
Towards a Comprehensive DND/CF
Enterprise Architecture Methodology

R. Farahbod
A. Guitouni
É. Bossé
(DRDC Valcartier)

Defence Research and Development Canada – Valcartier
Technical Report

DRDC Valcartier TR 2011-022
June 2013

Towards a Comprehensive DND/CF
Enterprise Architecture Methodology

R. Farahbod
A. Guitouni
É. Bossé
(DRDC Valcartier)

Defence Research and Development Canada – Valcartier
Technical Report
DRDC Valcartier TR 2011-022
June 2013

IMPORTANT INFORMATIVE STATEMENTS

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

Abstract

Résumé

DRDC Valcartier TR 2011-022 i

This page intentionally left blank.

ii DRDC Valcartier TR 2011-022

Executive summary

Towards a Comprehensive DND/CF Enterprise
Architecture Methodology

R. Farahbod, A. Guitouni, É. Bossé; DRDC Valcartier TR 2011-022; Defence R&D
Canada – Valcartier; June 2013.

Introduction or background: The objective of this report is to present a critical review

of the DNDAF as a core enterprise architecture framework to support the development of

Integrated Command and Control Capability. To develop a future Integrated Command and

Control (C2) capability there is a need for a comprehensive system engineering

methodol across the Department of National Defence. C2 occurs at many levels of an

organi tion. C2, at the enterprise level, shapes the force (or the enterprise) determining the

purpose of the organi ation, its priorities, and ultimately the capabilities it has. Thus, C2

at the enterprise level determines what is possible. C2 at the mission level is about

employing the assets of an organi ation, its people, systems, materiel, and its

relationships with others in the pursuit of mission-specific goals and objectives (intent).

In this document, we focus on system of systems engineering. In systems engineering,

architectures facilitate understanding and communication of different aspects of a system

by providing a structured approach to document requirements, design decisions and

technical details of the implementation. Especially in dealing with development and

maintenance of large complex systems, architectures help in managing the complexity,

through techniques such as modularization and abstraction at various levels, and

facilitate change by of the components, relationships, and constraints of

the systems or processes. Modern enterprises, especially in the public sector, are perhaps

the most complex systems we have ever created. With different organizations and a vast

number of stakeholders each with different interests and concerns, a proper mechanism

has to be in place to control complexity, facilitate change, and align different aspects of

the enterprise towards achieving common goals and objectives. In light of this

observation, Enterprise Architecture (EA) promises management with insight and

overview of the enterprise to control complexity and support decision making by

providing a continuous process of cre-ation, maintenance, and dissemination of

information about the enterprise.

In 2001, the Department of National Defence and the Canadian Forces (DND/CF) called

for the use of enterprise architecture. In response to this, the Directorate of Enterprise

Architecture (DEA) the goal of establishing enterprise architecture as a practice within

DND/CF. The expectation has been that the DND/CF enterprise architecture practice,

managed through the DND/CF Enterprise Architecture Program (DND EAP), will

improve the effectiveness and efficiency of DND/CF. aims to define the

framework, the methodologies and the tools needed to establish an EA practice within

DRDC Valcartier TR 2011-022 iii

architecture efforts in DND/CF will follow the framework and

methodologies defined in DNDAF to ensure interoperability and integration into an

overall EA repository. DNDAF is an important and necessary step forward towards

establishing the practice of EA within DND/CF. At the time when DNDAF version 1.5

was released (March 2008), it was one of the most advanced military EA frameworks,

compared to DoDAF, MODAF, and others. However, to fulfill its purpose and to be

effective , DNDAF has to be more comprehensive and needs to address a

number of shortcomings and limitations. To begin with, it has to be clear (and clearly

stated) what DNDAF is supposed to be: is it expected to be a framework to provide

guidance to DND/CF architects [1, Vol. 1, Sec. 1.2] or is it supposed to represent the

DND/CF enterprise [1, Vol. 2, . 2]?

Enterprise architecture is a continuous practice. In our opinion, the current version of

DNDAF lacks two important pieces required adopting a practice of EA within an

enterprise: a) a set fundamental guiding principles that state how the practice of EA is

expected to support the enterprise business direction and processes, and b) a proper

methodology (or at least a process) that guides the development and maintenance of

architectural artefacts. In this report, we propose a set of potential solutions that might

extend DNDAF and create a DND/CF enterprise architecture.

Approach: In order to provide a meaningful analysis of DNDAF, we structured our ap-

proach around the following steps:

a) studying the concept of Enterprise Architecture in order to better understand its goal

and its requirements;

b) studying a number of top EA frameworks in order to identify different aspects of EA

that each framework covers and the various components each one consists of;

c) differentiating between the notions of methodology and framework in the context of

EA and identifying the main components of an EA framework and an EA

methodology based on the available literature;

d) critically analyzing the DNDAF framework in light of these studies considering the

purpose of DNDAF and the goal of DND/CF EAP as stated in DNDAF

documentation;

e) finally, providing a discussion and recommendations for future work and some of the

challenges that we may want to face in order to improve DNDAF.

Results: This report proposes a critical review of DNDAF its purpose and its compo-

nents, and puts forward a set of recommendations for improvement in order to achieve a

comprehensive DND/CF EA methodology and framework.

Significance: In the conclusion, we propose a set of recommendation to evolve DNDAF

toward a comprehensive EA methodology for DND. In particular, this methodology is

required for developing an Integrated Command and Control Capability.

iv DRDC Valcartier TR 2011-022

Future plans: Future work includes determin the critical components (e.g., tools,

methods, standards) that should be developed in order to support the implementation of a

comprehensive EA for DND/CF.

DRDC Valcartier TR 2011-022 v

Sommaire

Towards a Comprehensive DND/CF Enterprise
Architecture Methodology

R. Farahbod, A. Guitouni, É. Bossé ; DRDC Valcartier TR 2011-022 ; R & D pour la
défense Canada – Valcartier ; juin 2013.

Introduction ou contexte : L’objectif de ce rapport est de pr senter une analyse critique

de DNDAF comme cadre central d’une architecture d’entreprise pour soutenir le

d veloppement de la capacit de commandement et contr le int gr e . Pour

d velopper une capacit future de commandement et contr le int gr e, il est n cessaire

d’avoir une m thodologie d’ing nierie de syst mes minist re de la fense

nationale. C2 se produit plusieurs niveaux d’une organisation. C2, au niveau de

l’entreprise, fa onne la force (ou l’entreprise) pour d terminer le but de l’organisation, ses

priorit s et ultimement ses capacit s. Ainsi, C2 au niveau de l’entreprise d termine ce qui

est possible. C2 au niveau de la mission se limite employer les ressources de

l’organisation, ses capacit s humaines, syst mes et mat rielles, et leurs relations avec

d’autres pour la r alisation de but et objectifs (intention) sp cifiques la mission.

Dans ce document, nous concentrons l’ingénierie de système de systèmes. En ingénierie

des systèmes, les architectures facilitent la compréhension et la communication des différents

aspects d’un système en fournissant une démarche structurée pour la documentation des be-

soins, des décisions de conception et les détails techniques de la mise en æuvre. Surtout

en matière de développement et la maintenance de grands systèmes complexes, les archi-

tectures aident à gérer la complexité, grâce à des techniques telles que la modularité et

l’abstraction à différents niveaux et à faciliter le changement en prévoyant des mécanismes

de documentation des composants, des relations et des contraintes des systèmes ou des

processus. Les entreprises modernes, notamment dans le secteur public, sont peut-ˆetre les

syst`emes plus complexes que nous avions cr . Avec diff rentes organisations et un

grand nombre d’intervenants avec des int r ts et des pr occupations diverses, un m canisme

appropri doit tre mis en place afin de contr ler la complexit , faciliter le changement et

aligner les diff rents aspects de l’entreprise vers l’atteinte des objectifs et des buts

communs. la lumi re de cette observation, l’architecture d’entreprise () promet la

gestion, avec perspicacit et vue d’ensemble, de l’entreprise afin de contr ler la

complexit et soutenir la prise de d cision en fournissant un processus continu de cr ation,

En 2001, le minist re de la fense nationale et les orces canadiennes (MDN / FC)

ont l’utilisation de l’architecture d’entreprise . En r ponse cela, la

irection (DA) a t cr e dans le but d’ tablir l’

comme une pratique au sein du MDN/FC. L’attente a t que la pratique de l’architecture

vi DRDC Valcartier TR 2011-022

Approche : Notre approche est structurée selon les étapes suivantes :

a) étudier le concept d’architecture d’entreprise afin de mieux comprendre son objectif

et ses exigences ;

b)

c)

d)

e)

R sultats :

DRDC Valcartier TR 2011-022 vii

Importance :

Perspectives :

viii DRDC Valcartier TR 2011-022

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . vi

Table of contents . ix

List of figures . xii

1 Introduction . 1

1.1 Background . 1

1.2 Structure of the Document . 4

2 Problem Description . 5

3 Enterprise Architecture . 10

3.1 Framework vs. Methodology . 11

3.2 EA Frameworks . 12

3.2.1 The Zachman Framework . 12

3.2.2 DoDAF: Department of Defense Architecture Framework 13

3.2.3 MODAF: Ministry of Defence Architectural Framework 15

3.2.4 TOGAF: The Open Group Architecture Framework 16

3.2.5 NAF: NATO Architecture Framework 17

3.2.6 FEA: Federal Enterprise Architecture 17

3.3 Components of an EA Framework . 19

3.4 EA Methodology . 20

DRDC Valcartier TR 2011-022 ix

4 Models and Formal Methods . 23

4.1 Formal Modeling . 23

4.2 State-based Formal Methods . 25

4.3 Abstract State Machines . 26

4.3.1 ASM Systems Engineering Method 27

4.3.2 The CoreASM Modeling Suite 27

5 The DND/CF Architecture Framework . 30

5.1 Purpose . 30

5.2 Views . 31

5.3 Data Model . 31

5.4 Reference Models . 33

6 Towards a DND/CF EA Methodology . 34

6.1 Is DNDAF an EA Methodology? . 34

6.2 What Is Needed? . 35

6.2.1 EA Principles . 35

6.2.2 Reference Models . 36

6.2.3 An Architecture Development Process 36

6.2.4 Standards and Tools . 37

6.2.5 Practice Guidance . 37

6.3 Systems Engineering: Modeling and Analysis 37

6.3.1 Formal Modeling . 38

6.3.2 Validation and Verification . 40

6.3.3 An ASM Example . 42

7 Concluding Remarks and Future Work . 45

x DRDC Valcartier TR 2011-022

References . 47

Annex A: Requirements & Applications of EA . 53

Annex B: Formal Language Semantics . 55

Annex C: Abstract State Machines . 57

C.1 Distributed ASMs . 57

C.2 Control State ASMs . 57

Index . 59

DRDC Valcartier TR 2011-022 xi

List of figures

Figure 1: C2 Approaches as regions in the C2 Approach Space (from [2]) 6

Figure 2: Different C2 Approaches (from [2]) . 6

Figure 3: Collective C2 Maturity Levels 1 to 5, defined in terms of the different

possible C2 Approaches (from [2]) . 7

Figure 4: Context of Integrated C2 . 9

Figure 5: Four Aspects of an Enterprise . 10

Figure 6: The Zachman Grid of Architectural Artifacts [3] 13

Figure 7: DoDAF 2.0 Architectural Viewpoints (from [4, Vol. 1]) 14

Figure 8: Phases of TOGAF Architecture Development Method 16

Figure 9: FEA Segments and Services (courtesy of [5]) 18

Figure 10: Elements of a Big-M Methodology for EA (based on [6]) 21

Figure 11: The ASM method of systems engineering 28

Figure 12: DNDAF Views and Sub-views (from [1]) 32

Figure 13: The Air Traffic Operations example of [1, Fig. 3.12.2] 43

Figure 14: Control State ASM model of Figure 13 44

Figure 15: Control State Diagram of 13 in CoreASM CSDe Editor 44

Figure C.1: Control State ASMs . 58

xii DRDC Valcartier TR 2011-022

1 Introduction
1.1 Background
To develop a future Integrated Command and Control (C2) capability there is a need for

a comprehensive system engineering methodology across the Department of National De-

fence. C2 occurs at many levels of an organisation. C2, at the enterprise level, shapes

the force (or the enterprise) determining the purpose of the organisation, its priorities, and

ultimately the capabilities it has. Thus, C2 at the enterprise level determines what is pos-

sible. C2 at the mission level is about employing the assets of an organisation its

people, systems, materiel, and its relationships with others in the pursuit of mission-

specific goals and objectives (intent).

NATO C2 reference model [7] and its evolutions 1 2, are described in SAS-085 3. According

to SAS-065, 4 two key realities dominate thinking about command and control (C2) in the
21st century. The first is the nature of the 21st century military mission space. This space

is characteris ed by its extreme uncertainty. In addition to the high intensity combat

operations that are traditionally associated with military operations, the 21st century

mission space has expanded to include a wide spectrum of mission challenges, ranging from

providing support to multi-agency disaster relief operations to complex coalition efforts

within a political-military environment involving a large variety of military and non-

military actors; which we describe as Complex Endeavours.

The second reality is the ongoing transformation of 21st century militaries, and for that

matter, other 21st century institutions and actors from the Industrial Age to the Information

1. NATO SAS-065 Research Task Group. NATO NEC C2 Maturity Model Overview. Draft for Peer

Review, 2008. Available at www.dodccrp.org

2. NATO SAS-085 Research Task Group, NATO

3. NATO SAS-085 ‘C2 agility and requisite maturity’ has three objectives:

– To understand and validate the implications of C2 Agility (or a lack of C2 Agility) for NATO missions

by improving the breadth and depth of our understanding of C2 Agility;

– Match the characteristics of alternative C2 Approaches to situational attributes (e.g. complexity, dy-

namics) so that Requisite C2 Maturity and its encompassing C2 Agility can be recognized for complex

endeavours;

– Support the dissemination of this improved understanding through applications involving appropriate

military, research and educational institutions.

4. SAS-065 is a NATO research task group operating under the auspices of the SAS Panel. It was formed

in 2006 for the purpose of developing a C2 Maturity Model for network-enabled operations.

SAS-065’s principal products include a detailed description of a NATO NEC Command and

Control Maturity Model (N2C2M2) with a User Guide (see section entitled Applying the NATO
NEC C2 Maturity Model) and a revised C2 Conceptual Reference Model (originally developed by

SAS-050). SAS-065 builds on the work of a series of research task groups dating back to 1995 that

have explored issues in command and control. These have included RSG-19 and SAS-026, which

produced the NATO Code of Best Practice for C2 Assessment, and SAS-050, which produced the

C2 Conceptual Reference Model. The members of SAS-065 and the countries and organizations

they represent can be found in the Acknowledgments section.

DRDC Valcartier TR 2011-022 1

Age. With this transformation comes the ability to leverage new information technologies.

This has had, and will continue to have, a profound effect on how institutions manage

themselves and how they can work with coalition partners.

The Canadian Forces ha identified the requirement for an integrated C2 Information

Capability (IC2C) [Ref. CDS Directive to CFD June 06, VCDS Direction CF IC2C, and

Integrated C2 Capability Strategy]. DRDC is undertaking an applied research initiative

to support CFD and DCCI/DGIMO/ADM(IM) creating a vision for the CF’s Integrated

Com-mand and Control Capability (IC2C), and establish an implementation strategy for

achieving that vision. It is therefore important to define what “integrated C2 Capability”

for the CF and document its key enablers. The integrated C2 capability requirements

include but not limited to:
– System of Systems networking people, data and capabilities,

– Open System Architecture for “plug-and-play” and interoperability

– Service Oriented Architecture interoperability,

– Getting OGDs to think & work in secure environment,

– JIMP Secure Environments Whole of Enterprise Data Knowledge Defence Enterprise

Resource Planning (ERP) Capability: ERP systems with integrated information for DND/CF

data and information management, transaction processing, and decision making require-

ments.
In this document, we focus on system of systems engineering. In systems engineering,

architectures facilitates understanding and communication of different aspects of a system

by providing a structured approach to document requirements, design decisions and

technical details of the implementation. Especially in dealing with development and

maintenance of large complex systems, architectures helps in managing the complexity,

through techniques such as modularization and abstraction at various levels, and facilitate

change by providing a documentation of the components, relationships, and constraints

of the systems or processes.

