)<(p'0)<(p"0")>(p.0)(p"0").(p" 0")ESET
reR|R.
Zrsoporp SXpsep TER|R,
Zrsoporp S Xpgo € R|R,
Zrsoporp 2 Xrsop T Xpsoy =1 TER|R,
qualel0,1]
rsop suce rsopo'p' __succ __succ rsopo'p'o"p"  succ _succ __succ
crsop = prsop qrsop H drsopo'p' = A rsopprso'p'Q2rsopo'p" ersopo'p'o"p" = A prsopprso'p'prso"p”Q3rsopo'p'o"p"'
hv_l

rs qualtty obse[0 s rs

Qernpo'p' = (qrsop qrsop ) qrwpnp Q3rsopo‘p'o"p”' = (qrsop + qrso'p' + qr.yo"p")_ (qr.sopn'p' + qrsapo"p" + qrso'p'o"p")+ qrsopo'p'o"p"

note:q =1=0Q =~ =1 In addition, if p.* =1a unique visit is required for a spot TARGET!!!

2
(4" ~max2, 2.~ D) 2 A | b 1) S by + 5|

Yeop) P 0€0,,, rs p 0€0,, p' 0'€0,,
(p.0)<(p'0")"
2
Z z z Z Z Z )mpopo 'p" (eropa'p' + xrxo"p")_ (eropo‘p' - xrxo"p") _ )
p 0€0,, p' 0'€0,y, p" 0"€0,, 5 2

(P0)<(p"0)<(p"0")>(p.0)(p'0)(p"0")SET
3.8 RE-CVEST

QUEST Model quickly reaches its capacity. In the case of coarse-grained model the capacity is quickly reached
because of the exponential number of possible plans. As each variable corresponds to a plan this leads to a
model of exponential variables thus very difficult to solve. As for the fine-grained model, it leads to a limited
number of variables and the fact that multiple visits to a task lead to both positive and negative contributions in the
objective function. This fact has the effect of causing the relaxed solution to be far from the MIP solution. This is
the reason why we have developed a new model that exploits the advantages of both previous models while
avoiding inconvenient of both approaches. This allowed us to succeed in solving bigger problems.

We develop a new mathematical model which provides good upper bound and can solve large size combinatorial
optimization problems. This model is derived from the quadratic model by introducing new variables which find
how many times a given task is visited (this maximum number of visits is limited to 2-3) and add the right positive
contribution to the objective function. This model is based on delayed-reward approach which does not impose
any number of visits on a given task but reward only the first 1 or 2 or 3 visits. The remained visits are rewarded
correctly only on the final solution. The constraints 2 to 10 are unchanged; the objective function is transformed as
follows respectively on the case of two or three visits:
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A. A. A, A i
7 7 J ry
Z "DVt Z pri_l-l—pr_j — Dl [yt
ie0 A i<jeO A A A
max ZV,,O
WY Ay p i o A pup i A PP Py —
ri i K P i i rk T PPk 7i ik T rijk
i<j<k50 1 A rj A 7 A 1 Vj A It A 7] A 1 Vj A i

st

y,<x, VieO, single visit

Z%‘" Zz[/+ Zwijkél Vr,seR Zyl.-l- Zzﬁél VieO, for two visits| for 3 visits

i€0, i<je0, i<j<keO, i€0,, i<je0,

1 1
Zijgi(xi-}_xj) Vi<jeO,, wl.jkég(xi+xj+xk) Vi<j<keO,

3.9 Methodology and Solution Approach

It is well known that linear programming problems and integer programming problems are very difficult to solve. In
fact, none efficient general algorithm is known for their solution. Given our inability to solve integer programming
problems efficiently, it is natural to ask whether such problems are inherently “hard”. Complexity theory
overcomes insight on this question. It provides us with a class of problems with the following property: if a
polynomial time algorithm exists for any problem in this class, then all integer programming problems can be
solved by a polynomial algorithm, but this is considered unlikely. Algorithms for integer programming problems
rely on two basic concepts: Relaxation and Branch-and-Bound. There are three main categories of algorithms for
integer programming problems:

= Exact algorithms that guarantee to find an optimal solution, but may take an exponential number of
iterations. They include cutting planes, branch-and-bound, and dynamic programming;

= Heuristic algorithms that provide a suboptimal solution, but without a guarantee on its quality. Although
the running time is not guaranteed to be polynomial, empirical evidence suggests that some of these
algorithms find a good solution faster; and

= Approximation algorithms that provide in polynomial time a suboptimal solution together with a bound on
the degree of sub-optimality.

The reason why a Mixed Integer Linear Problem is hard to solve lies in the fact that the gap is very large (see
Figure 2). That is the case when there are many competitions between variables in the objective value that lead to
a Lagrangian relaxation which is a far from feasible integer solution. Due to the exponential growth in the size of
such a tree, exhaustive enumeration would quickly become hopelessly computationally expensive for MIPs.

By examining the output of the branch-and-bound algorithm, one can often identify the cause(s) of the
performance problem.

For our problem QUEST, we made the following remarks:

i) The first Lagrangian relaxation linear problem solution UO is very bad and very far from the MIP solution;
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i)

ii)

3.10

Fortunately, the second phase iteration in the RE-CVEST model, CPLEX provides very tight upper-bound
U2 by using Zero-half cuts. Zero-half cuts are based on the observation that when the left-hand side of an
inequality consists of integral variables and integral coefficients, then the right-hand side can be rounded
down to produce a zero-half-cut. By using intensively these cuts we get a very tight upper bound;

Each time CPLEX adds a cut, the sub-problem is re-optimized. ILOG CPLEX repeats the process of
adding cuts at a node until it finds no further effective cuts;

This upper-bound is used in the feasible solution search phase as a heuristic. This heuristic consists of
setting to zero any variable which is close to zero in the relaxation in U2. This setting is done via the
callable library of CPLEX by using our own heuristic algorithm. And solve again the derived sub-problem.
This leads to a very good solution value where the gap is close to zero. Finally, we leave MIP branch-
and-cut algorithm achieves the remaining steps of MIP solving; and

Depending on how hard is the initial problem (kSAT is close to 10), we impose a stopping criterion (gap
<=5%).

R

\
e

_— ‘ Lower ound |

Figure 2: Branch-and-bound Algorithm

Large Area Coverage Problem — MOSAIC

This mathematical model consists of a particular case of QUEST/RE-QUEST model where the number of tasks is
equal to one and that task is very large. With the difficulty to solve this problem in many situations, we designed a
solution methodology which solves this problem with a gap less than or equal to 5%. The approach consists of
2 steps which are called set covering and blocks holes method (SCBH):

1.

Solve a first linear model which consists of covering the largest area with non-overlapping spot targets as
much as possible. If o and o’ overlap, then add:

X,50p + X35, <1 (overlap free constraint) Vr € R,s €S, p,p'e P,o€O, ,,0'€0,,
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With this objective function:

maxz Z rsop rmp

{erupf P OEO,Sp rS

2. Remove all overlap free constraints. And solve a second linear model which blocks the remaining holes
while minimizing overlapping.

Xoip =1, obtained from the first step.

rs ~maXZ Z ””p rsoﬂ Z Z Z Z rwp"p ( — +x"r5‘0'p' )22_(xm}p +xrsu'p') +

(Xopt P 0€0,, rx p 0€0,, p' 0'€0,,
(p.0)<(p'0")"
g - f
Z Z Z Z Z Z rsopopop rsupa'p' +erupu - eropo'p’ —xm,,p” )
p 0€0,, p' 0'€0,, p" 0"€0,, s 2

(p,0)<(p"0)<(p"0")>(p,0)(p"0"),(p" 0")SET

We use the natural upper bound of this problem (by determining the effective area covered by spot targets). We
show that we can solve very large size problems (more than 1000 spot targets) with a gap less than or equal to
5%.

3.1 Results, Tests and Comparisons
The features or aspects of the mathematical model that is novel, useful and not obvious:

e Some constraints are surplus, i.e. we can remove many of them and keep only one with a tighter upper
bound which reduces the complexity and size of the problem definition;

e The objective function is not linear but depending on the probability of taking the image under uncertainty
(cloud) a maximum number of three visits are sufficient to reduce the uncertainty and increase the
probability of success close to one. In many cases this maximum number of visits can be limited to two or
one. This remark reduces considerably the size of the combinatorial space and makes the problem
solvable;

e A network acyclic graph is used in order to reduce the number of variables and to speedup branch-and-
bound algorithmic phase;

e Highly flexible through user definition of complex tasks and resource usage: recurring and non-recurring
tasks, resource constraints, set-up times, predecessor constraints, etc.; and

e To address large problem instances, different strategies are used, for example by fixing or removing non-
promising opportunities (which are not interesting anymore in the Lagrangian relaxation, i.e. integrality
constraints and the very difficult energy constraints are relaxed) in order to prune and reduce the large
feasible space of very large size problem instances.
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Wang data validation with small size instances (our results are compared to Wang exact solution): In all problem
instances, QUEST found a solution in a few seconds (less than 30 seconds) with a gap less than 1%. To evaluate
our model and algorithm, we performed experiments on Wang data and by using our own data generator and
compared the scheduling schemes generated by different methods namely MY-PICC and GATHER fast and slow.
The results of experimental simulations validated the impact (in terms of the complexity) of the total number of
times a task is visible. The comparisons and analysis performed in this study demonstrated that the total number
of times a task is visible by satellites is an important and main factor which determines the solvability. When the
total number of times a task is visible by satellite is less than or equal to 10, our approach which is based on a
barrier algorithm can improve the robustness of the produced schedules.

