

Defence Research and Development Canada
Contract Report
DRDC-RDDC-2018-C183
September 2018

CAN UNCLASSIFIED

CAN UNCLASSIFIED

PLANNING TOOL ALGORITHM
IMPLEMENTATION FOR THE COURSE OF
ACTION TEST BED

Laurence Olivier Marion-Ouellet
Éric-Olivier Bossé
Michel Mayrand
OODA Technologies

Prepared by:
OODA Technologies
4710 St-Ambroise, suite 226
Montreal, (Quebec)
Canada H4C 2C7

PSPC Contract Number: W7707-145677
Technical Authority: Tim Hammond, Defence Scientist
Contractor's date of publication: May 2018

Template in use: EO Publishing App for CR-EL Eng 2018-08-10-v1.dotm

© Her Majesty the Queen in Right of Canada (Department of National Defence), 2018
© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2018

CAN UNCLASSIFIED

CAN UNCLASSIFIED

IMPORTANT INFORMATIVE STATEMENTS

This document was reviewed for Controlled Goods by Defence Research and Development Canada using the Schedule to the
Defence Production Act.

Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the
Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the
national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence)
makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy,
reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing
in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any
reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so
using it or relying on it. Canada does not assume any liability in respect of any damages or losses arising out of or in connection
with the use of, or reliance on, any information, product, process or material included in this document.

RISOMIA: Call-up 20

PLANNING TOOL ALGORITHM
IMPLEMENTATION FOR THE

COURSE OF ACTION TEST BED

Prepared by

OODA Technologies
Laurence Olivier Marion-Ouellet

Éric-Olivier Bossé
Michel Mayrand

May 31st, 2018

Content

 Page 2

Table of Content

1 Introduction ... 4

1.1 Document Purpose ... 4

1.2 Document Overview ... 4

1.3 Definitions, Acronyms and Abbreviations ... 5

2 Installation ... 6

2.1 Pre-requirements .. 6

2.2 Maven ... 6

2.3 PostgreSQL Installation ... 6

2.4 Importing ShipMo7 data to PostgreSQL ... 7

2.5 COA-T Services Unpacking .. 8

2.5.1 Using the command prompt .. 8

2.5.2 Using Eclipse ... 8

2.6 GDAL .. 9

3 AutoScheduler Service ... 10

3.1 Preliminary Requirements ... 10

3.2 Solution Overview ... 10

3.3 Design ... 10

3.3.1 RequestProcessor ... 11

3.3.2 ScheduleProcessor ... 12

3.3.3 FuelOptimizerProcessor ... 13

3.4 User/administrator guide .. 14

3.5 Developer guide .. 15

3.5.1 Generic development informations ... 15

3.5.2 Data Format .. 15

3.5.3 Route building .. 16

3.5.4 Fuel optimization .. 16

3.5.4.1 Split the “Move” action into smaller homogenous parts 16

3.5.4.2 Optimize over the sum of smaller parts .. 17

3.5.4.3 Using the Simplex algorithm .. 18

4 ShipMo7 Service .. 19

4.1 Requirements .. 19

4.2 Solution Overview ... 19

 Page 3

4.3 Design ... 19

4.4 User/administrator guide .. 19

4.5 Building the database ... 20

5 Obstacle Avoidance Service .. 21

5.1 Requirements .. 21

5.2 Solution Overview ... 21

5.2.1 Input ... 21

5.2.2 Processing .. 21

5.2.3 Output .. 22

5.3 Design ... 22

5.4 User/administrator guide .. 29

6 Conclusion .. 31

6.1 Lessons Learned ... 31

6.1.1 COA-T Data Model Modifications ... 31

6.1.2 S57 Map limitations ... 31

6.2 Recommendations and future development ... 31

6.2.1 Replace the Requesters ... 31

6.2.2 Obstacle avoidance service ... 31

Annex A: ActiveMQ Message Structure ... 32

Annex B: PostgreSQL DB Schema .. 45

Annex C: Application.properties .. 46

 Page 4

1 Introduction
This call-up is in support of the ongoing Course of Action Test bed (COA-T), a system meant to
test concepts for naval mission planning.

The output of this call-up is a set of three services:

1. The first is an auto-scheduling service for fuel optimization along a given route. This
service is COA-T compatible. It receives requests containing the route, mission tasks
(and their constraints), start and end times for the mission, and configuration parameters
to output a schedule ensuring all the mission tasks can be completed and that the
minimum quantity of fuel is used. If the mission tasks cannot be completed due to the
weather or to constraints that cannot be met, the user is notified by an error message.

2. The second is a service that makes ShipMo7 predictions along a given route quickly
accessible. It is also COA-T compatible. This service provides access to pre-computed
predictions from ShipMo7, which have been archived in a PostgreSQL database. These
predictions include the water resistance in irregular waves, as well as frequencies of keel
emergence, deck wetness and Motion Induced Interruption. These parameters are
accessed by specifying the ship type used (KINGSTON or HALIFAX class), the wave
height, the wave frequency, the sea heading and finally the ship speed.

3. The last is a service that finds the shortest route between two points on a nautical chart,
considering ocean depths and the ship’s draught. It is COA-T compatible. A user sends a
request to the system by specifying the start point, end point and two factors specifying
the level of precision (decimal and precision, defined later in the appropriate section).
The service will then answer with the length of the path in kilometres and a list of
waypoints describing the itinerary.

Requesters for each of these services have also been created, in order to build the appropriate
requests and verify responses from the services. Ideally, DRDC would integrate the creation of
these requests through a GUI.

1.1 Document Purpose

The objective of this document is to provide a User/Administor/Developer Guide for the services
developed during this call-up.

1.2 Document Overview

This document is intended for DRDC Atlantic scientists. It is organised as follows: Sections 2 to
5 present the three services developed, the design decisions and a quick user/administrator guide.
Section 6 presents the lessons learned and the conclusions of this project which could prove
useful for continuation of this call-up. Some annexes provide additional information on the
necessary modifications to the data model currently used by DRDC for COA-T and also on how

 Page 5

to configure the different services through application.properties files or parameter options
passed at startup.

1.3 Definitions, Acronyms and Abbreviations

COA-T Course of Action Test bed
DBMS Database Management System
DRDC Defence Research and Development Canada
FOSS Free and Open Source Software
IDE Integrated Development Environment
PSA Predictive Situational Awareness
RCN Royal Canadian Navy
RPM Revolutions per Minute
SOW Statement of Work
TA Technical Authority

 Page 6

2 Installation

2.1 Pre-requirements
Java 1.8 needs to be installed before installing the rest of the system. Also, the environment

variable JAVA_HOME must be set properly and the PATH must contain the path to the java

binaries (java and javac).

2.2 Maven

1. Check if Maven is not already installed by typing mvn –v at a command prompt. If the

first line is not of type Apache Maven X.X.X, follow the rest of these steps.

2. Download Maven from https://maven.apache.org/download.cgi and follow the

instructions listed in https://maven.apache.org/install.html

3. Unzip the package in a location of your choosing (ex: C:\Program Files)

4. Add the bin directory of the created directory apache-maven-3.5.3 to the PATH

environment variable

5. Confirm with mvn -v in a command prompt. The output should begin with Apache

Maven X.X.X.

2.3 PostgreSQL Installation

1. Check if PostgreSQL is not already installed by typing psql --help at a command prompt.
If installed, the output should be a list of possible commands. If not, follow the rest of
these steps.

2. If you have access to Internet:
o Go to http://www.postgresql.org/download/windows
o Click on the link to "Download the installer," which will take you

to: http://www.enterprisedb.com/products-services-
training/pgdownload#windows.

o Select the appropriate version of PostgreSQL and of your operating system in the
download interface.

o Click Download Now.
3. If you do not have access to Internet and the installation executables (PostgreSQL and

PostGIS) are provided via BISCOM , Sharepoint or a DVD:
o Copy the provided zip file on the computer that will be used as the database

server and unzip the zip file.
4. Navigate to where the installation file (named something like postgresql-X.X.X-X-

windows.exe) is located and double-click on it to launch the installer.
5. Click Next through the first few Setup wizard steps. On the Password screen, type

postgres. Note: PostgreSQL has its own users and superusers, which are separate and
distinct from Windows users and administrators. By default, PostgreSQL installation sets

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
http://www.postgresql.org/download/windows
http://www.enterprisedb.com/products-services-training/pgdownload#windows
http://www.enterprisedb.com/products-services-training/pgdownload#windows

 Page 7

up both a PostgreSQL superuser named postgres and a Windows system user account
named postgres. Both account names also use postgres as the password.

6. Click Next through the rest of the Setup wizard steps, leaving all values as their defaults
(such as the Port).

7. The last step of the Setup wizard should ask if you want to launch something called Stack
Builder.

8. Make sure that the checkbox for Stack Builder is checked.
9. Click Finish, which both finishes PostgreSQL installation and launches the Stack

Builder.
10. On the first page of the Stack Builder window, in the drop-down menu, select

PostgreSQL on port 5432.
11. Click Next
12. On the next page, click on the "+" sign next to Spatial Extensions
13. Check the box next to "PostGIS 2.0 for PostgreSQL 9.X v2.X.X
14. Click Next until presented with the "PostGIS 2.X.X" setup window
15. If the PostGIS installation does not proceed because of firewall issues, then use the

PostGIS executable by double clicking the application. The default parameters are
usually sufficient for a successful installation but feel free to adjust some parameters if
recommended by your network administrator. Please note that PostGIS requires a
successful installation of PostgreSQL prior to its installation.

