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Abstract……….…….……. 

This phase of the E-CHAIM project involved the validation and testing of the model in 
preparation for final release. For this purpose, we first examined the performance of the model 
under the most extreme conditions one could expect it to operate (intermediate timescales). It is 
clear from previous work [e.g. Themens et al., 2017a] that E-CHAIM performs well and better 
than the International Reference Ionosphere (IRI) on monthly median timescales but little has 
been done to assess the model’s performance at shorter timescales. Looking at intermediate (1-to-
30-day) timescales we here examine the performance of the E-CHAIM and IRI storm models in 
accommodating variations at these timescales. Through this work, we demonstrate that, despite 
the simple nature of the storm parameterization, the E-CHAIM storm model is able to account for 
20%-50% of ionospheric variability at intermediate timescales. This, however, is found to be the 
limit of the operational capacity of empirical models, where only data assimilation can provide 
further improvement.  

To account for the lack of an independent validation of the E-CHAIM topside model in our 
previous work [Themens et al., 2018], we here present such a validation using Defense 
Meteorological Satellite Program (DMSP) in situ measurements of electron density. Through this 
validation we note remarkable improvement in the representation of electron density at DMSP 
satellite orbit altitudes over the IRI. This improvement is found to be greatest during the summer 
at high solar activity and can at times exceed a factor of two, while both models provide 
comparable performance during winter and at low solar activity. In general, E-CHAIM does an 
excellent job tracking the seasonal behaviour of DMSP electron density in a variety of latitude 
and local time domains. 

In order to assess the capacity of E-CHAIM to be used in HF raytracing applications, we have 
also applied the model with a PHaRLAP raytracing code. Using this raytracer with E-CHAIM, 
we note nominal behaviour with no unphysical outliers in the production of simulated vertical and 
oblique ionograms. Simulations of the Maximum Usable Frequency (MUF) between Resolute 
and Yellowknife demonstrate largely expected physical behaviour, which we hope to compare to 
data once available. Comparisons of E-CHAIM-derived receive power and O-mode virtual traces 
show largely consistent behaviour with a limited set of available oblique ionograms.  

Finally, we present a summary of the E-CHAIM code features released coincident with this 
report.  

Significance for Defence and Security 

This work sees the conversion of a research, IDL language, E-CHAIM code into a series of 
operation models including C, Matlab, and IDL versions, as well as a web interface, similar to 
that of the Internation Reference Ionosphere (IRI). The research conducted under this deliverable 
sought to extensively validate components of the E-CHAIM that were not independently assessed 
in the previous deliverables. This work also undertook basic testing of the model in HF 
communications and ray tracing applications, where we have here compared model-derived 
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simulations of vertical and oblique ionograms to a limited set of available real data from the 
Canadian High Arctic Ionospheric Network (CHAIN) and tested the use of the model for 
identifying Maximum Usable Frequency (MUF) statistics for Canadian high latitude 
communications links.  This work assures the quality and applicability of E-CHAIM toward 
defense applications, such as Over The Horizon Radar (OTHR) system planning and design. 
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Résumé……….……. 

Cette phase du projet E-CHAIM comporte la validation et les essais du modèle précédant la 
publication de sa version définitive. Dans ce but, nous avons d’abord étudié le rendement du 
modèle dans les conditions de fonctionnement prévisibles les plus extrêmes, soit les échelles de 
temps intermédiaire. Nos travaux antérieurs (Themens et coll. 2017a) ont montré qu’aux échelles 
moyennes mensuelles, qu’E-CHAIM a un bon rendement et donne des résultats supérieurs à ceux 
de l’ionosphère internationale de référence (IIR), mais nous avons fait peu de travail pour évaluer 
le rendement sur des périodes plus courtes. Nous nous penchons ici sur les échelles de temps 
intermédiaires de un à trente jours pour étudier le comportement des modèles de tempêtes 
d’E-CHAIM et de l’IIR pour tenir compte des variations à ces échelles. Grâce à ce travail, nous 
démontrons qu’en dépit de la simplicité de la paramétrisation des tempêtes, le modèle de tempêtes 
d’E-CHAIM peut expliquer entre 20 % et 50 % de la variabilité ionosphérique aux échelles de 
temps intermédiaires. Nous avons toutefois trouvé que cette paramétrisation limitait la capacité 
opérationnelle des modèles empiriques qui ne pourront être améliorés que par l’assimilation de 
données. 

Étant donné l’absence d’une validation indépendante du modèle d’E-CHAIM pour le haut de la 
couche dans nos travaux antérieurs (Themens et coll., 2018), nous présentons une telle validation 
basée sur les mesures in situ de la densité d’électrons par le Defense Meteorological Satellite 
Program (DMSP) des États-Unis. Cette validation a permis de constater une amélioration 
remarquable par rapport à celle de l’IIR de la représentation de la densité d’électrons aux altitudes 
de l’orbite des satellites du DMSP. Nous avons trouvé que cette amélioration était plus grande 
pendant l’été lors de fortes activités solaires et à certains moments pouvait être d’un facteur deux. 
Toutefois, les deux modèles ont un rendement comparable en hiver et pendant les périodes de 
faible activité solaire. En général, E-CHAIM suit très bien le comportement saisonnier de la 
densité d’électrons trouvée par le DMSP pour un éventail de domaines de latitudes et de temps 
locaux. 

