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Abstract

This report describes work that was performed at National Research Council Institute of
Ocean Technology (NRC IOT), St John’s, in February 2012. There were several overall
aims of the testing: to assess the suitability of the sensors for detecting small foreign ob-
jects on ship hulls or other underwater structures; to assess the true resolving power of the
sensors; to assess optimal geometries for deployment of the sensors; and to provide high
quality sonar data for ongoing imaging sonar data mosaicking software development. Dur-
ing the testing a variety of small imaging sonars were transited above small targets laid on
the bed of the tank. Having the sonars mounted to the tow carriage of the test tank allowed
precise control of the sensor—target geometry which is critical for achieving the stated trial
goals. The purpose of this report is to document the testing that was performed for later
reference, to assist in interpretation of the collected sonar data in later analysis.

Résume

Le présent rapport décrit les travaux réalisés a I'Institut des technologies océaniques du
Conseil national de recherches du Canada (ITO-CNRC), a St John’s, en février 2012. Les
essais comportaient plusieurs objectifs généraux : I'évaluation de l'efficacité des capteurs
pour la détection de petits corps étrangers sur la coque des navires ou d’autres structures
sous-marines, I'évaluation du pouvoir séparateur réel des capteurs, I'évaluation des
géométries optimales pour le déploiement des capteurs et la prestation de données sonar
de haute qualité pour le développement en cours d’un logiciel de mosaiquage de données
des sonars d’imagerie. Pendant les essais, divers petits sonars d’imagerie sont passés au-
dessus de petites cibles au fond du bassin. Les sonars montés sur le chariot de remorquage
du bassin d’essai ont permis un controle précis de la géométrie capteur-cible, laquelle est
essentielle a latteinte des objectifs d’essai indiqués. Le présent rapport vise a rendre
compte des essais réalisés aux fins de référence ultérieure en vue d’aider a interpréter les
données sonar recueillies dans le cadre d’analyses subséquentes.
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Executive summary

Imaging Sonar Testing at NRC IOT Tow Tank

Anna Crawford, Sean Spears, Warren Connors; DRDC Atlantic TR 2012-041;
Defence R&D Canada — Atlantic; November 2012.

Background: DRDC Atlantic performed tests to determine imaging sonar capabilities at
the National Research Council Institute for Ocean Technology in February of 2012. Small
imaging sonars are typically used for performing underwater inspections of ship hull and
jetty structures. The tests provided sonar data with very well controlled geometry in order
to assess resolution, optimum sensor deployment and other factors affecting imaging sonar
performance. As well, high quality sonar data was collected for use in development of
sonar data mosaicking software.

Principal results: The testing program resulted in a valuable imaging sonar data set. The
purpose of this report is to document the testing that was performed for later reference, to
assist in interpretation of the collected sonar data in later analysis.

Significance of results: The optimal imaging geometries (look—angle, ranges) determined
during the testing will contribute to development of best practices in the use of Remotely
Operated Vehicle-mounted imaging sonars for underwater inspection tasks. Assessment
of the resolving power of the different imaging sonars will allow decisions to be made on
which sensors can best perform inspection tasks.

Future work: The imaging sonar data set that was collected during the trial will be used in
on—going work on imaging sonar data mosaicking software that is currently in development
under contract. Detailed analysis of the data collected during this testing will be reported
in future reports.
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Sommaire

Imaging Sonar Testing at NRC IOT Tow Tank

Anna Crawford, Sean Spears, Warren Connors ; DRDC Atlantic TR 2012-041 ;
R & D pour la défense Canada — Atlantique ; novembre 2012.

Contexte : En février 2012, RDDC Atlantique a réalisé des essais pour déterminer la
capacité des sonars d’imagerie a I'Institut des technologies océaniques du Conseil
national de recherches du Canada. On utilise en général des petits sonars d’imagerie pour
effectuer les inspections sous-marines de la coque des navires et des structures de jetée.
Les essais ont produit des données sonar avec une géométrie trés bien controlée en vue
d’évaluer le pouvoir séparateur et le déploiement optimal des capteurs, et d’autres
facteurs qui influent sur le rendement des sonars d’imagerie. De plus, on a recueilli des
données sonar de haute qualité aux fins d’utilisation pour développer un logiciel de
mosaiquage de données sonar.

