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Abstract

Practical implementations of the multi-sensor δ-generalized labeled multi-Bernoulli filter require solving the multi-sensor

assignment problem which is NP-hard. In this paper, we present two different algorithms, the combination method and the

cross-entropy method, that find T highly likely target-measurement associations without exhaustive enumeration of all possible

multi-sensor assignments. Numerical simulations are conducted to evaluate the aforementioned multi-sensor assignment methods

together with the standard sequential processing method and a stochastic optimization algorithm based on Gibbs sampling. The

combination method is based on an approximate assignment score function which leads to a lower running time, and it also

explores a greater portion of the space of assignments compared to other methods. The cross-entropy method does not rely on the

approximation and achieves better tracking performance than the sequential method, albeit at a higher computational overhead.

The impact of the approximate score function on the algorithms’ performance is also studied via simulations and it is shown

that the cross-entropy method consistently yields the best tracking performance whereas the combination method has the shortest

runtime at high measurement noise level or high clutter rate.

I. INTRODUCTION

Multi-target tracking is an important research topic with applications in numerous domains including air traffic control,

computer vision, surveillance, and autonomous vehicles (see [1] for a recent survey on the topic). The objective is to estimate

the unknown number of targets and their kinematic states; but non-uniform detection probability, measurement origin uncertainty,

false detection and target birth/death are all difficult obstacles to solving the problem.

Random finite set (RFS) filters [2] have emerged as a popular paradigm for solving the multi-target tracking problem in the

Bayesian framework. Since the exact multi-target Bayes filter is computationally intractable, the probability hypothesis density

(PHD) filter [3], cardinalized PHD (CPHD) [4] filter and multi-Bernoulli (MB) filter [5] have been proposed as tractable

approximations. All three algorithms have been successfully applied to many tracking problems [6]–[13]; however they only

provide target state estimates at individual time instants as opposed to target tracks over time. To overcome this limitation, Vo

et al. [14] introduce the notion of labeled RFSes in which unique labels are appended to a RFS to facilitate generating target
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tracks. They subsequently developed the δ-generalized multi-Bernoulli (δ-GLMB) density which is shown to be conjugate to

the standard point measurement likelihood function [14], [15].

While all these filters have been initially developed for single-sensor tracking, multi-sensor extensions have also been

proposed in literature [16]–[25]. In the iterator-corrector PHD filter [16], [19], each sensor’s measurements are processed

sequentially and the output from one sensor is used as input for the next sensor. The performance of this approach may

depend strongly on the order in which sensors are processed, especially when sensors have different characteristics (e.g.,

different detection probability). The recent work by Papi [21] presents the multi-sensor extension of the δ-GLMB filter, but

the exact implementation also involves iterating through each sensor to generate all multi-sensor assignments. Liu et al. [22]

use an extended association table to generate the most likely associations between targets and measurements from all sensors,

but no simulations are provided to validate the algorithm’s performance. An alternate approach is to have each sensor run

a single-sensor filter to process its own measurements. The posterior multi-target densities are then fused based on general

cross-covariance intersection [17], [18], [20]. In both approaches, at most one sensor’s measurements are processed at once

and therefore only single-sensor filters are required.

Both the multi-sensor CPHD filter [23] and the multi-sensor multi-Bernoulli filter [24] process all sensor measurements

simultaneously by using a greedy algorithm to select the most likely target-measurement associations. More recently Vo et

al. [25] have proposed the use of Gibbs sampling to find a number of likely multi-sensor assignments in the δ-GLMB filter.

The exact implementation of the multi-sensor δ-GLMB filter requires enumerating all multi-sensor assignments to compute

the posterior multi-target density. In practice, we look for a number of likely multi-sensor assignments to construct a truncated

density. Although the problem of finding the T best single-sensor assignments can be solved efficiently using Murty’s

algorithm [26], the multi-sensor counterpart is NP-hard [27]. In this paper, we present two approximation algorithms, the

combination and the cross entropy methods, that yield a number of likely multi-sensor assignments without exhaustive

enumeration. We compare their performance to the Gibbs method [25] and the standard sequential processing method [21].

The combination method first solves the assignment problem locally at each sensor and then combines the locally optimal

solutions to form likely multi-sensor assignments. The cross entropy method constructs a distribution on the space of all

multi-sensor assignments with higher probability for more likely assignments. Finally, the Gibbs method uses Gibbs sampling

to find likely multi-sensor assignments. Both the combination and Gibbs methods rely on an approximate score function to

reduce the computational overhead and we investigate the impact of this approximation. All three algorithms’ performance

are compared via simulation. The cross-entropy method consistently yields the best tracking performance albeit with higher

runtime than the combination and the Gibbs methods.

The rest of the paper is organized as follows. We define the tracking problem and present the relevant background in Section II

and Section III. We present the δ-GLMB filter in Section IV and the multi-sensor assignment algorithms in Section V. In

Section VI, we compare the algorithms’ performance while in Section VII we conclude the paper.
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II. PROBLEM FORMULATION

Consider a network of S sensors tracking a time-varying number of targets. The measurements from all sensors are transmitted

to a fusion center for processing. Our objective is to estimate the number of targets and their kinematic states over time.

Let x1, x2, ...xn(k) ∈ X denote the targets’ kinematic states at time instant k where X is the single-target state space and

n(k) is the number of targets. At time k + 1, an existing target x disappears with probability 1 − Ps(x) or survives with

probability Ps(x) independent of other targets. A surviving target transitions to new state x′ with probability fk+1|k(x′|x). A

new target with state xb ∈ X can also appear with probability Pb(xb) independent of all existing targets.

A target x is detected by sensor j with probability PD,j(x) and generates a measurement z with likelihood gj(z|x). The

measurements from different sensors are assumed to be conditionally independent given the target state. The sensor receives at

most one measurement from each target. Each sensor may also receive clutter measurements which are modeled as a Poisson

process with intensity function κ(·).

III. THE δ-GLMB RFS

Consider the multi-target state X = {x1, x2, ..., xn}. Define F(X) as the space of all finite subsets of X. An RFS is a

random variable that takes values in F(X). In other words, an RFS is a finite set with random cardinality and elements, and

thus it conveniently captures the two unknown quantities of interest in multi-target tracking problems, the number of targets

and their states. Note that an RFS does not follow the standard Euclidean notions of integration; instead we must apply the

theory of Random Finite Set Statistics [2].

In addition to inferring the number of targets and their states, multi-target tracking involves the inference of target trajectories

or tracks across time. To allow target tracking in the RFS framework, it is necessary to associate estimated target states from

different time steps. One solution is to augment each element in an RFS with a unique label, leading to a labeled RFS [15].

States at different time steps with the same label thus correspond to the same target. By convention, a label is a 2-element

vector where the first entry is the time instant when the element is created and the second entry is an index to distinguish

elements born at the same time instant. Each element in a labeled RFS thus has state space X×L where L is the label space.

Furthermore, a labeled RFS is said to have distinct labels if and only if the number of elements is equal to the number of

unique labels.

For the rest of the paper, unlabeled single-object states are denoted by lower case letters (e.g., x) and multi-object states

(realizations of an RFS) by upper case letters (e.g., X = {x1, ...xn}). Their labeled counterparts are bold letters (e.g., x=(x, l)

and X={x1, ...xn}). The blackboard bold letters (e.g., X and L) denote the corresponding state space.

The projection function L(·) returns the labels of a labeled RFS and is defined as

L(x) = L(x, l) = l (1)

L(X) = {L(x) : x ∈ X}. (2)
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The distinct label indicator function Δ(·) is defined as

Δ(X) =

⎧⎪⎪⎨
⎪⎪⎩
1 |X| = |L(X)|

0 otherwise,

(3)

where |X| denotes the cardinality of X.

For a real-valued function h(x) and a set X, the multi-object exponential is defined as

[h]X =
∏
x∈X

h(x), (4)

with h∅ = 1 by convention.

For real-valued functions p(x) and h(x), their inner product is defined as

〈p, h〉 =
∫

p(x)h(x)dx. (5)

A generalization of the indicator function is introduced as

1Y (X) =

⎧⎪⎪⎨
⎪⎪⎩
1, X ⊆ Y

0, otherwise,

(6)

where we will also employ 1Y (x) in place of 1Y ({x}). Finally, we adopt a generalized Kronecker delta function defined as

δY (X) =

⎧⎪⎪⎨
⎪⎪⎩
1, X = Y

0, otherwise,

(7)

where X and Y can be scalars, vectors, or unordered sets.

