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c© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2013



Abstract

This report describes development of a new software library for modelling ship me-
chanical systems. The library can model cables, winches, cables, and payloads. The
library is also able to model collections of these components working together. When
developing the library, computational fidelity was of primary importance and compu-
tational speed was of secondary importance. This initial version of the software library
includes modelling of collisions and associated contact forces. The library is intended
for modelling of naval platform systems, such as launch and recovery of a small craft
from a ship.

Résumé

Le présent rapport décrit l’élaboration d’une nouvelle bibliothèque de logiciels pour la
modélisation de systèmes mécaniques de navires. Celle-ci permet de modéliser câbles,
treuils et charges utiles, ainsi que des regroupements de ces composants en interaction.
Au cours du développement de cette bibliothèque, la fiabilité de traitement constituait
un élément de première importance, alors que la vitesse de calcul était secondaire. Cette
version initiale comprend une fonctionnalité de modélisation des collisions ainsi que des
forces de contact connexes. Elle a été conçue en vue de modéliser des systèmes de
plateforme navale, comme le lancement et la récupération d’un petit bâtiment à partir
d’un navire.
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Executive summary

Ship Mechanical Systems API – Final Report: Modeling
Methodologies, API User Manual, API Validation

Background: Advances in computational hardware and software are enabling simula-
tion of complex systems. Such simulations can be used for naval platforms applications,
such as analysis of ship launch and recovery.

Principal results: This report describes development of a new software library for
modelling ship mechanical systems. The library can model cables, winches, cables, and
payloads. The library is also able to model collections of these components working
together. When developing the library, computational fidelity was of primary impor-
tance and computational speed was of secondary importance. This initial version of
the software library includes modelling of collisions and associated contact forces.

Significance of results: The developed software library can form the foundation for
simulation of naval platform systems, including replenishment and launch and recovery.
These simulations can be used to reduce economic and operational risks.

Future work: The ship mechanical systems software library used to develop simula-
tions of systems, including a ship towing another vessel and launch and recovery of a
small craft from a ship.
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Introduction : Les avancées en matière de logiciels et de matériel de calcul permettent
d’effectuer des simulations de systèmes complexes. Celles-ci peuvent servir dans le cadre
d’applications de plateforme navale, par exemple pour l’analyse du lancement et de la
récupération de navire.

Principaux résultats : Le présent rapport décrit l’élaboration d’une nouvelle bi-
bliothèque de logiciels pour la modélisation de systèmes mécaniques de navires. Celle-ci
permet de modéliser câbles, treuils et charges utiles, ainsi que des regroupements de
ces composants en interaction. Au cours du développement de cette bibliothèque, la
fiabilité de traitement constituait un élément de première importance, alors que la vi-
tesse de calcul était secondaire. Cette version initiale comprend une fonctionnalité de
modélisation des collisions ainsi que des forces de contact connexes.

Importance des résultats : Cette bibliothèque de logiciels peut servir de fondement
à la simulation de systèmes de plateforme navale, y compris le ravitaillement ainsi que
le lancement et la récupération. On peut ensuite employer celle-ci afin d’atténuer les
risques économiques et opérationnels.

Plans futurs : Employer la bibliothèque de logiciels de systèmes mécaniques de navire
pour développer des simulations de systèmes, notamment un navire qui en remorque
un autre ou encore le lancement et la récupération d’un petit bâtiment à partir d’un
navire.
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The cable bending stiffness with the lumped mass approximation ap-
plied.

KτG
The cable torsional stiffness with the lumped mass approximation ap-
plied.

X The assembly of node positions r and curvatures r′′.

Ẍ
The assembly of second temporal derivatives of node positions r and
curvatures r′′.

W The weight and buoyancy load.

H The hydrodynamic load.

WG
The weight and buoyancy load with the lumped mass approximation
applied.

HG The hydrodynamic load with the lumped mass approximation applied.

Mc Consistent element mass matrix.

MG Mass matrix with row elements relevant to curvature removed.

RG The cable state consisting only of node positions.

R̈G
The second time derivative of the cable state consisting only of node
positions.

τ Mechanical frame torsion of cable.

γ Frenet frame torsion of cable.

γG Vector of Frenet frame torsion of cable.

GJ Torsional stiffness cable property.

EI Bending stiffness cable property.



EA Axial stiffness cable property.

LG Tridiagonal matrix based on element lengths.

αG
A vector of torsional deformations from torsional frame to mechanical
frame.

T(i) External torque applied to node i

Winch Theory Symbols

vw(tk) The winch payout rate at time tk

awaccel The winch payout acceleration setpoint.

awdeccel The winch payout deceleration setpoint.

vwset The target velocity setpoint.

Payload Theory Symbols

EF
A 6× 1 spatial vector containing the force and moment applied to the
rigid body, expressed with respect to the Earth-fixed frame.

EM
The 6×6 mass-inertia matrix expressed with respect to the Earth-fixed
frame.

EaCG

The 6× 1 spatial vector containing the linear and angular acceleration
of the rigid body frame CG expressed with respect to the Earth-fixed
frame.

m The mass of the rigid body.

Ixx The mass moment of inertia about the x̂ axis.

Iyy The mass moment of inertia about the ŷ axis.

Izz The mass moment of inertia about the ẑ axis.



Ixy The xy product of inertia, equal to the yx product of inertia.

Ixz The xz product of inertia, equal to the zx product of inertia.

Iyz The yz product of inertia, equal to the zy product of inertia.

EvCG
The 6×1 spatial vector containing the linear and angular velocity of the
rigid body frame CG expressed with respect to the Earth-fixed frame.

EP̌CG

A 6 × 1 array containing the 3 Cartesian position components of the
rigid body frame CG with respect to the earth fixed frame and the 3
Euler angles that describe the relative orientation of the frames.

ψ Euler angle of rotation, describes rotation about the ẑ axis.

θ Euler angle of rotation, describes rotation about the ŷ′ axis.

φ Euler angle of rotation, describes rotation about the x̂′′ axis.

E ˙̌P(CG)(ψ)

The 6×1 array containing the time derivative of the 3 Cartesian position
components of the rigid body frame CG with respect to the earth fixed
frame and the 3 Euler angles that describe the relative orientation of
the frames.

ETB
The 6× 6 transformation matrix that rotates a vector’s frame of refer-
ence from the Payload’s body-fixed frame to the Earth-fixed frame.

BvCG
The 6×1 spatial vector containing the linear and angular velocity of the
rigid body frame CG expressed with respect to the body-fixed frame.

cφ cos(φ)

sφ sin(φ)

cθ cos(θ)

sθ sin(θ)

tθ tan(θ)

cψ cos(ψ)



sψ sin(ψ)

R1
A 3 × 3 rotation matrix describing the body-fixed frame with respect
to the Earth-fixed frame.

R2
A 3 × 3 non-orthogonal matrix, converts the angular velocity of the
rigid body to the Euler angles rates of change.

Bacg
The 6 × 1 absolute acceleration spatial vector of the rigid body, ex-
pressed with respect to the body-fixed frame.

Bv̇cg
The time derivative of the 6× 1 absolute velocity spatial vector of the
rigid body, expressed with respect to the body-fixed frame.

BΩB

A 6 × 6 cross-product operator of ω, where ω = {ωx, ωy, ωz}. When
multiplied against some 6× 1 vector V, i.e. BΩBV, returns the cross-
product [ω × vlinear, ω × vangular]

T , where vlinear and vangular are the
linear and angular components of V.

Bvcg
The 6 × 1 absolute velocity spatial vector of the rigid body, expressed
with respect to the body-fixed frame.

ωx The x̂ component of the angular velocity vector.

ωy The ŷ component of the angular velocity vector.

ωz The ẑ component of the angular velocity vector.

M
The 6× 6 mass inertia matrix of the payload expressed with respect to
the body-fixed frame.

BF
The 6× 1 external force applied to the rigid body expressed about the
body-fixed frame.

Fc
A 6×1 spatial vector representing the bias force accounting for apparent
accelerations resulting from angular rotation rate of the frame.

EǎCG

A 6× 1 array containing the second time derivative of the 3 Cartesian
position components of the rigid body frame CG with respect to the
earth fixed frame and the 3 Euler angles that describe the relative
orientation of the frames.

EṪB The time derivative of the transformation matrix ETB.



Ṙ1 The time derivative of the transformation matrix R1.

Ṙ2 The time derivative of the transformation matrix R2.

φ̇ Euler angle rate of change.

θ̇ Euler angle rate of change.

γ̇ Euler angle rate of change.

Ω
The 3 × 3 skew-symmetric cross-product operator of ω = ωx, ωy, ωz,
when multiplied to some vector, v, returns the cross-product ω × v.

BPA
The 3× 1 vector describing the location of the cable attachment point
with respect to the body-fixed frame.

P̂10

A mechanical frame axis, rotated an angle α from the Frenet frame
normal n̂ axis of the cable, at node 0, used for clamped cable connection
to force the boundary connection.

P̂20

A mechanical frame axis, rotated an angle α from the Frenet frame bi-
normal b̂ axis of the cable, at node 0, used for clamped cable connection
to force the boundary connection.

P̂30

A mechanical frame axis, equal to the Frenet frame tangent t̂ axis of
the cable, at node 0, used for clamped cable connection to force the
boundary connection.

P̂1N

A mechanical frame axis, equal to the Frenet frame tangent n̂ axis of
the cable, at node N, used for clamped cable connection to force the
boundary connection.

P̂2N

A mechanical frame axis, equal to the Frenet frame tangent b̂ axis of
the cable, at node N, used for clamped cable connection to force the
boundary connection.

P̂3N

A mechanical frame axis, equal to the Frenet frame tangent t̂ axis of
the cable, at node N, used for clamped cable connection to force the
boundary connection.

αtwist The total amount of twist in the cable.



τtwist The mechanical torsion in the cable.

EFcable

The 6 × 1 spatial vector containing the force and moment the cable
is applying to the payload, expressed with respect to the Earth-fixed
frame.

Boomcrane Theory Symbols

θi Link i’s joint angle θ D-H parameter

di Link i’s joint length d D-H parameter

ai Link i’s length a D-H parameter

αi Link i’s twist α D-H parameter

x̂i The x̂ axis of joint frame i

ŷi The ŷ axis of joint frame i

ẑi The ẑ axis of joint frame i

A
(4×4)
di

A 4× 4 transformation matrix representing the effect of joint length.

A
(4×4)
θi

A 4× 4 transformation matrix representing the effect of joint angle.

A
(4×4)
αi A 4× 4 transformation matrix representing the effect of link twist.

A
(4×4)
ai A 4× 4 transformation matrix representing the effect of link length.

A
(4×4)
i→i−1 A 4× 4 transformation matrix that transforms frame i to frame i− 1

Ri→i−1
A 3× 3 rotation matrix that changes the frame of reference of a vector
from frame i to i− 1

iPi→i−1
A 3 × 1 vector from frame i to frame i − 1, expressed with respect to
frame i



x̂
(i)
p The x̂ axis of link i’s proximal joint frame

ŷ
(i)
p The ŷ axis of link i’s proximal joint frame

ẑ
(i)
p The ẑ axis of link i’s proximal joint frame

p The proximal joint frame for a link

d The distal joint frame for a link

x̂
(i)
d The x̂ axis of link i’s distal joint frame

ŷ
(i)
d The ŷ axis of link i’s distal joint frame

ẑ
(i)
d The ẑ axis of link i’s distal joint frame

R
(i)
(p→E)

A 3× 3 rotation matrix, belonging to link i that changes the frame of
reference of a vector, from its proximal joint frame p to the Earth-fixed
frame E

R
(i)
(p→d)

A 3× 3 rotation matrix, belonging to link i that changes the frame of
reference of a vector, from its proximal joint frame p to its distal joint
frame frame d

P
(i)
(E→p)

A 3 × 1 vector, starting at the Earth-fixed frame, ending at link i’s
proximal joint frame p, assumed to be expressed with respect to link
i’s frame, the proximal joint frame, unless stated otherwise.

P
(i)
(p→d)

A 3 × 1 vector, starting at a link i’s proximal joint frame p, ending at
it’s distal joint frame d, assumed to be expressed with respect to link
i’s frame, the proximal joint frame, unless stated otherwise.

ψ Heading angle; rotation about the ẑ axis.

θ Pitch angle; rotation about the ŷ′ axis.

φ Roll angle; rotation about the the x̂′′ axis.

P
(i)
p→cg

A 3 × 1 vector, starting at a link i’s proximal joint frame p, ending
at its CG, assumed to be expressed with respect to link i’s frame, the
proximal joint frame.



P̃
(i)
p→d

A skew-symmetric representation of the vector P
(i)
p→d, used as a cross-

produce operator.

R
(i)
p→CG

A 3× 3 rotation matrix, belonging to link i that changes the frame of
reference of a vector, from its proximal joint frame p to its CG frame.

R
(i)
θ

A 3 × 3 rotation matrix used to account for the change in orientation
of link i’s rigid body body-fixed frame relative to a revolute proximal
joint’s frame.

R
′(i)
p→CG

A 3×3 rotation matrix, describing the orientation of link i’s CG frame
relative to the proximal joint frame, accounting for the change in ori-
entation caused by motion of the proximal joint.

P
′(i)
p→CG

A 3× 1 vector, starting at link i’s proximal joint frame p, ending at its
CG accounting for the change in orientation or displacement caused by
the motion of the proximal joint.

P
(i)
displ

A 3 × 1 vector, describing the translation of the CG frame due to a
prismatic proximal joint.

P̌
(i)
p→CG

A 6 × 1 array used to describe the position and orientation of a link’s
rigid body body-fixed frame CG relative to the proximal joint frame,
using 3 Cartesian position components and 3 Euler angles expressed
about the non-orthogonal frame ẐŶ′X̂′′

φ
(i)
p

A 6× 1 array, filled with zeros except for a single entry that contains a
one. It is used to map a scalar joint deflection, velocity or acceleration
to a 6 × 1 array. The matrix φ

(i)
p is different depending on whether or

not link i’s proximal joint is revolute or prismatic.

T
(v)(i)
p→d

A 6× 6 transformation matrix used to transform 6× 1 spatial velocity
or acceleration vectors from link
i’s proximal frame to its distal frame.

T
(f)(i)
p→d

A 6 × 6 transformation matrix used to transform 6 × 1 spatial force
vectors from link i’s proximal frame to its distal frame.

ε
(i)
p A scalar variable describing link i’s proximal joint deflection.

ε̇
(i)
p A scalar variable describing link i’s proximal joint deflection rate.



ε̈
(i)
p

A scalar variable describing the acceleration of the deflection of link i’s
proximal joint.

v
(i)
p

A 6× 1 spatial vector representing the velocity of joint frame p of link
i. It contains 3 Cartesian linear velocity components and 3 Cartesian
angular velocity components of the proximal joint expressed about link
i’s frame.

v
(i)
d

A 6× 1 spatial vector representing the velocity of joint frame d of link
i. It contains 3 Cartesian linear velocity components and 3 Cartesian
angular velocity components of the distal joint expressed about link i’s
frame.

ω
(i)
p

A 3× 1 Cartesian vector describing the angular rotation rate of link i’s
proximal joint.

a
(i)
p

A 6 × 1 spatial vector representing the acceleration of joint frame p
of link i. It contains 3 Cartesian linear acceleration components and 3
Cartesian angular acceleration components of the proximal joint express
about link i’s frame.

a
(i)
d

A 6× 1 spatial vector representing the acceleration of joint frame d of
link i. It contains 3 Cartesian linear acceleration components and 3
Cartesian angular acceleration components of the distal joint express
about link i’s frame.

abase
A 6 × 1 spatial vector representing the acceleration of a articulated
body’s (boom crane) base frame.

M
(i)
CG

A 6× 6 mass inertia matrix for link i’s rigid body expressed about the
CG frame.

m(i) A 3 × 3 diagonal mass matrix for link i’s rigid body expressed about
the CG frame.

M
(i)
p

A 6× 6 mass inertia matrix for link i’s rigid body expressed about the
link’s proximal joint frame.

M
∗(i)
p

The articulated inertia of the mechanism including all of the links from
the last link to link i expressed about link i’s proximal joint frame.

I
(i)
CG

A 3× 3 mass moment of inertia tensor for link i’s rigid body about its
CG frame.

I
(i)
p

A 3× 3 mass moment of inertia tensor for link i’s rigid body about its
proximal joint frame.



m(i) A scalar value representing the mass of a link’s rigid body.

m
∗(i)
p

A scalar value representing the inertial property of the articulated mass
inertia matrix M

∗(i)
p , that acts along the proximal joint degree of free-

dom.

Î A 3× 3 identity matrix.

h(i)

A 3 × 1 Cartesian vector for link i. Defined as h(i) = mpP
(i)
p→CG it

is only defined here to be used in a skew symmetric matrix h̃(i) form
as a cross product operator to account for some components of the
relationship angular acceleration contributions on joint p from of the
linear acceleration of CG and vice-versa.

h̃(i) Skew symmetric form of h(i)

f
(i)
p

A 6×1 spatial vector containing an external force and moment applied
about link i’s joint p.

β
(i)
p The bias force contribution from link i’s rigid body.

β
∗(i)
p

The bias force accumulated across the mechanism from the last link to
link i.

N
(i)
p

A 6 × 6 inertia tensor with the diagonal entry along joint degree of
freedom stripped.

k
(i)
p

An 6 × 1 array holding the column of the mass-inertia matrix M
∗(i)
p

associated with the joint degree of freedom, φ(i).

ζ
(i)
p

The velocity dependent acceleration terms, including Coriolis accelera-
tions, described about link i’s frame p; equivalent to ζ

(i−1)
d .

ζ
(i)
d

The velocity dependent acceleration terms, including Coriolis accelera-
tions, described about link i’s frame d; equivalent to ζ

(i+1)
p .

ζ
(i)
ε

The velocity dependent acceleration contribution from the actuation
rate of link i’s proximal joint.

τ
(i)
p The scalar force component acting in link i’s joint degree of freedom.



τ
∗(i)
p The scalar force component acting in link i’s joint degree of freedom.

ε
(i)
target Target joint displacement used by the PID controller.

ε̇
(i)
target Target joint displacement rate used by the PID controller.

C
(i)
P

The proportional coefficient for the PID controller of link i’s proximal
joint.

C
(i)
I The integral coefficient for the PID controller of link i’s proximal joint.

C
(i)
D The damping coefficient for the PID controller of link i’s proximal joint.

P (i) The power used to actuate link i’s proximal joint.

P
(i)
max

The maximum allowable actuation power for link i’s proximal joint,
limits the joint controller.

τ
(i)
PID The load applied to link i’s proximal joint by the controller.

τ
(i)
PID,max

The maximum load applicable to link i’s proximal joint based on a
joint’s displacement rate and maximum power P

(i)
max.

τ
(i)
LL

The load applied to link i’s proximal joint about its degree of freedom
if a lower limit end stop is violated

τ
(i)
UL

The load applied to link i’s proximal joint about its degree of freedom
if a upper limit end stop is violated

ε
(i)
LL The lower limit end stop deflection of link i’s proximal joint.

ε
(i)
UL The upper limit end stop deflection of link i’s proximal joint.

Contact Resolution Symbols

BFcontact
The 6× 1 spatial vector of force applied to the rigid body by the 3× 1
contact force, expressed about the body-fixed frame.

BTE
The 6× 6 transformation matrix used to transform a vector’s frame of
reference from the Earth-fixed frame to the body-fixed frame.



EFcontact
The 6× 1 spatial vector of force applied to the rigid body by the 3× 1
contact force, expressed about the Earth-fixed frame.

Efcontact The 3× 1 spatial vector containing the contact force.

EPB→Cσ

A vector, starting at the body-fixed frame origin and ending at the
centroid of pressure, expressed with respect to the Earth-fixed frame.

EvCσ |A−B

A 6 × 1 spatial vector containing the relative velocity between objects
A and B are the centroid of pressure, expressed with respect to the
Earth-fixed frame.

ETB(A)

The 6 × 6 transformation matrix used to transform a vector’s frame
of reference from the object A’s body-fixed frame to the Earth-fixed
frame.

ETB(B)

The 6 × 6 transformation matrix used to transform a vector’s frame
of reference from the object B’s body-fixed frame to the Earth-fixed
frame.

B(A)
T

(v)

B(A)→Cσ

The 6×6 velocity transformation matrix used to obtain the velocity at
the centroid of pressure of object A given the velocity of the object at
its body-fixed frame, expressed with respect to its body-fixed frame.

ET
(v)

B(B)→Cσ

The 6×6 velocity transformation matrix used to obtain the velocity at
the centroid of pressure of object B given the velocity of the object at
its body-fixed frame, expressed with respect to its body-fixed frame.

B(A)
vB(A)

The 6 × 1 spatial vector describing the absolute velocity of object A’s
body-fixed frame expressed with respect to object A’s body-fixed frame.

B(B)
vB(B)

The 6 × 1 spatial vector describing the absolute velocity of object B’s
body-fixed frame expressed with respect to object B’s body-fixed frame.

B(A) The body-fixed frame for object A.

B(B) The body-fixed frame for object B.

Cσ The centroid of pressure.

Ev
(̂t)
Cσ |A−B

The component of EvCσ |A−B that is tangential to contact normal direc-
tion n̂.



Ev
(n̂)
Cσ |A−B

The component of EvCσ |A−B that co-linear with contact normal direc-
tion n̂.

EP
(A)
(min)

A 3 × 1 vector containing the Cartesian position on the surface of ob-
ject A, representing one of the components of the minimum separation
distance between objects A and B.

EP
(B)
(min)

A 3 × 1 vector containing the Cartesian position on the surface of ob-
ject B, representing one of the components of the minimum separation
distance between objects A and B.

f
(s)
n̂

The stiffness component of the normal contact force.

f
(d)
n̂

The damping component of the normal contact force.

fn̂ The normal contact force.

σn̂(s) The normal local stress at a point s on the contact surface.

ds The differential area used to define the local stress.

en̂(s) The local engineering strain at a point s on the contact surface.

εn̂(s) The local true strain at a point s on the contact surface.

δ(s)
The local deflection of the contact surface at a point s on the contact
surface.

h The spring-bed depth.

PE→Cσ
The 3×1 position vector starting at the origin of the Earth-fixed frame,
ending at the centroid of pressure.

V The displaced volumes of the spring.

Vint The volume of interference.

dV (s) The displaced volume of a differential spring.

E Young’s modulus.

EA Young’s modulus for object 1.



EB Young’s modulus for object 2.

hA The spring bed depth for object 1.

hB The spring bed depth for object 2.

ėn(s) The local strain rate at some point s on the contact surface.

mA Strain-rate sensitivity exponent for object A.

mB Strain-rate sensitivity exponent for object B.

BA Damping factor B1 of the material of object 1.

BB Damping factor B1 of the material of object 2.

er(s) The local radial strain at some point s on the contact surface.

δR(s)
The amount of local radial deformation at some point s on the contact
surface.

Ri The original undeformed radius.

R
(A)
eq The equivalent radius for object A.

VA The volume of object A.

B(A)
f
(A)(̂t)
Coulomb

The Coulomb friction force applied to object A if there is relative mo-
tion to B

B(A)
f
(A)(̂t)
fric The friction force applied to object A.

f
(̂t)
stick The maximum sticking friction force.

μc The Coulomb friction coefficient.

μs The sticking friction coefficient.

fn̂ The normal contact force magnitude.



B(A)
f (A)(̂t) The tangential component of the forces acting on object A at its body-

fixed frame, expressed about its body-fixed frame.

vtol The dead-zone tolerance velocity for the stick-slip transition.

Vtetra The volume of a tetrahedron.

v1 The first vertex of a tetrahedron.

v2 The second vertex of a tetrahedron.

v3 The third vertex of a tetrahedron.

v4 The fourth vertex of a tetrahedron.

Pcentroid The centroid location of a tetrahedron.

A Object A.

B Object B.

PA The absolute position vector of object A.

PB The absolute position vector of object B.

P
(min)
M

The absolute position vector of the minimum separation distance on
the surface of the Minkowski difference of objects A and B.

P
(min)
A

The absolute position vector of the point on the surface of object A that
represents one component of the minimum separation distance between
objects A and B.

P
(min)
B

The absolute position vector of the point on the surface of object B that
represents one component of the minimum separation distance between
objects A and B.

S(A,d)
A support mapping function, returns the furthest point on object A in
the direction d

d A search direction used to find the furthest points on an object.

Q
A set of vertices, contains anywhere between 1 and 4 vertices at any
one time.



Qi The ith vertex of in the set Q.

ci The ith barycentric coordinate.

v
(A)
i The vertex on object A corresponding to the ith vertex in the set Q.

v
(B)
i The vertex on object B corresponding to the ith vertex in the set Q.
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1 Introduction

Dynamic Systems Analysis (DSA) was contracted to construct an application program-
ming interface (API) in the form of a C++ dynamic link library (DLL) that will enable
DRDC Atlantic to perform high fidelity simulations of ship mechanical systems (SMS).
The purpose of this report is to summarize the capabilities of the API and educate
users on how to use the API to simulate a wide variety of scenarios.

There are four pieces of equipment that the SMS API is able to simulate: boom cranes,
slack/taut cables, payloads (i.e. something hung from a winch cable) and winches.
Figure 1 shows a scenario of how all four simulation object types could be simulated
together. The SMS API was written using an object oriented approach in ANSI C++
such that within the API the dynamics of each item is encapsulated within four key
classes1:

• SMS::BoomCrane

• SMS::Cable

• SMS::Payload

• SMS::Winch

Simulation of each of these components in a ship based scenario can be constructed
within the SMS API by creating objects of these types, and calling the member functions
of these objects.

This document outlines the theoretical background for each of these classes in the API,
discusses the validation cases investigated, and describes practical usage of the API.
Special attention was paid in the development of the API towards validation and fidelity
of the software. This was accomplished by comparing simulation results with known
analytical solutions or using published validation results.

In this report, first some further preliminaries on the basic usage of the SMS API are
discussed, including definition of the SMS API coordinate system and an overview of
the software architecture. Next, the theory behind each of the core models used in the
key SMS API classes is discussed. Then, practical information on how to use the SMS
API is presented. Lastly, a set of validation cases is presented which were used to test
the API.

1The SMS API classes are contained within an SMS namespace so that the user of the API is clear
which objects are defined within the SMS API DLL; this point will be emphasized throughout the
report by fully qualifying the name of the class by prepending it with SMS::



SMS::Winch object

SMS::Cable object

SMS::Payload object

SMS::Boomcrane object

Figure 1: Typical configuration whose simulation will be made possible with the classes
available in the SMS API. The simulations will consist of cables, winches, cranes and
payloads. Each of the classes must be able to interact.
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Figure 2: The payload’s Body-Fixed frame is defined relative to the Earth-Fixed Frame.

1.1 Coordinate System

The SMS::BoomCrane, SMS::Winch, SMS::Payload and SMS::Cable classes represent
physical objects that must be defined relative to a globally fixed coordinate system. To
be consistent with other DRDC simulation programs, DSA has selected a coordinate
system definition consistent with ShipMo3D. Thus, the SMS API has labeled the global
system as an “Earth-fixed coordinate system”. The Earth-fixed system is a right handed
coordinate system that has its X axis pointing North and the Z axis point away from
the center of the earth (+ Upward).

Local coordinate systems are attached to objects such as an SMS::Payload. They are
defined in terms of their position and orientation relative to the Earth-Fixed Coordinate
System (see Figure 2). The SMS::RigidBody’s local coordinate system is called as a
“body-fixed coordinate system”. This follows the convention of ShipMo3D.

1.2 SMS API Software Architecture

In the SMS API all key simulation object types, the SMS::Cable, SMS::BoomCrane,
SMS::Payload, and SMS::Winch, are designed around the SMS::SimObject abstract
base class, as seen in Figure 3. The SMS::SimObject class was designed to provide a



SMS::RK45

SMS::Integrator

SMS::SimObject

SMS::Cable

SMS::PayloadSMS::Boomcrane

SMS::Winch

SMS::ABA RigidBody SMS::RigidBody

Class Interaction

Class Inheritance

GeomTools Library (Contact Resolution)

SMS::Environment

Figure 3: The SMS API design architecture

common interactive layer between simulation objects and the SMS::Integrator and
SMS::Environment objects. The SMS::Integrator object is responsible for advancing
the simulation time. The SMS::Integrator class polls each of the SMS::SimObject

classes to calculate the dynamics of each SMS::SimObject. The integrator advances the
simulation time by integrating the state vector derivatives over a time interval specified
by the SMS API user. The SMS::Environment class is used by each SMS::SimObject

to define key environmental parameters such as fluid velocity, density or sea state.

One thing to note from Figure 3 is that the SMS::Payload makes use of an SMS::Rigid-

Body class to assist in the evaluation of its dynamics. In addition, the SMS::Boomcrane
class also uses the SMS::ABA RigidBody class to evaluate its dynamics. The SMS API
user is never exposed to these utility classes, but they are fundamental to operation of
the SMS API and are mentioned here for completeness.



Lastly, to simulate a wide variety of shipboard scenarios, it is necessary within the
SMS API to account for contact effects between a payload and the ship deck. The
SMS::RigidBody uses collision detection and contact resolution capabilities provided
by the GeomTools library, which implements some computational geometry algorithms
that allow collision detection and contact forces determination.

1.3 SimObject Interaction

How the SMS::Cable, SMS::BoomCrane, SMS::Payload, and SMS::Winch objects are
connected to each other such that key information such as positions and forces can be
passed between objects has been designed into each of the classes. Indeed, the SMS
API has been designed to operate in two distinct ways:

1. as an encapsulated simulation where all mechanical systems objects are simulated
on a single computer in a single executable2; and,

2. as part of a distributed simulation where some or all of the mechanical systems
objects are simulated on different computers.

Each of these cases requires mechanisms such that boundary condition information can
be passed between objects. In the first case, where all simulation objects are located
within a single executable, the SMS API has been designed such that boundary condi-
tion data (i.e., forces from the cable on the boom crane, force from the payload on the
cable, the winch payout speed, etc.) are shared between the simulation objects automat-
ically. For instance, if an SMS::Cable object is connected to an SMS::Payload object,
then the position of the connection point in space must be passed to the SMS::Cable

object and the force exerted on the SMS::Payload from the SMS::Cable must be passed
to the SMS::Payload object to evolve the coupled system dynamics. This automated
feature has been designed into the SMS API to simplify setting up simulation scenar-
ios. For simulations where simulation objects are distributed and integrated on separate
computers, the SMS API user will have to manually pass this boundary condition in-
formation between attached simulation objects. Functions are provided to do this.

All SMS::SimObjects use their own SMS::Integrator object to integrate their dynam-
ics through time. If however, objects are attached together with automated boundary
condition updates, one object becomes the master and the others slaves. The master’s
integrator handles the integration of all attached objects by appending the state vectors
of the slave objects, to its own state vector for integration. The SMS::Integrator, an
abstract class itself, provides the core functionality that any integrator would require

2It should be noted that an encapsulated simulation could be part of a larger distributed simulation



to accomplish its job. Here, the SMS API uses the SMS::RK45 integrator, which in-
herits SMS::Integrator and implements the Runge-Kutta 4(5) (Fehlberg) method, an
adaptive numerical integrator that is used to solve the dynamics with a high degree of
accuracy [3]. This integration method regulates the integration error by adjusting the
integration time step which allows it to maintain a predetermined level of accuracy.