Modern enterprises, especially in the public sector, are perhaps the most complex systems

we have ever created. With different organizations and a vast number of stakeholders each

with different interests and concerns, a proper mechanism has to be in place to control

complexity, facilitate change, and align different aspects of the enterprise towards achieving

common goals and objectives. In light of this observation, Enterprise Architecture (EA)
promises management with insight and overview of the enterprise to control complexity

and support decision making by providing a continuous process of creation, maintenance,

and dissemination of information about the enterprise. [8, 9]

In 2001, as one example of a large enterprise in public sector, the Department of

National Defence and the Canadian Forces (DND/CF) called for the use of enterprise archi-

tecture. 5 In response to this, the Directorate of Enterprise Architecture (DEA) was
with the goal of establishing enterprise architecture as a practice within DND/CF.

5. Canadian Defence Planning Guide (DPG) 2001

2 DRDC Valcartier TR 2011-022

w

expectation has been that the DND/CF enterprise architecture practice, managed

through the DND/CF Enterprise Architecture Program (DND EAP), will improve the

effectiveness and efficiency of DND/CF. [1]

Explicit details of the DND EAP provided through the DND/CF Architecture

Framework (DNDAF) [1]. It aims defin the framework, the methodologies and the

tools needed to establish an EA practice within DND/CF. All architecture efforts in

DND/CF will follow the framework and methodologies defined in DNDAF to ensure

interoperability and inte-gration into an overall EA repository. The latest version of the

DNDAF 6 comes in four volumes:

1. Overview and Definitions provides an overview of the main concepts of EA, its pur-

pose and its role within DND/CF.

2. DND/CF Views and Sub-views provides a structure for organizing DND/CF enter-

prise information into six architectural views and corresponding sub-views each doc-

umenting different aspects of the architecture (see Section 5.2).

3. DND/CF Architecture Data Model (DADM) defines a standard set of architecture

data entities and their relationships showing how the underlying information is orga-

nized in DNDAF.

4. User Guide provides interim guidance and advice for the effective use of DNDAF in

creation of architecture information and products until an EA toolset is procured and

available for use across DND/CF.

A DNDAF is therefore expected to become:

– The standard framework to be tailored for all DND Communication and information

systems projects and system, thereby ensuring that capability production and exploita-

tion are synchronized with and a contributor to the overarching Integrated Command

and Control Capability. As a result, there will be a common approach for describing

architectures across all projects, and allow for easy analysis re-use by each team.

– The framework that provides the necessary documentation to allow the reader to “wade

in” gradually to an understanding of DND Integrated Command and Control Capability.

– The framework that provides the flexibility to select the data representation required to

meet IC2 needs.

– The framework can be modified to document a “capability” instead of just a “system”,

which is essential to the IC2 level of analysis. As a result, structured systems engineering

techniques may be used on the IC2 initiative to extend to the capability level.

The above types of benefits have been recognized in US programs, as all DoD projects must

now have DoDAF views for approvals within the Joint Capability Development and Inte-

gration System (JCIDS). DoDAF provides a wide selection of “views” that are developed

and used to fully document the current state, or the proposed future state, of a system or

capability. It is not necessary to use all of these views at all times, however the existence of

6. DNDAF Version 1.6, released May 2009 [1]

DRDC Valcartier TR 2011-022 3

the framework provides a useful logic for the addition and integration of views as required

throughout the life cycle of a project.

In this document, we examine DNDAF based on the set of expectations

in order to determine if all enterprise architectural requirements are met by DNDAF.

1.2 Structure of the Document
The rest of this document is structured as follows: Section 2 discusses the problem domain.

Section 3 provides an overview of Enterprise Architecture and surveys a number of top

EA frameworks and methodologies. Section 4 looks into the modeling aspect of systems

engineering and discusses the role of modeling and formal methods in engineering of com-

plex systems. An overview of DNDAF version 1.6 and its strengths and shortcomings is

provided in Section 5. This overview is complemented by an analysis and a set of sugges-

tions and recommendations for improvement in Section 6. Finally, Section 7 concludes the

report, identifies the challenges ahead and discusses the future work.

4 DRDC Valcartier TR 2011-022

2 Problem Description

The span of C2 is too broad and plural. In the N2C2M2 report (from cite NATO-

SAS065- 08), the authors stated that “The term command and control is clearly a product

of the Industrial age. The first use of the term as we understand it appears to be by Jomini in

The Art of War, when he entitles a section of the book, “The Command of Armies and the

Supreme Control of Operations.” It emerged as a term of art around the middle of the

last century. Prior to this, command was always associated with a commander (an

individual) and a headquarters (a management team). Even the idea of a formal staff does

not emerge before Gu tavus Adophus (1594-1632) and modern staff structures not until

Napoleon Bonaparte. Modern command and control organi ations trace their origins to

Napoleon who is credited with the development of the first modern military headquarters

and the associated creation of a “modern” command staff. At this point, the functioning

of a command staff became a subject of analysis. Different militaries had different

approaches to headquarters organization and correspondingly different approaches to the

way in which intent was expressed and control was exercised.

For some, Command referred to a commander intent and decisions while control was

associated with how the “intent” of the commander became translated into instructions

and promulgated throughout forces by the command staff. This view parses the term

the art and science of command and control with command being the art while control

is the science. This resulted in, until very recently, a bifurcation of inquiry where the

study of commanders and their behaviours continued to be a subject for military

historians and the study of control became fair game for a variety of scientific disciplines.

Command and Control (C2) can be interpreted in its broadest sense to include acquiring,

managing, sharing and exploiting information, and supporting individual and collective

decision-making. The NATO NEC C2 Maturity Model (N2C2M2) was developed by the

RTO SAS-065 Research Task Group over a period of about three years. starts by

defining a number of C2 approaches, ranging from Conflicted C2 to Edge C2, that

correspond to different regions within the C2 Approach Space shown in Figure 1.

In Figure 1, there is a gap between Conflicted and De-Conflicted C2 and a gap between

Collaborative and Edge C2. De-Conflicted, Coordinated, and Collaborative C2 are shown

without gaps between them. This is because the exact boundaries between De-Conflicted

and Coordinated and between Coordinated and Collaborative are difficult to define pre-

cisely. Figure 2 gives a brief description of each of these C2 approaches, in terms of the

region they occupy on the C2 approach space (described by the three variables across the

top). In Figure 2, the relationships among the approaches are depicted by gaps between

Conflicted and De-Conflicted and Collaborative and Edge C2, and dashed lines

between De-Conflicted, Coordinated, and Collaborative.

These different approaches to collective C2 are key considerations in determining C2 ma-

DRDC Valcartier TR 2011-022 5

Figure 1: C2 Approaches as regions in the C2 Approach Space (from [2])

Figure 2: Different C2 Approaches (from [2])

6 DRDC Valcartier TR 2011-022

Figure 3: Collective C2 Maturity Levels 1 to 5, defined in terms of the different possible

C2 Approaches (from [2])

turity. C2 maturity levels are defined in terms of the specific approaches to C2 that an entity

or collection of entities can implement and the ability to recognize which approach is ap-

propriate and adopt the most appropriate associated with a specific set of C2

capabilities. Furthermore, each higher level of C2 maturity subsumes the capabilities

associated with the lower levels. From the collective or coalition perspective there are

thus five possible levels of C2 maturity, as shown in Figure 3.

In related work, DRDC has identified that IC2C should be considered from the two fol-

lowing perspectives:

– Mission imperatives: as stated in the different strategic documents, the role of the CF is

to the government of Canada Canada First Strategy and be a core element of its security

strategy in Canada and abroad,

– Enterprise prospect: In a networked world and during the information/knowledge age,

Command and Control spans across all organisations in the National Department and

even reach out to other government departments, agencies and stakeholder.

It is important to establish a common understanding of the CF C2 requirements and identify

the future S&T challenges. Process, Organi ation and Technology (POT) are key elements

of C2. The effective networking of people, organi ation and technologies to conduct collab-

orative working is considered key to achieving an integrated C2. An understanding of or-

gani ational and individual C2 dimensions is essential to the development of requirements

for an integrated C2 Capability for the Canadian Forces. The challenges of an Integrated

C2 Capability are multiple and beyond one single organi ation or directorate. In this report,

we focus on the evaluation of System of system engineering (architectures and integration)

methodology. We recognize that the Integrated C2 Capabilities challenges include but not

limited to:

– Characterization of the future CF force employment contexts based on the CF Force

DRDC Valcartier TR 2011-022 7

Planning Scenarios (e.g., Cyber Operations, Urban Ops, Coalition Ops, Counter-Insurgency

Ops, JIMP context-comprehensive approach, Dispersed Ops, Critical Infrastructure Pro-

tection),

– Identification of the integration requirements (e.g., between mission and enterprise C2IS,

among the different services C2IS, with OGDs),

– Agility of IC2: the ability to rapidly assemble an as-needed mission-specific C2 capabil-

ity from an available set of standard and relatively low-cost elements,

– Data exchange standards and interfaces: data and information modelling, data exchange

requirements for interoperability across forces, with allies and OGDs (JIMP),

– Information infrastructure for sharing information: develop interoperability requirements

and performance models for CF strategic networks, operational and tactical networks,

– Common Information Model for command, logistics and ISR,

– Machine understandable information technologies: An efficient, secure, resilient and ag-

ile method and architecture supporting federation of information services between na-

tions (for coalitions),

– Technologies that facilitate information sharing (down to the platform level) and enable

the integration of unclassified and classified systems for joint and coalition operations,

– Information assurance and security: Provide intra-, cross-, and inter-domain authentica-

tion, encryption, and information assurance/integrity services and Information quality

assessment,

– Assess options for future C2 architectures in current and future platforms, and for coali-

tion operations including distributed heterogeneous architecture, System Openness, Human-

System integration,

– Methods and tools to assess software security, trustworthiness, reliability, robustness,

and performance, and

– Business process modelling and enterprise architecture frameworks (e.g. DNDAF)

DNDAF is an important and necessary step forward towards establishing the practice of

EA within DND/CF. At the time when DNDAF version 1.5 was released (March 2008),

it was one of the most advanced military EA frameworks, compared to DoDAF, MODAF,

and others (see Section 3.2). However, to fulfill its purpose and to be practically effective,

DNDAF has to be more comprehensive and needs to address a number of shortcomings and

limitations. To begin with, it has to be clear (and clearly stated) what DNDAF is supposed

to be: is it expected to be a framework to provide guidance to DND/CF architects [1, Vol. 1,

Sec. 1.2] or is it supposed to represent the DND/CF enterprise [1, Vol. 2, Sec. 2]?

Enterprise architecture is a continuous practice. The current version of DNDAF lacks two

important pieces required in adopting a practice of EA within an enterprise: a) a set fun-

damental guiding principles that state how the practice of EA is expected to support the

enterprise’s business direction and processes, and b) a proper methodology (or at least a

process) that guides the development and maintenance of architectural artifacts.

In this report, we look at the concept of enterprise architecture, its definition and its pur-

pose, and provide an overview of a number of top EA frameworks with the goal of iden-

8 DRDC Valcartier TR 2011-022

tifying the main components of a comprehensive EA framework. The EA framework is

analyzed in the context of DND enterprise core processes as shown in Figure 4. In light

of this study, we then critically look into DNDAF, its purpose and its components, and put

forward a set of recommendations for improvement in order to achieve a comprehensive

DND/CF EA methodology and framework.

Figure 4: Context of Integrated C2

DRDC Valcartier TR 2011-022 9

3 Enterprise Architecture

“The reasons one would ‘do’ architecture for anything are two: a) complex-

ity and b) change. If the object you are trying to create is simple. . . that is,

if, at a glance, you can see it in its entirety, at the level of definition that is

required to create it. . . and if it is not likely to change appreciably over the

period of its existence. . . then, you don’t need architecture. You need a tool (a

machete). . . some material (some grass). . . some time. . . and then chop down

grass. . . build a grass shack.

“If, on the other hand, the object you are trying to create [is] so complex

that you cannot see it in its entirety at the level of definition required to cre-

ate it. . . like an Airbus 380. . . then forget the machete and the grass. . . and it

doesn’t make any difference what tools you have, what material you have and

how much time you have, you are not going to be able to create an Airbus 380.

In this case, you NEED Architecture. . . ” – John A. Zachman [8]

An enterprise is a goal oriented cooperative (a collection of organizations) comprised of

business (processes), people, information, and technology (Figure 5) that transform over

time. The stakeholders of an enterprise 7 use the information to make decisions about the
enterprise that are in line with its business objectives. In making decisions about an

enterprise, stakeholders need to acquire a clear understanding of the enterprise (its

processes, components and their relationships) in order to understand the effects and the

risk of their decisions. This process of decision making is often complicated by the

complexity and constant change of the enterprise and its products [1, 10].

Business

People

Information TechnologyTransitional
Processes

Figure 5: Four Aspects of an Enterprise

In order to control complexity and facilitate the process of decision-making and transfor-

mation of the enterprise, Enterprise Architecture (EA) provides insight and overview of

7. A stakeholder is an individual, team, or organization with interest in, or concerns relative to the enter-

prise. [10]

10 DRDC Valcartier TR 2011-022

the enterprise. According to Defence Terminology Databank (DTB) EA is a “collection of

strategic information that defines a business, the information and technologies necessary to

operate the business, and the transitional processes necessary for implementing new tech-

nologies in response to the changing needs of the business. It is represented through a set

of integrated blueprint.” [1]

EA is a corporate asset that is both a practice and a tool. The practice of EA is a continuous

process of creation, modification, application and dissemination of information about

an enterprise. The architecture identifies the main components of the enterprise, their

relationship and how the function together to achieve business objectives [9].

can be used to create a roadmap to achieve business objectives by

providing a common communication platform to systematically and comprehensively

define the current state of the enterprise (as-is) and its desired future state (to-be). In

fact, a good enterprise architecture acts as an analysis tool: it guides development

of new capabilities, addresses the organization’s business and information needs,

supports the business objectives of reducing costs and improving the operational service,

and facilitates the migration from the current state to the future state. [1, 9, 11]

In the practice of EA, it is important to understand what one is trying to achieve and not to

start by doing everything at the same time. The best practices suggest that an organization

should start with emphasizing on certain areas and step by step pick up different

objectives and apply a broader emphasis. At any stage of maturity of EA, it is

important for the architecture to be a) technically feasible and implement at a

reasonable cost within a reasonable timeframe, and b) traceable from business

requirements to technical implementation [12, 9].

In the following sections, we first clarify our understanding of the terms methodology and

framework, then provide a brief overview of top EA frameworks serve as a basis

for identifying the main elements of an EA framework. Finally, we conclude this section

by a discussion the importance of having a well defined EA methodology in carrying

out an EA practice within an enterprise.

3.1 Framework vs. Methodology
The literature does not clearly differentiate between the two terms methodology and frame-
work in the context of EA, and the terms are at times used interchangeably [13]. 8 In the

realm of software development, a framework does not dictate what to do but serves as a

generic model that guides the development of artifacts [14]. The American Heritage Dic-

tionary, defines a framework as:

“A structure for supporting or enclosing something else, especially a skeletal

support used as the basis for something being constructed; An external work

8. The same is true about methodology and process.

DRDC Valcartier TR 2011-022 11

platform; a scaffold; A fundamental structure, as for a written work; A set of

assumptions, concepts, values, and practices that constitutes a way of viewing

reality.”

On the other hand, a methodology is about the practice: the what to be done and how. The

American Heritage Dictionary defines methodology as:

“A body of practices, procedures, and rules used by those who work in a dis-

cipline or engage in an inquiry; a set of working methods.”

In the technology industry, methodology is vaguely used to describe the processes and pro-

cedures used during the delivery of a technology effort [9]. In many books, methodology
refers to a few techniques and drawing notations for a few roles. There is another notion

of methodology, referred to by Alistar Cockburn as the Big-M Methodology [6], that is

more than just the process of developing or delivering of a product. A Big-M methodology

encodes as much as possible about how an organization or an enterprise works, including

processes, techniques, and standards. It includes people, roles, skills, teams, tools, tech-

niques, processes, activities, milestones, work products, standards, quality measures, team

values [6] and other elements depending on the context and the organization it applies to.

For the rest of this report, we differentiate between framework and methodology (unless

they are part of a name) such that: by framework we denote a generic structure, including

set of assumptions, principles, concepts, processes and practices, that supports achieving

an objective such as development of an enterprise architecture; and by methodology we

denote an instantiation of a framework tailored to a specific application context in an orga-

nization (or enterprise) that encodes how the organization works and repeatedly achieves

its objectives. 9

3.2 EA Frameworks
Enterprise architectures are documented through graphics, tables, and narratives that de-

scribe various aspects of the enterprise. In order to provide a coherent and consistent set

of descriptions, Enterprise Architectures Frameworks are introduced to provide a set of

methods, practices and procedures for developing architectural descriptions.