R’esultats principaux : Le programme d’essai s’est soldé par un excellent ensemble de
données des sonars d’imagerie. Le présent rapport vise a rendre compte des essais réalisés
aux fins de référence ultérieure en vue d’aider a interpréter les données sonar recueillies
dans le cadre d’analyses subséquentes.

Port’ee des r’esultats : Les géométries d’imagerie optimales (angle de visée et portées)
déterminées pendant les essais contribueront a développer des pratiques exemplaires
liées a l'utilisation de sonars d’imagerie montés sur véhicule téléguidé pour effectuer des
taches d’inspection sous-marine. L’évaluation du pouvoir séparateur des divers sonars
d’imagerie permettra de déterminer les meilleurs capteurs a utiliser pour les tiches
d’inspection.

Recherches futures : L’ensemble de données des sonars d’imagerie recueilli pendant les
essais sera utilisé dans le cadre des travaux continus sur le logiciel de mosaiquage de
données des sonars d’imagerie en développement sous contrat. Une analyse détaillée des
données recueillies pendant ces essais fera 'objet de rapports ultérieurs.
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1 Introduction

A one—week imaging sonar testing program was carried out at the National Research Coun-
cil Institute for Ocean Technology (NRC IOT) Tow Tank facility in St John’s, Newfound-
land (Monday February 6 — Friday February 10, 2012). The facility is a 12 m wide by 200
m long tank with water depth about 6 m. A testing plan is published elsewhere [1] and
this report serves to document details of the execution of the testing and some preliminary
discussion of the lessons learned. Detailed analysis of the imaging sonar data that was
collected is ongoing and will be documented separately in the future.

The purposes of the testing were as follows:

e To assess the suitability of the sensors for detecting small foreign objects on ship
hulls or other underwater structures;

e To assess the true resolving power of the sensors;
e To assess optimal geometries for deployment of the sensors; and
e To provide high quality sonar data for ongoing mosaicking software development.

Motion of the sensors was required to simulate either passage of a ship hull past a stationary
sensor or forward progress of an Remotely Operated Vehicle (ROV)-mounted sensor past
a jetty or other structure, but with exact control of sensor—target geometry and tow speed,
which is not possible in either of these two situations operationally. NRC IOT, in St John’s,
is one of the few tow tank facilities of its kind in North America, and the only one in
Canada where the sensor—target range can be made sufficiently large to provide a realistic
test environment.

Figure 1 is an illustration of the concept of using an imaging sonar from the tow tank
carriage to image targets on the floor of the tank. Imaging sonars work best in a forward—
looking configuration, as pictured. The sonar ensonifies a sector ahead of it with total
horizontal angular width typically 30° to 45° wide. Multiple sonar beams are arrayed
across the sector, typically 1° wide horizontally, but quite wide in the vertical direction,
typically 15° to 30°. The sonar imagery is a plan view map of objects in the field of view,
with anything standing proud casting a shadow. Each sonar transmission (ping) produces a
map and forward progress of the sonar between consecutive pings is generally limited to a
fraction of the maximum imaging range so that there is overlap in the maps produced from
one ping to the next. In this way, the overlap can be used to build up a mosaick of a series
of ping images.
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Figure 1: Cartoon illustrating the concept of imaging targets on the tank bed.

2 Equipment

The following subsections describe the equipment used in the testing. The targets and their
deployment are described in a separate section later in this report. With the exception of
the sonar mounting pole which was sent ahead, and the SonarBell target which went in
checked baggage, the equipment for this trial fit in one standard “tri-wall” crate and was
shipped by surface. All of the equipment was packed into the same tri-wall for return
ground shipment.

2.1 Imaging Sonars

Figure 2 shows photos of the four imaging sonars that were tested and Table 1 lists tech-
nical specifications. They are all small in physical dimension, with the DIDSON (Dual-
frequency Identification SONar) being the largest at 12.25” long, 7.7 kg weight in air. All
four sonars are controlled from a surface laptop running manufacturer—supplied software.
The Imagenex requires a separate DC power supply (24 VDC, <12 Watts), but the other
three use an integrated power/communications interface box that plugs into a standard wall
power outlet.