2 Theory

The following section outlines the theoretical background for each of the SMS API
models implemented. First the finite-element based cable model that is used in the
SMS::Cable class is reviewed. Second, the controller used to modify the cable length,
that is encapsulated in the SMS::Winch class, is reviewed. Next, the SMS::Payload

class’s rigid body dynamics formulation is discussed. Next, the Articulated Body Algo-
rithm, which is used by the SMS::BoomCrane class to resolve its dynamics, is presented.
Lastly, the contact resolution scheme implemented is reviewed.

2.1 Cable

The purpose of the SMS::Cable class in the SMS API is to enable the simulation of
towing cables, or any kind of flexible rope, wire, or chain, that may be suspended or
towed from a ship in some fashion during a shipboard operation. For instance, it is
possible that this model may be used to simulate at-sea replenishment or towed array
operations. In general, this model should be capable of reporting internal cable tension
and determining the path of the cable in space. Towards this end, a cubic-element
lumped-mass, finite-element cable model was selected to evaluate the dynamics of such
a cable. This model is presented in this section.

The finite-element model selected for use in the SMS API was originally developed by
Dr. Brad Buckham at the University of Victoria [4, 5]. The benefits of the model are:

• the application of a cubic element to the finite element geometry allows more
accurate results with longer element lengths than typical linear cable elements.
This element choice allows element length increases of up to 50% over standard
linear element methods [4, 6];

• utilizing a cubic spline to assist in cable dynamics evaluation significantly re-
duces the number of state variables needed to represent the line geometry, which
increases simulation execution speed;

• including torsional and bending parameters allows accurate resolution of slack
line and snap load events; and

• torsional mass inertia of the line itself is neglected and an instantaneous twist
response results, which reduces high frequency torsional dynamics noise from
inducing small numerical integration time steps and slowing execution speed.

To develop a finite element model capable of estimating the internal tensions of the
cable and resolving snap loads and slack line events, consider the schematic in Figure 4.



In Figure 4, a low tension cable is connected between a boom crane and a generic
payload where the cable path in space is defined in terms of global positions, r. The
cable is discretized with N nodes. The path of the cable in space is defined using a
Frenet frame [7]. The local Frenet frame is defined at the nodal positions with the
tangential vector t̂ and a normal direction n̂ that points to the center of curvature.
The binormal vector b̂ completes the local Frenet coordinate system. To determine the
degree of twist of the cable due to torsional deformation, a second local frame is defined
that is permanently fixed to the cable’s cross-section: (q̂, p̂1, p̂2). It is separated from
the Frenet frame by an angle of twist α.

The element state is defined by the node positions r(i) in terms of the inertial coordinate
frame, as shown in Figure 5. The curvature values, which are needed to calculate flexural
response, are determined by fitting a cubic spline through the node points. The cubic
spline kinematically enforces continuity of slope across the span of the cable as a function
of node positions. The time evolution of the cable state is found by determining the
nodal linear accelerations from Newton’s second law; a numerical integration algorithm
is used to evolve the resulting node positions through time.

The internal reaction forces required for Newton’s second law are found by consider-
ing a differential segment of cable. Internal reaction forces due to bending (κ), axial
(ε), and torsion (τ) strains can be resolved with assistance of the Frenet frame after
some manipulation as detailed in [4]. The cubic spline curvatures at the node points
are used to establish bending strain. Axial element strains are calculated from the
straight-line distance between nodes and knowledge of the unstretched element lengths.
Torsional deformations are quantified with the knowledge of the Frenet frame torsion
and the assumption of negligible torsional inertia that provides a method to calculate
the separation between mechanical frame and Frenet frame (by angle α) at the node
points. Applying the Galerkin criterion transforms the continuous equations for in-
ternal reaction and externally applied distributed forces into a discrete form that can
be implemented numerically in a straightforward manner using linear algebra. Some
discussion of how the Galerkin criterion is applied is provided in Appendix C. Before
the Galerkin criterion can be applied, a trial solution to the system, which incorporates
the shape functions that blend the discrete node values of the mesh into a continuum,
must be selected. The trial solution for the continuous cable position, r(s), uses cubic
shape functions and the positions and curvatures of the node points at the boundary
of the element:

r(s) = r(0)φ1,1 + r′′(0)φ1,2 + r(1)φ1,3 + r′′(1)φ1,4 (1)

where the first element has four shape functions, φi,j, j = 1, 2, 3, 4, i = 1, 2, · · ·N :
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Ẑ

h + w

r(1)

r(2)

M1

M2

n̂

r′′

F2(s)
F1(s)

ρ

b̂

C
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Note the first subscript indicates the element number. The equation for an element
produced from using these shape functions in conjunction with the Galerkin criterion
produces the discrete cable element dynamics equations:

(Kε +Kκ +Kτ )X+W +H = MCẌ (2)

where X is the assembly of node positions r(i) and curvatures r′′(i). The full form of
the mass and stiffness matrices for the consistent cable, as well as sample concatenated



matrices for a system of two elements, can be seen in Appendix A. The first element is
bounded by nodes i = 0, 1, which results in a length 12 vector:

X = {r(0)T r′′(0)T r(1)T r′′(1)T }T (3)

The length 12 force vector W is combined weight and buoyancy andH is hydrodynamic
load in terms of the global inertial reference frame. MC is the 12×12 consistent element
mass matrix. Kε, Kκ and Kτ are the axial, bending, and torsional stiffness 12 × 12
matrices.

In order to simplify the system of equations for computational and model efficiency, a
lumped mass assumption is made. A direct result of lumping the mass at the element
nodes is that no curvature inertia is available to couple forces to curvature accelerations;
these terms are dropped from equation 2 to form the reduced cable element dynamics
equation:

(Kε G +Kκ G +Kτ G) {r
(0)T r′′(0)T r(1)T r′′(1)T }T +WG +HG = MGR̈G (4)

where the length 6 force vector WG is combined weight and buoyancy and HG is
hydrodynamic load in terms of the global inertial reference frame. Finally, Kε G, Kκ G

and Kτ G are the axial, bending, and torsional stiffness 6× 12 matrices. Finally, as the
curvatures are a function of node positions via the cubic spline, the reduced cable state
can be written in terms of node positions:

RG = {r(0)T r(1)T }T (5)

In place of dynamic curvature information, kinematic curvature information is provided
by fitting a cubic spline through the cable node points. The cubic spline equations,
which are solely a function of the node positions and termination type (clamped or
pinned), enforce continuous slope and curvature across the concatenated system of
elements that form the entire cable. The lumped mass model has substantially reduced
computational overhead as the cable state vector is reduced by half. In addition, the
block-diagonal nature of the lumped mass matrix means that 3×3 systems of equations
are solved simultaneously instead of the minimum block diagonal 12 × 12 with the
consistent mass matrix. The full form of the mass and stiffness matrices for lumped
cable, as well as sample concatenated matrices for a system of two elements, can be
seen in Appendix A.



As mentioned previously, the total mechanical torsion, τ , is found from the Frenet
frame torsion, γ, which is a direct function of node positions, and with assumption of
negligible torsional inertia that guarantees a uniform mechanical torsional deformation
along the entire cable length at any point in time. The mechanical torsion of the element
is a function of the Frenet frame torsion and the angle between the mechanical frame
and Frenet frame, α:

τ = γ +
dα

ds
(6)

With the assumption of negligible element torsional inertia, the resulting torsion defor-
mation of the entire cable must be uniform:

d (GJτ)

ds
= 0 (7)

The resulting discrete equations produced from applying the Galerkin criterion are:

GJLGαG = GJ{ΔγG} (8)

where LG is a tridiagonal matrix based on the element lengths, γG is a vector of Frenet
frame torsions measured at the node points, and αG is the vector of torsional defor-
mation from the Frenet frame to the mechanical cable frame. Since the torsion of the
Frenet frame is a known function of the cable node positions, solving the set of equations
for αG produces the total mechanical torsion of the cable at any instance in time. Note
that the matrix LG is singular and requires boundary α values to be specified for the
system of equations to be solved. This is a physical consequence from assuming negli-
gible torsional inertia: if either or both ends of the cable are torsionally unconstrained,
an infinite number of solutions exist for the cable torsion for any applied torques. As
such, once boundary α values are obtained, the system torsion can be resolved from
equation 8.

In the model implemented, torsion evolves through constraining the boundary mechani-
cal frames, either via controller or by a rigid body connection, which is a kinematic con-
straint that indirectly specifies the boundary α values. However, resolving the boundary
α values is complicated by the fact that the Frenet frame torsion, while a function of
the geometry of the cable, particularly the normal direction, is not defined in areas of
no curvature, or at inflection points 3. The α value at the first node of the cable, α0,

3An inflection point is a point on the Cable where the curvature vector changes direction by 180
degrees.



is quantified from the angular separation about the tangent between the Frenet frame
and the kinematically specified mechanical frame. If no curvature exists at that bound-
ary (i.e. below a discrete threshold), the binormal of the Frenet frame at the nearest
downstream point that has nonzero curvature is used at the boundary without loss of
generality. If the cable is completely straight, no Frenet frame can be defined and the
boundary α value is zero; this effectively constrains the Frenet frame uniformally to the
mechanical frame at node 0. Next, the α value at the other end of the cable, at the
node N boundary, must be quantified.

However, quantifying boundary α values must take into account the effects of tempo-
rally evolving inflection points. Inflection points that exist along the span of the cable
can introduce a maximum spatially instantaneous Frenet frame rotation of π radians
and evolve naturally through the course of almost any simulation. Since a discrete
curvature tolerance is used to indicate a straight tether, an instantaneous Frenet frame
torsion could occur on the next dynamics evaluation and cause difficulties with nu-
merical integration and introduce artificial torsion impulses. An example of how such
inflections can introduce an artificial torsion load is with a planar cable with identically
orientated mechanical frames at the boundaries, with one inflection point. The Frenet
frame torsion of π occurs at the inflection point, resulting in a flip of the Frenet normal
and binormal direction. Quantifying the αN value in an analogous manner to α0 for
this case would lead to αN = π despite the fact that the tether profile is planar and no
mechanical twist has been induced by boundary mechanical frame movement. Without
compensating for the presence of inflection points, artificial mechanical torsions will
result when the discrete Equations 8 are resolved. Inflection points that temporally
evolve are successfully compensated for with the use of past twist information.

Before quantifying αN , the influence of any inflection point at node 0 is compensated
for by simply quantifying benchmark values for α0 that are offset by increments of π;
the new α0 value selected has a minimum difference between the last physical time step
value. Note that since only the spatial gradient of α is needed to quantify total torsion
in Equations 8, applying a compensating offset value in multiples of π will not affect
the mechanical torsion calculated.

With the consistent α0 value quantified, αN is computed in a similar manner with a
slight variation. The value of αN must be consistent with α0 and the past mechanical
twist state such that there is no extreme discontinuity in twist induced by new tempo-
rally introduced inflection points. The initial estimate of αN is simply the value of α0

plus the spatial integral over the span of the cable of the past mechanical twist of each
element (uniform) with the present Frenet frame torsion. This produces an estimate
of what αN should be, α∗

N , that incorporates the offset value introduced by a possible
inflection at the first node, the expected position due to past (last physical time step)
twist state, and the behavior of the Frenet frame along the span of the cable. As with
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Figure 6: a) Before temporal inflection: curvature and Frenet frame are well defined
everywhere. b) After temporal inflection: inflection between nodes 3 and 4 introduces
a Frenet frame twist of π radians and must be compensated for in torsion calcula-
tions. Note that the difference between states a) and b) can be merely one dynamics
evaluation.



α0, the initial estimate of αN is produced from the angle between the Frenet frame
and mechanical frame axis at node N. The initial value of αN is offset by increments
of π such that the difference between αN and the estimate α∗

N is minimized within a
tolerance of π

2
.

In the planar cable example mentioned previously, this algorithm detects the instanta-
neous increase by π due to the temporally evolved inflection and removes the effect from
the boundary α estimate. This is a requirement to handle the many inflections that
evolve and dissipate through a numerical simulation, especially in low tension events.
With the boundary α values computed, the mechanical torsion is quantified and used in
the torsion stiffness matrices to compute the resulting force on the cable nodes. Sample
matrix equations of the torsional stiffness matrix are provided in Appendix B.

Note that the principle cable properties that need to be identified through experiment
or extrapolated from manufacturer data sheets are:

• EI (Nm2) bending stiffnesses

• GJ (Nm2) torsional stiffness

• EA (N) axial stiffness

For synthetic lines and chains, the bending and torsional stiffnesses are often negligible
and axial data can be readily obtained. However, for simulations involving wire rope or
armored communications cables in low tension situations, bending and torsional effects
can be significant and should be calculated or measured. DSA has a compiled list of
stiffness numbers that can be used to test the cable classes functionality and interaction
with other DRDC Atlantic federates or classes.

2.2 Winch

The purpose of the SMS::Winch class is to simulate the behaviour of a shipboard winch
that is used to render or recover wire or rope at some rate. It is possible, that a winch
will be designed to maintain a constant line tension. This section reviews how these
winch behaviors are simulated in the SMS API.

A basic winch model was developed for the SMS::Winch class. Neither the drum or
gearbox is modeled; the SMS::Winch simply serves as a controller for the SMS::Cable

class. The SMS::Winch class has the ability to lengthen or shorten the boundary element
of the end of the SMS::Cable it is attached to through setting payout or payin rates,
which are the derivative of the element length. While this is a particularly simple model,
it can serve as a basic testbed tool as well as a foundation upon which more complex



winch models can be constructed. The SMS::Winch class was designed to operate in
constant tension and constant velocity control modes.

The winch changes the length of cable in the simulation by changing the length of the
element that the winch is attached to. The cable element lengths are controlled by
setting minimum or maximum length limits. If the maximum is exceeded, a node is
inserted at the midpoint of the element adjacent to the winch. If the element length
becomes less than the minimum limit, a node is removed and the boundary element
joins the element adjacent to it.

When changing the length of the boundary elements, the resulting payout forces due
to the mass flux of the cable are applied on the first interior node. To determine the
length of the boundary elements throughout the simulation, the rate of change of the
boundary element lengths (the payout or payin rate) are numerically integrated along
with the other cable state variables.

An SMS::Winch object can only be attached to either node 0 or node N of a cable. The
SMS::Winch object has two settings, a constant tension mode as well as a constant ve-
locity mode. The rate at which the payout rate changes is governed by the acceleration
and deceleration settings, such that the winch speed vw changes over an integration
timestep of length ΔT (from time tk−1 to tk) according to:

vwtk = awacceldt+ vwtk−1
, if, vw < vwset (9)

and
vwtk = awdeceldt+ vwtk−1

, if, vw > vwset (10)

where the winch deceleration and acceleration settings are awdecel < 0 and awaccel > 0,
respectively. The velocity setpoint is vwset. If the winch velocity is above or below
the setpoint velocity, the winch will adjust its velocity to reach the setpoint using the
acceleration and deceleration parameters. A slowly responding winch (one with high
inertia), can be simulated by decreasing the acceleration and deceleration parameters.
The deceleration parameter can be adjusted to account for braking effects.

To achieve constant tension control in the winch, PID gains are used to set the payout
and payin velocity for the winch based on the tension in the cable at the boundary
elements. For instance, if a constant tension mode winch is attached to node N in the
cable, the winch will respond to changes in tension in element N of the cable. If the
constant tension mode winch is attached to node 0, the winch will respond to changes
in tension in element 1 of the cable.



2.3 Payload

The purpose of the SMS::Payload is to simulate the motion of some “payload”. For
example, a payload, such as a small rigid-hull inflatable rescue craft, may be sus-
pended from a cable and then dropped overboard or onto the deck of the ship. The
SMS::Payload class is designed to determine the motions of the payload in response to
these actions. The payload dynamics formulation is presented in this section.

In the SMS API a payload is treated as a rigid body, which responds to forces according
to the Newton-Euler equations of motion. The Newton-Euler equations of motion state
that the relationship between the acceleration of the center of gravity of a 6 degree of
freedom (DOF) rigid body and a force applied to it is:

EF =E MEacg (11)

where EF is a 6 DOF spatial vector that contains the three linear and three angu-
lar force components {EFx,

E Fy,
E Fz,

E τx,
E τy,

E τz} and Eacg is the spatial accelera-
tion vector that includes the three linear and three angular acceleration components
{Eax,

E ay,
E az,

E αx,
E αy,

E αz}. The inertia matrix of a rigid body whose body-fixed
frame is aligned with and located at the origin of the Earth-fixed frame is:

EM =

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx Ixy Ixz
0 0 0 Iyx Iyy Iyz
0 0 0 Izx Izy Izz

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

where m is the rigid body mass, Ixx, Iyy, and Izz are the mass moments of inertia about
the inertial frame axis, and Ixy, Ixz, and Iyz are the associated products of inertia.

The Newton-Euler equations of motion can be derived from the total rate of change of
momentum, that is, the Newton-Euler equations are derived from:

EF =
d

dt
(EMEvcg) (13)

where Evcg is the velocity of the rigid body in Plücker coordinates.

The Newton-Euler equations of motion describe the motion of a rigid body observed
from a fixed inertial frame. To facilitate simulation, it is convenient to evaluate the
dynamics with respect to a frame that is fixed to the rigid body. An advantage of
this method is that the spatial inertia matrix, as well as other information like cable
connection location, remains constant when expressed with respect to a body-fixed
reference frame.



2.3.1 The Equations of Motion of a Rigid Body about the
Body-Fixed Frame

To develop the equations of motion of the rigid body with respect to the body fixed
frame, the position and orientation of the rigid body with respect to the Earth-fixed
frame E is first defined as EP̌cg = [EPx,

E Py,
E Pz, φ, θ, ψ]

T as shown in Figure 7. The
6 × 1 array EP̌cg, contains three Cartesian space position components and a Z(ψ) −
Y ′(θ) − X ′′(φ) body-fixed Euler angle sequence set, where Z(ψ) represents a rotation
about the Z axis of Earth-fixed inertial coordinate system, Y ′(θ) is the rotation about
the intermediate Y ′ axis, and X ′′(φ) is the rotation about the final X ′′ axis. Taking
the derivative of EP̌cg yields:

Ev̌cg =
E ˙̌pcg (14)

where Ev̌cg = [EṖx,
E Ṗy,

E Ṗz, φ̇, θ̇, ψ̇]
T is a 6 × 1 array that defines both the linear

velocity of the rigid body’s center of gravity expressed in relation to the inertial frame,
E, and the rate of change of the body fixed coordinate system’s orientation or angular
velocity. A special transformation matrix ETB is required to map the spatial velocity of
the body in terms of the body frame to the non-Plücker Euler angle rate based velocity
array, Ev̌cg:

Ev̌cg =
E TB

Bvcg (15)

where Bvcg = {u, v, w, p, q, r} is a 6 DOF spatial velocity vector formed with the linear
velocity vector components u, v, w and angular velocity vector components p, q, r
of the rigid body described with respect to the body-fixed frame; ETB is the 6 × 6
transformation matrix that maps the linear velocity component from the body-fixed
frame to the inertial frame and maps the angular velocity component from the body-
fixed frame to the Euler angle rates as given in [8]:

ETB =

[
R1 03×3

03×3 R2

]
(16)

Since the orientation of the body-fixed frame with respect to the inertial frame is
described using the RZY ′X′′ Euler angle set, R1 is [8]:

R1 =

⎡
⎣ cφcθ cφsθsψ − sφcψ sφsθcψ + sφsψ

sφcθ +sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ

⎤
⎦ (17)

where cχ, sχ, and tχ are the sine, cosine, and tangent of an angle χ, and φ, θ, ψ are the
roll, pitch, and yaw angles. The 3×3 transformation matrix R2, which maps body-fixed
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Figure 7: Frame B described with respect with to frame E

frame angular velocity to the non-orthogonal Euler angle rates, is:

R2 =

⎡
⎣ 1 sφtθ cφtθ

0 cφ −sφ
0 sφcθ cφ/cθ

⎤
⎦ (18)

Taking the time derivative of Bvcg will yield the acceleration Bacg. Since frame B is a
moving and rotating frame, the total time rate of change of the velocity vector is:

Bacg =
B v̇cg +

B ΩB
Bvcg (19)

where Bacg is the absolute acceleration vector of the rigid body in terms of the body-
fixed frame B and accounts for all rates of change and the effect of the rotating reference
frame, and BΩB is:

BΩB =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −ωz ωy 0 0 0
ωz 0 −ωx 0 0 0
−ωy ωx 0 0 0 0
0 0 0 0 −ωz ωy

0 0 0 ωz 0 −ωx

0 0 0 −ωy ωx 0

∣∣∣∣∣∣∣∣∣∣∣∣
The Newton-Euler equations expressed with respect to frame B become:

BF = MBacg (20)



Substituting equation 19 into 20 yields:

BF = MBv̇cg +
B ΩBM

Bvcg (21)

To evolve the dynamics of the rigid body requires solving equation 21 for Bv̇cg. To do
this, the second term on the right hand side of equation 21, now called Fc, is a bias
force that accounts for apparent accelerations resulting from the angular rotation of the
frame:

Fc =
B ΩBM

Bvcg (22)

such that the equation of motion is written as:

Bv̇cg = M−1(BF− Fc) (23)

Numerical integration of Bv̇cg will yield results that are not complete since frame B is
moving with the center of gravity of the rigid body. To properly integrate the dynamics
and simulate the behavior of the payload, Bv̇cg must be expressed with respect to the
fixed inertial reference frame E. The acceleration of the rigid body in terms of frame
E, the 6× 1 array Eǎcg, is derived in terms of the inertial frame through differentiation
of equation 15 as presented in [8]:

Eǎcg =
E TB

Bv̇cg +
E ṪB

Bvcg (24)

where the rate of change of spatial transformation matrix EṪB is obtained as [9]:

EṪB =

∣∣∣∣ Ṙ1 03×3

03×3 Ṙ2

∣∣∣∣ (25)

where Ṙ1 is:

Ṙ1 = ΩR1 (26)

and because the rotational components of E ǎcg are described about the axes of frame
resolved through the non-orthogonal Euler angle rotation sequence, Ṙ2 is:

Ṙ2 =

∣∣∣∣∣∣
0 cφφ̇tθ + (1 + t2θ)sφθ̇ −sφφ̇tθ

0 −sφφ̇ −cφφ̇

0 (cφcθφ̇+ sφsθθ̇)/c2θ (−sφcθφ̇+ cφsθθ̇)/c2θ

∣∣∣∣∣∣ (27)



and Ω is a 3 × 3 skew symmetric matrix of the body rotation rates. Now that the
accelerations are quantified in terms of the inertial Earth-fixed frame, the dynamics
can be evolved through time with a numerical integrator.

In the SMS API, the SMS::Payload class uses the SMS::RigidBody class to evalu-
ate dynamics calculations presented above. The state and state derivatives provided
by the SMS::RigidBody are integrated through time by the SMS::Payload’s integra-
tor to evolve the dynamics through time. The SMS::Payload was designed in this
fashion because the SMS::Boomcrane, discussed in Section 2.4.2.1, uses a modified
SMS::RigidBody with some added functionality for the dynamics evaluation of its links.
The following description of the dynamics of a rigid body were encapsulated within in
the SMS::RigidBody class.

2.3.2 Cable-Payload Interactions

When an SMS::Cable is attached, it imparts an external force onto the SMS::Payload.
The force that the SMS::Cable imparts on the SMS::Payload is the result of its elastic
deformations. Tension, the result of axial strain, is the linear force component while
pure moments are produced from flexural and torsional strains. If a swivelling pin joint
is used, the torsional and bending strains are always zero at the boundary of the cable.
The connection point with respect to the body-fixed frame, BPA, which is constant
through simulation, must be provided (see figure 8) while a clamped connection requires
the cable mechanical frame be defined by the principle vectors P1 and P2, also in terms
of the body-fixed frame. Note that the cross product of these principle vectors produces
the tangent direction at that end of the cable.

The cable provides a spatial force vector, EFCable, described with respect to the Earth-
fixed frame, which is provided to the rigid body for its dynamics evaluation while the
payload defines the position of the end of the cable to which it is attached.

2.4 BoomCrane

The purpose of the articulated boom crane model and the SMS::BoomCrane class is
to simulate the motion of a shipboard boom crane, like the one shown in Figure 9,
during typical operations. The model may be used to determine the operability of such
equipment in various sea-states, or may be used to assess the feasibility of certain crane
operations. To simulate a crane, the SMS API relies on a robotics algorithm called
the Articulated Body Algorithm. This, and the general implementation of the crane
simulator inside the SMS API, is presented below.
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Figure 8: The mechanical frame of a cable attached at a point BpA relative to the rigid
body.

2.4.1 Articulated Bodies Overview

To perform dynamic simulation of the crane motion, it is assumed the motion of the base
of the crane and the disturbance forces on the crane’s links are known. The disturbance
forces may be from cables and payloads hanging from the boom crane, wind loads on
the crane structure, or any other force acting on one of the links in the crane. The
analysis of the motion of any articulated mechanism, such as a boom crane, is classified
as one of two types of problems:

• The inverse dynamics problem, which calculates the joint actuation forces required
to achieve an assumed mechanism motion.

• The forward dynamics problem, which calculates the mechanism motion through
time given the joint actuation forces and external disturbance forces on the mech-
anism.

To dynamically simulate the motion of a boom crane, the forward dynamics problem
must be solved. More specifically, the forward dynamics problem solves for the joint
accelerations of the mechanism. The joint accelerations are calculated using the known
inertia and mass of the links in the system as well as the actuation forces and exter-
nal forces on the system. Once the joint accelerations are determined, they can be
integrated through time to quantify the link velocities and positions.



Figure 9: Palfinger PK45000 Crane

The two prevalent methods used to solve forward dynamics problems are the Articulated
Body Algorithm (ABA) and the Composite Rigid Body Algorithm (CRBA) [9, 10, 11].
The ABA has a computational complexity of O(N) (on the order of N operations
to compute, where N is the number of links) while the CRBA has a computational
complexity of O(N3). It has been shown that the ABA requires less computation than
the CRBA for mechanisms with more than 3 DOF [12]. This makes the ABA the ideal
method for the Palfinger PK 45000 boom crane that has 7 DOF.

In the next sections, the selection of the joint frame convention used is presented fol-
lowed by a description of the the ABA and implementation.

2.4.2 Boom Crane Joint Frames

Given an articulated mechanism such as the one shown in Figure 10, there are an
infinite number of ways to define frames of reference for each of the links in the mecha-
nism. The Denavit-Hartenberg (D-H) convention provides a convenient and consistent
methodology for providing a minimal representation with only four parameters per link.
By applying the D-H convention, a simple table of parameters is all that is required to
define the joint locations and degrees of freedom in the mechanism. Each row in the
four column table specifies information about a link in the mechanism.

For the SMS::Boomcrane class, it was decided that the joint types and locations would
be specified using the mechanism’s unique table of defining D-H parameters. Although
it is not necessary to use the D-H parameters to implement the forward dynamics
solution of the ABA, the D-H parameters are a common convention used in expressing
the state of a mechanism.

There are two D-H Parameter conventions: Craig’s convention [13] and Paul’s conven-
tion [14, 15]. For this work, it was determined that Paul’s convention would be used.
The reason for this choice will be discussed once the basics of the D-H Parameters and
definition of the frames of reference are presented.

To determine the table of D-H parameters for a mechanism, a right handed orthogonal
coordinate frame is attached at each joint, where the ẑ axis of the frame always points
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Figure 10: The frames of an example boom crane whose D-H Parameters are found in
Table 1 where the variable θ2 is shown with deflection of 90◦.

along the axis of actuation. The frames of reference are referred to as joint frames. The
links closest to the base are referred to as proximal joints, and the links furthest from
the base (closest to the end effector) are referred to as distal joints. Each consecutive
joint frame i is attached to link i’s distal joint. The joint frame for the base (frame 0)
is positioned at the proximal joint of link 1.

D-H parameters define four convenient transformations that allow one to navigate be-
tween the frames of reference for each link.

• The first transformation is a translation, A
(4×4)
di

, of frame i − 1 along ẑi−1 by
an amount di until the center of the created intermediate transformed frame is
located at the common normal between ẑi−1 and ẑi.

• The second is a rotation, A
(4×4)
θi

, of the intermediate transformed frame about
the axis ẑi−1 by an amount θi such that the x̂ axis of the newly transformed
intermediate frame becomes co-linear with the common normal between the axes
ẑi−1 and ẑi.

• The third is a translation, A
(4×4)
ai , along the x̂ axis of the intermediate trans-

formed frame by an amount ai until the center of the newly created intermediate
transformed frame becomes located at the center of link i’s distal joint frame.



Link i αi ai di θi
1 -90 a1 0 θ∗1
2 90 0 d2 θ∗2
3 0 0 d∗3 0

Table 1: D-H Parameters and dynamics information for the sample boom crane in
Figure 10.

• The fourth is a rotation, A
(4×4)
αi , by an amount αi about x̂ axis of the intermediate

transformed frame until its ẑ axis points along ẑi of frame i.

Figure 10 shows a sample articulated body with three joints where each joint frame is
defined using Paul’s D-H parameter convention. The D-H Parameters for this particular
articulated body are found in Table 1. The character “∗” signifies the parameter for
that link’s joint that is the dynamic variable. The dynamic variable can only be the
angle θ for revolute joints or distance d for prismatic joints.

Each row of Paul’s D-H parameter table (see Table 1), holds the information about
the 4 D-H parameter transformations that define each frame relative to the last. These
transformations, the product of four individual transformations are defined as:

Ai−1→i = A
(4×4)
di

A
(4×4)
θi

A(4×4)
ai

A(4×4)
αi

, (28)

Ai−1→i =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

⎤
⎥⎥⎦ (29)

where sθi and cθi signify the sine and cosine of θi, respectively. Similarly, sαi and cαi

signify the sine and cosine of αi, respectively

The contents of the 4× 4 matrix Ai consists of:

Ai−1→i =

[
Ri→i−1

i−1Pi−1→i

01×3 1

]
(30)

where Ri→i−1 is a rotation matrix describing the orientation of reference frame i with
respect to reference frame i − 1, and consequently, it transforms the description of a
vector about frame i to a description in frame i−1; the vector does not physically move,



and only the description changes as it is expressed with respect to a different reference
frame. A rotation matrix has two uses: a passive rotation and an active rotation. A
passive rotation signifies a change of frames of description, while an active rotation,
does not alter the description frame but rather literally rotates a vector.

The vector i−1Pi−1→i is the position of the origin of frame i with respect to the origin
of frame i− 1, and described with respect to frame i − 1. It is derived using the D-H
parameters convention:

Ri→i−1 = RT
i−1→i =

⎡
⎣ cθi −sθicαi sθisαi

sθi cθicαi −cθisαi

0 sαi cαi

⎤
⎦ (31)

and

i−1Pi−1→i =

⎡
⎣ aicθi

aisθi
di

⎤
⎦ (32)

Take note that Equation 30 has a negative i−1Pi→i−1 because the Equation 29 produces
a position translation vector, starting from frame i− 1 to frame i rather than a vector
that points from frame i to i− 1.

