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Abstract……….…….……. 

In this study, we present a bottomside model representation to be used by the Empirical Canadian 
High Arctic Ionospheric Model (E-CHAIM). This model features a new approach to modeling the 
bottomside electron density; namely, instead of modelling electron density directly, E-CHAIM 
models the altitude profile of the scale thickness of a single bottomside layer. In this approach the 
curvature in the bottomside associated with the E-region and F1-layer is represented in the scale 
thickness domain as a peak function centered at the layer peak altitude. The use of this approach 
ensures the production of explicitly doubly differentiable bottomside electron density profiles and 
directly avoids issues known to exist within current standard, such as the International Reference 
Ionosphere (IRI), which has discontinuities in space, time, and in the vertical electron density 
gradient. In terms of performance, after removing the impacts of hmF2 and NmF2, the new E-
CHAIM profile function generally performs comparably to the IRI, with bottomside TEC within 
1.6 TECU of observations. More specifically, the E-CHAIM bottomside is demonstrated to 
outperform the IRI bottomside function in the F-region during low solar activity periods. At high 
latitudes, E-CHAIM tends to outperform the IRI during winter months by between 10% and 40% 
of NmF2 while being outperformed by the IRI by between 10% and 25% of NmF2 during 
summer periods, particularly during the daytime at high solar activity. 

Significance for Defence and Security 

This work is a direct extension of the previous E-CHAIM NmF2 and hmF2 model components to 
reflect the electron density of the ionosphere below the F2-peak. The development of this model 
component is a necessary extension of the F2-peak models required for the simulation of oblique 
incidence HF propagation. This study has demonstrated that there exist significant errors in 
current communications models with respect to the representation of the F1-layer height. 
Furthermore, this study demonstrates discontinuities in the horizontal electron density, in the 
vertical gradient of electron density, and in the diurnal and seasonal variation of electron density 
of current standards (the IRI). These issues can result in unstable behaviour in HF ray tracing and 
band forecasting applications. All of these issues are resolved in the new E-CHAIM model while 
not having to make an sacrifices with respect to performance.   
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Résumé……….……. 

Dans cet article, nous décrivons la représentation du modèle du « bas » utilisée par le Modèle 
empirique de l’ionosphère du haut arctique canadien (E-CHAIM). Ce modèle comporte une 
nouvelle méthode de modéliser la densité électronique au bas de l’ionosphère. E-CHAIM 
modélise le profil d’altitude de l’épaisseur de l’échelle d’une unique couche inférieure plutôt que 
de modéliser directement la densité d’électrons. Avec cette méthode, la courbure du bas associée 
à la région E et la région F1 est représentée dans le domaine de l’épaisseur de l’échelle comme 
une fonction de maximum centrée à l’altitude maximale de la couche. Cette démarche assure la 
production de profils deux fois dérivables de la densité d’électrons au bas de la couche et évite 
directement les problèmes connus des modèles standards actuels, comme l’ionosphère 
internationale de référence (IIR), qui présente des discontinuités dans l’espace, le temps et le 
gradient vertical de densité d’électrons. Au chapitre du rendement, après avoir retiré les effets de 
la hmF2 et de la NmF2, la nouvelle fonction de profil du modèle E-CHAIM se comporte de manière 
comparable à l’IIR, en prédisant une teneur totale en électrons (TEC) au bas, en deçà de 1,6 unité 
de TEC des valeurs observées. Plus particulièrement, nous avons montré que la fonction du fond 
du modèle E-CHAIM surpasse la fonction de fond de la région F pendant les périodes de faible 
activité solaire. Aux hautes latitudes, E-CHAIM tend à surpasser l’IIR pendant l’hiver par environ 
10 % à 40 % pour la NmF2 alors que l’IIR surpasse E-CHAIM par environ 10 à 25 % pour la NmF2 
pendant l’été, notamment durant le jour pendant les périodes de forte activité solaire.  