Some additional adjustments may be required within the DRDC local network, depending on the
context (permission, network access, proxy, etc.), see your network administrator for further
assistance.

2.4 Importing ShipMo7 data to PostgreSQL

Since the ShipMo7 and Scheduler services both need access to ShipMo7 data in order to gain

access to water resistance, keel emergence, deck wetness and motion-induced interruption

frequencies, the appropriate information must be loaded into a PostgreSQL database accessible

to our services. The selection of PostgreSQL as the DBMS for the services was a requirement of

the COA-T administrator.

In order to load the ShipMo7 database into your PostgreSQL server, first unzip the compressed
database file (shipmodat_postgresql_database_20180508.zip) into the folder of your choice, then
from this folder open a command prompt and create an empty database in your server with the
command:

createdb –U postgres shipmodata

Then import the database file with the following command:

psql -U postgres -d shipmodata < shipmodata.sql

 Page 8

If you use a PostgreSQL interface tool (e.g., PgAdmin III), just create a new database named
shipmodata and import the SQL file shipmodata.sql into it.

Note: in pgAdmin 4 there is no “import” function. Instead, create the database and then use the
Query Tool (accessed via a right click on the database) and from there load the SQL file and
execute it.

2.5 COA-T Services Unpacking

2.5.1 Using the command prompt

1. Requirement: Pre-install Java 1.8, Maven 3 according to the instructions given above.

Make sure that the JAVA environment variables and the path for accessing Java and

Maven binaries are set correctly.

2. If you are running without internet, unzip the Maven (M2) deliverable in the Windows or
Linux User home directory. It contains all the JAR files required for compiling the code
offline.

3. Edit the following configuration files (see Annex C) in order to reflect your network

parameters:

a. ./COATscheduler/src/main/resources/application.properties

b. ./COATshipmo7 /src/main/resources/application.properties

c. ./COATShortestPath/src/main/resources/application.properties

4. Access each of the following services (COATscheduler, CoatShipMo7 and

CoatShortestPath) and run the command prompt command:
mvn clean install

5. The executable JAR will be found in the target directory of the corresponding service.

6. Note that the Requester type services were designed to be run from within an Eclipse-like

development environment, as they were created for testing purposes.

2.5.2 Using Eclipse

 Page 9

1. Requirement: Pre-install Java 1.8, Maven 3 (see above) and Eclipse IDE. Make sure that

the JAVA environment variables and the path for accessing Java and Maven binaries are

set correctly.

2. If you are running without internet, unzip the Maven (M2) deliverable in the Windows or
Linux User home directory. It contains all the JAR files required for compiling the code
offline.

3. Open Eclipse and import the services as a Maven Project. The use of Eclipse is the main

way to use the Requester for testing each of the services. Each of the Requester modules

must be imported in Eclipse and executed from there (after the corresponding service has

been started).

4. Before executing the services, modify the following configuration files (see Annex C) in

order to reflect your network parameters:

a. ./COATscheduler/src/main/resources/application.properties

b. ./COATshipmo7/shipmo7/src/main/resources/application.properties

c. ./COATShortestPath/src/main/resources/application.properties

2.6 GDAL
GDAL

1
 is a set of libraries allowing access to the S57 maps. It is therefore necessary to the

ShortestPath service. Instructions on how to install it were provided by DRDC and have been

delivered along with this report under the name “GDAL Install Guide”.

1
 https://www.gdal.org/

 Page 10

3 AutoScheduler Service

3.1 Preliminary Requirements
The call-up SOW provided the initial set of requirements:

1. Implement into COA-T the AutoScheduler developed by DRDC.
2. Using FOSS, develop a fuel optimization algorithm that includes ShipMo7 data.
3. Communicate any recommendation deemed necessary to the ActiveMQ Data Model or

the Database Model

3.2 Solution Overview
A COA-T service has been created which awaits SchedulerRequest objects. These objects
contain a route (represented as a list of waypoints), start and end times for the mission, and a list
of mission tasks. The mission tasks can have spatial and time constraints as well as weather
constraints (e.g., the wind must be lower than 50 kph and the waves smaller than 2 meters). All
mission tasks have a fixed duration. Other parameters included in the SchedulerRequest are the
type of ship used (currently KINGSTON or HALIFAX class) and finally whether or not fuel
optimization should be applied.

If fuel optimization is set to false, then the Scheduler will ingest the request and output a
ScheduleResponse through ActiveMQ. This response tells the user if the operation was a success
or not, if the fuel optimization was applied, notes (if they are needed) and, most importantly, a
list of ScheduleAction objects. This time ordered list describes the steps the vessel needs to take
in order to respect the mission tasks constraints. Included in this are the speed to apply, the task
to perform (which may just be a “Move” action, where the ship is in transit), the heading, how
long the task will last and how much distance will be covered during it. This list could then
readily be used by a GUI to display a schedule for the vessel in question. If the weather prevents
a valid schedule from being produced, then appropriate error messages are also sent.

If fuel optimization is activated, the Scheduler will also add the appropriate motor configurations
to use in each of the move ScheduleActions. The motor configurations are selected to both
respect the effective speed that will be needed to satisfy the schedule (weather effects can slow
down the ship) and also to minimize the consumption of fuel. Selecting this function takes
predictions from ShipMo7 into account. Should predictions from ShipMo7 suggest that some of
the mission tasks would not be achievable in the available time because wave conditions are
expected to slow the ship, appropriate error messages will be included in the response.

3.3 Design
In this section, we will overview the sequence of events leading to the creation of a
ScheduleResponse from the reception of a request.

1. The Spring java app needs to be running, listening on the appropriate ActiveMQ topic.
To verify that this service is started, look for the heartbeat messages that this app sends
periodically to the C2.STATUS topic.

 Page 11

2. A message is sent by either the provided ScheduleRequester or by a GUI implementing
the same methods, and is then received through the monitored topic by the
Consumer.class. If the JMSType of this message is SCHEDULE_REQUEST, we parse it
as a SchedulerRequest object and create a new RequestProcessor object, which will take
care of the request.

3. The RequestProcessor pre-processes some parts of the SchedulerRequest (More details in
section 3.3.1) and then gives it to a ScheduleProcessor object.

4. A ScheduleProcessor object is created and used to generate different combinations of
move actions and tasks until success is achieved or until five different orders have been
tried and failed. Success in this case is defined by the successful creation of a schedule in
which the tasks can be performed according to their weather and time constraints. Section
3.3.2 describes this step.

5. If the previous step is successful, then a valid schedule is produced and ScheduleActions
are built, describing when the tasks and “Move” actions of the ship will occur. These
actions are then split into smaller parts, as necessary, so that all these parts have constant
headings.

6. A FuelOptimizer object then takes care of splitting the “Move” parts of the schedule into
sub parts where the motor configuration of the ship can be optimized to save fuel/give a
better estimate of the actual fuel consumption.

7. The final step is to calculate the drift of the ship accounting for wind and current effects
before sending the response in the form of a JSON-serialized ScheduleResponse object,
the format of which is described in Annex A. These drift calculations are performed after
the fuel optimization process rather than included within due to a lack of information
surrounding the effects of wind and current on ShipMo7 calculations and how one affects
another. Another concern raised was the effect of using a great circle trajectory, meaning
a continuous change in a ship’s heading. Following discussions in April, it was deemed
better to inform a navigation officer of the continuous effects of the drift rather than try to
apply corrections.

3.3.1 RequestProcessor
1. The RequestProcessor takes the different waypoints of the route as input to build the legs

of the trip and to define the general area of the mission. The mission area is defined by a
LatLonBox object.

2. Now that we have a LatLonBox delimiting the mission area, it is possible to request the
weather for this zone. Weather requests (which include wind, waves and currents) are
created and sent and the responses are awaited. In the case of a timeout or if only partial
data is received, 2 default forecasts (in which all condition measurements are set to 0) are
added for every type of weather. The goal of these additions is to prevent errors when
interpolating the weather to a particular point.

3. Due to requirements of the DRDC AutoScheduler algorithm, which uses SpatialInterval
and TimeInterval objects, the route of the ship needs to be described as a function of
arclength, effectively converting it to a one-dimensional (1D) object. This 1D trajectory
indicates the ship’s progress along the original 2D route on the surface of the ocean. By
the same token, constraints limiting where mission tasks can be accomplished, which are
most naturally defined using 2D regions on the surface of the ocean, are converted into
constraints on arclength. This is done for a given route by finding the arclength intervals

 Page 12

over which the route lies in the constraint areas. More specifically, the original route is
broken up into a list of small Step objects, which correspond to points along the 1D
trajectory. From these spatial points, the spatial availability of the mission tasks is
translated from LatLon requirements into 1D intervals. Once both the route and the
mission task spatial constraints are described with such 1D intervals, it becomes possible
to use the AutoScheduler.