3.12 Limitations of the Approach

Because this problem is a very hard constrained resource combinatorial optimization problem, our experimental
simulation with RE-CVEST shows that our solution approach has a natural limitation when we considered more
than 300 tasks with more than 10 opportunities for each of them. This means that we have plenty of tasks which
are visible to many of satellites.

Computational study 1:
e 40 problem instances provided by Wang data input requests;
e Stopping criteria: optimality (gap = 0); and
e Solutions for most of the instances within 1% of the upper bound in less than 1 minute.
Computational study 2:
e 100 problems instances provided by Berger data input requests (randomly generated);
e Stopping criteria: optimality (gap <= 5%); and

e Solutions for most of the instances within 5% of the upper bound in less than 5 minutes.
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3.13 Conclusion

In this section, by modeling mathematically the uncertainties of clouds, we formulated the presence of clouds as
stochastic events. Due to these possible uncertainties of clouds, a task that is scheduled (may be more than one)
will be completed at the highest probability of success as possible (close to one). This fact leads to an original and
first model which is not linear. We exploited the structure of the problem in order to make it linear in our first
approximated model Coarse- and Fine-grained (CFG). This CFG model is very good but has big limitations and
fails in solving large size instances. The reason is that Coarse-grained model needs plenty of integer variables
(due to the presence of a large number of possible plans) while Fine-Grained model must consider overlaps
between area. The penalty of this overlaps creates a competition between the integer variables. This has the
effect of artificially increasing the gap and makes the problem very hard to solve. In the last mathematical model
(RE-CVEST model), we eliminated this competition and we managed to solve problems by exploiting the
information contained in the Lagrangian relaxation problem (which we know that its solution is a good upper
bound because there is no competition between integer variables). We use a heuristic in order to speed-up
solution finding by setting to zero all variables which are close to zero in the Lagrangian relaxation problem. We
also use Barrier algorithm which is proven to be the best algorithm to solve Lagrangian relaxation problems. Also,
we use Branch-and-cut (-and-price) algorithms which belong to the most successful techniques for solving mixed
integer linear programs and combinatorial optimization problems to optimality (or, at least, with certified quality).

If a task is visited more than 3 times, the contribution of next visits is very small to the point that it can be ignored
in the original model. The last mathematical model (RE-CVEST model) is the best model which can solve very
large size problem and combinatorial problems (more than 500 tasks) in less than 5 minutes with a gap less than
or equal to 5%. The Lagrangian relaxation also provides a very good upper-bound of this problem. From the
simulation experiments, we verified the superiority of our robust last model compared with the heuristics which
provides a solution with no idea of the solution quality and the upper-bound. Finally, we compared RE-CVEST
with five heuristics. The solution of RE-CVEST ranked better by more than 15% and in some instances 30%
(compared to the best of these 5 heuristics).

In the first step of our MOSAIC approach, which consists of two steps Mixed Integer Linear Model, we added a
batch of constraints which allow us to cover the largest area with no overlap areas (i.e. overlap between selected
opportunities equals zero for every two sub-area in the solution). Finally, we tackled the problem in the second
phase by filling all the remaining holes created by fixing some opportunities we find in the first step (solution) with
the minimum overlap with these fixed opportunities. The experimental result shows that we can solve a very large
area with a very tight gap fewer than 5% compared to the upper-bound (this upper-bound is given by the largest
area we can cover by using all opportunities).

3.14 Future Work

Following from this work, the following steps are required to develop a fully functional and operational
DISCOVER:

= Explore new algorithms in order to solve very large size and harder instances (up to 10,000 opportunities
and up to 1000 tasks with up to 10 multi-visits on many tasks); and

=  Providing start Ip solution (from GATHER for example) of CPLEX in order to reduce runtime.

Future work could account for virtual constellation of non-trailing heterogeneous satellites and other types of
platforms (e.g. unmanned aerial vehicles), additional mission/operation constraints (e.g. mandatory task, task
precedence) and multiple objectives in order to enrich the problem and make it more realistic. An alternate
research direction aims at exploring dynamic re-tasking, building upon the anytime property naturally shown by
genetic algorithms. Finally, we have to revisit the model in order to take account downlink scheduling constraints.
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4 HEURISTICS MODELS/SOLVERS
41 MY-PICC - Time-weighted variant
411 Description

MY-PICC is a MYopic Planning-based Image aCquisition heuristiC.

This simple heuristic is inspired from Verfaillie et al. [10]. It is a greedy heuristic to select collection opportunities
(matches between imaging tasks and platforms/sensors that can perform it) from per-orbit opportunity graphs.

In accordance with our data model, satellites are hereafter referred to as platforms.
Here are heuristic key points and definitions to complement the pseudo-code in section 4.1.2.
4111 Time Frame

e All times are relative to the time horizon, i.e. within [0.0, horizon[:

o Until this heuristic is applied on real data, this is a fictitious time frame; and

o With real data, time 0.0 could be “now” for instance, or any other user-specified reference.
e This heuristic divides the time frame into orbits:

o For now, all platforms are assumed to have the same revolution period.

41.1.2 Opportunity Graph

e \Vertices are the set of opportunities for a specific platform that start within a given time frame (here an
orbit duration);

e Edges are directed and are the set possible transitions from an opportunity to another:

o When building the graph between opportunities A and B, only the time constraint determine
feasibility:

= B start time >= A end time + AB transition duration + B set-up time.

o When running the heuristic, other constraints (energy, memory, cost, etc.) can make an edge
infeasible. Constraints are essentially found in the data model, see section 1.1.7 Constraints set.
Calculation of constrained value may also depend on already selected opportunities, i.e. not
computed only from a single opportunity or transition.

e On the first orbit, the start point is a virtual opportunity at time 0.0, without any transition constraint to any
other opportunity, i.e. an edge exists from that virtual start vertex to every opportunity of the graph;

e On other orbits, the start point is the last selected opportunity for that platform (typically in the previous
orbit, or before if none were selected in the previous orbit):

o Note: it is possible for an opportunity A to start in an orbit and end in the next, and thus conflict
time-wise with an early opportunity B in the next orbit. If opportunity A becomes the start vertex of
the next orbit, it will not have edges to all other opportunities of the graph (i.e. not with B or other
early opportunities).
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4113 Opportunity Selection Criterion

This criterion computes the value of a candidate opportunity for potential selection into a collection plan. It
requires knowing:

e  Current opportunity;

e Candidate opportunity (potential successor of current);

e Previously selected opportunities; and

o Data set where opportunities are initially from (for data on corresponding tasks, area overlaps, etc.).

Candidate opportunity value = added value / time delta
Where:
e time delta = candidate opportunity end time — current opportunity end time:
o This includes platform idle time, transition duration, and candidate opportunity execution.
e added value = candidate Opportunity differential objective value:
o Opportunity differential objective value is defined in section 2.1.2 Formulas; and

o Roughly, this is the opportunity contribution to the whole collection value, given that opportunity
and previously selected opportunities.

41.1.4 Output

Heuristic output is a collection plan. In essence, this is a list of selected opportunities (see 1.2 Collection Plan
(CP) Data Model (15‘t draft).

4.1.2 Pseudo-code

solutionPlan & ¢

For each platform p do
current, < nil

end For

For orbit in 1 ... (horizon / orbitDuration) do

timeFrame < [ orbit * orbitDuration, (orbit+1) * orbitDuration ]
For each platform p do
Create opportunity graph Gy;:
vertices < current, U {opportunities from dataSet for p and start within timeFrame}
edges < {time-wise possible transitions}
end For

While (current, has at least one successor for at least one platform p) do
candidates < ¢
For each platform p do
Remove from G, all infeasible outgoing edges from current,
candidates < candidates U {successors of current, in G.}
end For
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If candidates # @ then

For each opportunity opp in candidates do
criterion,,, < (re-)compute Opportunity selection criterion for opp

end For
Select opportunity opp from candidates that maximizes criteriong,
solutionPlan < solutionPlan U opp
current, < opp, where p: platform of opp.

end If

end While
end For

For each task t do
taskOpporunities < {opportunities from solutionPlan for t}
If (total coverage for taskOpportunities) < requiredTaskCoverage; then
Remove each of taskOpporunities from solutionPlan
end If
end For
return solutionPlan
41.3 Input Data

This heuristic requires all data in the current implementation of the Collection Task Data Model (see section 1.1).
As such the solver simply requires an interface to such data.

Given the lack of both real data and service interface for now, simulated data is used as described in section 6.1
Generated Random Input Data. Data is thus loaded from JSON or text files into an in-memory implementation of
the data model, then fed to the solver.
414 Java Implementation
Implementation is split in three parts:
e Solver-specific code:
o DiscoverSolvers module; and
o ca.gc.rddc.discover.solvers.mypicc package.
e  Opportunity graphs (common to different solvers):
o DiscoverSolvers module;
o ca.gc.rddc.discover.solvers.common package;
o Inits own class, OpportunityGraph,;
o Design notes:
= To allow for the processing of very large graphs, the performance-oriented (speed and

memory footprint) grph library was chosen to contain an underlying graph structure. See
http://www.i3s.unice.fr/~hogie/software/index.php?name=grph.
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e Calculations and data:
o Common to different solvers and other modules; and
o DiscoverCommons module.
Solver-specific code has only two classes:
e MyPiccHeuristic: the main solver class:

o Other classes from the same package (MyPiccGraphVisitor.
MyPiccGraphVisitConstriants and others), are actually inner workings of the heuristic that
were broken down into those few classes to ease maintenance and unit testing. Those have
package visibility and are not meant to be used outside the context of the heuristic without some
refactoring.

e MyPiccHeuristicListener: a listener interface:

o The solver classes support having listeners that are kept informed of the inner heuristic workings
as it runs (updated selection criterion value, selected opportunities, rejected edges, etc.).