In this section we look at a number of Enterprise Architecture Frameworks 10 in order to

better understand the main requirements and components of a comprehensive EA frame-

work.

3.2.1 The Zachman Framework

The concept of Enterprise Architecture essentially started by a paper by J.A. Zachman

on “A Framework for Information Systems Architecture” [15] that laid out the challenge

9. As we will see later in this section, FEA is an example of a methodology.

10. We intentionally leave DNDAF out of this section and discuss it in more details in Section 5.

12 DRDC Valcartier TR 2011-022

and vision of EA as to manage the complexity of large distributed systems. His view was

that in order to achieve business value and agility, the enterprise needs a holistic approach

to system architecture explicitly looking at every important issue from every important

perspective [15, 13].

The Zachman framework [3] basically tells us how to categorize architectural artifacts and

it can better be described as an ontology. It provides a structured way of defining an enter-

prise (see Figure 6). Zachman originally used the building industry analogy to explain his

framework. In that industry there are various “players” (stakeholders), such as the owner

or the builder, each demanding a “complete” description of the artifacts. However, what

“complete” means is different between these stakeholders. In Zachman framework, archi-

tectural artifacts are organized in a two-dimensional matrix. In the vertical dimension are

six stakeholders groups (strategists, executive leaders, architects, engineers, technicians,

and workers) and the horizontal dimension are six descriptive focus of the artifact (what,

how, where, who, when, and why). This decomposition allows for several presentations of

the same information to be developed for the same architecture, each focusing on certain

aspects of the artifact and targeting the needs of a certain group of stakeholders.

Why How What Who Where When

Scope

Business

System

Technology

Component

Operations

Strategists

Executive
Leaders

Architects

Engineers

Technicians

Workers

Inventory Process Network Organization Timing Motivation

Figure 6: The Zachman Grid of Architectural Artifacts [3]

The Zachman framework is not a complete EA framework. It offers a neat structure to doc-

ument the architecture but it does not provide a process for creating such an architecture,

nor does it help with showing the need for change toward a future architecture.

3.2.2 DoDAF: Department of Defense Architecture Framework

The Department of Defense Architecture Framework (DoDAF) is introduced to provide

a basic framework for developing and representing architecture descriptions. It provides

“the guidance needed to establish a common vocabulary for architecture development,
for the exchange of architecture information, and for facilitating interoperability between

DRDC Valcartier TR 2011-022 13

A
ll V

iew
p

o
in

t
O

verarch
in

g
 asp

ects o
f arch

itectu
re co

n
text th

at relate to
 all view

s

D
ata an

d
 In

fo
rm

atio
n

 V
iew

p
o

in
t

A
rticu

late th
e d

ata relatio
n

sh
ip

s an
d

 alig
n

m
en

t stru
ctu

res in
 th

e
arch

itectu
re co

n
ten

t

S
tan

d
ard

s V
iew

p
o

in
t

A
rticu

late ap
p

licab
le O

p
eratio

n
al, B

u
sin

ess, T
ech

n
ical, an

d
 In

d
u

stry
p

o
licy, stan

d
ard

s, g
u

id
an

ce, co
n

strain
ts, an

d
 fo

recasts

Systems Viewpoint
Articulate the legacy systems or independent

systems, their composition, interconnectivity, and

context providing for, or supporting, DoD functions

Services Viewpoint
Articulate the performers, activities, services, and
their exchanges providing for, or supporting, DoD

functions

Operational Viewpoint
Articulate operational scenarios, processes, activities

& requirements

Capability Viewpoint
Articulate the capability requirement, delivery timing,

and deployed capability

P
ro

ject V
iew

p
o

in
t

D
escrib

es th
e relatio

n
sh

ip
s b

etw
een

 o
p

eratio
n

al an
d

 cap
ab

ility
req

u
irem

en
ts an

d
 th

e vario
u

s p
ro

jects b
ein

g
 im

p
lem

en
ted

; D
etails

d
ep

en
d

en
cies b

etw
een

 cap
ab

ility m
an

ag
em

en
t an

d
 th

e D
efen

se
A

cq
u

isitio
n

 S
ystem

 p
ro

cess.

3.4.2.1 All Viewpoint. Some overarching aspects of an Architectural Description relate to all

scope includes the subject area and time frame for the Architectural Description. The setting in

Figure 7: DoDAF 2.0 Architectural Viewpoints (from [4, Vol. 1])

architectural descriptions.” [4] DoDAF is prescribed for the use and development of archi-

tectural descriptions in the US Department of Defense.

DoDAF is organized around data, models, and views. At its core, DoDAF 2.0 is a data-

centric approach, focusing more on collection, storage and maintenance of data as the

necessary ingredient for architecture development that leads to efficient and effective deci-

sions. It defines a DoDAF Meta-model (DM2) (replaces the Core Architecture Data Model

in the previous versions) that provides a high-level view of the data maintained in ar-

chitectural descriptions. To achieve DoDAF conformance, it is required that the data in

a described architecture be defined according to the DM2 concepts, associations and at-

tributes. [4]

Models in DoDAF are templates for collecting specific data to form views. Views are rep-

resentation of data in an understandable format that enable the architectural information to

be communicated to stakeholders in diverse functional organizations. Viewpoints describes

the information that should appear in individual views, how to create and use such views,

what modeling techniques should be used to express and analyze the information and a

rationale for these choices. [4] DoDAF 2.0 defines 8 viewpoints (see Figure 7).

The following lists some of the interesting features of DoDAF 2.0:

Guiding Principles DoDAF comes with a set of high-level guiding principles which pro-

vide a general roadmap for success in developing architectural descriptions.

14 DRDC Valcartier TR 2011-022

3.4.2.1 All Viewpoint. Some overarching aspects of an Architectural Description relate to all

scope includes the subject area and time frame for the Architectural Description. The setting in

A Methodology-based Approach Although DoDAF does not define a specific methodol-

ogy, it recognizes the role of methodologies in developing architectures and provides

a 6-step architecture development process (see [4, Vol. 1, Sec. 7.1.1]). It recognizes

that several methodologies with supporting tools, techniques, and notations exist for

developing architectural descriptions and it aims to be open to these methodologies

by providing the basic rules, standard entities, and relationships for developing ar-

chitectural descriptions in a consistent and interoperable fashion.

Towards a Comprehensive Framework In addition to the definition of the data model,

the viewpoints, and architecture development process, DoDAF also provides an overview

of other aspects of enterprise architecture such as architecture presentation tech-

niques, architecture analysis and guidance on configuration management (CM). 11

3.2.3 MODAF: Ministry of Defence Architectural Framework

U.K. Ministry of Defence has developed the Ministry of Defence Architectural

Framework (MODAF) [16] with the purpose of supporting Defence planning and change

management activities. One of the original purposes of MODAF was to provide rigour

and structure in definition of MOD equipment capabilities; however, recently MODAF is

more focused on establishing the practice of EA to capture the information about MOD

business processes and resources needed to deliver the MOD vision.

MODAF is originally based on DoDAF V1.0. It defines a number of views, similar to

DoDAF, to capture architectural information and introduces two additional views of strate-
gic and acquisition to support MOD business processes, procedures and capabilities re-

quired to achieve the desired business outcome. MODAF also provides a MODAF Meta

Model (M3) that defines the structure of the underlying architectural information in MODAF

views.

Although MODAF does not provide a “MODAF Method” for architecting and creating

MODAF views, it offers a 6-step example of such a process [17]. MODAF also offers

various examples and supporting documents on the use of MODAF in different aspects

of the practice of EA such as user and system requirements definition a nd dependency

analysis. 12

There are a number of commercially available tools that support the use of MODAF.

11. According to [4, Vol. 1] configuration management is required “to assure an orderly and stable evo-
lution of any Architectural Description and also to ensure that the DoDAF remains current in the face of
evolving methods and techniques of Architectural Description creation and management.”

12. For more details see “Use and examples of MODAF” under http://www.mod.uk/modaf.

DRDC Valcartier TR 2011-022 15

Preliminary

Technology
Architecture

Business
Architecture

Info Systems
Architecture

Migration
Planning

Architecture
Vision

Opportunities
and Solutions

Implementation
Governance

Change
Management

Figure 8: Phases of TOGAF Architecture Development Method

3.2.4 TOGAF: The Open Group Architecture Framework

The Open Group Architecture Framework (TOGAF) [18] is an EA framework 13 that is
mainly focused on the process of developing architectural artifacts. TOGAF divides an

enterprise architecture into four categories of Business Architecture, Application Architec-
ture, Data Architecture, and Technical Architecture. The most important part of TOGAF

is the Architecture Development Method (ADM) which provides a repeatable process for

developing architectures. It includes establishing an organization-specific architecture

framework, developing architecture artifacts, transitioning, and guiding the realization of

architectures. Figure 8 depicts the phases of ADM.

TOGAF complements ADM with guidelines, techniques, and frameworks that facilitate

the application of TOGAF in adopting an EA practice within an organization:

– Through sets of guidelines, TOGAF supports adoption of ADM to different usage sce-

narios and specific architectures.

– TOGAF offers description of 10 techniques in develop enterprise architectures

such as development of architecture principles, stakeholder management, business sce-

narios, and risk management [18, Part 3].

– TOGAF defines an Architecture Capability Framework to guide the establishment of an

architecture capability within an enterprise through organization structures, processes,

roles, responsibilities, and skills. The framework provides a process for establishing ar-

chitecture capability in the context of ADM in addition to sets of guidelines on archi-

tecture governance, establishing an architecture board, defining and using architecture

contracts, etc. [18, Part 4]

Sin e TOGAF is focused on the process of architecture development, it can be used to

complement other frameworks that are weak on providing a process and stronger on the

ontology aspect, such as the Zachman framework.

13. TOGAF is owned by The Open Group, www.opengroup.org.

16 DRDC Valcartier TR 2011-022

3.2.5 NAF: NATO Architecture Framework

The NATO Architecture Framework (NAF) [11] offers the rules, guidance, and product

descriptions for developing, presenting and communicating enterprise architectures across

NATO. It provides an organi ing structure for the information contained in an architecture.

The previous version of NAF, released in 2004, was tightly coupled to DoDAF, while the

latest version of NAF (version 3) appears to be more coupled with MODAF. The latest

version provides the NAF Metamodel (NMM), an extension of the UK MODAF Meta-

model, that defines the relationships between the different components of the framework.

The NMM is expected to be implemented in a NATO Architecture Repository, which will

be the basic storage for all NATO architecture descriptions.

Similar to its sister frameworks, NAF defines a number of views and sub-views to cat-

egorise architecture artifacts: NATO All View (NAV), NATO Capability View (NCV),

NATO Programme View (NPV), NATO Operational View (NOV), NATO Systems View

(NSV), NATO Service-Oriented View (NSOV) and NATO Technical View (NTV). The Ca-

pability, Service-Oriented and Programme views are new to NAF version 3.0. The NATO

Capability View captures essential elements of NATO’s strategic vision and concepts and

NATO’s capability planning process. The purpose of the Programme Views is to describe

the relationships between NATO capability requirements and the various programs and

projects being implemented. The Service-Oriented View supports development of SOA-

based architectures 14 and complements the NATO Operational View by providing a de-

scription of services needed to support the operational domain. [11]

NAF version 3.0 also offers guidelines for management of NAF architectures, 15 in addition

to supporting Spectrum and Bandwidth Management for utilizing limited resources in the

most efficient way.

3.2.6 FEA: Federal Enterprise Architecture

The US Federal Enterprise Architecture (FEA) program focuses on building a compre-

hensive business-driven bluepring of the entire Federal government [20]. The purpose of

FEA is to provide a sustainable mechanism for identifying, developing, and documenting

architecture descriptions built on common business areas and designs that cross organiza-

tional boundaries [21]. The main component of FEA is a set of five reference models that

are designed to “facilitate cross-agency analysis and the identification of duplicative in-
vestments, gaps and opportunities for collaboration within and across agencies.” [22] The

five reference models (Performance, Business, Service Component, Technical, and Data)

14. Service-Oriented Architecture (SOA) is an architectural style and a set of design principles that sup-

ports design and development of systems in terms of services and service-based development. [19]

15. See [11, Ch. 6]

DRDC Valcartier TR 2011-022 17

collectively form a framework for a coherent and consistent description of the important

elements of FEA.

FEA introduced some innovative ideas for development of enterprise architectures. Ac-

cording to FEA, an enterprise is built of segments where every segments is a major line-of-

business functionality. The segment approach of FEA allows different parts of the overall

enterprise to be developed individually and later be integrated into a larger enterprise ar-

chitecture (see Figure 9). A single Federal agency has core mission area segments that are

central to the purpose of the agency (such as ‘health’ for the Health and Human Services

agency) and business services segments that are common or shared services supporting

the core mission areas (such as ‘financial management’). FEA also introduced the notion

of enterprise service as a shared IT service that spans political boundaries (e.g.

records management) [5, 13]. FEA also defines an Enterprise Architecture Assessment

Framework (EAAF) [23] to support agencies in measuring their success in using

enterprise architec-ture. The framework defines 12 assessment criteria grouped into three

capability areas of Completion, Use, and Results, to evaluate the performance and

effectiveness of agency enterprise architecture programs.

Figure 9: FEA Segments and Services (courtesy of [5])

The original version of FEA as a framework was first released in 1999 under the name

of Federal Enterprise Architecture Framework (FEAF) (version 1.1) for developing an EA

within any Federal Agency or for a system that transcends multiple inter-agency bound-

aries [12]. The word “framework” was later removed from the name in 2002 as FEA fo-

cused on the development of a US Government enterprise architecture methodology. How-

ever, we believe that FEA can still be adopted by other organizations and can serve as a

general framework and methodology for developing enterprise architectures [13]. FEA in

18 DRDC Valcartier TR 2011-022

its current form offers a complete taxonomy, a process to develop architectures, a transi-

tional process for migrating from pre-EA to a post-EA model, and a set of reference models

that provide standard terms and definitions for describing different aspects of the enterprise

architecture [5, 13].

The original FEA Framework has been one of the three architectural frameworks sponsored

by the US Federal Government. The other two are DoDAF (see Section 3.2.2) and the

Treasury Enterprise Architecture Framework (TEAF) [24] which is developed by the

US Department of Treasury based on the Zachman framework. TEAF version 1.0 is

published in July 2000 to provide guidance to Treasury bureaus concerning the

development and evolution of information systems architecture and serve as a template

for the development of a Treasury EA [24, 12].

The link between FEA, TEAF, and DoDAF is not very clear. According to [4], the DoDAF

leverages the FEA construct and core principles while ensuring that upward reporting and

review can be accomplished against the FEA. The TEAF documentation aligns TEAF ar-

chitectural views and supporting work products with the original FEAF views and mod-

els [24]. However, TEAF is not updated in the past 10 years since its original version.

3.3 Components of an EA Framework
Based an analytical review of the EA frameworks we presented in this section and

taking into account the purpose and the promise of Enterprise Architecture, we identify

the main components of a generic comprehensive EA framework as follows:

1. Architecture Taxonomy as a method for organizing (classifying) architectural ar-

tifacts. For example, the Zachman framework is strong on providing an enterprise

architecture taxonomy. In general, taxonomy is defined as “a collection of controlled
vocabulary terms organized into a hierarchical structure.” and the term is some-

times used in specific contexts (e.g. “DND/CF standards taxonomy” or

“planning taxonomy”) and should not be confused with architecture taxonomy.

2. Reference Model Guidance that facilitate building a relevant set of reference

models. Reference models provide standard terms and definitions for describing

different aspects of EA and facilitate collaboration and sharing between

organizations. Reference models are about establishing a common language. For

example, TOGAF, as a framework, supports development of reference models,

and the FEA, more as an EA methodology, is basically composed of a set of five

reference models (see Section 3.2.6).

3. Architecture Development Process is an essential asset in adopting an EA practice.

A good architectural process guides the enterprise through a step-by-step process in

developing architectural artifacts. The importance of an EA process and methodol-

ogy is discussed later in this section.

DRDC Valcartier TR 2011-022 19

4. Practice Guidance in form of documentation, examples, and best practices,

facilitates the framework absorb the concepts and adopt the process of

EA in the organization.