4. The information is then sent to a ScheduleProcessor object, which will attempt to build a
schedule, represented in our app by a list of ScheduleActions. In case of failure, the
RequestProcessor takes care of sending the appropriate response.

5. These ScheduleActions are then split, in order to recreate the necessary waypoints. For
example, where a ScheduleAction previously ordered to simply “Move” for a thousand
miles, this one could be split in order to reflect its two sub-components: “Move” for two
hundred miles at 36 degrees heading and then “Move” for eight hundred miles at a 74
degree heading, for example.

6. If fuel optimization is called for, the next step is to load the list of ScheduleActions and
then send them to a FuelOptimizer object. This FuelOptimizer will further subdivide the
‘Move’ ScheduleActions, recommending a motor configuration to use in each one in
order to save fuel. It will also provide the expected fuel consumption for the entire
journey. The last information added to these ScheduleActions is the average drift that will
be applied on the ship due to current and wind effects for each ScheduleAction.

7. The final step is to compile these ScheduleActions in a message and send it to the
appropriate topic in COA-T.

3.3.2 ScheduleProcessor
The responsibility of the scheduleProcessor is to take the mission tasks and any location and

time constraints these may have and from these to build a list describing when and where the

tasks could be done in order to respect these constraints. This is done as an iterative process

because weather data are needed to know if a schedule is possible, but a schedule is needed to

know the weather data. The following paragraphs describe the process in detail:

1. The first method of a ScheduleProcessor object is the constructor that takes care of
initializing the spatial and temporal limits of the trip, which are represented with an
IntervalTraversal object. The max speed is also set from the halifax.csv or mcdv.csv files,
which describe the different motor configurations.

2. Then the buildFirstSchedule method is called. Its role is to build a schedule without
taking the weather into account to be used as a starting point.

a. The mission tasks defined in the request are then transformed into the necessary
ToyTask objects and these are given, in list form, to the Scheduler to produce a
SchedulingResult.

b. A null check is performed on this result, due to the possibility that the tasks are
over-constrained or that the trip is impossible to schedule. In this case, the
appropriate error flags are raised and the method is stopped. These flags will be
picked up by the RequestProcessor and sent to the appropriate message producer
if need be.

c. Finally, the schedule is produced and checked for success.

 Page 13

3. After the creation of this first schedule, it becomes possible to associate a certain time to
our Step locations (see 3.3.1 item 3) and hence to check the weather at the corresponding
points and times. If the task’s spatial interval only contains points where weather
conditions are compatible with that task, then the scheduling process is over, since a
weather-viable solution has been found.

4. In the case of a weather incompatible schedule, other iterations are performed.
a. In these other iterations, the weather from the preceding iteration is taken and

used to redefine the new spatial availability of the tasks being scheduled. (If a
tempest prevents a helicopter launch, then the space occupied by the tempest is
removed from the spatial availability of this task.) This way, the new schedule can
refrain from setting tasks in space and time where the weather is incompatible.
While this offers no definitive guarantee of success, this process is repeated 5
times before giving up if no successful schedule is found.

3.3.3 FuelOptimizerProcessor
1. The processor object is created from a database access object (Given from Spring’s

configuration), from the ship type and from the ActiveMQ message producer (in order to
report errors).

2. The optimize function is then called.
a. The first step is the initialization, where the necessary motor configuration file is

read and parsed in order to create a list containing the different engine
configurations. Each engine configuration has a corresponding speed and
resistance in calm water, as well as associated fuel consumption.

b. The different “Move” actions (Not the tasks) are then split into stable weather
zones when the Mahalanobis distance between environmental conditions in two
adjacent areas is greater than a certain value. This cutoff value can be modified in
the application.properties file. Since the Mahalanobis distance has a possibility to
fail (some matrix operations used can result in null values), a standard deviation
method is written as a backup solution.

c. Each of these stable weather (and constant ship heading) “Move” actions is then
optimized to minimize fuel consumption. The variables used are the amount of
time spent in each engine configuration. The selected constraints are described in
more details in the FuelOptimizer section but consist of the following:

1. The sum of the time in each motor configuration must be equal or less
than the action’s time.

2. The sum of the product of the time and the effective speed in a motor
configuration must be greater or equal to the distance covered by the
action.

d. The output of the simplex solver, which takes care of the optimization, is the time
that the ship should spend in each motor configuration so as to traverse the route
interval using as little fuel as possible.

 Page 14

3.4 User/administrator guide
The AutoScheduler service receives a SchedulerRequest with its accompanying RequestID and
gives back a ScheduleResponse as an answer tagged with the same RequestID for identification
purposes. This section describes how to start and use the application.

To start the Scheduler, first make sure your application.properties file reflects the values you
wish to use. Then the program can be compiled by using:

cd C:\your_installation_dir\code\Scheduler\COATScheduler

mvn clean install

provided that the appropriate dependencies have already been set (See Section 5). Starting the
service can then be done with
 cd target

java -jar COAT-Scheduler-0.0.1-SNAPSHOT.jar

If a user desires to restart the application with a different configuration but without recompiling,
the properties to be modified can be loaded as environment variables by adding them in the run
command (in the same subdirectory as above), like so (Do not forget the D right after the -):

java –jar -Dvariable.to.be.modified=newValue COAT-Scheduler-0.0.1-

SNAPSHOT.jar

See Annex C for a list of available parameters for this module.

Designed to be a COA-T implemented system, the AutoScheduler is a service listening on the
ActiveMQ request topic until an appropriate message (Of JMSType=SchedulerRequest) arrives.
Until such a message arrives, the service is essentially in a waiting mode, only sending
HeartBeats to the COA-T infrastructure in order to advertise its existence.

SchedulerRequest messages can be created and sent from the SchedulerRequester application
that was built as part of this call-up. However, modifications to a request built through this
application must be made through a Java IDE. Of course, any ActiveMQ connected applications
could send to the C2.REQUESTS topic the correct JSON formatted message that will instruct the
Scheduler to build a SchedulerRequest object. The exact format of such a SchedulerRequest is
available in Annex A. A typical request contains waypoints describing the route of the ship,
trajectory type, ship type, start time and end time, whether or not fuel optimization is to be
applied and the tasks to perform along the route. The task data model is also defined in Annex A.

In the current configuration (Which follows the AMQ Design Document provided as a GFI), the
Scheduler’s AMQ listener watches the C2.REQUESTS Topic in order to receive the requests and
gives the answers back on C2.REQUESTS_DATA as a JSON formatted message.

A brief description of an example of the COATScheduler service in action can be seen next:

Starting the COATScheduler

1. From COATscheduler/src/main/java/ca/drdc/COATScheduler, start the
CoatSchedulerApplication.java main.

2. The service is started, periodically sending HeartBeat messages.
3. The service is now waiting for a Schedule Request.

 Page 15

Sending the SchedulerRequest
1. From Requester/src/main/java/ca/drdc/c2sim/schedulerequester, start the

 SchedulerequesterApplication.
2. This builds MissionTasks and a SchedulerRequest object that are sent through ActiveMQ.

Processing the SchedulerRequest by the COATScheduler

1. A listener is awoken by the arrival of a message and processes the request.
2. From the request, the zone of operations is defined and a 1D line is built from the

waypoints.
3. Weather Data is requested, for the area of operations and for the necessary timeline.
4. Each task’s 2D (LatLon) spatial requirements are transformed into 1D requirements for

the Scheduler. The 1D line describing the route is split into a succession of Step objects.
These steps are now described by their 1D position and their LatLon position.

5. The SchedulerProcessor is called and a first schedule is built. For every step in the
voyage, the expected time of arrival at this point is calculated.

6. The weather validity of this schedule is verified by checking the expected weather for
every point where a task is scheduled against this task’s constraints.

7. If the schedule is valid, it is sent as a result. If not, the zones where the weather prevents a
task from being completed are removed from the task’s spatial intervals. Four more
iterations of this process are done if unsuccessful.

3.5 Developer guide

3.5.1 Generic development information
This module and all the other ones were developed in Java 8 using Spring and Maven

tools. Consequently, each main module directory contains a pom.xml file containing all

the configuration and dependencies necessary for successfully compiling that module.

The version of the module is also being set in the pom.xml file and is set to 0.0.1-

SNAPSHOT and should be changed if the code is modified in a new release.

When compiling for the first time, all dependencies (Java libraries) are downloaded from

the Internet and stored in an repository tree located in the user home directory name .m2.

Should the user need to compile the software offline (without Internet access), then the

repository tree must be delivered and installed in the user home manually so the

compilation can be completed.

3.5.2 Data Format
Since the COATScheduler is meant to be integrated into COA-T, any change made to the
message structure used by this application needs to be reflected in the code. For example, the
Scheduler expects a very precise format for the Weather Requests and their answers and
therefore any deviation from this expectation will result in incomplete data (For the exact
expected structure, please consult Annex A).

 Page 16

3.5.3 Route building
The itinerary, the object describing our list of steps, goes through several rebuilds during the
scheduling process. It is therefore useful to explain the process here.

1. The SchedulerRequests gives a list of LatLon waypoints. The RequestProcessor takes
these multiple points and joins them to form a 1D line composed of small Steps, each of
which describes a spatial interval on the route.