2.2 Pan-Tilt Motor and Sonar Mounting Pole

The sonars were mounted to a Remote Ocean Systems PT-25-FB pan-tilt motor which
itself was fixed to the bottom of a pole with the matching bolt pattern. The pole was made
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Table 1: Technical specifications of the small imaging sonars used in the testing. AR is the
range resolution.

Make/Model Freq Horiz. | Beams Beam AR
(kHz) Sector Width (cm)

BlueView P450 450 45° 256 1° % 20° 5

BlueView P900 900 45° 256 1° % 20° 2.5

DIDSON 300 1100 (LF) | 29° 48 0.4°x14° | 1-8
1800 (HF) | 29° 96 0.3° x 14° | 0.25-2

Figure 2: Small imaging sonars. Left to right: BlueView P450E, BlueView P90OE, DID-
SON and Imagenex Delta-T.

previously for the DRDC Maritime Force Protection Technology Demonstration Project
(MFP TDP) for use with imaging sonars on the response boats. NRC IOT fabricated a
mounting bracket from large aluminum channel stock to attach this pole to the tow carriage.
Figure 3 shows the pole and mounting bracket, with pan—tilt motor and sonar attached, on
the tow carriage at NRC IOT. The small sonars were each mounted to the pan—tilt motor
using customized mounting plates that matched the bolt patterns on the sonars and on the
pan—tilt motor. These were also made previously for the MFP TDP project. As mounted,
the sonar heads were about 1 m below the water surface.

The pan—tilt motor requires a 24 VDC power supply and is controlled using manufacturer—
supplied software from a laptop, in this case, the same laptop used to control the sonars.
The pan-tilt motor uses RS—485 communications for control and also gives feedback of its
position, discussed later in this report. A spare pan—tilt motor was brought, but not used.

2.3 Mini-ROV

The VideoRay Pro4 mini—-ROV was used to perform a complete underwater video and
sonar (BlueView P900) survey of the target layout and surrounding tank environment. This
will be very useful for interpretation of the sonar imagery in post—processing, to identify
objects and landmarks in the tank that are seen in the sonar data. The mini—ROV was also
used for inspection of the clearance between the sonar connector and the mounting plate on
the pan—tilt motor, to verify safe limits on the tilt range of motion for some of the sonars.

DRDC Atlantic TR 2012-041 3



Figure 3: Photos of the pole mount and bracket, with sonar and pan—tilt motor attached.
The photo on the right shows the large channel bracket in more detail.

2.4 Laptops and Software

One laptop ran the control software for the ROS pan-tilt motor (Helios version 1.1.0.1) and
for the various imaging sonars: Imagenex Delta-T (version 1.01.56), BlueView ProViewer
(version 3.5) for both the P450 and P900, and DIDSON (version 5.25.33). The software
version numbers are important as there are backward compatibility issues with the recorded
data files.

The RS—485 serial connection to/from the pan—tilt motor was split and purpose—written
software (implemented in Visual Studio C++) on a second laptop logged the motor com-
mands and feedback to text files. The messages are encoded, as described in a Communi-
cations Protocol Document released by Remote Ocean Systems [3]. A Matlab script has
been written post—trial to translate the encoded messages stored in the text files into time—
stamped pan and tilt angle data. This will be used in the mosaicking contract work. The
pan—tilt logger was started each morning and restarted, usually around mid—day, each day
so that the log files did not become too large to manage.

The deck control unit for the mini-ROV contains a third laptop. This runs the controller
interface for the ROV, a version of the BlueView sonar control software and video recording
software for the underwater camera.
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3 Set-up of Equipment

A control station for the sonars and pan—tilt motor was set up on the tow carriage, within
cable length of the sonar pole mount — the sonars and pan-tilt motor all have cables
around 10-15 m in length, limiting options for setup. Figure 4 shows the small table, with
the sonar/pan-tilt control laptop, the pan—tilt logging laptop and the power supply for the
pan—tilt motor and Imagenex sonar.

Figure 4: Photo of the laptops and power supply set up on the tow carriage.