5. Architecture Analysis and Maturity Guidance is important in facilitating the assess-

ment of effectiveness and success of using enterprise architecture in organizations

within the enterprise. A good example is the Enterprise Architecture Assessment

Framework (EAAF) provided by FEA.

3.4 EA Methodology
“Architecture is a verb, not a noun.” This symbolic and grammatically incorrect statement

points out the fact that static architectural artifacts that do not evolve in time are useless and

it is the ongoing process of creating, maintaining, and leveraging an enterprise architecture

that makes the architecture a valuable asset and gives it vitality. Effective EA programs are

process-driven and methodology based. [13, 25] An EA process prescribes what must be

done when, and how the steps are linked to one another [6, 26]. An established EA process

is necessary in achieving a coherent set of architectural artifacts.

An EA Framework, as we discussed earlier, defines a generic structure that guides the prac-

tice of EA within an enterprise. defines the patterns, abstract elements,

process templates and the guidelines. An effective and practical use of an EA framework

within an enterprise requires the development of an EA methodology (a Big-M

methodology) tailored for the enterprise. We believe that a Big-M methodology in the

context of Enterprise Architecture, should include additional EA-specific elements such as

the objectives of the enterprise, EA principles, architectural modeling techniques, EA

processes, guidelines, taxonomy, and reference models.

Figure 10 extends the Big-M methodology diagram of [6] to illustrate the elements of a

Big-M methodology in the context of EA. Following an EA methodology, different teams,

organizations, or agencies within an enterprise fill different roles that engage in activities

defined by EA processes. They use techniques to develop architectural artifacts with respect

to an architectural taxonomy. The artifacts are based on certain standards and meet required

quality criteria. The tools help enforce the standards and the reference models

facilitate producing a coherent set of architectural products across the enterprise. All these

elements operate with respect to a set of enterprise values, EA principles and

guidelines that are aligned with the objectives of the enterprise.

EA principles

EA Principles are an important element in the practice of EA within an enterprise. They

provide fundamental statements on how an organization will utilize its resources in adopt-

ing an EA practice and how the practice will support the directions and the operational

20 DRDC Valcartier TR 2011-022

Taxonomy

Ref. Models PersonalitySkillsToolsStandards

PeopleRolesTechniquesArtifacts

TeamsActivitiesQuality

MilestonesProcesses

Values

Guidelines EA Principles

Objectives

Vision

Figure 10: Elements of a Big-M Methodology for EA (based on [6])

processes of the enterprise. The guide the development of the architecture and

its continued evolution taking into account the needs and objectives of the enterprise [27].

Although the actual principles differ from enterprise to enterprise, they can be developed

based on generic EA principles, such as the EA principles of TOGAF [18].

Engineering and Formal Methods

At the core of EA is the process of developing architectural artifacts with the purpose of

providing a clear documentation of the enterprise information that would act as a platform

for understanding, analysis, and communication of this information in order to facilitate

the processes of decision making and change management. As such, the resulting artifacts

has to provide precise—not necessarily detailed, unambiguous, and correct models of the

enterprise. Development of such models, in a given context, requires the use of systems
engineering methods that guide capturing the current model, requirements and design of

the future architecture, and formal approaches that bring rigour and precision serving as a

basis for validation and verification of the models. We discuss these aspects in more detail

in Section 6.3.

DRDC Valcartier TR 2011-022 21

Tools and Standards

Standards are an integral part of an enterprise architecture [28]. They enable interoperabil-

ity of systems, technology independence, and above all sharing and exchange of

information which is one of the most valuable assets of an enterprise. Tools facilitate

the proper use of standards and provide machine assistance in development and analysis

of architectural artifacts and validation of design ideas. EA frameworks can recommend

the use of standards or identify a certain set of standards to be used. An EA

methodology, designed for a certain enterprise, can be more explicit and indicate the set

of standards that must be used within the enterprise.

22 DRDC Valcartier TR 2011-022

4 Models and Formal Methods

With the increasing complexity of computer-based systems, efficient design and develop-

ment of high quality computational systems that faithfully conform to their requirements

are extremely challenging and the costs of design flaws and system failures are high.

Proper understanding of the requirements, precisely documenting design decisions, and

effectively communicating such decisions with the domain experts as early as possible

play important roles in the design of complex systems. These challenges call for

adoption of proper engineering methods and tools and have motivated the use of

formal methods in software engineering.

Abstraction and formalization provide effective instruments for establishing critical sys-

tem requirements by precisely modeling systems prior to construction so that one can ana-

lyze and reason about specification and design choices and better understand their implica-

tions [29]. In addition, machine assistance plays an increasingly important role in making

design and development of complex systems feasible. Abstract executable specifications

serve as a basis for design exploration and experimental validation through simulation and

testing. Model checking tools based on formal verification techniques help with proving

critical properties of systems and suring “correctness” before deployment.

The rest of this section briefly discusses the concept of formal modeling and explores vari-

ous formal languages and techniques for modeling software-intensive computer-based sys-

tems. We mainly focus on state-based formal modeling techniques and introduce the

Abstract State Machines method as an agile formal technique suitable for high-level

modeling and documentation of systems.

4.1 Formal Modeling
A model of a system is an abstract representation of that system so that one can view,

manipulate, and reason about it [30]. Such a representation also helps in understanding the

complexity that is inherent in the system under study. We build models to increase

productivity it is often cheaper to explore and to manipulate the model than the real

system. A “good” model omits unnecessary information but accurately reflects the essential

aspects of the subject matter in order to help the viewer to clearly see the subject and focus on

those essential aspects. A model that is easily understandable can also serve as a means of

communication by clearly illustrating the subject and its main concepts and ideas.

There are many modeling languages available to express computational models, each one

focusing on certain aspects or targeting certain types of systems. A popular example of a

widely used modeling language is the Unified Modeling Language, or UML 16 for short.

16. http://www.uml.org

DRDC Valcartier TR 2011-022 23

UML is a visual (graphical) language and is one of the most common industrial modeling

languages in the area of software engineering. However, UML is an informal language 17

as its semantics is not formally defined. 18

In this section, we focus on formal modeling approaches. According to Daniel M. Berry [29],

a formal method is any attempt to use mathematics in the development of a software in-

tensive computer-based system in order to improve the quality of the resulting system. We

define a formal modeling language as a modeling language that has a formally defined

(read “mathematically defined”) syntax and formally defined semantics for that syntax.

There are many formal languages and notations for modeling and specification 1 9 of sys-
tems, such as: the Vienna Development Method (VDM) [34], one of the longest-established

formal methods for the functional modeling of computer-based systems; the family of Al-
gebraic Specification languages, currently subsumed under the Common Algebraic Speci-
fication Language, or CASL [35], which are all based on first-order logic with induction,

viewing states of systems as first-order many-sorted structures; the family of process calculi
or process algebras languages and approaches to formal modeling of concurrent systems

(such as π-calculus [36] or Communicating Sequential Processes (CSP) [37]), supporting

high-level description of interactions between a collection of independent processes; Spec-
ification and Description Language (SDL) [32], a standard formal language [38] for speci-

fication and description of reactive and distributed systems, which provides both graphical

and textual representations; the Petri nets 20 [39] graphical language for description of dis-

tributed systems in form of bipartite graphs 21; the B method [40], an abstract
machine modeling approach mostly used in the development of software with a rich set

of com-mercially available tools for specification, design, proof and code generation;

the Z notation [41], a formal specification language for modeling computing systems and

formulation of proofs about the intended program behavior based on axiomatic set theory,

lambda calculus, and first-order predicate logic; the Alloy specification language [42], a

light-weight formal specification language (inspired by the Z notation) together with a

tool designed for providing fully automatic analysis of software specifications; and last

but not least, the Abstract State Machines (ASM) method [43], a versatile semantic

framework for compu-tational modeling of virtually all kinds of discrete dynamic

systems, combining common

Each formal modeling approach focuses on a certain view towards systems, being declar-

17. Some people claim that UML is a semi-formal modeling language since its (abstract) syntax is pre-

cisely defined [31].

18. There have been attempts to formally define the semantics of UML (see [31] for example).

19. There is a slight difference between a ‘model’ and a ‘specification’ of a system. Strictly speaking, a

specification of a system tends to view the system as a black box, focusing on the behavior of the system as

a whole and its interface to its environment [32, 33]; i.e., focusing on what the system does. A model of a

system, on the other hand, can include both a specification and a description of the system; i.e., describing

what the system does and how it does it.

20. http://www.petrinets.info
21. A bipartite graph is a graph that does not contain any odd-length cycle.

24 DRDC Valcartier TR 2011-022

ative, functional, or operational. Some languages are particularly good in modeling data

structures and the state of systems but are less supportive the operational aspects. Some

are low level, staying closer to code and the final implementation of systems and some are

more formal and stay on the mathematical level. Among these formal methods, abstract

state machines, while being primarily operational in nature, provide a good compromise

between declarative, functional and operational views towards modeling distributed

discrete dynamic systems. The emphasis on freedom of abstraction [43] in ASMs leads

to intuitive yet accurate descriptions of systems which, thanks to the pseudo-code style of

its language, are easily understandable by both domain experts and system designers.

Since ASMs are in principle executable, the resulting models are validatable and possibly

falsifiable by experiment. Finally, the well-defined notion of step-wise refinement in

ASMs [44] bridges the gap between the abstract model and its final implementation.

4.2 State-based Formal Methods
Abstract state machines, among many others, fall into the category of state-based formal

methods that view the states of a system in terms of mathematical structures. This view

towards modeling of systems is particularly helpful in capturing models in DNDAF Op-

erational Views and System Views that are primarily focused on viewing operations and

systems as a sequence of transitions between states (or actions). In this category, one can

point to methods such as Alloy, B, CASL, and the Z notation as four of the most popular

approaches that share many similar concepts such as offering abstract notations, support-

ing declarative descriptions of system behavior in terms of constraints, and relying on tool

support for analysis of specifications.

The Common Algebraic Specification Language, or CASL, is a general purpose specifica-

tion language based on first-order logic with induction. Different extensions of the language

have been designed for specification and development of various kinds of systems such as

reactive or concurrent [35]. The language is supported by a number of tools for checking

the correctness of specifications, proving certain properties of models, and managing the

formal software development process. Currently, The Heterogeneous Tool Set, 22 or
Hets for short, seem to be the mainstream central toolset for CASL. It free,

with a license similar to the GNU General Public License [45], offer parsing,

analysis, and prover integration for CASL and its extensions.

The Z notation [41] is a formal specification language designed with proofs in mind; it

is based on axiomatic set theory, lambda calculus, and first-order predicate logic. There

are quite a number of tools available for Z, most of them focused on theorem proving

such as ProofPower 23, a suite of tools supporting specification and proof in the Z notation,

22. http://www.dfki.de/sks/hets
23. Registered trademark of Lemma 1 Ltd., http://www.lemma-one.com/ProofPower

DRDC Valcartier TR 2011-022 25

Z/Eves [46], a front-end for the Eves theorem prover, and HOL-Z, 24 a proof environment

for Z specifications based on the generic theorem prover Isabelle/HOL 25. A free and open

source animator for Z specifications, called Jaza, 26 is also available for evaluation, testing

and (for some specifications) also execution of Z specifications.

Inspired by Z, the Alloy specification language [42] is designed as a light-weight formal

specification language with the goal of providing fully automatic analysis of software spec-

ifications. However, unlike Z, Alloy’s data structures are strictly first order. Alloy comes

with AlloyAnalyzer, a model-checker that checks certain properties of specifications by

exploring the states of the system and looking for execution instances that satisfy the prop-

erties (simulation) or by finding counterexamples that violate them (checking).

Among these approaches, the B method [40] has a more operational flavor and is the most

similar approach to ASMs. is essentially an abstract machine notation with a

well-defined notion of refinement that facilitates transformation of abstract models into

implementation. B comes with a rich set of both commercial and open source tools.

Commercial tools such as Atelier-B 27 and the B-Toolkit 28 are available providing syntax
analysis, theorem proving, and automatic refinement of B specifications down to

implementation. A single-user free version of Atelier-B, called B4Free, is also available

for the academic environment. There are also model checkers available for B; for

example, ProB 29 offers fully automatic animation of many B specifications and can be
used to systematically check a specification for errors.

4.3 Abstract State Machines
Abstract state machines [43, 47] are well known for their versatility in computational and

mathematical modeling of complex distributed systems with an orientation toward practi-

cal applications. The ASM framework offers a universal model of computation and serves

as an effective instrument for analyzing and reasoning about complex semantic proper-

ties of discrete dynamic systems. For almost two decades, abstract state machines have

been studied, practiced, and applied in modeling and specification of systems to bridge the

gap between formal and pragmatic approaches. Combining common abstraction principles

from computational logic, discrete mathematics, and the concept of transition systems,

ASMs have become a well-known method and assumed a major role in providing a

solid and flexible mathematical framework for specification and modeling of virtually all

kinds of discrete dynamic systems.

24. http://www.brucker.ch/projects/hol-z
25. http://www.cl.cam.ac.uk/research/hvg/Isabelle
26. http://www.cs.waikato.ac.nz/˜marku/jaza/
27. http://www.atelierb.eu
28. http://www.b-core.com/btoolkit.html
29. http://users.ecs.soton.ac.uk/mal/systems/prob.html

26 DRDC Valcartier TR 2011-022

Egon Börger [43] further developed ASMs into a systems engineering method that guides

the development of software and embedded hardware-software systems from requirements

capture to their implementation.

Widely recognized applications of ASMs include semantic foundations of industrial sys-

tem design languages like the ITU-T standard for SDL [48], the IEEE language VHDL [49]

and its successor SystemC [50], programming languages like JAVA [51], C# [52] and Pro-

log [53], Web service description languages [54], communication architectures[55, 56],

embedded control systems [57, 58, 59], et cetera. 30

4.3.1 ASM Systems Engineering Method

The ASM method for systems design and analysis builds on the concept of abstract state

machines and brings together two tasks of requirement capture and system design. The goal

is to improve industrial system design and development by integrating precise high-level,

problem-domain oriented modeling into the development cycle and systematically

linking abstract models down to executable code.

The method consists of three essential elements: a) capturing the requirements into a pre-

cise yet abstract operational model, called a ground model ASM, b) systematic and incre-

mental refinement of the ground model down to the implementation, and c) experimental

model validation through simulation or testing at each level of abstraction. This process em-

phasizes freedom of abstraction as a guiding principle, meaning that original ideas behind

the design of a system can be expressed in a direct and intuitive way so as to enable sys-

tem designers to stress on the essential aspects of design rather than encoding insignificant

details. The operational characteristics of ground models combined with the freedom of

abstraction supports design space exploration and experimental validation of design ideas

at early stages of development before the expensive task of coding begins.

Starting from a ground model and applying the process of step-wise refinement, a hierarchy

of intermediate models can be created that are systematically linked down to the implemen-

tation (see Figure 11). At each step, the refined model can be validated and verified to be

a correct implementation of the abstract model. The resulting hierarchy serves as a design

documentation and allows one to trace requirements down to the implementation.

4.3.2 The CoreASM Modeling Suite

With machine assistance playing an ever increasing role in making systems design more

feasible, the ASM method [43] takes advantage of the fact that ASM models are executable

in principle [60]. Abstract executable specifications serve as a basis for exploration design

decisions and validation by means of simulation, testing and model checking. Over the

30. See also the ASM website at www.asmcenter.org and the overview in [43].

DRDC Valcartier TR 2011-022 27

Requirements

Ground Model

Abstract Model

Implementation

Validation and Verification

refinement

refinement
fe

ed
ba

ck

Domain Knowledge

fe
ed

ba
ck

Figure 11: The ASM method of systems engineering

years, a variety of ASM tools and executable languages have been developed, each coming

with their own strengths and limitations [61]. All of these languages build on predefined

type concepts rather than the untyped language underlying the theoretical ASM model.

Most of them do not provide a run-time system that supports the execution of distributed

ASM models [61, 62]. Conversely, CoreASM preserves the very idea of ASM modeling—

building accurate abstract models (ground models [60]) at a level of abstraction directly

reflecting the application view—and facilitates rapid prototyping of such models for re-

quirements elicitation, design space exploration, experimental validation and conformance

testing.