The δ-GLMB RFS is a labeled RFS on X× L with the following distribution [14]:

π(X) = Δ(X)
∑

(I,ε)∈F(L)×Ξ

w(I,ε)δI(L(X))[p(ε)]X, (8)

where Ξ is a discrete space, and the weights w(I,ε) are normalized such that
∑

(I,ε)∈F(L)×Ξ w(I,ε) = 1.

The δ-GLMB density (Eq. (8)) can be interpreted as a mixture of exponential terms. Each term consists of the weight w(I,ε)

and the multi-target exponential function
[
p(ε)

]X
. Each I represents a set of track labels, and ε represents a history of sensor

measurements associated with these labels. Each pair (I, ε) thus represents the hypothesis that the track labels I have the

measurement-association history ε and hypothesis weight w(I,ε). The term Δ(X) ensures that all elements in the RFS X have

unique labels. Finally, p(ε)(·, l) is the single-target density of track label l ∈ I given the association history ε.

The δ-GLMB density has the attractive property of being a conjugate prior for the standard point-measurement likelihood

model and for the Chapman-Kolmogorov equation [14]. In other words, if the prior density is a δ-GLMB density, after

time-prediction and the Bayes update, the posterior density is also a δ-GLMB density.
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IV. THE MULTI-SENSOR δ-GLMB FILTER

The δ-GLMB filter is a Bayesian filter which models the multi-object target states as δ-GLMB RFSes and recursively

computes the posterior multi-target density via prediction and update. Filter implementation requires the formation of hypotheses

(I, ε) for which two frameworks exist. The separate predict and update δ-GLMB filter [15] creates hypotheses at both the

predict and update stages while the joint δ-GLMB filter [25] creates posterior hypotheses directly from the previous time

posterior by jointly incorporating target death, birth and measurement update without explicitly constructing the predicted

hypotheses. Both δ-GLMB filter implementations are detailed in the following.

A. Separate predict-update framework

Under the separate predict-update framework, the δ-GLMB filter is a two-step algorithm. Let πk|k(X) denote the multi-target

density at time instant k.

Consider first the predict step at time k + 1. New targets can appear in the tracking area. We model these targets with the

labeled RFS density

fB,k+1(Y) = Δ(Y)wB,k+1(L(Y))[pB,k+1]
Y, (9)

two particular examples of which are the labeled Poisson and labeled multi-Bernoulli RFSes [14]. For a labeled multi-Bernoulli

birth model with existence probability rB,k+1(l) and single-target density pB,k+1(x, l), we have

wB,k+1(L(Y)) =
∏

i∈Lk+1

[1− rB,k+1(i)]
∏

l∈L(Y)

1Lk+1
(l)rB,k+1(l)

1− rB,k+1(l)
, (10)

where Lk+1 denotes the label space of targets born at time step k + 1. We also define L0:k as the label space of targets that

exist from time step 0 to k. Note that L0:k ∩ Lk+1 = ∅ and L0:k+1 = L0:k ∪ Lk+1.

If the posterior multi-object distribution at time k is a δ-GLMB density of the form (8), then the predicted multi-object

distribution is also a δ-GLMB of the following form [14]:

πk+1|k(X) = Δ(X)
∑

(Ik+1,ε)∈F(L0:k+1)×Ξ

w
(Ik+1,ε)
k+1|k δIk+1

(L(X))[p
(ε)
k+1|k]

X (11)

w
(Ik+1,ε)
k+1|k = wB,k+1(Ik+1 ∩ Lk+1)w

(ε)
S (Ik+1 ∩ L0:k) (12)

p
(ε)
k+1|k(x, l) = 1L0:k

(l)p(ε)s (x, l) + 1Lk+1
(l)pB,k+1(x, l) (13)

p(ε)s (x′, l) =
〈Ps(·, l)fk+1|k(x′|·, l), p(ε)k (·, l)〉

η
(ε)
s (l)

(14)

η(ε)s (l) = 〈Ps(·, l), p(ε)k (·, l)〉 (15)

w
(ε)
S (L) = [η(ε)s ]L

∑
J⊇L

[1− η(ε)s ]J−Lw
(J,ε)
k|k . (16)

The predicted multi-object density (11) is a weighted mixture of multi-target exponentials. Each mixture component has

weight w
(Ik+1,ε)
k+1|k . The label set Ik+1 contains both surviving labels from previous time steps and new birth labels. The mixture

weight is a product of wB,k+1 for the birth labels and wS for surviving labels. Each target in the mixture component has
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either density p
(ε)
s (·) for surviving target or pB,k+1(·) for newly born target. For a surviving target, the single-target density is

a function of the survival probability Ps(·) and the dynamic model fk+1|k(·).
Exact computation of the predicted δ-GLMB distribution requires exhaustive enumeration of all possible combinations of

surviving and new labels (i.e., all elements in F(L0:k+1) ), which is computationally intractable in general. In practice, the

K-shortest-paths algorithm [28] is used to find the K label sets with the highest mixture weight w
(Ik+1,ε)
k+1|k [14].

Consider next the update step at time k + 1. Let Zk+1,i = {z1k+1,i, ...z
mk+1,i

k+1,i } denote the mk+1,i measurements from the

i-th sensor for time step k+1. An association map θi is a function that maps a label l to a measurement index, θi : L0:k+1 →
{0, 1, . . . ,mk+1,i}, with θi(l) = 0 for missed detection. An association map is valid if each label is associated with at most

one measurement (θi(l) = j ∈ {1, 2, ...mk+1,i}) or miss detected and, conversely, a measurement is associated with at most

one label. We denote by Θi the space of all valid maps θi for sensor i. We denote by θ1:S = (θ1, . . . , θS) the multi-sensor

map for all S sensors and Θ1:S = Θ1× · · · ×ΘS . Hence, for a valid multi-sensor map we have θ1:S ∈ Θ1:S . Additionally, we

denote by Θi(I) ⊆ Θi and Θ1:S(I) ⊆ Θ1:S the space of valid association maps for label set I . The collection of measurement

sets at time k + 1 is denoted by Zk+1 = (Zk+1,1, . . . , Zk+1,S). In the following, to simplify the notation we omit the time

index k + 1 for measurements and measurement-related parameters when there is no ambiguity.

If the prior distribution is a δ-GLMB of the form (11), then the multi-sensor posterior distribution is also a δ-GLMB density

given by

πk+1|k+1(X|Z) = Δ(X)
∑

Ik+1,ε

∑
θ1:s∈Θ1:S(Ik+1)

w
(Ik+1,ε,θ1:S)
k+1|k+1 (Z)δIk+1

(L(X))
[
p
(ε,θ1:s)
k+1|k+1(·|Z)

]X
(17)

w
(Ik+1,ε,θ1:s)
k+1|k+1 (Z) ∝ w

(Ik+1,ε)
k+1|k [η

(ε,θ1:S)
Z ]Ik+1 (18)

p
(ε,θ1:S)
k+1|k+1(x, l|Z) =

p
(ε)
k+1|k(x, l)

∏S
j=1 ψj(x, l; θj)

η
(ε,θ1:S)
Z (l)

(19)

η
(ε,θ1:S)
Z (l) = 〈p(ε)k+1|k(·, l),

S∏
j=1

ψj(·, l; θj)〉 (20)

ψj(x, l; θj) =

⎧⎪⎪⎨
⎪⎪⎩
1− PD,j(x) θj(l) = 0

PD,j(x)gj(z
i
j |x,l)

κj(zi
j)

θj(l) ∈ {1, ...,mj}
(21)

Considering (17), the posterior multi-target density is a weighted mixture of multi-target exponentials. For each predicted hy-

pothesis with label set Ik+1 and association history ε, we generate multi-sensor association maps θ1:S . Each tuple (Ik+1, ε, θ1:S)

thus forms a new posterior hypothesis with mixture weight w(Ik+1,ε,θ1:S).

