CAN UNCLASSIFIED

Modeling and Experimental Support for Detection of Linear Conductors Task Authorization 6: Phase Characterization

Prepared by: C-CORE Project Team: Dave Green (Project Manager), Chris Fowler, Mike Royle Captain Robert A. Bartlett Building Morrissey Road St. John's, NL Canada A1B 3X5 C-CORE Report Number R-17-072-1336, Revision 1.0

PSPC Contract Number: W7702-175832 Technical Authority: Scott Irvine, Defence Scientist Contractor's date of publication: March 2018

Defence Research and Development Canada

Contract Report DRDC-RDDC-2018-C175 September 2018

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada using the Schedule to the Defence Production Act.

Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence) makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy, reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so using it or relying on it. Canada does not assume any liability in respect of any damages or losses arising out of or in connection with the use of, or reliance on, any information, product, process or material included in this document.

© Her Majesty the Queen in Right of Canada (Department of National Defence), 2018

© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2018

CAN UNCLASSIFIED

C-CORE Report Number R-17-072-1336

> Prepared for: DRDC Suffield

Revision 1.0 March, 2018

Captain Robert A. Bartlett Building Morrissey Road St. John's, NL Canada A1B 3X5

> T: (709) 864-8354 F: (709) 864-4706

> > Info@c-core.ca www.c-core.ca

Registered to ISO 9001:2008

This page is intentionally left blank

Prepared for: DRDC Suffield

Prepared by: C-CORE

C-CORE Report Number: R-17-072-1336 Revision 1.0 March, 2018

Captain Robert A. Bartlett Building Morrissey Road St. John's, NL Canada A1B 3X5

T: (709) 864-8354 F: (709) 864-4706 Info@c-core.ca www.c-core.ca

Registered to ISO 9001:2008

DRDC Suffield

Report no: R-17-072-1336 Revision 1.0

March, 2018

The correct citation for this report is:

C-CORE. 2018. "Modeling and Experimental Support for Detection of Linear Conductors—Task Authorization 6: Phase Characterization." Report R-17-072-1336, Revision 1.0.

Project Team

Dave Green (Project Manager) Chris Fowler Mike Royle

DRDC Suffield

Report no: R-17-072-1336

Revision 1.0

March, 2018

REVISION HISTORY

VERSION	NAME	DATE OF CHANGES	COMMENTS
1.0	M. Royle	03/06/2018	Released to client

DISTRIBUTION LIST

COMPANY	NAME	NUMBER OF COPIES
DRDC Suffield	Dr. Scott Irvine	Electronic

DRDC Suffield

Report no: R-17-072-1336

Revision 1.0

March, 2018

Table of Contents

1	INTR	ODUCTION	1
	1.1 1.2	Scope Definitions	1 1
2	TEST	PLAN	2
	2.1	Required Equipment	2
	2.2	Example Measurement	3
3	EXPE	RIMENTAL RESULTS	5
	3.1	SF104/11N/11N/1M	5
	3.2	SF104/11N/21N/1M	6
	3.3	SF104/11N/11N/3M	8
	3.4	SF104/11N/21N/3M	. 10
	3.5	SF104/11N/11N/5M	. 12
	3.6	SF104/11N/11N/10M	.14
	3.7	SF104/11N/11N/20M	.16
4	CON	CLUSIONS AND RECOMMENDATIONS	.18
5	REFE	RENCES	.19

Revision 1.0

DRDC Suffield

Report no: R-17-072-1336

March, 2018

List of Tables

Table 1. Test Cables	2
Table 2. Required Laboratory Equipment	3

List of Figures

Figure 1. NF-SF50+ Adapter Insertion Loss (Mini-Circuits 2014).	3
Figure 2. Example Insertion Loss and Phase.	4
Figure 3. Example Delay	4
Figure 4. Insertion Loss and Phase	5
Figure 5. Delay	6
Figure 6. Insertion Loss and Phase	6
Figure 7. Delay	7
Figure 8. Example Insertion Loss and Phase.	8
Figure 9. Delay	9
Figure 10. Insertion Loss and Phase	10
Figure 11. Delay	11
Figure 12. Insertion Loss and Phase	12
Figure 13. Delay	13
Figure 14. Insertion Loss and Phase	14
Figure 15. Delay	15
Figure 16. Insertion Loss and Phase	16
Figure 17. Delay	17

Modeling and Experim Authorization 6: Phase	ental Support for De Characterization	etection of Linear	Conductors, Task
DRDC Suffield			
Report no: R-17-072-1336	Revision 1.	.0	March, 2018

1 Introduction

There is an ongoing research program at Defence Research and Development Canada (DRDC) Suffield Research Centre (SRC) to explore electromagnetic (EM) scattering from linear conductors to better understand the physical phenomena governing this effect. The purpose of this contract is to provide technical expertise to supplement the efforts at DRDC by furthering the research on EM scattering through experimental and theoretical means.