CoreASM [62, 61] is a environment for writing, running, and validation of executable

specifications according to the ASM method. It has been designed with an extensible

plugin-based architecture that offers a great deal of flexibility for customizing its

language definition and execution engine depending on the application context. The

CoreASM environ-ment consists of a platform-independent engine for executing

CoreASM specifications and a GUI for interactive visualization and control of simulation

runs. The engine comes with a sophisticated interface enabling future development and

integration of complementary tools, e.g., for symbolic model checking and automated test

generation [62].

The latest version of the CoreASM modeling framework offers a) an extensible specifica-

tion language, b) an extensible multi-agent ASM simulation engine, faithful to the mathe-

matical definition of ASMs, that animates CoreASM specifications in addition to providing

other services, such as parsing, through a rich API, c) a library of optional plugins offering

additional features and language constructs not originally part of the ASM dialect, and d)

28 DRDC Valcartier TR 2011-022

an Eclipse front-end together with a command line user interface.

Over several years, CoreASM has been put to the test in a range of applications in the pri-

vate and public sectors, spanning computational criminology, coastal surveillance, situation

analysis, decision support systems, and Web services. The diversity of application fields has

been invaluable to examine the practicability of using CoreASM for requirements analysis,

design specification and rapid prototyping of abstract executable models [63, 64, 65].

CoreASM has been recognized by the ASM community and has been used by various

research groups in Europe, Asia, and North America [66, 67, 68, 69, 70, 71]. 31 Currently,

the CoreASM project is publicly available on Sourceforge.net, 32 one of the most popular

repositories of open source software offering online resources for open source software

development and content creation. Since its first beta release in September 2006, CoreASM
has gone through a number of revisions and its latest version (under testing at the time of

writing this document) offers substantial improvements over its previous version in terms

of both features and performance.

31. To name a few, CoreASM has been applied in a number of research projects at SAP Research in

Germany [72, 73], the Computer Science Department of the University of Pisa in Italy, the Embedded Soft-

ware Laboratory at the RWTH Aachen University in Germany, the Open Systems Development Group at

the University of Agder in Norway, and the Department of Computer Science and Engineering at the Anna

University in India.

32. http://www.sourceforge.net

DRDC Valcartier TR 2011-022 29

5 The DND/CF Architecture Framework

The Canadian Defence Planning Guide (DPG) 2001 called for the use of enterprise archi-

tecture within the Department of National Defence and the Canadian Forces (DND/CF).

DND Architecture Framework (DNDAF) [74, 75] provides details of the DND Enterprise

Architecture program. It defines the framework, the methodologies, and the tools. The idea

is to have all architectures in DND/CF follow the framework and methodologies (see Sec-

tion 6) defined in DNDAF to ensure interoperability and integration into an overall EA

repository.

The DNDAF facilitates representing an enterprise (in particular DND/CF) in terms of its

components, their role, their relationship to each other and to the environment, as well as

the rules and constraints governing them. Within the DNDAF, the DND/CF architectures

are described in terms of views and sub-views. [1, Vol. 2, P. 9]

5.1 Purpose
According to [1], the main purpose of Enterprise Architecture is to “inform, guide

and constrain the decisions made by an enterprise, especially those related to

investments.” The role of EA in DND/CF and the benefits of establishing an enterprise

architecture practice is very well discussed in [1, Vol. 1, Sec. 3.2]. Within DND/CF, the

role of enterprise architecture is to contribute to improving the effectiveness and

efficiency of DND/CF by facilitating change management and reducing risk through

providing products that explicitly show the implications of proposed changes to the

enterprise. In summary, EA helps in

– reducing the complexity of requirements and facilitating requirement traceability,

– options analysis in order to reduce risks and increase efficiency in decision making and

planning,

– linking requirements to capabilities and measuring improvements for the purpose of

aligning and prioritizing investments.

“The purpose of the DNDAF is to provide guidance to all DND/CF organizations in ini-

tiating, developing, using and maintaining architectural products during the life cycle

of their programmes, projects, initiatives, and business transformation efforts.” [1, Vol.

2, Sec. 1.2] The goal of DNDAF is to support decentralized creation of architecture

products (documentation) with common characteristics that enable understanding,

comparison, and integration between architectures. facilitates organization,

analysis, and communication of information regarding the enterprise (DND/CF) by

grouping this information into a set of views. The following section provides an overview

of DNDAF views and sub-views.

30 DRDC Valcartier TR 2011-022

5.2 Views
The DNDAF uses six views to represent information about the enterprise: Common View

(CV), Operational View (OV), System View (SV), Technical View (TV), Information View

(IV), and Security View (SV). [75] Each view represents a group of sub-views that are

graphical, textual, or tabular items documenting different aspects of the architecture (see

Figure 12). Sub-views are interrelated within and across views.

– The Common View captures the over-arching aspects of the architecture. It defines the

scope, context, definitions and taxonomies of the architecture.

– The Operational View describes the tasks, activities, business and operational elements,

and the information flow within the architecture.

– The System View focuses on the description of systems (components or systems of sys-

tems) and their interconnections providing or supporting DND/CF functions.

– The Technical View describes the minimal set of rules and protocols governing the im-

plementation, interaction, and interdependence of system parts.

– The Information View defines the overall pattern or structure that is imposed on infor-

mation design. This view exists in all other views.

– The Security View deals with security and information assurance architecture of DND.

This view has two main streams: the first stream is integrated in the other views (Com-

mon, Operation, System and Technology) that have security related attributes (e.g., SV-

2) and the second stream is represented by specific sub-views under Security View that

complement the security functions of other views.

5.3 Data Model
DNDAF views and sub-views represent different aspect of the enterprise and given

that DNDAF supports a decentralized creation of these views, there needs to be a

mechanism ensuring that all these views are consistent and can be assembled in a

collective set. In order to achieve this consistency, DNDAF defines the basic common

building blocks upon which these views and sub-views are constructed in the DND/CF

Architecture Data Model (DADM). The DADM defines a standard set of architecture

data entities and their relationships and provides a common approach for capturing

common data requirements and portraying the structure of architecture information. [1]

is a logical data model that shows how the information is organized in DNDAF.

The DADM will be extended iteratively as DNDAF evolves in order to capture its new

requirements.

DRDC Valcartier TR 2011-022 31

D
N

D
/C

F
A

rc
hi

te
ct

ur
e

Fr
am

ew
or

k
(D

N
D

A
F)

 V
ol

um
e

2:
 D

N
D

/C
F

V
ie

w
s a

nd
 S

ub
-V

ie
w

s

Pa
ge

 1
0

of
 1

68

C
V-

2
 I

nt
eg

ra
te

d
D

at
a

D
ic

tio
na

ry

C
V-

1
 O

ve
rv

ie
w

 a
nd

Su

m
m

ar
y

C
om

m
on

 V
ie

w
O

pe
ra

tio
na

l V
ie

w
Sy

st
em

 V
ie

w

O
V

-1
 H

ig
h-

Le
ve

l
O

pe
ra

tio
na

l C
on

ce
pt

G

ra
ph

ic

O
V

-2
 O

pe
ra

tio
na

l N
od

e
C

on
ne

ct
iv

ity
 D

es
cr

ip
tio

n

O
V

-3
 O

pe
ra

tio
na

l
In

fo
rm

at
io

n
Ex

ch
an

ge

M
at

rix

S
V

-1
 S

ys
te

m
s

In
te

rfa
ce

 D
es

cr
ip

tio
n

SV
-2

 S
ys

te
m

s
C

om
m

un
ic

at
io

ns

D
es

cr
ip

tio
n

SV
-3

 S
ys

te
m

s-
Sy

st
em

s
M

at
rix

S
V

-4
 S

ys
te

m
s

Fu
nc

tio
na

lit
y

D
es

cr
ip

tio
n

O
V

-4
b

 O
rg

an
iz

at
io

n
to

R

ol
e/

Sk
ill

 M
at

rix

O
V

-4
a

 O
rg

an
iz

at
io

na
l

R
el

at
io

ns
hi

ps

Te
ch

ni
ca

l V
ie

w
In

fo
rm

at
io

n
Vi

ew
Se

cu
rit

y
Vi

ew

O
V

-5
b

 O
pe

ra
tio

na
l

Pr
oc

es
s

M
od

el

O
V

-5
a

 F
un

ct
io

na
l M

od
el

TV
-1

 T
ec

hn
ic

al

St
an

da
rd

s
Pr

of
ile

SV
-6

 S
ys

te
m

s
D

at
a

Ex
ch

an
ge

M

at
rix

IV
-2

 I
nf

or
m

at
io

n
Ac

co
un

ta
bi

lit
y

M
at

rix

Se
cV

-1
 D

at
a

El
em

en
t

Se
cu

rit
y

M
at

rix

Se
cV

-2
 A

gg
re

ga
te

d
In

fo
rm

at
io

n
Se

cu
rit

y
M

at
rix

SV
-5

 O
pe

ra
tio

na
l A

ct
iv

ity
 to

Sy

st
em

s
Fu

nc
tio

n
Tr

ac
ea

bi
lit

y
M

at
rix

SV
-7

 S
ys

te
m

s
Pe

rfo
rm

an
ce

Pa

ra
m

et
er

s
M

at
rix

SV
-8

 S
ys

te
m

s
Ev

ol
ut

io
n

D
es

cr
ip

tio
n

O
V

-7
 L

og
ic

al
 D

at
a

M
od

el

O
V-

6c
 O

pe
ra

tio
na

l E
ve

nt
-

Tr
ac

e
D

es
cr

ip
tio

n

O
V

-6
a

 O
pe

ra
tio

na
l R

ul
es

M

od
el

O
V

-6
b

 O
pe

ra
tio

na
l S

ta
te

Tr

an
si

tio
n

D
es

cr
ip

tio
n

SV
-9

 S
ys

te
m

s
Te

ch
no

lo
gy

Fo

re
ca

st

SV
10

a
 S

ys
te

m
s

R
ul

es
 M

od
el

SV
-1

0c
 S

ys
te

m
s

Ev
en

t-T
ra

ce

D
es

cr
ip

tio
n

SV
-1

1
 P

hy
si

ca
l S

ch
em

a

SV
-1

0b
 S

ys
te

m
s

St
at

e
Tr

an
si

tio
n

D
es

cr
ip

tio
n

D
N

D
A

F
Vi

ew
s

&
 S

ub
-V

ie
w

s

IV
-1

 S
tra

te
gi

c
In

fo
rm

at
io

n
M

od
el

Fi
gu

re
 2

.1
 D

N
D

A
F

V
ie

w
s &

 S
ub

-v
ie

w
s

Figure 12: DNDAF Views and Sub-views (from [1])

32 DRDC Valcartier TR 2011-022

5.4 Reference Models
In order to facilitate creation of coherent architecture views, DEA together with the

DND/CF user communities are developing a series of DND/CF Enterprise Architecture

Reference Models to provide lists of standard reference values to be used in

development of sub-views.

In the context of Enterprise Architecture, Reference Models (RM) serve as the architecture

taxonomy, abstractly describing and classifying the basic concepts and entities and their

relationship to one another. Currently, the DND/CF Technical Standards List (DTSL) is

considered a DND/CF RM of current and emerging IM/IT standards. DTSL represents

the DND/CF standards taxonomy and is the official DND/CF repository from which the

applicable standards in Technical View 1 (TV-1) are chosen. 33

33. Unfortunately, as of writing this document, there is no publicly accessible reference to the technical

standards list (DTSL) in DNDAF documentation.

DRDC Valcartier TR 2011-022 33

6 Towards a DND/CF EA Methodology

In this section we critically look at the DND/CF Architecture Framework (as defined

in [1]) and with respect to our discussions and reviews of EA frameworks in Section

3 endeavor to identify main limitations and shortcomings .

6.1 Is DNDAF an EA Methodology?
We start by contrasting what DNDAF currently is and what it is expected to be. DNDAF is

part of an effort to establish enterprise architecture as a practice in DND/CF. The DNDAF

documentation (officially referred to as the ‘DNDAF’) intends to provide EA information

and guidance to architects across DND/CF. It is supposed to provide “explicit details of the

DND EAP [Enterprise Architecture Programme] including: the framework, the methodolo-

gies and tools used to build, analyze, modify, manage and maintain the DND/CF Enterprise

Architecture.” [1, Vol. 1, Sec. 1.2]

In addition, Volume 2 of the same document states that the DNDAF “represents the enter-

prise (DND/CF) in terms of its constituent parts, what those parts do, how they relate to

each other and to the environment, as well as the rules and constraints governing them.”

These two statements describ two different entities. According to the first description in

Volume 1, DNDAF is supposed to be a comprehensive framework and an enterprise-wide

methodology for the practice of EA within DND/CF. However, the second description in

Volume 2, illustrates DNDAF as an already developed architecture that documents the

DND/CF enterprise as a whole.

It is interesting to observe that DNDAF as its current state, is neither of the above. The

documentation only provides the definition of the Data Model, the v iews and sub-views

together with a guide on how each sub-view has to be created. Despite the above statements,

DNDAF as it is currently defined does not represent the enterprise, nor does it offer a

clear methodology or set of principles or guidelines to build, analyze and maintain

the DND/CF Enterprise Architecture. DNDAF only offers a light-weight framework

within which different aspects of an enterprise architecture can be documented. It neither

defines the enterprise itself, nor the processes of creating such documentations (the

architecture).

In our opinion, the lack of a clear understanding on what DNDAF is and what it is expected

to be defies the main purpose of DNDAF, which is provid guidance to all DND/

CF organizations in initiating, developing, using and maintaining architectural products

and to support decentralized creation of such products with common characteristics.

34 DRDC Valcartier TR 2011-022

6.2 What Is Needed?
Considering the goal of EAP and the purpose of DNDAF mentioned in the previous sec-

tion, we believe that a limited framework such as the current version of DNDAF is not

sufficient to establish the use of EA within DND/CF. An EA framework is useful but not

sufficient to create a successful and sustainable EA practice [25]. Effective EA programs

are process-driven and methodology based. An EA framework, in general, provides guid-

ance for adopting an EA practice within any enterprise. However, effectively establishing

such a practice in a specific enterprise such as DND/CF requires a detailed and compre-

hensive framework together with an enterprise-wide methodology that clearly defines and

provides specific EA processes, techniques, reference models, standards, and guidance for

assessment of architectural efforts. The methodology should be designed tak

into account the specific requirements of DND/CF, its established processes,

organizations, capabilities and objectives and offer flexibility for organizations to

customize the methodology according to their programs, projects, and processes. Such a

comprehensive framework and methodology is required to provide practical guidance to

different organizations within the enterprise in developing, analyzing, and maintaining

their segment of the architecture in the overall DND/CF enterprise architecture.

What DNDAF mainly provides is a well-defined architectural taxonomy through a set of

views and sub-views that categorize architectural artifacts to be produced. It is our opinion

that what is needed is a comprehensive methodology (see Figure 10) for the practice of EA

within DND/CF that provides:

1. a set of EA principles designed with the specific needs of DND/CF in mind,

2. a proper set of reference models,

3. an architecture development process,

4. systems engineering and formal techniques,

5. architecture analysis methods and maturity guidance,

6. standards and guidance on tools,

7. practice guidance.

In the following we further discuss some of these elements (1, 2, 3, 6, and 7) in the context

of a DND/CF EA practice. The role of systems engineering and formal meth s as well as

architecture analysis and maturity guidance in DNDAF require more elaborate

discussions are presented in separate sections.

6.2.1 EA Principles

We discussed the importance of defining EA principles in Section 3.4 set of

guiding principles providing fundamental statements of how DND/CF enterprise

architecture will support DND/CF directions and operational processes. Best practices

DRDC Valcartier TR 2011-022 35

principle should have be documented with a name, a concise

statement, a motivation (or rationale) describing why the principle is in place and a set of

implications that describes its impact on the enterprise. More discussion on enterprise

architecture principles and various examples can be found in [28, 18, 27].

6.2.2 Reference Models

Reference models provide standard terms and definitions for the enterprise architecture

and facilitate collaboration across the enterprise. Currently, DTSL (see Section 5.4) is the

DND/CF technical reference model of current and emerging IM/IT standards. However,

additional reference models for describing other EA areas (such as business functions and

components) would be required to support coherent and consistent artchitectural products

across DND/CF. The five reference models of FEA can serve as a good example.

6.2.3 An Architecture Development Process

The need to have a properly defined methodolgoy and process in an EA program dis-

cussed earlier in Section 3.1. An EA process (as part of an EA methodology) prescribes

what must be done when and how the steps are linked to one another [6, 26]. An established

EA process is necessary in achieving a coherent set of architectural artifacts.