2. This list of Steps is then entered into the DRDC-AutoScheduler and a ScheduleResult is
outputted.

3. This ScheduleResult is quickly parsed into ScheduleAction objects. Each of these
indicates whether it’s a move action or a task and has a spatial and a temporal interval.
These intervals indicate where and when the ScheduleAction is accomplished.

4. These ScheduleActions are still in a 1D format, which is not practical for a navigation
officer or for our algorithms. Therefore, these actions are then split into parts over which
the original route has constant heading. This is necessary because ScheduleActions can
sometimes extend over several legs of the route.

5. If fuel optimization is requested, the ScheduleActions that are only moving actions are
then split again into parts of nearly-constant weather. Nearly-constant weather is defined
with reference to a statistical distance measure (namely the Mahalanobis distance), which
measures the similarity of two vectors of environmental conditions. The more similar
two environmental prediction vectors get to one another the smaller the Mahalanobis
distance between them will be. The parameters used to split the route in this way are as
follows: wave height, wave period, wave heading, horizontal wind speed, vertical wind
speed, horizontal current and vertical current.

6. This final list of ScheduleActions is then JSON-serialised and included into a
ScheduleResponse object, also JSON-serialised. This response is then sent to
C2.REQUESTS_DATA with its accompanying RequestID, ClientID and other necessary
header properties.

3.5.4 Fuel optimization
After a schedule is built, the output is a list of ScheduleActions. These last could be tasks or
simply “Move” actions, where the ship moves through a spatial interval over a given time
interval. The goal of the fuel optimizer module is to take these “Move” actions and find the set of
motor configurations that will consume the least amount of fuel over the leg. To do this, a couple
of steps are taken, as described below.

3.5.4.1 Split the “Move” action into smaller homogenous parts
Splitting a move action is a balancing act between obtaining small enough parts to get a better
optimization process by ensuring nearly-constant conditions and yet big enough ones so that the
crew does not spend all its time switching motor configurations. To satisfy both these
constraints, a process has been designed:

1. A length of 100 nautical miles, starting from the spatial interval min, is first selected.
2. The average environment conditions of the next 50 miles are computed. If the

Mahalanobis distance between the conditions of this part and those on the next is smaller

 Page 17

than the cutoff threshold, the next 50 miles are added to the previous interval. Otherwise,
a new set is started.

3. The previous step is repeated, as long as the remaining spatial interval is longer than 50
miles. Once less than 50 miles remain, these are simply added to the working set.

This simple process allows the module to get a certain level of homogeneity for the intervals
while keeping them at least 50 miles long.

3.5.4.2 Optimize over the sum of smaller parts
Fuel optimization is performed by selecting a sequence of motor configurations which will
ensure that the minimum quantity of fuel is used while still travelling the entirety of the transit in
the permitted time. Since the previous step broke the transit actions into smaller legs, it would be
possible to perform optimization on each these legs, one by one, as seen in Figure 1.a). This
approach would need to select motor configurations that would respect ∆t and ∆x, find the
lowest-cost solution and repeat for every other sub leg. Even more, if a leg from a to b is split
into two sub legs, both these sub legs will need to have the same average speed as the main leg
which could prove very fuel expensive if there is a tempest in the first sub leg.

In the solution described in Figure 1.b), the whole leg has been split in such a way as to maintain
the same average speed on each sub leg is the same which could translate in very high fuel costs
or even schedules that are impossible to set (If the maximum effective speed is lower than the
required one).

Figure 1: a) represents the leg before the splitting. It would be possible to perform optimization over the average
wave conditions of the whole trip but this would be much less effective. b) a split has been performed at the third of
the spatial interval for simplicity. A possible solution for optimization is to split the leg in such a way as to maintain
the same average speed before the new boundary (shown in red) as after it.

However, if the optimizer is allowed to go slower in the first sub leg and is able to pick up the
slack in the second sub leg where the weather is more clement, then fuel gains can be
accomplished. To do this, the constraint describing that each sub-leg time of arrival must be
respected is replaced by one saying that the total time of all sub legs must be respected. This
approach was selected and translated into mathematical equations where the individual ∆xi must
be respected but only the total ∆t is considered as a constraint.

 Page 18

Therefore, our final constraints for the situation can be described as such for a system with two
sub-legs, where i iterates over the number of legs and y over the different motor configurations
available. t represents the time spent on the spatial interval i, veff represents the effective speed of
a motor configuration given the weather and F the fuel consumption of a particular motor
configuration.

These three columns describe respectively that:

1. The sum of times spent on each leg and in each motor configuration must be lower
than the total allowed time by the schedule

2. The time spent in each of the motor configuration during the first leg multiplied by
the motor configuration speed must be greater or equal to the length of the first leg.
The same constraint applies to the second leg.

3. What is being minimized is the total fuel consumption on each leg. The consumption
on a given leg is obtained by summing up the product of the time spent in each motor
configuration with the associated fuel consumption rate, over all y.

3.5.4.3 Using the Simplex algorithm
The simplex library that was used for this call-up, Apache Commons Math3, is a very well-
documented way to define constraints and solve problems. The first step is to define the linear
objective function, which in our case is an array of fuel consumption per hour for every motor
setting. This array represents the coefficient that when multiplied to the time spent in each motor
is the value to be minimized.

The second step is to define the constraints, under the same format of coefficients multiplying
the array of time spent on the configurations. The final step is to simply create a SimplexSolver
object and call its optimize function and give it its necessary inputs: the objective function, the
array of constraint arrays, its goal type (minimize or maximize).

 Page 19

4 ShipMo7 Service

4.1 Requirements
The call-up SOW provided this initial requirement: Integrate the existing Shipmo7 software into
the COA-T to be used as a service. This goal has been achieved with slight modifications.

4.2 Solution Overview
ShipMo7 is an application used by the Canadian Navy and DRDC in order to predict ship
motions in various wave conditions. Here the interest is mainly in its ability to compute the
added water resistance in irregular waves. It was therefore deemed important for this system to
be included in the COA-T system. However, the .exe encapsulation of the software, the fact that
the source code was in Fortran, as well as the size of the inputs all suggested it would be too
challenging to integrate the code itself.

It was, instead, deemed easier and better to pre-run Shipmo7 under every possible combination
of wave heights, period, direction and ship speed for both the Halifax type vessels and the
MCDVs. The resulting data from these simulations was then loaded into a PostgreSQL database,
which can be accessed either by direct SQL requests or through the COA-T service. The output
parameters that were deemed of interest were the added resistance and the frequencies of keel
emergence, deck wetness and MII.

4.3 Design
In this section, we will overview the main logic behind the processes in getting a Shipmo7
response from a COA-T request. A request is built from five elements and a requestID (In the
request’s properties):

1. Vessel type (Halifax or MCDV)
2. Wave Height (in meters)
3. Wave period (in seconds)
4. Ship’s speed (in knots)
5. Sea Heading (In degrees, relative to the ship)
6. The RequestID, a uniquely generated code used to match a request and its answer

The service then selects the appropriate table (Based on the ship type) and builds an SQL
request. The parameters from the request are adjusted to match the closest found in the database
(i.e.: an input value of 3.15 would be treated as a 3.2). The SQL request is then sent as a
statement and the database answer is given back in an answer message. The answer contains the
requestID in its properties, the parameters used as database inputs (for reference) and, of course,
the irregular wave resistance (in Newtons), keel-emergence and deck wetness per hour and MII
per minute.

4.4 User/administrator guide
This program can be started the same way as the COATScheduler with a simple

 Page 20

java -jar shipmo7-0.0.1-SNAPSHOT.jar

The parameters to be modified are however different, besides the topic properties and ActiveMQ
connection information. See Annex C for a list of available parameters for this module.

The general logic of the ShipMo service stays the same: listeners are set up and await a request
on the appropriate topic. This request is parsed and a result is given. The following gives a more
detailed view of this process:

After startup of the ShipMo service:

1. From COATshipmo7/shipmo7/src/main/java/ca/drdc/shipmo7, start the
Shipmo7Application.java main (using Eclipse for example).

2. The service is started, periodically sending HeartBeat messages and its listeners are
waiting.

Sending a ShipMoRequest

1. From shipmo7Requester/src/main/java/ca/drdc/shipmo7Requester, start the
Shipmo7RequesterApplication.java main.

2. This builds a simple ShipMoRequest and sends it to the ShipMo service.

After detection of the incoming ShipMoRequest

1. The JSON request is parsed and a postgreSQL request is built. The database query is adapted
to fit the precision and structure of the databases content.

2. When the query’s answer is given, the information is then sent as a ShipMoResponse
message.

4.5 Building the database
The shipmodata database should not be rebuilt unless issues become apparent. Perhaps the files

given to OODA will be found to contain errors. Perhapsthe database will become corrupted or

inconsistencies could be discovered. For reasons like these, the code folders delivered, namely

shipmoDBbuilder, contain two projects: one for Halifax vessels and the other for MCDVs.

A DBbuilder project is built to function on four threads (For four cores) in order to save time.

Each of these threads will need a folder containing a copy of ShipMo.exe with the name

SHIPMO1, SHIPMO2, 3 and 4.