 



 

 iii 
 
 

 

Table of contents 

Abstract……….…….……. .............................................................................................................. i
Significance for Defence and Security ............................................................................................. i
Résumé……….……. ...................................................................................................................... ii
Importance pour la défense et la sécurité ........................................................................................ ii
Table of contents ............................................................................................................................ iii
List of figures ................................................................................................................................. iv
List of tables ................................................................................................................................... vi
Acknowledgements ....................................................................................................................... vii
1 Introduction ............................................................................................................................... 1
2 Data 5
3 hmE and hmF1 .......................................................................................................................... 6
4 The E-CHAIM Bottomside Function ..................................................................................... 10
5 Parameterization of the Bottomside Scale Height Amplitudes ............................................... 14
6 Validation ............................................................................................................................... 15
7 Comment Regarding Night Time Underestimation ................................................................ 21
8 Challenges due to Precipitation .............................................................................................. 23
9 Conclusion .............................................................................................................................. 25
References/Bibliography.... ........................................................................................................... 26
List of symbols/abbreviations/acronyms/initialisms ..................................................................... 29



 

iv  
 
 

 

List of figures 

Figure 1 Electron density from IRI2016 for 50oN at 150km altitude along a line of geographic 
longitude at 12:00 UTC (top) and the 24-hour diurnal variation at the same 
altitude and latitude for 50oE longitude (bottom). The red circles highlight 
discontinuous transitions between periods with and without an F1-Layer. .................. 1

Figure 2 (Left) An example electron density profile at 50oN and 50oE at 10:00UTC generated 
using the IRI default options between 90km and 300km with a 0.5km step size. 
(Right) The height derivative of the vertical electron density profile illustrated on 
the left. The red circles highlight discontinuities in the electron density gradient. ....... 2

Figure 3 Top: IRI Daily Bottomside Thickness Parameter (B0) from the Gulyaeva option 
(green), Table option (blue), and ABT-2009 option (black) at Millstone Hill at 
00UTC. Ionosonde-derived values are plotted with purple diamonds. Bottom: 
Daily hmF2 from the IRI M(3000)F2-based model (green), Shubin model (blue), 
and AMTB-2013 model (black) at 00UTC. Ionosonde-derived hmF2 is plotted 
with purple diamonds. ................................................................................................... 3

Figure 4 Map of the stations used to fit the E-CHAIM bottomside model. The dashed line 
corresponds to the lower boundary of the model at 50°N geomagnetic latitude. 
The dotted line corresponds to 65°N geomagnetic latitude. ......................................... 5

Figure 5 Plot of mean hmF1 behaviour vs. AACGM latitude (top left), AACGM local time 
(top right), integrated AE index (bottom left), and solar zenith angle (bottom 
right). Ionosonde measured values are represented by black squares, E-CHAIM is 
represented by connected black stars, NeQuick is represented by connected blue 
stars, the “traditional”/ICEPAC parameterization is represented by connected red 
stars, and a best fitted quadratic function in solar zenith angle is represented by 
connected green stars. ................................................................................................... 7

Figure 6 Example ionosonde-derived electron density profiles at Cambridge Bay (a-c) and 
corresponding scale height profiles (d-e) for three situations:  (a,d) no E-region 
trace, (b,e) no F1-layer/ledge trace, and (c,f) a profile with all three layers present. 
(d-f) also demonstrate the various components of the scale height function, where 
the dotted line is the scale height function for the F1-layer/ledge, the dashed line is 
the constant term, the dash-dotted is the scale height function for the E-region, and 
the solid line is the final bottomside scale height function. ........................................ 11

Figure 7 Contours of monthly median fitted HF2 (top), HF1 (middle), and HE (bottom) for the 
Dourbes ionosonde between 2006 and 2013. .............................................................. 13

Figure 8 F2-peak normalized monthly median electron density profiles at PFISR for various 
UT times between 2007 and 2015. Note that local time at Poker Flat is UT – 8.1 
hours. ........................................................................................................................... 16

Figure 9 Model-to-measurement bottomside monthly median electron density errors for E-
CHAIM (left) and the IRI (right) at PFISR between 2007 and 2015. ......................... 17



 

 v 
 
 

 

Figure 10 Differences between IRI and E-CHAIM bottomside electron density profile RMS 
errors at PFISR. Negative values correspond to periods and locations where E-
CHAIM outperforms the IRI. ...................................................................................... 18

Figure 11 Same as Figure 10 but for RISR (left) and the Svalbard ISR (right). ........................... 19