See source code (from the DiscoverSolvers and DiscoverCommons modules) and its documentation for
more details.

41.5 Test and Validation

So far, the solver is part of a Java library and is not yet integrated within or to other services/applications.
Therefore, there isn’t any integration test yet. The solver is thus tested and validated through the following:

e Functional integrity/validation: automated unit tests (Junit framework);

e Performance/usability: manual test run with an in-house test console application (see section 6.5 Solver
Launcher Console); and

e Manual validation: manual test runs with the in-house test console, augment some solver-specific output,
and manual examination of that output.

41.51 Unit Tests
Running them requires a development environment.

In some tests, using an actual data set is more relevant than using mocked components. Those tests mostly use
the same small-scale generated data set (see section 6.4.2 Small-scale Non-random Data Generation) as well as
variants of it (i.e. data is modified in the unit test code only where such variants are to be tested). This data set is
packaged as a JSON file resource along with the source code (and therefore available in the DiscoverSolvers
module). Also, on top of their respective test-specific validations, those tests use a generic “solution feasibility
test” to assert the solution validity and consistency.

41.5.2 Performance/usability

There is no precise benchmark/performance target for this solver, but the overall performance seems subjectively
quite acceptable so far, given results in 4.1.6 Results.
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41.5.3 Manual Validation
The manual validation was done through:
¢ Analyzing the reported collection plan on the console;
e Analyzing the “verbose” output of the solver:
o Gathered via a solver listener implemented in the test console application.
e Looking at some generated opportunity graphs:
o Gathered via a solver listener implemented in the test console application; and
o Opportunity graphs also have vertices and edges colored/labeled according to intermediate
results within the solver, i.e. they depict some of the inner workings. For example, here is this

small graph from one of the platform/orbit of the medium set (most are much larger), with
highlights on selected opportunities and rejected edges:

#Task0062 108610
-1 496

P

#Task000D4 113564
0: 0.000
1:0.000
2: 0.000

3:0.000
4:0.000
5:0.000
6:0.000

#TaskO084 111998

#Task00939 111763
0:0.000

1.0.000
2:0000
30000
4: 0000
50000

TASK_COST

#Task00E2 108607
0:-2882

#Task0070 109079
0: 17 635
1:-2992 1.7 835
22892
32992
4 -2992

2: 17 635
317 835
417 835

Figure 3: Example of MY-PICC Applied on Opportunity Graphs

e All the above was mostly done on medium-size set (the same as in the performance testing above) and
the small-scale generated data set used for unit testing.
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4.1.6 Results

Solver is tested (test bench and input data) with generated data as described in section 6 Simulation Data and
Test bench. Using those data sets, results are:

Table 6: MY-PICC (Time-Weighted) Solver Results

Result Collection Plan .
Data Set % of Upper Solver Run Time
Absolute Value Bound Total cost (k$) (seconds)
Small (Wang) 6.668 75.3 N/A 0.006
Medium 48.14 71.3 463 0.162
Medium-large 153.1 72.9 1449 1.69
Large 541.7 77.3 4551 25.0

Results with Wang data sets are reported in section 7 Solvers Comparative Results.

How good does this solver perform in regard to a generated collection plan cannot be assessed from absolute
results alone. Those probably depend on how much simulated data is fit or not for that particular solver and that
does not tell exactly how it could behave with real-life data. It can be said, however, that collection value is
significantly lower than GATHER and QUEST (on spot targets, large areas are not supported by QUEST) on any
tested data set so far, although it runs significantly faster as well (and much more so).

4.2 MY-PICC - Plain-value variant
421 Description

This is exactly like the Time-weighted variant of MY-PICC, except that the opportunity selection criterion (see
section 4.1.1.3 Opportunity Selection Criterion) is simply:

e candidate opportunity value = added value.
Instead of:
e candidate opportunity value = added value / time delta.
This difference is implemented as an option flag in MyPiccHeuristic class.

Everything else from the other heuristic (description, pseudo-code, input data, test and validation, etc.) still applies
here.

4.2.2 Results

Solver is tested (test bench and input data) with generated data as described in section 6 Simulation Data and
Test bench. Using those data sets, results are:
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Table 7: MY-PICC (Plain-Value) Solver Results

Result Collection Plan Solver Run Time
Data Set 9
Absolute Value % gigﬁger Total Cost (k3) (seconds)
Small (Wang) 6.178 69.8 N/A 0.003
Medium 50.91 75.4 484 0.078
Medium-large 171.6 81.6 1611 1.62
Large 572.0 81.6 3816 22.3

As with the other MY-PICC variant, results with Wang data sets are reported in section 7 Solvers Comparative
Results.

On generated data sets, results are slightly better in general than the Time-weighted variant of MY-PICC:

e Better collection value;
e Lower cost; and
e Faster run time.

On Wang data sets though, as presented in section 7 Solvers Comparative Results, collection value is
significantly lower.

e On generated data sets, this can be explained by higher resource contention, especially on larger sets:
PV can reach most-valued opportunities per orbit in most orbits, while TDW is likely to reach global limits
earlier (task budget for instance) and thus be stuck with less-valued opportunities accepted in early orbits;

e On less constrained data set, such as Wang data sets, TDW fares better compared to PV. PV misses
many opportunities and reaches the end of the time horizon while still far from constraints.

Obviously, those remarks hold only for the tested data sets, and may not be generalized to real-life data.
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5
5.1
5.1.1

METAHEURISTICS MODELS/SOLVERS
GATHER
Novelty

GATHER is a Genetic Algorithm-based collecTion schedulER.

Based on PMX variants extensions:

Provides search guidance of the solution space using a satellite collection graph (satellite collection
network flow) in new genetic operators to exploit natural opportunity (opp) precedence, which facilitates
solution recombination and child production of timely collection opportunity sequences (time constraint
violation reduction) in individual solutions:

- The implicit high satellite collection (imaging opportunities) graph connectivity is exploited to
efficiently repair temporal constraint violations.

Maintain a minimum proportion of feasible («) / unfeasible (1-&) sub-population solutions to better
search/explore the solution space (escape local extrema);

Exploit a serviceability matrix to crossover dissimilar orbits (from same or different satellites) sharing
common serviceable tasks —dissimilar orbits selection proportional to a shared common task proportion;

Mutator: change the collection opportunity sub-path using G,(V,= O,, A,) graphs to easily replace a
feasible sequence (0,0, 0;%0,, 0,20, ....) and reconnect to the terminal collection opportunity path
segments with minimal repair;

Fitness: includes objective (Obj) and constraint violations; and

Provides a better-quality solution than the best-known heuristic if the latter is used to generate initial
population of feasible solutions (changing initial opportunity node to visit).
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5.1.2 Definitions
In accordance with our data model, satellites are hereafter referred to as platforms.
5.1.21 Population
e A population individual is a chromosome, and inversely, the population is a set of such chromosomes;
e The population size is invariant over generations;
e Initial population individuals are generated from a genetic pool in the Genome (see 5.1.2.3 Genome); and

e On each generation, a minimal proportion « of the population individuals is repaired using the
ChromosomeSolutionRepair mutator (see 5.1.3.2 Chromosome Solution Repair).

5.1.2.2 Individual

In its whole, a chromosome is a multi-satellite collection schedule solution, that is, a set of ‘collection opportunity
paths’ across platform orbits for all platforms that can be put together in a collection plan.

Chromosome composition:

e Each chromosome is made of a list of alleles (one on each locus, i.e. each position on a chromosome),
each being tied to a gene;
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e A gene describes a given locus on a chromosome:

(e]

O

@)

In this solver, genes are tied to a single platform and a single orbit, collectively called p.in this
section. For example: the gene at locus 13 is associated with orbit 3 of platform 1, for which a few
opportunities are available:

A C(2)
— D(1)
time
— (E—
B(3) E(2)

Other p-related invariant data are pre-computed in the gene, such as the platform-orbit collection
opportunity graph G,(V,= O,,, A,= legal chronological transitions), where O,imposes a partial
natural order on precedence (based on the opportunity start time) on its elements:

Genes are stored in the genome, and only referenced to by alleles and chromosomes.

e An allele is the current value (genetic code) of a gene on a chromosome:

o

In this solver, alleles represent a chronologically feasible (and potentially empty) set of
opportunities, i.e. an opportunity path zin the opportunity graph G, of the corresponding gene:

o,,er,<=0,; (o,,,0,,)eAd, =1a;,,}.a;, {01} i<j

7y = Ou(t) p3 O22) >+ On(t) > Ottst) > O 7(t) < z(t +1) [timeline] t € {1..‘/)‘} SJromG,(V, =V, ,A))
For example, alleles on locus 13 could contain opportunities 45, 17 and 69 (from the global list of

all opportunities), all of which (in that order) form a valid path in the opportunity graph of genes on
locus 13.

e Genes in genome and alleles in chromosomes are sorted by platform then by orbit, as illustrated below:

7r1|7zz|....|7rp|....|7r‘P‘ where 7z, :opp path in G,(V,=V ,A4))
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Chronological feasibility:

TN AT 3
s].(l]i/g&' |.'>5:‘

e On a given platform, an opportunity must start in time after the platform is ready for it (according to the
previous opportunity end time, transition and set-up delays, etc.);

e Applies locally (within each allele):
o Imposed by allele definition.
e Applies globally (between alleles):

o Chronological criteria must hold between the last opportunity of an allele and the first of the next
allele, only if those alleles are from consecutive orbits on the same platform; and

o Imposed by a mandatory chronological repair in genetic operators.
e In a population, chromosomes are always chronologically feasible.
Solution feasibility:

e Despite chromosomes being chronologically feasible in the population, a chromosome may nevertheless
be infeasible as a collection plan solution

o It may fail meet various data set constraints; and
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o See 1.1.7 Constraints set, for global, platform and per-orbit constraints.
e Chromosomes can be repaired for such feasibility, as described in 5.1.3.2 Chromosome Solution Repair.
51.2.3 Genome

The genome is the genetic pool. It contains all genes, each of them describing alleles in chromosomes. Also, for
each gene, the genome contains a list of valid alleles.