When the program starts, four ShipMoThread are built and are assigned a shipmo7 folder, a

ShipMoRunner responsible for launching cmd prompts, an InputBuilder for creating the

necessary .inp files for ShipMo and an OutputExtractor for reading the .out files. The final step

is to take the information parsed by the OutputExtractor and save it into the database.

These steps are repeated by the ShipMoThread over a range of wave heights, wave periods, sea

headings and ship speeds. In order to parallelize the calculations, each thread takes a quarter of

the available waveheights and iterates completely over the other parameters. Further

 Page 21

parallelization is possible by splitting the range of wave heights again and distributing it over

multiple computers, as long as these are connected to the database.

5 Obstacle Avoidance Service

5.1 Requirements
The call-up SOW provided this initial requirement: Implement a shortest route finding algorithm
and integrate this into the COA-T to be used as a service.

The route must avoid depths shallower than the ship’s draught. The bathymetric data used comes
from S57 charts provided by the TA.

5.2 Solution Overview

5.2.1 Input
To build an application that satisfies this need, the ShortestPath java project was created, where
an AMQ listener expects a ShortestPathRequest JSON formatted object, which contains a start

point (as a LonLat), an end point and the ship’s draught in meters.

Two optional parameters also exist, which modify the grid used to create more precise

itineraries, which will take longer, or more imprecise ones, which will be quicker. The

parameters work by changing how much you increment in size between two points on the grid:

which decimal place you modify and by how much you modify it.

The first of these parameters is called decimal. It is an integer describing the position of the last

decimal increment to be kept in the LatLon grid. The second parameter is the precision, another

integer, which describes the value of the increment between different points on the grid.

Combining precision with the number of the increment at the position described by decimal will

give the distance between two points on the grid. In order to limit rounding errors given by the

use of double, the value of precision is limited to 1 or 5.

Tests performed by OODA showed that the best combination when considering time and

performance was decimal=2 and precision=1. These parameters were therefore selected as the

default values but for greater flexibility to DRDC, a particular request can ask for different

values.

5.2.2 Processing
When the ShortestPath application starts, it creates its EnvironmentData, where the different

polygons describing the depth areas stored in the S57 maps are loaded into memory. When a

ShortestPath request is received, the service will verify that the start and end points are valid and

 Page 22

will use the A* algorithm to build a series of nodes towards the end point. To check if a node is

accessible or not, queries are made into the EnvironmentData to see in which bathymetric

polygons the node is contained and hence what the depth over the node would be. When the final

node contains the end point, the process is finished.

In this type of path optimization, steps along the route are chosen by considering which possible

next point would take us close to the objective (Heuristic being the term used to describe this

value) and by also minimizing the cost (The length of travelling from a point to its neighbour),

see section 5.2.2.

5.2.3 Output
The response that is sent out is a ShortestPathResponse, an object containing a list of Point

objects describing the itinerary as double[] containing Longitudes and Latitudes.

For convenience’ sake, CSV files containing this list of LonLat are also created when the

ShortestPathRequester receives a response. Such a CSV file can then be input into Google’s

MyMaps service to create a quick visual representation of the itinerary.

5.3 Design
In this section, the main logic and algorithmic design will be summarized. The

ShortestPathRequest is built from 6 configurable properties and a RequestID.

1. start: Starting point (long, lat)

2. end: End point (long, lat)

3. maxdraft: Maximum depth / ship draught (in meters)

4. decimal: The position of the last decimal which will be incremented between two

points on the grid.

5. precision: The value of the last decimal which will be incremented between two

points on the grid.

6. speed: the speed of the ship(not used for the moment)

7. The RequestID, a uniquely generated code used to match a request and its answer

The service is built in two parts in order to benefit from malleability. The first part is the way the

depth information is gathered.

5.3.1 DepthService
The first part of this section concerns the way depth information is gathered through S57 charts.

Also, the DepthService has been built with the possibility of being replaced by an alternative

depth query system, should the S57 maps prove inadequate for this purpose. If another query

system is built, it would need to implement two interface-dependent methods:

1. isValidPoint taking a longitude and a latitude as input and returning -1 if the point is on

earth or the data is not available and the minimum depth in absolute value if the data is

present.

 Page 23

2. depthRange taking a longitude and a latitude as input and returning an array containing

the minimum depth in first position and maximum depth in second.

Care also needs to be taken since some functions need to be thread-safe. The code documents

some synchronized function.

Spring-Boot
2
, an application framework for Java, permits users to select which depth service to

use via a parameter in the .properties file (see Annex C). The new service must implement

DepthService, must be a Spring component and must have the ConditionalOnProperty(name =

“properties.depth.calculator”, havingValue = “name of the service”). For this call-up, an S57

chart depth query system is given. Each S57 chart used must come with a DEPARE layer and an

extent, which correspond the bounding box of the chart. It uses the GDAL library to extract

depth areas (DEPARE layer) as polygons. Each polygon can stand alone or can have other

polygons inside, which correspond to other depth areas. Each main polygon is associated with a

depth range, which corresponds to the minimum and maximum depth contained in the area. The

polygons are extracted from the S57 charts given by the folder path in the .properties file.

The implementations of the two methods are as follows:

1. isValidPoint determines which extent (an extent is a rectangle containing depth

polygons) the input point lies in and iterates over the polygons of this extent. If a point is

in a main polygon, but also part of a sub-polygon it is outside the main, as the smaller ones

represent zones of exclusion. If the point is in no polygons or extents, a value of -1 is

returned. This is also the case if the point is on land. The minimum value is returned

otherwise. For example, if a particular area has depth values between 40 and 50 meters, the

value of 40 will be returned since a ship with a 45 meters draft could scrape the bottom in

some parts. It is to be noted that if a point is in several extents, the minimum depth taken in

consideration is the maximum of the minimum possible depths, since a higher minimum is

associated with higher precision, see Figure 2.

Figure 2: Here we can see on smaller, more precise charts that the maximum depth is less than

on a bigger, less precise chart.

2
 https://en.wikipedia.org/wiki/Spring_Framework

 Page 24

2. depthRange takes the same procedure to return the interval rather than just the

minimum, and returns -1 if not available or on land. If the point is in more than one extent,

the maximum of the minimum and the minimum of the maximum are returned.

5.3.2 RequestProcessor
The second part is the custom implementation of the A* algorithm. It is too memory consuming

to have a mesh of the earth with precomputed depths with a reasonable precision. An alternate

solution pursued by OODA is to only load the nodes (Points that have been explored as valid or

not) as they are needed.

As mentioned before, two important values when using A* are the heuristic and the cost. The

heuristic is the great circle distance between the node and the end, and the cost is the great circle

distance between the node and its neighbours. This heuristic is monotonic and admissible

considering the cost. With those constraints, an implementation of the algorithm can be done

with a closedSet method, which stipulates that if a node has been expanded (Meaning if its

neighbours have been explored as valid points where the depth is sufficient or not) it won’t be

expanded again and the algorithm will lead to an optimal path. The implementation is as follows:

5.2.2.1 Point Object
Each observed node of the grid is represented by a Point object:

1. Coordinates, an array containing the longitude and latitude
2. Depth, containing the depth extracted by the service
3. Parent, representing from which node it is from
4. Cost, the cost to get from the start node to this node
5. Heuristic, the optimal cost from this node to the end node
6. fvalue, the sum of the cost and heuristic

The A* algorithm begins with the starting node as follows:

1. The starting and end points are checked for validity

2. The openList, closedList, existingList and nonValidList are created. The openList

consists of the nodes seen by expansion, but not expanded yet; the closedList contains the

nodes expanded; the existingList contains the nodes that have been created and the

nonValidList contains the nodes that are not valid. The starting node is created and put in

the closedList and existingList. The node is expanded, which means all its valid neighbours

are put in the openList and in the existingList.

3. While the openList is not empty, the node with the least cost + heuristic (f value) is put

in the closedList and its neighbours in the openList.

4. When a node is expanded, the neighbours of that node that could be accessed are

determined. For each neighbour, the method checks if the node has already been created. If

it exists and is in the openList, it checks to see if the path to the current node through that

neighbour is shorter than the already existing way to this node. If so, it changes the parent

 Page 25

node to the expanded node and the cost to the new cost. If the node doesn’t already exist, it

checks if it is a valid node and if so, creates it. If it is an invalid node, the coordinates are

stored and the node will never be tested again, as it will be sent into the nonValidList.

5. When the expanded node is the end node, the algorithm terminates and sends a list of

nodes representing the path. This list of nodes is constructed by following the end node to

its parent and then that parent to its parent and so on, all the way back to the start node.

Since the mesh is on a sphere, the way to visit the graph is not typical. The first tests were made

with a conventional 8 neighbour pattern.

Figure 3: 8-neighbours pattern of the grid.

 Page 26

Figure 4: The mesh of a sphere where latitude and longitude have constant increments.

Since a mesh on a sphere looks like Figure 4, the length between two longitudes with same

latitude is not constant. This creates a mesh grid with more of a trapezoidal shape. The solutions

on this grid create paths that are not optimal at first sight.