Pour évaluer la capacité d’utilisation d’E-CHAIM avec les programmes de traçage de rayons pour 
les hautes fréquences, nous l’avons testé avec un logiciel de traçage de rayons PHaRLAP. Nous 
avons constaté que l’utilisation de ce traceur de rayons avec E-CHAIM produisait un 
comportement nominal sans données aberrantes non physiques lors de la production 
d’ionogrammes simulés verticaux et obliques. Les simulations de la fréquence maximale 
utilisable entre Resolute et Yellowknife montrent un comportement physique largement 
prévisible que nous souhaiterions comparer avec des données d’observation si elles devenaient 
disponibles. Les comparaisons entre les puissances reçues calculées par E-CHAIM et les traces 
virtuelles des ondes ordinaires montrent un comportement en accord général avec l’ensemble 
limité des ionogrammes obliques disponibles. 

Pour finir, nous présentons un résumé des éléments principaux du programme E-CHAIM, publié 
concurremment avec le présent rapport. 
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1 Introduction 
The following report presents our work regarding a series of validations of E-CHAIM, as well as 
provides a series of examples of the model’s use in various HF communications applications. 
Section 2 examines E-CHAIM’s performance in modeling electron density at intermediate (1-to-
30-day) timescales within the Canadian polar cap. Section 3 undertakes an extensive validation of 
E-CHAIM against topside in situ electron density obersvations at 830km – 880km from the 
DMSP satellite constellation. Section 4 presents a series of examples of the use of E-CHAIM in 
raytracing applications, both with respect to predicting frequency band availability and to 
reproducing vertical and oblique HF sounding observations. Finally, Section 5 introduces the 
model code and summarizes the basic model content. 
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2 Performance at Intermediate Timescales 
 

2.1 Introduction 
 
Empirical models, such as the International Reference Ionosphere (IRI), the NeQuick, or the 
Empirical Canadian High Arctic Ionospheric Model (E-CHAIM), have demonstrated remarkable 
performance in providing ionospheric electron density on monthly, or larger, timescales in a 
variety of environments [Sethi et al., 2008; Ehinlafa et al., 2010; Ezquer et al., 2011; Bilitza et al., 
2012; Wichaipanich et al., 2012; Themens et al., 2017a]. At mid latitudes the IRI and NeQuick 
are widely used in both scientific and operational capacities due to their strong performance in 
representing climatological electron density variability and their general convenience/simplicity 
of use [Komjathy and Langley, 1996; Komjathy et al., 1998; Hernandez-Pajares et al., 2002; Bust 
et al., 2004; Schmidt et al., 2008; Zeilhofer et al., 2009; Pezzopane et al., 2011; Galkin et al., 
2012]. At high latitudes local models, such as E-CHAIM and that of Karpachev et al. [2016], 
have recently been developed for similar purposes and show promise in the representation of 
expected large-scale ionospheric features, such as the Main Ionospheric Trough (MIT).  
 
The above models all provide quiet time, climatological representations of electron density, while 
both the IRI [Bilitza and Reinisch, 2008] and E-CHAIM [Themens et al., 2017a] provide 
supplemental adjustments to their quiet time models to account for storm-time variability. These 
adjustment models are hereafter referred to as Storm Models. The IRI’s Storm Model is that of 
Aurojo-Pradere et al. [2002a, 2002b], where ap index, integrated over the previous 33 hours with 
a specially designed filter, is used to drive a linear model of the ratio of perturbed to unperturbed 
F2-layer critical frequency (foF2). E-CHAIM’s Storm Model allows for spatial variations in the 
ionospheric storm response through the use of a Spherical Cap Harmonic Expansion that is driven 
by various functions of Dst, ap index, and Auroral Electrojet (AE) index in forms inspired by the 
work of Wu and Wilkinson [1995] and Perrone et al. [2001].These Storm Models allow the IRI 
and E-CHAIM to provide a representation of intermediate (1- to 30-day) timescale variations in 
electron density, which are dominated by ionospheric storm variability.  
 
While validations have shown that these Storm Models provide a measure of improvement over 
the climatology during ionospheric storms, particularly in the representation of negative storm 
responses, little has been done to quantify or assess the degree of this performance improvement 
outside of case studies [Themens et al., 2017a; Aurojo-Pradere et al., 2002a and 2002b]. It is the 
focus of this study to determine the limitations of these models in their capacity to represent 
intermediate (1- to 30-day) timescales. To this end, we here attempt to assess the representations 
of these timescales in one of the most dynamic environments available: the polar cap. 
 
E-CHAIM proposes to provide the best possible empirical representation high latitude 
ionospheric electron density; however, due to the increased complexity of the environment, the 
question arises of whether an empirical approach, such as that employed by E-CHAIM or the IRI, 
is even capable of satisfactorily representing the high latitude ionospheric environment. This 
concern stems predominantly from the highly dynamic variability of high latitude electron 
density, which includes manifestations of the transport of plasma from mid latitudes in the form 
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of a tongue of ionization or patches [Foster et al., 2005], localized or elongated enhancements in 
electron density due to precipitation [Watson et al., 2011], and various other processes that drive 
large changes in F-region plasma on minute, hourly, and day-to-day time scales. The high degree 
of variability at high latitudes on a variety of time scales brings in to question the 
representativeness of monthly medians as a concept in these regions and thus brings into question 
the capacity of empirical models to represent these environments.  
 
In this study, we first assess the representativeness of monthly medians at high latitudes in 
Section 2.3 before then examining the performance of the IRI and E-CHAIM in representing 
intermediate (1- to 30-day) time scales within the Polar Cap in Section 2.4. We finish with a 
discussion of the results in Section 2.5.  
 
 

2.2 Data and Models 
 

2.2.1 The Canadian High Arctic Ionospheric Network (CHAIN) 
 
CHAIN operates a network of six ionosondes and 24 GNSS receiver instruments in the Canadian 
Arctic, where all six ionosondes are collocated with GNSS receivers [Jayachandran et al., 2009]. 
A map of the CHAIN network is presented in Figure 1. 
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and openly available online at http://chain.physics.unb.ca. The E-CHAIM distribution features 
source code versions provided in Matlab, IDL, and C, as well as a website interface, similar to 
that available for the IRI. A Python interface is also now under development.   
 