Allele validity is defined as:
e Chronologically feasible; and
o Solution-feasible on local scale (this allele only), but not once it joins others on a chromosome:

o Thatis, if it were to be the only allele on a chromosome, the chromosome would be solution-
feasible, as defined in 5.1.2.2 Individual.

The genome used in this algorithm is not complete:
e |t lists several valid alleles for each gene, but not all possible alleles (obvious combinatory issue); and

e Typically used to generate an initial population with a decent genetic code, or by some mutators to
replace an allele with a valid one later on when evolving the population.

The list of valid alleles for each gene is created using the heuristic method (see 4.1 MY-PICC - Time-weighted
variant) applied on a platform-orbit opportunity graph independently. This heuristic is deterministic and thus only
generates a single possible path for a given graph. Therefore, various opportunity nodes in the graph are used as
the visit starting point to generate various alleles.

51.24 Fitness

Given that a chromosome has a one-to-one mapping to a collection plan, part of it fitness value can be evaluated
using the objective function (see 2 Objective Function):

Fitness:
= bonus (collection value) — malus (constraint violation penalty)
= collection value — A * constraints violation proportion
e Where the constraints violation proportion is the ratio of counted constraint violations over the
possible total number of potential violations; and
o Where A is set to the plan objective value upper bound to balance the relative weights of the
bonus and malus.
! L4
=O0bj,,, — supObj,,, > . 5 1+ tanh M(RES% —~ RESP) > >
p RES={energy, p RES={energy,
memory,time} memory,time}
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Given a large enough M value, the above tanh is used to approximate an on/off constraint violation:

10°
]

1 if RES, >RES
%1+tanhM(RESﬁp—RESp) z{ J RES,, p

0 otherwise

Note: spot targets (Ar.m,,/Am =1) multi-visits are implicitly discouraged by the objective function.

5.1.2.5 Serviceability

Given a task r and an orbit p, the serviceability matrix is defined as:

1 if task r serviceable over orbit p

0 otherwise

svdr, p) = {

A task is serviceable if at least one opportunity in an orbit covers that task. Also, for the sake of simplicity, we
define orbit p as an orbit on a specific platform, i.e. orbits from different platforms occurring at the same time are
attributed a different p. In other words, p is akin to the locus in the genome and chromosome.
51.3 Generations
Key points:

e Children pair generation:

o Two parents produce two children, initially clones of both parents:

= Parents are randomly picked according to a rank-based probability. See 5.1.3.1 Parent
Selection.

o Children undergo a sequence of zero to many genetic transformations through genetic operators:
=  Genetic operators to apply are chosen randomly;
= Each available operator can be applied at most once, with some probability to be applied,;
= Operators application order is random; and

= Operators are chained: an operator output (two children) is taken as the next operator
output (two parents).

o All operators are responsible to repair children for chronological feasibility (not solution feasibility)
on output, as described in 5.1.2.2 Individual:

=  The chronological repair is performed both within alleles and between consecutive alleles
on the same platform;

= Problematic opportunities are removed from alleles until the whole chromosome is
chronologically sound; and
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= When an opportunity needs to be removed in a pair of conflicting opportunity, either one
is chosen in a probabilistically random fashion. Each is attributed a probability
proportional to its single opportunity value, and the randomly picked opportunity is kept
(other is removed). That is, the least-valued opportunity is more likely to me removed.

Elitism is applied to keep a portion of the fittest individuals from the previous generation. The remaining of
the population is completed with the fittest individuals from the new generation;

Algorithm stops when one of the following conditions is met (all of those are verified simultaneously):

o The value of the fittest individual (best computed fitness value) did not improve significantly (as
defined below) over the last n generations:

= A simple linear regression is performed over the fittest individual fithess value from each
of the last n generations. Only generations where the best fitness value is positive are
used (normally always the case, except for theoretical corner cases);

= Generations are mapped to the x-axis: [n-7 generations earlier, latest generation] is
mapped to [0, 1];

= Fitness values are mapped to the y-axis: [0, max fithess] is mapped to [0, 1]; and
= Stop condition is met when the regression slope is smaller than a specified threshold.

= Both the slope threshold and the number of generations are specified as solver
parameters.

o Failure to generate individuals with positive fitness value over the first n generations (theoretical
corner case, very unlikely in reality); or

o Hard-limit on generation count.

5.1.3.1 Parent Selection

A rank-based fithess scaling scheme inspired by Potvin & Bengio (The Vehicle Routing Problem with Time
Windows Part 1l: Genetic Search) is used (fitness-based parent selection strategy, etc.). In the current
implementation, the last paragraph in the above approach is not applied.
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In order to bias the selection process towards the best solutions.
a linear ranking scheme is used.[13] First. all solutions in the current
population are ranked according to their quality, that is. the best
solution has rank 1. and the worst solution has rank P, where P is the
size of the population. A fitness value is associated to the solution of
rank 1 as follows:

fitnessj = MAX - [(MAX - MIN) = (1-1)/(P-1)]
with MAX =1.6. MIN =0.4.

For example. when P=5. fitness;=1.6. fitness>=1.3, fitness3=1.0,
fitness4=0.7 and fitnesss=0.4. Then. a fitness-proportional selection
scheme is applied to these wvalues. Namely, the selection probability
pi for a solution of rank 1 is:

fitnessj fitness;
= =
ijl,...,P fitness; P

It is worth noting that the summation over all fitness values in
the population is equal to P, because MIN + MAX = 2. and the average
fitness 1s equal to 1. Since P different selections (with replacement)
must be performed on the current population in order to select P
parents and generate P new offspring, the expected number of
selections E; for a solution of rank i is:

E; =P = p; = fitness; .

Hence. fitnessj is also equal to the expected number of selections
for the solution of rank i. For example. the best solution with fitness
MAX=1.6. is expected to be selected 1.6 times on average over P
different trials.

In order to reduce the variance associated with pure
proportional selection (i.e.. each solution can be selected between 0
and P times over P different trials). stochastic universal selection or
SUS was applied to the fitness values. This approach guarantees that
the number of selections for a given solution is at least the floor. and
at most the ceiling, of its expected number of selections.[1]

5.1.3.2 Chromosome Solution Repair

For a chromosome to represent a feasible solution, it must observe both implicit physical time constraints
(chronological feasibility) and explicit constraints from the data set. While chronological feasibility is mandatory
and enforced as generated children go through genetic operators, solution feasibility is mandatory only for the
final single returned solution. From a generation to another, the population contains both solution-feasible and
solution-infeasible chromosomes to have both viable solutions and a diverse genetic pool.

Solution feasibility is defined by satisfying various constraints, essentially listed in the data model (see section
2.1.7 Constraints set). Within a chromosome, constraint violations occur either when:

o Exceeding capacities:

o Orbital platform capacity: energy, memory, thermal;

o Task capacities: cost; and

o Overall capacity: total budget.
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¢ Not meeting minimum requirements:
o Minimal task coverage; and
o Other requirements, not yet implemented in this algorithm:
= Mandatory task visits;
= Precedence task constraints; and
=  Stereo/concurrent observation/cross-cueing/change-anomaly detection.

While exceeded capacities can be fixed by removing some opportunities from alleles, unmet requirements would
be met by adding opportunities. Choosing which one to add/remove is not trivial. Furthermore, opportunities may
need to be removed to fix an artificial paradox: for a given task, as the number of opportunities covering that task
increases, the task objective value (and area coverage) may numerically decrease. This paradox makes minimum
requirement evaluation unreliable and hinders the ability to select proper opportunities to remove to fix exceeded
capacities.

Therefore, the solution repair process has to be divided into a few steps:

e Address the coverage and objective value calculation paradox;
e Fix exceeded orbital/task constraints;

e Fix unmet minimum requirements; and

e Fix exceeded global constraints.

Coverage and Objective Value Calculation Paradox

In reality, adding an opportunity may either increase the total coverage or at worst not bring anything new (if the
area covered by that opportunity is already fully covered by others). The same goes for task and collection value.
However, the current coverage calculations, derived from the objective function considers only opportunity
individual coverage and pairwise overlaps, but not three-way or more overlaps. See section 2.1.2 Formulas for
task value and relative area coverage. As such, an opportunity for which the sum of pairwise overlaps with other
planned opportunities is greater than its own coverage will decrease the overall coverage. The same occurs to
task objective value given reasonable p and q values.