2.4.2.1 Choice of Paul’s D-H Parameter Convention

For a given link i, the standard (Paul’s) convention fixes a reference frame to the distal
joint of the link. In the modified (Craig’s) convention, a reference frame is fixed to the
proximal joint frame, as shown in Figure 11. For Paul’s convention the transformation
matrix Ai→i−1 defines the position and orientation of a link’s fixed distal joint frame
with respect to the distal joint frame of the previous link, which is also taken as the
proximal joint frame of the current link. This makes use of the current link’s length and
twist parameters. For Craig’s convention, the transformation matrix Ai→i−1 defines the
position and orientation of a link’s fixed proximal frame with respect to the previous
links proximal joint frame, requiring the use of the previous link’s length and twist
parameters.

In terms of the SMS::Boomcrane implementation, each link in a mechanism is an
SMS::ABA RigidBody object having its own set of parameters (mass, inertia, etc) that
define it. Thus to support the SMS::ABA RigidBody-centered approach in the computer
code, Paul’s convention was implemented because the required parameters (link length
and twist) are naturally encapsulated with the current link.
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ŷi−1

θi
Link i x̂i
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2.4.3 Articulated Body Algorithm Overview

The ABA based Boom Crane model was implemented and encapsulated in the SMS::-
BoomCrane class, which evaluates the forward dynamics of the articulated body and
determines the crane motion through time. The algorithm must allow for the addition
of arbitrary disturbance forces to be applied to links so that the consequences of cable
attachments and other effects can be simulated. The implementation of the ABA in
the SMS::BoomCrane class is presented below. The implementation was based on the
work presented in the literature [9, 11].

The state of an articulated body in the ABA is described in terms of the joint dis-
placement for each link, which is θi for revolute joints or di for prismatic joints. The
ABA advances the dynamics of the mechanism by calculating the joint accelerations
and velocities, which are then integrated through time to produce future velocities and
positions. To accomplish this, the dynamics of the articulated body is evaluated in
three passes:

• The first pass starts at the first proximal joint frame and calculates the positions
and velocities of each successive joint.

• Using the joint positions and velocities, the second pass starts at the last proximal
joint and calculates the accumulated articulated inertias and forces seen at each
joint.

• The third and final pass starts at the first proximal joint and calculates the
successive resulting joint accelerations based on the known inertias and forces
determined previously.

The following section describes how the velocities, inertial properties, forces, and accel-
erations of the links are determined recursively and used to evaluate the dynamics of a
mechanism.

2.4.4 Joint Velocities

To complete the first pass of the ABA, referred to as forward kinematics, the velocities
of each link’s joint must be calculated. The first pass is also used to calculate velocity
dependent terms, ζ

(i)
p and β

(i)
p , which are discussed in section 2.4.5 and 2.4.6.

Consider Figure 12, which defines the joint frames of link i using D-H Parameters.
Frame p is link i’s proximal joint frame and frame d is link i’s distal joint frame. If
frame p of link i is taken to coincide exactly with frame d of link i−1 for all time, then
link i’s distal joint d frame can be related to the proximal joint frame p using the D-H
Parameters based rotation matrix, R

(i)
d→p (akin to Ri→i−1):
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for visualization purposes.

R
(i)
d→p =

(
R

(i)
p→d

)T

=

⎡
⎣ cθi −sθicαi sθisαi

sθi cθicαi −cθisαi

0 sαi cαi

⎤
⎦ (33)

The position vector iPp→d (akin to iPi−1→i), which is the distal joint frame with respect
to the proximal joint frame, is:

iPp→d =

⎡
⎣ aicθi

aisθi
d1

⎤
⎦ (34)

The velocity of a link is expressed in a six-dimensional vector space as a 6 × 1 array
that holds the three Cartesian linear velocity components and three Cartesian angular
velocity components. The velocity of link i’s proximal joint, joint p, can be defined
as the sum of the velocity components from the previous links distal joint, plus the
velocity component provided by the joint itself:



v(i)
p = v

(i−1)
d + φ(i)

p ε̇(i)p (35)

Here, φ
(i)
p = [0, 0, 1, 0, 0, 0]T for a prismatic joint, φ

(i)
p = [0, 0, 0, 0, 0, 1]T for a revolute

joint, and ε
(i)
p and ε̇

(i)
p are joint i’s displacement and rate of displacement, respectively.

The joint displacement, ε, has units of either radians or meters for revolute or prismatic
joints, respectively. In the case of the first link, v

(i−1)
d is the velocity of the base.

The velocity of link i’s distal joint frame, v
(i)
d , can be determined given v

(i)
p :

v
(i)
d = T

(v)(i)
p→d v(i)

p (36)

where T
(v)(i)
p→d is a 6 × 6 transformation matrix that provides the linear and rotational

velocity of joint d by considering the orientation and translation difference of the frames
p and d:

T
(v)(i)
p→d =

[
R

(i)
p→d R

(i)
p→d(P̃

(i)
p→d)

T

0 R
(i)
p→d

]
(37)

where P̃
(i)
p→d is the skew-symmetric form of the vector P

(i)
p→d. The skew-symmetric form

of a vector is used to evaluate the cross-product of the vector with another vector using
vector-matrix multiplication. The multiplication p̃v produces the same results as the
cross product operation p × v while either p̃Tω or −p̃ω signifies the cross product
operation ω × p. Here, the 3 × 3 R

(i)
p→d(P̃

(i)
p→d)

T in the upper right quadrant of the
velocity transformation matrix operates on the angular velocity, which provides the
linear velocity component of joint d that arises from the rotation of link i with respect
to the proximal frame. The velocity at the distal joint, v

(i)
d , is provided to the next link

for its velocity calculations.

2.4.5 Articulated Forces and Inertias

The second pass of the ABA, referred to as backward dynamics, calculates the bias
forces β

(i)
p and articulated inertias M

∗(i)
p about each link’s proximal joint. The inertias

and forces seen at each proximal joint are dependent on the inertia and forces of the link
plus those propagated through the distal joints. Both the forces and inertia experienced
by a link’s proximal joint are required to evaluate the joint accelerations in the third
and final pass detailed in Section 2.4.6.



To develop the equations that will provide the required information, link i’s rigid body
frame, which is fixed at the CG of the link, and with respect to which the link’s inertial
information is defined, is first defined relative to its proximal frame. On link i the
rotation matrix R

(i)
p→CG defines the orientation of the rigid body frame relative to frame

p:

R
(i)
p→CG =

⎡
⎣ cψcθ cψsθsφ− sψcφ sψsφ+ cψsθsφ

sψcθ sψsθsφ+ cψcφ sθsψcφ− cψsφ
−sθ cθsφ cθcφ

⎤
⎦ (38)

where ψ, θ, and φ are the ẑi, ŷ
′
i, x̂

′′
i sequence Euler angles that describe orientation.

The location and orientation of the CG relative to frame p is defined as:

iPp→CG =
[
xp→CG yp→CG zp→CG

]T
(39)

The displacements of the joints will cause motion of any outboard, or downstream,
links but will have no effect on that particular proximal joint’s frame because of how
the D-H Parameters have been defined (that is, because the proximal joint frame is in
effect fixed to the distal joint of the previous link). To obtain the CG location and
orientation of the rigid body relative to frame p, a joint actuation transformation must
be applied. For revolute joints, the actuated relative position and orientation, R

′(i)
p→CG

and P
′(i)
p→CG, are:

R
′(i)
p→CG = R

(i)
θ R

(i)
p→CG (40)

and

P
′(i)
p→CG = R

(i)
θ

iPp→CG (41)

where

R
(i)
θ =

⎡
⎣ cε

(i)
p sε

(i)
p 0

−sε
(i)
p cε

(i)
p 0

0 0 1

⎤
⎦ (42)

For prismatic joints, the actuated relative position and orientation, R
′(i)
p→CG and P

′(i)
p→CG,

are:

R
′(i)
p→CG = R

(i)
p→CG (43)



and

P
′(i)
p→CG =i Pp→CG +i Pdispl (44)

where iPdispl =

⎡
⎣ 0

0
1

⎤
⎦ ε

(i)
p .

The 6×6 mass and moment of inertia tensor M
(i)
CG for the link’s rigid body is described

about the rigid body frame as:

M
(i)
CG =

[
m(i) 03×3

03×3 I
(i)
CG

]
(45)

where I
(i)
CG is the moment of inertia tensor about the rigid body’s frame for link i, and

m(i) is the 3× 3 rigid body mass tensor.

The mass moment of inertia of link i about frame p is defined making use of the parallel
axis theorem [11]:

I(i)p = R
′(i)
CG→pI

(i)
CGR

′(i)
p→CG +m(i)(P

′(i)
p→CG ·P

′(i)
p→CGÎ−P

′(i)
p→CG ⊗P

′(i)
p→CG) (46)

where m(i) is the rigid body mass, Î is a 3×3 identity matrix, and the outer product of
two vectors is described using the ⊗ operator. The outer product operation is defined
as u⊗w = uwT .

The dynamics of a link are evaluated at the proximal joint frame. Therefore, the
required 6 × 6 mass and moment of inertia tensor M

(i)
p for the rigid body described

about frame p is defined as:

M(i)
p =

[
m(i) h̃(i)T

h̃(i) I
(i)
p

]
(47)

where h̃(i) is the 3 × 3 skew symmetric form of the vector h(i) = m(i)P
′(i)
p→CG, which

accounts for linear and angular inertial contributions due to the link CG location dis-
tance from the proximal joint, and I

(i)
p is the mass moment of inertia of link i about

joint p as described in Equation 46.

The acceleration observed at link i’s joint p caused by the articulated inertia, bias
forces, and any external forces is described by the following equation:

f (i)p = M∗(i)
p a(i)

p − β∗(i)
p (48)



where M
∗(i)
p is called the articulated inertia [9], β

∗(i)
p is called accumulated bias force,

and f
(i)
p is an externally applied force. Bias forces are best described as the forces that

must be applied to a link to maintain particular link velocities.

The articulated inertiaM
∗(i)
p , see Figure 13, is the accumulated inertia of the mechanism

downstream of link i, including link i’s own inertia M
(i)
p , expressed about that link’s

proximal joint frame:

M∗(i)
p = M(i)

p + (T
(f)(i)
p→d )TN

(i)
d T

(f)(i)
p→d (49)

whereN
(i)
d = N

(i+1)
p and is the articulated inertia seen at the joint due to all downstream

links with the inertia about each downstream joint DOF removed:

N(i)
p = M∗(i)

p + k(i)
p ⊗ (

−1

m
∗(i)
p

k(i)
p ) (50)

k(i)
p = M∗(i)

p φ(i)
p (51)

and

m∗(i)
p =

(
φ(i)
p

)T
M∗(i)

p φ(i)
p (52)

Note that m
∗(i)
p is the joint i inertia and governs the resulting joint acceleration; it

has units of rotational inertia for revolute joints and units of mass for prismatic joints.
Equations 49 through 52 highlight how the joint inertia is a function of the orientation
and position of the links between joint i and the end effector.

To propagate force contributions from joint d on to joint p, a similar transformation
matrix to the velocity transform T

(v)
p→d called T

(f)
d→p transforms forces from joint d to

joint p and accounts for differences in frame orientations as well as moments generated
by linear forces and the distance between the frames:

T
(f)(i)
d→p =

(
T

(v)(i)
p→d

)T

=

[
R

(i)
p→d 0

P̃
(i)
p→dR

(i)
p→d R

(i)
p→d

]
(53)

The accumulated bias force β
∗(i)
p is defined recursively as follows:

β∗(i)
p = β(i)

p +T
(f)(i)
d→p β

(i)
d (54)
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Figure 13: The accumulation of mass and bias forces for an articulated body.

where β
(i)
p is the bias force contribution from this rigid body link:

β(i)
p =

[
ω
(i)
p × (ω

(i)
p × h(i))

ω
(i)
p × I

(i)
p ω

(i)
p

]
(55)

and

β
(i)
d = β∗(i+1)

p −N(i+1)
p ζ (i+1)

p − k(i+1)
p

1

m
∗(i+1)
p

τ ∗(i+1)
p (56)

Note that τ
∗(i)
p is the total force, including joint actuation force, in the actuation direc-

tion of joint i and is necessary to determine the joint acceleration. The variable ζ
(i)
p is

a velocity and joint-type dependent acceleration term and is discussed in the following
section. Equation 56 indicates how the equal and opposite reaction force resulting from
joint forcing and appropriate acceleration effects are applied on proximal rigid bodies.

2.4.6 Joint Acceleration

The third and last pass, called the forward acceleration pass, consists of calculating
the accelerations of each joint of the mechanism a

(i)
p and ε̈

(i)
p given all of the forces



accumulated at the joint and the articulated inertias that influence the resulting joint
acceleration.

The velocity dependent acceleration term ζ
(i)
p , which is calculated during forward kine-

matics, is defined as:

ζ (i)p = ζ
(i−1)
d + ζ

(i)
ε (57)

where ζ
(i)
ε is the acceleration contribution resulting from particular joint type velocities.

For revolute joints:

ζ (i)ε =

[
0

ω
(i)
p × ε̇iφ

(i)
p

]
(58)

and for prismatic joints:

ζ (i)ε =

[
2(ω

(i)
p × ε̇iφ

(i)
p )

0

]
(59)

There is also a component of the acceleration, ζ
(i)
d , that is dependent on the velocity of

the distal joint of the upstream link:

ζ
(i)
d =

[
R

(i)
p→dω

(i)
p × (ω

(i)
p ×i Pp→d)

0

]
(60)

The total joint force, τ
∗(i)
p is:

τ ∗(i)p = τ (i)p +
(
φ(i)
p

)T
β∗(i)
p (61)

where:

τ (i)p =
(
φ(i)
p

)T
f (i)p (62)

Forces, such as those from an attached cable, can be applied to any of the boom crane
rigid body links. The force is transformed using T

(f)(i)
CG→p, defined similarly to T

(f)(i)
d→p , to

obtain the resulting force applied about frame p, f
(i)
p . A user-defined force designed to



actuate a joint by a controller or elastic end stop can also be applied in a similar fashion
by directly superimposing it on τ

(i)
p , which is the force in the actuation direction of the

joint. Note that when link i has no downstream link, M
(i)
d→p and β

(i)
d→p are zero matrices.

Recalling equation 48, the acceleration for joint p, a
(i)
p , is quantified:

a(i)
p = a

(i−1)
d + φ(i)

p ε̈i + ζ (i)p (63)

where a
(i)
d is the acceleration of link (i)’s distal joint obtained in an analogous manner

to the velocities:

a
(i)
d = T

(v)(i)
p→d a

(i)
p (64)

and ε̈i is the joint acceleration, defined as:

ε̈i = (m∗(i)
p )−1

[
τ
∗(i)
i −

(
φ(i)
p

)T
M∗(i)

p (a
(i−1)
d + ζ (i)p )

]
(65)

For the case of link 1, the proximal neighbouring link’s acceleration contributions are
obtained from the boom crane base acceleration: a

(i−1)
d = abase.

To summarize, the ABA calculates the accelerations of the joints of an articulated
body in three passes. The first pass, forward kinematics, starts at the base frame
and calculates the cumulative positions and velocities of each successive joint v

(i)
p and

velocity dependent terms such as β
(i)
p and ζ

(i)
p . The second pass, backward dynamics,

starts at the last link and works backward to the first link while quantifying all of
the accumulated articulated inertias M

∗(i)
p and forces β

∗(i)
p . The third and final pass,

forward accelerations, starts at the first link and calculates the joint degree of freedom
accelerations, ε̈

(i)
p , which are then numerically integrated through time to propagate

the state of the crane. The forward acceleration pass also quantifies the successive
absolute accelerations seen at the joint, ap, which are needed to evaluate downstream
joint degree of freedom accelerations.

2.4.7 Base Frame

Note that the position and orientation of the base frame was not defined relative to any
other frame using the D-H parameters; to properly define the serial articulated body
chain with respect to other objects, the orientation of the base frame relative to the
Earth-fixed frame is defined using Euler angles:

R
(1)
p→E =

⎡
⎣ cψcθ cψsθsφ− sψcφ sψsφ+ cψsθsφ

sψcθ sψsθsφ+ cψcφ sθsψcφ− cψsφ
−sθ cθsφ cθcφ

⎤
⎦ (66)
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Figure 14: The location and orientation of the boom crane base frame relative to the
Earth-fixed frame.

where ψ, θ, and φ are Euler angles rotated about the non-orthogonal axes ẑi, ŷ
′
i, x̂

′′
i

respectively. The base frame position is defined using the Cartesian vector P
(1)
E→p (see

Figure 14).

2.4.8 PID Joint Control

A joint PID controller can be added to any joint that will superimpose forces to τ
(i)
p

to control that joint. The controller can apply forces in an effort to control the joint’s
position or velocity.

For the position controller, the force applied to a joint to maintain a target position is:

τ
(i)
PID = C(i)

p (ε
(i)
target − ε(i)p ) + C

(i)
I (

∑
(ε

(i)
target − ε(i)p )dt)− C

(i)
d (ε̇(i)p ) (67)

where C
(i)
p is the proportional coefficient, C

(i)
I is the integral coefficient, C

(i)
d is the

damping coefficient for joint i, ε
(i)
target is the joint position set point for joint i, and dt is

the simulation integrator time step.



For a velocity controller, the force added to τ
(i)
p becomes:

τ
(i)
PID = C(i)

p (ε̇
(i)
target − ε̇(i)p ) + C

(i)
I (

∑
(ε̇

(i)
target − ε̇(i)p )dt)− C

(i)
d (ε̈(i)p ) (68)

The force added to the joint by the PID controller is limited by a maximum power that
controller can use to actuate a joint. The power, P (i), used to actuate a joint is:

P (i) = τ
(i)
PIDε̇

(i)
p (69)

hence the maximum allowable controller force becomes:

τ
(i)
PID,max =

P
(i)
max

ε̇
(i)
p

(70)

2.4.9 Limiting Joint Range

Joint limits can be enforced by adding a force to a joint’s τ
(i)
p . The force added to τ

(i)
p

to enforce a violated lower limit is:

τ
(i)
LL = −K(i)(ε(i)p − ε

(i)
LL)−D(i)(ε̇(i)p ) (71)

and for an upper limit:

τ
(i)
UL = K(i)(ε(i)p − ε

(i)
UL)−D(i)(ε̇(i)p ) (72)

where ε
(i)
UL and ε

(i)
LL are the joint’s i’s upper and lower actuation limits, and K(i) and

D(i) are the joint limit stiffness and damping coefficients for joint i respectively.

2.5 Contact Resolution

During the course of a SMS operation simulation, an SMS::Payload, possibly supsended
from an SMS::Boomcrane’s SMS::Cable, has the potential to come into contact with
the ship’s deck, hull, or transom. Likewise, in the simulation of shipborne operations
involving a payload, winch, winch cable, and a crane, there is potential for the payload
to collide with other objects in the simulation. The following section presents the
strategy adopted within the SMS API to detect collisions and resolve the contact forces
between the payload and the ship within a simulation.



The efficient and accurate simulation of such contacts is a field of study that encom-
passes many disciplines [16]. In general, resolving contacts in such multi-body simula-
tions consists of two main problems that must be solved:

• detecting collisions between bodies

• determining the resulting contact forces

Many different solutions have been proposed to solve these problems [2, 16, 17, 18, 19].
Finding the optimal solution to these problems generally consists of finding a balance
between accuracy and efficiency based on the needs of the application. In the following
sections, an introduction to collision detection and contact force resolution is provided.
The theory behind the collision detection methods and contact models selected and
implemented are then discussed.

2.5.1 Overview of Collision Detection

Bodies are considered to be in contact if they are interfering with each other or are
sharing the same space. The purpose of any collision detection method is to determine:

• if bodies are in contact, and/or

• when bodies are in contact, and/or

• where bodies are in contact.

There are a variety of methods available that solve these three types of problems. Due
to the diverse nature of contact problems, methods that are well-suited for one type of
application may not be well-suited for another.

To develop a collision detection algorithm, it is necessary to first describe the geometry
of the bodies of interest in some way. The geometrical representations of these objects
have possibly the biggest impact on the choice of methods to use. Most methods
have been developed and are available for polygonal representations, which is likely
due to the the widespread use of graphics hardware that use triangles as rendering
primitives [2]. By using polygonal representation of geometry in the SMS API, future
work can leverage 3D graphical file formats such as *.3ds or *.vrml to construct contact
objects.

Objects can be classified as either convex or concave. Convex objects are especially
suited to collision detection because of some of their inherent mathematical proper-
ties [2]. Simulation of concave objects are discussed less in literature, which is likely
due to the fact that concave objects can be effectively handled by decomposing them



into a set of convex objects. In the SMS API, it was decided to initially limit simula-
tions to simple convex contact objects. In the future, it would be possible to simulate
concave objects by decomposing the concave object into a series of concatenated convex
objects.

For the SMS API, it was also decided to use a collision detection method that determines
not only if collisions occur, but where collisions occur as well. This information is needed
to resolve the collision forces accurately. The most common methods that determine
where collisions occur are Minimum Separation Distance (MSD) algorithms. MSD
algorithms are designed to determine whether or not a collision exists based on when the
minimum separation distance between a pair of colliding objects is zero. Conveniently,
MSD algorithms have been used to efficiently find collisions between both concave and
convex objects [20, 21]. MSD algorithms also provide the benefit of knowledge of the
closest geometric features (vertices, edges, or polygons), which is useful for accurately
quantifying contact forces. The minimum separation distance can be described, as
shown in Figure 15 a), as the distance between a pair of points, one in or on each
object whose Cartesian separation distance is minimum, or equal to the minimum, of
any other possible combination of points in or on their respective objects. Noteworthy
MSD algorithms that were considered were:

• the V-Clip algorithm [2, 22],

• optimisation-based methods [2, 17],

• and the Gilbert-Johnson-Keerthi Algorithm (GJK) [2, 23].

Of these available choices, The GJK algorithm, which does not require geometries be
stored in any specific format, was chosen for the SMS API because it is one of the most
efficient methods for determining the intersection between two convex polyhedrons [2].
In addition to providing the MSD, the GJK algorithm robustly provides a useful com-
mon contact property called the penetration depth or Minimum Translational Distance
(MTD). As shown in Figure 15 b), when two objects are colliding, the MTD is the
minimum distance that two objects must be translated relative to each other to achieve
object separation [16, 24]. Since the MTD provides information critical to determining
the contact force, the GJK algorithm was an ideal collision detection candidate for the
SMS API.

The complexity of the simulation environment must be taken into consideration. An
example of a complex environment would be simulation with a large number of objects
that could potentially collide. In the worst case, to ensure that all collisions are detected,
each object should be checked against every other object in the simulation environment;
this provides a worst case scenario with O(N2) pairwise collision checks for an N body
simulation. To reduce some of this computational burden, spatial approximations (i.e.,
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Figure 15: a) The Minimum Separation Distance (MSD) between two objects showing
the closest features are a vertex and a face, b) The Penetration Depth or Minimum
Translational Distance.

bounding volumes), partitioning schemes (i.e., bounding volume hierarchies, octrees,
BSP-trees) and temporal strategies [2, 16, 17] are usually employed with success in real-
time applications [2]. This is generally called broad-phase collision detection, where
collisions you know are not occurring are pruned or culled from the set of possibly
colliding objects, while narrow-phase collision detection is the act of determining if two
objects are overlapping, such as by using the MSD. For the SMS API, only interactions
between two objects are considered (i.e., the payload and an external object, such as
the ship’s deck or hull). This assumption limits the contact detection computational
requirements without the need for any spatial approximations, etc. In the future,
should a more complex simulation environment be constructed, these methods should
be considered to alleviate the potential computational burden.

2.5.2 Overview of Contact Models

When a collision is occurring, contact forces must be determined and applied to resolve
the dynamics of the bodies that are in contact. The contact force is typically resolved
into its normal and tangential (or frictional) components.



2.5.2.1 Normal Contact Force Models

A variety of normal contact models have been proposed and they can generally be
categorised as either discrete or continuous models [18, 25]. The most well-known
discrete contact models are arguably the Newtonian impulse-momentum models or
coefficient of restitution models [18]. Discrete models cannot be easily extended to
multi-body contacts; moreover, the inclusion of friction for these models might violate
energy conservation principles [25].

Continuous/compliant models integrate the contact forces over time. This allows
contacting objects to deform under pressure as is the case for real contact situa-
tions. Continuous contact models can be categorized as those based on geometri-
cal interference where the geometries do not actually deform (such as penetration
depth models) and those that enforce boundary separation by modelling the geomet-
rical deformations of the objects in contact (finite element methods). For some com-
puter simulation applications, modelling pressure-based object deformations may not
be practical due to the high associated computational cost, such as with finite element
methods[26]. Fortunately, it can generally be assumed that the interfering geometry
is a good approximation for the actual deformations involved given certain assump-
tions [18, 25, 27, 28, 29, 30].

Notable penetration depth models are the Hertzian contact model [31], the Kelvin-Voigt
model [18, 32, 33, 34], the Hunt-Crossley model [29, 34], the Winkler elastic foundation
model [31], the Gonthier model [26], and the Kelvin-Voigt-Winkler model [35].

The volume of interference models, such as the Gonthier model and the Kelvin-Voigt-
Winkler model, make a link between the deformations of the Winkler elastic spring bed
deformation and the volume of interference. Volume of interference contact force models
are an advancement over the other penetration depth models because they free the user
from having to worry about the shape of the contacting surfaces as that information
is included in the interference geometry. As an example, the Hunt-Crossley model has
geometry-dependent exponents, and the user needs to determine what those exponents
are for every possible combination of contacting geometries before simulations can be
completed.

To determine the normal contact force in the SMS API, the Kelvin-Voigt-Winkler model
was selected because the damping component of the solution is based on internal mate-
rial damping and deformation rates; the Gonthier damping component is dependant on
knowledge of the coefficient of restitution a-priori and the Gonthier damping factor will
vary with contact interface geometry, object materials, and impact velocity. Obtain-
ing coefficients of resitution from experiment for varying contact geometries, material,
and impact velocities can be impractical or even impossible. Contact events simulated



with the Kelvin-Voigt-Winkler model exhibit expected contact behaviour similar to
Gonthier’s model [35]. Examples of these contact behaviors, the coefficient of restitu-
tion as a function of impact velocity and contact force as a function of penetration depth
are given in section 6.2 of [36]. The Kelvin-Voigt-Winkler model material properties
are independent of the coefficient of restitution and should be constant regardless of
contact geometry or impact velocity; the coefficient of restitution is dependent on the
material properties only.

2.5.2.2 Tangential Contact Force Models

If two bodies are in contact and their surfaces are moving relative to each other at the
contact location, friction forces can be present. A friction force model is required to
determine the magnitude of these forces. Friction models are also categorizable into
two types: static and dynamic. Static friction models only consider the current state
of friction, while dynamic friction models include information from previous states.

The most notable static friction models are arguably the classical friction models. These
are based around the Coulomb friction model, which states that for two objects whose
contact surfaces are sliding relative to each other, the friction force magnitude is equal
to the normal contact force multiplied by the Coulomb friction coefficient and applied
in the direction opposing the relative velocity of the contacting objects. The classical
models extend this to handle sticking friction as well viscous friction [19].

The Karnopp model was implemented in the SMS API. The Karnopp model is a classical
model that uses a small velocity dead-zone to handle stick/slip transitions [19].

One dynamic friction model that is worth mentioning is the LuGre friction model [19,
37]. It models lubricated surfaces, the Stribeck effect, time-dependent break-away force,
and frictional lag. This model was extended to handle three dimensional vectorial
frictional forces and later spinning friction [26, 29]. Should a more sophisticated friction
model be required, the LuGre friction model should be considered.

2.5.3 Summary of the SMS API Contact Dynamics Methods

The SMS API uses convex polyhedral geometric representations of the payload and
an external object for contact resolution. The GJK algorithm was employed to detect
collisions and provide MSD and MTD information. When collisions are detected, the
Kelvin-Voigt-Winkler contact model is used to quantify the normal contact force and
the Karnopp friction model is used to provide tangential friction forces though other
models could be implemented as replacements. There are a few limitations to these
particular choices:



• the local strains on the objects must remain small because of the engineering
strain formulation of the normal contact force model,

• the internal stiffness of the object’s materials are assumed linear with deflection,

• the material damping properties of the objects are assumed linear with deflection
rate,

• the contact stresses are one dimensional and Poisson’s ratio is ignored,

• rolling resistance and spinning friction are ignored, as are most frictional phenom-
ena captured by more sophisticated friction models,

• the location or state of contact surface is ignored,

• most of the methods described here take advantage of special properties of convex
polyhedral objects and are therefore not appropriate for concave objects.

The following section describes in some details the methods and models that were
introduced in the overview and are used by the SMS API to resolve contact effects.
First, Section 2.5.4 describes a point contact model framework that shows how contact
forces are applied to rigid bodies, their effects on the dynamics of the rigid bodies, as
well as how pertinent contact information, such as relative velocities, is extracted from
the state of the rigid bodies. Section 2.5.5 discusses how the normal contact forces
are determined using interference volume information. In Section 2.5.6, the tangential
friction model is discussed, followed by section 2.5.7, which discusses how the volume
of interference is determined using the Muller-Preperata and QuickHull algorithms.
Finally, Section 2.5.8 discusses how collisions are detected using the GJK algorithm,
including the theory behind MSD and MTD.

2.5.4 Point Contact Model

Given the two rigid bodies shown in Figure 16, evaluating the dynamics of each of these
bodies requires knowledge of the direction and magnitude of the contact forces acting
on each of these objects. Within the SMS API, the contact force is modeled using a
point contact model, which applies a single contact force at a single location on the rigid
body. To determine the magnitude of the contact force, point contact models lump the
stress distribution over the contact surface and apply it as an equivalent lumped load
at the location of the stress distribution centroid as seen in Figure 17. The contact
force is applied to the rigid body object at a point in or on the object at some location
Cσ away from the body-fixed frame origin. A rigid body, such as in Figure 16, will see
the contact forces acting about its body-fixed frame B as:
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Figure 16: The interference of two bodies showing their body-fixed frames A and B
relative to the Earth-fixed frame E as well as the centroid of contact pressure, Cσ, and
the contact force, fcontact, which is normal to the contact surface.
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Figure 17: The stress distribution of a sphere with elastic material properties contacting
a non deformable flat plane.

BFcontact =
B TE

EFcontact (73)

where BFcontact is the 6×1 spatial contact force vector expressed about the rigid body’s
body-fixed frame, BTE is a 6 × 6 transformation matrix that expresses Earth-fixed
frame vectors in terms of the body-fixed frame B, and EFcontact is the contact force
expressed with respect to the Earth-fixed frame:

EFcontact =

[
Efcontact

EPB→Cσ
×E fcontact

]
(74)

where EPB→Cσ
is a vector that starts at the rigid body’s body-fixed frame and ends

at the stress distribution centroid Cσ and is expressed with respect to the Earth-fixed
frame, and Efcontact is a 3×1 lumped contact force vector applied at Cσ described about
the Earth-fixed frame.