The DNDAF claims that it offers a “methodology” for develop architectural ar-

tifacts. According to the overview section of DNDAF, the four volumes of DNDAF are

expected to specify a detailed method and a set of supporting tools for developing and

maintaining the DND enterprise architecture. However, the current version of DNDAF

does not provide such a detailed method nor does it define a high-level process for devel-

oping an enterprise architecture. Volume 4 of the documentation (the “The User Guide”)

offers interim advice and guidance on how to use DNDAF to document architectural arti-

facts. The guide currently focuses on us MS Office suite of tools until an EA toolset

is available for use by DND/CD projects. In comparison, DoDAF defines a 6-step process

for development of architectural descriptions is composed of an Architecture

Development Process and a set of guidlines and recommendations on development and

analysis of architectural artifacts (see Section 3.2.2).

There are a number of processes defined in the context of enterprise architecture which can

be used as a starting point in defining a DNDAF architecture development process:
– the DoDAF process for architecture development [4, Vol. 1, Sec. 7],

– the TOGAF Architecture Development Method (ADM) [18],

– the Gartner Enterprise Architecture Process [25] proposes a process model identify-

ing the activities involved in the development of an enterprise architecture,

– the Methodology for AGency ENTerprise Architecture (MAGENTA) [26] defining a

successfully applied methodology for development of enterprise architectures for the

Singapore Government.

36 DRDC Valcartier TR 2011-022

6.2.4 Standards and Tools

DNDAF provides DADM (see Section 5.3) as a standard set of architectural entities to be

used in capturing common data requirements. This is an important first step supporting

interoperability of systems and information sharing within the enterprise. However, there

is more that needs to be done:

a) architectural artifacts produced under each sub-view need to be based on established

standards or a common set of formats;

b) a set of recommended tools based on Open Standards need to be identified so that

the products are not bond to propriotory technologies.

According to DNDAF Volume 2, a set of technical standards has been compiled within the

Defence Technical Standards List (DTSL) that is expected to be used in the creation of the

technical sub views [1, Vol. 2, Sec. 2.6]. However, there is no pointer to DTSL throughout

the DNDAF documentation and the mentioned list is not publicly available online.

6.2.5 Practice Guidance

Best practices, “user’s guides”, and examples that are tailored to the needs and

available capabilities of DND/CF facilitate the adoption of an EA practice within the

enterprise and play an important role in the development of a culture in which EA is valued

and used. The importance of such practice guidance for a DND/CF EA methodology is

evident and does not require further discussions.

6.3 Systems Engineering: Modeling and Analysis
Given the complexity of DND/CF enterprise architecture, in capturing the current and

developing the future architecture, the use of established system design concepts are in-

evitable to manage complexity through systematic approaches to modularization, refine-

ment, validation and verification of high-level models.

One of the main purposes of employing an enterprise architecture practice is to be able to

manage change and foresee the implication of changes in the organization. In order to do

so, the architects have the ability to validate the architectural artifacts against the

current state of the affairs (for the as-is architecture) and the future requirements (for the

to-be architecture) and in certain aspects (such as security) verify key properties of the

architecture.

In the practice of enterprise architecture changes are modeled prior to application to the

organization so that one can (rigorously) inspect and reason about the key attributes and

implications of the proposed changes to ensure the they are properly understood. A precise

semantic foundation is a prerequisite for analysis, validation and verification of the models.

Mathematical precision is vital, not only for analyzing critical properties of the design

DRDC Valcartier TR 2011-022 37

in order to uncover and eliminate design flaws and weaknesses through validation and

verification, but also as a prerequisite for using computational methods and tools [76].

Sensible use of formal methods can arguably make system design more reliable, system

development more predictable, and overall improve quality of the final product through

analysis, validation and verification of system requirements [29].

As its current version, the DNDAF together with DADM provide the logical basis for cap-

turing the architectures into structured architecture data that can be stored in architecture

data repositories and manipulated with automated tools. Although, this is a step forward

in adding structure and rigour to the framework, the use of established and more precise

(formal) methods in capturing the architectural artifacts is still missing in DNDAF.

6.3.1 Formal Modeling

There are various approaches to formal modeling of complex systems as briefly discussed

in Section 4.1. Considering the diversity of the stakeholders and the multi-disciplinary na-

ture of the DND/CF enterprise architecture program, we need a formal method that enables

the architects to create formal models that
– are concise and easily readable, both for domain experts and system designers,

– are described at appropriate levels of abstraction (not requiring unnecessary details),

– are intuitively expressed in application-domain terms,

– and can be empirically validated using machine assisted simulation and testing.
In light of these requirements, we recommend using an agile formal modeling approach

such as Abstract State Machines (ASMs) [43]. ASMs capture system structures and be-

haviour in form of executable pseudo-code-like models that come with a precise semantics.

In modeling, ASM offers the freedom to choose an appropriate level of abstraction in or-

der to focus on the essential aspects of the design and avoid including unnecessary details.

In addition, ASM syntax and constructs can be easily extended in practice to introduce

application-domain terms and structures into the framework.

The ASM formalism and abstraction principles are known for their practical side of formal

modeling in high-level specification and design. This formalism has been used extensively

over many years in modeling of architectures, languages, and protocols [51, 54, 48, 58, 55],

resulting in solid methodological foundations. Thus, ASM refinement and modularization

techniques [44] are well established and have been used successfully in various real-life

(industrial) applications. In addition to IT systems, ASMs have been used more recently

in computational criminology [77, 78] and for modeling and validation of aviation secu-

rity [79, 80]. A driving factor in many of the above applications is the desire to systemati-

cally reveal abstract architectural and behavio ral concepts so that the underlying

blueprint of the functional system requirements becomes clearly visible and can be

inspected by analytical means (verification) and empirical techniques (simulation) using

machine assistance as appropriate. In summary, the following features of the ASM

formalism are desirable to have in the development of an enterprise architecture:

38 DRDC Valcartier TR 2011-022

a) simple and concise specifications that are understandable both for domain experts

and system designers, and facilitate reasoning about design concepts and communi-

cate the design decisions to the various stakeholders;

b) a precise semantic foundation which is a prerequisite for analysis, validation and

verification of models;

c) freedom of abstraction that supports writing of abstract and minimal specifications

that express the original idea behind a system design at essentially the same levels of

abstraction and complexity, thus enabling designers to stress on essential aspects of

their design rather than encoding insignificant details;

d) a well-defined re inement technique (to be paired with abstraction) that allows

the designer to cross levels of abstraction and link models at different levels

through incremental steps all the way down to a concrete model;

e) executability of abstract and even incomplete models which is often a desirable fea-

ture for experimental validation of design ideas in early stages to obtain feedback

from stakeholders prior to producing concrete systems.

Abstract Opertational Models in DND/CF EA

Abstract operational models, such as ASMs, can be used in various architectural artifacts

in modeling and description of processes, functionalities, data structures, and state transi-

tion patterns. In the context of DNDAF, we can identify a number of DNDAF sub-views

in which ASMs can be utilized to formally define the dynamic aspects of an enterprise

architecture. However,

Process Models: OV-5b, OV-6b, and SV-10b

The Operational Process Model (OV-5b) describes the operational and business processes

within the architecture projects. DNDAF suggest that UML activity diagrams can be used in

this sub-view. The Operational State Transition Descriptions (OV-6b) view describe the

detailed sequencing of activities or work flow in a business process, adding more details to

the process model of OV-5b. The Systems State Transition Descriptions (SV-10b) repre-

sents state transitions from a system perspective. DNDAF recommends using UML state

chart diagrams for the description of state transitions (both OV-6b and SV-10b).

For all these views, Control State ASMs are a perfect fit by formally capturing the op-

erational process model (in abstract form) in terms of control state changes and further

capturing the state transitions in both operational and systems views. The freedom of ab-
straction in ASMs enables one to choose the level of abstraction as one deems suitable at

any stage of the design. This also allows a seamless transition form the abstract view of

OV-5b to the more detailed view of OV-6b and further to the systems level view of SV-10b.

DRDC Valcartier TR 2011-022 39

Functionality Models: OV-5a and SV-4

The Functional Model (OV-5a) describes the functions and their relationships, focusing on

“what must be done” without the details of “how it is to be done”. The Systems Function-

ality Description (SV-4) documents systems functional hierarchies and systems functions,

and the data flows between them.

High-level ASM programs can be used in both of these views, especially as part of the

composite view SV-4, to formally model functional decompositions and provide abstract

descriptions of system functionalities at desired levels of abstraction.

Rules Models: OV-6a and SV-10a

The Operational Rules Model (OV-6a) describes operational (mission-oriented) statements

defining constraints or other aspects of the architecture project. The Systems Rules Model

(SV-10a) builds on the rules of OV-6a to describe the physical implementation by

defining rules that control, constrain or otherwise guide the actions within a system.

The current recommendation of DNDAF is to use any of the following options to formally

define these statements: decision trees and tables, structured English 34, and mathematical
logic. computational mathematical logic is an integral part of ASMs, rules of OV-

6a and SV-10a can be formulated in ASMs and later be applied to and be analyzed, in

combination with other views, as part of the overall ASM model of the architecture.

Other views

Although the above views represent the main DNDAF views in which ASMs can be most

affective, application of ASMs in DNDAF is not limited to those views. ASMs rules and

state descriptions can be used to formally describe the Operational Event-Trace Description

(OV-6c), Logical Data Model (OV-7), and Systems Event-Trace Description (SV-10c).

6.3.2 Validation and Verification

In modeling an enterprise, whether capturing the architecture of the enterprise as-is or

designing the future architecture to-be, a notorious question is: how do we know if we have
created the right model? That is, how can we validate that the as-is model reflects the

reality and the to-be model reflects our future requirements?

There are two approaches to validation: a) validation by analytical means, and b) validation

through simulation and testing. The first approach requires a formal (precise) model the

properties of which can be carefully analyzed and validated against the reality or intended

requirements. The second approach, requires models that are executable and can be tested

34. Structured English can hardly be considered a formal approach to describe constraints and rules.

40 DRDC Valcartier TR 2011-022

against various scenarios. An executable model is interesting in two aspects: a) it helps

finding ambiguities, missing pieces and loose-ends of the model and forces the system

analyst/modeler to think clearly about the main concepts and their definitions, and b) it

supports experimental validation through execution (simulation).

Once we have established and validated the requirement specifications and a formal model

of a system, the next question to face is: how do we know if we are building the system
right? That is, how can we verify that the implemented system accurately represents and

satisfies the requirements. Formal verification techniques aim to increase quality of sys-

tems by providing a consistent logical framework in which key properties of a system can

actually be proven using model checking techniques. A proper formal specification is a

prerequisite for any meaningful approach to formal verification.

In capturing the current DND/CF enterprise architecture and design and modeling of its tar-get

architecture, prov correctness of certain properties, such as those related to

security and warzone operations. By augmenting DNDAF with agile practical formal

methods (such as ASM), operational and functional aspects of the developed architecture

can be validated and formally verified against the reality and future requirements.

ASM models are executable in principle and, when combined with the CoreASM tool sup-

port, 35 enable experimental validation of highly abstract models and design specifications

through both symbolic execution (model checking) and simulation and testing, and facili-

tate interoperability with other tools and analytical techniques in an open tool environment

(see www.coreasm.org).

ASM together with CoreASM has a track record of application in high-level modeling and

validation of complex systems. A number of recent applications are as follows:

– Dynamic Resource Configuration & Management (DRCM) [63] is a highly adaptive

and auto-configurable, multi-layer network architecture for distributed information fu-

sion. The ASM model of the underlying design provides a reliable basis for reasoning

about key system attributes at an intuitive level of understanding, supporting require-

ments specification, design analysis and validation of dynamic properties. Building an

abstract yet executable DRCM model in CoreASM enabled advanced experiments to

validate consequential design decisions.

– Integrating ASM modeling with Interpreted Systems for situation analysis decision sup-

port system design [64], exemplifies the benefits of using ASM and CoreASM in combi-

nation with the Interpreted Systems approach of [82] in modeling multiagent systems for

situation analysis. Refinement of the abstract model into an executable CoreASM model

serves two purposes: a) it helps finding ambiguities, missing pieces and loose ends of

the model and forces the system analyst/modeler to think clearly about the main con-

35. The only machine-assisted verification supported by the current implementation of CoreASM is in the

form of rudimentary model checking [81]. More sophisticated interfaces to existing model checking tools are

needed to fully exploit the potential they provide.

DRDC Valcartier TR 2011-022 41

cepts and their definitions, and b) it supports experimental validation through execution

(simulation).

– The Mastermind project [65] is a pioneering interdisciplinary project in computational

criminology that focuses on modeling and simulation in the study of spatiotemporal

patterns of offender behavior in urban environments. At the heart of Mastermind is a

robust ASM ground model, developed over many iterations, for checking the validity

of the model with respect to established crime theories. The process of establishing the

key properties and ensuring the validity of the model was greatly facilitated by running

experiments on abstract models using CoreASM. In this project, CoreASM has played

an important role in facing the challenges of two major phases of the Mastermind project,

namely formalization and validation. [65]

– Altenhofen and Börger [72] analyze a given cluster protocol implementation using an

abstract ASM model, which they refine into an executable CoreASM model for running

scenarios.

– Lemcke and Friesen at SAP Germany [66] propose a Web services composition algo-

rithm for collaborative business processes defined in terms of a distributed ASM, using

CoreASM for executing their ASM model to show that the generated orchestration steers

the execution of the business processes as intended.

– Beckers et al [68] use the simulation capabilities of CoreASM in their approach to

model checking ASMs without the need for translation of the ASM specification into

the modeling language of an existing model checker.

6.3.3 An ASM Example

Figure 13 presents an example used in DNDAF documentation [1] for an operational state

transition diagram as part of OV-6b. In Figure 14 we provide a control state ASM version

of that diagram in which ASM rules (activities) marked in blue and conditions (events and

guards) marked in yellow. The resulting control state diagram differentiates between con-

ditions and actions that affects the operational state. The control state diagram of Figure 14

can be precisely translated into an ASM model. Each transition action (an ASM rule de-

noted by a blue rectangle) can itself be represented as a more detailed control state ASM

revealing further details of the activity and its potential inner-states. ASM conditions (yel-

low diamonds) can be precisely described using a boolean formula based on the current

state of the system. Alternatively, more details of the activities can also be revealed using

abstract ASM programs that capture the essential idea behind the activities in a readable

fashion.

By simply producing a more precise diagram, like the Control State ASM of Figure 14, we

can already detect some ambiguities in the artifact. As an example, there is no guard on the

transitions from the state In Conflict to either of Controlled or Maneuvering. Could there be

a conflict resolution and a clearance revision occuring at the same time? If so, what would

be the future state of the airplane?

42 DRDC Valcartier TR 2011-022

Figure 13: The Air Traffic Operations example of [1, Fig. 3.12.2]

Such problems can not only be noticed by analytical means once a rigorous approach of

documenting is employed, but they can also be discovered by model analysis tools. Fig-

ure 15 shows the same operational view model produced in CSDe, a Control State Diagram

Editor udner development as part of the CoreASM project. CSDe enables modeling of Con-

trol State ASMs using a graphical interface. The tool can analyze the diagram for potential

control flow problems and translate correct diagrams into executable ASM models

which (in principle) can be simulated using the CoreASM engine. In case of our example,

CSDe finds a number of ambiguities in state transitions in our operational view example

of Figure 15.

DRDC Valcartier TR 2011-022 43

Entering
Controlled

Space

Leaving
Controlled

Space

In ConflictControlled:
No Action

Maneuvering

handoff to local
ATC completed

Revise Clearance

Resolve Conflict

Coordinate Intersection
Transfer

Coordinate Transfer Out

Conflict Detected

Deviation Detected

Maneuvering
Complete

Pilot Requested
Clearance

Revise Clearance

Coordinate Intersection
Transfer

Coordinate Transfer Out

Figure 14: Control State ASM model of Figure 13

Figure 15: Control State Diagram of 13 in CoreASM CSDe Editor

44 DRDC Valcartier TR 2011-022

7 Concluding Remarks and Future Work

The Department of National Defence and Canadian Forces is a large complex enterprise

with a wide range of stakeholders that, with different interests and concerns, work together

toward a common set of goals and objectives. In 2001, the department recognized the

importance of adopting an Enterprise Architecture practice in controlling complexity and

managing the evolution of the enterprise. In order to guide the process of establishing an

EA practice within DND/CF, the details of the DND Enterprise Architecture Frame-

work has been documented in form of a DND/CF Architecture Framework. All architec-

ture efforts in DND/CF are expected to follow the framework to ensure interoperability and

integration into an overall DND/CF enterprise architecture repository.