 Page 27

Figure 5: Top: The grey path with a 45-degree angle is the solution taking only the 8 first

neighbours. This form is optimal for the grid because making a complete x-step costs less

at higher latitude which, in this grid, is more optimal than a staircase scenario. The

smoothest purple path is the result of taking a 16 neighbours pattern. Bottom: The second

is an overlay of the S57 map used and the purple trajectory. The kink in the green circle is

explained by a small plateau blocking the straight path. In the red circle, it seems the

itinerary is going through part of another plateau. The size of the spot being jumped over

was under ≈500 meters, our level of precision. This can be avoided by higher precision

levels but at the cost of computing time.

 Page 28

Figure 6: 16 neighbours configuration taking second order neighbours and neglecting the

ones that can be accessed by only two operations.

The star pattern (Figure 6) has been selected since it gives overall better results in minimising the

path cost. By adding wider angle range, it results in a more straightforward path, with a better

cost. It should be noted that the wider the star pattern, the less precise the path will be, in the

sense that the arms become longer and therefore could possibly cross land
3
. Longer computation

time is also a factor since more nodes are created. In the specific case where the Figure 6 star

pattern is taken, both the number of nodes expanded and the cost of the optimal path of the grid

are minimized. After multiple tests, the number of closest neighbors to explore has definitely

been set to 16, since the augmentation of neighbours explored did not result in significant better

solutions over the possible precision loss of longer arms. This addition gives trajectories that

match those of a similar ship path-finding service, gives comparable computing times and the

points are still very close, meaning that the risk of crossing land/unavailable areas remains very

low.

5.3.3 Comparative results
“What DRDC is looking for is similar to capability already commercially available in app form,
such as
https://www.navionics.com/usa/charts/features/dock-to-dock-autorouting.”

Here is a quick test to compare results and performance between what DRDC is expecting and
what OODA provides:

3
 It becomes very expensive very quickly to check against every pair of points forming every side of every polygons

if they are crossed. It would be better to augment the precision if issues are raised.

https://www.navionics.com/usa/charts/features/dock-to-dock-autorouting

 Page 29

Figure 7: The first path is the result given by the Navionics software with a compute time of 1

minute 20 seconds and the second is the path computed by the shortest-path service in 1 minute
52 seconds. A faster compute time could be achieved with another depth service since looking in

an S57 chart is very CPU demanding.

5.4 User/administrator guide
Since this application critically relies on the S57 map files, make sure that the path to the s57files

directory is set in the application.properties or through input commands when starting the jar by

adding –Dproperties.s57directory.path=YourPathComesHere . As a last note before the steps, it

is important to make sure GDAL is installed. Instructions are provided by the GFI DRDC

document “GDAL Install Guide”

1. This program can be started the same way as the COATScheduler with the command
1.2 cd ShortestPath/COAT-ShortestPath/target
1.3 java -jar COAT-ShortestPath-0.0.1-SNAPSHOT.jar.

The parameters to be modified are however different, besides the topic properties and ActiveMQ
connection information. See Annex C for a list of available parameters for this module.

2. The general logic of the COAT-ShortestPath service stays the same: listeners are set up and

await a request on the appropriate topic. This request is parsed and a result is given. The
following gives a more detailed view of this process:

After startup of the ShortestPath service:
1. From COAT-shortestPath/src/main/java/ca/drdc/COATshortestPath, start the

CoatShortestPathApplication.java main (using Eclipse for example)
2. The service is started, periodically sending HeartBeat messages and its listeners are waiting.

Sending a ShortestPathRequest

 Page 30

1. From COAT-shortestPath-Requester/src/main/java/ca/drdc/COATShortestPathRequester,
start the CoatShortestPathRequesterApplication.java main (using Eclipse for example). This
builds a simple ShortestPathRequest and sends it to the ShortestPath service.

After detection of the incoming ShortestPathRequest
The JSON request is parsed and sent to the processor. The A* algorithm then finds the shortest
path between the starting point and the end point. The starting point and end point are adapted to
fit the precision of the grid.

When an optimal path has been found, the information (a list of lat/long waypoints) is sent as a
ShortestPathResponse message.

 Page 31

6 Conclusion

6.1 Lessons Learned

6.1.1 COA-T Data Model Modifications
Changing the structure of COA-T means revisions and uncertainties. COA-T message protocols

were still being modified at the beginning of this call-up or had been changed without the proper

inclusion of information in the accompanying documents. Some work had to be redone.

In the same vein, the exact structure of Weather Messages still seems to be flexible (Since the

weather service has not yet been created), while the current application expects an exact

structure. This could possibly lead to problems in the future.

6.1.2 S57 Map limitations
The depth accuracy is somewhat limited when using S57 map. The depth intervals between

isolines are not uniform throughout the map. Also, the accuracy is lacking in the most important

region, which is between the coastline and the first depth isoline (i.e. 0-18m), much too vague for

drawing a safe trajectory which takes into account the draught of the ship.

6.2 Recommendations and future development

6.2.1 Replace the Requesters
The requesters have been created as both placeholders until DRDC chooses what would be the

best way to interact with these COA-T services and also as a way to test the request creation and

response reception. The creation of a GUI facilitating the creation and display of both requests

and responses would be incredibly useful.

6.2.2 Obstacle avoidance service
Weather information could be added in the cost function to get faster path with weather concern
(it would be possible that the present heuristic would not be valid in this scenario.)

Several requests could be made to generate a heatMap of the most possible path considering a
starting region of interest.

Since each request is independent from one another, more than one request could be processed at
a time and with a cluster of computers, several requests could be processed at the same time
resulting in faster results, if an area of starting or ending points were to be tested.

The depth service produced in call up 18 could be added to add precision and efficiency since a
lot of depth requests are made and the format of S57 is not as precise.

 Page 32

Annex A: ActiveMQ Message Structure
Since our services implement a lot of new message types that will be sent through ActiveMQ, it

is important to both notify future developers on the structure that is used and inform

administrators so the proper documentation can be updated.

SYSTEM Topics and Messages

01DB-PSA Design Document – ActiveMQ still formulates that the message in the SYSTEM
topic and its subtopics must be in a MapMessage format. It is important to modify this document
to reflect the current design choice of putting the data in a TextMessage with a JSON formatted
body.

Requests

The messages requesting a schedule to the COAT-Scheduler shall follow this format. After
receiving the schedule request as a REQUEST_SCHEDULE JMSType message, the service will
process it and respond with a REQUEST_SCHEDULE_DATA JMSType message, both going
through the C2.REQUESTS Subtopic.

Table 1: REQUEST_SCHEDULE type message

JMS Part Name (String) Value (Object) Value Type Comment

Header JMSType “REQUEST_SCHE
DULE”

String

Properties RequestID The ID of the
request

String The unique ID of this
request – this field should
not be blank. Generated
as a GUID to ensure
uniqueness.

ClientID The ID of the
requester

String The identifier of who’s
sending the request.
(Since our requester
service is not a final COA-
T product, this is currently
omitted.)

APP_NAME Name of the
sending
application

String Which application sent
data (“AUTOSCHEDULER-
REQUESTER” for our
example requester)

Body
(JSON text
string,
containing
these

Route Array of lat/long
describing the
waypoints

Array of
Coordinates
(lat/lon
double
combination)

 Page 33

JMS Part Name (String) Value (Object) Value Type Comment

values) RouteType Type of
trajectory
between
waypoints

String This string shall either be
“GREAT_CIRCLE” or
“RHUMB_LINE”

BoatType The type of ship
requesting the
schedule

String This string shall either be
“HALIFAX” or “MCDV”

StartTime The starting
time the
requested
schedule

long ms since Epoch.

EndTime The ending time
for the
requested
schedule

long ms since Epoch.

FuelOptimizationBool Whether to
include or not
fuel
optimization in
the Scheduling

Boolean

Tasks A description of
the tasks

Array
containing
Tasks

A Task JSON file is described
in Table 2.

Table 2: JSON formatted Task object

JMS Part Name (String) Value (Object) Value Type Comment

Body
(JSON text
string,
containing
these values)

Name The name of the
task/Short
description

String Must be unique. A task that
must be accomplished
multiple times shall have #1,
#2, etc. appended to it.

Duration How long the task
shall take

Double In hours.

SpatialConstraints Array of bounding
boxes describing
where the task can
be done

Array of
Coordinate
duos,
describing
opposite
corners of a
bounding box

Box of constant lat/lon.

WindConstraint The max value for
wind speed to do
the task

Int In knots.

 Page 34

JMS Part Name (String) Value (Object) Value Type Comment

WaveConstraint The max value for
wave height to do
the task

Int In meters.

EffectiveSpeed The achievable
speed along the
route during the
task

Int In knots.

MotorConfig The motor
configuration that
represents fuel
consumption
during the task

Int 1-30 knots.

TaskPrecedence The name of a task
which needs to be
completed before
this one can begin

String Must be the precise name of
the task.