The exact multi-sensor δ-GLMB update (17) requires generating all valid multi-sensor association maps for each predicted

hypothesis which is infeasible in all but the simplest scenarios. Practical solutions involve exploring only a limited number of

valid associations for each predicted hypothesis, leading to a truncated δ-GLMB posterior. For a given hypothesis (Ik+1, ε),

we select T valid association maps that have high-weight posterior hypotheses according to (18). If we can find the T highest-

weight posterior hypotheses, the resulting truncated posterior δ-GLMB density would have the smallest L1-distance from the

exact posterior compared to all other truncated densities containing T updated hypotheses [15, Sec. IV-C].
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Note that the exact sequential multi-sensor δ-GLMB filter [21] enumerates multi-assignment maps by recursively applying

the single-sensor δ-GLMB update step for each sensor. If no component is pruned after each sensor update, the enumeration

is exhaustive and the resulting posterior density is exact. In practical implementations however, truncation is necessary [21].

B. Joint predict-update framework

The original implementation of the δ-GLMB filter in [14] involves the generation of hypotheses at both the predict and update

stages. Considering at time k the posterior δ-GLMB density (8) formed with hypothesis (Ik, ε), a number of predicted hypotheses

(Ik+1, ε) are formed in order to obtain the predicted density of (11). Subsequently, posterior hypotheses (Ik+1, ε, θ1:S) are

generated in order to obtain the δ-GLMB posterior at k + 1 in (17). The number of hypotheses grows exponentially with

time, and in practice both the predicted and updated δ-GLMB densities are truncated in order to retain only the highest-weight

hypotheses first at predict and subsequently at the update stages.

The formulation of predicted hypotheses does not take into account the current measurement set Zk+1 and hence could

potentially create a high number of hypotheses that do not correlate with the current measurements and subsequently lead

to low-weight updated hypothesis. In order to avoid the selection of unlikely predicted hypotheses, in [29] and [25] it is

proposed to combine the predicted and updated δ-GLMB densities and perform a single operation of hypothesis selection that

incorporates the current measurement set into the process of determining target death/birth. The resulting δ-GLMB framework

is referred to as the joint predict-update δ-GLMB filter. In order to incorporate target death into the mapping process, we

introduce the S-tuple −11:S � (−1, . . . ,−1), the space of extended mappings Θ̄1:S � {{−11:S} � Θ1:S} (� is the disjoint

union operator) and the extended mappings θ̄1:S : I → Θ̄1:S(I). Note the added assignment of −11:S signaling target death.

Similarly with θ1:S , valid multi-assignments θ̄1:S assign at most one measurement for each target, do not assign the same

measurement to two distinct targets, and assignments containing θ̄i(l) = −1 and θ̄j(l) �= −1 are not allowed for i �= j (i.e.,

all sensors must agree on the death/survival/birth of a target). By using the extended mappings and combining the predict (11)

and update (17) equations, we obtain Eq. (22).

πk+1|k+1(X) = Δ(X)
∑
Ik,ε

∑
θ̄1:S∈Θ̄1:S(Ik∪Lk+1)

δIk∪Lk+1\{l:θ̄1:S(l)=−11:S}(L(X))w
(Ik,ε)
k|k

×
[
η̄
(ε,θ̄1:S)
Z (·)

]Ik∪Lk+1
[
p
(ε,θ̄1:s)
k+1|k+1(·|Z)

]X
, (22)

p
(ε,θ̄1:s)
k+1|k+1(x, l|Z) = p

(ε,θ1:s)
k+1|k+1(x, l|Z) if θ̄1:s(l) �= −11:S (23)

η̄
(ε,θ̄1:S)
Z (l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− η
(ε)
s (l) if l ∈ L0:k, and θ̄1:S(l) = −11:S ,

η
(ε)
s (l)η

(ε,θ1:S)
Z (l), if l ∈ L0:k, and θ̄1:S(l) �= −11:S ,

1− rB,k+1(l) if l ∈ Lk+1, and θ̄1:S(l) = −11:S ,

rB,k+1(l)η
(ε,θ1:S)
Z (l), if l ∈ Lk+1, and θ̄1:S(l) �= −11:S .

(24)

In (22), starting with (Ik, ε), new hypotheses are formed by appending to Ik the birth label set Lk+1 and considering all

extended mappings on θ̄1:S ∈ Θ̄1:S(Ik ∪Lk+1). Note that the mappings θ̄1:S take into account target death for existing tracks
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Ik and non-birthed tracks from Lk+1. Additionally, in (22) the term δIk∪Lk+1\{l:θ̄1:S(l)=−11:S}(L(X)) ensures that X can only

contain targets surviving from the previous time Ik and birthed targets from the set Lk+1. The weight of (24) accounts for

target survival (via the probability of survival η
(ε)
s (·)), target birth (via the probability of target existence of birthed targets

rB,k+1(·)) and also the correlation between the targets and their assigned measurements (via the modified likelihood ηε,θ̄1:sZ ).

Regarding the expression (22), a posterior hypothesis can be identified by (Ik, ε, θ̄1:S) or equivalently by (Ik, ε, Ik+1, θ1:S),

where we explicitly introduced the posterior label set Ik+1 = Ik ∪Lk+1 \ {l : θ̄1:S(l) = −11:S}. The corresponding weight of

the posterior hypothesis is w
(Ik,ε)
k|k

[
η̄
(ε,θ̄1:S)
Z (·)

]Ik∪Lk+1

.

The exact posterior update in Eq. (22) requires exhaustive enumeration of all possible extended association mappings. In

practice, the T best extended association mappings are generated for each hypothesis (Ik, ε).

V. IMPLEMENTATION OF THE MULTI-SENSOR δ-GLMB FILTER

An efficient implementation of the δ-GLMB filter requires generating a number of (extended) multi-sensor association

mappings that lead to high-weight posterior hypotheses. In the following section, we present three algorithms that generate T

likely multi-sensor assignments without exhaustive enumeration in both the separate and joint frameworks.

A. Separate δ-GLMB filter

In the separate predict-update framework, given a valid multi-sensor association map θ1:S for the predicted hypothesis (I, ε)

with weight w
(I,ε)
k+1|k, the posterior hypothesis weight is proportional to w

(I,ε)
k+1|k

∏
l∈I η

(ε,θ1:S)
Z (l). Therefore, maximizing the

posterior hypothesis weight for a given predicted hypothesis is equivalent to solving

maximize
θ1:S

Cexact(ε, θ1:S) =
∑
l∈I

log
(
η
(ε,θ1:S)
Z (l)

)
, (28)

subject to θj valid association map ∀ j = 1, . . . , S.

Equation (28) is known as the multi-dimensional assignment problem and is NP-hard for S > 1 [27]. The term log
(
η
(ε,θ1:S)
Z (l)

)

can be interpreted as the score of assigning measurements θ1(l), ...θS(l) to label l. The objective is to maximize the total score

of |I| assignments without any conflict.

1) Combination method: In the following, we present the combination method that produces T high-scoring multi-sensor

associations for the label set I without exhaustive enumeration.

Consider the following optimization problem,

maximize
θ1 ··· θS

Capprox(I, ε, θ1:S) =
∑
l∈I

S∑
j=1

log
(
η
(ε,θj)
Z (l)

)
(29)

subject to θj valid association map ∀ j = 1, . . . , S.

Eq. (29) differs from Eq. (28) in the score function. The term log
(
η
(ε,θ1:S)
Z (l)

)
is approximated by the sum (or log-product)

of single sensor score functions log
(
η
(ε,θj)
Z (l)

)
. Ideally, solving Eq. (29) would yield the same multi-sensor maps as solving



9

Fig. 1. Graph for combining single-sensor maps from two sensors. Each vertex represents one single-sensor map. All maps from the same sensor form one
level. Traversing from Start to End generates a multi-sensor map.

Eq. (28); however this does not hold true in general. We defer discussing the impact of the approximate score function on the

algorithm’s performance until section VI-B.

Solving (29) is equivalent to solving S independent single-sensor assignment problems using only the sensor’s local

measurements. Each sensor first generates T best single-sensor association maps using Murty’s algorithm. Then these maps

are combined by constructing a weighted directed acyclic graph where each single-sensor association map is a vertex in the

graph. We also include two dummy vertices, Start and End. All vertices are further divided into different levels. The Start

vertex is at level 0. All maps of sensor j are at level j. The End vertex is at level S+1. Every vertex at level j has an edge to

every vertex at level j + 1. The weight of each edge is equal to the value of the head vertex (i.e., score of the corresponding

single-sensor map). The End vertex has value of 0 by definition. See Fig. 1 for an illustration with two sensors (with two maps

at each level).