Focusing here solely on NmF2, the seasonal variability of E-CHAIM’s NmF2 model uses a 
Fourier expansion up to triennial terms [Themens et al., 2017a]. For diurnal variations the model 
uses 24 separate models for each UT hour, with linear interpolation used to define NmF2 between 
each model. For timescales between these seasonal and diurnal time scales, hereafter referred to 
as intermediate timescales, E-CHAIM provides a storm parameterization driven by time 
integrations of Auroral Electrojet (AE) index, ap index, and Dst. The parameterization is provided 
in detail in Themens et al. [2017a]; however, to summarize, the E-CHAIM storm model 
accommodates spatial, seasonal, and diurnal variability in its relationship between the driving 
indices and the ratio between perturbed and climatological NmF2.  
 
 

2.2.3 The IRI 
 
The IRI is the internationally recognized standard for ionospheric specification [Bilitza et al., 
2011], built through a collaboration between International Union of Radio Science (URSI) and 
the Committee on Space Research (COSPAR) over several decades [Bilitza, 1990; 2001; Bilitza 
and Reinisch, 2008; Bilitza et al., 2000; 2011; 2012]. The IRI features two peak critical frequency 
(foF2) models: the URSI and CCIR models. For seasonal variability, each of these models uses 
linear interpolation between separate monthly foF2 maps, as these models were originally 
developed as monthly median climatological models. For diurnal variations both models use what 
is effectively an 8th order Fourier expansion in UTC [Jones and Gallet, 1962]. Between these two 
timescales, the IRI also features the option to enable a storm time perturbation model aptly named 
the STORM model. This model is driven by a filtered time integration of ap index and allows 
only for local time variations in the modeling of the ratio between perturbed and climatological 
foF2. 
 
 

2.3 Conceptualizing Monthly Medians at High Latitudes 
 
 
One of the main focuses of this work is to assess the validity of the application of “monthly 
medians” to the problem of high latitude electron density. It is well known that high amplitude 
variations in electron density regularly occur at high latitudes, diverging significantly from 
median behaviour. The question is, how severe are these deviations and how are these reflected in 
monthly medians? There is a substantial body of work that has assessed the accuracy of monthly 
median electron density models in their capacity to represent high latitude monthly medians [e.g. 
Themens et al., 2014, 2016, 2017b; Bjoland et al., 2016; Makarevich et al., 2015]; however, little 
work has been done identifying the representativeness of these medians with respect to nominal 
conditions or on trying to assess the degree of expected deviation about these medians. 
Makarevich et al. [2015] examined the impacts of significant night time depletions in plasma 
density in the polar cap, called polar-holes, on the representativeness of monthly median models 
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deviations below 0.5MHz at all times [Aurojo-Pradere et al., 2005; Ghezelbash et al., 2014 Or 
Lamarche and Makarevich, 2015]. That said, during the equinoxes, when patch and storm activity 
is highest [Sojka et al., 1994; Lyatsky and Hamza, 2001], deviations about the mean can reach as 
high as 1.7 MHz, well above what is commonly taken as the acceptable standard for foF2 
accuracy (1.0 MHz). This implies that models of monthly median foF2 are already incapable of 
reaching the basic standard, even if their modeled foF2 was perfectly accurate; thus, models of 
the high latitude environment must provide information on sub-monthly time scales to have any 
hope of reaching such a standard.  
 

2.4 Representations at Intermediate Time Scales 
 
 
To represent intermediate (1-to-30-day) timescales, E-CHAIM and the IRI rely on their storm 
parameterizations. Before proceeding, we first take a moment to return to Figure 3, where we 
presented the deviation of measured and E-CHAIM-modeled foF2 with respect to their 
corresponding monthly medians. Despite the significant deviations in the measured foF2, the 
model appears to qualitatively represent at least a portion of these structures. Of course, it is 
obvious from this figure that the model is not capturing all of the structuring, nor is it able to 
capture the magnitude of these deviations. Nonetheless, the challenge is now to quantitatively 
assess to what extent these variations are capture and to determine what value, if any, is provided 
through the use of these storm parameterizations.  
 
To evaluate the capacity of these models to represent ionospheric variability on these intermediate 
timescales, we first conducted a simple experiment whereby we smoothed the measured and 
modeled foF2 by incrementally larger timescales and compared the resulting smoothed foF2. The 
results of this simple smoothing comparison are presented in Figure 5. 
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improvements during the morning and evening with larger improvement during night time 
compared to daytime, while Cambridge Bay sees its largest improvement in the morning and 
greater improvements during daytime than night time. While the IRI storm model seems to 
provide a small improvement during nighttime conditions this improvement is limited and does 
not appear to be significant when examining slopes or RMS errors. This implies that, while the 
IRI model may be able to represent some of the variability at these timescales, the amplitude of 
the modeled storm response is significantly underestimated.  
 