The velocity of rigid body A relative to rigid body B at the centroid of the volume of
interference is:

EvCσ |A−B =E TB(A)
B(A)

T
(v)

B(A)→Cσ

B(A)

vB(A) −E TB(B)
B(B)

T
(v)

B(B)→Cσ

B(B)

vB(B) (75)



where EvCσ |A−B is the velocity of object A relative to object B at the interference

volume centroid Cσ,
B(A)

vB(A) is the velocity of object A expressed in terms of object
A’s body fixed-frame, B(B)

vB(B) is the velocity of object B in terms of object B’s body-
fixed frame, ETB(A) and ETB(B) are 6×6 spatial transformation matrices that transform
a spatial vector’s frame of reference from frame B(A) or B(B) to the Earth-fixed frame
E, and B(A)

T
(v)

B(A)→Cσ
and B(B)

T
(v)

B(B)→Cσ
are 6× 6 velocity transformation matrices that

are used to determine the velocities at Cσ given the velocities at frames B(A) or B(B)

(see Equation 37 for a description of a velocity transformation matrix construction).

The tangential relative velocity required to determine the direction of the tangential
contact force component is:

Ev
(t̂)
Cσ |A−B =E vCσ |A−B −E v

(n̂)
Cσ |A−B (76)

where

Ev
(n̂)
Cσ |A−B =

(EP
(A)
(min) −

E P
(B)
(min))

|EP
(A)
(min) −

E P
(B)
(min)|

·E vCσ |A−B (77)

where Ev
(t̂)
Cσ |A−B is the tangential relative velocity component, Ev

(n̂)
Cσ |A−B is the normal

relative velocity component, and EP
(A)
(min) and EP

(B)
(min) are the points on each object

associated with the MTD, and are shown in Figure 18.

If a contact event exists between two rigid bodies, the magnitude and direction of the
contact force as well as the location on the objects where the force is applied must
be determined. To accomplish this, Section 2.5.5 describes the normal contact force
model based on volumetric information exhibiting asymmetric damping that is em-
ployed. Then, the simple dead-zone Coulomb friction model that is superimposed on
the normal contact model to define the tangential forces is described in Section 2.5.6.
The location of center of pressure, or the location of the force application point, analo-
gous to the centroid of the volume of interference between the two objects, is described
in Section 2.5.7.3. The normal contact force direction is approximated using the MTD,
which is determined as described in Section 2.5.8.4.

2.5.5 Normal Contact Force

When two objects come into contact, a normal pressure field is formed between them.
This pressure field, seen in Figure 17, is caused by the deformation of the material of
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Figure 18: The volume of interference and its centroid.

the two contacting objects. Integrating the normal pressure over the contact surface
will yield the total normal restitutional force:

f
(s)
n̂ =

∫
σn̂(s)ds (78)

where f
(s)
n̂ is the stiffness component of the normal restitutional contact force, σn̂(s) is

the local surface pressure, ds is the differential area the pressure is applied to, and s is
a point on the contact surface.

The contact pressure is governed by Hooke’s law, which maps the relationship between
stress and strain via Young’s modulus. Here, the total deformations of the object
materials are approximated by the interference geometry volume. Consider the Winkler
elastic foundation model, shown in Figure 19, where a rigid object contacts an elastic
spring bed. Each spring of the bed deflects under the contacting object and imparts
a repelling force according to the spring’s stiffness. Integrating the force applied on
the object by each spring across the contact surface produces the total contact force,
in a similar manner as expressed in equation 78. With a differential spring width,
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Figure 19: The Winkler Elastic Foundation model bed showing the local deflections of
each spring δ(s).

integrating the deflection of each spring across the contact surface produces a displaced
volume of the springs.

This is the nature of the link between the volume of interference, analogous to the
displaced volume of springs, to strain, stress, and the total contact force. The local
stress at a point on the contact surface is defined as:

σn̂(s) = Eεn̂(s) (79)

where E is the Young’s modulus of the object material, and εn̂ is the true strain at a
point s on the contact surface. The engineering strain is used as an approximation, and
is only valid for small strains:

εn̂(s) ≈ en̂(s) =
δ(s)

h
(80)

where en̂(s) is the engineering strain at a point s on the contact surface, δ(s) is the
local deflection of the contact surface and h is the undeflected bed depth.

The volume of interference is analogous to the integral of the local deformations across
the contact surface:

V =

∫
δ(s)ds =

∫
dV (s) (81)

where V is the total displaced volume and dV (s) is the differential volume created by
the local deformation multiplied by the differential area. Combining equations 78, 79,
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Figure 20: The displaced volumes of object A and B which form the two parts of the
volume of interference.

80, and 81, a formulation of the contact force based on the displaced volume of an
object is:

f
(s)
n̂ =

EV

h
(82)

Thus far, only the displaced volume of one object was considered. For real collisions,
both colliding objects would deform under the contact pressure. The volume of inter-
ference between two objects is equal to the sum of both object’s displaced volume as
seen in Figure 20. The spring beds of each object are modeled analogously to pairs of
springs connected in series, where each spring of object A in contact is modeled in series
with its counterpart spring in object B. This provides an effective stiffness coefficient
for the system. The contact force applied to both objects becomes:

f
(s)
n̂ =

EAEBVint

hBEA + hAEB
(83)

or for the case of objects of identical material and contact geometries (where EA = EB

and hA = hB):

f
(s)
n̂ =

EVint

2h
(84)

In a similar fashion, an equivalent damping effect can be obtained via the engineering
strain rate (ė ≈ ε̇ for small strains):

f
(d)
n̂ (s) = B

∫
ėmn̂ (s)ds (85)



where B is the damping factor (strain hardening coefficient) and m is the strain rate
sensitivity exponent [38]. The local engineering strain rate, ėn̂(s), is defined as:

ėn̂(s) =
1

h

d(δ(s))

dt
(86)

where
d(δ(s))

dt
is the local deformation rate. When dealing with objects of dissimilar

materials, more specifically when strain rate sensitivity of each object, mA and mB,
differ, it is difficult to obtain the damping component of the contact force independent
of the velocity of the contact surface. When mA = mB, such as when the damping
component are linear, as assumed here for simplicity, this is no longer an issue. The
total contact force, accounting for different material damping properties and geometries,
becomes:

fn̂ =
(Vint)EAEB

hBEA + hAEB
+

BABB

hBBA + hABB

dVint

dt
(87)

2.5.5.1 Determining the Spring Bed Depth

Engineering strain is a function of both change in length and undeformed length or
spring bed depth h from equation 80. The radial strain for a solid sphere is defined as

er(s) =
δR(s)

Ri
(88)

where εr(s) is the radial strain at a location s on its surface, δR(s) is the change in
radius at a location s on its surface, and Ri is the undeformed radius of the sphere.
However, the strain for general objects is more difficult to formulate because the original
undeformed length is not necessarily easily defined.

To simplify the problem for general body geometries, the volume of an object is equated
to the volume of a sphere through which an equivalent radius can be quantified and used
as a reference bed depth. This assumption provides an average reference undeformed
length, or spring bed depth, which is required to calculate engineering strain as an
approximation of the strain due to contact for that object:

R(A)
eq =

3

√
3VA

4π
(89)

where R
(A)
eq is the equivalent radius based on the volume of a sphere for object A, and

VA is the volume of object A.



2.5.6 Tangential Contact Force

The SMS API makes use of the Karnopp friction model, which is a simple dead-zone
Coulomb friction model that handles stick/slip transitions. The Coulomb friction force
for objects with relative motion of their contact surfaces is:

B(A)

f
(A)(t̂)
Coulomb = −μcfn̂

B(A)
v
(t̂)
Cσ |A−B

|B(A)
v
(t̂)
Cσ |A−B|

(90)

where μc is the Coulomb fiction coefficient (for sliding friction) and B(A)
f
(A)(t̂)
Coulomb is the

tangential Coulomb friction force for object A.

When two objects are touching without relative motion and a differential tangential
force is applied, a static sticking friction force is present preventing tangential acceler-
ation. This force is greater than the dynamic sliding Coulomb force. The differential
tangential force required to overcome sticking friction is:

f
(t̂)
stick = μsfn̂ (91)

where μs is the sticking friction coefficient and f
(t̂)
stick is the magnitude of the force

that the sticking friction force will oppose up to the point of break-away, which is the
initiation of sliding motion.

Using the Karnopp model to account for the sticking and sliding transitions, the friction
force is modeled as:

B(A)

f
(A)(t̂)
fric =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(A)
f
(A)(t̂)
Coulomb if |B

(A)
vt̂
Cσ |A→B| > vtol

−B(A)
f (A)(t̂) if |B

(A)
vt̂
Cσ |A→B| < vtol & |B

(A)
f (A)(t̂)| < f

(t̂)
stick

−
B(A)

f (A)(t̂)∣∣∣B(A)
f (A)(t̂)

∣∣∣
f
(t̂)
stick if |B

(A)
vt̂
Cσ |A→B| < vtol & |B

(A)
f (A)(t̂)| > f

(t̂)
stick

(92)

where B(A)
f
(A)(t̂)
fric is the friction force felt by object A, vtol is the velocity magnitude

tolerance limit defining the dead-zone, and B(A)
f (A)(t̂) is the tangential component of

the forces acting on object A, which will be countered by the sticking friction force that
results in no tangential acceleration. When the relative velocity between the objects is
less than vtol, the sticking friction mode will match any forces tangential to the contact

surface, applied to objects A and B up to the break-away force f
(t̂)
stick.

2.5.7 Volume of Interference and Other Interference Properties

The most computationally intensive portion of volumetric contact models is typically
computing the volume of interference. For simple geometries, such as spheres and



cylinders, analytical solutions to the volume of interference exist that make computing
volumes efficient [35]. For convex polyhedra, a O((NA +NB)log(NA +NB)) algorithm
was suggested for use where NA and NB are the number of facets each convex polyhedral
object has [28]. The Muller-Preparata algorithm (MPA) is especially well suited for use
with GJK because it requires knowledge of a point known to be contained within both
interfering objects [39]. GJK can quickly provide the point on each object that together

represents the penetration depth, P
(min)
A and P

(min)
B , as described in Section 2.5.8.4. A

point taken halfway between P
(min)
A and P

(min)
B is guaranteed to be located within both

interfering geometries.

One of the steps of the MPA is to calculate the convex hull of a set of vertices. To
accomplish this, the Quickhull algorithm, so-called for its similarity to the QuickSort
algorithm, is used because it is among the most efficient convex hull algorithms with a
complexity of O(NlogN), where N is the number of vertices [1, 28, 40]. The QuickHull
algorithm is discussed in section 2.5.7.1, which is followed by a description of the MPA
algorithm in Section 2.5.7.2.

2.5.7.1 Quickhull: An Efficient Algorithm to find the Convex Hull of a set of
Points

A convex hull of a set of points in space is the smallest convex volume that can be
created to encapsulate the set of points. A popular analogy of the convex hull for
planar objects is to visualize an elastic band stretched around pegs on a board (the
vertices) and release it, thus allowing it to assume the minimum convex shape that
encapsulates all vertices. This is illustrated in Figure 21.

The Quickhull algorithm takes a set of vertices and finds its convex hull polyhedral
representation. A detailed description of the algorithm is provided in the literature [1].
In 3D, Quickhull requires at least a non-degenerate tetrahedron to begin. The tetrahe-
dron, a polyhedron, consists of 4 vertices and 4 facets. The Quickhull algorithm now
consists of a tetrahedron and the remaining set of vertices. The algorithm is prepared
by placing every remaining vertex from the original set of vertices in a set of unassigned
vertices. Every facet of the tetrahedron is then checked against the current set of unas-
signed vertices, picking out any vertex that lies in the positive direction of the facet
normal relative to a point on that face. These points are assigned to the facet’s set
of outside vertices, and the facet is placed in a list of facets with an unempty outside
vertex set. The hull is formed when there are no facets left with points outside.

The algorithm begins by taking the first face with an unempty outside set and iden-
tifying the furthest vertex in the set. If a vertex lies outside a face, then that face
is not part of the convex hull of the original set of vertices. Therefore, that facet is
added to a list of facets visible to the furthest vertex, which will later be removed from



Stretched Elastic Band

Elastic Band Forming Convex Hull

Figure 21: The elastic band analogy of the convex hull.

the polyhedron. The neighbouring faces are then checked to see if the furthest vertex
lies outside those faces as well, and thus adding them to the list of visible facets. This
process of checking if the furthest vertex lies outside every neighbouring face is repeated
for all the faces in the expanding list of facets visible to the furthest vertex until no
more visible neighbouring facets can be found.

All edges for a closed polyhedron should be shared by two faces. The edges with a facet
in the visible set of facets and the other facet not in the visible set are added to a list
of edges that will form a ridge when the facets in the list of visible facets are removed
from the polyhedron. First a new facet is created with each of the ridge edges using the
furthest vertex as the 3rd vertex and adding the new facets to the polyhedron, updating
the adjacenct matrices. Each newly created facet then checks the set of outside vertices
of every facet in the list of visible facets and assigns vertices outside the new facet to
its set of outside vertices. Finally the facets in the list of visible facets are deleted.

This process continues with the next facet in the expanding list of facets with an
unempty outside set until there are no longer any facets with an unempty outside
set, guaranteeing the final polyhedron is the convex hull of the original set of vertices.
Pseudocode for the algorithm is listed in Figure 22.



create a non-degenerate tetrahedron (simplex) of 4 vertices and 4 facets

for each facet F
for each unassigned point p

if p is in the positive normal direction of F
assign p to F ’s outside set

for each facet F with a non-empty outside set
select the furthest point p of F ’s outside set
initialize the visible set V to F
for all unvisited neighbors N of facets in V

if p is above N
add N to V

the boundary of V is the set of horizon ridges H
for each edge E in H

create a new facet from E and p
link the new facet to its neighbours

for each new facet F ′

for each unassigned point q in an outside set of a facet in V
if q is above F ′

assign q to F ′’s outside set
delete the facets in V

Figure 22: The pseudocode for Quickhull [1]



2.5.7.2 Muller-Preparata Interference Polyhedron Algorithm

The Muller-Preparata algorithm (MPA) is a simple algorithm that finds the geometry of
the common space shared by two convex polyhedra, their interference geometry [28, 39].
This algorithm runs in O((NA + NB)log(NA + NB)) time where NA and NB are the
number of facets belonging to the convex polyhedral objects A and B respectively.

The algorithm makes use of geometric dual transformations [28]. The dual transforma-
tion converts a plane whose equation is described by ax+by+cz = 1 into a point (a, b, c)
or alternatively it converts a point (a, b, c) into a plane of ax + by + cz = 1 assuming
a point common to both objects, located in the interference geometry, is taken as the
origin. The MPA works as follows:

1. Consider a point in common to both polyhedra as the origin.

2. Create a new set of vertices by converting the planes of each polygon of both
objects using dual transformation.

3. Find the convex hull of the new set of vertices from step 2.

4. Create a new set of vertices by converting the planes of the convex hull from step
3 using dual transformation.

5. Find the convex hull of the new set of vertices from step 4.

The end results of the algorithm, after step 5, is a polyhedron that encapsulates the
common space between both interfering polyhedra, which is the interference geometry.

The convex polyhedron returned by this algorithm is the exact interference geometry
between the two objects, within what machine tolerance allows. Because of machine
tolerance issues, the SMS implementation also uses a zero distance tolerance of 1 micron,
that is a vertex is considered the same vertex or considered to lie on a plane if it lies
within 1 micron of the other. This adds the potential for some minor error.

2.5.7.3 Volume and Centroid of a Polyhedron

The volume of a polyhedron, convex or concave, can be obtained by summing up the
volumes of the tetrahedron created by each triangular polygon facet of the polyhedron
and the origin [41]. The volume of a tetrahedron is defined using the scalar triple
product:

Vtetra =
|(v1 − v4) · (v2 − v4)× (v3 − v4)|

6
(93)



where v1, v2, v3 and v4 are the vertices of the tetrahedron. Alternatively, by setting v4

to the origin, the volume of a tetrahedron formed by a polygon facet of a polyhedron
and the origin can be obtained as:

Vtetra =
v1 · v2 × v3

6
(94)

This allows the summing all of the volumes, Vtetra, of the tetrahedrons created by the
vertices of the polygons of a polyhedron and the origin and will yield the total volume
of the polyhedron. The volume Vtetra is signed and depending on which side of the
polygon the origin lies on, can produce positive or negative volumes. This yields a net
volume equal to the volume of the polyhedron. The volume cancelling nature of this
algorithm also works well for finding the volumes of concave objects, though these are
not considered here.

The location of the centroid of these tetrahedra are found as [41]:

Pcentroid =
v1 + v2 + v3

4
(95)

The center of gravity of a polyhedron can be found by summing the tetrahedral centroids
weighted by their signed volumes, and dividing the sum with the total polyhedron
volume.

2.5.8 Detecting Collisions of Convex Polyhedra with GJK

To determine the contact forces discussed above, the collision must first be detected.
The GJK algorithm and Minkowski difference properties are exploited to this end.
Section 2.5.8.1 describes the Minkowski difference of two convex objects, which has
useful properties including the fact that if the origin is located within the Minkowski
difference space, the two objects are guaranteed to be colliding. Then, Section 2.5.8.2
describes how the properties of the Minkowski difference are used to determine if a
collision is occuring. Section 2.5.8.4 goes on to describe how GJK is used to obtain the
MSD or MTD using barycentric coordinates.

2.5.8.1 Minkowski Difference

The Minkowski sum is defined as the sum of every point in a set of points A added
with every point in a different set of points B:

A⊕ B = {PA +PB : PA ∈ A,PB ∈ B} (96)

Geometrically, the Minkowski sum between two objects can be visualized as the area
covered by picking up object B by an imaginary handle at the origin, placing the handle
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Figure 23: An example of the Minkowski sum between two objects showing a) objects
A and B and b) their Minkowski sum.

in the space occupied by A, and sweeping the handle such that all the space occupied
by A is covered by the handle. The swept space covered by B during the translation
process represents the Minkowski sum as indicated in Figure 23.

The Minkowski difference, A � B, is simply the Minkowski sum of object A with the
mirror of object B about the X, Y , and Z axes as indicated in Figure 24. In other
words:

A� B = A⊕ (−B) (97)

The Minkowski difference of convex objects has a few interesting properties not neces-
sarily present for concave objects, which include:

• The Minkowski difference encapsulates the origin only when the objects of the
Minkowski difference are interfering.

• The minimum separation distance in real space is represented in the Minkowski
difference space as the minimum separation distance between the Minkowski dif-
ference and the origin as illustrated in Figure 25.
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Figure 24: An example of the Minkowski difference between two objects showing a)
objects A and B and -B b) the Minkowski difference between A and B.

• The MTD is defined as the distance between the origin and the closest point on
the Minkowski difference boundaries.

If the point of minimum separation between the boundaries of the Minkowski difference
and the origin is known P

(min)
M , it is possible to determine which points on the surfaces

of objects A and B that minimum separation corresponds to, P
(min)
A and P

(min)
B , using

barycentric coordinates [2]. This will be discussed in Section 2.5.8.4. The Minkowski
difference for convex polyhedra can be obtained by brute force by taking the Minkowski
difference between the set of vertices of both objects. The convex hull that encapsulates
all points of the Minkowski difference can easily be found as described in Section 2.5.7.1.

2.5.8.2 GJK

The Gilbert-Johnson-Keerthi (GJK) algorithm is one of the most effective methods of
detecting collisions between convex polyhedral objects [2]. It is based on the properties
of the Minkowski difference though the explicit calculation of the Minkowski difference
is not required. Instead the GJK is a descent algorithm that samples the Minkowski
difference using a support mapping function, discussed in Section 2.5.8.3. GJK is in-
dependent of geometrical representation of the objects so long as a support function
can be provided. The GJK algorithm is especially effective with polyhedral geometry



Figure 25: The minimum separation distance between the Minkowski difference space
and the origin.

representation because the piece-wise linearised nature of the boundary ensures exact
solutions are converged on quickly compared to objects with continuous surfaces that
require a tolerance factor to check for convergence. A 3D implementation of the algo-
rithm has been shown to have a computational complexity of O(NA + NB) where NA

and NB are the total number of vertices of objects, A and B, respectively [23].

In 3D, GJK attempts to find a 3-simplex from the Minkowski difference that encapsu-
lates the origin of the volume of interference, where an n-simplex is the n-dimensional
convex hull of a set of n + 1 points. This would establish that a collision is occurring.
The algorithm starts with a 0-simplex, and using the support function, finds the fur-
thest Minkowski difference vertex pair in the direction d. The direction d is chosen as
−P

(min)
M , which tells the support mapping function to find the furthest vertex in the

direction of the origin where −P
(min)
M is a point on the current n-simplex that is clos-

est to the origin, as indicated in Figure 26. This support function has the convenient
property that:

S(A⊕ B,d) = S(A,d)− S(B,−d) (98)

that makes finding Minkowski difference vertices simple, where S(A,d) and S(B,d) are
support functions that return the furthest vertex in the direction of vector d (or −d)
from objects A and B, respectively. Obtaining the furthest vertex of a polyhedron in
a particular direction requires at most O(N) distance checks, where N is the number
of vertices in the polyhedron; however, with some pre-processing, such as building a



vertex adjacency matrix, this can be reduced to O(logN) checks. Thus finding the
furthest vertex of the Minkowski difference in any direction requires on the order of
O(logNA + logNB) distance computations.

In 3D, GJK works by maintaining a set Q of at least 1 and up to 4 vertices whose
convex hull forms a 0-simplex, a 1-simplex, a 2-simplex, or a 3-simplex depending on
the number of points held in Q. If the origin is contained within the current simplex,
i.e. the origin is at a vertex, on an edge, on a facet or inside the tetrahedron, then
objects A and B are intersecting. If this is determined to be true, the algorithm stops
and returns that simplex. On the other hand, if the simplex does not contain the origin,
the simplex is updated to the smallest subset of Q that forms a feature (i.e., a vertex,
an edge or a polygon) that contains the point on that feature that is closest to the

origin, P
(min)
M . A new vertex is found from A � B, in the direction of d. Repeating

the cycle of reducing the simplex and finding furthest vertices along d guarantees that
eventually the simplex will contain either the origin or no further vertex in d will be
found, ending the search.

The GJK loop begins with a Q forming a 0-simplex consisting of a single point, Q1.
A new test point, Qfurthest, is found in the direction of −P

(min)
M , which is the same as

−Q1 for the case of a 0-simplex. If Qfurthest is further in d than P
(min)
M then Qfurthest

is added to Q as the new Q1, pushing the old Q1 to Q2 and so on and forming a new
higher dimensional simplex. The feature of the new simplex whose Voronoi region holds
the origin is identified, where a feature’s Voronoi region is a region in space where the
feature is guaranteed to be closest to any points in said region. The Voronoi region is
illustrated in 2D in Figure 27. Any vertex in Q not belonging to the identified closest
feature is removed from the set Q. A new direction is set as d = −P

(min)
M , and the

algorithm loops back to finding Qfurthest. The loop is broken if no vertex further in d

can be found, or if the origin is encapsulated by the simplex. An example in 2D of how
GJK operates is provided in Figure 26.

2.5.8.3 Efficient GJK Support Mapping Function for Convex Polyhedra

Finding the furthest vertex in any particular direction is as simple as checking the
distance of every vertex and keeping track of the furthest found. However, this brute
force method has a complexity of O(n) where n is the number of vertices. For convex
polyhedra, a vertex adjacency matrix can be created that provides each vertex with
knowledge of the vertices it shares one or more features with. With a vertex adjacency
matrix, the furthest vertex can be found by comparing its distance with those of its
neighbors, repeating the process with the furthest vertex found until no adjacent vertex
is found to be any further. This leads to a more efficient search complexity of O(logn).

Vertex va is said to be further in a particular direction, d, than vertex vb, if the dot
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Figure 26: The GJK algorithm finding the closest point to the origin on the Minkowski
difference, in 2D for simplicity. This example was based on an example from [2].
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Figure 27: A 2D example of the Voronoi region for a polygonal object, identifying the
Voronoi regions for each edge, ei, and each vertex, vi.



product va · d is greater than vb · d.

2.5.8.4 The Minimum Separation Distance/Minimum Translation Distance using
Barycentric Coordinates

A point on a polygon of the Minkowski difference A � B, P
(min)
M for example, can be

mapped back to its corresponding pair of points, one on object A and one on object
B. That is, for the 3D case, the barycentric coordinates, [c1, c2, c3], of P

(min)
M on a

2-simplex, can be defined as:

P
(min)
M =

∑
i=1,2,3

ciQi (99)

where ∑
1≤i≤3

ci = 1 (100)

and

ci ≥ 0 (101)

Because the points on the Minkowski difference consist of a point on object A subtracted
from a point object B, we can split P

(min)
M into its components:

P
(min)
M = P

(min)
A −P

(min)
B (102)

If knowledge of the points on objects Ai and Bi that created the point Qi of equa-
tion 99 is retained, P

(min)
A and P

(min)
B can be mapped from P

(min)
M using the barycentric

coordinates:

P
(min)
A =

∑
i=1,2,3

civ
(A)

i (103)

and

P
(min)
B =

∑
i=1,2,3

civ
(B)

i (104)

where v
(A)
i and v

(B)
i are the vertices of A and B corresponding to the vertices of Q.

The barycentric coordinates are easily solved for by converting equation 99 to matrix
form, and solving the equation for the barycentric coordinates.



3 Software Reference Manual

The following section serves as a reference manual for the SMS API software. Instruc-
tions on how to build the DLL from source, how to install the required Boost libraries,
as well as how to use the DLL in a Visual C++ project are provided in Sections 3.1.1,
3.1.2, and 3.1.3, respectively. Following this, the initialization file specifications for the
simulation objects are provided in section 3.2. It should be noted that while many prop-
erties are constant, some of the properties set in the initialization files can be modified
during simulation execution. Important simulation object class methods are described
in section 3.3, followed by the state vector definition for each class in Section 3.4, and
the simulation object class output file formats in Section 3.5.

A validation test suite was included as part of the submission of this report and SMS
API. The validation test suite consists of a set of sample simulations that make use of
the SMS API. The validation test suite offers multiple simple examples of how each of
the simulation objects are used together or by themselves in addition to highlighting
the accuracy of the system with comparisons to analytical results when applicable.

3.1 SMS API DLL

The SMS API was written in ANSI C++. It has been tested using Microsoft Visual
Studio 2008 Express and the bundled Microsoft compiler.

3.1.1 Setting up a project to build the DLL

The following steps are required to set up a VC++ project and build the SMS API
DLL:

1. In Visual C++ 2008, click on File -> New -> New Project which will open up
the New Project Dialog.

2. In the Project Types Pane, select Win32 and in the Templates pane select Win32
Console Application. Name the project “SMS” and select a folder to store its files
in and click OK.

3. A Win32 Application wizard will appear, Click Next.

4. Select DLL for Application Type and check off Empty project then click Finish.

5. Add the SMS API source files to the project that has just been created.



3.1.2 Boost Library Dependency

The SMS API DLL requires the Boost C++ libraries. The Boost C++ Libraries are a
collection of peer-reviewed, open-source, and cross-platform libraries. The Boost C++
Libraries are used for the uBLAS library which provides vector and matrix classes and
operators (scaling, addition, multiplication, etc.) that allow safe and efficient linear
algebra operations in software.

At the time of writing this report, the Boost headers-only libraries are required. These
Boost Libraries can be obtained from:

http://sourceforge.net/projects/boost/files/boost/1.44.0/

Whichever archive (.7z, .zip, etc.) is downloaded, the contents can be extracted
whereever is convenient. A permanent location is recommeneded, such as:

C:\Program Files\boost

The archive contains a folder called boost 1 44 0, which will be the Boost “root”
directory.

To use Boost with Microsoft Visual C++ 2008, the IDE must know where to find the
Boost header files. These changes are applied at the IDE level. If the name of your
project is “SMS Sample App”, then:

1. Right-click SMS Sample APP in the Solution Explorer pane of MSVC++ and
select Properties from the resulting pop-up menu.

2. Click Configuration Properties C/C++ General Additional Include Directories

3. Enter the path to the Boost root directory, for example:

C:\Program Files\boost\boost_1_44_0

All of the Boost headers are located within the

C:\Program Files\boost\boost_1_44_0\boost\

directory. The SMS API includes the uBLAS libraries individually using include calls
such as:

#include "boost/numeric/ublas/vector.hpp"

for the vector class.



3.1.3 Using the Compiled SMS API Binary (dll) in Projects

In order to use the SMS API in applications, the SMS API header files, the compiled
.dll and .lib files are required. Add all of the .h header files to the project folder, with
directory structure. Place the SMS.dll and the SMS.lib files into the project folder,
include the SMS.h header file in your code and compile the project.

3.2 Class Initilialization Files

The properties of each simulation object in the SMS API are loaded via an initial-
ization file that is passed to the object constructor. In the following sections, first a
description of the SMS::Environment and SMS::Integrator initialization files, which
are required by the SMS API for any simulations, are provided. Next, the initialization
file specifications are described for each simulation object. A sample initialization file
is also provided for each simulation object.

3.2.1 Environment Initialization Files

SMS API simulations share several global simulation parameters. These are set in the
env.ini and RK45.ini files; these files must be defined for all SMS API simulations.
These files define the environmental properties and the settings used in the integrator.
The SMS API looks for these in the root simulation directory. The environmental
properties set in the env.ini files are air and water density and kinematic viscosity, and
gravity.

Sample env.ini File

$airDensity 1.20

$airKinematicViscosity 1.5e-5

$waterDensity 1025.0

$waterKinematicViscosity 1.787e-6

$g 9.81

3.2.2 Integrator Initialization File Specification

The Runge-Kutta 4(5) integrator settings are the initial time step, the minimum and
maximum allowable time step.

Sample RK45.ini File



$Timestep_MAX 1.0

$Timestep_MIN 1e-15

$Timestep 0.0001

3.2.3 Cable Initialization File Specification

The following table provides a description of each entry of an SMS::Cable .ini file:



Variable Name Variable Description

$EA Axial Stiffness (N)
$EI Bending Stiffness (Nm2)
$GJ Torsional Stiffness (Nm2)

$rho cable Density
(

kg
m3

)
$dia cable Cable diameter (m)
$CDc Cable drag coefficient
$CAc Added mass coefficient
$CID Axial damping coefficient
$BCID Bending damping coefficient
$CE Compressive elasticity (set to 0 for chain behavior)
$ElementLengthMax The maximum element length before a node is in-

serted (m)
$ElementLengthMin The minimum element length before a node is re-

moved (m)
$NODE0 STATIC A boolean value that forces the cable’s node 0 to be

statically attached in space. If the node is static,
other objects cannot be attached.

$NODEN STATIC A boolean value that forces the cable’s node N to
be statically attached in space. If the node is static,
other objects cannot be attached.