A mounting bracket to mate DRDC’s sonar pole to the NRC IOT tow carriage was con-
structed from aluminum channel stock on Monday. The bracket is shown in Figure 3. The
bracket and pole were installed first on Monday afternoon by NRC IOT personnel, who use
a small boat to paddle out to the carriage and work from the underside. The imaging sonars
were swapped out several times this way during the testing. This was done by unbolting
the pole from the bottom of the tow carriage (done from a small boat), passing it up to the
deck of the carriage through the well hole, replacing the mounting plate and sonar on the
bottom of the pan—tilt motor, passing it all back down through the hole to the boat below
and rebolting the pole to the tow carriage. Figure 5 shows DRDC and NRC IOT personnel
working on swapping the sonar head and installation of the pole on the tow carriage.

The targets were deployed by divers on Monday evening, after the target beds were con-
structed and set in the water to soak earlier on Monday. Soaking was necessary to reduce
the amount of air that might be trapped within the carpet, so that it provided a less re-
flective acoustic background for the targets. Target deployment is discussed further in the
following section.
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Figure 5: Photos of Brad Butt and Kent Brett in small boats, and Sean Spears on the deck
of the tow carriage, installing the DIDSON sonar.

The control unit for the mini-ROV was also set up on the deck of the tow carriage. Figure
6 shows a photo of ROV operations during a survey of the targets. The ROV was lowered
into the water through the well in the tow carriage, and the tow carriage followed the ROV
at slow speed while it drove over the targets down the center of the length of the tank. In the
photo, the sonar display is shown on the ROV deck unit above the underwater video display
on the laptop, next to the yellow cable reel, all set up on the deck of the tow carriage.

4 Targets and Target Beds

A selection of small targets were imaged, of the size and shape representative of the types
of objects that might be of interest in underwater inspection operations. Two inert limpet
mine shapes were borrowed from the CF Fleet Diving Unit Atlantic, a hemi—spherical
dome shape and a so—called “clam” shape. Two resolution targets were constructed, one
from ping pong balls strung in a line at varying spacings and the other a pyramid stack of
small sheet metal boxes (electronics project boxes). The resolution targets were designed
to test the angular resolving power of the sonars. A SonarBell resonating sphere target
was also imaged. Finally, three rocks of varying sizes were used as natural targets, again
intended to test sonar resolving power.

It was not possible to simply place targets on the bottom of the tow tank at NRC IOT due
to the recent installation of a flow suppression system on the floor of the tank, designed
to damp out circulating flow that can build up during tow testing of larger hulls. The
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Figure 6: Photo of Sean Spears (right) and Geoffroy Rivet—Sabourin (left) operating the
mini—ROV and Warren Connors (standing) tending the cable, during an ROV survey of the
targets.

flow suppressor consists of large rectangular sections of plastic meshwork that rest on the
floor of the tank when not in use. There is also a network of polyvinyl chloride (PVC)
pipe on the floor of the tank which is part of a bubbler system and also provides air for
buoyancy to raise the sections of the flow suppression system to a vertical position when
in use. The problem of providing a flat surface to image the targets against was solved by
constructing “target beds”. Six of these were constructed by NRC IOT out of 4’ x 8 sheets
of plywood, covered with indoor—outdoor carpet and set on 1’ legs to raise them above the
PVC pipe. Lead weights were fixed to the back sides of the target beds for ballast. The
target beds were allowed to soak before the sonar testing to allow air bubbles trapped in the
carpet to disperse. The targets were placed by divers on each of the six target beds during
deployment. Figure 7 shows photos of the six targets and target beds prior to deployment.

4.1 Resolution Targets

One of the goals of the trial was to assess the true resolving power of the imaging sonar
systems being tested. This aim is complicated by the geometry of the individual beams
across the imaged sector, narrow in angle in the horizontal direction, but wide in the vertical
direction. The critical resolution limitation is the horizontal beamwidth and to a lesser
extent, the horizontal beam spacing across the imaged sector. Two targets were designed
specifically to test the resolution of the sonars.