Using the format described above, we can easily build an example JSON message describing a
Request with two mission tasks in an array (Presented later, for clarity.):
{
 "fuelOptBoolean": false,
 "route": [
 {
 "latitude": 0.0,
 "longitude": 0.0
 },
 {
 "latitude": 10.0,
 "longitude": 10.0
 },
 {
 "latitude": 0.0,
 "longitude": 15.0
 }
],
 "missiontasks": [SEE NEXT SECTION],
 "name": "todayRequest",
 "startTime": 1522071366812,
 "endTime": 1522356200000,
 "routeType": "GREAT_CIRCLE"
}

With the missiontasks array being represented by:
 [{
 "name": "A1",
 "duration": 5.25,
 "motorConfig": 15,
 "spatialDependency": [
 {
 "southWest": {
 "latitude": 2.0,
 "longitude": 2.0
 },
 "northEast": {
 "latitude": 3.0,
 "longitude": 3.0
 }

 Page 35

 },
 {
 "southWest": {
 "latitude": 7.0,
 "longitude": 7.0
 },
 "northEast": {
 "latitude": 11.0,
 "longitude": 11.0
 }
 },
 {
 "southWest": {
 "latitude": 5.0,
 "longitude": 1.0
 },
 "northEast": {
 "latitude": 11.0,
 "longitude": 7.0
 }
 }
],
 "waveConstraint": 6.0,
 "windConstraint": 40.0,
 "effectiveSpeed": 10

 },

 {
 "name": "A2",
 "duration": 2,
 "motorConfig": 5,
 "spatialDependency": [],
 "waveConstraint": 0,
 "effectiveSpeed": 5,
 "windConstraint": 0
 }]

Answer to Requests

After these requests for schedules are received, parsed and processed, the output must be
communicated to the requester. The same subtopic, C2.REQUESTS, is chosen but with
JMSType header of REQUEST_SCHEDULE_DATA instead. The RequestID value is reused in
order to link the request to its answer.

Table 3: REQUEST_SCHEDULE_DATA type message

JMS Part Name (String) Value (Object) Value Type Comment

Header JMSType “REQUEST_SCH
EDULE_DATA”

String

Properties RequestID The ID of the
request

String The unique ID of the request
which triggered this
response.

ClientID The ID of the
Scheduler

String The unique ID of this client

FuelOptimization If the
fuelOptimizatio
n was activated
for this
autoschedule

Boolean

 Page 36

JMS Part Name (String) Value (Object) Value Type Comment

APP_NAME Name of the
sending
application

String Which application sent data
(in this case should always
be “AUTOSCHEDULER”)

Body
(JSON text
string,
containing
these
values)

success Is the schedule
doable?

Boolean

fuelOptimizationSuccess Was the fuel
Optimization
done properly?

Boolean This could be false if the
weather was too severe,
slowing down the ship so
that the schedule is
impossible to keep.

notes Description of
the reasons
making the
schedule is
impossible.
Empty if
schedule is
possible

String “NOT ENOUGH TIME DUE
TO WEATHER” (Weather
makes the end time is
impossible),
“SHIP NOT FAST ENOUGH”
(Even without weather
effects, the end time is
impossible),
“TASKS IMPOSSIBLE DUE TO
WEATHER”
(Wind/Wave constraint in
the way of schedule)

ScheduledAction A description of
when to start
the different
motor configs,
the weather
encountered,
etc.

Array of
ScheduledA
ction
describing
start time,
motor
configs, etc.

An example is given in the
following section

An overview of the rows present in the ScheduleOutput JSONArrayObject can be seen here:

Table 3: Elements of the ScheduleOutput JSON object present in the answer messages

JMS Part Name (String) Value (Object) Value Type Comment

ScheduleAc
tion
(JSON text
string,
containing
these
values)

Waypoints Beginning and end
of this action part

LatLong[]

Time Interval Beginning and end
in time of this
action part

long[] Beginning and end in
milliseconds since Epoch

Name Name of the task or
“MOVE” if there is
no task.

String

IsTask If the action is a
task or not

Boolean

 Page 37

JMS Part Name (String) Value (Object) Value Type Comment

MotorConfiguration The motor
configuration to be
set

String “GT14”, “PDE11”, etc.

EffectiveSpeed The expected speed
to be achieved
when weather
effects are taken
into account

Float

AverageWind Weather to be
expected during
the task

Float

MaxWind Weather to be
expected during
the task

Float

AverageWave Weather to be
expected during
the task

Float

MaxWave Weather to be
expected during
the task

Float

DriftCorrectionVertical Expected drift in
knots in the vertical
direction

Float Due to current and

wind

DriftCorrectionHorizontal Expected drift in
knots in the
horizontal direction

Float Due to current and

wind

AverageHeading Ship heading in
degrees

Float

MII Motion Induced
Interruptions per
minute

Float

KeelEmergence Number of
emergence of the
keel, per hour

Float

DeckWetness Number of times
the deck is washed
with water, per
hour

Float

Weather Requests

The expected COA-T weather service shall answer weather requests with every forecast
available in the LatLon box described and in the time window described. These weather requests
will be both posted and answered on the topic C2.INTERNAL_DATA.WEATHER .

 Page 38

Request messages:
Table 4: WeatherRequest message

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “WEATHER_R
EQUEST”

String

Properties

RequestID Unique ID of
the request

String

ClientID The ID of the
Scheduler

String The unique ID of this client

Variable The Weather
type being
requested

String “WIND”, “WAVE”,
“CURRENT”

APP_NAME Name of the
sending
application

String Which application sent data
(in this case should always
be “AUTOSCHEDULER”)

Body

(JSON text

string)

FORECAST_ TimeStamp
describing the
start of the
timewindow
requested

long ms since Epoch.

TimeEnd TimeStamp
describing the
end of the
timewindow
requested

long ms since Epoch.

MinLatitude Min Latitude
for the box
requested

Float

MaxLatitude Max Latitude
for the box
requested

Float

MinLongitude Min Longitude
for the box
requested

Float

 Page 39

MaxLongitude Max
Longitude for
the box
requested

Float

Answer to the requests:
The answer to a single request is the sum of multiple answer messages, the number of which
depends on the number of forecasts contained into the interval (TimeStart-TimeEnd) from the
request. All the messages that are created as an answer to this request will all have the same
RequestID.

Table 5: WEATHER_DATA message

JMS

Part

Name (String) Value (Object) Value

Type

Comment

Header JMSType “WEATHER_DATA” String
Properties

RequestID Unique ID of the
request

String

Variable The Weather type
being requested

String “WIND”, “WAVE”,
“CURRENT”

APP_NAME Name of the sending
application

String Which application sent
data (in this case should
always be “WEATHER-
SERVICE”)

Time TimeStamp describing
the moment of the
forecast

long ms since Epoch.

Body

(JSON text

string,

containing

array of

weathers

containing

these)

Latitude Latitude for which the
described weather is
valid

Float

Longitude Longitude for which
the described weather
is valid

Float

Value1 Direction of the
weather effect

Float In degrees relative to
North.

Value2 Intensity of the
weather effect

Float Wind: WindSpeed, Wave:
WaveHeight, Current:
CurrentSpeed (m or m/s).

Value3 Period of the weather
effect, if existing

Float In seconds.

 Page 40

ShipMo7 Module

ShipMo7 Requests:
Even though our database has a certain resolution associated (0.2 increments on wave periods, 5
degree increments on sea headings, etc.), the ShipMo7 COA-T service will round the requested
parameters by itself as long as these are in the allowed bounds.

Table 6: SHIPMO_REQUEST message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “SHIPMO_RE
QUEST”

String

Properties

RequestID Unique ID of
the request

String

APP_NAME Name of the
sending
application

String Which application sent data
(in our example, “SHIPMO-
REQUESTER”)

Body

(JSON text

string)

WaveHeight Float

WavePeriod Float

BoatSpeed Float

SeaHeading Float

ShipType String “halifax” or “mcdv”

ShipMo7 Answer:
In the answer, the ShipMo7 service includes the parameters actually requested to the DB rather
than the ones coming from the SHIPMO_REQUEST, for added transparency.

Table 7: SHIPMO_RESPONSE message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “SHIPMO_RES
PONSE”

String

Properties

RequestID Unique ID of
the request

String

 Page 41

JMS

Part

Name (String) Value

(Object)

Value Type Comment

APP_NAME Name of the
sending
application

String Which application sent data
(in our example, “SHIPMO-
SERVICE”)

Body

(JSON text

string)

Resistance Added
Resistance in
irregular
waves

Double

KeelEmergence Number of
times the keel
emerges from
water

Double Per hour

DeckWetness Number of
times water
rushes on the
deck

Double Per hour

Mii Number of
times an
operator has
to brace
himself

Double Per minute

WaveHeight Float Adapted from the request

WavePeriod Float Adapted from the request

BoatSpeed Float Adapted from the request

SeaHeading Float Adapted from the request

ShipType String Comes from the request,
“halifax” or “mcdv”

 Page 42

ShortestPath Module

DepthRange Requests:
Given a longitude and latitude, it returns the depth range of this point.

Table 6: SHORTESTPATH_REQUEST message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “DEPTH_RAN
GE_REQUEST”

String

Properties

RequestID Unique ID of
the request

String

APP_NAME Name of the
sending
application

String Which application sent data
(in our example,
“SHORTESTPATH_REQUESTE
R”)

Body

(JSON text

string)

lng double longitude

lat double latitude

ShortestPath Requests:
Even though mesh grid of the earth has a certain resolution (0.005 recommended) the
ShortestPath COA-T service will round the requested latitude and longitude by itself as long as
they are valid.