In order to achieve a DND/CF Integrated Command and Control (IC2) Capability, it is

essential to have a comprehensive EA methodology that supports understanding of the

current state of the DND/CF enterprise and facilitates managing the transition from what it

currently is (as-is) to what it is desired to be in the future (to-be). Such a transition requires

an enterprise architecture that helps in managing the complexity and facilitates change by

providing a documentation of the components, relationships, constraints, and capabilities

of the systems or processes.

In this report we critically reviewed DNDAF in light of EA concepts, definitions, and ob-

jectives. We discussed the concept of Enterprise Architecture and the notions of EA frame-

work and EA methodology and we surveyed a number of top EA frameworks with the goal

of identifying the main components of a comprehensive EA framework and methodology.

Adopting the practice of EA and maintaining an enterprise architecture for DND/CF re-

quires a detailed and comprehensive framework together with an enterprise-wide method-

ology that clearly identifies specific EA processes, techniques, reference models, standards,

and guidance for assessment of architectural efforts. As its current state, DNDAF does

not provide neither such a comprehensive framework nor a methodology for adopting EA

within DND/CF. What DNDAF mainly provides is a well-defined architectural taxonomy

through a set of views and sub-views that categorize architectural artifacts to be produced.

As a result of this analysis, we pointed out the main shortcomings and limitations of

DNDAF and provide a set of recommendations for extending and improving DNDAF to-

wards a comprehensive EA methodology that can be effectively applied across DND/CF

in order to guide and facilitate assimilation of EA concepts and adoption of an EA prac-

tice within the enterprise. DNDAF is a constructive starting point towards establishing the

practice of EA within DND/CF. However, we have argued in this report that in order to

adopt an EA practice, DND/CF requires a comprehensive EA methodology that provides

the following components (among many others listed in Section 6.2):

– a systems engineering and architecture development process that guides the development

of architectural artifacts,

DRDC Valcartier TR 2011-022 45

– formal engineering techniques that provide rigour and enable validation and verification

of architectural artifacts, and

– open standards and tools that support the development and analysis of the architecture

and facilitate interoperability between organizations.

We believe that the future direction of DNDAF should be shifting the framework towards a

comprehensive EA methodology designed to address the specific requirements of DND/CF.

One of the major aspects of this transition will be the introduction of high-level systems

engineering methods and agile formal modeling techniques together with the adoption of

open standards and tools that guide and facilitate the development, validation, and verifica-

tion of architectural artifacts. In developing architectural artifacts, one should have a proper

understanding of the real world situation, precisely document the current state and future

design decisions, and effectively communicate such decisions with the domain experts as

early as possible. These challenges call for adoption of proper engineering methods and

tools.

Abstraction and formalization paired with tool support for producing executable models

that can be validated through simulation and testing provide effective instruments for cap-

turing models of the systems as-is and the requirements for future improvements. One of

the promising methods for high-level system design and analysis that builds on abstraction

and formalization is the Abstract State Machines method. The ASM method aims at in-

dustrial system design and development by integrating precise high-level, problem-domain

oriented modeling into the design and development cycle, and by systematically linking ab-

stract models down to executable models that can be validated and tested. For almost two

decades now, abstract state machines have been studied, practiced, and applied in modeling

and specification of systems to bridge the gap between formal and pragmatic approaches.

One of the most prominent tools based on the ASM method is the open source CoreASM
toolset (see Section 4.3.2). It has been put to the test in a range of applications in the pri-

vate and public sectors, spanning computational criminology, coastal surveillance, decision

support, and Web services architectures [83]. The diversity of application fields confirms

the practicability of using CoreASM for requirements analysis, design specification and

rapid prototyping of abstract executable models.

CoreASM has been built with an innovative extensible architecture that allows seamless

extensions of the toolset, addition of new features and capabilities, in order to adapt Core-
ASM to various application domains. Developed based on a solid mathematical foundation

and an established systems engineering method, we consider CoreASM as a promising

candidate to be adopted to enable development of precise executable architectural artifacts

that can be validated and verified as needed.

DND/CF needs to develop and evolve a formal methodology and a set of open tools to

support DND/CF EAP. Abstract State Machines and CoreASM have the potential to be

further improved and customized for the particular needs of the DND/CF EAP as needed.

46 DRDC Valcartier TR 2011-022

References
[1] DND/CF Director Enterprise Architecture (2009), DND/CF Architecture Framework

(DNDAF) Version 1.6, Department of National Defence and Canadian Forces.

http://www.img-ggi.forces.gc.ca/pub/af-ca/index-eng.asp.

[2] NATO SAS-065 Research Task Group (2008), NATO NEC C2 Maturity Model Overview,

Draft for peer review ed. Available at www.dodccrp.org.

[3] Zachman, John A., The Zachman Framework: The Official Concise Definition.

http://www.zachmanframeworkassociates.com.

[4] U.S. Department of Defense (2009), DoD Architecture Framework Version 2.0.

http://cio-nii.defense.gov/sites/dodaf20.

[5] Federal Enterprise Architecture Program Management Office, Office of Management and

Budget (2007), FEA Practice Guidance.

[6] Cockburn, A. (2000), Selecting a project’s methodology, IEEE Software, 17, 64–71.

[7] NATO SAS-050 Research Task Group (2006), Exploring New Command and Control

Concepts and Capabilities, Final report ed, Prepared for NATO.

http://www.dodccrp.org/files/SAS-050FinalReport.pdf.

[8] Saha, Pallab (2008), Advances in Government Enterprise Architecture, Hershey, PA:

Information Science Reference - Imprint of: IGI Publishing.

[9] McGovern, James et al. (2003), The Practical Guide to Enterprise Architecture, Upper

Saddle River, NJ, USA: Prentice Hall PTR.

[10] Land, M. O., Proper, E., Waage, M., Cloo, J., and Steghuis, C. (2008), Enterprise

Architecture: Creating Value by Informed Governance, Vol. 1st Edition of The Enterprise
Engineering Series, Springer.

[11] NATO C3 Board, NATO Architecture Framework (NAF) Version 3.

http://www.nhqc3s.nato.int/Architecture/default.asp.

[12] U.S. Federal Chief Information Officer Council (2001), A Practical Guide to Federal

Enterprise Architecture (Version 1.0).

http://www.cio-index.com/nm/articlefiles/42125-bpeaguide.pdf.

[13] Sessions, Roger (2007), A Comparison of the Top Four Enterprise-Architecture

Methodologies. http://msdn.microsoft.com/en-us/library/bb466232.aspx.

[14] Draffin, Anthony (2010), Methodology vs framework: why waterfall and agile are not

methodologies. http://anthonydraffin.posterous.com/
methodology-vs-framework-why-waterfall-and-ag.

[15] Zachman, John A. (1987), A Framework for Information Systems Architecture, IBM Systems
Journal, 26(3), 276–292.

[16] UK Ministry of Defence, MOD Architectural Framework (MODAF).

http://www.mod.uk/modaf.

[17] UK Ministry of Defence, MODAF Architecting Process.

http://www.mod.uk/NR/rdonlyres/6A737771-4BD3-41D9-A308-D5F377B39316/0/
20090210_MODAF_Architecting_Process_V1_0_U.pdf.

DRDC Valcartier TR 2011-022 47

[18] (2009), The Open Group Architecture Framework (TOGAF) Version 9, The Open Group.

http://www.opengroup.org/architecture/togaf9-doc/arch.

[19] The Open Group, Definition of SOA.

http://opengroup.org/projects/soa/doc.tpl?gdid=10632.

[20] The White House, Federal Enterprise Architecture Website.

http://www.whitehouse.gov/omb/e-gov/fea.

[21] The Chief Information Officers Council (1999), Federal Enterprise Architecture Framework.

[22] Office of Management and Budget (2007), FEA Consolidated Reference Model Document

Version 2.3. http://www.whitehouse.gov/omb/assets/fea_docs/FEA_CRM_v23_
Final_Oct_2007_Revised.pdf.

[23] The Office of Management and Budget (OMB), Enterprise Architecture Assessment

Framework (EAAF). http://www.whitehouse.gov/omb/e-gov/eaaf.

[24] US Department of the Treasury, Chief Information Officer Council (2000), Treasury

Enterprise Architecture Framework Version 1.

http://www.eaframeworks.com/TEAF/teaf.doc.

[25] Bittler, R. Scott and Kreizman, Gregg (2005), Gartner Enterprise Architecture Process:

Evolution 2005, (Technical Report G00130849) Gartner.

[26] Saha, Pallab (2008), A Methodology for Government Transformation with Enterprise

Architecture, In Saha, Pallab, (Ed.), Advances in Government Enterprise Architecture,

Information Science Reference - Imprint of: IGI Publishing.

[27] Schultz, Mark (2007), Architecture principles: Creating the foundation for robust

architecture. http://www.ibm.com/developerworks/library/ar-archprinc. IBM

Software Group.

[28] Ostergaard, Dean (2009), Enterprise Architecture Principles. http:
//www.architectureinpractice.com/sites/default/files/EA-Principles.doc.

[29] Berry, Daniel M. (2002), Formal Methods: the very idea—Some thoughts about why they

work when they work, Science of Computer Programming, 42(1), 11–27.

[30] Mellor, Stephen J., Scott, Kendall, Uhl, Axel, and Weise, Dirk (2004), MDA Distilled:

Principles of Model-Driven Architecture, Addison-Wesley.

[31] France, R., Evans, A., Lano, K., and Rumpe, B. (1998), The UML as a formal modeling

notation, Comput. Stand. Interfaces, 19(7), 325–334.

[32] Ellsberger, Jan, Hogrefe, Dieter, and Sarma, Amardeo (1997), SDL : Formal Object-oriented

Language for Communicating Systems, Prentice Hall.

[33] Huggins, J. and Wallace, C. (2002), An Abstract State Machine Primer, (Technical

Report CS-TR-02-04) Computer Science Department, Michigan Technological University.

[34] Bjørner, Dines and Jones, Cliff B., (Eds.) (1978), The Vienna Development Method: The

Meta-Language, Vol. 61 of Lecture Notes in Computer Science, Springer.

[35] Bidoit, M. and Mosses, Peter (2004), Casl User Manual: Introduction to Using the Common

Algebraic Specification Language Casl, SpringerVerlag.

[36] Milner, Robin, Parrow, Joachim, and Walker, David (1992), A Calculus of Mobile Processes,

Information and Computation, 100, 1–40.

48 DRDC Valcartier TR 2011-022

[37] Hoare, C. A. R. (2002), Communicating sequential processes, pp. 413–443.

[38] ITU-T Recommendation Z.100 Annex F (11/00) (2001), SDL Formal Semantics Definition,

International Telecommunication Union.

[39] Peterson, J. L. (1981), Petri Net Theory and the Modeling of Systems, Prentice-Hall.

[40] Abrial, J.R. (1996), The B-Book: Assigning Programs to Meanings, Cambridge University

Press.

[41] Spivey, J. Michael (1992), The Z Notation: a reference manual, 2 ed, Prentice Hall

International Series in Computer Science.

[42] Jackson, Daniel (2006), Software Abstractions: Logic, Language, and Analysis, MIT Press.

[43] Börger, E. and Stärk, R. (2003), Abstract State Machines: A Method for High-Level System

Design and Analysis, Springer-Verlag.

[44] Börger, E. (2003), The ASM Refinement Method, Formal Aspects of Computing, 15,

237–257.

[45] Foundation, Free Software (2007), GNU General Public License. Available electronically at

http://www.gnu.org/copyleft/gpl.html (Last visited in March 2009).

[46] Canada, Ora (1998), Z/EVES Version 1.5: An Overview, In FM-Trends, pp. 367–376.

[47] Gurevich, Y. (1995), Evolving Algebras 1993: Lipari Guide, In Börger, E., (Ed.),

Specification and Validation Methods, pp. 9–36, Oxford University Press.

[48] Glässer, U., Gotzhein, R., and Prinz, A. (2003), The Formal Semantics of SDL-2000: Status

and Perspectives, Computer Networks, 42(3), 343–358.

[49] Börger, E., Glässer, U., and Müller, W. (1995), Formal Definition of an Abstract VHDL’93

Simulator by EA-Machines, In Delgado Kloos, C. and Breuer, P. T., (Eds.), Formal
Semantics for VHDL, pp. 107–139, Kluwer Academic Publishers.

[50] Müller, W., Ruf, J., and Rosenstiel, W. (2003), An ASM Based SystemC Simulation

Semantics, In Müller, W. et al., (Eds.), SystemC - Methodologies and Applications, Kluwer

Academic Publishers.

[51] Stärk, R., Schmid, J., and Börger, E. (2001), Java and the Java Virtual Machine: Definition,

Verification, Validation, Springer-Verlag.

[52] Börger, E., Fruja, N. G., Gervasi, V., and Stärk, R. F. (2005), A High-level Modular

Definition of the Semantics of C#, Theoretical Computer Science, 336(2/3), 235–284.

[53] Börger, E. (1990), A Logical Operational Semantics for Full Prolog. Part I: Selection Core

and Control, In Börger, E., Kleine Büning, H., Richter, M. M., and Schönfeld, W., (Eds.),

CSL’89. 3rd Workshop on Computer Science Logic, Vol. 440 of LNCS, pp. 36–64, Springer.

[54] Farahbod, R., Glässer, U., and Vajihollahi, M. (2007), An Abstract Machine Architecture for

Web Service Based Business Process Management, International Journal of Business
Process Integration and Management, 1, 279–291.

[55] Glässer, U. and Gu, Q.-P. (2005), Formal Description and Analysis of a Distributed Location

Service for Mobile Ad Hoc Networks, Theoretical Comp. Sci., 336, 285–309.

[56] Glässer, U., Gurevich, Y., and Veanes, M. (2004), Abstract Communication Model for

Distributed Systems, IEEE Trans. on Soft. Eng., 30(7), 458–472.

DRDC Valcartier TR 2011-022 49

[57] Börger, E., Riccobene, E., and Schmid, J. (2000), Capturing Requirements by Abstract State

Machines: The Light Control Case Study, Journal of Universal Computer Science, 6(7),

597–620.

[58] Beierle, C., Börger, E., Durdanovic, I., Glässer, U., and Riccobene, E. (1996), Refining

Abstract Machine Specifications of the Steam Boiler Control to Well Documented

Executable Code, In Abrial, J.-R., Börger, E., and Langmaack, H., (Eds.), Formal Methods
for Industrial Applications. Specifying and Programming the Steam-Boiler Control,
Number 1165 in LNCS, pp. 62–78, Springer.

[59] Börger, E., Päppinghaus, P., and Schmid, J. (2000), Report on a Practical Application of

ASMs in Software Design, In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, (Ed.),

Abstract State Machines: Theory and Applications, Vol. 1912 of LNCS, pp. 361–366,

Springer-Verlag.

[60] Börger, Egon (2007), Construction and Analysis of Ground Models and their Refinements as

a Foundation for Validating Computer Based Systems, Formal Aspects of Computing, 19(2),

225–241.

[61] Farahbod, Roozbeh (2009), CoreASM: An Extensible Modeling Framework & Tool

Environment for High-level Design and Analysis of Distributed Systems, Ph.D. thesis, Simon

Fraser University, Burnaby, Canada.

[62] Farahbod, R., Gervasi, V., and Glässer, U. (2007), CoreASM: An Extensible ASM Execution

Engine, Fundamenta Informaticae, pp. 71–103.

[63] Farahbod, R., Glässer, U., and Khalili, A. (2009), A Multi-Layer Network Architecture for

Dynamic Resource Configuration & Management of Multiple Mobile Resources in Maritime

Surveillance, In Proc. of SPIE Defense & Security Symposium, Orlando, Florida, USA.

[64] Farahbod, R., Glässer, U., Bossé, É., and Guitouni, A. (2008), Integrating Abstract State

Machines and Interpreted Systems for Situation Analysis Decision Support Design, In

Proc. of the 11th Intl Conf. on Information Fusion (Fusion 2008).
[65] Brantingham, P. L., Glässer, U., Jackson, P., and Vajihollahi, M. (2009), Modeling Criminal

Activity in Urban Landscapes, In Memon, N., Farley, J. D., Hicks, D. L., and Rosenoørn, T.,

(Eds.), Mathematical Methods in Counterterrorism, pp. 9–31, Springer.