A path from Start to End traverses through every level exactly once and contains one vertex from each level. Such a path

would constitute a valid multi-sensor assignment map. Therefore, our objective is to find the highest-score paths from Start to

End. We say that a path reaches level j if it reaches any vertex on that level.

Let ci:j denote the score of a path traveling from level i to level j. Every path from Start to End contains exactly S + 1

hops and the total score can be decomposed into a sum of S + 1 terms

c0:S+1 = c0:1 + c1:S+1 = c0:1 + c1:2 + ...cS:S+1. (30)

Our algorithm iterates through each level and greedily constructs the highest-score paths to reach that level. Consider the T

highest-score paths from level 0 to level j with corresponding scores {c10:j ≥ c20:j ... ≥ cT0:j}. We also know the T highest-scores

paths to travel from level j to j + 1: {c1j:j+1 ≥ c2j:j+1... ≥ cTj:j+1}. We can then simply generate T 2 new paths with scores

{cu0:j + cvj:j+1|1 ≤ u, v ≤ T} and select the T best ones. This gives us the best paths to travel from level 0 to level j + 1.

To reduce computational overhead, the T (rather than T 2) paths with highest scores are then extended at the next level. We

repeat the same steps until we reach level S + 1 (the End vertex). As the starting point, the best maps of sensor 1 correspond

to the best paths from Start to level 1. Algorithm 1 shows the pseudo-code for the combination method. Lines 2-4 account for

single-sensor map generation. Lines 6-10 account for the combination of single-sensor maps.

The combination approach yields the same outputs as the approach by Liu et al [22] which introduces the notion of extended
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Algorithm 1 Combination algorithm for the multi-assignment problem

1: function COMBINED_MS_ASSIGNMENT(T )

2: for s← 1 to S do
3: Generate T single-sensor maps: θ

(1)
s , ...θ

(T )
s =Murty(Zs, T)

4: end for
5: Initialize θ

(t)
1:1 = θ

(t)
1 t = 1...T

6: for s← 2 to S do
7: Generate T 2 new maps: θ

((i−1)T+j)
1:s = [θ

(i)
1:s−1, θ

(j)
s ] i = 1...T, j = 1...T

8: Compute map score: c
((i−1)T+j)
1:s = c

(i)
1:s−1 + c

(j)
s i = 1...T, j = 1...T

9: Sort maps in decreasing score: c
(1)
1:s ≥ ... ≥ c

(T 2)
1:s

10: Propagate T best maps: θ
(1)
1:s , ...θ

(T )
1:s

11: end for
12: return θ

(1)
1:S , . . . , θ

(T )
1:S

13: end function

association maps. In the single-sensor δ-GLMB filter, given label set I and measurement set Z, an |I| × |Z| association cost

matrix is constructed for Murty’s algorithm. In [22], the authors construct a block-diagonal extended association cost matrix by

concatenating individual sensors’ cost matrices diagonally. This large matrix is then used to yield T high-scoring multi-sensor

assignments directly. To contrast the two methods, we seek to solve S small assignment problems and combine the results

whereas [22] solves one large assignment problem with S times more elements.

The complexity of the combination method is O(STm̃3+ST 2) where the first term accounts for running Murty’s algorithm

(m̃ being the average number of measurements per sensor) and the second term accounts for the combination of single-sensor

maps. For comparison, the complexity of the method in [22] is O(TS3m̃3). For sufficiently large number of sensors and

measurements per sensor (S2m̃3 > T ), our method is expected to have lower complexity.

B. Joint δ-GLMB filter

In this section, we present two stochastic algorithms that provide high-weight posterior hypotheses for the joint δ-GLMB

filter of Sec. IV-B. In order to provide a low L1 error approximation to (22), one needs to retain only hypotheses (Ik, ε, θ̄1:S)

with high weights w
(Ik,ε)
k|k

[
η̄
(ε,θ̄1:S)
Z (·)

]Ik∪Lk+1

.

In a stochastic optimization framework, the objective is to sample multi-sensor assignments according to a probability

distribution that leads to high-weight hypotheses. As shown in [25], this can be achieved in two steps. First, we sample tuples

(Ik, ε) with weights w
(Ik,ε)
k|k , i.e., according to the previous time-step hypotheses weights. Second, for each sampled (Ik, ε)

we form the set I = Ik ∪ Lk+1 and sample for extended mappings θ̄1:S(I) with high weights
[
η̄
(ε,θ̄1:S)
Z (·)

]Ik∪Lk+1

. Once a

mapping θ̄1:S(I) is selected, we can form the posterior label set Ik+1 as Ik+1 = Ik ∪ Lk+1 \ {l : θ̄1:S(l) = −11:S}.
In Sec. V-B1, we review the Gibbs sampling algorithm of [25] for sampling multi-assignments. The main drawback of the

Gibbs sampling method is the high computational cost when employing the exact form of the weights η̄
(ε,θ̄1:S)
Z (·) of (24). A

drastic reduction in complexity can be achieved by employing an approximation for η̄
(ε,θ̄1:S)
Z (·). In Sec. V-B2, we propose a

cross-entropy method that employs the exact weights of (24) but with a computational complexity of the same order as the

Gibbs method with approximate weights.
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1) Gibbs sampling: To facilitate the presentation of the Gibbs sampler for multi-sensor assignments, we resort to a matrix

representation of multi-assignments. For consistency with [25], we employ the following matrix notation for the multi-sensor

assignments of the label set I = {l1, . . . , ln}:

γ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θ̄1(l
1) θ̄2(l

1) . . . θ̄S(l
1)

θ̄1(l
2) θ̄2(l

2) . . . θ̄S(l
2)

...
...

. . .
...

θ̄1(l
n) θ̄2(l

n) . . . θ̄S(l
n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ Ωn, (31)

where Ω � (−11:S � {0, . . . ,m1} × · · · × {0, . . . ,mS}) and Ωn is the space of multi-sensor assignment matrices for label set

I . We denote by γi the i-th row of γ and by γi,j the i, j element of γ.

Note the relationship between γ and the extended multi-assignment mapping θ̄1:S : γi,s = θ̄s(l
i). If γi,s = −1 for some

sensor s, then γi,s = −1 for all sensors s = {1, . . . , S}. Additionally, valid multi-assignment mappings θ̄1:S lead to valid

multi-assignment matrices γ. We denote by Γ ⊂ Ωn the space of all valid matrices γ.

By a slight abuse of notation, we employ the same notation of (24) for the weights of multi-assignment vectors γi

η̄i(γi) � η̄
(ε,θ̄1:S)
Z (li) with θ̄j(l

i) = γij , ∀j = 1, . . . , S. (32)

As shown in [25], sampling multi-assignment matrices γ becomes equivalent to sampling from

π(γ) ∝ 1Γ(γ)
n∏

i=1

η̄i(γi). (33)

Sampling matrices γ from the distribution (33) is made difficult due to the function 1Γ(γ) that ensures that all multi-sensor

assignments are valid, i.e., no two targets are assigned the same measurement and that no target is assigned to two different

measurements. However, it is relatively easy to sample the assignment for a target, i.e., to sample γi, when the assignments

for targets I \ li are known. Therefore sampling from the target distribution of (33) can be achieved via Gibbs sampling

π(γ′|γ) =
n∏

i=1

πi(γ
′
i|γ′

1:i−1, γi+1:n), (34)

where γ′ and γ are the current and previous samples. As shown in [25], the conditionals have the following form

πi(γi|γ1:i−1, γi+1:n) ∝

η̄i(γi)

S∏
s=1

n∏
j=1
j �=i

[
1− 1{1,...,ms}(γi,s)δγi,s

(γj,s)
]
. (35)

Sampling assignments for target li from (35) amounts to sampling from a categorical distribution (with 1 +
∏S

s=1(1 +ms)

categories), where the conditioning on the remaining targets I \ li acts to prohibit the assignments (categories) that contain

measurements already assigned to a target from I \ li. Indeed, the probability of the multi-assignment γi is set to 0 whenever

targets li and lj ∈ I\li share at least one assignment (i.e., δγi,s(γj,s) = 1) unless it is a miss-detection (i.e., 1{1,...,ms}(γi,s) = 0).