Figure 12 Bottomside electron content measured by the PFISR (left) and Svalbard (right) 
ISRs and that modeled by the IRI (red) and E-CHAIM (blue) between 2007 and 
2015 at various UT times. Note that the Poker Flat local time is UT – 8.1 and that 
for Svalbard is UT + 1.4. ............................................................................................. 20

Figure 13 Left: A manually scaled ionogram from the Millstone Hill Digisonde at 00:15 UT 
on January 29th, 2010. Right: Corresponding vertical electron density profiles 
from the Millstone Hill ISR (solid black), the Millstone Hill ionosonde (dotted 
black), E-CHAIM anchored at the ionosonde hmF2 and NmF2 (dashed blue), and 
the IRI anchored at the ionosonde hmF2 and NmF2 (red dashed) at 00:15 UT on 
January 29th, 2010 ....................................................................................................... 21

Figure 14 Example electron density profiles from PFISR without (top) and with (bottom) 
auroral precipitation structures. Solid lines correspond to measured profiles, 
dotted lines correspond to E-CHAIM, and dashed lines correspond to the IRI. 
Note that ISR hmF2 and NmF2 have been used here in place of the model values 
to facilitate comparison of just the profile shape. Profile dates (day, month, year  
UTC) are provided in the title of each subplot. ........................................................... 23

 



 

vi  
 
 

 

List of tables 

Table 1 RMS errors from each hmF1 modeling method tested. ...................................................... 8

 



 

 vii 
 
 

 

Acknowledgements 

Infrastructure funding for CHAIN was provided by the Canadian Foundation for Innovation and 
the New Brunswick Innovation Foundation. Science funding is provided by the Natural Sciences 
and Engineering Research Council of Canada. The authors would like to thank the many 
ionosonde operators who provided data to this project. This paper uses ionospheric data from the 
USAF NEXION Digisonde network, the NEXION Program Manager is Mark Leahy. This 
publication makes use of data from the Qaanaaq and Nord ionosondes, owned by the U.S. Air 
Force Research Laboratory Space Vehicles Directorate and supported in part by the Air Force 
Office of Scientific Research. The authors thank Svend Erik Ascanius of the Danish 
Meteorological Institute and Denmark’s Arctic Command for the operation of these ionosondes. 
This paper uses data from the Juliusruh Ionosonde which is owned by the Leibniz Institute of 
Atmospheric Physics Kuehlungsborn. The responsible Operations Manager is Jens Mielich. The 
authors are grateful to Konstantin Ratovski for the operation of the Irkutsk ionosonde. The 
Tromsø ionosonde is funded in part by QinetiQ. 

 





 
 
 

1 I
The E
develo
latitud
topsid
E-CH

In term
the In
NeQu
demo
bottom
observ

1)

 

Figur
longit
for 50
with a

Introduc
Empirical Ca
opment of a
des. The F2 
de portion of t

HAIM bottoms

ms of empiric
nternational R
uick [Nava e
nstrated succ
mside of our 
ved in these m

) The IRI u
discontinu
in Figure 
diurnally th

re 1 Electron
tude at 12:00
0oE longitude
and without a

ction 
anadian High

a regional, fu
peak of the 
the model wa
side paramete

cal bottomsid
Reference Iono
et al., 2008] 
ess at low an
own for E-C

models. We su

uses an occu
uous transition
1, where we 
hat are associ

 density from
0 UTC (top) a
e (bottom). Th
an F1-Layer. 

h Arctic Ion
ully three-dim
model was 

as presented in
erization in th

de models, the
osphere (IRI) 

models. Wh
nd mid latitud
CHAIM. This
ummarize the

urrence mode
n between per
see discontin
iated with the

m IRI2016 for
and the 24-ho
he red circles

 

 

nospheric Mo
mensional, el
first presente
n Themens et

his study. 

ere currently 
[Bilitza, 199

hile these m
es, we have n

s stems from 
ese concerns a

l of the F1-
riods with and
nuous jumps 
e appearance o

r 50oN at 150
ur diurnal va

s highlight dis

odel (E-CHA
lectron densi
ed in Themen
t al. [2018]. W

exist the succ
90; 2003; Rein
models are w
nonetheless ch
some minor 

as follows: 