To fix this paradox, some opportunities need to be removed until remaining opportunities have an overall positive
contribution to the task value and coverage. There is no way to know which opportunity effectively brings a
positive or negative contribution since this contribution depends on other opportunities currently selected
(opportunity value and overlap values). Therefore, all opportunities currently selected in a chromosome have their
respective Opportunity differential objective value computed (see section 2.1.2 Formulas as well). This provides at
least a hint on opportunities that are more likely than others to bring a positive/negative contribution.

The opportunity with the worst contribution is removed, then contributions of remaining opportunities are
recomputed, and the process repeats. It stops when removing the worst opportunity would not increase task
objective value anymore. It can also stop earlier, if current task objective value (using remaining opportunities) is
greater or equal to the best single opportunity value. In other words, although task value could perhaps be
improved further by removing opportunities, reaching the best single opportunity value is considered fair enough,
and helps preserve some genetic diversity.
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Note that such paradox may not exist anymore in a future version of this software, if:

e Opportunity coverage is expressed in actual area geographic coordinates instead of in a simple area
coverage relative to a task area of interest; and

e Collection value is computed accordingly.

As a side effect, fixing this paradox also effectively reduces constraints violations and reduces the need to delete
opportunities in the next steps below.

Fix exceeded orbital and task constraints

Orbital capacity issues are resolved by removing opportunities locally in each allele (i.e. independently on each
platform/orbit pair). Opportunities to remove are selected randomly but with a relative probability equal to:

1 - single opportunity value x task nominal value

In other words, opportunities that probably contribute less individually (actual overall contribution also depends on
opportunity overlaps, which is not computed here) are more likely to be removed. Process is repeated until all
orbital constraints are met. Removing them randomly-yet-probabilistically instead of deterministically preserves
genetic diversity while aiming at maximizing collection value.

Task constraints (only maximum budget for now) are dealt with after orbital constraints, since meeting them
involves removing opportunities across the whole chromosome, on a per-task basis. Obviously, it may happen
that orbital repairs already fixed task constraints as a side effect. Opportunities to remove are selected in a similar
fashion that with orbital constraints, but across the whole chromosome instead of within a specific allele.

Fix Unmet Minimum Requirements

Obviously, fixing such requirements by adding tasks would compete with previous repairs. Therefore, unmet task
requirements are rather fixed by removing all opportunities related to offending tasks, effectively rejecting entire
tasks from the solution. The improvement of the overall collection value thus relies on the whole genetic algorithm
to bring back in some chromosomes, in a later generation, enough opportunities to meet minimum requirements,
if even possible.

Fix Exceeded Global Constraints
At this point, only the overall budget constraints remain to be satisfied. Again, to avoid breaking previous repairs,
the simplest thing to do is to remove complete tasks, starting with the least valued/most expensive tasks. That is,
tasks, along with their currently selected opportunities, are sorted according to:

task objective value | task cost
Tasks with the lowest ratio are removed until budget constraints are met. A more advanced heuristic could cherry
pick opportunities across tasks that can be removed without breaking again any previous repair, but this isn’t

implemented yet.

514 Genetic operators
5.1.41 Recombination — Same Orbit Xso

Same orbit collection opportunity path recombination between two parents.
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Main operations:

e Select random orbit pin both P in P’ parents, with their opportunity paths 7z, and 7, in their respective
corresponding allele;

e Select crossover opportunity point o, (P) from P; and
e Find the earliest o’,,(P’:;r},) > 0,(P: =) and swap sub-paths to generate a child orbit ﬂxp respecting
opportunity transition constraints (start time precedence) — legal repair using valid transition from A, if

required.

Xsol P(1t1, T My oo o) X P04, e T W) ) D PO (1, g g ), PO(, W2 85 i)

% (P)
‘: 5 | 12

20 43

= Xover
-'

*Single child generation to reinforce opp temporal ordering.
- _ %

B3I0ZONPOE R0
p: i A3 NG

E;LLABQE) X PZ[BQD) 9Child[ABD) (Child(BDE) not necessarily feasible)

5.1.4.2 Recombination - Orbit Swap Xos

This operator exchanges ‘full orbit collection opportunity path’ solution between corresponding similar platforms
from 2 parent solutions P and P’, i.e. it exchanges corresponding alleles between two chromosomes: z, . 7°,

Xos( P(my, mta, ... Wy, W) X P04, B W poe, i) ) 2 P (ny, 105, ... T pees Tp)) Pcy(n’1, T Mpeow, T)p)
5.1.4.3 Mutation — Cross-Orbit Xco

This mutator aims to reduce the same task coverage across different orbits. It is applied independently on each
parent to produce offspring, i.e. it does not mix genetic content between them.

Main operations:

e Select two dissimilar orbits p,p’ sharing common tasks among their potential opportunities (from all
possible opportunities in the genome, not only those from current alleles in parents):

o Select pair at random but give higher priority to pairs of orbits sharing more serviceable tasks, i.e.
proportional to |O,,| where:

= O, set of shared serviceable task r such that svc(r,0) * sve(r,p’) = 1.
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o Probability of selecting p,p’ from all possible pairs is proportional to ‘Om,‘ .

e Remove potentially shared task opportunities from either orbit with the hope that they might pop back in
the other in the last step:

o In 7z, remove opportunities for shared tasks that are not found in 7,, and inversely for z, and 7,.;
and

o For opportunities of shared tasks found in both orbits, remove either one probabilistically, based
on single opportunity value.

e Add as many opportunities as possible in both z, and 7z, independently as follows:
o Consider all opportunities not already in 7 and that were not previously removed;
o Sort them by ‘value’ (most valued first); and
o Tryto add them one by one, but reject those that can’t fit the current graph when added.
5144 Mutation — Sub-Path
This operator is applied independently on each parent to produce offspring, i.e. it does not mix genetic content
between them. In a random allele, it removes a part of it (a collection opportunity sub-path 7z,) and bridges

remaining segments with time-wise possible opportunities from the opportunity graph.

P(ny, mo...m, ... mp) > w(P) > P (nq, o ..., ..o mpp)

Ty, = On(l)p’On<2)p""'[Ozrmp’0n<t+1>p]’""0ﬁqﬁp\)p

r

"o ' '
7Tl = 01y p30n2) pres- Q1) 20 2(0) p 320 n(zwmpl07r(r+k>p-"-0”qﬂp\)p
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The sequence to remove is determined from a contention-based random start point and a fully random length:
o Each opportunity in the allele refers to a task (target) r, typically a different task for each opportunity;

e Each opportunity is given a relative probability to be chosen, proportional to contention over r (C,):

°© p.= Zcrcr C = ZSVC(I", ) svdr,p)=

peP

1 if r serviceable over p
0 otherwise

rerw,

e The higher that relative probability, the higher the odds of selecting that opportunity as the sequence start
point; and

e Sequence length is uniformly random over the length of the allele segment that follows that start point.

Replacement opportunities are selected randomly from time-wise possible opportunities for that orbit, favouring
opportunities with a low task serviceability over the complete time horizon:

e The two remaining allele segments (before and after the removed sequence), each of which is potentially
empty, define the time bounds for replacement opportunities:

o Orbit time bounds are used for empty segments.

e From the opportunity graph vertices, each opportunity within time bounds is a replacement candidate,
regardless of existing edges between vertices;

e Candidate opportunities are added individually, each with probability 1— p_, reusing p, computed above;
and

e A chronological repair (see 5.1.3 Generations) is applied on the allele to remove, if needed, opportunities
that violate time constraints.

5.1.4.5 Mutation — Full Path

This operator is applied independently on each parent to produce offspring, i.e. it does not mix genetic content
between them. It selects a random gene then replaces its whole allele with a randomly selected feasible allele
from the gene allele pool (same pool that is used to generate the initial population, see 5.1.2.3 Genome).

5.1.5 Pseudo-code
5.1.5.1 Initial population

Once the genome is created (as described in section 5.1.2.3), the initial population can be created:

population < @
For 1 ... populationCount do
chromosome < @
Forlocus in 0 ... geneCount-1 do
allelePool < {possible alleles for gene # locus from genome}
chromosome < chromosome U random allele from allelePool
end For
compute fitness for chromosome
population < population U chromosome

E;oepgffiai]gzlgﬁ:zz}i?r:'s data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5

title page of this document.




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 76

end For
Sort population on decreasing chromosome fitness

5.1.5.2 Genetic evolution loop

Once the initial population is created, the main loop of the genetic algorithm kicks in to generate the solution
collection plan:

While stop condition is not met, do
children < ¢
For 1 ... populationCount/2 do
parent1, parent2 < two ranked-based probabilistic random elements from population

operatorsToApply < {probabilistic random selection from allAvailableOperators}
Shuffle operatorsToApply

child1 < replicate parent1

child2 < replicate parent2

For each operator in operatorsToApply do
Apply operator to (child1, child2)

end For

compute fitness for child1
compute fitness for child2

children < children U {child1, child2}
end For

Sort children on decreasing chromosome fitness
eliteCount < elitismRatio * populationCount
newPopulation < {eliteCount first elements of population}
U {(populationCount — eliteCount) first elements of children}

toRepair < repairRatio * populationCount

For each chromosome in {toRepair random elements from newPopulation} do
Repair chromosome for partial solution feasibility
compute fitness for chromosome

end For

Sort newPopulation on decreasing chromosome fitness
population < newPopulation
end While

For each chromosome in population do

Repair chromosome for full solution feasibility
end For
Sort population on decreasing chromosome fitness
bestChromosome < first element of population
solutionPlan < {all opportunities from bestChromosome}
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5.1.6 Input data

This heuristic requires all data in the current implementation of the Collection Task Data Model. See section 1.1.
As such the solver simply requires an interface to such data.