The ping pong ball arrays (pictured in Figure 7) were designed with varying spacings be-
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Figure 7: Photos of the targets and target beds prior to deployment in the tow tank. Upper
row, left to right: pyramid, ping pong ball arrays, and dome limpet. Lower row, left to right:
SonarBell sphere, clam limpet and rocks. Note that the targets were intentionally placed
closer to the leading edge of the target beds, relative to the sonar look direction, except for
the clam limpet.

tween the balls to test whether two separate balls could be resolved as a function of range
from the sonar. Each string of balls was mounted between brackets on each side of the
target bed that suspended the balls about 6” above the bed. The balls were held in a sleeve
of nylon netting, tied off on each side of the balls to hold their spacings. At a range from
the sonar of 10 m, a beam with 1° width has an arc—width of L = 17.5 cm. The spacings
of the first ball array were ranged from approximately 1/4L to 1.5L in 1/4L increments
and the second array from 1.5L to 2L. The ping pong balls have a diameter of 4 cm, so
the closest spacing 1/4L had them touching. The last, farthest spaced, ball in the string
with the closer spacings broke free during deployment of that target bed when the netting
snagged and broke, however that spacing was repeated by the closest pair of balls in the
other wider spaced array. Figure 8 shows the spacings of the ball array as constructed, in
centimeters. The spacings between the balls in the arrays after they were constructed were
within a centimeter of the planned spacings, but were not exact due to the stretch in the
nylon netting. A photo of the arrays pre—deployment is shown in Figure 7, showing the
mounting brackets on each end to raise the arrays off the target bed.

The pyramid target was designed using the same arc—width criteria as a rough guide, though
the size of the boxes used was determined by what was available at DRDC. The width of
the smallest boxes at the top of the pyramid was 5.7 cm, or about 1/3L. The dimensions
of the pyramid are shown in Figure 9. Figure 7 shows a photo of the pyramid prior to
deployment. The boxes were arranged to test the resolving ability of the various sonars,
both in the highlight return from the facing surfaces of the boxes and in the shadows that
are cast behind the pyramid. The pyramid was constructed of two 10” x 6” x 2” (bottom
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Figure 8: Diagram of the ping pong ball arrays with measurements after construction, with
distances in centimeters.

layer), three 77 x 5 x 3” (middle 2 layers) and two 2.25” x 5 x 2.25” boxes (stacked on
top). The gap between the two bottom layer boxes is the same width as the middle sized
boxes, 77, and the gap between the boxes on the second layer is the same width as the
smallest boxes, 2.25” (see diagram, Figure 9). The boxes are free flooding and should have
been cleared of air pockets when deployed. The pyramid of boxes was epoxied together
prior to deployment.

Figure 9: Diagram of the pyramid target with measurements after construction, with di-
mensions in centimeters.

4.2 SonarBell Sphere Target

The SonarBell spherical resonator target was designed to resonate at 900 kHz. The re-
sponse curve provided by the manufacturer, Subsea Asset Location Technologies Ltd (SALT),
shows a wide frequency response with a second resonance peak at around 800 kHz. The
operating frequencies of the imaging sonars used in this testing are 450 kHz (BlueView
P450), 900 kHz (BlueView P900), 260 kHz (Imagenex Delta-T) and 1.1 and 1.8 MHz

DRDC Atlantic TR 2012-041 9



(DIDSON) (see Table 1). The SonarBell is shown in Figure 7, prior to deployment. The
shell of the sphere is free flooding and it is neutrally buoyant, however a small weight was
inserted into the netting around it to ensure it stayed where it was deployed. The weight
was positioned under the sphere by the divers when it was deployed, so as not to interfere
with sonar imaging.

4.3 Natural Targets (Rocks)

A large bucket of rocks was collected in advance of the trial by Jack Foley, Physics and
Physical Oceanography Department, Memorial University of Newfoundland. The smallest
rocks were about 1.5-2 and the largest, about 1°. One small, one medium and one large
rock were spaced across the width of one of the target beds, shown in Figure 7. The ap-
proximate cross—sectional areas of each of the three rocks are: 48 cm?, 103 cm?, and 2152
(the dimensions along three roughly orthogonal directions were averaged and squared).
The remainder of the rocks of random sizes, mostly about the same size as the smallest of
the set of three, were distributed across the large carpet area.