Layer. This 
d without an F
in the electro
of the F1-Lay

0km altitude 
ariation at the
scontinuous t

AIM) project
ity model fo
ns et al. [20

We shall prese

cessful param
nisch and Hua

widely used 
hosen to deve
inadequacies

often results
F1-Layer. Th
on density in
yer in the mod

 
along a line 
e same altitud
transitions be

t involves th
or use at hig
17], while th
ent and test th

meterizations o
ang, 2000] an
and have ha
elop a separa
s that we hav

s in a sudden
his is illustrate
n longitude an
del. 

of geograph
de and latitud
etween period

1 

he 
gh 
he 
he 

of 
nd 
ad 
ate 
ve 

n, 
ed 
nd 

ic 
de 
ds 



2 
 
 

2)

 

Figur
using 
deriva
discon

3)

) While the 
are not co
These disc
challenge f

re 2 (Left) An 
the IRI defau

ative of the ve
ntinuities in th

) The F-reg
discontinu
2009], in p
match that
(42.6oN, 2
 

IRI’s vertical
ontinuous, as 
continuities i
for HF ray tra

example elec
ult options bet
ertical electro
he electron d

gion bottom
uities in their 
particular, ha
t of the next
88.5oE) are il

l transition be
illustrated in

in the deriva
acing, which r

ctron density p
tween 90km a

on density pro
density gradien

mside thickne
seasonal var

as a seasonal 
t. These disc
llustrated in F

 

 

etween layers
n Reinisch an
ative of the v
requires conti

profile at 50o

and 300km wi
ofile illustrate
nt. 

ess (B0) pa
riability. The
wrapping iss
ontinuities in

Figure 3.  

s is piece-wise
nd Huang [20
vertical elect
inuous deriva

oN and 50oE a
ith a 0.5km st
ed on the left. 

arameterizati
e ABT-2009 
sue, where th
n season for 

e continuous,
000] and her
tron density 
atives [Kelso,

at 10:00UTC 
tep size. (Righ
 The red circl

ons of the 
B0 option [

he end of one
00 UTC at 

, its derivative
re in Figure 
profile pose 
, 1968].  

generated 
ht) The heigh
les highlight 

IRI includ
[Altadill et al
e year does no
Millstone Hi

 

es 
2. 
a 

 

t 

de 
l., 
ot 
ill 



 
 
 

Figur
Table
values
model
derive

re 3 Top: IRI 
e option (blue)
s are plotted
l (green), Sh
ed hmF2 is pl

Note the a
that is term
below 60o

higher latit
in Figure 3
the AMBT
ionosonde 
variation, 
variation a
issues are 
significant
the use of 
hmF2 mod

Daily Bottom
), and ABT-2

d with purple 
hubin model 
lotted with pu

anomalous en
minated at the
oN geomagne
tudes. A simi
3), which use
T-2013 hmF2

observations
the AMBT-2

and exhibiting
now being 

t modification
the Shubin hm

del.  

mside Thickne
009 option (b
diamonds. B
(blue), and 

urple diamond

nhancement i
 year transitio

etic latitude, 
ilar issue occu
es the same m
2 model is a 
s exhibit simi
2013 model 
g discontinuo
examined by

ns to resolve; 
mF2 model u

 

 

ess Parameter
black) at Mill
Bottom: Daily

AMTB-2013 
ds.    

in B0 using t
on. As the AB
this issue ten
urs for the AM

methodology a
clear outlier

lar variability
stands out b

ous behaviour
y the IRI W
however, bas
ntil such time

r (B0) from th
lstone Hill at 
y hmF2 from
 model (blac

the ABT-200
BT-2009 optio
nds to be ex
MTB-2013 hm
as the ABT-2
r; where all t
y, characteriz
by failing to 
r at the trans

Working Grou
sed on this th
e as a fix is re

he Gulyaeva o
00UTC. Iono

m the IRI M(3
ck) at 00UT

09 option dur
on was only f
xacerbated as
mF2 model (

2009 B0 mod
three other m
zed by a stron

represent thi
sition between
up and shou
he author wou
eleased for th

option (green
osonde-derive
3000)F2-base

TC. Ionosonde

ring the winte
fitted with da
s one tends t
(also illustrate
del. In Figure 
models and th
ng semi-annu
is semi-annu
n years. Thes

uld not requir
uld recommen
e AMTB-201

3 

n), 
ed 
ed 
e-

er 
ata 
to 
ed 
3 

he 
ual 
ual 
se 
re 
nd 
13 



 