[66] Lemcke, Jens and Friesen, Andreas (2007), Composing Web-service-like Abstract State

Machines (ASMs), Services, IEEE Congress on, pp. 262–269.

[67] Altenhofen, M., Friesen, A., and Lemcke, J. (2008), ASMs in Service Oriented

Architectures, Journal of Universal Computer Science, 14(12), 2034–2058.

[68] Beckers, Jörg, Klünder, Daniel, Kowalewski, Stefan, and Schlich, Bastian (2008), Direct

Support for Model Checking Abstract State Machines by Utilizing Simulation, In ABZ ’08:
Proceedings of the 1st international conference on Abstract State Machines, B and Z,

pp. 112–124, London, UK.

[69] Jensen, Olav, Koteng, Raymond, Monge, Kjetil, and Prinz, Andreas (2007), Abstraction

using ASM Tools, In Prinz, A., (Ed.), Proceedings of the 14th International ASM Workshop
(ASM’07).

[70] Mazzei, Daniele, Vozzi, Federico, Cisternino, Antonio, Vozzi, Giovanni, and Ahluwalia, Arti

(2008), A High-Throughput Bioreactor System For Simulating Physiological Environment,

IEEE Transactions on Industrial Electronics, 55(9), 3273–3280.

50 DRDC Valcartier TR 2011-022

[71] Demuru, Matteo (2008), Modeling Cell Methabolic Mechanisms Through Abstract State

Machines, Master’s thesis, University of Pisa, Italy.

[72] Altenhofen, M. and Börger, E. (2009), Concurrent Abstract State Machines and +CAL

Programs, Recent Trends in Algebraic Development Techniques: 19th International
Workshop, WADT 2008, Pisa, Italy, June 13-16, 2008, Revised Selected Papers, pp. 1–17.

[73] Altenhofen, M. and Farahbod, R. (2010), Bârun: A Scripting Language for CoreASM, In

ABZ ’10: Proceedings of the 2nd International Conference on Abstract State Machines, B
and Z, Orford, Canada.

[74] DND/CF Director Enterprise Architecture (2008), DND/CF Architecture Framework

(DNDAF) Volume 1: Overview and Definitions, (Technical Report RDIMS OTT TUNN-#

298730) Department of National Defence and Canadian Forces. Version 1.5.

[75] DND/CF Director Enterprise Architecture (2008), DND/CF Architecture Framework

(DNDAF) Volume 2: DND/CF Views and Sub-views, (Technical Report RDIMS OTT

TUNN-# 463363) Department of National Defence and Canadian Forces. Version 1.5.

[76] Farahbod, R. and Glässer, U. (2010), The CoreASM Modeling Framework, Software:
Practice and Experience (to be published).

[77] Brantingham, P. L., Kinney, B., Glässer, U., Jackson, P., and Vajihollahi, M. (2008),

Mastermind: Computational Modeling and Simulation of Spatiotemporal Aspects of Crime in

Urban Environments, In Liu, L. and Eck, J., (Eds.), Artificial Crime Analysis Systems: Using
Computer Simulations and Geographic Information Systems, Information Science Reference.

[78] Brantingham, P. L., Glässer, U., Kinney, B., Singh, K., and Vajihollahi, M. (2005), A

Computational Model for Simulating Spatial Aspects of Crime in Urban Environments, In

Jamshidi, M., (Ed.), Proceedings of the 2005 IEEE International Conference on Systems,
Man and Cybernetics, pp. 3667–74.

[79] Glässer, U., Rastkar, S., and Vajihollahi, M. (2006), Computational Modeling and

Experimental Validation of Aviation Security Procedures, In Mehrotra, Sharad, Zeng,

Daniel Dajun, Chen, Hsinchun, Thuraisingham, Bhavani M., and Wang, Fei-Yue, (Eds.),

Intelligence and Security Informatics, IEEE International Conference on Intelligence and
Security Informatics, ISI 2006, San Diego, CA, USA, May 23-24, 2006, Proceedings,

Vol. 3975 of Lecture Notes in Computer Science, pp. 420–431, Springer.

[80] Glässer, U., Rastkar, S., and Vajihollahi, M. (2008), Modeling and Validation of Aviation

Security, In Chen, H. and Yang, C.C., (Eds.), Intelligence and Security Informatics:
Techniques and Applications, Vol. 135 of Studies in Computational Intelligence,

pp. 337–355, Springer.

[81] Farahbod, R., Glässer, Uwe, and Ma, G. (2007), Model Checking CoreASM Specifications,

In Prinz, A., (Ed.), Proceedings of the 14th International ASM Workshop (ASM’07).

[82] Maupin, Patrick and Jousselme, Anne-Laure (2007), Interpreted Systems for Situation

Analysis, In Proc. of the 10th Intl. Conf. on Information Fusion, Quebec city, Canada.

[83] Farahbod, R. and Glässer, U. (2011), The CoreASM Modeling Framework, Software:
Practice and Experience. (in print)

http://www.roozbeh.ca/pubs/2010-SPE-CoreASM.pdf.

DRDC Valcartier TR 2011-022 51

[84] Pagan, Frank G. (1981), Formal Specification of Programming Languages: A Panoramic

Primer, Prentice Hall.

[85] Stoy, Joseph E. (1981), Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory, The MIT Press.

52 DRDC Valcartier TR 2011-022

Annex A: Requirements & Applications of EA
According to [10], using an Enterprise Architecture, ”it should be possible to:

a) Gain insight into the current state of the enterprise at a suitable abstraction level to understand

and to analyze issues that hamper the execution of the strategy of the enterprise;

b) Gain insight into the current state of the enterprise to assess its compliance to (external)

regulations;

c) Deal with social complexity of stakeholders involved in enterprise transformations;

d) Develop a business case for the chosen strategic direction;

e) Explore strategic alternatives for the future direction of the enterprise, while considering

issues, challenges, feasibility and impacts, and eventually making for an alternative of choice;

f) Express/depict a coherent, comprehensive and concrete image of the desired future state(s)

of the enterprise;

g) Design a roadmap for the transformation;

h) Distinguish between short-term solutions and long-term (structural) solutions;

i) Give a clear context and direction limiting design freedom of individual projects that

contribute to the transformation;

j) Select available solutions and/or packages that are to remain or to be come apart of the

solution, whether in-house or sourced by a business partner;

k) Guard the proper execution of any transformation project to be in line with the strategic

direction (or to be knowingly informed that it deviates) and with external regulations;

l) Provide a common language to a portfolio of changes/transformations of an enterprise;

m) Enable traceability of design decisions from the strategic level via programs to specific

projects.

There are seven key applications for enterprise architecture:

a) Investigate problems/shortcomings in a preexisting situation, including the creation of a

shared (among stakeholders) understanding of the existing situation;

b) Express (and motivate) the future direction of an enterprise, as well as investigate (and eval-

uate) different alternatives. This also involves the creation of a shared (among stakeholders)

conceptualisation of the (possible) future directions, and shared agreement for the selected

alternative;

c) Identify key problems, challenges, issues, impediments, chances, etc., as well as make well-

motivated design decisions that enable a move from the existing situation into the desired

strategic direction;

d) Provide boundaries and identify plateaus (intermediary steps) for the transformation of the

enterprise toward the articulated strategic direction. In this context, enterprise architecture is

used as a planning tool, making the realization of a strategy more tangible;

e) Give a clear context and direction for a portfolio of projects working toward the realization

of the first plateau as defined at the tactical planning level;

DRDC Valcartier TR 2011-022 53

f) Select one or more standard solutions and/or packages that are to become part of the solution

and/or decide to outsource an entire business process/service to another enterprise;

g) Create the high level design of an actual step in the enterprise transformation as it will be

realized (and implemented) in the context of a specific project.” — [10]

54 DRDC Valcartier TR 2011-022

Annex B: Formal Language Semantics
Modeling languages are used to create a formulation of a system, based on one’s understanding

of that system or its requirements, so that it can be documented, communicated with peers and

domain experts, and better yet, empirically validated if possible. Such a formulation needs to be

clear, precise and comprehensive at a given level of abstraction. In order to achieve this, one

needs to have a good understanding of the underlying modeling language used, which in turn

requires a “good” description of the language.

A complete description of a modeling language covers three aspects of the language: syntax, se-
mantics, and pragmatics [84]. The syntax is about the superficial form of the language constructs.

It answers questions like, “is X a proper statement in this language?” The semantics is about the

interpretation and the meaning of statements of the language. It answers questions like, “what does

‘x := y + 1’ mean and what are its effects?” Finally, the pragmatics is about the use of such

statements.

Language descriptions used to be more informal (i.e., expressed in a narrative form using a natural

language), since formal descriptions using rigorous notations are not easily understandable without

special training. However, it is often difficult to precisely and clearly describe the semantics of

languages using an informal language. Informal descriptions rely on a common understanding of

the underlying informal language and are amenable to different interpretations which in case of

modelling languages defies the purpose of having a clear, precise and comprehensive formulation.

If we want completeness, consistency, precision, absence of ambiguity, and understandability, we

have to look into formal descriptions.

Formal semantic specification of a language can serve many purposes [85, 84]:

a) Reference for users: A formal specification can serve as a reference for users of the language,

providing a detailed and accurate description of the language, its meaning and its effects.

b) Reference for implementations. Those who implement tools for a language such as compilers,

interpreters or debuggers, need to precisely know the details of the language and its seman-

tics. Also, such specifications are needed if one wants to prove the correctness of language

compilers or interpreters.

c) Improved language design. Formal specifications can expose irregularities and inconsisten-

cies in language design and can guide language designers towards the design of better and

cleaner languages.

d) Standardization. It is now generally accepted that formal specifications are necessary to have

a successful language standardization process.

e) Program/model verification. To mathematically prove the correctness of models and pro-

grams, the properties of the underlying language constructs must be formally defined.

DRDC Valcartier TR 2011-022 55

This page intentionally left blank.

56 DRDC Valcartier TR 2011-022

Annex C: Abstract State Machines
Here we briefly outline the basic concepts of ASMs—more precisely Distributed ASMs or DASMs—

and Control State ASMs in formal modeling of distributed systems.

C.1 Distributed ASMs
The original notion of basic ASMs was defined to formalize simultaneous parallel actions of a single

computational agent. A basic ASM M is defined as a tuple of the form (Σ, I , R , PM) where Σ is

a finite set of function names and symbols, I is a set of initial states for signature Σ, R is a set of

transition rule declarations, and PM ∈ R is a distinguished rule, called the main rule or the Program

of machine M.

A state A for Σ is a non-empty set X together with an interpretation fA : Xn �→ X for each function

name f in Σ. Functions can be static or dynamic. Values of dynamic functions can change from

state to state. The evaluation of a transition rule in a given state produces a set of updates of the

form 〈(f ,〈a1, . . . ,an〉),v〉 where f is an n-ary function name in Σ and a1, . . . ,an,v ∈ X . An update

(f ,args,v) prescribes a change to the content of location f (args) in the next state.

A distributed ASM (DASM) MD is defined by a dynamic set AGENT of autonomously operating

computational agents, each executing a basic ASM. This set may change dynamically over runs

of MD, as required to model a varying number of computational resources. Agents of MD interact

with one another, and typically also with the operational environment of MD, by reading and writ-

ing shared locations of a global machine state.The underlying semantic model resolves potential

conflicts according to the definition of partially ordered runs [56].

MD interacts with its operational environment—the part of the external world visible to MD—

through actions/events observable at external interfaces, formally represented by controlled and

monitored functions. Of particular interest are monitored functions, read-only functions controlled

by the environment. A typical example is the abstract representation of global system time in terms

of a monitored function now taking values in a linearly ordered domain TIME. Values of now in-

crease monotonically over runs of MD.

C.2 Control State ASMs
In this section we briefly look into control state ASMs, a frequently used class of ASMs that rep-

resents a normal form of synchronous UML activity diagrams. This particular class of ASMs is

expressive enough to model many classical automata such as various extensions of finite state ma-

chines, timed automata, push-down automata, etc. It extends finite state machines by synchronous

parallelism and by the possibility to also manipulate data [43].

A control state ASM is an ASM whose rules are all of the form presented in Figure C.1. 36 Such

a control state ASM can be formulated in textual form by a parallel composition of Finite State

36. See [43, Sec. 2.2.6]

DRDC Valcartier TR 2011-022 57

Figure C.1: Control State ASMs

Machine (FSM) rules, where each FSM rule is defined as:

FSM(i, if cond then rule, j)≡
if ctl state = i and cond then

rule
ctl state := j

Thus, the control state ASM of Figure C.1 can be formulated as a parallel composition of

the following FSM rules:

FSM(i, if cond1 then rule1, j1)
FSM(i, if cond2 then rule2, j2)
. . .
FSM(i, if condn then rulen, jn)

Since control state ASMs can be presented in graphical form with a precise semantics, they

are a good candidate for documenting functional requirements and modeling of functional

aspects of systems at the early stages of design and development when proper communica-

tion of the requirements and the abstract model plays a key role.

58 DRDC Valcartier TR 2011-022

Index
Abstract State Machines, see ASM

Architecture Capability Framework

TOGAF, 16

ASM, 24–26, 38

Big-M Methodology, 12

CM, see Configuration Management

Configuration Management, 15

CSASM, 57

DADM, 3, 31

DASM, 57

Data Model, 14, 31

DEA, 2

Defence Technical Standards List, see
DTSL

Defence Terminology Databank, 11

Directorate of Enterprise Architecture, 2

Distributed ASM, 57

DND EAP, 3

DND Enterprise Architecture Program,

see DND EAP

DND/CF Architecture Data Model, 31

DND/CF Architecture Framework, see
DNDAF

DNDAF, 3

DoD Architecture Framework, 13

DoDAF, 13

DM2, see DoDAF Meta-model

Models, 14

Viewpoints, 14

Views, 14

DoDAF Meta-model, 14

DTSL, 33, 37

EA, 2, 10

EA Principles, 20

EA Process, 20

EAAF, 18, 20

EAP, 35

enterprise, 10

Enterprise Architecture, see EA

Enterprise Architecture Assessment

Framework, see EAAF

FEA, 17, 36

FEAF, 18

Federal Enterprise Architecture, see FEA

Federal Enterprise Architecture

Framework, see FEAF

FSM, 58

IC2, 45

M3, 15

MAGENTA, 36

Methodology, 12

MODAF, 15

MODAF Meta Model, 15

NAF, 17

NMM, 17

NAF Metamodel, see NAF NMM

NATO Architecture Framework, see
NAF

Reference Model, 19, see RM

RM, 33, 36

Segments

FEA, 18

Service-Oriented Architecture, see SOA

SOA, 17

Taxonomy, 19

TEAF, 19

TOGAF, 16

ADM, 16, 36

Treasury Enterprise Architecture

Framework, 19

validation, 40

DRDC Valcartier TR 2011-022 59

This page intentionally left blank.

60 DRDC Valcartier TR 2011-022

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Qu bec (Qu bec)
G3J 1X5 Canada

2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

3. TITLE

Towards a Comprehensive DND/CF Enterprise Architecture Methodology

4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Farahbod, R., Guitouni, A., Bossé, É.

5. DATE OF PUBLICATION
(Month and year of publication of document.)

June 2013

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

6b. NO. OF REFS
(Total cited in document.)

85

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Qu bec (Qu bec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

42zz78

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TR 2011-022

10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The objective of this report is to present a critical review of the DNDAF as a core en-terprise
architecture (EA) framework to support the development of Integrated Command and Control
Capability. In this document, we focus on systems engineering. In systems engineering,
architectures facilitate the understanding and communication of different aspects of a system by
providing a structured approach to document requirements, design decisions, and technical
details of the implementation. This report presents a study of the concept of EA and a number of
top EA frameworks in order to identify different aspects of EA that each framework covers and
the various components each. The differentiation between the notions of methodology and
framework in the context of EA leads to a critical review of the DNDAF framework. This report
proposes a review of DNDAF, its purpose, and its components, and puts forward a set of
recommendations for improvement in order to achieve a comprehensive DND/CF EA
methodology and framework. This methodology is required for developing an Integrated
Command and Control Capability. Future work includes determining the critical components
(e.g., tools, methods, standards) that should be developed in order to support the implementation
of a comprehensive EA for DND/CF.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