Given the lack of both real data and service interface for now, simulated data is used as described in section 6.1
Generated Random Input Data. Data is thus loaded from a JSON file into an in-memory implementation of the
data model, then fed to the solver.

51.7 Java Implementation
Implementation is split in three parts:
e Solver-specific code:
o DiscoverSolvers module;
o ca.gc.rddc.discover.solvers.gather package; and
o ca.gc.rddc.discover.solvers.gather.geneticoperators package.
e  Opportunity graphs:
o Common to different solvers;
o DiscoverSolvers module;
o ca.gc.rddc.discover.solvers.common package;
o Inits own class, OpportunityGraph; and
o Design notes:
= To allow for the processing of very large graphs, the performance-oriented (speed and

memory footprint) grph library was chosen to contain an underlying graph structure. See
http://www.i3s.unice.fr/~hogie/software/index.php?name=grph.

e Calculations and data model:
o Common to different solvers and other modules; and
o DiscoverCommons module.
Solver-specific code if further split into several classes:
e ca.gc.rddc.discover.solvers.gather package:
o0 GatherGeneticAlgorith:the main algorithm class;
o GatherGeneticAlgorith: a listener interface:

= The main solver class supports having listeners that are informed of the inner workings
as it runs (chosen parents, created children, etc.); and
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= This was only barely exploited so far in the development. Might be removed in a future
version if not really used.

o Various functional components of the algorithm extracted as separated classes
(ChromosomeSolutionRepair, SingleOpportunityEvaluator, etc.); and

o Genetic data classes (Chromosome, Gene, etc.).

e ca.gc.rddc.discover.solvers.gather.geneticoperators package:
o One class per operator, such as MutatorSubPath; and
o Other helper classes used by operators only.

While most concepts explained in this document translates to closely equivalent code (such as
List<Opportunity> to represent opportunity graph sub-paths in alleles), some mathematical concepts are not
as much straightforwardly translated. For example, the serviceability matrix is implemented as a list of serviceable
tasks in each Gene instance, for both convenience and performance reasons.

See the source code (from the DiscoverSolvers and DiscoverCommons modules) and its documentation for
more details.

5.1.8 Test and Validation

So far, the solver is part of a Java library and is not yet integrated within or to other services/applications.
Therefore, there isn’t any integration test yet. The solver is thus tested and validated through the following:

e Functional integrity/validation: automated unit tests (Junit framework); and

e Performance/usability: manual test run with an in-house test console application (see section 6.5 Solver
Launcher Console).

5.1.8.1 Unit tests
Running them requires a development environment.

In some tests, using an actual data set is more relevant than using mocked components. Those tests mostly use
the same small-scale generated data set (see section 6.4.2 Small-scale Non-random Data Generation) as well as
variants of it (i.e. data is modified in unit test code only where such variants are to be tested). This data set is
packaged as a JSON file resource along with the source code (and is therefore available in the
DiscoverSolvers module). Also, on top of their respective test-specific validations, those tests use a generic
“solution feasibility test” to assert solution validity and consistency.

5.1.8.2 Performance/Usability

There is no benchmark/performance target for this solver. Overall performance seems acceptable in most cases
(less than one minute), but might not be very usable with large data sets (several minutes) in an interactive
scenario. It is worth nothing that execution times may largely vary according to algorithm parameters, but
improving the run time that way also adversely affects resulting collection plan value. See results and discussion
in 5.1.9 Results.
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51.9 Results
5.1.9.1 Algorithm parameters

Several parameters in this solver may largely affect results. Those were reasonably tuned for various test data,
but no fine tuning was performed for real-life data. Indeed, currently used data sets are generated and may not be
representative of real-life data. Nevertheless, a “slightly better but much slower” configuration variant for GATHER
was used with Wang data sets (in section 7 Solvers Comparative Results), and parameters were fine-tuned for

that case.

By default, values are set to commonly used values in genetic algorithms, with minimal tweaks in cases that

needed it most. Default parameters values are:

Population size:

o 30.

o 4.0;and

Parent-picking ranking values (highest to lowest ranking value ratio):

o This generates ranking values from 0.4 to 1.6, as described in 5.1.3.1 Parent Selection.

Individual probability for each genetic operator:

o Recombination — Same Orbit: 0.50;

o Recombination — Orbit Swap: 0
o Mutation — Cross-Orbit: 0.50;
o Mutation — Sub-Path: 0.25; and

o Mutation — Full Path: 0.25.

Minimum solution repair ratio:

o 0.50; and

.50;

o The aim was to use a fairly low value, such as 0.25 to preserve genetic diversity. However, at first
glance, results are somewhat poorer on the largest data set with low values (this was not
investigated at this stage). On the contrary, a higher value does not seem to affect (neither for
better nor worse) results on other data sets. Overall, this repair has a very high incidence on the

result, as discussed in 5.1.9.4 Chromosome repair influence.

Elitism ratio:

o 0.07,i.e. 2 individuals in the current population.
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e Stop conditions:
o Maximum number of generations to allow near-identical fitness for the fittest individual:
= 50;and

= Lower value reduces run time, but also hinders improvements over heuristic solvers that
this algorithm tries to leverage.

o Fitness difference threshold for above ‘near-identical’ fithess:
= 0.1%; and

= Higher threshold reduces run time, but reduces result values as with the previous
parameter.

o Hard limit on generation count:
= Unlimited.
5.1.9.2 Slower variant for Wang data
GATHER was used with an alternate configuration on the complete Wang data to see how close this non-
deterministic algorithm could get to QUEST, albeit with longer running times (see section 7 Solvers Comparative
Results).
Default parameters were reused, except for:
e Population size:

o 150: this maintains a fuller genetic pool without having to rely solely on some mutators to bring
back by chance some less-valued genetic material (opportunities). Although some opportunities
can have a lower value when compared to other in specific cases (such as opportunity conflicts
regarding time or other constraints), they might bring better value overall when selected with and
without some others;

e  Minimum solution repair ratio:
o 0.65: for some reason, this value yields better output collection value;
e Stop conditions:

o Maximum number of generations to allow near-identical fitness for the fittest individual:

= 500: wait longer to make sure population is really not improving much;

o Fitness difference threshold for above ‘near-identical’ fithess:

= 0.01%: 10 times stricter than default value.
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5.1.9.3 Execution results on generated data

Given the random nature of this algorithm, the solver is run 5 times on each data set, and results are averaged in
Table 8 below. Nonetheless, minimum and maximum returned collection plan values are reported to show that
variance is quite low on that regard, except for the largest data set. Also, GATHER givers better results than MY-
PICC, except again for the largest data set. Causes for such discrepancies were not investigated at this stage.

Results on Wang data sets are found in section 7 Solvers Comparative Results, along with results from other
solvers.

Table 8: GATHER Solver Results

Result Collection Plan

Average

Data Set Absolute Value Average % Average Solvgr Run
of Upper Total Cost Time

Min Max Average Bound (k$) (seconds)
Small (Wang) 7.245 7.245 7.245 81.8 N/A 0.204
Medium 59.47 59.98 59.69 88.4 509 3.41
Medium-large 192.9 198.3 195.5 93.1 1539 27.5
Large 533.2 566.2 549.8 78.5 3404 205

5194 Chromosome repair influence

Given the high task opportunities contention over limited resources (satellites and their constraints), especially in
the largest set, the chromosome solution repair mutator seems to have a significant influence on the result.

Indeed, once repaired, chromosome fithess increases significantly, making repaired chromosomes more and
more likely to be chosen as parents for the next generation. Within a few generations only, those repairs
propagate through the population more than anything else. Most of its influence is thus from how it is
implemented (for example, fixing the “more is less paradox”, or opportunity selection criteria for removal).

Given this repair is so strong, it could potentially defeat other benefits of using genetic algorithms. Further
investigation is warranted to evaluate how much imbalance it actually brings and what could be done against it if
needed.
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6 SIMULATION DATA AND TEST BENCH

Given the lack of real data (except for some foreign data that follow a simpler data model [1]), most solvers are
developed and tested with generated data. Data is either:

o Generated through an in-house console application (described in section 6.4 Data generator application):
o Used by MY-PICC and GATHER,;
o Once generated, the same sets are reused for testing; and
o See section 6.1 Generated Random Input Data.
e From the author of [1], hereafter called Wang data:
o Used by MY-PICC, GATHER and QUEST; and
o See section 6.2 Wang data sets.
Also, since solvers are not yet integrated into a back-end service, they are only provided within a Java library. As
élg%héofg)l.vers are launched manually via an in-house test console application (see section 6.5 Solver Launcher