4  
 
 

 

 
4) The NeQuick’s bottomside model is explicitly continuous in both electron density and its 

first derivative but, like the IRI, it uses a trigger for F1-Layer occurrence, which is based 
on foE in this case. This can, similarly, result in zonal and meridional discontinuities in 
the electron density between regions with and without an F1-Layer. For the E-region, the 
NeQuick mitigates a similar issue through the use of an exponential transition function, 
but no such mitigation is applied to the F1-Layer [Nava et al., 2008]. 

While these models are capable of capturing a wide range of bottomside shapes with their 
respective parameterizations, the above limitations push us to develop a new parameterization 
that avoids these issues. We have thus used the challenges and successes of the aforementioned 
bottomside formulations to inform our choice of bottomside model for E-CHAIM. In this way we 
have come to a formulation that, we believe, is robust and avoids the limitations of the above two 
models.  

In Section 2, we discuss the data set used in the fitting of the E-CHAIM bottomside model. In 
Section 3, we discuss the parameterizations used for hmE and hmF1 in E-CHAIM, while Section 
4 discusses the bottomside function itself and Section 5 discusses the parameterization of the 
various parameters used to define the E-CHAIM bottomside profile shape. Section 6 provides a 
brief validation of the E-CHAIM model and a comparison to the IRI. Finally, Section 7 proposes 
an explanation for errors common between the models, while Section 8 briefly discusses the 
challenges faced by such models during periods of strong precipitation. 
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3 hmE and hmF1 
For the purpose of the E-CHAIM bottomside, we have chosen to independently develop models 
for hmE and hmF1. Beginning with hmE, we attempted to fit our dataset of ionosonde-derived 
hmE values to a model similar to that done for E-CHAIM’s topside thickness [Themens et al., 
2018]. In so doing, we found RMS fitting errors hardly 0.5 km improved over the standard 
deviation of the input data. This implies that even sophisticated modeling approaches would only 
amount to a marginal improvement over simply using the average of the input data (102.19 ± 5.02 
km). Based on this result, we have decided to use this average value in place of an explicit model 
for hmE. It is interesting here to note that both the IRI and NeQuick use constant values for hmE 
in their model; however, while the IRI’s value of 105 km falls within the error range of the 
average derived here, the NeQuick’s value of 120 km is substantially higher than the average by 
several standard deviations. This result may suggest a need to re-visit the NeQuick’s choice of 
hmE or could result from a strong latitudinal hmE dependence below the E-CHAIM domain (e.g. 
below 500N geomagnetic latitude).  

Unlike hmE, hmF1 demonstrated notable coherent variability, such that a model could provide a 
substantial improvement over the mean of the input data (175.31 ± 15.01km). For hmF1, we have 
used a similar framework to that used for the topside thickness but with a simplified AE index 
component. The full parameterization is given as 

 

 

 

 

 

 

where F1 is 81-day smoothed F10.7 flux, AE’ is integrated AE index using the same methodology 
as explained in the Themens et al. [2018], DoY is the day of year,  is the dipole tilt angle,  is 
the solar zenith angle in degrees, and a1-13, , and  are fitting coefficients. In the above 
parameterization, L and M are each set as three and the seasonal Fourier expansion is expanded 
up to triennial terms.  