$0|IC Ẋ (m/s) X (m) Ẏ (m/s) Y (m) Ż (m/s) Z (m)
- The first node state is defined by its position and
velocity in the global coordinate system. Multiple
nodes are defined by creating multiple entries: $1|IC
,. . . ,$N|IC

$ElementLengths The unstretched element lengths (m)
$OutputFolder The name of folder where the cable results will be

stored

$0|ExtMasses Arclength (m) Diameter (m) Density
(

kg
m3

)
- Spher-

ical external mass attached to the cable at specified
arclength from node 0. Multiple masses can be at-
tached.

Table 2: Cable class init file description



Sample Cable Init File

Here is the contents of a sample init file:

$EA 4.0e6

$EI 0

$GJ 0

$rho_cable 500.0

$dia_cable 0.024

$CDc 0

$CAc 0

$CID 1e3

$BCID 0

$CE 1

$ElementLengthMax 12

$ElementLengthMin 1

$NODE0_STATIC 0

$NODEN_STATIC 0

$0|IC 0 3.645 0 0 0 15.642

$1|IC 0 3.645 0 0 0 8

$2|IC 0 3.645 0 0 0 1

$ElementLengths 7.642 7

$OutputFolder cable_output_folder

3.2.4 Payload Initialization File Specification

The following table provides a description of each entry of an SMS::Payload .ini file:



Variable Name Variable Description

$0|IC Initial X Velocity (m/s)
$1|IC Initial Y Velocity (m/s)
$2|IC Initial Z Velocity (m/s)

$3|IC Initial φ̇ (rad/s)

$4|IC Initial θ̇ (rad/s)

$5|IC Initial ψ̇ (rad/s)
$6|IC Initial X Position (m)
$7|IC Initial Y Position (m)
$8|IC Initial Z Position (m)
$9|IC Initial φ (Rad)
$10|IC Initial θ (Rad)
$11|IC Initial ψ (Rad)
$0|Mass The first row of the 6 × 6 mass-

inertia matrix for the Payload
$1|Mass The second row of the 6× 6 mass-

inertia matrix for the Payload
$2|Mass The third row of the 6 × 6 mass-

inertia matrix for the Payload
$3|Mass The fourth row of the 6 × 6 mass-

inertia matrix for the Payload
$4|Mass The fifth row of the 6 × 6 mass-

inertia matrix for the Payload
$5|Mass The sixth row of the 6 × 6 mass-

inertia matrix for the Payload
$Young modulus Elastic material property for con-

tact dynamics (Pa)
$B Material damping property for

contact dynamics (Pa·s) y
$muc Coulomb Friction Coefficient for

contact dynamics
$mus Sticking Friction Coefficient for

contact dynamics
$OutputFolder Specifies the folder name that will

hold the simulation results output
for this payload

Table 3: Payload Class init file description



Sample Payload Init File

Here is the contents of a sample init file:

$0|IC 0

$1|IC 0

$2|IC 0

$3|IC 0

$4|IC 0

$5|IC 0

$6|IC 3.645

$7|IC 0

$8|IC -0.346

$9|IC 0

$10|IC 0

$11|IC 0

$0|Mass 7800 0 0 0 0 0

$1|Mass 0 7800 0 0 0 0

$2|Mass 0 0 7800 0 0 0

$3|Mass 0 0 0 500 0 0

$4|Mass 0 0 0 0 500 0

$5|Mass 0 0 0 0 0 500

$Young_modulus 95e7 //Pa

$B 5e7 //Pa-s

$muc 0.05 //Coulomb Friction Coefficient

$mus 0.07 //Sticking Friction Coefficient

$OutputFolder payload_output_folder

3.2.5 Boomcrane Initialization File Specification

The following table provides a description of each entry of an SMS::Boomcrane .ini

file:



Variable Description

$VERBOSE A flag to tell the boomcrane to output debug
information.

$id|LinkDHParameters D-H Parameters for link id. Parameter order:
α, a, d, θ

$id|LinkJointVariable Which D-H parameter is variable for Link id.
$id|LinkCGLocation The location of the center of gravity for Link

id’s rigidbody frame relative to its proximal joint
frame.

$id|LinkCGOrientation The orientation of the Link id’s rigidbody frame
to its proximal joint frame.

$id|LinkMass Mass of Link id
$id|LinkMomentOfIntertia The Moment of Inertia of Link id with respect

to Link id frame.
$id|JointControlType The joint control type, set to ”velocity”, ”posi-

tion” or ”passive”
$id|JointProportionalCoefficient The proportional gain of the PID joint controller

(N/m or N·m/rad)).
$id|JointIntegralCoefficient Integral gain of the PID joint controller

(N/(m·s) or Nm/(rad·s)).
$id|JointDerivativeCoefficient Derivative gain of the PID joint controller

(N·s/m or N·m·s/rad).
$id|MaximumActuatablePower The maximum power the joint controller is lim-

ited to.
$id|UpstreamJointLimits Sets the joint limits for Link id’s upstream joint

(m for prismatic and rad for revolute joints).
$id|JointLimitStiffness The maximum force the joint is capable of ap-

plying (N for prismatic joints, N·m for revolute
joints).

$id|JointLimitDamping The velocity allowed for the downstream joint
of Link id (m/s for prismatic joint, rad/s for
revolute joints).

$OutputFolder Folder for output files.

Table 4: The parameters used to initialize a boom crane object.



Sample Boomcrane Init File

Here is the contents of a sample init file:

$VERBOSE 0

//Link 1

$0|LinkDHParameters 90 -0.65 1.4 0

$0|LinkJointVariable Theta

$0|LinkJointVelocity 0

$0|LinkCGLocation -0.35 0.7 0

$0|LinkCGOrientation 0 0 0

$0|LinkMass 682.97 682.97 682.97

$0|LinkMomentOfIntertia 139.44 139.44 55.776

$0|JointControlType position

$0|JointProportionalCoefficient 1000000000

$0|JointIntegralCoefficient 1

$0|JointDerivativeCoefficient 100000000

$0|MaximumActuatablePower 500000

$0|UpstreamJointLimits -1e30 1e30 //no limits

$0|JointLimitStiffness 1000000

$0|JointLimitDamping 10000

// Link 2

$1|LinkDHParameters 0 1 0 45

$1|LinkJointVariable Theta

$1|LinkJointVelocity 0

$1|LinkCGLocation 0.5 0 0

$1|LinkCGOrientation 0 0 0

$1|LinkMass 754 754 754



$1|LinkMomentOfIntertia 31.42 78.5 78.5

$1|JointControlType position

$1|JointProportionalCoefficient 1000000000

$1|JointIntegralCoefficient 1

$1|JointDerivativeCoefficient 100000000

$1|MaximumActuatablePower 500000

$1|UpstreamJointLimits 0 90

$1|JointLimitStiffness 10000000

$1|JointLimitDamping 1000000

$OutputFolder boomcrane_output_folder

3.2.6 Winch Initialization File Specification

The following table provides a description of each entry of an SMS::Winch .ini file:

Variable Name Variable Description

$Kd Derivative gain
$Kp Proportional gain
$Ki Integral gain
$accel max Maximum acceleration
$decel max Maximum deceleration (negative)
$VelocitySetPoint Velocity set point (m/s)
$TensionSetPoint Tension set point (N)
$OutputFolder A folder where output files will be

created and stored.

Table 5: Winch Class init file description



Sample Winch Init File

Here is the contents of a sample init file:

$VelocitySetPoint 0

$TensionSetPoint 2000

$accel_max 3

$decel_max -3

$Kp 0.1

$Kd 0.01

$Ki 0.0001

$OutputFolder winch_output_folder

3.3 Class Methods

This section provides descriptions of the important methods used to interact with the
simulation objects. Some of the methods are common to all simulation objects since
they were inherited from SMS::SimObject abstract class. For examples on how these
methods are used within the context of a computer program, please refer to the SMS
Validation Test Suite.

3.3.1 Cable Class
3.3.1.1 Creating a Cable Object

An SMS::Cable object can be generated using the SMS::Cable class constructor:

SMS::Cable myCable(std::string cable_init_file,

double t0,

bool file_output);

where cable init file is a string that contains the location of the cable’s initialization
file (defined in Section 3.2.3), t0 is the start time of the cable object and file output

is set to true to allow simulation data to be output to disk.



3.3.1.2 Controlling the Position and Velocity of End Nodes

The SMS::Cable object may be fixed to other objects, such as a ship. Attached objects
kinematically constrain the position of their connected end nodes. The position and
velocity of the end nodes of the cable may be specified using the following function:

myCable.SetNode0BoundaryConditions(ub::vector<double> Node0Pos,

ub::vector<double> Node0Vel,

ub::vector<double> Node0Accel);

or

myCable.SetNodeNBoundaryConditions(ub::vector<double> NodeNPos,

ub::vector<double> NodeNVel,

ub::vector<double> NodeNAccel);

where Node0Pos, NodeNPos, Node0Vel, and NodeNVel, are vectors of length 3 contain-
ing the 3D position and velocity of the node to be controlled. It should be noted that
discontinuous positions and velocities with respect to time will cause cable model sim-
ulation instabilities. The SMS::Cable end node position, velocity, or acceleration can
also each be modified individually using one of the following functions:

myCable.SetNode0Pos(ub::vector<double> Node0Pos);

myCable.SetNode0Vel(ub::vector<double> Node0Vel);

myCable.SetNode0Accel(ub::vector<double> Node0Accel);

myCable.SetNodeNPos(ub::vector<double> NodeNPos);

myCable.SetNodeNVel(ub::vector<double> NodeNVel);

myCable.SetNodeNAccel(ub::vector<double> NodeNAccel);

Take note that when SMS::SimObjects enter an SMS API master-slave relationship,
boundary conditions are automatically updated by the SMS API; thus, calling these
methods is not required. In such a case, these calls aren’t forbidden, though they will
have no effect since the boundary conditions are automatically updated by the master
during the AdvanceTime() call.

3.3.1.3 Adding a Winch to a Cable

An SMS::Winch object can be added to an end node of a cable. The SMS::Winch object,
which has it’s own control methods, will control the length of the element it is connected



to. If the element is too long, a node is inserted to the SMS::Cable to prevent cable
elements becoming undesirably long.

An SMS::Winch is added to node 0 or node N of a cable using the following functions:

myCable.AddWinch0(SMS::Winch &winch); \\Attach Winch to Node 0

and

myCable.AddWinchN(SMS::Winch &winch); \\Attach Winch to Node N

where winch is a reference to the SMS::Winch object being attached.

3.3.1.4 Detaching an Attached Winch Object

An attached SMS::Winch object is removed from a cable using the following function:

myCable.DetachWinch(Winch *winch);

where winch is a pointer to the SMS::Winch object being detached.

3.3.1.5 Getting Loads a Cable is Applying to Attached Objects

The loads an SMS::Cable is applying to an attached SMS::Boomcrane or SMS::Payload
can be obtained, depending on which node the SMS::SimObject is attached to, using:

myCable.GetNode0Load(ub::vector<double> cableForce);

or

myCable.GetNodeNLoad(ub::vector<double> cableForce);

where cableForce is a 6 × 1 spatial vector containing both the force and moment
components.



3.3.1.6 Getting the Position of a Point Along a Cable

To obtain the Cartesian position of a point along an SMS::Cable, the user will call:

myCable.GetPosition(double sPos,

ub::vector<double> &pos);

where sPos is the arclength distance along a cable, and pos is a 3×1 Cartesian position
vector returned by the function.

3.3.1.7 Getting the Velocity of a Point Along a Cable

To obtain the Cartesian velocity of a point along an SMS::Cable, the user will call:

myCable.GetVelocity(double sPos,

ub::vector<double> &vel);

where sPos is arclenth distance along a cable, and vel is a 3 × 1 Cartesian velocity
vector returned by the function.

3.3.1.8 Getting the Acceleration of a Point Along a Cable

To obtain the Cartesian acceleration of a point along an SMS::Cable, the user will call:

myCable.GetAcceleration(double sPos,

ub::vector<double> &accel);

where sPos is arclength distance along a cable, and accel is a 3× 1 Cartesian acceler-
ation vector returned by the function.

3.3.1.9 Getting the Cable Tangent at a point Along a Cable

To obtain the tangent as a vector at a point along an SMS::Cable, the user will call:

myCable.GetTangent(double sPos,

ub::vector<double> &tangent);

where sPos is arclength distance along a cable, and tangent is a 3×1 Cartesian tangent
vector returned by the function.



3.3.1.10 Applying External Forces to a Cable

To apply a force at a point along an SMS::Cable, the user will call:

myCable.AddForce(double sPos,

ub::vector<double> &force);

where sPos is arclength distance along a cable the force will be applied to, and force

is a 3× 1 Cartesian force vector being applied to the SMS::Cable.

3.3.1.11 Extracting State Information

To get the most recent state vector from an SMS::Cable object, defined in section 3.4.1,
the GetState function is used:

myCable.GetState(std::vector<double> &X);

where a vector X is passed to the function so that it will be populated with the state
vector of the SMS::Cable. The format of the state vector is described in Section 3.4.1

3.3.1.12 Manually Setting the Cable Boundary Conditions

The boundary conditions of an SMS::Cable can be set using:

myCable.SetNode0BoundaryConditions(std::vector<double> Node0Pos,

std::vector<double> Node0Vel,

std::vector<double> Node0drds,

std::vector<double> Node0P1,

std::vector<double> Node0P2);

and

myCable.SetNodeNBoundaryConditions(std::vector<double> NodeNPos,

std::vector<double> NodeNVel,

std::vector<double> NodeNdrds,

std::vector<double> NodeNP1,

std::vector<double> NodeNP2);



where Node0Pos and NodeNPos are 3 × 1 vectors containing the Cartesian position of
nodes 0 and N respectively, Node0Vel and NodeNVel are 3 × 1 vectors containing the
Cartesian velocities of nodes 0 and N respectively, Node0drds and NodeNdrds are 3×1
vectors containing the Cartesian tangent vector of nodes 0 and N respectively, Node0P1
and NodeNP1 are 3× 1 vectors containing the twisted Frenet frame axis P1 unit vector
of nodes 0 and N respectively, and Node0P2 and NodeNP2 are 3 × 1 vectors containing
the twisted Frenet frame axis P2 unit vector of nodes 0 and N respectively.

3.3.1.13 Advancing the Cable Through Time

To advance the cable dynamics through time, to go from one state to a future state
stepSize seconds in the future, the AdvanceTime function is called:

myCable.AdvanceTime(double stepSize);

After AdvanceTime is called the latest state information can be retrieved.

3.3.1.14 Handling Added Mass

The hydrodynamic effect of added mass for SMS::Cables is handled by adding discre-
tised mass at locations along a cable:

myCable.AddMass(double sPos,

double mass);

where sPos is the arclength distance along a cable, and mass is the added mass being
added to the cable at sPos.

The AddMass() function is cumulative and must be manually cleared to zero the accu-
mulator. This can be accomplished by calling:

myCable.ClearMasses();

Take note that the SMS API user is responsible to ensure a complete hydrodynamics
model is used, this could include drag (a function of relative velocity to the fluid), added
mass, and fluid inertial loading (a function of absolute acceleration of the fluid).



3.3.1.15 Outputting Cable State Data to Disk

Between AdvanceTime calls, the current State of a cable can be output (appended) to
the file specified in the SMS::Cable ini file. This is accomplished by calling the function:

myCable.OutputSimObjectData();

The format of the output files for an SMS::Cable are described in Section 3.5.1.



3.3.2 Winch Class
3.3.2.1 Creating a Winch Object

The winch class constructor definition is:

myWinch(std::string init_file,

double t0,

bool file_output);

where init file is a string containing the name of the ASCII text file that defines the
winch’s initialization parameters. The time offset to start the simulation at is specified
by t0 and file output is set to true to allow simulation data to be output to disk.

3.3.2.2 Setting Winch Control Mode

The SMS::Winch control mode can be modified using:

myWinch.SetMode(std::string mode);

where mode is either “velocity” or “tension”.

3.3.2.3 Setting Winch Velocity Control Setpoint

The velocity control setpoint can be modified using:

myWinch.SetVelocitySetPoint(double setpoint);

where setpoint is the payout or payin speed in m/s, negative values mean payin while
positive values mean payout.

3.3.2.4 Setting Winch Tension Control Setpoint

The tension control setpoint can be modified using:

myWinch.SetTensionSetPoint(double setpoint);

where setpoint is the tension setpoint in Newtons.



3.3.2.5 Setting the acceleration limits

The acceleration limits of the winch can be modified using:

myWinch.SetAccelDecelLimits(double accel,

double decel);

where accel is positive and decel is negative.



3.3.3 Payload Class
3.3.3.1 Creating a Payload Object

An SMS::Payload object can be generated using the Cable class constructor:

SMS::Payload myPayload(std::string payload_init_file,

double t0,

bool file_output);

where payload init file is a string that contains the location of the payload’s ini-
tialization file (defined in Section 3.2.4), t0 is the start time of the payload object, and
file output is set to true to allow simulation data to be output to disk.

3.3.3.2 Setting a Payload’s Position and Orientation Manually

The position and orientation of an SMS::Payload can be set using:

myPayload.SetPosOri(ub::vector<double> posOri,

ub::vector<double> posOriDot);

where posOri is a 6 × 1 array containing the payload’s 3 Cartesian position compo-
nents relative to the Earth-fixed frame followed by the 3 Z-Y′-X′′ Euler orientation
components, and posOriDot the time derivative of posOri.

3.3.3.3 Attaching Cables

An SMS::Cable can be attached to an SMS::Payload using either a pinned (spherical
joint) or clamped connection using:

myPayload.AddCableClamped(SMS::Cable *cable_to_attach,

ub::vector<double> &location,

ub::vector<double> &p1,

ub::vector<double> &p2,

int end);

or



myPayload.AddCablePinned(SMS::Cable *cable_to_attach,

ub::vector<double> &location,

int end);

where cable to attach is a pointer to the cable being attached, location is a 3 × 1
Cartesian vector of the cable attachment location relative to the SMS::Payload’s body-
fixed frame, p1 and p2 are two perpendicular vectors, expressed with respect to the
body-fixed frame whose cross-product will define the cable tangent at its attachment
end, and end is set to 0 to attach the node 0 to the SMS::Payload or 1 to attach node
N .

3.3.3.4 Detaching a Cable

A previously attached cable can be removed from the payload using:

myPayload.DetachCable(Cable *cable_to_detach);

where cable to detach is a pointer to an attached cable. It’s a good idea to reduce
the tension in the cable to 0 before detaching a cable.

3.3.3.5 Manually Applying External Forces

External forces, such as hydrodynamics forces, can be added to the payload using

myPayload.ApplyExternalForce(ub::vector<double> &force);

where force is a 6×1 spatial vector containing the force and moment being applied to
the SMS::Payload expressed with respect to the Earth-fixed frame. Adding forces via
this method is cumulative,and the force summation must be manually cleared. This is
accomplished using:

myPayload.ClearForces();

3.3.3.6 Applying Added Mass

The hydrodynamic effect of added mass for an SMS::Payload payload object can be
handled by adding

myPayload.AddAddedMass(ub::matrix<double> &mass);



where mass is the added mass being added to the SMS::Payload.

The AddAddedMass() function is cumulative and must be manually cleared to zero the
accumulator. This can be accomplished by calling:

myPayload.ClearAddedMass();

3.3.3.7 Getting the State of the Payload

The state of an SMS::Payload can be obtained using:

myPayload.GetState(ub::vector<double> &X);

where X is a 12× 1 matrix containing the state vector of the SMS::Payload described
in 3.4.2

3.3.3.8 Getting the Payload Position

To obtain the position and orientation information of an SMS::Payload, the user will
call:

myPayload.GetPosition(ub::vector<double> &pos_ori);

where pos ori is a 6×1 array that will be filled with the Cartesian position vector and
the 3 Euler angle components describing orientation.

3.3.3.9 Getting the Payload Velocity

To obtain the 6 DOF velocity vector of an SMS::Payload, the user will call:

myPayload.GetVelocity(ub::vector<double> &vel);

where vel is a 6 × 1 spatial vector that will be filled with the Cartesian linear and
angular velocity vector components respectively.



3.3.3.10 Getting the Payload Acceleration

To obtain the 6 DOF acceleration vector of an SMS::Payload, the user will call:

myPayload.GetAcceleration(ub::vector<double> &accel);

where accel is a 6 × 1 spatial vector that will be filled with the Cartesian linear and
angular acceleration vector components respectively.

3.3.3.11 Getting Boundary Condition Information for Attached Cables

If an SMS::Cable object is attached to an SMS::Payload object, the following function
can be called to aquire the position and velocity of the cable connection point:

myPayload.GetBCInfo(unsigned int cable_id,

ub::vector<double> &vel,

ub::vector<double> &pos);

where cable id is the attached cable’s, and pos and vel are the 3×1 Cartesian position
and velocity vectors of the cable attachment point.

3.3.3.12 Advancing the Payload Through Time

To go from one state to some state stepSize seconds in the future, the AdvanceTime

function is called:

myPayload.AdvanceTime(double stepSize);

After AdvanceTime completes its run, the latest state information can be retrieved from
the SMS::Payload. If myPayload is the master in a set of attached simulation objects,
the AdvanceTime call will also advance the time of all slave objects.

3.3.3.13 Outputting Payload State Data to Disk

Between AdvanceTime calls, the current state of an SMS::Payload can be written (ap-
pended) to the file specified in the SMS::Payload ini file. This is accomplished by
calling the function:

myPayload.OutputSimObjectData();

The format of the output files for an SMS::Payload are described in Section 3.5.2.



3.3.4 BoomCrane Class
3.3.4.1 Creating a Boomcrane Object

An SMS::Boomcrane object can be generated using the SMS::Boomcrane class construc-
tor:

SMS::BoomCrane myBoomCrane(std::string boomcrane_init_file,

double t0,

bool file_output);

where boomcrane init file is a string that contains the location of the cable’s ini-
tialization file (defined in Section 3.2.3), t0 is the start time of the cable object and
file output is set to true to allow simulation data to be output to disk.

3.3.4.2 Setting the Boom Crane’s Base Position and Orientation

The SMS::Boomcrane base position is set using:

myBoomcrane.SetBaseGlobalPositionAndOrientation(

ub::vector<double> &posOri,

ub::vector<double> &velocity,

ub::vector<double> &acceleration);

where posOri is a 6×1 array holding the 3 Cartesian position components and 3 Z-Y′-
X′′ Euler angles components that describe the orientation, velocity is a 6× 1 spatial
vector holding the velocity and angular velocity, and acceleration is a 6 × 1 spatial
vector holding the linear and angular acceleration.

3.3.4.3 Actuating the Boom Crane Joints

Each joint of an SMS::Boomcrane is controlled by setting a joint controller target ve-
locity or displacement:

myBoomcrane.SetTargetJointVelocity(int jointID,

double targetVelocity);

or



myBoomcrane.SetTargetJointDisplacement{int JointID,

double targetDisplacement};

where jointID is the id of the joint (starting at 0), targetDisplacement is the dis-
placement the user wishes the joint to achieve, and targetVelocity is the velocity the
user wishes the joint to achieve.

3.3.4.4 Adding a Cable to the Boom Crane

Automatic Boundary Condition Synchronisation

An SMS::Cable can be attached to an SMS::Payload using either a pinned (spherical
joint) or clamped connection using:

myBoomcrane.AddCablePinned(int linkID,

SMS::Cable *cable_to_attach,

ub::vector<double> location,

int end)

or

myBoomcrane.AddCableClamped(int linkID,

SMS::Cable *cable_to_attach,

ub::vector<double> location,

ub::vector<double> p1,

ub::vector<double> p2,

int end);

where cable to attach is a pointer to a pre-initialised cable, linkID is the id of the
SMS::Boomcrane link the cable is connecting to, location is a vector that defines the
connection point described with respect to the link’s rigid body’s body-fixed frame, end
is 0 to attach node 0 of the cable and 1 to attach node N . For the case of clamped
connections, the orthogonal vectors p1 and p2 define a frame fixed to the boomcrane
link where p1×p2 will define the cable’s tangent at the connection point (fixed relative
to the rigid body).

Attaching an SMS::Cable with these functions allows the SMS API to assign master-
slave relationships between the SMS::SimObjects. This means the boundary conditions
are automatically synchronised and the SMS::Cable, if not a slave already, will become



a slave and have its dynamics automatically evolved by the master SMS::SimObject.
If cable to attach already has a master, then myBoomcrane will become a slave
to cable to attach, and cable to attach’s master will handle the evolution of the
dynamics through time for all slaves. If cable to attach is not yet a slave, then
myBoomcrane will become its master.

Manual Boundary Condition Synchronisation

An SMS::Cable can be attached to an SMS::Payload using either a pinned (spherical
joint) or clamped connection using:

myBoomcrane.AddCablePinned(int linkID,

ub::vector<double> location,

int end)

or

myBoomcrane.AddCableClamped(int linkID,

ub::vector<double> location,

ub::vector<double> p1,

ub::vector<double> p2,

int end);

where linkID is the id of the SMS::Boomcrane link the cable is connecting to, location
is a vector that defines the connection point described with respect to the link’s rigid
body’s body-fixed frame, end is 0 to attach node 0 of the cable and 1 to attach node
N . For the case of clamped connections, the orthogonal vectors p1 and p2 define a
frame fixed to the boomcrane link where p1× p2 will define the cable’s tangent at the
connection point (fixed relative to the rigid body).

The boundary conditions of the connection between the SMS::Cable and myBoomcrane

will have to be manually updated, and the dynamics both be individually evolved
through time. Take note that manual updates of clamped boundary conditions are not
yet fully supported.

3.3.4.5 Getting Boundary Condition Information for Attached Cables

The SMS API user is currently limited to acquiring the boundary conditions for pinned
cables only. This can be done by calling:



myPayload.GetBCInfo(unsigned int joint_id,

unsigned int cable_id,

ub::vector<double> &vel,

ub::vector<double> &pos);

where joint id is the id of the proximal joint of the SMS::ABA RigidBody the cable is
attached to, cable id is the attached cable id (only one cable can currently be attached
per SMS::ABA RigidBody), pos and vel are the 3 × 1 Cartesian position and velocity
vectors of the cable attachment point.

3.3.4.6 Detaching a Cable from the Boom Crane

A currently attached SMS::Cable can be removed from the SMS::Boomcrane using:

myBoomcrane.DetachCable(Cable *cable_to_detach);

where cable to detach is a pointer to an attached cable.

3.3.4.7 Applying External Forces

External forces are applied to an SMS::Boomcrane using:

myBoomcrane.ApplyExternalForce(int linkID,

std::vector<double> forceVector);

where linkID is the id of the link in the boom crane the contact force is being applied
to, forceVector is a length 3 vector of the force.

These external forces are cumulative. It may be necessary to clear them before applying
new forces using:

myBoomcrane.ClearRigidBodyForces();

3.3.4.8 Extracting State Information

To get the most recent state vector from a boom crane object, the GetState function
is used:

myBoomcrane.GetState(std::vector<double> &X);

where X is a vector that will be populated with the state information. The format of
the state vector is described in Section 3.4.3.



3.3.4.9 Advancing the Boom Crane Through Time

The SMS::Boomcrane is advanced through time using:

myBoomcrane.AdvanceTime(double stepSize);

where stepSize is the amount of time to evolve the SMS::Boomcrane dynamics over.

3.3.4.10 Outputting Boom Crane State Data to Disk

Between AdvanceTime calls, the current State of an SMS::Boomcrane can be written
(appended) to the file specified in the SMS::Boomcrane ini file. This is accomplished
by calling the function:

myBoomcrane.OutputSimObjectData();

The format of the output files for an SMS::Boomcrane are described in Section 3.5.3.



3.3.5 Contact Resolution

After an SMS::Payload object is initialised in code, the user can make use of the colli-
sion resolution system to resolve collisions between the SMS::Payload and an external
object.

3.3.5.1 Creating a Collision Object for the Payload

To provide the SMS::Payload with its collision geometry, primitives can be added to
construct the shape using:

myPayload.AddPrimitiveContactPolyhedron(std::string primitive_type,

double length,

double width,

double height,

int numLengthSegments,

int numWidthSegments,

int numHeightSegments,

ub::vector<double> &posOri);

or user-defined closed, convex .3ds objects can be added to construct the shape using

myPayload.Add3DSContactPolyhedron(std::string file_name,

double scaleX,

double scaleY,

double scaleZ,

ub::vector<double> &posOri);

where primitive type is a string containing the type of primitive to create set to “box”,
“cylinder”, or “sphere” 4, length, width, and height are the length, width and height
dimensions of the primitive being created, numLengthSegments, numWidthSegments,
and numHeightSegments are the number of segments to subdivide the faces of the
primitive along that dimension (this refines the polyhedral mesh), file name is the
name of the .3ds file containing a convex closed polyhedron, scaleX, scaleY and
scaleZ is the amount to scale the .3ds polyhedron by (generally set to 1), and posOri

is a 6 × 1 array containing the 3 Cartesian position vector components and 3 Euler
angle rotations to describe the orientation with respect to the SMS::Payload’s body-
fixed frame.

4Only box primitives are currently implemented in the SMS API.



3.3.5.2 Creating an External Collision Object

To provide the SMS::Payload with external collision geometry for it to collide with,
primitives can be added to construct the shape using:

myPayload.AddExternalPrimitiveContactPolyhedron(

std::string primitive_type,

double length,

double width,

double height,

int numLengthSegments,

int numWidthSegments,

int numHeightSegments,

ub::vector<double> &posOri));

or user-defined closed, convex .3ds objects can be added to construct the shape using:

AddExternal3DSContactPolyhedron(std::string file_name,

double scaleX,

double scaleY,

double scaleZ,

ub::vector<double> &posOri);

where primitive type is a string containing the type of primitive to create set to “box”,
“cylinder”, or “sphere” 5, length, width, and height are the length, width and height
dimensions of the primitive being created, numLengthSegments, numWidthSegments,
and numHeightSegments are the number of segments to subdivide the faces of the
primitive along that dimension (this refines the polyhedral mesh), file name is the
name of the .3ds file containing a convex closed polyhedron, scaleX, scaleY and
scaleZ is the amount to scale the .3ds polyhedron by (generally set to 1), and posOri

is a 6 × 1 array containing the 3 Cartesian position vector components and 3 Euler
angle rotations to describe the orientation relative to the origin of the external object.

3.3.5.3 Setting Payload and External Object’s Material Properties for Contact

The material properties of the SMS::Payload’s material contact properties can be man-
ually set using:

5Only box primitives are currently implemented in the SMS API.



myPayload.SetMaterialProperties(double K,

double B);

and similarly for external object.

myPayload.SetExternalObjectMaterialProperties(double K_ext,

double B_ext);

where K and K ext are the material stiffness coefficients (Young’s modulus), and B and
B ext are the material damping coefficients

3.3.5.4 Setting the Position, Velocity and Acceleration of the External Collision
Object

The position, velocity and acceleration of the external collision object’s origin relative
to the Earth-fixed frame can be defined using:

myPayload.SetExternalContactPolyhedraPositionOrientation(

ub::vector<double> &posOri,

ub::vector<double> &posOriDot,

ub::vector<double> &posOriDotDot);

where posOri is a 6×1 array containing the 3 Cartesian position vector components, and
3 Euler angle rotations to describe the orientation, and posOriDot and posOriDotDot

are the first and second time derivative of posOri.