Categorical sampling has linear complexity with the number of categories [30] and hence sampling from (35) has a complexity
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of O(
∏S

s=1 ms). Sampling a number of T multi-assignments for the label set I and according to [25, Algorithm 1] has

a computational complexity of O(Tn2
∏S

s=1 ms). Note that the T multi-sensor assignment maps are not guaranteed to be

distinct. Additionally, in this algorithm the weights η̄i(γi) are assumed known and available for all li ∈ I and all possible multi-

assignments γi ∈ Ω. Computing the multi-sensor assignment weights η̄i(γi) for the n targets has a computational complexity

of O(n
∏S

s=1 ms). Note the exponential complexity with respect to S of both [25, Algorithm 1] and the associated weight

pre-computation. However, the weight pre-computation has a larger complexity constant than the Gibbs sampling algorithm

since the computation of a single weight η̄i(γi) involves the evaluation of the integral (20).

A significant reduction of complexity can be achieved by approximating the multi-sensor assignment weights as the product

of single-sensor assignment weights. More precisely, for γi �= −11:S it is assumed in [25, Eqs. (59-67)] that the multi-sensor

weights η̄i(γi) are approximated as

η̄i(γi) ≈
S∏

s=1

η̄i,s(γi,s) �
S∏

s=1

〈p(ε)k+1|k(·, li), ψs(·, li; γi,s)〉. (36)

By using (36), sampling from (35) can be achieved in two steps. First one samples for target death/survival, and then in

the case of target survival, one samples measurement assignments independently for each sensor s [25, Eqs. (59-67)]. The

resulting Gibbs algorithm achieves a computational complexity of O(Tn2
∑S

s=1 ms) for sampling T maps. The required pre-

computations incur an additional computational complexity of O(n
∑S

s=1 ms). Note in this case the linear complexity with

the number of sensors for both Gibbs sampling and the necessary pre-computations.

2) Cross-entropy for multi-sensor assignment selection: The Cross Entropy (CE) method was originally designed as an

adaptive importance sampling scheme for the estimation of rare-event probabilities [31]. In [32], CE was extended for solving

both continuous and combinatorial optimization problems. The main drawback of the Gibbs sampling method of Sec. V-B1

is the high computational load when using the exact multi-sensor assignment weights. Indeed, the Gibbs method requires the

evaluation of the exact multi-sensor assignment weights of (24) for all targets and all possible multi-assignments. In contrast

the CE method, as it will be shown further on, only requires the evaluation of the weights (24) for the sampled multi-sensor

assignments. Since the number of distinct assignments sampled by CE is in general much smaller than the total number of

possible multi-sensor assignments (i.e., |Ωn|), the CE method can attain a much smaller computational overhead than the Gibbs

method when using (24).

CE methods rely on the construction of a random sequence of solutions which converge probabilistically to the optimal

solution. This procedure involves iterating the following two steps. First, given a sampling mechanism we generate samples

that represent potential solutions to the optimization problem. Second, the drawn samples are used to update the parameters

of the sampling mechanism (typically pdf parameters) in order to obtain better solutions at the next iteration with respect

to the optimization functional or some suitably chosen reward function. The updated parameters are obtained by minimizing

the Kullback-Leibler distance (or cross-entropy) between the optimal importance distribution and the parametric family of

distributions used for sampling. A comprehensive review of CE methods is given in [33].

Based on [33, Ch. 2.4], in [27] a CE method was proposed for the generic multi-dimensional assignment problem. In

the following, we adapt the CE method of [27] for sampling multi-sensor assignments in the joint δ-GLMB framework of
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Sec. IV-B.

In order to achieve a simple mechanism for sampling multi-sensor assignments, we construct marginal assignment pdfs for

each sensor. Through the iterative process of CE, we aim to adaptively select marginal assignment pdfs that converge toward

the exact marginal assignment distributions. Consider label set I = Ik ∪ Lk+1 with n labels and sensor j with measurements

{z1j , ...zmj

j }. We define the space Ξj = {−1, 0, 1, . . . ,mj} and the row-stochastic probability matrix Πj

Πj =

⎡
⎢⎢⎢⎢⎣

pj(1| − 1) pj(1|0) ... pj(1|mj)

...

pj(n| − 1) pj(n|0) ... pj(n|mj)

⎤
⎥⎥⎥⎥⎦ (37)

where pj(i| − 1) is the probability of death for target i; pj(i|0) is the miss-detection probability and pj(i|r) for r > 0 is

the probability of assigning the measurement zrj of sensor j to the i-th target. Sampling an assignment map ξj : I → Ξj is

achieved by performing categorical sampling for each row of Πj , amounting to sampling assignments for each target in I for

sensor j. Let Π1:S = (Π1,Π2, ...,ΠS) denote the collection of probability matrices for all S sensors. Additionally, we denote

with ξ1:S = (ξ1, . . . , ξS) the sequence of mappings drawn according to Π.

The probability p(ξ1:S ; Π1:S) of drawing ξ1:S according to Π1:S is

p(ξ1:S ; Π1:S) =

S∏
j=1

n∏
i=1

pj(i|ξj(i)). (38)

The resulting maps ξj are not guaranteed to be valid, i.e., elements of θ̄1:S(I). In order to obtain high-weight η̄
(ε,ξ1:S)
Z (·)

assignments and guarantee their validity, we introduce the modified score function

C(ξ1:S) =

⎧⎪⎪⎨
⎪⎪⎩
∏

l∈I η̄
(ε,ξ1:S)
Z (l) if ξ1:S ∈ Θ̄1:S(I),

0 otherwise.

(39)

In effect, scoring samples ξ1:S via C(ξ1:S) assigns a score of 0 for non-valid assignment maps and employs the weight of

(24) otherwise.

We draw N samples ξ11:S , . . . , ξ
N
1:S and compute their costs using (39). For a given scoring threshold ϑ, the CE approach

calls for updating the parameters of Π1:S through the following program [27]

maximize
Π1:S

1

N

N∑
i=1

1[ϑ,+∞)(C(ξi1:S)) ln
(
p(ξi1:S ; Π1:S)

)
. (40)

The threshold ϑ can be adaptively estimated as the (1 − τ) quantile of the sample set C(ξ11:S), . . . , C(ξN1:S). In practice, the

sample maps are sorted C(ξ
σ(1)
1:S ) ≤ · · · ≤ C(ξ

σ(N)
1:S ), with σ a permutation of {1, . . . , N}, and the H = �τN� highest scoring

mappings are retained. Let ξ̃11:S , . . . , ξ̃
H
1:S denote the resulting set of highest scoring H samples.

Employing the probabilities of (38), the program (40) becomes

maximize
pj(·|·)

H∑
h=1

ln

⎛
⎝ S∏

j=1

n∏
i=1

pj(l
i|ξ̃hj (i))

⎞
⎠ (41)
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subject to
∑
r∈Ξj

pj(i|r) = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ S

pj(i|r) ≥ 0 , 1 ≤ i ≤ n, 1 ≤ j ≤ S, r ∈ Ξj .

Solving the program (41) is equivalent to solving a program for each sensor j = 1, . . . , S, yielding the following update rules

for the probability matrices Πj [27]

pj(i|r) =
|{h ∈ {1, 2, ..., H} : ξ̃hj (i) = r}|

H
. (42)

The numerator in (42) simply counts the number of samples in which sensor j selects assignment r ∈ Ξj for label li whereas

the denominator acts as a normalization constant.

In [27], the authors suggest initializing Π1:S using uniform distributions. In our simulations, we find that a poor initialization

leads to nearly all drawn samples having very low score and slow convergence to the optimal distribution. We instead initialize

Π0
j with the probabilities

p0j (i|r) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− ηεs(l
i)

if li ∈ L0:k, and r = −1,

ηεs(l
i)〈p(ε)k+1|k(·, li), ψj(·, li; r)〉

if li ∈ L0:k, and r ≥ 0,

1− rB,k+1(l
i)

if li ∈ Lk+1, and r = −1,

rB,k+1(l
i)〈p(ε)k+1|k(·, li), ψj(·, li; r)〉

if li ∈ Lk+1, and r ≥ 0.

(43)

This initialization scheme involves the same O(n
∑S

s=1 ms) pre-computations as the Gibbs method when employing the

approximation (36).