To assess the behaviour of the E-CHAIM hmF1 model fit, we present a comparison between 
hmF1 derived from E-CHAIM, the NeQuick parameterization (using measured hmF2), and the 
“traditional” hmF1 parameterization [Bilitza, 1990], currently used by Ionospheric 
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latitude, the ionosonde data demonstrates a largely linear trend, with hmF1 increasing toward the 
geomagnetic pole. This pattern is well captured by the E-CHAIM fit. The best fitted quadratic 
model seems to underestimate the rate of increase with latitude, while both the NeQuick and the 
“traditional” parameterization are biased upward by ~8 km and ~30 km, respectively. In local 
time, E-CHAIM and the ionosonde data demonstrate a minimum at local noon and an asymmetric 
diurnal variation with higher morning hmF1 compared to the evening. The existence of an F1 
layer, even near local midnight, can be attributed to 24-hour sunlit conditions at high latitudes 
during the summer. As for the remaining models, the traditional approach appears to again be 
over estimating hmF1 by 5-25km and the NeQuick model, while performing well in the morning 
and evening, overestimates hmF1 around local noon. Interestingly, we see here that the best fitted 
solar zenith angle curve underestimates the amplitude of the diurnal variation of hmF1 and 
performs better during daytime periods than during the evening and morning periods. This is 
likely because of the abundance of daytime data as compared to morning and evening data (e.g. 
the fit is heavily weighted toward local noon). The inability of this function to capture the diurnal 
variation of hmF1, suggests that hmF1 may have a significant dependence on factors that do not 
simply follow a solar illumination-driven pattern at high latitudes. Finally, and perhaps most 
interesting, we have the observed behaviour with respect to integrated AE index. Here we note a 
rapid increase in hmF1 from very quiet periods to more average periods, with largely linear 
behaviour thereafter. Interestingly, the hmF2-based parameterization of the NeQuick seems to 
capture the trend with respect to AE index reasonably well, if one ignores the slight tendency for 
an upward bias. In fact, if one uses 105 km for hmE in place of the NeQuick’s 120 km value, we 
see average AE index behaviour comparable to that of the E-CHAIM model. This is also true for 
the latitudinal behaviour of the NeQuick’s parameterization. This suggests that the NeQuick 
approach to modeling hmF1 is not without merit and that hmF2 may be a good target parameter 
when attempting to model hmF1. It should be noted, however, that we have here used measured 
hmF2, and thus the CCIR-based hmF2 of the NeQuick would not capture such geomagnetic 
variabilities, as it does not include a geomagnetic activity adjustment.  

Table 1 RMS errors from each hmF1 modeling method tested. 

Method 
RMS Error 

(km) 

Mean 15.01 

E-CHAIM 9.47 

NeQuick 17.89 

NeQuick (hmE = 105km) 15.48 

Traditional Model 26.57 

SZA Quadratic Fit 14.43 
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Overall RMS errors from each method are listed in Table 1. One will note from this table that the 
RMS error of the traditional approach is significantly worse than the use of a constant mean value 
for hmF1 and that the NeQuick’s use of 120km for hmE also performs worse than a simple mean. 
In fact, if one used CCIR-derived hmF2 in the NeQuick parameterization, it can be presumed that 
these errors might have been much larger, given the errors in the IRI/NeQuick hmF2 presented in 
Themens et al. [2014; 2017]. Overall, the E-CHAIM fit performs substantially better than the 
mean and the NeQuick. It also performs much better than functions that are based solely on solar 
zenith angle. While independent validation of these hmF1 and hmE parameterizations may be of 
interest, we have here used all available hmF1 data for fitting. We will instead opt to validate the 
entire E-CHAIM bottomside model together rather than validating components of the model 
individually. This validation is conducted in Section 6.  
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4 The E-CHAIM Bottomside Function 
 

Once hmF1 and hmE models have been completed, we proceed to develop a model for the shape 
of the E-CHAIM bottomside. To define the shape of the bottomside electron density profile 
within E-CHAIM, we have chosen to create our own, unique, formulation built loosely upon the 
existing framework of the NeQuick model. In our formulation, we model the bottomside as a 
single semi-Epstein layer with an altitude-varying scale height.  

 

The functions used to define the scale height of the bottomside are themselves taken as a sum of 
semi-Epstein layers given below. 

 

 

where , , and  are amplitude terms,  is an intermediate scale height function, and  
is the true scale height used by the model in Equation 7. You will note that the scale height 
function of Equation 8 is composed of two semi-Epstein layer functions, centered at hmF1 and 
hmE, with predefined thicknesses. These thicknesses were determined by trial and error. In 
Equation 9, we arrive at the true modeled scale height, where the scale height function of 
Equation 8 is multiplied by a sigmoid function. This sigmoid function acts to suppress the scale 
height below the E-region, ensuring that the electron density tends to zero at the model’s lower 
boundary. Equations 8 and 9 thus require that we model five parameters: hmE, hmF1, HF2, HF1, 
and HE.  