3.3.5.5 Outputting Payload Contact Resolution State Data to Disk

Between AdvanceTime calls, information about the SMS::Payload contact resolution
system are output to file along with the SMS::Payload’s files during the SMS::Payload’s
call of:

myPayload.OutputSimObjectData();

The latter two are only given if the contact resolution system is employed, and their
contents are discussed in 3.5.5.



3.4 Class State Vector Definitions
3.4.1 Cable State Vector Definition

Node 0 X Velocity (m/s)

Node 0 X Position (m)

Node 0 Y Velocity (m/s)

Node 0 Y Position (m)

Node 0 Z Velocity (m/s)

Node 0 Z Position (m)

Node 1 X Velocity (m/s)

Node 1 X Position (m)

Node 1 Y Velocity (m/s)

Node 1 Y Position (m)

Node 1 Z Velocity (m/s)

Node 1 Z Position (m)

.

.

.

Node N-1 X Velocity (m/s)

Node N-1 X Position (m)

Node N-1 Y Velocity (m/s)

Node N-1 Y Position (m)

Node N-1 Z Velocity (m/s)

Node N-1 Z Position (m)

Node N X Velocity (m/s)

Node N X Position (m)

Node N Y Velocity (m/s)

Node N Y Position (m)

Node N Z Velocity (m/s)

Node N Z Position (m)

Element 1 Length (m)

Element N Length (m)

3.4.2 Payload State Vector Definition

X velocity (m/s)

Y velocity (m/s)

Z velocity (m/s)



phi dot angular velocity (rad/s)

theta dot angular velocity (rad/s)

psi dot angular velocity (rad/s)

X position (m)

Y position (m)

Z position (m)

phi rotation (rad)

theta rotation (rad)

psi rotation (rad)

3.4.3 Boomcrane State Vector Definition

X velocity (m/s)

Y velocity (m/s)

Z velocity (m/s)

phi dot angular velocity (rad/s)

theta dot angular velocity (rad/s)

psi dot angular velocity (rad/s)

Joint 1 velocity

Joint 2 velocity

.

.

.

Joint i velocity

X position (m)

Y position (m)

Z position (m)

phi rotation (rad)

theta rotation (rad)

psi rotation (rad)

Joint 1 displacement

Joint 2 displacement

.

.

.

Joint i displacement



3.4.4 Winch State Vector Definition

This winch implementation has no state since it currently does not use its integrator.
Instead, the SMS::Cable uses attached SMS::Winch objects to obtain the payout rate.
The payout rate then is used as the time derivative of the SMS::Cable’s attached
element length which gets integrated by the SMS::Cable’s integrator.



3.5 Class Output File Formats
3.5.1 Format of Cable Output Files

The output files for an SMS::Cable object are results.dat, tensions.dat,
and curvatures.dat. Each row of these output files represents the output for an
instant in time. The first column of each file supplies the time stamp for the instant in
time. The remaining columns are different depending on the output file.

3.5.1.1 results.dat

Each row of the results.dat file contains the time stamp and the state vector (see
Section 3.4.1) of the cable for each instant in time.

3.5.1.2 tensions.dat

Each row of the tensions.dat file contains the time stamp and the tension in each
element. The (i+ 1)th column contains the tension in element i.

3.5.1.3 curvatures.dat

Each row of the curvatures.dat file contains the time stamp and each 3 consecutive
column components hold the 3 Cartesian curvature vector components, r′′, in Earth-
fixed coordinates, at each cable node starting with node 0.

3.5.2 Format of Payload Output Files

The output files for an SMS::Payload object are results.dat, cable forces.dat,
contact forces.dat and contact geometry.dat. The latter two are only written if
the contact resolution system is employed. Their contents are discussed in Section 3.5.5.
Each row of these output files holds simulation information for the SMS::Payload for
an instant in time. The first column supplies the time stamp for the instant in time.
The remaining columns are different depending on the output file.

3.5.2.1 results.dat

Each row of the results.dat file contains the time stamp and the state vector (see
Section 3.4.2) of the payload for each instant in time.

3.5.2.2 cable forces.dat

Each row of the cable forces.dat file contains the time stamp and the 6 × 1 spatial
vector of the force containing the linear force and moment applied by the SMS::Cable at



the connection point. There is currently only support for a single cable to be attached
at a time.

3.5.3 Format of Boomcrane Output Files

The output files for an SMS::Boomcrane object consist of only results.dat. Each
row of the output files holds simulation information for the SMS::Boomcrane for an
instant in time. Each row of the file contains the time stamp and the state vector (see
Section 3.4.3) of the SMS::Boomcrane for each instant in time.

3.5.4 Format of Winch Output Files

The only output file for an SMS::Winch object is winch velocity.dat. Each row of
this output file represents the output for an instant in time. The first column of the
file supplies the time stamp for that instant in time. The other column holds the
payout/payin velocity of the cable at that time.

3.5.5 Format of Payload Contact Resolution Output Files

The output files for an SMS::Payload object, if contact resolution is used, consist of
contact forces.dat and contact geometry.dat. Each row of these output files holds
simulation information for the contact resolution system of the SMS::Payload for an
instant in time. The first column of each file supplies the time stamp for the instant in
time. The remaining columns are different depending on the output file.

3.5.5.1 contact forces.dat

Each row of the contact forces.dat file contains the time stamp, the three contact
force vector components (in Earth-fixed coordinates), the three contact force location
components (in Earth-fixed coordinates), stiffness component of the force and the damp-
ing component of the force.

3.5.5.2 contact geometry.dat

Each row of the contact geometry.dat file contains the time stamp, the volume of
interference for the contact and the penetration depth of the contact.



4 SMS API Validation

An SMS API Validation Test Suite, consisting of a set of test cases used to verify the
fidelity of the SMS API based simulations, has been implemented and submitted as
part of this report. Each of the tests is described in the following section, including the
motivation behind each test, the experimental setup as well as the results of simulation.
The SMS Validation Test Suite should also be referred to for examples of how the SMS
API is used to set up and execute similar simulations.

4.1 Cable Class Validation
4.1.1 Beam Deflection Test
4.1.1.1 Motivation

The purpose of this test is to validate the cable bending stresses by comparing against
an analytical solution.

4.1.1.2 Experimental Setup

The deflection δ of a cantilevered beam of length L = 3 m due to a tip load of F = 5e4
N as shown in Figure 28 is calculated as:

δ =
FL3

3EI
(105)

where EI = 1e6 Nm2 is the bending stiffness of the cable. A simulation was executed,
in a gravity free environment, by modeling the beam with an SMS::Cable object made
of 3 elements of equal lengths. The expected cable deflection of 0.45 m, was compared
against the simulation results.

In addition, the period of oscillation τbeam of the cantilevered beam is calculated as [42]:

τbeam =
π

3.52
√

EI
wL4

(106)

where w is the weight per unit length of the cable and can be calculated using the
SMS::Cable’s diameter of 0.1 m and its material density of 1000 kg/m3. The expected
period of oscillation of the beam, 0.045022 s, was compared against the simulation
results.



F

δ

Figure 28: Schematic of the beam bending test that will be used to validate the cable
model

4.1.1.3 Simulation Results

Figure 29 shows the deflection of the cantilever beam tip over time. The period of
oscillation was found to be 0.046612 seconds, a 3.5% difference of predicted. The
average tip deflection was found to be 0.434 m, a 3.5% difference from predicted. Take
note that some light hydrodynamic forces were supplied to the cable model to provide
some vibrational damping and help maintain simulation stability.
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Figure 29: The tip deflection of vibrating beam modelled with an SMS::Cable.



4.1.2 Pendulum Period of Oscillation Test

This test has been implemented in tandem with a Payload validation test and can be
found in Section 4.3.5.

4.1.3 Torsion Period of Oscillation Test

This test has been implemented in tandem with a Payload validation test and can be
found in Section 4.3.6.

4.1.4 Top Node Oscillation Test
4.1.4.1 Motivation

The purpose of this test is to demonstrate the SMS API’s capability to simulate both
slack and taut cables.

4.1.4.2 Experimental Setup

To qualitatively show the capabilities of the SMS::Cable model in low tension and high
tension states, within a single simulation, a 20 m long verticle cable with 4 elements of
equal lengths is simulated with a SMS::Payload attached at the bottom node while the
top node of the SMS::Cable is oscillated in three dimensions as shown in Figure 30. The
free end of the cable will be oscillated in three dimensions according to the following
equations of motion:

r(0) = [Ax sin(ωxt+ φx) Ay sin(ωyt+ φy) Az sin(ωzt+ φz)]
T (107)

where Ax, Ay, Az = 2, 2, 2 are the amplitudes of oscillation in theX, Y , and Z directions
respectively, ωx, ωy, ωz = 0.09, 0.05, 1.5 are the frequency of oscillation in the X, Y , and
Z directions respectively, φx, φy, φz = 0, 0, 0 are the phase angle offsets of oscillation in
the X, Y , and Z directions respectively and t is time.

The SMS::Cable has a bending stiffness of 0.0 Nm2, axial stiffness of 8.0e5 N, and
torsional stiffness of 0.0 Nm2, a diameter of 0.005 m a density of 7700 kg/m3 and a
CID set at 5e3. Node N of the cable is attached to the SMS::Payload at its body-fixed
frame origin. The SMS::Payload is modeled as a sphere with a radius of 0.7 m, a mass
of 1400 kg, a density of 1000 kg/m3 and is located at [0, 0,−20]T .

The simulated tensions in the SMS::Cable as well as the position of its NodeN , the same
as the SMS::Payload’s body-fixed frame origin, are plotted over time in Section 4.1.4.3.



X̂

Ẑ

Ŷ

Figure 30: The figure shows the test that will demonstrate both the low tension and
high tension capabilities that the chosen cable model is capable of modeling. The top
node of the cable will be oscillated in three dimensions. The resulting harmonic motion
of the free end of the cable is shown.



4.1.4.3 Simulation Results

As anticipated, Figure 31 show the payload is heavily influenced by large Ẑ oscillations
of the top node, while the period of oscillation of the pendulum is low enough that the
X̂ and Ŷ position of the SMS::Payload changes much more slowly. Figure 32, shows
the tension in the cable oscillating and transitioning into slack states, like a mass on
an elastic.
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Figure 31: The position of the cable’s node N over time.
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Figure 32: The tension in the 4th element of the cable over time.



4.1.5 Validation Data from Literature

A qualitative evaluation of an earlier version of the cable model that is presented here
is given in [5]. In this publication an experiment is performed in which the top node
of a 4.12m length ROV tether is oscillated in a water filled basin. Video footage of the
maneuver was captured and compared with an animation of simulation results of the
tether as shown in Figure 33 and Figure 34.



Figure 33: A three frame comparison of the cable model simulation results (animations
on left) and pool test results (pictures on right)

Figure 34: This figure shows data gathered by scaling the video frames shown in Fig-
ure 33, this was done in an effort to quantify the results from those tests. The small
discrepancies between the simulated and tested results is due to permanent plastic
deformations in the umbilical that was tested.



4.2 Winch Class Validation

All of the SMS::Cables simulated here have the following physical properties set in the
.ini file:

$EA 8.0e5

$EI 0

$GJ 0

$rho_cable 7700.0

$dia_cable 0.005

$0|IC 0 0 0 0 0 0

$1|IC -2.434652e-001 2.915689e-001 0 0 8.295825e-003 -1.000028e+001

$2|IC -4.996554e-001 5.767018e-001 0 0 1.569803e-002 -2.000128e+001

$3|IC -4.996554e-001 5.767018e-001 0 0 1.569803e-002 -3.000128e+001

$ElementLengths 10 10 10

4.2.1 Constant Tension Winch Control Test with Oscillating Load
Perturbation at Free Node

4.2.1.1 Motivation

The purpose of this test is to show that even with an oscillating free node load, the
tension in the SMS::Cable is held at the tension setpoint by the SMS::Winch tension
controller.

4.2.1.2 Experimental Setup

To verify that the winch tension controller was functioning properly, a 30 meter long
axially stiff SMS::Cable with three elements was created with a SMS::Winch attached
to its node 0 (see Figure 35). A 200 kg SMS::Payload was attached to the SMS::Cable’s
Node N position. An oscillating external load was then applied to the SMS::Payload

of:

f(telapsed) =

⎡
⎣ 0

0
250 sin(2π

5
telapsed)

⎤
⎦ (108)

The tension in the SMS::Cable over the simulation period of 10 seconds, at the element
between node 0 and node 1, was verified against its tension control set point of 2006.1 N,
which is equal to the weight of the payload and the cable.



30m

Node N

Node 0

Winch object

Payload

200 kg

f(telapsed)

Figure 35: The experimental setup for the winch constant tension and constant velocity
tests.

4.2.1.3 Simulation Results

In response to the oscillating force applied to the SMS::Payload, the SMS::Winch pays
out and pays in cable, as shown in Figure 36. Figure 37 shows the tension in the
first element of the SMS::Cable over the course of the 10 second simulation. There
were some start up transient effects due to the action of the PID controller, but the
commanded tension of 2006.1 N was maintained throughout the remaining simulation.
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Figure 36: Shows the winch payout velocity during the constant tension winch test.
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Figure 37: The figure shows the tension in the cable during the constant tension test.
The winch in this test is responding to tension changes in the cable using a PID con-
troller; the winch pays out and pays in to increase or decrease the tension, as shown in
Figure 36.



4.2.2 Varying Tension Setpoint Winch Test
4.2.2.1 Motivation

The purpose of this test is to demonstrate that the SMS::Winch will maintain the tension
at set point of a tension controller when the tension setpoint is varied sinusoidally
through time.

4.2.2.2 Experimental Setup

Using the test setup from the constant tension test (see Section 4.2.1), without the
oscillating load on the SMS::Payload, a simulation was performed on the SMS::Winch

controller where tension setpoint was varied over time as:

fsetpoint(telapsed) = 2006.1 + 250 sin(
2π

5
telapsed) (109)

The simulated tension in the SMS::Cable is then compared against the tension setpoint.

4.2.2.3 Simulation Results

Figure 38 shows the tension in the first element of the SMS::Cable over the course
of the 20 second simulation. Figure 39 shows the SMS::Winch payout velocity of the
SMS::Cable over the course of the 20 second simulation. There were some start up
transient effects due to the initial action of the PID controller, but the commanded
tension was maintained throughout the remaining simulation.
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Figure 38: The tension in the first element of the cable with a time varying tension
setpoint of a winch tension controller.
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Figure 39: The winch payout velocity for the varying tension setpoint test is shown.
Note the payout velocity required to follow the tension setpoint changes as the total
length and mass of the cable is increased.



4.2.3 Varying Velocity Setpoint Winch Test
4.2.3.1 Motivation

The purpose of this test is to demonstrate that the SMS::Winch will maintain the payout
rate dictated by the set point of the SMS::Winch velocity controller when the velocity
setpoint is varied sinusoidally through time.

4.2.3.2 Experimental Setup

To verify that the SMS::Winch velocity controller was functioning properly, a 30 me-
ter long axially stiff SMS::Cable with three elements was created with a SMS::Winch

attached to its node 0 (see Figure 35). The SMS::Winch object velocity set point was
then set to:

v(Winch)(telapsed) =

⎡
⎣ 0

0
sin(2π

5
telapsed)

⎤
⎦ (110)

at every output cycle (0.01 seconds of elapsed time).

The velocity of the SMS::Cable’s last node over the simulation period of 20 seconds was
compared against its velocity control set points from equation 110. Because the velocity
control set points are sinusoidal, the velocity period of oscillation and amplitude of the
SMS::Cable’s node N were compared against that of the SMS::Winch’s setpoint.
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Figure 40: The velocity of a the cable’s last node whose winch was instructed to payout
the cable at an oscillating velocity.

4.2.3.3 Simulation Results

Figure 40 shows the velocity of the Nth node of the SMS::Cable due to the commanded
SMS::Winch pay out velocity. Since the cable was hanging vertically, the velocity of the
Nth node of the SMS::Cable matches the SMS::Winch velocity setpoint. The expected
and simulated period of oscillation and amplitude of oscillation can be found in Table 6.

Output Variable Expected Simulated

τ
(1)
vec 5.0 4.9648
A 1.0 1.0985

Table 6: Expected and Simulated Cable Velocity Period and Amplitude of Oscillation
at Node 1



4.2.4 Constant Velocity Winch Control Test with Oscillating Load
Perturbation at Free Node

4.2.4.1 Motivation

The purpose of this test is to show that even with an oscillating free node load, the
payout velocity of the SMS::Cable is held at the velocity setpoint of the SMS::Winch’s
velocity controller.

4.2.4.2 Experimental Setup

To show that the SMS::Winch’s velocity controller is able to maintain a user specified
payout velocity setpoint, a 30 meter long axially stiff SMS::Cable with three elements
was created with a SMS::Winch attached to node 0 (see Figure 35). In addition, an
oscillating load was applied to node N of the SMS::Cable to see if the SMS::Winch

controller could manage the tension disturbances. The SMS::Winch object velocity set
point is then set to a constant v(Winch)(telapsed) = 1. An oscillatory load was applied to
the SMS::Cable by attaching a SMS::Payload with a mass of 1 kg at the cable’s node N
and then applying a force to the SMS::Payload of f = [0, 0,−40 + 30 sin(2π

5
t), 0, 0, 0]T .

4.2.4.3 Simulation Results

Figure 41 shows both the payout velocity of the SMS::Winch and of the Nth node of the
SMS::Cable. A positive pay out rate represents the adding length to the SMS::Cable,
which was negated and overlayed here over the node velocity to show the difference
between the Node N velocity and the winch payout velocity. The velocity of the Nth
node of the SMS::Cable matches closely the SMS::Winch payout velocity. Figure 42
shows the tension in the first element of the SMS::Cable due to the payout speed and
the disturbance load applied to the SMS::Payload. In Figure 42, the mean tension
increases due to the increasing length, and therefore increased hanging weight, of the
SMS::Cable. Take note that the acceleration and deceleration limits were set to +/-
0.1 m/s2.
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Figure 41: The cable payout velocity for the winch with an applied oscillatory load on
the cable.
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Figure 42: The tension in the cable where the winch tries to maintain payout velocity
while an oscillatory load is applied to the cable.



4.3 Payload Class Validation
4.3.1 Linear Acceleration
4.3.1.1 Motivation

The purpose of this test is to compare the simulated SMS::Payload’s displacement after
an elapsed time under an applied constant linear force against the expected analytical
displacement.

4.3.1.2 Experimental Setup

A force of EF = [0.01, 0.01, 0.01, 0.0, 0.0, 0.0]T is applied to the SMS::Payload causing
an acceleration (see Figure 43). The box has a mass of 5 kg and side lengths of 2.45 m.
After 20 seconds of time has elapsed, the displacement of the payload is measured and
compared against expected analytical results:

Epcg(t) =
E pcg(0) +

E vcg(0)t+ 0.5EM−1 EFt2 (111)

where Evcg =
E RB

Bvcg is the spatial vector of the velocity of the rigidbody expressed
with respect to the frame E and ERB is a 6 × 6 matrix that rotates a spatial vector
from one frame to another and is expressed as:

ERB =

∣∣∣∣ R1 03×3

03×3 R2

∣∣∣∣ (112)

where R2 = R1.

4.3.1.3 Simulation Results

Table 7 shows the expected final spatial velocity vector and the simulated final spatial
velocity vector.

Variable Expected Velocity Simulated Velocity

Eυcg

⎡
⎢⎢⎢⎢⎢⎢⎣

0.4
0.4
0.4
0.0
0.0
0.0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0.40000000000000790
0.40000000000000790
0.40000000000000790
0.00000000000000000
0.00000000000000000
0.00000000000000000

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 7: The expected and simulated velocity for a SMS::Payload with a force applied
about each linear DOFs.
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Figure 43: The forcing of the rigid body for the linear acceleration test.

4.3.2 Angular Acceleration
4.3.2.1 Motivation

To compare the simulated SMS::Payload’s angular velocity after elapsed time with an
applied constant moment against an analytical solution.

4.3.2.2 Experimental Setup

A moment of EF = [0.0, 0.0, 0.0, 0.01, 0.01, 0.01]T is applied to the SMS::Payload caus-
ing an acceleration (see Figure 44). After 20 seconds of time has elapsed, the angular
velocity of the payload is measured and compared against expected analytical results:

It should be noted that orientation here is described with Euler angles about the axes
of a non-orthogonal frame. In order to validate the angular acceleration, the angular
velocity vector about the body-fixed frame is transformed to the inertial frame (both
orthogonal frames), which facilitates validation.

Evcg(t) =
E vcg(0) +

E M−1 EFt (113)
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Figure 44: The forcing of the rigid body for the angular acceleration test.

4.3.2.3 Simulation Results

Table 8 shows the expected final spatial velocity vector and the simulated final spatial
velocity vector.

Variable Expected Velocity Simulated Velocity

Eυcg

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0
0.0
0.0
0.04
0.04
0.04

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0.00000000000000000
0.00000000000000000
0.00000000000000000
0.039997500102352207
0.039997500018007048
0.039997500041729239

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 8: The expected and simulated velocity for a SMS::Payload with a force applied
about each angular DOF.



4.3.3 Combined Linear and Angular Acceleration
4.3.3.1 Motivation

The purpose of this test is to compare the SMS::Payload’s simulated linear displacement
and angular velocity after an elapsed time, with an applied constant linear force and
moment, against an analytical solution.

4.3.3.2 Experimental Setup

A force and moment of EF = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01]T is applied to the SMS::-
Payload causing an acceleration (see Figure 45). After 20 seconds of time has elapsed,
the linear and angular velocity of the SMS::Payload is measured and compared against
expected analytical results.

Bυcg(t) =
E υcg(0)+ =E M−1 EFt (114)

It should be noted that orientation here is described as angles about the axes of a non-
orthogonal frame; therefore, in order to validate the angular acceleration, the angular
velocity vector described about the body-fixed frame is transformed to the inertial frame
which is then used to validate the rigid body model.

4.3.3.3 Simulation Results

Table 9 shows the expected final spatial velocity vector and the simulated final spatial
velocity vector.

Variable Expected Velocity Simulated Velocity

Eυcg

⎡
⎢⎢⎢⎢⎢⎢⎣

0.04
0.04
0.04
0.04
0.04
0.04

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0.039999749999997655
0.039999749999997627
0.039999749999997662
0.039999750000003116
0.039999750000003428
0.039999750000003199

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 9: The expected and simulated velocity for a SMS::Payload with a force applied
about each of its 6 DOF.
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Figure 45: The forcing of the rigid body for the linear and angular acceleration test.

4.3.4 Payload−Cable Attach
4.3.4.1 Motivation

The purpose of this test is to show that an SMS::Payload can be attached to an
SMS::Cable and have the SMS::Cable support the weight of the SMS::Payload.

4.3.4.2 Experimental Setup

The SMS::Payload is attached to the free end of an SMS::Cable whose other end is
fixed in space at [0, 0, 0]T . The simulation is run for 60 seconds and the final resting
position of the payload as well as the tension in the cable are compared with expected
results.

The tension in the SMS::Cable at the final element should be:

Ft = mg (115)

where g = 9.81 and m = 5 kg and the final position in Ẑ should be equal to the
stretched length of the cable. Since the mass of the SMS::Payload is relatively small,
the strain in the cable will be relatively small, thus; the unstreched SMS::Cable length
should be approximately the same as the stretched cable length.



4.3.4.3 Simulation Results

Table 10 compares the simulated and expected steady state tensions in the SMS::Cable
and the final resting position of the SMS::Payload.

Variable Expected Results Simulated Results
Ft 49.5 49.06894
Pẑ -20.0 -20.00108

Table 10: Expected and simulated SMS::Cable tension at the attachment point and
the final resting position of the SMS::Payload.



4.3.5 Payload−Cable Pendulum
4.3.5.1 Motivation

The purpose of this test is to attach the SMS::Payload to the bottom end of a verti-
cal SMS::Cable and measure period of oscillation induced from a small initial lateral
displacement and compare it against analytical.

4.3.5.2 Experimental Setup

A SMS::Payload is attached to the free end of a SMS::Cable whose other end is fixed
in space at [0, 0, 0]T . The SMS::Payload moved such that it has a small lateral dis-
placement from vertical (see Figure 46). The simulation is executed for 60 seconds.
The position of the SMS::Payload through time is processed through pwelch, a signal
processing tool for Matlab and GNU/Octave to obtain the oscillation period.

For small deflections, the analytical period of oscillation for a lumped mass at the end
of a massless cable is:

tPendulum = 2π

√
L

g
(116)

where tPendulum is the period of oscillation, L is the length of the cable and g is the
gravitational acceleration.

4.3.5.3 Simulation Results

Table 11 compares the simulated and expected periods of oscillation of SMS::Cable

and a SMS::Payload.

Variable Expected Results Simulated Results
tPendulum 8.97 8.85

Table 11: Expected and simulated period of oscillation of pendulum with SMS::Cable

and SMS::Payload.
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Figure 46: Diagram of an experiment to test the period of oscillation, a function of
gravity and cable length, of a pendulum.

4.3.6 Payload−Cable Torsion
4.3.6.1 Motivation

The purpose of this test is to show that an SMS::Payload attached to the bottom end of
a vertical SMS::Cable, with an initial SMS::Payload angular velocity about the Ẑ axis,
the system will have a torsional period of oscillation equal to the analytical solution.

4.3.6.2 Experimental Setup

An SMS::Payload is attached to the free end of a cable whose other end is fixed in space
at [0, 0, 0]T . The payload is given an initial angular velocity about the vertical axis, Ẑ
(see Figure 47). The simulation is executed for 60 seconds. The yaw orientation of the
payload through time is processed with pwelch, a signal processing tool for Matlab and
GNU/Octave to obtain the oscillation period.

The period of oscillation follows from the solution to a torsional mass-spring-damper
equation:

tTorsional = 2π

√
LIz
GJ

(117)
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Figure 47: Diagram of an experiment to test the period of oscillation of a mass twisting
about the axis of a taut cable which it is attached to.

where tTorsional is the period of oscillation, L is the length of the cable, GJ is the
torsional stiffness of the cable, and Iz is the total mass moment of inertia about the
axis of rotation, Ẑ.

4.3.6.3 Simulation Results

Table 12 compares the simulated and expected periods of torsional oscillation a pendu-
lum consisting of a SMS::Cable and a SMS::Payload.

Variable Expected Results Simulated Results
tTorsion 6.2832 6.2864

Table 12: Expected and simulated SMS::Cable-SMS::Payload period of oscillation in
torsion.



4.4 BoomCrane Class Validation
4.4.1 Revolute Joint Test
4.4.1.1 Motivation

The purpose of this validation test is to ensure that links with revolute proximal joints
function properly. A single link with an off-CG revolute proximal joint oscillates under
gravity. The period of oscillation is compared against the analytical equation for period
of oscillation of a pendulum.

4.4.1.2 Experimental Setup

An articulated body (see Figure 48) is defined by the D-H Parameters given in Table
13.

Link id αi ai di θi
1 0 2 0 -89.9*

Table 13: D-H Parameters for the revolute joint validation test.

The origin of the body-fixed reference frame is coincident with the origin of the Earth-
fixed reference frame at p, and the orientation of the body-fixed frame is rotated by
90 degrees about the common x̂-axis from the Earth-fixed frame. This state can be

represented by the array P̌
(1)
E→p =

[
0 0 0 π

2
0 0

]T
.

The SMS::Boomcrane’s only link’s rigid body, a rectangular cuboid with a mass of 10
kg, density of 7778 kg/m3 and dimensions of Lx = 2 m, Ly = 0.025 m, and Lz = 0.025 m
has the following mass properties:

MCG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.001 0 0
0 0 0 0 3.334 0
0 0 0 0 0 3.334

⎤
⎥⎥⎥⎥⎥⎥⎦

(118)

and the position of the rigid body’s center of gravity relative to p, P̌
(i)
p→CG, can be

represented by the vector P̌
(i)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Figure 48: The experimental setup for the revolute joint validation test. Shown here
with no joint displacement.



Gravity will impose a force at the CG of the rigid body which will cause the link to
pendulate about its revolute joint axis. The expected period of oscillation of a rigid
body about an off-CG revolute joint is:

τrev = 2π

√
I
(1)
p

m(1)gL
(119)

where I
(i)
p is the moment of inertia of the rigid body about its proximal joint p frame,

m is the mass of the rigid body, g is the gravity acceleration, and L is the distance
between the axis of rotation and the CG.

4.4.1.3 Simulation Results

The simulated period of oscillation of a single-link, revolute joint SMS::BoomCrane

oscillating under gravity is presented in Table 14 along with the expected analytical
results for comparision.

Variable Expected Period Simulated Period

τrev 2π
√

14.1667kgm2

(10kg)(9.81m/s2)(1m)
= 2.3153 s 2.3076 s

Table 14: The simulated and expected period of oscillation of a single revolute joint
link under gravity.



4.4.2 Prismatic Joint Test
4.4.2.1 Motivation

The purpose of this validation test is to ensure that links with prismatic proximal
joints function properly. A single link with a prismatic proximal joint falls freely under
gravity. The final position of the joint after an elapsed period of time is compared
against analytical expected result.

4.4.2.2 Experimental Setup

An articulated body (see Figure 49) is defined by D-H Parameters given in Table 15.

Link id αi ai di θi
1 0 0 0* 0

Table 15: D-H Parameters for the prismatic joint validation test.

The base frame relative to the Earth-fixed frame, P̌
(1)
E→p is made of the 3 Cartesian

vector position components and 3 Euler angles components that define its orientation.

In this case P̌
(1)
E→p =

[
0 0 0 0 0 0

]T
. This defines the first joint’s frame.

The SMS::Boomcrane’s only link’s rigid body, a rectangular cuboid with a mass of 10
kg, density of 7778 kg/m3 and dimensions of Lx = 2 m, Ly = 0.025 m, and Lz = 0.025 m
has the following mass properties:

MCG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.001042 0 0
0 0 0 0 3.334 0
0 0 0 0 0 3.334

⎤
⎥⎥⎥⎥⎥⎥⎦

(120)

The position of the rigid body, P̌
(1)
p→CG, made of the 3 Cartesian position components

and 3 Euler angles that define the orientation is defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(121)
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Figure 49: The experimental setup for the prismatic joint validation test. Shown here
with a joint displacement of d1.

Gravity will impose a force at the CG of the rigid body which will cause the link to fall
along its prismatic joint axis. The joint position after an amount of time has elapsed
is:

ε1(telapsed) = ε̇1(0) telapsed + 0.5 g t2elapsed (122)

where g is the gravitational acceleration, telapsed is the elapsed time and ε1 is the joint
displacement.

4.4.2.3 Simulation Results

The simulated displacement of a single-link, prismatic joint SMS::BoomCrane falling
under gravity is presented in Table 16 along with the expected analytical results for
comparision.

Variable Expected Joint Displacement Simulated Displacement

ε
(1)
p (30) (0.5) (9.81 m/s2) (30s)2 = 4414.5 m 4414.5 m

Table 16: The simulated and expected joint displacement for the Prismatic Joint Test.



4.4.3 Double Pendulum Test
4.4.3.1 Motivation

The motivation of this experiment is to test a more complex dynamic motion with
multiple degrees of freedom. In this case, a double pendulum is simulated with the use
of two dynamic revolute joints.