In Algorithm 2, we present the algorithm for solving the multi-assignment problem with CE. The algorithm iterates the

main steps of sampling and updating the marginal probabilities Π1:S until convergence. Convergence implies a small change

in the updated marginals. Let Π′
1:S be the updated marginals for a given iteration and Π1:S the marginals from the previous

iteration. For a small ν ∈ R+, we adopt the convergence criterion
∥∥Π′

j −Πj

∥∥
F
≤ ν ∀ j ∈ {1, . . . , S}, where ‖·‖F denotes

the Frobenius matrix norm.

Algorithm 2 CE method for the multi-sensor assignment problem

1: Initialize Π1:S = Π0
1:S .

2: Draw N samples ξ11:S , . . . , ξ
N
1:S according to Π1:S .

3: Compute C(ξi1:S) for i = 1, . . . , N .

4: Sort the sequence {C(ξi1:S)}Ni=1 and choose the H = �τN� best samples {ξ̃h1:S}Hh=1.

5: Update Π1:S with (42).

6: Iterate steps 2-5 until convergence.

7: Return T -best distinct and valid maps {ξi1:S , C(ξi1:S)}Ti=1 from all samples and all iterations.
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Step 2 of Algorithm 2 involves sampling of multi-assignments ξ1:S . Sampling directly from (37) is inefficient since many

sampled mappings ξ1:S may not be valid. These mappings will not contribute to the updated Π1:S due to having a zero

score (39). To avoid generating irrelevant mappings, we employ the sampling procedure described in Algorithm 3, where

U(0, 1) denotes a uniform probability distribution over [0, 1] and Categorical(c, q) is the categorical probability distribution

where each category ci has probability qi. The sample ξ1:S drawn using the mechanism in Algorithm 3 represents a valid

Algorithm 3 Generation of a mapping ξ1:S ∈ Θ̄1:S(I), i.e., 1-1 positive.

1: Set Π̂1:S = Π1:S .

2: for i← 1 to n do
3: Sample u ∼ U(0, 1).
4: if u ≤ p1(i| − 1) then
5: Target death: ξj(i) = −1 ∀ j ∈ {1, . . . , S}.
6: else
7: for j ← 1 to S do
8: Set q(r) = p̂j(i|r) for r = {0, . . . ,mj}.
9: Normalize q(·).

10: Sample ξj(i) ∼ Categorical(0 : mj , q).
11: if ξj(i) �= 0 then
12: Set p̂j(k|ξj(i)) = 0 for k ∈ {i+ 1, . . . , n}.
13: end if
14: end for
15: end if
16: end for

multi-assignment in the joint δ-GLMB framework. The computational complexity of Algorithm 3 is O(n
∑S

s=1 ms + n2S).

The computational complexity of evaluating the score C(ξ1:S) of a multi-assignment is O(nS). Hence, Step 3 of Algorithm

2 has a complexity of O(NnS). The complexities of the sorting and updating of Π1:S , in Algorithm 2, are O(N ln(N)) and

O(nSH). For d iterations, the computational complexity of Algorithm 2 is O(dNn
∑S

s=1 ms + dNn2S + dN ln(dN)). Note

the linear complexity with the number of sensors and quadratic with the number of targets. This represents a drastic reduction

when compared with O(Tn2
∏S

s=1 ms) of the Gibbs method when using the exact multi-assignment weights (24).

VI. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance of all multi-sensor assignment algorithms presented in Sec. V. In

addition, we also include the sequential multi-sensor δ-GLMB filter of [21] as a baseline.

We consider a network of S = 4 sensors. Each sensor detects target(s) with constant probability PD = 0.9. We consider

a linear measurement model (i.e., sensors measure target positions directly) so sensor positions do not affect the algorithms’

performance. All measurements are corrupted by white Gaussian noise with covariance matrix σ2
xyI2 where σxy = 3m and

I2 is the 2 × 2 identity matrix. The number of clutter measurements per sensor is Poisson distributed with rate λc. Clutter

measurements are uniformly distributed over a 100m × 100m tracking area.

For the combination and sequential methods, each sensor generates a maximum of T single-sensor maps. For the cross

entropy method, at each sampling iteration, a maximum of T (and a minimum of 10) multi-sensor maps are generated, and

the τT best (highest-score) sampled maps are used to update the sampling distribution parameters (τ = 0.3). We repeat

the iterations until convergence (i.e., the L2 distance between the new and old marginal sampling distributions is below the
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threshold ν = 1e− 3) or after running ten iterations. The best T distinct samples from all iterations are output as the multi-

sensor assignment maps. Finally, for the Gibbs sampling method, we use every drawn sample as a valid multi-sensor map. All

algorithms are required to generate a maximum of T multi-sensor assignment maps to ensure a fair comparison.

A. Single time-step test

In the first test, we focus on a single time step and a single hypothesis. The objective is to evaluate and compare the multi-

sensor assignment algorithms in a controlled environment where all inputs are equal and known. Fig. 2 shows the targets’

positions and sensor measurements. We omit the sensors’ positions since they have no impact on the algorithm’s performance.

In this test, we generate one label set based on true target states and apply the association algorithms to this hypothesis to

generate a maximum of T assignment maps. Recall that, for the two sampling methods, cross entropy and Gibbs, the generated

maps are not necessarily distinct. Duplicate maps are removed and only the distinct maps are retained.

We run a series of simulations where we vary one parameter of interest and investigate its impact on the algorithms’ perfor-

mance. The parameters we vary are the measurement noise standard deviation σxy , the Poisson rate of clutter measurements

per sensor λc, and the maximum number of association maps T . In all simulations, the targets’ positions remain unchanged.

Each simulation consists of 200 random Monte Carlo trials. Although the Gibbs method is fast, it tends to return many fewer

than T distinct maps when T steps of Gibbs sampling are executed. To better illustrate the trade-off between runtime and

number of distinct maps returned, we also run the Gibbs method for 10T steps (referred to as Gibbs-10 below). If more than

T distinct maps are generated, the T maps with the highest approximate score are returned.

−50 0 50
−50

0

50

X (m)

Y
 (

m
)

Fig. 2. Targets (blue and red dots) and sensor measurements. Clutter measurements are black diamonds. Target-originated measurements are diamonds with
matching colors.

The first performance metric we consider is the total runtime to generate the T multi-sensor association maps. The

second performance metric is the ratio of aggregate map score. Recall the posterior hypothesis weight: w(Ik+1,ε,θ1:S)(Z) ∝
w

(Ik,ε)
k|k [η

(ε,θ1:S)
Z ]Ik+1 (in separate predict-update framework) and w(Ik+1,ε,θ1:S)(Z) ∝ w

(Ik,ε)
k|k w

(Ik,ε,Ik+1,θ1:s)
Z (in joint predict-

update framework). The term w(Ik+1,ε,θ1:S)(Z) can thus be interpreted as the score of multi-sensor map θ1:S for hypothesis

(Ik+1, ε). Note that the map score functions in the separate and joint predict-update frameworks are equivalent if no new label

can appear and the target survival probability is 1. The four algorithms produce a combined total of up to 4T association
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TABLE I
AVERAGE RUNTIME (IN SECONDS) FOR MAP GENERATION. THE NUMBER IN BRACKETS IS THE NUMBER OF DISTINCT MAPS. THE LAST NUMBER IS THE

RATIO OF AGGREGATE MAP SCORE. THE PARAMETERS VALUES FOR THE BASELINE ARE PD = 0.9, λc = 6, T = 500 AND σxy = 3. THE SHORTEST

RUNTIME FOR EACH SCENARIO IS MARKED IN RED. THE HIGHEST RATIO IS MARKED IN BLUE.