6.1 Generated Random Input Data

Three sets were generated with the following common features (detailed in section 6.4.3 Large-scale random data
generation):

e Three platforms (satellites), each with the same number of orbits and the same revolution period;

e Orbital constraints (memory, energy, thermal) and global constraints (task budget, global budget) are
restrictive enough so that they are easily exceeded,;

e A mix of spot and large area targets, with many opportunities spread across many orbits;

e Individual opportunities can cover anything from almost nothing to the whole task area (a lot of overlaps).
Their probability field is random but their quality field is fixed to 1; and

e Varying number of tasks between sets, with the number of orbits and total budget adjusted accordingly.
All three data sets are stored as JSON files. On top of that, a small Wang data file (not part of Wang data sets in
the next section, although from the same source) was added for the sake of comparison. It differs slightly from the
above data sets:

e Only spot targets tasks: each opportunity covers 100% of the task it is associated to;

e No budget restriction (task and global); and

e No thermal constraint.
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The following table summarizes data sets:
Table 9: Generated Test Input Dataset
Nun_1ber of Number of Total number Total Estimated Data set file
Name orbits (for tasks of budget (k$) Upper size (MB)
each platform) opportunities 9 Bound
Small (Wang) 7 30 36 N/A 8.852 0.13
Medium 43 100 2080 750 67.52 8.35
Medium-large 100 300 16187 2300 210.1 180
Large 140 1000 72938 7500 700.6 2013

The upper bound is estimated according to formulas in section 2.1.2 Formulas.
Those data sets are available in Annex A of this document:

e 2066C.022-REP-01-OLCT Rev. 02 - Annex A - Generated test data.7z
6.2 Wang data sets
Those test data sets come from the author of [1]. They share those common features:

e Three platforms with their own parameters (energy and slewing rates for instance);

e 120, 160 or 200 tasks with a few opportunities each, over 7 or 14 orbits per platform (21 or 42 total
distinct orbits):

o All combinations of the above, with 10 data set instances per combination.
e Only spot targets tasks: each opportunity covers 100% of the task it is associated to;
e Opportunities have varying probabilities but fixed quality (1.0);
e No budget restriction (task and global); and
e No thermal constraint.

For the purpose of comparing solvers, energy and memory constraints from Wang data sets are multiplied by 7.0
at run-time.

Those data sets are available in Annex B of this document:
e 2066C.022-REP-01-OLCT Rev. 02 - Annex B - Wang test data.7z
6.3 Test bench

Solvers are launched manually via an in-house test console application (see section 6.5 Solver Launcher
Console).
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Functional correctness aside, solvers are expected to perform in a reasonable amount of time. What is
reasonable or not is not specified in current uses cases and requirements. Also, running times depend on input
data, and actual simulated data may not be a representative sample of future real-life data. Nevertheless, solvers
are benchmarked to provide ballpark figures on their performance-wise usability. For the comparison, they run on
a virtual machine featuring workstation performances:

e 8 virtual CPUs at 2.30GHz (from an Intel Xeon E5-2620 v3);
e 64 GB RAM; and
e Typical SSD on the hypervisor.

Also, JVM parameters are left at their default, except for:
e -Xmx48G: allow up to 48 GB for the memory heap for most demanding cases (never actually occurred).

Loading times for generated data set files (see section 6.4) are not included in each solver performance
benchmark. For the record, they are roughly linear with file size:

(1) Wang data, Small and Medium data set: less than 1 second;
(2) Medium-large data set: 3 seconds; and
(3) Large data set: 25 seconds.

6.4 Data generator application

This application is not a deliverable and is only documented here for the purpose of future characterization of this
data, compared to real-world data.

6.4.1 Application overview
This application can generate data to cover a few scenarios:

e Small (human-computable scale) and non-random data to test solvers functionalities (namely unit
testing):

o Generates an in-memory DataSet (see section 1.1.3 Data set) and serializes it into a JSON file
that can be loaded by the solver launcher console (see section 6.5 Solver Launcher Console);
and

o See section 6.4.2 below.

e Somewhat random data with large numbers of tasks and opportunities to test solver performance and
feasibility:

o Generates an in-memory DataSet and serializes it into a JSON file that can be loaded by the
solver launcher console (see section 6.5 Solver Launcher Console); and

o See section 6.4.3 below.
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e Wang-format random data: a small to large-scale data set, which follows the model described in [1].
Typically used to compare the Quest solver (see section 3 CPLEX-based Models/Solver) results with
original results from [1]:

o Generates a file in Wang format.
Source code is found in DiscoverSolver module, under
ca.gc.rddc.discover.solvers.utils.dataSet package. However, given its in-house test/development
tool status:

e Development time/effort was limited to:

o No unit test;

o In-code documentation limited to on-the-spot explanations and comments; and

o Design/overview documentation limited to this section of this document.

e Low user configurability:

o Wang-format data generator takes parameters from the command line; and

o Other generators take parameters from static values in dedicated Java classes. Data is easily
modifiable, yet it can only be changed in a development environment where the application can
be rebuilt.

6.4.2 Small-scale Non-random Data Generation

This small-scale data set contains three similar tasks, each with four opportunities scattered on two orbits and two
platforms. Unit tests typically take it as is or modify it slightly on the fly to test specific features.

Here are then main parameters and how they were chosen. See the source code for more details and remaining
parameters:

Time frame:
e Two 100-minute orbits.
Satellites (platforms and sensors):

e Two platforms, with one sensor each; and
e Set-up time: 0.0 on the first, 35.0 on the second (set with duplicated opportunity time offset, see below).

e Same task duplicated two more times (three tasks on total), with respective priorities 0.5, 1.0 and 0.8.;
e Simple AOI to cover with one or more opportunities;

e Budget: $5,000 per task;

e Overall budget: $13,000; and

e Minimum relative coverage constraint: 0.65.
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Opportunities:

For each task, four opportunities covering partially the AOI:

o Named a, b, c and d thereafter:

Orbit | Platform | Starttime | ENd | Relative 1
time coverage
a 0 1 1000 | 1030 022 | 1800
b 0 0 2000 | 2060 042 | 1400
c 1 1] 10000 | 10020 024 | 1000
d 1 0] 11000 | 11010 070 | 2500

From a task to the other generated opportunities are duplicated and then offset by 50.0 seconds:

o A simulated transition time of 30.0 seconds is in effect only from opportunities of task 0 to
opportunities of task 1. Other transitions have their transition time equal to 0.0:

= Rationale: this makes some but not all transitions infeasible (only those where transition
+ set-up time > 50.0).

o Start and end times were chosen so that the four opportunity graphs (see below) are different,
even when merely duplicating and offsetting opportunities from a task to the other.

Overlaps:
o Opportunity coverages were “drawn” on a 50-unit grid, representing the AQI;

o Simply counted relevant coverage/overlaps units, each worth 0.02 of relative AOI coverage:

.b.d| .b.d| .b.d| .b.d| .b.d| .b.. | .b..

.b.d| .b.d| .b.d| .b.d| .b.d| .b.. | .b..

.b.d| .b.d| .b.d| .b.d| .b.d | ab.. | ab..

d d d .d d| a a
.cd| ..cd| ..cd| ..cd| ...d|a... |a...
.cd| ..cd| ..cd| ..cd| ...d|a... |a...
.cd| ..cd| ..cd| ..cd| ...d]a... |a... |a...

For a minimal solver testing challenge, the above contains:

Opportunity d fully overlaps opportunity c;
No opportunity covers everything by itself:

o Only a few opportunities combinations can meet the minimum task relative coverage requirement.
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e Costs/budgets were set so that only two or three opportunities per task could be selected:

o The best selection given cost constraint (opportunities a and d), is not the earliest opportunity;

and

o The best selection can’t be done on all tasks given the overall budget.

This results in the following opportunity graphs:

e Note: actual generated opportunities all have unique IDs. They are named here a, b, ¢ and d for each

task for explanation purposes only.

Table 10: Examples of Opportunity Graphs

Platform 0 Platform 1
Opportunity ‘b’ on each task Opportunity ‘a’ on each task
Task0001 @ / Task0002
t:2050 t:1050 t:1100
o T
0
Task0000 Task0000
t:2000 t:1000
Opportunity ‘d’ on each task Opportunity ‘c’ on each task
@ / Task0002 /\ \(??5;)28\ /Tﬁ?’é?ggz
Orbit | | \J
Task0000 \
1 £:10000
Task0000
t:11000
6.4.3 Large-scale random data generation

Random data is generated with some constant parameters and several others controlling the amount of

randomness. If follows a few key points:

e Starts with a few constants:

o Time horizon and orbit period (for now, the same for all platforms);
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o Number of tasks; and
o Platform-related: how much of them, their sensors, and nominal values (boundaries or averages)

6.4.4

for some features. Those values are to be refined by random later (in per-orbit platform capacities
for instance).

Platforms and sensors are generated first;

Tasks are then generated:

o

For now, tasks are “simple” tasks. They do not require to be composed from more than one
subtask to be worth something (such as stereo imaging that has no value if only “side” of the task
could be performed); and

About half (in current tests) of tasks are spot targets (every opportunity covers 100% of the task
AQI), while the rest have large polygon AOI.

On each orbit across the time horizon, platform capacities are computed with some randomness from
their nominal feature values;

On each orbit across the time horizon, and for each task, an opportunity can be added or not following
some probability:

@)

@)

Some tasks have higher probability than others;

Start/end times are random but are quantized (rounded off) to increase likelihood of a time-based
collision in solvers. Some jitter is then added to also allow for some “very close yet possible to do
both” opportunities; and

Platform/sensors are assigned at random, although some opportunities are sometimes duplicated
on the same platform to simulate the fact that CSIAPS or other system could return several
opportunities for the same platform/task match. For instance, the imaging of the same target at a
given time could be done with various sensor modes on the same platform.

Opportunity coverage is random, but is also translated into a simulated coverage in a sort of bitmap
(actually a plain boolean array):

o

For example, a 50% coverage would turn on half of the bitmap units;
All relative coverages use the same bitmap resolution (e.g. 100 units); and
Pair-wise opportunity coverage area overlap is then directly counted from a logical AND over two

bitmaps (counting only corresponding units that are “on” on both bitmaps). This effectively
simulates real area intersections.