While hmE and hmF1 were available from the ionosonde record, HF2, HF1, and HE must be fitted 
from electron density profiles directly. This is done through the use of non-linear least squares, 
where we make use of the Levenberg-Marquardt method with diagonalized measurement error 
covariances and pre-specified values for the heights of the scale height layers. Ionosonde 
inversion errors are used to create a diagonalized measurement error covariance, the a priori 
covariances are also diagonalized, and all output amplitude values are constrained to be greater 
than zero. For the E-Region and F1-layer, initial values were selected by inverting Equation 7 and 
evaluating the resulting function at hmF1 and hmE minus the initial HF2 value. For the HF2 a 
priori estimate, we use the best fitted H value from Equation 7, using only data within 30km of 
the F2 peak. Examples of the fits used to determine HF2, HF1, and HE from ionosonde-derived 
electron density profiles are provided in Figure 6. 
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An example of the monthly median HF2, HF1, and HE behaviour at the Dourbes (4.6oE, 50.1oN) 
ionosonde is presented in Figure 7. We see in this figure largely expected behaviour: 1) HF1 and 
HE that are strongly correlated with solar zenith angle; 2) HF2 that features solar zenith angle 
control in the summer with reversed diurnal variability during the winter, which was similarly 
observed in the B0 bottomside thickness parameter behaviour presented in Themens et al. [2014] 
for high latitude regions. As you will note, the F1-Layer and E-Region thickness parameters 
smoothly transition from zero during periods without an F1-Layer or E-region (nighttime periods) 
to periods with such layers. This ensures that there is a continuous progression between the 
presence and absence of these layers that should be easily modeled. This, combined with our use 
of an explicitly continuous profile function, allows us to avoid the concerns with the IRI and 
NeQuick that are listed in the introduction section of this study.   
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5 Parameterization of the Bottomside Scale Height 
Amplitudes 

To parameterize the bottomside scale height amplitudes (HE, HF1, and HF2), we use the same 
methodology as that used for each of the other model components; namely, we have chosen to use 
three identical spherical cap harmonic expansions with Fourier expansions in day of year as 
Gauss coefficients. These parameterizations are functionally identical to that used for hmF1 (e.g 
Equations 1 – 4) but with a degree and order of L = 5 and M = 5. The choice to use identical 
parameterizations here was largely made for computational purposes to remove the need to build 
a new parameter basis set for each component of the bottomside model.  
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6 Validation 
To validate the performance of the E-CHAIM bottomside model, we have gathered data from a 
selection of Incoherent Scatter Radars (ISRs), which were not included in the fitting dataset, and 
compared model errors with respect to those found using IRI 2016. Since the AMTB-2013 
bottomside thickness model was not designed for use above 60oN geomagnetic latitude, we will 
here use the Gulyaeva B0 model option of Gulyaeva [1987], which slightly outperforms the IRI 
Table option at high latitudes [Themens et al. 2014]. The processing of the ISR dataset is done in 
the same manner as that detailed in Themens et al. [2018]. For the purpose of only examining the 
performance of the bottomside shape functions and parameterization, we have used measured 
hmF2 and NmF2 as inputs to E-CHAIM and the IRI in the following analysis. Also, to diminish 
the impact of the F2 peak, we have further normalized all of the resulting electron density profiles 
to NmF2 and hmF2. Figure 8 presents an example of the resulting normalized, peak-relative 
electron density profiles from the Poker Flat ISR (PFISR). Data gaps in the following figures that 
are not consistent across time of day in (e.g. white spaces that are only not in all four UTC time 
plots) may be mostly attributed to the inability to define an F2-peak (and thereby NmF2 and 
hmF2) from the data at those times. This is most common at night, either when strong 
precipitation in the E-region or lower F-region makes defining an F2-peak ambiguous or when 
the F2 peak is characterized by high hmF2 and low density, resulting in the peak being 
indistinguishable from the increasingly more significant background noise in ISR data at high 
altitudes. Other white areas correspond to altitudes that do not have data, which are largely 
dependent on hmF2. 
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likely occured below the minimum observable frequency of the ionosonde. The lack of this cusp 
and the E-region trace affects the inversion’s ability to reconstruct the thickness of the bottomside 
and leads to underestimation. In addition to this, ionosondes are incapable of resolving the depth 
of the E-F-valley, the density of which may be underestimated by the current ionosonde dataset.  