2.5 Discussion and Conclusions 
 
It is clear from this study that monthly median models are of limited utility at high latitudes due 
to the region’s high sensitivity to geomagnetic conditions and highly non-linear dynamics. 
Despite this, simple parameterizations of ionospheric storm perturbations from median behaviour, 
based on integrated forms of geomagnetic indices, nonetheless appear to have some measure of 
value. Due to the dominant ionospheric storm response on multi-day time scales at high latitudes 
being a negative ionospheric response due to composition changes [Fuller-Rowell, 1998], 
geomagnetic indices, which can often be related to joule heating in a simple manner [Foster et al., 
1983; Baumjohann and Kamide, 1984], provide a reasonable measure of information about the 
resulting storm-perturbation of the ionosphere in these regions over intermediate time scales. On 
shorter, hourly or day-to-day time scales, patches, tongues of ionization, and other mesoscale 
ionospheric structures dominate ionospheric variability at high latitudes [Foster, 2005], and due to 
the complex mechanisms governing the production and transport of these structures, simple 
relationships to geomagnetic activity indices are ill-suited to representing variability on these 
daily and sub-daily timescales.  
 
Here the E-CHAIM parameterization demonstrates the capacity to accommodate between 20% 
and 50% of storm-driven ionospheric variability at intermediate (1-to-30-day) timescales. This, 
however, only translates into an improvement of 0.05 MHz in terms of overall RMS error, which 
may not be sufficient to make stand-alone empirical models operationally applicable to high 
latitude regions. Nonetheless, with overall RMS errors below 0.8 MHz at both sites, E-CHAIM 
appears to reach the 1 MHz minimum accuracy threshold, at least at these two locations.  
 
In general, while the IRI storm model appears to capture some of the intermediate timescale 
variability at these locations, the amplitude of the modeled variability is highly underestimated by 
the IRI and is essentially inconsequentially small. As the IRI Storm model has no dependence on 
location, this result may highlight the need to accommodate spatial differences in ionospheric 
storm responses in these models, especially seeing that E-CHAIM, which does allow for spatial 
variations in this response, appears to significantly outperform the IRI on these timescales.  
 
The aforementioned limitation of these models in no way undermines the utility of these models 
but, rather, highlights the necessity to assimilate data into these models to see any further 
improvement. We have here merely presented the capacity limit of these models for representing 
high latitude electron density variability.  
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It is clear from the E-CHAIM results that, despite not being able to fully capture intermediate 
timescale variability, its storm model does provide a measure of value to improving empirical 
ionospheric representations at these intermediate time scales.  
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3 Validation Against DMSP in situ Electron Density Data 
 

 

3.1 Introduction 
 
The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) is a relatively new 
empirical representation of high latitude (> 50oN geomagnetic latitude) electron density [Themens 
et al., 2017a; 2018]. The model was built as a stand-alone replacement for the use of the 
International Reference Ionosphere (IRI) in these regions and features significant improvements 
over the IRI in terms of hmF2 and NmF2 [Themens et al., 2017a]. Unfortunately, due to a limited 
dataset and the desire to use all available topside electron density profiles for the fitting of the 
model, independent validation of the E-CHAIM topside has not yet been undertaken. It is the 
intent of this study to provide this independent validation. 
 
Accurate topside electron density modeling is integral to several ionospheric model applications, 
serving as the dominant contribution to ionospheric total electron content (TEC), particularly at 
high latitudes [Themens et al., 2014; 2016; Bjoland et al., 2016]. Themens et al. [2016] 
demonstrated that IRI suffers significant errors in modeling this electron density at high latitudes, 
sometimes underestimating the integrated topside electron density by up to 6 TECU (1 TECU = 
1016 e/m3). In that study, the authors demonstrated that, while foF2 errors contributed somewhat 
to these errors, up to 4TECU of this error stemmed from the topside shape function. These results 
combined with further diagnostics completed in Themens et al. [2017b] lead the designers of E-
CHAIM develop a new topside shape parameterization, built on the successes of the IRI’s 
NeQuick topside function [Coïsson et al., 2006] but modified to provide an improvement in 
topside curvature and thickness.  
 
While the above changes were demonstrated to provide a significant improvement with respect to 
the fitting dataset, further validation against independent datasets is necessary. For this purpose, 
we have here gathered over a decade of in situ electron density observations from the Defense 
Meteorological Satellite Program (DMSP) constellation of satellites. 
 
In Section 3.2, we provide an overview of the data used in this study and the two models of 
interest, namely the IRI and E-CHAIM. In this study, we will use the IRI as a baseline standard 
with which to compare E-CHAIM. In Section 3.3 we present a comparison between DMSP in situ 
measurements and coincident IRI/E-CHAIM-modeled electron density. We finish in Section 3.4 
with a discuss of the results and some conclusions.   
 

3.2 Data 
 

3.2.1 DMSP in situ Electron Density 
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3.2.2 E-CHAIM 
 
The topside and F2-peak components of the E-CHAIM model were first presented in Themens et 
al. [2017a; 2018]. The model is a regional solution for locations above 50oN geomagnetic latitude 
and was designed as an alternative to the use of the IRI at high latitudes. The model is now free 
and openly available online at http://chain.physics.unb.ca. The E-CHAIM distribution features 
source code versions provided in Matlab, IDL, and C, as well as a website interface, similar to 
that available for the IRI. A Python interface is also now under development. 
 
E-CHAIM was developed using an extensive dataset of ionosondes, topside sounders, Incoherent 
Scatter Radars (ISRs), and Radio Occultation (RO) satellites. The topside in E-CHAIM is 
represented by a modified version of the NeQuick topside function anchored at the F2-region 
peak density (NmF2) and height (hmF2) [Themens et al., 2018]. The model is fit to basis sets of 
spherical cap harmonics for spatial variability and Fourier expansions in day of year for seasonal 
variability. For diurnal variations, the hmF2 and NmF2 models were fit independently for each 
UTC hour, while the topside thickness model uses local time as its longitude coordinate and 
functions of solar zenith angle to accommodate its diurnal variability. Both the NmF2 and topside 
thickness models also feature accommodations for the effect of ionospheric storms.  
 