The rest of data is generated with controlled randomness.

Wang-format data generator

Here are the few steps used to generate data:

1.

Determine |R| set of tasks; V,,= Ran,

2. Determine number of effective orbits pes 2 |R|/ pers = <#task/orbit>
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3. Determine number of opportunities per tasks: k|SAT| (K|SAT| < o )
. e k. —1 .
e k oc k(target task latitude | spatial distribution) = ”““—2 latitude + 1
T
4. {O,} construction: opportunity distribution per orbit p (1.. pef ):
Forr eR
=0
Fori=1.. k|SAT|
p(o{Ne pe(l.. pest ) /{p 01, p Os..., p 0i1}) =1 /pet — j) —pOpulate p
=it
end for i
end for r
K|SAT]| /pes = # opp task rforbit
IR| (KISATI) /per = # opplorbit = | O, < T, / \dp\
5. Contention ‘c/complexity/connectivity proportional to o> 1 large, pe small:
Given: R,peﬁ,,k‘SAT; O, ,contention c(x),T,,,
aﬂTmax — dﬂTmax Z dmax 9dmin = 2'az—vmax - dmax

of .. <d . <mn2aT,,

max X 2

=d_ .. =max(0,2al, . —d_ .. )
d .= [min(ZaTma

max X 9
o
——
‘0 ~20min
——

c P

d_/’:T

max

o
d, =(dmax —d .. )Ran +d_ ;. =2(3p —d )Ran +d_ ., o0

szé(d +d_ )=aT

T.V)asd_ . >d,, d_. >0

T..)—ol,.. ]ran +al, .

p‘ dp=T. <T,=d, STP/‘OP‘ éschedulable opp by orbit

V2
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0,=20,,Rn-6, 6 0€0,

orbitp=cycle t
r—/H

ts,=(T_ . —d_ )Ran+

max

tp

-1|T,, 0o€0,, p(sat):(t—l)‘SATHsat

s, ele, 1), (e, )7, + 7, —d,. )

=T —d.. 20:>12dmax :>(05=1—>3=dmax =T . =constant)

(94

6.5 Solver Launcher Console

This is not a deliverable and is only minimally documented here.

6.5.1 Overview

The console is a small command-line Java application. Its sole purpose is to call one of the implemented solvers
with a given data set and some options. It is a temporary solution, expected to be replaced with an APl/service

interacting with CSIAPS.

In its current state:

e Application is launched from a development environment:

o Itis not deployable;

o Runs the class ca.gc.rddc.discover.solvers.utils.console.App as a Java

application; and

o Runs it without arguments to get help on valid command-line parameters.

e Application reads data set from either one of:

o Native JSON serialized data set (namely, from generated data set, see section 6.4 Data

generator application);

o Foreign text data samples (conforming to model in [1]) converted on-the-fly; or

o Wang-style data generated on the fly.

e One of the available solvers is instantiated, according to the command-line options;

o Data sets and additional command-line options are forwarded to the solver;

e Solver is run and generates a “collection plan”;

e A rough report of that collection plan is printed to the console, including:

o All selected opportunities, sorted by platform then by orbit;
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o All selected opportunities (same as above), sorted by tasks along with relative coverage and cost
for that task;

o A summary of the collection plan (objective value over its estimated upper bound); and
o For example:

Plan, by platform and orbit:

PO, orbit 0: 1:{Opp00001:2000, }

PO, orbit 1: 2:{0Opp00007:11050, Opp00011:11100, }
Pl, orbit 0: 2:{Opp00004:1050, Opp00008:1100, }
Pl, orbit 1: 1:{Opp00002:10000, }

Plan, by task:

Task ID: priority, relative coverage, cost, selectedOpportunities
Task0000: 0.500, 0.660, 2400.00, 2:{ Opp00001:0, Opp00002:1, }
Task0001: 1.000, 0.920, 4300.00, 2:{ Opp00007:1, Opp00004:0, }
Task0002: 0.800, 0.920, 4300.00, 2:{ Opp00011:1, Opp00008:0, }

Summary
Plan vlaue: 1.986 / 2.300 (86.35%)
Cost: 11000.00

6.5.2 Design and Implementation

Code is split into a few self-explanatory classes in DiscoverSolver module, all under a few
ca.gc.rddc.discover.solvers.utils.console.* test packages (under /src/test/java). Those

mostly glue application command-line options to solver classes. See source code and its inline documentation for
more details.
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7 SOLVERS COMPARATIVE RESULTS

MY-PICC, GATHER and QUEST solvers were compared using Wang data sets (see section 6.2 Wang data sets)
since they all could tackle this kind of data. MY-PICC and GATHER can address a broader set of problems
(namely large area targets and their individual opportunities, as well as more constraints), and so can QUEST
(mostly its ability to take on input pre-defined task plans made from several opportunities across the data set).
Wang data sets are therefore the common denominator.

Tests were performed on the test bench described in 6.3 Test bench.
71 DISCOVER vs WANG Objective Function

As explained in section 2.1 Mathematical model, the DISCOVER obijective function covers tasks value as well as
opportunities probability, quality and relative coverage of the task area. It fails, however, to compute a proper
value whenever there are more than two opportunities for the same task. It rather computes an approximation
which is equal or lower than the theoretical value. On the other hand, the WANG objective function, a variant of
the former, considers only task value and opportunities probability (which is enough for Wang data sets) but does
compute the proper collection value for such data, no matter how many opportunities are selected for a task.

QUEST translates the DISCOVER objective function (see section 2.1.2) into a CPLEX model. As such, most of
the source code itself of the solver implements this translation. Other solvers simply use a direct implementation
(see section 2.2) of these objective function formulas and can thus accept any objective function that is
decomposed into the same sub-objective function, such as the WANG objective function variant.

Solver comparison was therefore performed using both objective functions, albeit with the following caveats:

e DISCOVER objective function:

o All solvers try in their own way to maximize the collection value (or parts of it), although attempts
become suboptimal whenever there are three or more opportunities on any given task; and

o Collection value of the result exhibits the same sub-optimality.
e WANG objective function:

o QUEST solver tries to maximize value using DISCOVER objective function because it is hard-
coded to do so. Final collection value is, however, computed using WANG objective function:

= Resulting collection value is equal or greater than it would be with DISCOVER, but equal
or less than it would be, had a WANG objective function variant of QUEST been
available.
o Other solvers use the WANG objective function both for maximizing the collection value and
computing it at the end. Result is thus optimal in regard to each solver, but comparison with
QUEST is not perfect.
7.2 Solvers configurations
The following configurations were compared:

e QUEST:

o The latest available version.

E;oepgffi?gzlg]sfﬁ:zz}i?r:'s data is subject to the Restriction of the U N C LASSI F I E D T H A L E 5

title page of this document.




Joint 12 S&T Capability Date: 26 January 2018
Open-Loop Collection Tasking UNCLASSIFIED
DCN: 2066C.022-REP-01-OLCT Rev. 02 Page 93

e MY-PICC:
o Both variants are tested: Time-Weighted (TW) and Plain-Value (PV).
e GATHER:

o Tested with two configurations: default and slow variant (as described in sections 5.1.9.1 and
5.1.9.2 respectively); and

o Given the random nature of this solver, run times and collection values are averaged over 5 runs.
7.3 Result Summary
Full results are available in Annex C of this document:
e 2066C.022-REP-01-OLCT Rev. 02 - Annex C — Solver comparison n Wang data sets.xIsx
Note that numerical collection values in this annex were all multiplied by 10 at the end, so as to be comparable
with [1]. Indeed, our solvers normalize the task nominal value (within [0.1, 1] in this case), while Wang data sets

use [1, 10]. This obviously does not affect relative value comparison between solvers.

Table 11: Comparison summary using DISCOVER objective function

QUEST GATHER GATHER MY-PICC MY-PICC
(default) (slow) (TW) (PV)
Average Collection Value 0.1% 3.2% -19.6% -35.5%
relative delta over QUEST
Average run time (second) 0.320 0.761 18.250 0.007 0.006

Table 12: Comparison summary using WANG objective function

QUEST GATHER GATHER MY-PICC MY-PICC
(default) (slow) (TW) (PV)
Average Collection Value -2.1% 0.8% -21.2% -37.3%
relative delta over QUEST
Average run time (second) 0.309 0.577 13.352 0.006 0.006
7.4 Discussion

MY-PICC (both variants) is incredibly faster than others, but fails to give good results which such data sets, worse
that it was with random generated data sets. It might have to do with inherent characteristics of the set, such as
opportunities temporal density, number of opportunities per task, the lack of discriminating values (only task value
and opportunity probability), etc. This could be investigated at a later time.

GATHER default performs well with reasonable running times (about twice as long as QUEST), but the slow
variant is much slower (20-25 times) for a marginally better collection value (about 3%). Depending on actual
requirements in the fields, both are nevertheless viable options.
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Surprisingly, GATHER performs better than QUEST on some data sets, even on average for the DISCOVER
objective function. It was expected that QUEST could find the single optimal collection value, but obviously it
doesn’'t. This may be caused by a trade-off between result optimality and resource usage (execution time,
memory). Also given the suboptimal QUEST result when using WANG objective function, it was expected that
other solvers would fare slightly better (compared to their respective difference with QUEST using DISCOVER
objective function), but it was the opposite by about 2%. This warrants future investigation.
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