These concerns suggest that future versions of these models may be well served through the use 
of a different dataset, such as ISR data. 
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E-CHAIM, and dashed lines correspond to the IRI. Note that ISR hmF2 and NmF2 have been 
used here in place of the model values to facilitate comparison of just the profile shape. Profile 
dates (day, month, year  UTC) are provided in the title of each subplot. 

We note that the IRI E-region, in the absence of strong precipitation, performs quite well at all 
locations in this study, aside from a slight tendency toward overestimation at nighttime; however, 
one should note that, during periods of precipitation, the IRI's auroral precipitation model sees its 
improvement over the climatology countered by worse performance during "false alarm" 
situations (i.e. situations where the IRI predicts auroral precipitation but none is present). This 
trigger issue will be an important consideration in the adoption of such a precipitation model in E-
CHAIM.  

Particularly challenging in these situations is the fact that ionosondes are incapable of providing 
electron density profiles under strong precipitation conditions, where E-region densities are 
greater than those of the F-Region, and cannot provide information about the highly variable state 
of the E-F valley during precipitation conditions. This severely limits the datasets that can be used 
to model the bottomside under these conditions. In this way, the datasets that were used for fitting 
the bottomside in the IRI and E-CHAIM are biased against these conditions and, by construction, 
cannot represent these features; thus, an approach like that of Zhang and Paxton [2008] is an 
attractive option. 
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9 Conclusion 
We have here presented the bottomside electron density model function used by E-CHAIM. 
Through the development of this bottomside function, we have been able to provide comparable 
performance to the bottomside shape of the IRI while avoiding standard practices that 
demonstrate discontinuities in time and space.  

In the process of developing the E-CHAIM bottomside function, we have found that the 
“traditional” ICEPAC hmF1 function performs very poorly with RMS errors greater than 25km 
compared to a standard deviation about the mean of only ~15km. In terms of hmE, we find that 
the IRI’s use of 105km is accurate for our dataset, while the NeQuick’s use of 120km is several 
standard deviations larger than the measured mean. Also, while the NeQuick hmF1 estimation 
method demonstrates comparable overall behaviour to that seen in the measured dataset, it is 
biased toward overestimation by 5-15km. The use of the IRI’s hmE = 105km instead of the 
NeQuick value results improved performance with RMS errors of 15.48km instead of the 
NeQuick’s original 17.89km RMS errors. This, however, remains above the standard deviation 
about the measured mean (15.01km).   

In terms of overall bottomside performance, the E-CHAIM bottomside is demonstrated to 
outperform the IRI bottomside function in the F-region during low solar activity periods. At high 
latitudes, E-CHAIM tends to outperform the IRI during winter months by between 10% and 40% 
of NmF2 while being outperformed by the IRI by between 10% and 25% of NmF2 during 
summer periods, particularly during the daytime at high solar activity. In general, E-CHAIM’s 
errors tend toward underestimation of bottomside electron density. In general, we also find that 
the IRI performs well at all locations in the E-region during daytime conditions but suffers errors 
due to the over prediction of auroral precipitation enhanced E-region density, particularly during 
the equinoxes. Both models suffer poor performance during precipitation events, particularly in 
the auroral oval. Future work will examine the use of ISR data for the model fitting and explore 
the application of a precipitation model in the E-CHAIM bottomside parameterization.  
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List of symbols/abbreviations/acronyms/initialisms  

DND Department of National Defence 

E-CHAIM Empirical Canadian High Arctic Ionospheric Model 

IRI International Reference Ionosphere 

NmF2 Peak density of the F2-layer 

hmF2 Height of the F2-layer peak 

foF2 The F2-layer critical frequency 

M3000F2 Ratio of the MUF to foF2 

MUF(3000) Maximum Usable Frequency at 3000km distance 

CHAIN Canadian High Arctic Ionospheric Network 

IRTAM IRI-based Real-Time Assimilative Model 

GIRO Global Ionospheric Radio Observatory 

MIT Main Ionospheric Trough 

DRDC Defence Research and Development Canada 

DSTKIM Director Science and Technology Knowledge and Information Management 
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