The need to detect linear conductors is pertinent to military and commercial interests. A number of commercial applications would benefit from a reliable method to detect buried infrastructure such as wires, pipes, rods and other infrastructure critical to the delivery of crucial services to consumers. Detection of these conductors would help to significantly reduce the number of occurrences resulting in interruptions to power, water and communications services that result from excavation operations. This would directly result in time and money savings for businesses and consumers alike and help alleviate associated safety and environmental concerns.

The work undertaken is an evaluation of the phase of antenna displacements for linear conductor detection. This is done through experimental measurements of the phase delays introduced by antenna displacements due to the antenna cable properties including length and flexure. Characterizing these phase delays due to changes in these physical properties is key to understanding the effects on any resulting signal received by the antenna. The output of the work is a calibrated cable set for use by DRDC in future testing.

1.1 Scope

This report provides an overview of the work carried out to test and characterize a set of microwave cable assemblies for varying lengths and bending radii. Relevant performance characteristics are extracted and presented.

1.2 Definitions

Acronym	Definition
CUT	Cable Under Test
IL	Insertion Loss
VNA	Vector Network Analyzer

Modeling and Experin Authorization 6: Phase	nental Support for Detection of Characterization	Linear Conductors, Task
DRDC Suffield		
Report no: R-17-072-1336	Revision 1.0	March, 2018

2 Test Plan

The proposed experiment consists of characterizing a set of microwave cable assemblies with varying lengths for a number of bending radii. A vector network analyzer (VNA) will be used to measure cable performance over a range of frequencies. Measurements will be performed as each cable is wound into coils with diameters of 20, 25, and 30 cm. Full Two-Port S-parameters will be recorded and insertion loss, phase, and delay extracted from the results. As a VNA measures only magnitude and phase values at discrete frequency points, the delay must be estimated from:

$$\tau_g(f) = -\frac{1}{2\pi} \frac{d\varphi}{df} \tag{1}$$

where:

 τ_g = group delay of cable f = measurement frequency φ = insertion phase in radians

A set of cables suitable for operating frequencies up to 18 GHz have been acquired for testing purposes. Cable lengths range from one to five metres with additional details found in the below Table 1

Part No.	Ser. No.	Connectors	Length (m)	Velocity Factor	Approx. Delay (ns)
SF104/11N/11N/1M	324533	N (M) to N (M)	1	.77	4.33
SF104/11N/21N/1M	324501	N (M) to N (F)	1	.77	4.33
SF104/11N/11N/3M	324502	N (M) to N (M)	3	.77	12.99
SF104/11N/21N/3M	324492	N (M) to N (F)	3	.77	12.99
SF104/11N/11N/5M	324507	N (M) to N (M)	5	.77	21.64
SF104/11N/11N/10M	324494	N (M) to N (M)	10	.77	43.29
SF104/11N/11N/20M	324497	N (M) to N (M)	20	.77	86.58

Table 1. Test Cables.

2.1 Required Equipment

The equipment required for the proposed test is listed below in Table 2. The ZNB20 VNA and its cables are calibrated using its automatic calibration unit. As the VNA cables are configured with female SMA connectors, female SMA to female N type connectors are required to interface VNA cables to the Cables Under Test.

As both the VNA cables and ZV-Z53 calibration unit are equipped with SMA connectors, the calibration can only be performed to the end of VNA cables. Thus, the effects of the NF-SF50+ adapters are unaccounted for in the calibration and their characteristics are included in the measurement results. As detailed S-parameters for the adapters were unavailable from the manufacturer, it was not possible to remove their characteristics. However, insertion loss data was available and duplicated in Figure 1. The

Modeling and Experimental Su Authorization 6: Phase Character	pport for Detection of Linea zation	r Conductors, Task
DRDC Suffield		
Report no: R-17-072-1336	Revision 1.0	March, 2018

low loss suggests their inclusion should not impact results significantly. Additionally, their short length was considered to be negligible relative to the cable length when extracting cable phase and delay.