Combination Cross-entropy Gibbs (T ) Gibbs-10 (10T ) Sequential

Baseline 0.048 (500) / 0.987 0.293 (155) / 0.898 0.037 (146) / 0.802 0.343 (420) / 0.974 0.293 (424) / 0.952

σxy = 1 0.053 (500) / 0.995 0.319 (144) / 0.966 0.040 (114) / 0.780 0.376 (344) / 0.979 0.249 (247) / 0.984

σxy = 2 0.047 (500) / 0.988 0.291 (138) / 0.936 0.037 (122) / 0.805 0.341 (367) / 0.975 0.262 (358) / 0.965

σxy = 4 0.052 (500) / 0.968 0.348 (212) / 0.857 0.040 (191) / 0.762 0.382 (466) / 0.957 0.340 (435) / 0.930

σxy = 5 0.050 (500) / 0.958 0.349 (243) / 0.823 0.039 (228) / 0.735 0.368 (484) / 0.949 0.351 (466) / 0.917

λc = 2 0.031 (500) / 0.999 0.272 (65) / 0.953 0.036 (48) / 0.619 0.367 (172) / 0.986 0.089 (183) / 0.976

λc = 4 0.041 (500) / 0.992 0.301 (110) / 0.919 0.039 (99) / 0.757 0.382 (311) / 0.977 0.194 (299) / 0.960

λc = 8 0.067 (500) / 0.971 0.364 (202) / 0.875 0.044 (184) / 0.775 0.389 (458) / 0.959 0.478 (466) / 0.946

λc = 10 0.078 (500) / 0.948 0.381 (259) / 0.847 0.044 (232) / 0.744 0.382 (485) / 0.940 0.601 (481) / 0.934

T = 250 0.037 (250) / 0.965 0.215 (113) / 0.882 0.025 (92) / 0.650 0.193 (236) / 0.952 0.271 (231) / 0.936

T = 750 0.070 (750) / 0.989 0.482 (198) / 0.912 0.058 (190) / 0.853 0.618 (532) / 0.976 0.370 (550) / 0.958

maps, some of which may be duplicates. Let θ(1), ...θ(T
′) denote the distinct maps (T ′ ≤ 4T ). We compute the score for all

T ′ maps. Let θ
(1:T )
optimal denote the T maps with highest score and let CT

optimal denote their aggregate score. For each algorithm,

we compute the aggregate score of all generated maps and report the ratio of the algorithm’s aggregate map score to CT
optimal.

Table I shows the simulation results. The measurement noise standard deviation σxy has no impact on the total runtime

for both the combination and the Gibbs method. In the cross entropy method, to avoid redundant computation, we store all

distinct sampled maps and their scores. When σxy increases, the sampling distribution is more dispersed, more distinct maps

are sampled through the sampling iterations, and the additional score computation increases the running time. In the sequential

method, we iterate through each sensor s and incrementally build the multi-sensor maps θ1:s from θ1:s−1. Higher σxy leads

to more partial maps θ1:s and by extension more maps θ1:S at the last sensor S and longer running time. Finally, more clutter

measurements and more association maps translate to higher workload and consequently higher running time as expected.

In nearly all tested scenarios, the Gibbs method has the shortest running time, followed by the combination method. The

cross entropy method is often the slowest. The combination and sequential methods consistently generate the highest number

of distinct maps with the combination method yielding T maps for all scenarios. The two sampling methods, cross-entropy

and Gibbs, generate fewer distinct maps as expected. When the number of clutter measurements is low, the distribution of the

Gibbs sampler is far from uniform (i.e., most weight falls on one single measurement) and as a result the Gibbs methods can

only yield a very small number of distinct maps. Finally, higher σxy and λc lead to more distinct maps for the cross entropy,

Gibbs and sequential methods. In the case of Gibbs-10, the runtime is generally higher than that of the cross-entropy method.

At low σxy and λc, the number of maps increases almost by a factor of 3 compared to the Gibbs method.

Next, we consider the ratio of aggregate map score. In all scenarios, the combination method has the highest ratio. This

can be attributed to the fact that this method yields T maps for all scenario. Conversely, the Gibbs method generates only a

small number of distinct maps which leads to a low aggregate map score (especially for λc = 2 and T = 250). We do note

that, at λc = 2, even though the Gibbs method only generates 46 maps (compared to 500 maps for the combination method),

its score ratio still exceeds 0.5. This suggests that the map scores are far from uniform. Therefore, even though the Gibbs

method generates many fewer distinct maps, these maps have very high score. In comparison, the Gibbs-10 method is able
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to generate more distinct maps which translates to higher aggregate map score and consistently outperforms the cross-entropy

method. These results suggest that, for the Gibbs method, one can select the number of Gibbs samples for a trade-off between

computational overhead and performance.

Consider now the individual parameter’s impact. Fewer clutter measurements and/or lower measurement noise lead to less

challenging scenarios and higher aggregate map scores. The Gibbs method does not follow these trends since the low number

of generated maps at low σxy and λc has a bigger impact on the aggregate map score. Finally, when more maps are generated,

the algorithms are more likely to retrieve more high-scoring maps, leading to higher aggregate score.

Note that generating association maps with higher aggregate score for a given hypothesis does not necessarily imply better

tracking performance in a tracking scenario spanning multiple time steps. One important caveat to keep in mind is that the

key benefit of the joint predict-update framework (i.e., avoiding the selection of less likely hypotheses) is not applicable in

this single hypothesis test.

B. Approximate multi-sensor assignment score function

In this section, we seek to experimentally determine the conditions under which the score function
∑S

j=1 log
(
η
(ε,θj)
Z (l)

)
is

a suitable substitute for the exact multi-sensor assignment score function log
(
η
(ε,θ1:S)
Z (l)

)
. Recall that both the combination

and Gibbs methods rely on this approximation to reduce computational overhead.

Before proceeding further, we must define a proper performance metric. Recall that our goal is to generate high-scoring

maps. Therefore, we wish to determine whether the use of the approximate score function can yield the same maps as we

would get with the exact score function.

Let θ(1), ..., θ(T ) denote the T distinct multi-sensor maps with C
(i)
approx ≥ C

(j)
approx, ∀i ≥ j (i.e., maps are sorted and indexed

in decreasing order of approximate score). Let [α(1), ...α(T )] denote the ordering of these T maps under the exact score (i.e.,

C
(α(i))
exact ≥ C

(α(j))
exact , ∀α(i) ≥ α(j)).

Consider what happens when we generate the �γT � best maps. Under the approximate score functions, we would obtain

θ(1), ..., θ(	γT
). Under the exact score function, we would obtain θ(α(1)), ..., θ(α(	γT
)). In the ideal situation, we would obtain

the same �γT � maps and have δ[1,2,...,	γT
] ([α(1), α(2), ..., α(�γT �)]) = 1.

A natural choice of performance metric is the Jaccard coefficient which measures the similarity between the sets [1, 2, ..�γT �]
and [α(1), α(2), ..α(�γT �)]. A coefficient of 1 means that the two sets are identical and a coefficient 0 means no overlap between

the two sets. The Jaccard coefficient for two sets A and B is defined as

J(A,B) =
|A ∩B|
|A ∪B| . (44)

We adopt the same single time step set-up in Sec. VI.1. We generate a total of T = 2000 maps using the combination

method, compute their scores using both the exact and approximate score functions, and compute the Jaccard coefficient. We

run a series of simulations where we vary one parameter of interest. Table II shows the results.
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TABLE II
AVERAGE JACCARD SIMILARITY COEFFICIENT BETWEEN THE MAP SETS UNDER EXACT AND APPROXIMATE SCORE FUNCTIONS. ALL RESULTS ARE

AVERAGED OVER 200 MONTE-CARLO TRIALS. FOR THE BASELINE, PD = 0.97, λc = 7, AND σxy = 6.

Parameter �γT � = 250 �γT � = 500 �γT � = 750
Baseline 0.7238 0.7482 0.7722

PD = 0.5 0.7563 0.7715 0.7848

PD = 0.6 0.7388 0.7578 0.7801

PD = 0.8 0.7010 0.7236 0.7553

PD = 0.9 0.7009 0.7230 0.7543

σxy = 2 0.4824 0.5200 0.6002

σxy = 4 0.6548 0.6858 0.7118

σxy = 8 0.7425 0.7605 0.7849

σxy = 10 0.7846 0.7958 0.8138

λc = 1 0.8675 0.8780 0.8924

λc = 3 0.7869 0.7994 0.8137

λc = 7 0.6834 0.7097 0.7404

λc = 9 0.6444 0.6721 0.7098

Consider the exact cost function:

η
(ε,θ1:S)
Z (l) =

∫
p
(ε)
k+1|k(·, l)

S∏
j=1

ψj(·, l; θj)dx (45)

ψj(x, l; θj) =

⎧⎪⎪⎨
⎪⎪⎩
1− PD θj(l) = 0

PD,j(x)gj(z
i
j |x,l)

κj(zi
j)

θj(l) ∈ {1, ...,mj}
(46)

When PD is low, then each label is more likely to be miss-detected. In this case, the term ψj(x, l; θj) has a constant value

1−PD. In the case when none of sensors detects the target, the exact and approximate score values are equal. In other words, at

lower PD, the approximate score function is close to the exact cost function. The Jaccard coefficients decrease with increasing

PD in Table II.