 

3.2.3 IRI 
 
The IRI is the internationally recognized standard for ionospheric specification [Bilitza et al., 
2011], built through a collaboration between International Union of Radio Science (URSI) and 
the Committee on Space Research (COSPAR) over several decades [Bilitza, 1990; 2001; Bilitza 
and Reinisch, 2008; Bilitza et al., 2000; 2011; 2012]. The model features several options for 
NmF2, hmF2, and topside shape. For the purpose of this study, the Shubin [2015] option was 
selected for hmF2, as the default AMTB-2013 model was not intended for use above 60oN 
geomagnetic latitude [Altadill et al., 2013], and the URSI option was selected for foF2, as it is 
generally found to be the better performing IRI foF2 option at high latitudes [Themens et al., 
2014]. The NeQuick option, the IRI’s default, was selected for the topside representation.  
 
Based on the results of Themens et al. [2014] and [2018], which demonstrate an underestimation 
of NmF2 by the IRI and a tendency to overestimate the near-peak topside thickness while 
underestimating electron density aloft, we expect the IRI’s NmF2 and topside thickness errors to 
negate each other to some extent in the near-peak region but result in an additive underestimation 
of electron density at high altitudes (beginning above approximately hmF2 + 200km).  
 

3.3 Validating E-CHAIM 
 

3.3.1 Overall Comparison 
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latitudes [Themens et al., 2017a] seems to have here culminated in strong overall performance in 
representing high latitude electron density in the 830-880km altitude range. For both DMSP 
satellites tested here, E-CHAIM produced an improvement over IRI RMS errors by 3.2 - 3.7 x 109 
e/m3 (25% to30%) and appears to qualitatively well capture the seasonal behaviour of DMSP in 
situ electron density. Based on the combined comparisons of DMSP satellites F17 and F18, the 
observed improvement appears to span across all magnetic local times. Nonetheless, there remain 
some appreciable errors in E-CHAIM electron density during winter periods at low solar activity, 
where performance is comparable to, but sometimes worse than, the IRI. In fact, even for periods 
where E-CHAIM significant outperforms the IRI, errors can still reach as high as 20%. The task, 
of course, remains in identifying where these remaining errors are coming from within E-
CHAIM, whether it be in hmF2, in NmF2, or in the topside shape function. Further assessment is 
necessary using either independent, full electron density profile data or more in situ satellite data 
at varying altitudes in order to full diagnose these errors.  
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4 Examining the use of E-CHAIM for HF Raytracing 
 

4.1 Introduction 
 
One of the primary applications of E-CHAIM will be as a background model for HF raytracing, 
particularly for the task of system design and frequency selection for potential OTHR 
deployments to high latitudes; as such, we feel it necessary to provide some examples of E-
CHAIM being applied in such a manner and to conduct some raytracing comparisons to existing 
datasets.  
 
In Section 4.2 we will introduce the ray tracing code used for the following analysis and briefly 
summarize the E-CHAIM bottomside representation. In terms of analysis, we first take a moment 
to examine the behaviour of the maximum usable frequency of an HF radio link between Resolute 
and Yellowknife in Section 4.3. Following this, we compare a limited number of measured 
oblique ionograms to simulated oblique ionograms from E-CHAIM in Section 4.4.   
 

4.2 Data 
 

4.2.1 E-CHAIM 
 
E-CHAIM is a regional empirical electron density solution for locations above 50oN geomagnetic 
latitude and was designed as an alternative to the use of the International Reference Ionosphere 
(IRI) at high latitudes [Themens et al., 2017a; Themens et al., 2018]. The model is now free and 
openly available online at http://chain.physics.unb.ca. The E-CHAIM distribution features source 
code versions provided in Matlab, IDL, and C, as well as a website interface, similar to that 
available for the IRI. A Python interface is also now under development. 
 
E-CHAIM was developed using an extensive dataset of ionosondes, topside sounders, Incoherent 
Scatter Radars (ISRs), and Radio Occultation (RO) satellites. The bottomside in E-CHAIM is 
represented by a single semi-Epstein layer function with a vertically parameterized scale height 
designed to capture the variations in bottomside density associated with changes in F2-layer 
thickness, as well as variations in the F1-layer and E-region. The model is fit to basis sets of 
spherical cap harmonics for spatial variability and Fourier expansions in day of year for seasonal 
variability. For diurnal variations, the hmF2 and NmF2 models were fit independently for each 
UTC hour, while the components of the bottomside model use local time as its longitude 
coordinate and functions of solar zenith angle to accommodate its diurnal variability. Both the 
NmF2 and the bottomside parameterization models also feature accommodations for the effect of 
ionospheric storms.  
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4.2.2 Hall Beach-Iqaluit Oblique Ionograms 
 
In May 2011, the Canadian High Arctic Ionospheric Network (CHAIN) undertook a brief 
experiment to test their Canadian Advanced Digital Ionosondes (CADI) in an oblique sounding 
operational mode. During this period, a transmitter at Hall Beach was synchronized to a receive-
only station in Iqaluit. While the antenna conformation was not ideal for this application, leading 
to low power, some clear oblique ionograms were able to be recorded. For this study, we will 
examine these limited oblique ionograms and compare them to simulations using PHaRLAP, 
using E-CHAIM as the background electron density model. 
 

4.2.3 PHaRLAP 
 
PHaRLAP is a full-featured ray tracing toolkit developed by Australia’s Defence Science and 
Technology Organisation (DSTO) [Cervera and Harris, 2014]. The toolbox is a robust raytracing 
software based on the Hamiltonian approach of Haselgrove [1963] with an explicit solution for 
the group refractive index using the Appleton-Hartree Equation. The software is capable of 
providing independent solutions for the ordinary and extraordinary modes and determines 
absorption losses to transmission using the method of George and Bradley [1974], with plans to 
upgrade the absorption code to an explicit solution called the Semiempirical Model for 
Ionospheric Absorption based on the NRLMSISE-00 atmospheric model (SiMIAN) [Pederick 
and Cervera, 2014].  
 