Description	Manufacturer	Model Number
ZNB Vector Network Analyzer, 4 Port, 20 GHz	Rohde & Schwarz	ZNB20
Automatic Calibration Unit, 300 kHz – 24 GHz	Rohde & Schwarz	ZV – Z53
SMA Female to N Type Female Adapter	Mini-Circuits	NF-SF50+

Insertion Loss

Frequency (MHz)

2.2 Example Measurement

As an initial example, a five metre cable (P/N SF104/11N/11N/5M) was characterized while coiled in a 20 cm diameter. The VNA was configured to sweep from 400 kHz to 20 GHz in 10 MHz steps. The full 2 port S-parameter matrix was recorded and insertion loss and phase extracted and plotted in Figure 2. Additionally the delay was calculated using Equation (1) and plotted in Figure 3. It may be noted that the calculated delay of 21.7 ns is very close to its expected value of 21.6 ns determined from its length and specified velocity factor.

Modeling and Experimental Authorization 6: Phase Charac	Support for Detection cterization	of Linear Conductors, Task
DRDC Suffield		
Report no: R-17-072-1336	Revision 1.0	March, 2018

Figure 2. Example Insertion Loss and Phase.

Modeling and Experimental Support for Detection of Linear Conductors, Task Authorization 6: Phase Characterization				
DRDC Suffield Report no: R-17-072-1336	Revision 1.0	March, 2018		

3 Experimental Results

The experiment was carried out for each of the cables listed in Table 1. The resulting plots of insertion loss, phase, and delay are included in the following section. For all cables negligible differences were observed in insertion loss, phase, and delay as each cable diameter was varied. Figure 4 through Figure 17 depict the results of testing.

3.1 SF104/11N/11N/1M

	Modeling and Experimental Authorization 6: Phase Chara	Support for Detection of cterization	Linear Conductors, Task
	DRDC Suffield		
	Report no: R-17-072-1336	Revision 1.0	March, 2018

Figure 6. Insertion Loss and Phase.

	Modeling and Experime Authorization 6: Phase Ch	ntal Support for Detectio aracterization	n of Linear Conductors, Task
	DRDC Suffield		
	Report no: R-17-072-1336	Revision 1.0	March, 2018

Figure 7. Delay.

DRDC Suffield Report no: R-17-072-1336 Revision 1.0

March, 2018

3.3 SF104/11N/11N/3M

Figure 8. Example Insertion Loss and Phase.

	Modeling and Experimenta Authorization 6: Phase Chara	l Support for Detection of Line cterization	ear Conductors, Task
	DRDC Suffield		
	Report no: R-17-072-1336	Revision 1.0	March, 2018

Figure 9. Delay.

DRDC Suffield		
Report no: R-17-072-1336	Revision 1.0	March, 2018

3.4 SF104/11N/21N/3M

Figure 10. Insertion Loss and Phase.

Modeling and Experimenta Authorization 6: Phase Chara	l Support for Detection o acterization	f Linear Conductors, Task
DRDC Suffield	Devision 1.0	Marsh 2010
Report no: R-17-072-1336	Revision 1.0	March, 2018

Figure 11. Delay.

DRDC Suffield Report no: R-17-072-1336 Revision 1.0

March, 2018

3.5 SF104/11N/11N/5M

Figure 12. Insertion Loss and Phase.

⊙ c•core	Modeling and Experimental S Authorization 6: Phase Charact	Support for Detection of L erization	inear Conductors, Task
	DRDC Suffield		
Authorization 6: Phase Characterization DRDC Suffield Report no: R-17-072-1336 Revision		Revision 1.0	March, 2018

Figure 13. Delay.

DRDC Suffield		
Report no: R-17-072-1336	Revision 1.0	March, 2018

3.6 SF104/11N/11N/10M

Figure 14. Insertion Loss and Phase.

Figure 15. Delay.

DRDC Suffield Report no: R-17-072-1336

Revision 1.0

March, 2018

3.7 SF104/11N/11N/20M

Figure 16. Insertion Loss and Phase.