At higher σxy , the measurement likelihood function g(z|x, l) is more spread out with respect to the target density p
(ε)
k+1|k(·). At

sufficiently high σxy , the likelihood function may appear non-informative with respect to the prior density p
(ε)
k+1|k(·). In this case

we have
∫
g(z1|x, l)g(z2|x, l)p(ε)k+1|k(x, l)dx ≈ g(z1|μ, l)g(z2|μ, l) =

[∫
g(z1|x, l)p(ε)k+1|k(x, l)dx

] [∫
g(z2|x, l)p(ε)k+1|k(x, l)dx

]

with μ the mean of p
(ε)
k+1|k(·) and the approximate score function is close to the exact cost function. Conversely, at lower

σxy , the measurements are highly informative and we have
∫
g(z1|x, l)g(z2|x, l)p(ε)k+1|k(x, l)dx ≈ g(z1|μ, l)g(z2|μ′, l) where

μ′ �= μ and by extension g(z2|μ′, l) �= g(z2|μ, l). When S updates are applied in sequence, the resulting exact score can differ

significantly from the approximate score.

At higher clutter rate, a sensor is more likely to generate single-sensor maps containing clutter-target associations. In contrast,

the exact score function can more reliably discriminate true target-originated measurements from clutter by incorporating the

information from all sensors. As a result, higher clutter rate leads to higher discrepancy (lower similarity coefficient) between

the two scoring functions.

Finally, increasing the value of �γT � increases the Jaccard coefficient in all cases. Since there is only a large but finite

number of valid maps, retaining more maps is certain to increase the overlap between the two sets.
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C. Full tracking test

In our second test, we run a full tracking simulation using each algorithm to solve the multi-sensor assignment problem in

the update stage. Fig. 3 shows the target tracks and sensor placements. The simulation spans 30 time steps and contains a total

of five targets. Again, we run a series of scenarios to study how certain parameters impact the tracking performance.
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Fig. 3. Target tracks (blue lines) and sensor positions (red crosses). Text labels indicate targets’ birth positions and birth time step

All targets follow the constant velocity dynamic model with dynamic noise covariance

Q = σ2
v

⎡
⎢⎣

I2
3

I2
2

I2
2 I2

⎤
⎥⎦ (47)

where σv is the standard deviation of process noise, In is the n× n identity matrix, and we assume a sampling interval of 1

minute. We use σv = 0.25 for the track generation and σv = 2.5 for the target tracking. At each time step, one target may

appear at each of the four spawn points: pB(x) = N (x;μB , PB) with μB = [±15,±15, 0, 0], PB = diag([25, 25, 50, 50])

and birth probability rB = 0.4. At each update step, a maximum of T multi-sensor association maps are generated. If there

is more than one predicted hypothesis, we sample T hypotheses with replacement based on the predicted hypothesis weight.

After each update step, we prune all posterior hypotheses below a weight threshold set to 10−10 and we propagate only the

T/4 posterior hypotheses with highest weight to the next time step.

We compute the estimated target cardinality distribution and target states as follows:

p(n) =
∑
|I|=n

w(I,ε,θ1:S) (48)

n̂ = arg max p(n) (49)

(Î , ε) = arg max w(I,ε,θ1:S)δn̂(|I|)) (50)

X̂ =

{
(x̂, l̂) : l̂ ∈ Î , x̂ =

∫
yp(y, l)dy

}
(51)

We measure the performance using two metrics: total running time for the entire tracking process (including predict, update

and target state extraction) and optimal sub-pattern assignment (OSPA) (with cardinality penalty factor of 20 and power factor
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Fig. 4. Average OSPA with respect to λc. All results are averaged over 100 random trials. The other parameters are σxy = 1.5m and T = 500.

of 1) [34].

Fig. 4 shows the average OSPA with respect to the clutter rate for σxy = 1.5m and T = 500. The Gibbs-10 is also included

for comparison. At low clutter rate (λc ≤ 10), all algorithms yield similar performance. As the clutter rate increases, the

OSPA increases for all algorithms as expected. At higher clutter rate, the cross-entropy and sequential methods outperform

the combination and Gibbs methods. This performance gap is to be expected since the latter two methods use an approximate

score function which performs more poorly at higher clutter rate. However, the Gibbs-10 method yields similar performance

as the sequential method and consistently outperforms the Gibbs method. Finally, the cross-entropy method has consistently

the lowest OSPA.

Fig. 5 shows the average runtime for the entire simulation with respect to the clutter rate for σxy = 1.5m and T = 500. Note

that the different algorithms generate a different number of hypotheses at each time step. This in turn can have a major impact

on the total runtime. For all methods, the runtime increases with increasing λc as expected. For the combination method, more

clutter measurements lead to longer runtime for Murty’s algorithm at individual sensors, but otherwise have limited impact on

the overall runtime since the number of generated multi-sensor maps (and by extension the number of hypotheses) does not

change. For the other three methods, more clutter measurements actually lead to more maps and thus have a much larger impact

on the total runtime. The Gibbs-10 method has consistently the highest runtime.In the full tracking scenario, the Gibbs-10

method constructs more hypotheses and by extension more labeled targets than the cross-entropy method at each time step.

This results in a higher computational load and longer runtime which accumulates over the 30 time steps. Finally, with the

exception of the lower clutter rate case (λc ≤ 10), the combination method has the shortest runtime.

Fig. 6 shows the average OSPA with respect to σxy at λc = 15 and T = 500. As σxy increases, the OSPA of all algorithms

increases as expected. The cross-entropy method has consistently the lowest OSPA, followed by the sequential and Gibbs-10

methods.

Fig. 7 shows the average runtime for the whole simulation with respect to σxy at λc = 15 and T = 500. Increasing σxy has

the least impact on the runtime of the combination and sequential methods. For the two sampling methods, higher σxy lead

to more maps being generated and processed and subsequently higher runtime. The Gibbs-10 method again has the highest

runtime by far. Finally, the combination method has the lowest runtime with the exception of the low noise scenario (σxy = 1).
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Fig. 5. Average runtime with respect to λc. All results are averaged over 100 random trials. The other parameters are σxy = 1.5m, T = 500.
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Overall, the cross-entropy method consistently has the lowest OSPA in all our test scenarios. This can be attributed to

the use of the exact score function for map selection and the application of the joint predict-update framework to minimize

the selection of unlikely hypotheses (i.e., hypotheses that are uncorroborated by the sensor measurements). The sequential

method also uses the exact score function but caps the total number of hypotheses after each sensor which may lead to loss

of high-weight hypotheses. At low σxy or low λc, the Gibbs method is the fastest and all algorithms yield similar tracking

performance. At high σxy or λc, the combination method is the fastest. Our results suggest that the combination method is a

suitable choice for solving the multi-sensor assignment problem if the runtime is the primary selection criterion. On the other

hand, if we seek the best tracking performance, then the cross-entropy method should be used. We may also fine-tune the

number of samples in the Gibbs method to achieve a suitable trade-off between runtime and tracking performance.

VII. CONCLUSION

In this paper, we present two novel algorithms, the combination and cross-entropy methods, for solving the multi-sensor

measurement association problem in the multi-sensor δ-GLMB filter and compare their performance against the Gibbs and

sequential methods.

The cross-entropy method has consistently the best tracking performance (measured using the OSPA distance). When the

measurement noise level or the clutter rate is low, all four algorithms yield similar tracking performance with the Gibbs method

being the fastest. Otherwise, the combination method has the shortest runtime.

The combination and Gibbs methods approximate the exact multi-sensor association score function as a product of single-

sensor association scores. Simulations show that this approximation reduces computational overhead but leads to worse tracking

performance at low measurement noise level and high clutter rate.

For future work, we will focus on developing distributed implementations of the presented algorithms in order to develop

distributed multi-sensor δ-GLMB filters.
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