4.3 Frequency Planning: Resolute to Yellowknife 
 
One main applications of E-CHAIM will be its use as a background model in determining the 
maximum usable frequency on HF links in the Canadian Arctic. To demonstrate the model’s 
capacity in such an application, we have generated oblique incidence ionograms between a 
theoretical transmitter at Resolute and receiver at Yellowknife for every hour in 2011. In Figure 
17 we present the maximum usable frequency from these simulations. 
 



 
 
 

Figur
Yellow

MUFs
~20 M
for ni
associ
al. [20
the 5.
expec
the m
both l
geom
hmF2
 

4.4 
 
Prior 
mome
comp
from t
virtua
 

re 17. Monthl
wknife and R

s monthly me
MHz, with MU
ghttime cond
iated with a s
016] and [201
0 to 13.0 MH

cted trends wi
maxima in tran

lower electron
etric path (i.e

2 reaching loc

Compar

to examining
ent to examin
are to these re
the Cambridg

al O-mode tra

ly median MU
Resolute in 20

edian MUFs o
UFs peaking d

ditions. From O
short-term inc
17a]. In the ab

Hz range. In te
ith received p
nsmit power d
n density and 
e. less oblique
cal maxima at

risons to 

g the use of E-
ne the behavio
esults to verti
ge Bay CHAI
ace generated 

UF (left) and
011.  

on the link be
during the eq
October to De

crease if solar 
bsence of this
erms of receiv
ower lowest d

during the equ
collision freq

e propagation)
t these times. 

Ionogram

-CHAIM with
our of the mod
ical ionogram
N CADI syst
using PHaRL

 

 

 
d power at MU

tween Yellow
quinoxes for d
ecember 201
flux that has 

s short-term fe
ved power at t
during summ
uinox nighttim
quencies in th
) through the 
 

ms 

h respect to o
del under vert

ms. An examp
tem is present
LAP with E-C

UF (right) fo

wknife and Re
daylight perio
1, we note a s
 been previou

feature, MUFs
the MUF freq

mer daytime pe
me conditions
he D-region, a
D-region dur

oblique ionogr
rtical propaga
le of a manua
ted in Figure 

CHAIM.  

or HF links b

esolute range
ods and during
substantial inc
usly reported 
s generally sta
quencies, we 
eriods. Less e
s, likely assoc
as well as a re
ring these per

rams, we first
ation condition
ally scaled O-
18 with a sup

2

 
etween 

e from ~5 to 
g the summer
crease in MU
in Themens e
ayed within 
see largely 

expected are 
ciated with 
educed 
riods due to 

t take a 
ns and 
-mode trace 
perimposed 

27 

r 
UF 
et 



28 

Figur
based

 
There
comp
capac
sensit
virtua
excell
layer 
the vi
here i
lead t
raytra
behav
the re
Regar
tenden
 
Befor
will fi
we pr
2011,
 

re 18. O-mod
d (red) raytrac

e is little need
arisons to hm

city of E-CHA
tive to small e
al height profi
lent job in cap
traces; howev

irtual height io
s that even sm
o very differe

acers are often
viour of the re
sult of a tilted
rdless, E-CHA
ncy to slightly

re comparing 
first examine t
resent exampl
 at 00:14UTC

de trace of a C
cing for June

d to spend mu
mF2 and foF2 
AIM versus ot
errors in the v
iles. For exam
pturing the fo
ver, the mode
onogram trac
mall changes 
ent retardation
n inaccurate in
efractive index
d ionospheric
AIM appears 
y underestima

E-CHAIM an
the behaviour
les of the simu
C and on May

CADI ionogra
e 1st, 2014, at

ch time focus
at these sites 

ther empirical
vertical gradie
mple, examini
oF2 and even 
el fails to repr
e in the transi
to the gradien
n behaviour in
n regions of s
x in these reg

c layer, both o
to perform w
ate the critica

nd PHaRLAP
r of the model
ulated system

y 5th, 2011, at 

 

 

am (black) an
t 20:00UTC. 

sing on vertic
already prov

l models. Tha
ents in electro
ing Figure 18
the virtual he

roduce the stro
ition between
nt in electron 
n that cusp re
strong vertica
gions and som
of which are a

well in applica
al frequency o

P-generated ob
l in its applica

m power on a H
3:56UTC.  

nd from E-CH

cal propagatio
vide a reasona
at said, those 
on density as t
, we see that 

eight profile c
ong retardatio

n the F1- and 
density at the

egion. This ig
al gradients du
me of this stro
a serious techn
ation with PH
of the E-regio

blique traces 
ation to obliq
Hall Beach-to

HAIM- (blue)

on comparison
ably clear case
types of anal
tends to be th
E-CHAIM do

curvature of th
on cusp behav
F2-layers. Th
e cusp of the 

gnores the fact
ue to the asym
ng cusp beha
nical challeng

HaRLAP but d
on peak.  

to real ionogr
que raytracing
o-Iqaluit link 

 
e) and IRI-

ns, as prior 
e for the 
ysis are not a

he vase for 
oes an 
he F1- and F2
viour found in
he challenge 
F1-layer will
t that 
mptotic 
avior could be
ge to address.
does exhibit a 

ram data, we 
g. In Figure 19

on May 2nd,

as 

2-
n 

l 

e 
. 