4.4.3.2 Experimental Setup

An articulated body (see Figure 50) is defined by the D-H Parameters given in Table 17.

ŷ0

0
θ1 = ε1 = −89.9◦

x̂1,ŷ
(1)
CG

CG1, 1

x̂0

x̂1,x̂
(1)
CG

ŷ
(2)
CG

x̂
(2)
CG

CG2

θ2 = ε2 = 0

Figure 50: The experimental setup for the pendulum validation test.

Link id αi ai di θi
1 0 10 0 -89.9*
2 0 7 0 0*

Table 17: D-H Parameters for the pendulum boom crane joint validation test.

The base frame relative to the Earth-fixed frame, P̌
(1)
E→p, made of the 3 Cartesian posi-

tion components and 3 Euler angles that define the orientation is
[
0 0 0 π

2
0 0

]T
.



This defines the first joint’s frame.

Each rigid link is modeled as a sphere whose center is at the CG. Each link has a mass
of 10 kg and cylindrical rod connecting it to the center of rotation of the first joint.
The sphere’s radius is 0.06745 m and thus has the density of steel. Since the rod mass
is much less than the sphere, it is assumed to have no mass contribution to the link.
The rigid-body mass properties for link 1 are:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.018171 0 0
0 0 0 0 0.018171 0
0 0 0 0 0 0.018171

⎤
⎥⎥⎥⎥⎥⎥⎦

(123)

and for link 2:

M
(2)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.018171 0 0
0 0 0 0 0.018171 0
0 0 0 0 0 0.018171

⎤
⎥⎥⎥⎥⎥⎥⎦

(124)

The position of the rigid body of the first link about its proximal joint frame, P̌
(1)
p→CG,

is made of the 3 Cartesian vector position components and 3 Euler angles that define
its orientation is defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(125)

while the position of the rigid body of the second link about its proximal joint frame,
P̌

(2)
p→CG, is defined as:

P̌
(2)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

7
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(126)



To simplify the analytical derivation, rigid body links are treated as point masses. The
Lagrangian for such a 2 DOF system of point masses is described as [42]:

L = T − V (127)

where

T =
1

2
m1l

2
1γ̇

2
1 +

1

2
m2l

2
1γ̇

2
1 +

1

2
m2l

2
2γ̇

2
2 +m2l1l2γ̇1γ̇2ẑ1 · ẑ2 (128)

V = m1g(l1 − l1 cos(γ1)) +m2g(l1 + l2 − l1 cos(γ1)− l2 cos(γ2)) (129)

where m1 and m2 are the masses of the point masses for each link, g is the gravitational
acceleration and l1 and l2 are the distance between the joints/CGs. In this analysis,
γ1 is the angle of the joint about the vertical, because this differs from our choice of
frames for this articulated body experimental setup, we set γ1 = 90◦ − ε1 and γ2 = ε2.
This allows the use of the small angle approximation for linearizing equations 128 and
129.

The equations are linearized with the assumption that when γ1, γ2 << 1 and ẑ1 · ẑ2 ≈ 1

then cos(γ)i ≈ 1−
γ2
i

2
and sin(γ)i ≈ γi. Both T and V then become:

T ≈
1

2
m1l

2
1γ̇

2
1 +

1

2
m2l

2
1γ̇

2
1 +

1

2
m2l

2
2γ̇

2
2 +m2l1l2γ̇1γ̇2 (130)

V ≈
1

2
(m1gl1γ

2
1 +m2gl1γ

2
1 +m2gl2γ

2
2) (131)

Substituting into the Euler-Lagrange equation and with the assumption that no non-
potential work is done:

d

dt

(
∂L

∂γ̇i

)
=

(
∂L

∂γi

)
(132)

leads to: [
l1(m1 +m2) m2l2

l1 l2

] [
γ̈1
γ̈2

]
= −

[
(m1 +m2)g 0

0 g

] [
γ1
γ2

]
(133)

or

[M] [γ̈] + [K] [γ] = 0 (134)

Equation 134 is the equation of motion of the 2 DOF system. Linear differential equa-
tions accept solutions in the form of [43]:

[γ] = [Γ]eiwt (135)



and so:

(
− [M]ω2 + [K]

)
[Γ] eiωt = 0 (136)

Because eiωt cannot equal 0, equation 134 becomes:[
− [M]ω2 + [K]

]
[Γ] = 0 (137)

This is then treated as an eigenvalue problem and the natural frequencies of the system
can be extracted accordingly. [

[M]−1 [K]− ω2 [I]
]
[Γ] = 0 (138)

[[A]− λ [I]] [Γ] = 0 (139)

4.4.3.3 Simulation Results

Figure 51 indicates the frequency power spectrum plot produced from analysis of the
time history of the first dynamic joint motion. The two peaks indicate two strong
modes of vibration that correspond to the natural frequencies of the double pendulum.
The expected and simulated periods of oscillation are provided in Table 18.

Variable Expected Period Simulated Period
τpendulum(1stNaturalPeriod) 3.104088 s 3.114829 s
τpendulum(2ndNaturalPeriod) 7.662144 s 7.550230 s

Table 18: The two first periods of oscillating of the SMS::BoomCrane double pendulum.
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Figure 51: The power spectral density of the oscillation of the simulated double pen-
dulum.



4.4.4 Centripetal Test
4.4.4.1 Motivation

The purpose of this validation test is to ensure that the kinematics of multi-link bodies
generate proper centripetal accelerations. This is measured here as the force required
to prevent a joint from accelerating.

4.4.4.2 Experimental Setup

An articulated body (see Figure 52) is defined D-H Parameters given in Table 19.

ŷ
(1)
p , x̂

(2)
p , X̂

x̂ x̂

0, 1

θ1 = ε1 = 0

x̂
(2)
CG

ẑ
(2)
CGx̂

(1)
p , ẑ

(2)
p , X̂ CG

f̂
(2)
cg

Figure 52: The experimental setup for the centripetal, Coriolis and conservation of
energy validation tests. Shown here with joint displacement of θ1 = ε1 = 0.

Link id αi ai di θi
1 90 0 0 90*
2 0 0 0* 0

Table 19: D-H Parameters for the centripetal boom crane joint validation test.

The base frame relative to the Earth-fixed frame, P̌
(1)
E→p, is made of 3 Cartesian vector

position components and 3 Euler angle components that define its orientation. It is

defined here as: P̌
(1)
E→p =

[
0 0 0 0 0 0

]T
, which defines the first joint’s frame.

The rigid body for link 1, a rectangular cuboid with a mass of 10 kg and dimensions of



Lx = 2 m, Ly = 0.025 m, and Lz = 0.025 m having the following mass properties:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.001 0 0
0 0 0 0 3.334 0
0 0 0 0 0 3.334

⎤
⎥⎥⎥⎥⎥⎥⎦

(140)

and the rigid body for link 2, a disk with a mass of 10 kg, a thickness of 0.25 m, a
radius of 0.0404 m, and thus has the following mass properties:

M
(2)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.082 0 0
0 0 0 0 0.056 0
0 0 0 0 0 0.056

⎤
⎥⎥⎥⎥⎥⎥⎦

(141)

The position of the rigid body of the first link about the first joint, P̌
(1)
p→CG, made of

the 3 Cartesian position components and 3 Euler angles that define the orientation, is
defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(142)

while the position of the rigid body of the second link about the second joint, P̌
(2)
p→CG,

is defined as:

P̌
(2)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(143)

To verify that the boom crane centripetal forces are behaving properly, the velocity of
joint 1 is maintained at 1 rad/s while the force required to maintain zero displacement

of joint 2 is compared against expected: −m(2)
CGε̇

2
1|P1→CG(2)|, where |P1→CG(2)| is the

magnitude of the position of link 2’s rigid body to link 1’s proximal joint frame, ε̇1 is
link 1’s proximal joint actuation rate, and m

(2)
CG is the mass of link 2’s rigid body.



4.4.4.3 Simulation Results

Table 20 shows the expected and simulated centripetal force acting on the 2nd link of
the SMS::BoomCrane.

Variable Expected Simulated
Centripetal Force Simulated Centripetal Force

f −m
(2)
CGε̇

2
1|x̂

(1)
p ·P1→CG(2) | -10.000010 N

= −(10kg)(1rad/s)2(1 m) = -10 N

Table 20: The expected and simulated centripetal forces for an SMS::BoomCrane.



4.4.5 Coriolis Test
4.4.5.1 Motivation

The purpose of this validation test is to ensure that the kinematics of multi-link bodies
generate proper Coriolis accelerations.

4.4.5.2 Experimental Setup

The articulated body here is defined as in Section 4.4.4 except joint 2 is not restrained.

To verify that the boom crane Coriolis effect is accounted for properly, the velocity of
joint 1 is maintained at 1 rad/s while the acceleration of joint 2 is compared against
expected: 2ε̇1ε̇2.

4.4.5.3 Simulation Results

Table 21 shows the expected and simulated Coriolis acceleration experienced by the
2nd link of the SMS::BoomCrane.

Variable Expected Coriolis Acceleration Simulated Coriolis Acceleration
a 2ε̇1ε̇2 = (2)(1 rad/s)(0.009901 rad/s) 0.019465 m/s2

= 0.019802 m/s2

Table 21: The expected and simulated coriolis acceleration experienced by the second
link of a SMS::BoomCrane.



4.4.6 Conservation of Energy Test
4.4.6.1 Motivation

The purpose of this validation test is to ensure that the energy of the articulated body
is always preserved. This is tested with a two-link mechanism where the proximal
joint of the first link is a revolute joint with an initial non-zero joint rate, and the
second link has a prismatic proximal joint with an initial joint rate of 0. The system is
simulated until the joint rate of the first joint drops to zero because all of the energy
was transferred to the second link. The energy at simulation start is compared against
the energy at the end of the simulation.

4.4.6.2 Experimental Setup

The articulated body here is defined as in Section 4.4.4. To verify that energy is properly
conserved, an initial velocity of 1 rad/s is applied to joint 1. A centripetal force will
cause link 2 to actuate about its prismatic joint. The expected result is that link 1 will
transfer all of its energy to link 2. The total kinetic energy at the start, t = 0, must be
the same as the total energy at the end, t = tel.

The energy balance equation can be described considering both the linear and angular
components of energy as:

1

2
m

(2)
CG(ε̇1(0)|P1→CG(2)|)2 +

1

2
I(2)zz

ε̇1(0)

r

2

=
1

2
m

(2)
(CG)ε̇2(tel)

2 +
1

2
I(2)zz

ε̇1(tel)

r

2

(144)

4.4.6.3 Simulation Results

Table 22 compares the expected final velocity assuming kinetic energy was conserved
against the simulated final velocity of the proximal joint of the 2nd link of the SMS::

BoomCrane.

Variable Expected Joint Velocity Simulated Joint Velocity
ε̇2 1.1547 m/s 1.1565 m/s

Table 22: The expected and final velocity of the proximal joint of the 2nd link of the
SMS::Boomcrane conservation of energy test.
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Figure 53: The experimental setup for the boomcrane-cable-payload attachment vali-
dation test. Shown here with no joint displacement.

4.4.7 BoomCrane-Cable-Payload Static Test
4.4.7.1 Motivation

The purpose of this validation test is to demonstrate that an SMS::BoomCrane, SMS::
Cable, and SMS::Payload can all be attached together and will remain attached.

4.4.7.2 Experimental Setup

An articulated body is defined by the following D-H Parameters:

Link id αi ai di θi
1 0 0 0 0∗

Table 23: D-H Parameters for the payload attached to a cable that is attached to a
boom crane steady state validation test.

The base frame relative to the Earth-fixed frame, P̌
(1)
E→p is made of the 3 Cartesian

position components and 3 Euler angles that define its orientation. It is defined here



as P̌
(1)
E→p =

[
−1 0 0 0 0 0

]T
.

The rigid body for link 1, a rectangular cuboid with a mass of 10 kg and dimensions of
Lx = 1 m, Ly = 0.025 m, and Lz = 0.025 m has the following mass properties:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.01042 0 0
0 0 0 0 3.334 0
0 0 0 0 0 3.334

⎤
⎥⎥⎥⎥⎥⎥⎦

(145)

The position of the rigid body of the first link about the first joint, P̌
(1)
p→CG, made of

the 3 Cartesian position components and 3 Euler angles that define the orientation, is

defined as P̌
(1)
p→CG =

[
1 0 0 0 0 0

]T
.

An axially stiff cable, made of two 10 m long elements, with three nodes at [0, 0, 0]T ,
[0, 0,−10]T , and [0, 0,−20]T , is attached to the boom crane’s first link, at [1, 0, 0]T with
respect to the base. A distance is a scalar quantity.

A payload, whose rigid body is a rectangular cuboid with a mass of 5 kg, density of
7778 kg/m3 and dimensions of Lx = 0.01793 m, Ly = 0.01793 m, and Lz = 2 m has the
following mass properties:

MCG =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 1.667 0 0
0 0 0 0 1.667 0
0 0 0 0 0 2.679e−4

⎤
⎥⎥⎥⎥⎥⎥⎦

(146)

The other end of the cable is attached at [0, 0, 1]T with respect to the payload’s body-
fixed frame, CG, which is located at [0, 0,−21]T .

The simulation is advanced for 30 seconds and the final payload position should be
approximately [0, 0,−21]T ; there will be a small deviation due to cable elasticity.

4.4.7.3 Simulation Results

The final position of the SMS::Payload after the simulation time has elapsed is pre-
sented in Table 24 with the expected final position for comparison.



Variable Expected Position Simulated Position

PE→CG

⎡
⎣ 0

0
−21

⎤
⎦

⎡
⎣ 0.00000

0.00000
−21.00141

⎤
⎦

Table 24: The position of the SMS::Payload attached to an SMS::Boomcrane via an
SMS::Cable after 30 seconds of simulation time.

4.4.8 BoomCrane-Cable-Payload Centripetal Test
4.4.8.1 Motivation

The purpose of this validation test is to quantitatively show that an assembled SMS::

BoomCrane, SMS::Cable, and SMS::Payload system will react in a predictable manner
when the SMS::Boomcrane’s revolute joint is actuated. This is accomplished with a
single link boom crane spinning in a circle about its revolute joint whose axis of rota-
tion is aligned with Ẑ. The centripetal acceleration of the payload will be resisted by
the tension in the cable. The simulated cable tension is compared against analytical
expectations.

4.4.8.2 Experimental Setup

An articulated body (see Figure 54) is defined by the following D-H Parameters:

Link id αi ai di θi
1 0 0 0 0∗

Table 25: D-H Parameters for the payload attached to a cable that’s attached to a
boom crane centripetal force validation test.

The base frame relative to the Earth-fixed frame of the boom crane is defined as:
P̌

(1)
E→p =

[
−100 0 1 0 0 0

]T
which is made of 3 Cartesian position components

followed by 3 Euler angles which defines its orientation.

The rigid body for link 1, a rectangular cuboid with a mass of 67500 kg, density of 2700
kg/m3 and dimensions of Lx = 100 m, Ly = 0.5 m, and Lz = 0.5 m has the following
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Figure 54: The experimental setup for the boomcrane-cable-payload centripetal vali-
dation test shown with no joint displacement.



mass properties:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

67500 0 0 0 0 0
0 67500 0 0 0 0
0 0 67500 0 0 0
0 0 0 2812.5 0 0
0 0 0 0 5.61e7 0
0 0 0 0 0 5.61e7

⎤
⎥⎥⎥⎥⎥⎥⎦

(147)

The position of the rigid body of the first link about the first joint, P̌
(1)
p→CG, made of

the 3 Cartesian position components and 3 Euler angles that define its orientation, is
defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

50
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(148)

An axially stiff cable, made of two 10 m long elements, with three nodes at [0, 0, 0]T ,
[0, 0,−10]T , and [0, 0,−20]T , is attached to the boom crane’s first link, at [50, 0, 0]T

with respect to the CG of the link or at [100, 0, 0]T with respect to the proximal joint.

A payload, whose rigid body has a rectangular cuboid with a mass of 5 kg, density of
7778 kg/m3 and dimensions of Lx = 0.01793 m, Ly = 0.01793 m, and Lz = 2 m has the
following mass properties:

MCG =

⎡
⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 1.667 0 0
0 0 0 0 1.667 0
0 0 0 0 0 2.679e−4

⎤
⎥⎥⎥⎥⎥⎥⎦

(149)

The other end of the cable is attached at [0, 0, 1]T with respect to the payload’s body-
fixed frame, CG, which is located at [0, 0,−21]T .

A 350 second simulation was run. After 1 second of simulation time has elapsed, the
boom crane’s first joint is given a joint actuation rate of 0.35 rad/s. After 100 seconds,
the tension in the cable at the payload attachment point is measured and the magnitude
of the X̂ and Ŷ components is averaged over the last 10 seconds and compared against
the expected centripetal force: mpayload|P

(1)

p→CGPayload −P
(1)

p→CGPayload · Ẑ|(ε̇1(tel))
2.



4.4.8.3 Simulation Results

The resulting simulated force the SMS::Cable is applying on the SMS::Payload for
this test is presented in Table 26 along with the expected analytical force for com-
parison. Note that the simulated force was sampled from the simulation when the
SMS::BoomCrane link was rotating at a rate of 0.014712 rad/s.

Variable Expected Horizontal Force Simulated Horizontal Force
F(tel) (5 kg)(100 m)(ε̇1(tel))

2 = 0.106404 N 0.105994 N

Table 26: The simulated and expected centripetal force for the SMS::BoomCrane-
SMS::Cable-SMS::Payload system.



4.4.9 Crane Passive Joint Limit Test
4.4.9.1 Motivation

This validation test has two purposes: to show that a complex crane similar to a
Palfinger-like mechanism can be modeled and to demonstrate that joint limits can be
enforced.

4.4.9.2 Experimental Setup

The Palfinger crane (see Figure 55) has the following D-H Parameters6:

Link id αi ai di θi
1 90 -0.65 1.4 0∗
2 0 1 0 0∗

3 90 0 0 90∗

4 0 0 0∗ 0
5 0 0 0∗ 0
6 0 0 0∗ 0
7 0 0 0∗ 0

Table 27: D-H Parameters for the Palfinger joint validation test.

x̂0

ẑ0

x̂1

ŷ1

x̂(2,3,4,5,6)

ŷ2, −ẑ3,4,5,6

Figure 55: The experimental setup for Palfinger boom crane validation tests. Shown
here with no joint displacement.

Its base frame relative to the Earth-fixed frame, P̌
(1)
E→p is made of 3 Cartesian position

6These D-H parameters are not entirely representative of an actual Palfinger crane.



components followed by 3 Euler angles which defines its orientation, defined here as[
−1.35 0 −1.4 0 0 0

]
. This defines the first joint’s frame.

The rigid body for link 1, a rectangular cuboid with a mass of 682.97 kg and dimensions
of Lx = 0.7 m, Ly = 0.7 m, and Lz = 1.4 m has the following mass properties:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

682.97 0 0 0 0 0
0 682.97 0 0 0 0
0 0 682.97 0 0 0
0 0 0 139.44 0 0
0 0 0 0 139.44 0
0 0 0 0 0 55.776

⎤
⎥⎥⎥⎥⎥⎥⎦

(150)

and the rigid body for link 2, a rectangular cuboid with a mass of 754 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(2)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

754 0 0 0 0 0
0 754 0 0 0 0
0 0 754 0 0 0
0 0 0 31.42 0 0
0 0 0 0 78.5 0
0 0 0 0 0 78.5

⎤
⎥⎥⎥⎥⎥⎥⎦

(151)

The rigid body for link 3, a rectangular cuboid with a mass of 285.22 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(3)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

285.22 0 0 0 0 0
0 285.22 0 0 0 0
0 0 285.22 0 0 0
0 0 0 11.8 0 0
0 0 0 0 29.71 0
0 0 0 0 0 29.71

⎤
⎥⎥⎥⎥⎥⎥⎦

(152)

The rigid body for link 4, a rectangular cuboid with a mass of 283.28 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(4)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

283.28 0 0 0 0 0
0 283.28 0 0 0 0
0 0 283.28 0 0 0
0 0 0 11.8 0 0
0 0 0 0 29.51 0
0 0 0 0 0 29.51

⎤
⎥⎥⎥⎥⎥⎥⎦

(153)



The rigid body for link 5, a rectangular cuboid with a mass of 254 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(5)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

254 0 0 0 0 0
0 254 0 0 0 0
0 0 254 0 0 0
0 0 0 10.58 0 0
0 0 0 0 26.46 0
0 0 0 0 0 26.46

⎤
⎥⎥⎥⎥⎥⎥⎦

(154)

The rigid body for link 6, a rectangular cuboid with a mass of 181.85 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(6)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

181.85 0 0 0 0 0
0 181.85 0 0 0 0
0 0 181.85 0 0 0
0 0 0 7.58 0 0
0 0 0 0 18.94 0
0 0 0 0 0 18.94

⎤
⎥⎥⎥⎥⎥⎥⎦

(155)

The rigid body for link 7, a rectangular cuboid with a mass of 95 kg and dimensions of
Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(7)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

95 0 0 0 0 0
0 95 0 0 0 0
0 0 95 0 0 0
0 0 0 3.96 0 0
0 0 0 0 9.896 0
0 0 0 0 0 9.896

⎤
⎥⎥⎥⎥⎥⎥⎦

(156)

The position of the rigid bodies of each link about their proximal joint, P̌
(i)
p→CG is made

of the 3 Cartesian position components and 3 Euler angles that define their orientation
and are defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.35
0.7
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(157)



P̌
(2)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(158)

P̌
(3)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−0.5
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(159)

P̌
(4)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(160)

P̌
(5)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(161)

P̌
(6)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(162)

P̌
(7)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(163)



Each joint of the crane has a PID position controller set to control their position at
their initial position except for link 2’s proximal joint, which is left passive (no PID
Controller) and link 3’s proximal joint is given an initial position of θ3 = 90. This will
allow link 2’s joint to try to deflect past its limit under gravity. Link 2’s joint lower limit
is set to −45◦, with a joint stiffness of 10,000,000 Nm/rad and damping of 10,000,000
Nms/rad.

The final deflection of link 3’s joint is compared against the joint limit (−45◦) after an
elapsed simulation time of 10 seconds.

4.4.9.3 Simulation results

Table 28 presents the expected and simulated final position of the Palfinger-like
SMS::BoomCrane’s passive 2nd joint.

Variable Expected Joint Position Simulated Joint Position
ε2 −π

4
= 0.7854 rad -0.7868 rad

Table 28: The expected and simulated joint position for the Palfinger Crane Passive
Joint Limit Test.

See Figure 4.4.9.3 for the simulated position of every joint over time. Notice the position
PID controllers held all joint positions except the passive joint which was stopped by
the joint limit.
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4.4.10 Palfinger Crane Active Joint Limit Test
4.4.10.1 Motivation

The purpose of this validation test is to demonstrate the joint rate PID controller as
well as demonstrate how the PID controllers will not violate joint limits.

4.4.10.2 Experimental Setup

The Palfinger crane as described in Section 4.4.9, has a PID position controller applied
to link 2’s joint, and it is set past its upper limit of 90◦. The final joint position is
compared against the upper limit after an elapsed simulation time of 10 seconds.

4.4.10.3 Simulation Results

The simulated and expected final joint position for this test is presented in Table 29.

Variable Expected Joint Position Simulated Joint Position
ε2

π
2
= 1.5708 rad 1.570791 rad

Table 29: The simulated and expected joint position for the Palfinger Crane Active
Joint Limit Test.

See Figure 4.4.10.3 for the simulated position of every joint over time. Notice the
position PID controllers held all joint positions except the velocity controlled joint
which was stopped by the joint limit.
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4.4.11 Palfinger Crane-Cable-Payload Dynamics Test 1
4.4.11.1 Motivation

The purpose of this validation test is to qualitatively show the behavior of an SMS::

Payload when attached to an SMS::Cable whose other end is attached to an SMS::

Boomcrane with its base translating at a constant velocity. The SMS::Payload has an
initial velocity equal to the boom crane base velocity.

4.4.11.2 Experimental Setup

The Palfinger crane as described in Section 4.4.9, has link 2’s joint PID position con-
troller set at its initial position. The base of the Palfinger boom crane is given a constant
velocity of [1, 0, 0, 0, 0, 0]T .

A cable is attached to the Palfinger crane’s link 7 rigid body at its CG and to a payload
at a location [0, 0, 1] with respect to its body-fixed frame. Both the cable and the
payload have the properties described in 4.4.7.

The payload is given the same initial velocity as the Palfinger crane’s base. The final
position of the payload and boom crane after an elapsed period of time is compared
against expected (noting that both their initial velocities are 1 m/s):

P̌payload =

⎡
⎢⎢⎢⎢⎢⎢⎣

telapsed
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(164)

P̌
(1)
p→E =

⎡
⎢⎢⎢⎢⎢⎢⎣

telapsed
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(165)

4.4.11.3 Simulation Results

The final velocity of the SMS::Payload is presented in Table 30 along with the expected
analytical velocity.



Variable Expected Payload Velocity Simulated Payload Velocity
vpay 1 m/s 0.99163 m/s

Table 30: The simulated and expected final velocity of the SMS::Payload for the Palfin-
ger Crane-Cable-Payload Dynamics Test 1

See Figure 4.4.11.3, which compares the position along X̂ of the base of the boom crane
with payload’s position along X̂.
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4.4.12 Palfinger Crane-Cable-Payload Dynamics Test 2
4.4.12.1 Motivation

The purpose of this validation test is to qualitatively show the behavior of the payload
when attached to a cable whose other end is attached to a boom crane with a base
moving at a constant velocity. The payload has no initial velocity.

4.4.12.2 Experimental Setup

The Palfinger crane as described in Section 4.4.9, has link 2’s joint PID position con-
troller set at its initial position. The base of the Palfinger boom crane is is given a
velocity of [1, 0, 0, 0, 0, 0].

A cable is attached to the Palfinger crane’s link 7 rigid body at its CG and to a payload
at a location [0, 0, 1] with respect to its body-fixed frame. Both the SMS::Cable and
the SMS::Payload have the properties described in 4.4.7.

The payload has no initial velocity. The payload is expected to oscillate about the
cable’s connection point on the Palfinger crane. The velocity of the SMS::Payload is
compared against the velocity of the base of the SMS::BoomCrane after 80 seconds. The
velocity of the payload is determined by the slope of a linear polynomial fitted across
the position of the payload.

4.4.12.3 Simulation Results

The simulated final velocity of the SMS::Payload is presented in Table 31 along with
the expected analytical velocity for comparison.

Variable Expected Payload Velocity Simulated Payload Velocity
|vpay| 1 m/s 1.002 m/s

Table 31: The simulated and expected velocity of the SMS::Payload for the Palfinger
Crane-Cable-Payload Dynamics Test 2

See Figure 4.4.12.3, which compares the position along X̂ of the base of the boom crane
with payload’s position along X̂.
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Figure 60: The initial configuration of the box laying on ground test.

4.5 Contact Resolution Validation
4.5.1 Box Laying Flat on Ground
4.5.1.1 Motivation

The purpose of this validation test is to qualitatively show that contacts between an
SMS::Payload and an external object are resolved.

4.5.1.2 Setup

A box shaped SMS::Payload, as shown in Figure 60, whose bottom face normal is
parallel with the Ẑ axis, is dropped under gravity to impact an external rigid body,
another box, fixed in space, whose top face normal is also parallel with the Ẑ axis.

The external rigid body box has a length, width and height of 100 m, 100 m, and 10 m
respectively and has its center of gravity located at [0, 0,−6.1] placing its top face at
−1.1 m along Ẑ. The payload has dimensions of 5 m, 5 m, and 1 m, is originally located
at [0, 0, 0] placing its bottom face at −0.5 m along Ẑ and has a mass of 25,000 kg. The
material of both the payload and the external rigid body are given a Young’s modulus
of 950 MPa and a damping coefficient of 50 MPa·s.

The simulation consists of allowing the SMS::Payload to accelerate along −Ẑ under
gravity until the box makes contact with the external object and comes to rest on it



because of the energy losses of damped contact.

4.5.1.3 Simulation Results

At the beginning of the simulation, the box begins to accelerate in −Ẑ under gravity.
When the box reaches a position of PE→B = [0, 0,−0.6, 0, 0, 0]T an impact between the
faces of both boxes occurs at Cσ = [0, 0,−1.1, 0, 0, 0]T . As shown in Figures 61 and
62, the box bounces off a few times each time losing energy from the material internal
damping until it comes to a rest on the fixed external box.

Figure 63 shows the box maintains its original orientation, as is expected, with small
high frequency self-correction oscillations.

There are large contact force spikes at each impact, as shown in Figure 64. They settle
down and converge to equal the weight of the Payload: 245.25 kN. The position of the
contact force remains fairly constant at the center of the contacting face with some high
frequency, small amplitude, self-correcting oscillation about EPcontact = [0, 0,−1.1]T .
This can be seen in Figure 62.

The expected final volume of interference that would produce the steady state contact
force equal to the weight, 2.4525e5 N, is obtained using the equivalent bed depth radius
of 1.81 m and 28.79 m for the Payload and external box respectively and the material
stiffnesses 950 MPa for both Payload and external boxes. Combining these values with
equation 84, the expected volume of interference is 7.8996e-3 m3. The equilibrium
simulated volume of interference is differs by 0.03 percent, as seen in Figure 65 and
Table 32.

Variable Expected Volume of Interference Simulated Volume of Interference
Vint 7.8996e-3 m3 7.901706e-3 m3

Table 32: The simulated S.S. volume of interference for the Box Laying Flat on Ground
Test
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Figure 61: The simulated position of a box impacting on the ground with a flat face.
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Figure 62: The simulated contact point position of a box impacting on the ground with
a flat face. Note that when there is no contact, the contact force location defaults to
[0, 0, 0]T , creating what appears to be large changes in Ẑ location of the contact point
as the box comes into and leaves contact during the bouncing phase.
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Figure 63: The simulated orientation of a box impacting on the ground with a flat face.
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Figure 64: The simulated contact forces of a box impacting on the ground with a flat
face.
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Figure 65: The simulated volume of interference and penetration depth of a box im-
pacting on the ground with a flat face.



4.5.2 Oriented Box Impacting Ground
4.5.2.1 Motivation

The purpose of this test is to show how contact forces can be applied off-CG imparting
moments on the SMS::Payload. In this case it will allow the SMS::Payload to come
to rest on a flat surface, on one of its flat faces, even though it initially has no faces
parallel to any faces of the external box.

4.5.2.2 Setup

A box shaped SMS::Payload, as shown in Figure 66, is given an initial position and
orientation of P̌E→B = [0, 0, 0, 25.7◦, 25.7◦, 0◦]T , is dropped to impact an external rigid
body, another box, fixed in space, whose top face is horizontal.

The external rigid-body box has a length, width and height of 100 m, 100 m, and 10
m respectively and has its center of gravity located at [0, 0,−15] placing its top face at
−10 m. The payload has dimensions of 15 m, 15 m, and 5 m, is originally located at
[0, 0, 0] and a mass of 795 kg.