4.4 Mosaicking Targets

To provide a larger area to collect sonar data while translating and rotating the sonar heads
in support of the mosaicking work, a bigger piece of the same indoor—outdoor carpet as on
the target beds, about 10 m long by about 8 m wide, was laid out on the floor of the tank.
It was spread between weighted 2 x 4” planks. Small targets, rocks and miscellaneous
metal parts and weights were scattered over this surface, along with two 10’ lengths of 2
diameter pipe at random orientations, oblique to the long axis of the tank. It was found that
the small targets were not imaged very well on the carpet and two large truss structures
scrounged from NRC IOT were placed in the tank to provide large linear features for that
work. The background environment of the tank itself, the flow suppression system and
PVC pipes, provided lots of features naturally. Figure 10 shows a photo of one of the two
identical trusses while it is being deployed from a raft. The trusses were 164.5” long, made
from 2” square stock and 1/2” rod, with 16” square end pieces. The two trusses were laid
on the tank floor in a > configuration, shown in the upper right of Figure 10. The Figure
also shows two captures from the mini-ROV video showing the carpet area with scattered
small targets and the trusses after deployment.

5 Personnel

From DRDC Atlantic, Warren Connors and Sean Spears provided technical support and
Anna Crawford was the Chief Scientist. From NRC IOT, technical support was provided
by Brad Butt and Kent Brett, supervised by Craig Kirby. Their work included fabrication
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Figure 10: Frame captures from the ROV video showing the carpet area with scattered
small targets (upper left) and the trusses (upper right), both looking West. The lower photo
shows one of the trusses during deployment. The apparent bow of the plank holding the
leading edge of the carpet (upper left) is distortion by the wide—angle lens on the mini-ROV
camera.

of mounting hardware and target beds, mounting and changing out of the sonar heads,
diving for target deployment and recovery, driving the tow carriage, escorting visitors,
and providing the carriage data files. Geoffroy Rivet—Sabourin of Intelligence Image Inc.,
Stoneham, Quebec, attended the trial in support of contract work on mosaicking of imaging
sonar data (W7707-125396/001/HAL).
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6 Schedule

A week of tow tank time was booked at the NRC IOT facility, Monday February 6—Friday
February 10, 2012. DRDC personnel flew in to St John’s on the Sunday prior and returned
Friday evening. An overview of the activities for the week is shown in Annex A and a
detailed listing of the run configurations and data files that were collected is included in
Annex B.

Weather played a role since indications on Thursday were that the NRC IOT facility was
likely to be closed on the Friday due to heavy snow. A snowfall warning was issued Thurs-
day morning for Thursday night. Sonar testing was progressed to a point by the end of
Thursday afternoon where if there was a weather closure on Friday, the bulk of the testing
required to meet the goals of the trial was completed. The equipment was left in a state
where little would be required of the NRC IOT personnel to pack it for shipping back to
DRDC. The testing was intended to end at noon on Friday in any case due to scheduling
requirements at NRC IOT — the tow carriage was to be dismantled prior to the end of the
week so that servicing work could begin on the following Monday. As it turned out, the
weather was not as severe as predicted and the facility was not closed, so a further set of
runs was performed on Friday morning and the equipment was completely packed before
leaving the site early Friday afternoon.

No firm schedule of test runs was established prior to the start of the trial because it was
not known how long it would take to complete a set of repeats of a particular run configura-
tion, nor whether particular targets would be successfully imaged with each of the sonars.
Priority was established among the sonar systems to be tested: first the DIDSON, followed
by the BlueView P900 and P450 which were about equal, and lastly the Imagenex Delta-T.
A protocol of running 10 repeats of a particular test configuration (target, sonar look angle)
was established during the first full day of testing (Tuesday) and this was followed for sets
of runs for the remainder of the week. There were several sessions of making adjustments
to the sonar look angle and moving the carriage small amounts to establish optimal sonar
imaging geometry. Runs were also made where sonar pan angle was varied as the car-
riage moved and finally, with carriage cross—tank position varying, called “sway” in NRC
IOT terminology, at the same time as pan and along—tank position. These runs support the
contract work on imaging sonar data mosaicking.

7 Data Logging

Approximately 7.4 GB of sonar and mini-ROV video data were collected during the trial.
All the imaging sonar data was recorded on the laptop used to control the sonars and the
pan—tilt motor. The pan—tilt motor log text files were all stored on the second laptop. ROV
sonar and video data were recorded on the ROV controller deck unit laptop. Tow carriage
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position and speed (time stamped) were logged on NRC IOT’s system and those data files
were provided to DRDC in .csv format at the end of the trial, along with a summary table
of the file names and summary plots of the individual runs data. A complete chronological
listing of the data files collected is given in Annex B.