9 
, 



 
 
 

Figur
Beach
Simul

 
From 
daytim
appre
ionog
ionog
demo
 

Figur
May 2
Figur

 

re 19. E-CHA
h and Iqaluit
lations are fo

this figure, w
me (00:14UT
ciable signal 

grams we do r
grams. An exa
nstrate the rec

re 20 An obliq
2nd, 2011. No
re 19.  

AIM and PHa
t on May 2nd, 
or a unity gai

we note signif
C) simulation
is simulated f

receive at Iqal
ample ionogra
ceived power

que ionogram
ote that the y-a

aRLAP simul
2011, at 00:1

in isotropic re

ficant signal lo
n. For the nigh
for a potentia
luit during da
am from this 
r. 

m recorded at
axis here is g

 

 

 
lated oblique 
14UTC (left) 
eceiver and tr

oss for most e
httime period

al 2-hop mode
aytime period
00:14UTC lin

t the CHAIN 
group range d

e O-mode iono
and May 5th,

ransmit confo

echoes below
d (3:56UTC), 
e link. This su
s will likely b
nk is presente

N Iqaluit ionos
divided by a f

ograms betwe
, 2011, at 3:5

formation.   

w the F-region
there is less a

uggests that a
be highly atte
ed in Figure 2

sonde at 00:1
factor of two,

2

 
een Hall 

56UTC (right)

n during the 
absorption an
ny oblique 
nuated, partia

20, where we 

14UTC on 
, unlike 

29 

). 

nd 

al 

 



30 

This f
Nonet
Figure
Figure
 

Figur
5th, 20

 
Here w
19. In
CHAI
simul
 

figure demon
theless, we se
e 21, we pres
e 19.  

re 21. An obli
011. Note tha

we note clear
n Figure 22, w
IN CADI ion
ation output f

strates much 
ee in this figu
ent an ionogr

ique ionogram
at the y-axis h

r 1-hop and 2-
we examine ou
ograms over t
for May 2nd, 2

of what we ex
ure a clear F2-
ram correspon

m recorded a
here is group 

-hop modes, l
ur first examp
the Hall Beac
2011, at 00:14

 

 

xpected: a hig
-region trace w
nding to the M

at the CHAIN
range divide

largely in agr
ple of oblique
ch-Iqaluit link
4UTC.  

ghly attenuate
with a well-d

May 5th, 2011

N Iqaluit iono
ed by a factor

reement with 
e O-mode trac
k and directly

ed partial ion
defined cusp. 
, 3:56UTC si

osonde at 3:5
r of two, unlik

the simulatio
ces manually 
y compared to

ogram. 
Similarly, in 
imulation of 

6UTC on Ma
ke Figure 19.

on of Figure 
retrieved from

o E-CHAIM 

 
ay 
. 

m 



 
 
 

Figur
00:14
obliqu
simul

 
This f
derive
which
secon
and E
 

re 22. The O-
4UTC (black d
ue trace (red 
lated trace.   

figure shows r
ed trace, with
h is understan
nd oblique ion
E-region trace

-mode oblique
dots) and the
dots). No pow

relatively goo
h E-CHAIM d
ndable given t
nogram examp
.  

e ionogram tr
e correspondi
wer filtering 

od agreement
demonstrating
that this perio
ple is provide

 

 

race recorded
ing E-CHAIM
has been app

t between the 
g a slight over
od correspond
ed in Figure 2

d at Iqaluit o
M-PHaRLAP
plied to the E-

CHAIN CAD
restimation of
ds to geomagn
23, where we 

on May 2nd, 20
P simulated O
E-CHAIM-PH

DI trace and t
f the MUF (~
netic storm co
will note both

3

 
011, at 

O-mode 
HaRLAP 

the E-CHAIM
~0.5MHz), 
onditions. A 
h an F-layer 

31 

M-



32 

Figur
11:58
PHaR

 
The io
see go
CHAI
simul
Regio
 
Overa
that E

 

re 23. The O-
8UTC (black d
RLAP-simula

onogram trace
ood agreemen
IM simulation
ated trace gen

on MUF, abse

all, based on t
E-CHAIM is w

-mode oblique
dots) and the

ated O-mode o

es of Figure 2
nt between E-
n to overestim
nerated using
ence of cusp e

the above exa
well suited to 

e ionogram tr
e correspondi
oblique trace

23 correspond
-CHAIM and 
mate the E-Re
 the IRI. You
echoes, and un

amples and ex
being used a

 

 

race recorded
ing E-CHAIM
es. 

d to quiet geo
CADI F-laye

egion MUF. In
u’ll note the IR
nderestimatio

xtensive testin
s a backgroun

d at Iqaluit o
M (blue dots) 

omagnetic con
er MUF but a
n this figure, 
RI’s further o
on of the F-Re

ng in our prev
nd model for 

on May 22nd, 2
and IRI (red

nditions. In th
a tendency for

we have also
overestimation
egion MUF  

vious research
HF raytracin

 
2011, at 
d dots) 

his case, we 
r the E-
o provided the
n of the E-

h, we believe 
g.   

e 



 

 33 
 
 

 

5  Public Release of the E-CHAIM Codes 
 
As part of this deliverable, we have taken the original E-CHAIM research code and produced an 
operational model distribution. The model features four versions: 
 

1) An IDL version. 
2) A Matlab version that manages a self-updating local database. 
3) A Matlab version that uses a daily updated, CHAIN-generated, database (called the C 

database). 
4) A C code that uses the same C database. 