	Modeling and Experimenta Authorization 6: Phase Chara	l Support for Detection of acterization	Linear Conductors, Task	
	DRDC Suffield			
	Report no: R-17-072-1336	Revision 1.0	March, 2018	

Figure 17. Delay.

Revision 1.0

DRDC Suffield

March, 2018

4 Conclusions and Recommendations

A series of RF cables were characterized using a VNA. Different lengths and bending radii were used, according to the test plan in Section 2. The recorded measurements are presented in Section 3. Across all cable lengths, the bending radii was observed to have a minimal impact on the record insertion loss and calculated group delay. The work serves as a verification of the manufacturer specifications (Huber+Suhner 2014).

	Modeling and Experimentary Authorization 6: Phase	nental Support for Detection Characterization	of Linear Conductors, Task
	DRDC Suffield		
	Report no: R-17-072-1336	Revision 1.0	March, 2018

5 References

- Huber+Suhner. 2014. "Data Sheet SUCOFLEX_Stock Assembly." DOC-0000414169 B. https://www.hubersuhner.com/en/documents-repository/technologies/pdf/rf-stock-assemblies/sucoflex-assembly-84017153.aspx.
- Mini-Circuits. 2014. "Adapter, NF-SF50+, Typical Performance Curves." https://www.minicircuits.com/pages/s-params/NF-SF50+_GRAPHS.pdf.

DRDC Suffield

Report no: R-17-072-1336

Revision 1.0

March, 2018

LAST PAGE OF DOCUMENT

	DOCUMENT CONTROL DATA				
1.	DRIGINATOR (Name and address of the organization preparing the document. DRIC Centre sponsoring a contractor's report, or tasking agency, is entered a Section 8.) C-CORE Captain Robert A. Bartlett Building		2a. SECURITY MARKING (Overall security marking of the document including special supplemental markings if applicable.) CAN UNCLASSIFIED		
	Morrissey Road St. John's, NL Canada A1B 3X5	issey Road ohn's, NL Canada A1B 3X5		CONTROLLED ON NON-CONT	GOODS FROLLED GOODS
3.	TITLE (The document title and sub-title as indicated on the title page.) Modeling and Experimental Support for Detection of Linear Conductors Task Authorization 6: Phase Characterization				
4.	AUTHORS (Last name, followed by initials – ranks, titles, etc., not Green, D.; Fowler, C.; Royle, M.	to be used)			
5.	DATE OF PUBLICATION (Month and year of publication of document.) March 2018	6a. NO. OF PAGES (Total pages, including Annexes, excluding DCD, covering and verso pages.)6b. NO. OF REFS (Total references cited.)272		6b. NO. OF REFS (Total references cited.) 2	
7.	DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report	L t, Scientific Let	ter.)		I
8.	SPONSORING CENTRE (The name and address of the departme DRDC – Suffield Research Centre Defence Research and Development Canada P.O. Box 4000, Station Main Medicine Hat, Alberta T1A 8K6 Canada	nt project offic	e or la	aboratory sponsor	ing the research and development.)
9a.	PROJECT OR GRANT NO. (If appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant.) 02da—Manoeuvre through Adaptive Dispersed Operations (ADO)	9b. CONTR which th W770	ACT le doc 02-1	NO. (If appropriate cument was writte 75832	e, the applicable number under n.)
10a	DRDC PUBLICATION NUMBER (The official document number by which the document is identified by the originating activity. This number must be unique to this document.)	10b. OTHER assigne	DOC d this	UMENT NO(s). (A document either l	Any other numbers which may be by the originator or by the sponsor.)
11a	FUTURE DISTRIBUTION WITHIN CANADA (Approval for further of considered.)	dissemination	of the	document. Secur	ity classification must also be
11b	. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for furthe considered.)	r disseminatio	n of tl	ne document. Sec	urity classification must also be

12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

compliance testing; phase

13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

An evaluation of the phase of antenna displacements for linear conductor detection is presented. This is done through experimental measurements of the phase delays introduced by antenna displacements due to the antenna cable properties including length and flexure. Characterizing these phase delays due to changes in these physical properties is key to understanding the effects on any resulting signal received by the antenna. The output of the work is a calibrated cable set for use by DRDC in future testing.