The material of both the payload and the external rigid body are given a Young’s
modulus of 100 MPa and a damping coefficient of 10 MPa·s.

x̂

ŷ

ẑ

10m

Figure 66: The experimental setup of an oriented box impacting a flat surface.



4.5.2.3 Simulation Results

At the beginning of the simulation, the box begins to accelerate along−Ẑ under gravity.
When the box reaches a position of PE→B = [0, 0,−7.4974]T an impact between the cor-
ner of the payload and the face of the external box atCσ = [−3.9296, 6.9133,−10.003]T .
The contact force vector is applied at the contact point and it doesn’t pass through the
center of gravity of the payload, causing rectifying moments. Eventually the material
damps out the impacts until the SMS::Payload is laying flat on the external box object.

Figures 67 and 68 show the SMS::Payload impacts the external box bouncing and
settles on one of its 6 faces. Here, the φ and θ Euler angles describing the orientation
of the box settle at angles of 0, representing the bottom face, while the ψ angle slowly
continues to rotate since there is no rotational friction.

There are large contact force spikes at each impact, seen in Figure 69, that settle down
and converge to equal the weight of the SMS::Payload, 77989.5 N.

After the SMS::Payload settles, Figure 70 shows the position of the contact force os-
cillates.

The expected final volume of interference that would produce the steady state contact
force equal to the weight, 245250 N, is obtained using the equivalent bed depth radius
of 6.45 m and 28.79 m for the SMS::Payload and external box respectively and the
material stiffnesses 10 MPa for both SMS::Payload and external boxes. Combining
these values with equation 84, the expected volume of interference is 0.27484 m3. The
equilibrium simulated volume of interference differs by 1.84%, as seen in Figure 71 and
Table 33.

Variable Expected Volume of Interference Simulated Volume of Interference
Vint 0.27484 m3 0.28001 m3

Table 33: The simulated volume of interference for the Oriented Box Impacting Ground
Test.



-8

-6

-4

-2

0

2

0 5 10 15 20

P
os
it
io
n
of

P
ay
lo
ad

(m
)

Time (s)

Position X
Position Y
Position Z

Figure 67: The position of the payload’s body-fixed frame.
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Figure 68: The orientation of the payload’s body-fixed frame.
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Figure 69: The simulated contact forces experienced by the Payload for the oriented
box test.
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Figure 70: The simulated contact point position of an oriented box impacting on the
ground. Note that when there is no contact, the contact force location defaults to
[0, 0, 0]T , this creates what appears to be large changes in Ẑ location of the contact
point as the box comes into and leaves contact during the bouncing phase. Also the
large oscillations in the X̂ and Ŷ contact point position is caused by rapid shifting
of the centroid of the volume of interference as the box makes small correction in its
orientation (it’s never laying perfectly flat).
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Figure 71: The simulated volume of interference and penetration depth of a box im-
pacting on the ground with a flat face.
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4.5.3 Conservation of Energy
4.5.3.1 Motivation

The purpose of this test is to show that energy is conserved during elastic impacts using
volume of interference contact models.

4.5.3.2 Setup

A spherical SMS::Payload, with a radius of 1m, is given an initial position and orienta-
tion of P̌E→B = [0, 0, 0, 0◦, 0◦, 0◦]T , and is dropped under gravity to impact an external
rigid-body, a box, fixed in space, whose top face normal is parallel with the Ẑ axis.

The external rigid-body box has a length, width and height of 100 m, 100 m, and 10 m
respectively and has its center of gravity located at [0, 0,−25] placing it’s top face at
-20 m. The SMS::Payload has a radius of 1 m, and is originally located at [0, 0, 0] with
a mass of 3000 kg.

The material of both the SMS::Payload and the external rigid body are given a Young’s
modulus of 200 GPa and a damping coefficient of 1 Pa·s.



4.5.3.3 Simulation Results

At the beginning of the simulation, the spherical SMS::Payload begins to accelerate in
−Ẑ under gravity. When the sphere reaches a position ofPE→B = [0, 0,−19]T an impact
occurs between the sphere and the top face of the external box at Cσ = [0, 0,−20]T .
This can be seen in Figure 72. Because there is practically no material damping there
is no loss of energy during the contact. The initial impact velocity should equal final
impact velocity and the SMS::Payload should bounce up to the same initial height
continuously. Figure 72 demonstrates this behaviour.
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Figure 72: The simulated position of a sphere, bouncing off a large fixed box, with no
damping, showing a conservation of energy during the collision.



4.5.4 All Sim Objects
4.5.4.1 Motivation

The purpose of this test is to qualitatively show that all simulation objects; SMS::

BoomCrane, SMS::Winch, SMS::Cable, and a SMS::Payload can work in unison along
with the contact resolution system.

4.5.4.2 Setup

A Palfinger-like crane, as shown in Figure 73, has the D-H Parameters shown in Ta-
ble 34:

Link id αi ai di θi
1 90 -0.65 1.4 0∗
2 0 1 0 45∗

3 90 0 0 90∗

4 0 0 1∗ 0
5 0 0 1∗ 0
6 0 0 1∗ 0
7 0 0 1∗ 0

Table 34: D-H Parameters for the Palfinger joint validation test.

Its base frame relative to the Earth-fixed frame, P̌
(1)
E→p is made of 3 Cartesian position

components followed by 3 Euler angles which defines its orientation, defined here as[
0 0 0 0 0 0

]
. This defines the first joint’s frame.

The rigid body for link 1, a rectangular cuboid with a mass of 682.97 kg and dimensions
of Lx = 0.7 m, Ly = 0.7 m, and Lz = 1.4 m, has the following mass properties:

M
(1)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

682.97 0 0 0 0 0
0 682.97 0 0 0 0
0 0 682.97 0 0 0
0 0 0 139.44 0 0
0 0 0 0 139.44 0
0 0 0 0 0 55.776

⎤
⎥⎥⎥⎥⎥⎥⎦

(166)

and the rigid body for link 2, a rectangular cuboid with a mass of 754 kg and dimensions
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Figure 73: The experimental setup for Palfinger boom crane validation tests. Shown
here with no joint displacement.



of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(2)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

754 0 0 0 0 0
0 754 0 0 0 0
0 0 754 0 0 0
0 0 0 31.42 0 0
0 0 0 0 78.5 0
0 0 0 0 0 78.5

⎤
⎥⎥⎥⎥⎥⎥⎦

(167)

The rigid body for link 3, a rectangular cuboid with a mass of 285.22 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(3)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

285.22 0 0 0 0 0
0 285.22 0 0 0 0
0 0 285.22 0 0 0
0 0 0 11.8 0 0
0 0 0 0 29.71 0
0 0 0 0 0 29.71

⎤
⎥⎥⎥⎥⎥⎥⎦

(168)

The rigid body for link 4, a rectangular cuboid with a mass of 283.28 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(4)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

283.28 0 0 0 0 0
0 283.28 0 0 0 0
0 0 283.28 0 0 0
0 0 0 29.51 0 0
0 0 0 0 29.51 0
0 0 0 0 0 11.8

⎤
⎥⎥⎥⎥⎥⎥⎦

(169)

The rigid body for link 5, a rectangular cuboid with a mass of 254 kg and dimensions
of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(5)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

254 0 0 0 0 0
0 254 0 0 0 0
0 0 254 0 0 0
0 0 0 26.46 0 0
0 0 0 0 26.46 0
0 0 0 0 0 10.58

⎤
⎥⎥⎥⎥⎥⎥⎦

(170)

The rigid body for link 6, a rectangular cuboid with a mass of 181.85 kg and dimensions



of Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(6)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

181.85 0 0 0 0 0
0 181.85 0 0 0 0
0 0 181.85 0 0 0
0 0 0 18.94 0 0
0 0 0 0 18.94 0
0 0 0 0 0 7.58

⎤
⎥⎥⎥⎥⎥⎥⎦

(171)

The rigid body for link 7, a rectangular cuboid with a mass of 95 kg and dimensions of
Lx = 1 m, Ly = 0.5 m, and Lz = 0.5 m, has the following mass properties:

M
(7)
CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

95 0 0 0 0 0
0 95 0 0 0 0
0 0 95 0 0 0
0 0 0 9.896 0 0
0 0 0 0 9.896 0
0 0 0 0 0 3.96

⎤
⎥⎥⎥⎥⎥⎥⎦

(172)

The position of the rigid bodies of each link about their proximal joint, P̌
(i)
p→CG is made

of the 3 Cartesian position components and 3 Euler angles that define their orientation
and are defined as:

P̌
(1)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.35
0.7
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(173)

P̌
(2)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(174)

P̌
(3)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−0.5
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(175)



P̌
(4)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(176)

P̌
(5)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(177)

P̌
(6)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(178)

P̌
(7)
p→CG =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0.5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(179)

All joints of the Palfinger crane are given position joint controllers to maintain their
initial joint positions.

An axially stiff SMS::Cable is attached to the Palfinger crane’s link 7 rigid body
at a location [0, 0, 0.5] with respect to that link’s body-fixed CG frame, located at
[3.592, 0, 5.642] and to a SMS::Payload at a location [0, 0, 1] with respect to its body-
fixed frame, located at [3.592, 0, 0]. The SMS::Payload is a 5 m × 5 m × 5 m box with
a mass of 7800 kg. A SMS::Winch is attached to SMS::Cable at top 0 and is set to pay
out 0.5 m of cable at a velocity of 0.1 m/s. The SMS::Payload will drop under gravity
to impact an external rigid body, another box, fixed in space, whose top face normal is
also parallel with the Ẑ.



The external rigid-body box has a length, width and height of 100 m, 100 m, and 10 m
respectively and has its center of gravity located at [0,−7.6, 0.0] placing it’s top face
at -2.6 m along the Ŷ axis. The SMS::Payload’s initial location and orientation is
P̌E→B = [3.592, 0, 0, 0, 0, 0]t

The material of both the SMS::Payload and the external rigid body are given a Young’s
modulus of 950 MPa and a damping coefficient of 50 MPa·s.



4.5.4.3 Simulation Results

At the beginning of the simulation, the SMS::Winch begins to pay out cable at a rate
of 0.1 m/s until the box’s position reaches PE→B = [0, 0,−0.5]T . Figure 74 shows that
the SMS::Payload bounces off the external object. A contact occurs at PE→Cσ

=
[3.636963,−3.991646e−4,−1.005504]T as seen in Figure 75. The contact force is applied
off of the center of gravity of the SMS::Payload causing moments. Eventually the
material damps out the impact until the SMS::Payload lays flat on the external box
object, in steady state.

Figure 76 shows the SMS::Payload impacts the external box, bouncing and settling on
one of its 6 faces. Here the φ and θ Euler angles describing the orientation of the box
settle at angles of 0. This means the bottom face of the box settled facing down, while
the ψ angle slowly continues to rotate since there is no rotational friction.

There are large contact force spikes at each impact, as seen in Figure 77. They settle
down and converge to equal the weight of the SMS::Payload 3.485958e4 N, just about
half of the weight of the SMS::Payload, 7.6518e4 N.

After the SMS::Payload settles, the position of the contact force oscillates with the
center of gravity of the volume of interference (affected by orientation) and leads to a
rectifying moment, keeping the SMS::Payload sitting flat on the ground (see Figure 75).

Because a SMS::Winch is paying out cable, Figure 78 shows the SMS::Cable’s first node
remains fixed in space, attached to the SMS::Boomcrane while the 2nd and 3rd nodes
travel in −Ẑ until impact when the SMS::Winch is stopped. In Figure 79, the cable
starts the simulation unloaded while the SMS::Payload drops under gravity, and settles
at a tension equal to approximately half of the weight of the SMS::Payload.

The PID controller for the SMS::Boomrane holds the joints in their initial configuration
effectively as can be seen in Figure 80. However, there are perturbations in the joints
caused by the oscillations in the SMS::Cable tension. These can be seen in Figure 81
as the joint velocities oscillate about zero.
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Figure 74: The position of the payload’s body-fixed frame.
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Figure 75: The simulated position of a box impacting on the ground with a flat face.
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Figure 76: The orientation of the payload’s body-fixed frame.
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Figure 77: The simulated contact forces experienced by the Payload for the oriented
box test.
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Figure 78: The simulated cable node positions.
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Figure 79: The simulated cable element tensions.
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Figure 80: The simulated boomcrane joint displacements.
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Figure 81: The simulated boomcrane joint displacement rates.



4.5.5 Potential Future validation tests

There are a number of other tests that could be run to improve the Contact Resolution
validation. To demonstrate the sticking/sliding transition behaviour of the friction
model, a treadmill friction test could be performed like that seen in Gonthier [29].
When spinning friction is accounted for in the friction model, a spinning top friction test
could demonstrate the model’s behaviour. The contact resolution system implemented
in the SMS API can handle external objects with multiple convex features enabling
multi-point contact. A test should be added to the validation suite to demonstrate the
system functionality. The stiffness component of volume based contact models have
been shown to adhere to Hertzian contact models [35]. The dynamic behaviour of the
model should be compared against both Gonthier’s model and empirical data.



5 Recommendations for Future Work

The classes implemented in the SMS API favor fidelity as much as practically possible.
The purpose of the SMS API is to provide accurate engineering and analysis capabilities.
Depending on the material properties used and the circumstances of the physical event
modeled, simulations can often be executed in real-time. However, experience has
shown that the SMS API will frequently run slower than real time, and will simulate
significantly slower than real time during certain events (such as contact or cable snap
loads). Since the SMS API presently uses an adaptive time step integrator, numerical
integration time steps are reduced to prevent destabilization during shock events or
with systems that have a high natural frequency. In particular, cable and contact
dynamics are notoriously difficult systems to handle in that regard due to extremely
high stiffnesses and usually small lumped masses (at the nodes of the cable mesh).
As a result, many of the recommendations here focus on cable and contact dynamics
modules. In general terms, the end goals of the recommendations are to:

• Increase the simulation execution speed through model adjustments and poten-
tially implicit numerical integration;

• Profile and optimize the SMS API source code, removing “bottle necks” when
possible;

• Add some functionality and features to the SMS API classes, such as clamped
connections in the cable class and drum inertia in the winch class;

• Improve contact resolution execution speed by exploring the use of graphics card
hardware and implementing a broad-phase collision detection scheme to handle
multi-body contact simulations;

• Further advance the fidelity of the contact resolution models, and validate these
enhancements.

It must be emphasized that a successful API is both maintainable (easy to read, up-
date, and extend) and has good computational performance. It should be noted that
computational performance will be a function of the efficiency of the data structures,
code structure, and algorithms used, as well as the required time step to integrate the
system physics. Identifying bottlenecks in simulation execution can sometimes only be
done when a specific problem of interest has arisen and can be analyzed directly.

With that in mind, several specific improvements have been compiled in the following
subsections that will potentially increase accuracy and computational performance of
the methods and models described in this report. The benefits of each recommendation
will vary depending on the expected use of the SMS API.



5.1 General Improvements

• Experience has shown the adaptive explicit numerical integrator used is robust
and efficient for the physical systems modeled in the SMS API. However, new
numerical integrators are often developed. A review of new and implicit numerical
integration methods should be completed to check for alternatives. Hybrid explicit
and implicit numerical integrators are also available and may allow larger time
steps without destabilization.

• Preliminary code profiling of the SMS API has been completed. However, pro-
filing has not been exhaustive and not all validation cases or any specific DRDC
scenarios have been profiled. The SMS API code should be profiled to identify
potential execution speed bottlenecks that can improve performance.

• No distributed simulation validation test cases have been written (simulations
with SMS API objects in separate federates). Validation tests should be added
to the validation test suite to ensure robustness. There are potential integration
issues that may arise related to low frequencies of dynamic updates for boundary
conditions of attached objects.

5.2 Cable Class Improvements

• The SMS::Payload and SMS::Boomcrane objects currently don’t support clamped
cable connections for separate federate simulations.

• For some sets of material properties and in particular with shorter element lengths,
numerical time steps for integrating cable dynamics can be very small. Experience
has shown that more accurate cable dynamics models usually lead to larger time
steps that can be used. A modified consistent (un-lumped) mass model, based on
the existing cable model, could be implemented that would more accurately model
the local element rotational inertia effects and likely lead to time step increases.
However, additional computational effort will be required due to larger systems
of equations that must be solved for the same number of elements.

• When nodes are inserted or removed due to adaptive meshing (not currently
implemented) or due to payin or payout operations, an artificial tension shock
can occur. In order to minimize these effects, the use of an implicit integrator,
such as Generalized-Alpha, that mitigates extreme high frequency effects while
preserving low frequency dynamics, could be implemented. This can potentially
reduce the need for potentially large structural damping values needed to produce
larger time steps in explicit numerical integration methods.



• The Federate-based nature of the SMS API lends itself well to using different nu-
merical integrators or numerical integration techniques for each dynamic model
used. A novel hybrid explicit-implicit integration scheme could be investigated
that uses a linear Generalized-Alpha implicit integrator during a pseudo-advance-
time call to alleviate high frequency disturbances in between explicit numerical
integration time steps. The linear Generalized-Alpha integrator would require
specific knowledge of the cable profile and would be used for a small span of
pseudo-time so as not to violate linearity assumptions, but act long enough to
significantly reduce high frequency effects that result in small time steps with the
explicit numerical integrator. This leverages the robust error control of the exist-
ing RK45 explicit numerical integrator and should significantly increase allowable
simulation time step and therefore execution speed without any significant loss in
accuracy.

5.3 Winch Class Improvements

• A relatively simple winch model that accounts for drum inertia and braking fric-
tion could be implemented to increase fidelity of the SMS::Winch class.

5.4 RigidBody and BoomCrane Class Improvements

• Adding support for quaternions in the rigid body-based models would avoid nu-
merical stability problems that occur with Euler angles due to gymbal lock.

• The SMS::Boomcrane added mass hydrodynamic loading functionality is presently
not implemented. This function should be implemented if articulated body sim-
ulations are required where hydrodynamic loading effects are significant.

5.5 Contact Resolution Improvements

• Graphics Processing Units (GPU) in off-the-shelf video cards, which contain
vector-based processors rather than general-purpose processors, are being used
more and more frequently to supplement computational capacity and improve sim-
ulation execution speed. A software library such as OpenCL or NVIDIA CUDA
could be used to offload computational burdens from the CPU and would be par-
ticularly useful for hydrodynamics calculations or for geometrical algorithms used
by the contact resolution system. In addition, since many of the cable dynamics
calculations are serial, cables with longer elements could benefit from vector-based
processing capabilities.



• Three dimensional contact stress effects, such as accounting for Poisson’s ratio,
would increase localized contact effect accuracy.

• The stiffness and damping terms of the contact model could be modeled through
non-linear relationships between stress-strain and stress-strain rates respectively
to increase the modelling accuracy. This would require introducing knowledge of
the contact surface velocity, which is non-trivial.

• The contact model should be validated against experimental or empirical data
and compared against other similar contact models.

• A more sophisticated friction model to help model lubricated conditions like
wet ship decks can be implemented for increased accuracy (see the 3D LuGre
model [26, 37]). Squeeze-film lubrication could also be taken into account.

• Rolling resistance and spinning friction should get implemented to increase accu-
racy of contact friction response.

• A more accurate normal contact force direction besides using the penetration
depth, such as using polyhedral surface normal information, could increase accu-
racy.

• A better estimate of the contact bed depth should be found. Currently, an effective
spherical radius is used, which is robust and efficient though crude.

• A better estimate of the centroid of pressure should be implemented. Currently
the volume centroid is used as an approximation, though this approximation
applies best for similar object materials.

• The MTD determination method is currently implemented as using a O(N2)
method where N is the number of vertices of each colliding geometry. A more
computationally efficient method exists that will allow for much better perfor-
mance O(logN) with more complex geometries and should be implemented to
increase computational efficiency.

• The implementation of the data structures associated with the polyhedron mesh
required for these efficient algorithms uses id-based structures. This makes delet-
ing and creating vertices and polygons less efficient and limited in total number
of vertex/edge/polygon additions. A pointer-based data structure would provide
a more concise polyhedron object implementation.

• GJK has been implemented without exploiting temporal coherence, which can
reduce the GJK algorithm to O(1) complexity. This would increase computational
efficiency.



• In order to support multi-body contact situations, the SMS API contact reso-
lution system must be modified and expanded to handle broad-phase collision
detection. The SMS::Boomcrane and SMS::Cable classes could also benefit from
inclusion in a broader contact resolution system for the SMS API. Currently,
the SMS::Payload is the only object with contact resolution abilities and it can
only model contacts with an external body (decomposed into convex geometrical
features), which in turn is not influenced by the contact forces.

• The SMS API contact resolution system can currently handle concave objects
by having the user manually decompose them into convex subobjects as a pre-
processing step. An automatic convex decompositioning method or algorithms to
handle concave objects should be implemented.

• The current SMS API contact resolution system must perform O(NANB) collision
checks where NA is the number of convex geometrical features that make up the
SMS::Payload and NB is the number of convex geometrical features that make
up the external object.

• The current SMS API contact resolution system only checks for instantaneous
collisions and does not account for tunneling. Tunneling is said to occur when
two objects pass through each other in between time steps, and thus is non-
detectable without the use of what is termed continuous collision detection. To
handle tunneling, continuous collision detection methods would get implemented,
such as through the use of swept volumes.



6 Conclusion

In conclusion, the model methodology and physical theory used in the development
of the SMS API was presented. Four simulation object classes were discussed: the
SMS::Boomcrane class, the SMS::Winch class, the SMS::Cable class, and the SMS::

Payload class. A reference manual for the SMS API software was provided that de-
scribes the initialisation files for the different simulation objects as well as some of the
important class methods. A validation test suite was developed to ensure the fidelity
and accuracy of each of the simulation objects. The validation test suite also serves as
a set of examples on how to use the SMS API to model various systems in different
configurations. The motivation, experimental setup, and simulation results for each of
the validation test suite cases were provided demonstrating the high fidelity simulation
capabilities of the SMS API.
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Annex A: Consistent Element and Reduced
Element Matrices

This appendix presents the full form of the consistent and lumped mass and stiffness
matrices. In addition, a sample global stiffness matrix formed from two concatenated
elements is presented. The consistent mass matrix is so-called because it was produced
using the Galerkin criterion (Galerkin’s method of weighted residuals) using the same
shape functions that are used to quantify the discrete loads seen at the node points (see
Appendix C). Later, in Equation 4, a lumped-mass approximation is made, leading to
the use of the lumped-mass matrix that replaces the consistent mass matrix. For more
details on how Galerkin’s criterion is applied to the finite element cable model see [4].

The forms of the consistent stiffness matrices are described below. Referring to equa-
tion 2, the consistent discrete cable dynamics equation is:

(Kε +Kκ +Kτ )X+W +H = MCẌ (A.1)

The 12× 12 element consistent symmetric mass matrix is:

MC = L(1)
u
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⎥⎥⎥⎥⎦ (A.2)

where L
(1)
u is the element unstretched length and M

(1)
I is the 3×3 element mass matrix

comprised of the element physical and orientation-specific added mass:

M
(1)
I =

1
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1
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(
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IHM
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(A.3)

where dc is the cable diameter, ρc is the cable density, I is the 3 × 3 identity matrix,
R

(i)
IH is the transformation matrix that relates the local hydrodynamic reference frame

aligned to the tangent of the cable at node point i, to the inertial (global) coordinate

frame, and M
(1)
A is the 3× 3 local added mass matrix:



M
(1)
A =

1

4
πd2cρwCAc

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ (A.4)

Recall that the cable dynamics equation A.1 is formulated with respect to the global
inertial reference frame. While added mass of the cable element is constant with respect
to a reference frame aligned to the element, it must be transformed to be in terms of
the global reference frame, which is why the transformation matrices are required.
Note that since the hydrodynamic frames that are aligned to the tangent of the cable
are resolved at the node points, the average of the resulting transformed added mass
matrices evaluated at the element node points is used to provide a value of added mass
of the element.

The lumped mass assumption concentrates all mass at the element end points and
decouples curvature from all forces. The lumped mass matrix, MG, is formed by simply
distributing half the element mass at either adjacent node:

MGint
= L(1)

u
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Note 0 indicates a 3 × 3 zero matrix. After removing rows related to curvature accel-
eration the final 6× 6 lumped mass matrix is:

MG = L(1)
u

[
1
2
M
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I 0

0 1
2
M

(1)
I

]
(A.6)

The lumped mass matrices must be concatenated in order to form the global system of
equations that governs a system with N nodes. The global lumped mass matrix, MGsys

for a system with N = 3 nodes is:

MGsys
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Note in equation A.7 that the global system mass matrix, which is formed using the
lumped mass matrix in equation A.7, is block-diagonal with block size 3×3. If the global



mass matrix was assembled using the consistent mass matrix seen in Equation A.2, the
system would be block-diagonal with block size 12× 12. Since the computational time
to resolve the system of equations grows nonlinearly with the size of the matrix, the
lumped system of equations offers significant computational savings.

The element consistent axial stiffness matrix is:

Kε =
EAε(1)
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where ε(1) and L
(1)
u are the first element strain and unstretched lengths, respectively.

The first element consistent bending stiffness matrix is:

Kκ =
EI
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The first element consistent torsional stiffness matrix is:

Kτ = (A.10)
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where τ (1) is the first element torsion and the matrices Q(0) and Q(1) represent the skew-
symmetric cross product matrix formed from the components of the node curvature
values. For example:
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The consistent form of the weight and buoyancy W(1) forces, half of which are lumped
to the adjacent nodes, are:

W(1) = L(1)
u
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where g is the gravitational acceleration vector and ρw is the density of sea water. The
consistent hydrodynamic H(1) forces are:

H(1) = L(1)
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where h(0) is the distributed hydrodynamic load per unit length quantified at the node
points with the assistance of a Morison-type approximation and the locally defined
hydrodynamic frame.

After the lumped mass assumption, the reduced stiffness matrices have rows propor-
tional to curvature acceleration removed. The first element lumped mass cable axial
stiffness matrix is:

Kε =
EAε(1)

L
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u
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]
(A.14)

The first element consistent bending stiffness matrix is:

Kκ =
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]
(A.15)

The first element lumped torsional stiffness matrix is:

Kτ G =
GJτ (1)

L
(1)
u

[
1
2

(
Q(0) +Q(1)

)
− (L

(1)
u )2

24
Q(1) −1

2

(
Q(0) +Q(1)

) (L
(1)
u )2

24
Q(0)

−1
2

(
Q(0) +Q(1)

)
(L

(1)
u )2

24
Q(1) 1

2

(
Q(0) +Q(1)

)
− (L

(1)
u )2

24
Q(0)

]

(A.16)



Finally, the lumped weight and buoyancy and hydrodynamic force vectors are:
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The stiffness matrices must be concatenated to form the global system stiffness matrix.
For example, a system of N = 3 nodes produces the global stiffness matrices:
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where
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Finally, the lumped weight and buoyancy and hydrodynamic force vectors are:
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Annex B: Element Torsion Matrices

The tridiagonal system of equations that, when solved simultaneously, provide the node
twist angle α that is used to calculate the mechanical torsion of a system of N = 3
nodes are:

GJ

⎡
⎢⎣

1

L
(1)
u

− 1

L
(1)
u

0

− 1

L
(1)
u

1

L
(1)
u

+ 1

L
(2)
u

0

0 − 1

L
(2)
u

1

L
(2)
u

⎤
⎥⎦
⎡
⎣α(0)

α(1)

α(2)

⎤
⎦ = GJ

⎡
⎢⎣ γ(

1
2)

γ(1+
1
2) − γ(

1
2)

−γ(2−
1
2)

⎤
⎥⎦ (B.1)

where γ(
1
2) is the torsion angle of the Frenet frame at node 0, and γ(1+

1
2) − γ(

1
2) is the

torsion angle of the Frenet frame at node 1 relative to node 0.
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Annex C: Galerkin Method of Weighted
Residuals

C.1 Galerkin Criterion

The Galerkin Method of Weighted Residuals (GMWR) is used here to derive the element
equations for the finite element cable model used by the SMS::Cable as presented by the
authors of [4, 5]. In effect, the method provides lumped equivalents of the continuously
distributed hydrodynamic, inertia and internal forces at the element nodes. The method
requires an equation of the form:

D(f(r(s, t), s)) =
�

�
��
0

G(s) (C.1)

where the function of interest, f(r(s, t), s), is a continuous function over the domain
and is acted on by D, a linear differential operator.

The function r(s) can be approximated as r̃(s), which is a linear combination of basis,
or shape, functions φm(s) such that:

r(s, t) ≈ r̃(s, t) =
n∑

m=1

σm(t)φm(s) (C.2)

where σm(t) are unknown time dependent nodal variables. For the SMS::Cable class,
these nodal variables are the absolute positions and curvatures of the cable at the nodes.

The difference between the approximation and the true solution, the residual, is de-
scribed as:

R(s) = D(f(r̃(s, t), s)) 
= 0 (C.3)

The method of weighted residuals seeks values for σm(t) (m = 1, 2, ..., n) that drive
weighted averages of the residual to 0 over the modelled domain, such that:∫

s

R(s, t)Wmds = 0, for m = 1, 2, ..., n (C.4)

where s is the domain and Wm are the weighting functions. There are an equal number
of weighting functions to the number of nodal variables σm(t) and so the series of
equations in C.4 is deterministic. Galerkin’s criterion follows the premise that the
optimal weighting functions are the shape functions used in the approximation r̃(s, t).
That is:

Wm = φm(s), for m = 1, 2, ..., n (C.5)



C.2 Galerkin Criterion and the Cable Model

The cable element model used in the SMS::Cable class, has equations of motion that
are generally of the form:

f(r(s, t), s) = K(r(s, t)) + h(r(s, t), ṙ(s, t)) +w(s)− I(r(s, t), r̈(s, t)) = 0 (C.6)

where K represents the internal forces in the cable at a location s along the cable, h
represents the hydrodynamics forces, w represents the differential weight and buoyancy
forces at a location s along the cable, and I represents the inertia forces at a location
s along the cable.

The true cable position vector r(s) is approximated using (see Equation 1)

r̃(s) = r(i−1)φi,1 + r′′(i−1)φi,2 + r(i)φi,3 + r′′(i)φi,4 (C.7)

where (·)i refers to the ith element, (·)(i) refers to the ith node, r is the absolute position
of the cable centerline, and r′′ refers to the second derivative of the absolute position
of the cable centerline derived with respect to s.

In applying the Galerkin method of weighted residuals, the residual is weighted, inte-
grated over the domain, and forced to 0 to take the form:

∫ s(i)

s(i−1)

R(s, t)Wmds =

∫ s(i)

s(i−1)

D(K(r̃(s, t)) + h(r̃(s, t), ˙̃r(s, t)) +w(s)

−I(r̃(s, t), ¨̃r(s, t)))Wmds = 0 (C.8)

Equation C.8 is evaluated analytically to yield algebraic equations in terms of the nodal
variables, r(i−1), r′′(i−1), r(i), r′′(i) and the corresponding velocities and accelerations.

These equations are coded within SMS::Cable and are solved explicitly for the values
of nodal accelerations, using the nodal position and velocity initial conditions, at each
timestep. The new found accelerations get integrated over time to provide the new
velocities and position of the nodes of the SMS::Cable.
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