In terms of features, each code is capable of generating full electron density profiles or in situ 
“satellite” single point electron density measurements. The codes are each also capable of 
generating NmF2, hmF2, hmF1, NmF1, and NmE (note, hmE = 102km in E-CHAIM) at the 
user’s request. Also, for ease of use by our client, the Matlab version of the code includes two 
additional features, not included in the other model versions: 
 

a) A “map” mode used for generating a four-dimensional data cube without the need for 
additional effort on the user’s part. 

b) A Graphic User Interface (GUI) that can generate profiles, time series, or contours that 
can be outputted in independent plot windows, in a graphic list format, or exported as an 
ASCII file.  

In addition to the above versions of the model, we have also developed a web interface version of 
the model hosted on the CHAIN webserver. This web interface is similar in concept to that of the 
International Reference Ionosphere (IRI) but functions in an identical manner to the Matlab GUI 
interface.  
 
All versions of the E-CHAIM codes can be found on the E-CHAIM website at https://e-
chaim.chain-project.net While the E-CHAIM web interface is openly accessible without the need 
for additional credentials, the source code download page requires the creation of an account. 
These accounts are not actively monitored and are automatically authorized. They exist solely to 
help the project team communicate with users about model updates and prevent malicious 
activity.  
 
On the software download page, you will note the existence of two links to database (DB) files. 
These links are updated with new database files daily at 7:00am AST. To update your local 
database, simple download the latest file using these links and replace the corresponding file in 
your model directory.  
 
We invite the reader to please also consult the E-CHAIM Primer, submitted separately with this 
report, which provides detailed instructions on how to use the various E-CHAIM codes and 
summarizes the various features available in those codes. 
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List of symbols/abbreviations/acronyms/initialisms  

DND Department of National Defence 

E-CHAIM Empirical Canadian High Arctic Ionospheric Model 

IRI International Reference Ionosphere 

NmF2 Peak density of the F2-layer 

hmF2 Height of the F2-layer peak 

foF2 The F2-layer critical frequency 

M3000F2 Ratio of the MUF to foF2 

MUF(3000) Maximum Usable Frequency at 3000km distance 

CHAIN Canadian High Arctic Ionospheric Network 

IRTAM IRI-based Real-Time Assimilative Model 

GIRO Global Ionospheric Radio Observatory 

PHaRLAP Australian Defence Science and Technology Organisation Raytracing Toolkit 

DMSP Defense Meteorological Satellite Program 

MIT Main Ionospheric Trough 

DRDC Defence Research and Development Canada 

DSTKIM Director Science and Technology Knowledge and Information Management 
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in HF raytracing applications, we have also applied the model with a PHaRLAP raytracing code. 
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Cette phase du projet E-CHAIM comporte la validation et les essais du modèle précédant la 
publication de sa version définitive. Dans ce but, nous avons d’abord étudié le rendement du 
modèle dans les conditions de fonctionnement prévisibles les plus extrêmes, soit les échelles de 
temps intermédiaire. Nos travaux antérieurs (Themens et coll. 2017a) ont montré qu’aux échelles 
moyennes mensuelles, qu’E-CHAIM a un bon rendement et donne des résultats supérieurs à 
ceux de l’ionosphère internationale de référence (IIR), mais nous avons fait peu de travail pour 
évaluer le rendement sur des périodes plus courtes. Nous nous penchons ici sur les échelles de 
temps intermédiaires de un à trente jours pour étudier le comportement des modèles de 
tempêtes d’E-CHAIM et de l’IIR pour tenir compte des variations à ces échelles. Grâce à ce 
travail, nous démontrons qu’en dépit de la simplicité de la paramétrisation des tempêtes, le 
modèle de tempêtes d’E-CHAIM peut expliquer entre 20 % et 50 % de la variabilité 
ionosphérique aux échelles de temps intermédiaires. Nous avons toutefois trouvé que cette 
paramétrisation limitait la capacité opérationnelle des modèles empiriques qui ne pourront être 
améliorés que par l’assimilation de données. Étant donné l’absence d’une validation 
indépendante du modèle d’E-CHAIM pour le haut de la couche dans nos travaux antérieurs 
(Themens et coll., 2018), nous présentons une telle validation basée sur les mesures in situ de la 
densité d’électrons par le Defense Meteorological Satellite Program (DMSP) des États-Unis. 
Cette validation a permis de constater une amélioration remarquable par rapport à celle de l’IIR 
de la représentation de la densité d’électrons aux altitudes de l’orbite des satellites du DMSP. 
Nous avons trouvé que cette amélioration était plus grande pendant l’été lors de fortes activités 
solaires et à certains moments pouvait être d’un facteur deux. Toutefois, les deux modèles ont un 
rendement comparable en hiver et pendant les périodes de faible activité solaire. En général,  
E-CHAIM suit très bien le comportement saisonnier de la densité d’électrons trouvée par le 
DMSP pour un éventail de domaines de latitudes et de temps locaux. Pour évaluer la capacité 



  

  

d’utilisation d’E-CHAIM avec les programmes de traçage de rayons pour les hautes fréquences, 
nous l’avons testé avec un logiciel de traçage de rayons PHaRLAP. Nous avons constaté que 
l’utilisation de ce traceur de rayons avec E-CHAIM produisait un comportement nominal sans 
données aberrantes non physiques lors de la production d’ionogrammes simulés verticaux et 
obliques. Les simulations de la fréquence maximale utilisable entre Resolute et Yellowknife 
montrent un comportement physique largement prévisible que nous souhaiterions comparer avec 
des données d’observation si elles devenaient disponibles. Les comparaisons entre les puissances 
reçues calculées par E-CHAIM et les traces virtuelles des ondes ordinaires montrent un 
comportement en accord général avec l’ensemble limité des ionogrammes obliques disponibles. 
Pour finir, nous présentons un résumé des éléments principaux du programme E-CHAIM, publié 
concurremment avec le présent rapport. 

 

  
 