Table 6: SHORTESTPATH_REQUEST message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “SHORTESTPA
TH_REQUEST”

String

Properties

RequestID Unique ID of
the request

String

APP_NAME Name of the
sending
application

String Which application sent data
(in our example,
“SHORTESTPATH_REQUESTE
R”)

Body

(JSON text

string)

start double[] [longitude, latitude]

end double[] [longitude, latitude]

speed double Not currently in use

decimal integer Number of decimal places

Precision integer 1 or 5

maxDraft double Draft of the ship

 Page 43

ShortestPath Answer:
In the answer, the list of waypoints representing the path.

Table 7: SHORTESTPATH_RESPONSE message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “SHORTESTPA
TH_RESPONSE
”

String

Properties

RequestID Unique ID of
the request

String

APP_NAME Name of the
sending
application

String Which application sent data
(in our example,
“SHORTESTPATH”)

CLIENT_ID Unique ID of
the
application

String

Possible Boolean
information if
the task is
possible

Boolean

Body

(JSON text

string)

finalPath List of Point
object
representing
the path

Double

DepthRange Answer:
In the answer, the range of depths at the requested point.

Table 7: DEPTH_RANGE_RESPONSE message structure

JMS

Part

Name (String) Value

(Object)

Value Type Comment

Header JMSType “DEPTH_RAN
GE_RESPONSE
”

String

Properties

RequestID Unique ID of
the request

String

APP_NAME Name of the
sending
application

String Which application sent data
(in our example,
“SHORTESTPATH”)

 Page 44

JMS

Part

Name (String) Value

(Object)

Value Type Comment

CLIENT_ID Unique ID of
the
application

String

Body

(JSON text

string)

range Array of depth
from a point.

double[] Format : [min, max]

 Page 45

Annex B: PostgreSQL DB Schema
Since COA-T will use PostGIS as a Geo-Referenced DB for some of its application, this means
that a PostGreSQL DB will run in the background. To save complexity, the Scheduler Service
and the ShipMo7 module will refer to two different tables depending on the situation (halifax or
mcdv) in the PostGreSQL DB (named shipmodata).

Describing the data model in this section allows a DB administrator to know what to expect in
terms of content and format when working with the particular tables created through this call-up.

In both these tables, rows will iterate over the following parameters which serve us primary keys:

 Wave Height (0.2-11.2 metres, 0.2 increments)

 Wave Period (1-25 seconds, 0.2 increments)

 Ship Speed (1-30, 1 increments)

 Sea Heading, Wave direction relative to the ship (0-180, 5 increments)

From these input parameters, some values were extracted out of ShipMo 7:

 Added resistance in irregular waves (kN)

 Keel Emergence (per hour)

 Deck Wetness, Water washing the deck (per hour)

 Motion Induced Interruption (per minute)

Finally, everything was entered in the database in the following format:

Table 4: PostGreSQL DB Schema

Variable Name Data Type
waveheight Numeric
waveperiod Numeric
boatspeed SmallInt
seaheading SmallInt
resistance Double

keelemergence Double
mii Double

deckwetness Double

 Page 46

Annex C: Application.properties
In this Annex, we show the content of the file application.properties, located in the
COATscheduler/src/main/resources and COATshipmo7/shipmo7/src/main/resources directories.
Each of the parameters listed in this file can be modified using an environment variable or as a
Java option in the execution command. For example:

java -jar -Djsa.activemq.broker.url= tcp://127.0.0.1:61616
COATscheduler/target/COAT-Scheduler-0.0.1-SNAPSHOT.jar

will change the broker URL parameter. If you want to change the default value permanently, you
have to edit the application.properties file in the resource directory and then, recompile using the
mvn clean package or mvn clean install command.

The unit for the timeout parameters are in milliseconds. The available logging levels are:
ERROR, WARN, INFO, DEBUG, TRACE. For more information, see
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-logging.html .

Scheduler:
The Scheduler resource file is located in COATscheduler/src/main/resources directory.

The mahalanobis.threshold parameter determines how many standard deviations the weather
parameters of a set of steps can be distant from another set before cutting the moving task.

The addSmallTempest parameter is for testing the scheduler with wave data that are over the task
wave height limit and thus forcing a reschedule. It also serves to test the optimizer with wave
data.

PostgreSQL database connection configurations

spring.datasource.url = jdbc:postgresql://127.0.0.1:5432/shipmodata

spring.datasource.username=postgres

spring.datasource.password=postgres

spring.datasource.platform=postgresql

Active MQ configurations

jsa.activemq.topic.requests=C2.REQUESTS

jsa.activemq.topic.scheduleresponse=C2.REQUESTS_DATA

jsa.activemq.topic.weather=C2.INTERNAL_DATA.WEATHER

jsa.activemq.timeout=0

scheduler.addSmallTempest=false

jsa.activemq.broker.url=tcp://127.0.0.1:61616

jsa.activemq.broker.username=admin

jsa.activemq.broker.password=admin

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-logging.html

 Page 47

spring.activemq.pooled=true

spring.activemq.pool.max-connections=4

spring.jms.pub-sub-domain=true

properties.mahalanobis.threshold=3

logging.level.org=INFO

ShipMo7:

The ShipMo7 resource file is located in COATshipmo7/shipmo7/src/main/resources directory.

PostgreSQL database connection configurations

spring.datasource.url = jdbc:postgresql://127.0.0.1:5432/shipmodata

spring.datasource.username=postgres

spring.datasource.password=postgres

spring.datasource.platform=postgresql

Active MQ configurations

jsa.activemq.topic.requests=C2.REQUESTS

jsa.activemq.topic.scheduleresponse=C2.REQUESTS_DATA

scheduler.addSmallTempest=false

jsa.activemq.broker.url=tcp://127.0.0.1:61616

jsa.activemq.broker.username=admin

jsa.activemq.broker.password=admin

spring.activemq.pooled=true

spring.activemq.pool.max-connections=4

spring.jms.pub-sub-domain=true

logging.level.org=INFO

ShortestPath:

The shortestPath resource file is located in COAT-ShortestPath/src/main/resources directory.

The S57 charts used for the algorithm must be in in COAT-

ShortestPath/src/main/resources/s57files directory.

The properties.depth.calculator parameter determines which depth service is to be used. The
value in this parameter must be equal to the value in the ConditionalOnProperty annotation over
the chosen implementation of the depth service.

Active MQ configurations

jsa.activemq.topic.requests=C2.REQUESTS

jsa.activemq.topic.shortestpathresponse=C2.REQUESTS.DATA

jsa.activemq.timeout=0

 Page 48

jsa.activemq.broker.url=tcp://192.168.48.19:61616

jsa.activemq.broker.username=admin

jsa.activemq.broker.password=admin

spring.activemq.pooled=true

spring.activemq.pool.max-connections=4

spring.jms.pub-sub-domain=true

properties.depth.calculator=s57service

properties.s57directory.path=pathToTheS57Directory

logging.level.org=INFO

DOCUMENT CONTROL DATA
*Security markings for the title, authors, abstract and keywords must be entered when the document is sensitive

 1. ORIGINATOR (Name and address of the organization preparing the document.
A DRDC Centre sponsoring a contractor's report, or tasking agency, is entered
in Section 8.)

 OODA Technologies
 4710 St-Ambroise, suite 226
 Montreal, (Quebec) H4C 2C7
 Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

CAN UNCLASSIFIED

 2b. CONTROLLED GOODS

NON-CONTROLLED GOODS
DMC A

 3. TITLE (The document title and sub-title as indicated on the title page.)

PLANNING TOOL ALGORITHM IMPLEMENTATION FOR THE COURSE OF ACTION TEST BED

 4. AUTHORS (Last name, followed by initials – ranks, titles, etc., not to be used)

 Marion-Ouellet, L. O.; Bossé ,É.-O.; Bossé; Mayrand, M.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

May 2018

 6a. NO. OF PAGES
(Total pages, including
Annexes, excluding DCD,
covering and verso pages.)

48

 6b. NO. OF REFS
(Total references cited.)

0
 7. DOCUMENT CATEGORY (e.g., Scientific Report, Contract Report, Scientific Letter.)

Contract Report

 8. SPONSORING CENTRE (The name and address of the department project office or laboratory sponsoring the research and development.)

DRDC – Atlantic Research Centre
Defence Research and Development Canada
9 Grove Street
P.O. Box 1012
Dartmouth, Nova Scotia B2Y 3Z7
Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under which
the document was written. Please specify whether project or
grant.)

 01db

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 W7707-4501665176

 10a. DRDC PUBLICATION NUMBER (The official document number
by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC-RDDC-2018-C183

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11a. FUTURE DISTRIBUTION WITHIN CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

Public release

 11b. FUTURE DISTRIBUTION OUTSIDE CANADA (Approval for further dissemination of the document. Security classification must also be
considered.)

 12. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Use semi-colon as a delimiter.)

Scheduling; Operational Planning; Optimization and Matematical Programming; Optimization

 13. ABSTRACT/RÉSUMÉ (When available in the document, the French version of the abstract must be included here.)

N/A