All the carriage, sonar, video and pan—tilt data were backed up to one external USB drive
periodically. DVD backup copies were made back at DRDC. A complete copy of the data
set up to the end of Thursday was given to Geoffroy Rivet—Sabourin before his departure
from St John’s for the mosaicking contract work.

7.1 Time Synchronization

Trial time in logs and data files was local time in St John’s, i.e. Newfoundland Standard
Time (GMT - 3:30 hrs). The two laptops were manually synchronized to NRC IOT tow
carriage time on Tuesday morning before logging any data, and checked again on Thursday
morning. The third laptop, the deck controller for the mini—ROV, was not synchronized,
though a logbook note on Thursday Feb 9 states ”8:13 AM videoray = 09:41 AM local”.

8 Layout of Targets

The target beds were placed at about 10 m intervals down the center line of the Eastward
half of the 200 m length of the tank. The carpeted area was laid out West of the Westmost
target bed. Later in the trial, 2 large trusses were placed West of the target bed. One of the
ping pong ball array targets was damaged during deployment. The last ball in the closer
spaced string broke free when the nylon netting broke.

The along—tank positions of the targets after deployment were measured using the tow
carriage positioning system and a plumb bob lowered to each target from the center line
of the tow carriage. The plumb bob was positioned even with the center of the sonar
mounting pole on the tow carriage, which was aligned to the tow tank coordinate system,
and the carriage position was adjusted along—tank until the plumb bob was on each target.
Table 2 lists the measurements, with comments about the positioning of the bob in each
case. In tank coordinates, the tow carriage moves in the East-West direction, with the East
end of the tank at 0.0 m.

With the exception of the clam target, the targets were placed on the beds closer to one edge
of the bed so that the acoustic shadow was cast behind a target, falling completely on the
bed with surrounding background for contrast. The clam target was placed in the middle
of that bed, since it had a low profile and did not cast a long shadow. When the target
beds were deployed by the divers, the West—East orientations of the beds were essentially
random. The layout of the target beds along—tank is shown in Figure 11, with the measured
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Table 2: Measured deployed target positions in tank coordinates, in meters.

Target Position (m) | Comment
Pyramid 34.7 center of target
Ping Pong Balls | 44.5 West edge of target bed, arrays at 3’ and 6’ from edge
Dome 51.0 center of target
Sphere 60.5 center of target
Clam 69.0 center of target
Rocks 77.3 center of center rock
Carpet 85.8-95.3 East and West edges of carpet area
ping pong
pyramid balls dome sphere clam rocks
B @) ) N Z
I « [ ¢ I 4 I ¥ I
347 " 445”510 " 605 7 69.0 7713
East West
- —_—

Figure 11: Diagram of the target bed layout in the tank, after deployment, with the mea-
sured along—tank coordinates in meters.

positions in meters (same as listed in Table 2). Combined runs over several targets in a pass
were possible over the ping pong ball arrays, dome, sphere and clam targets. The pyramid
and rocks target beds were oriented in the opposite direction.

9 ROV Surveys

Two ROV surveys of the targets were performed during the trial using the VideoRay Pro4
mini-ROV. The first was a higher altitude pass down the entire length of the section of the
tank where the targets were deployed. During the second survey, each target was surveyed
in detail at lower altitude with several approaches at different angles. In both cases, sonar
(BlueView P900) and video data were recorded. Figure 12 shows frame grabs of the targets
captured from the video that was recorded during the second survey. The video and sonar
mini-ROV surveys will provide useful imagery that will assist in post-trial analysis, to help
in positioning the tow carriage sonar data by matching up tank landmarks seen in the video
footage.

The network of white PVC piping on the floor of the tank can be seen clearly in the pho-
tos from the ROV survey. The large rectangular gridded sections of the flow suppression
system can be seen resting on the floor of the tank, along both sides. The photo of the
clam target shows the 1’ legs supporting the target bed above the PVC pipes. The photo
of the ping pong ball arrays shows where the end ball of the closer string is missing at the
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Figure 12: Frames captured from the recorded ROV video of the targets post—deployment.
Upper row, left to right: pyramid, ping pong ball arrays, and dome limpet. Lower row, left
to right: SonarBell sphere, clam limpet and rocks.

rightmost end.

10 Sample Sonar Images

Detailed analysis of the collected sonar data is ongoing at time of writing and results will
be presented in later publications. Figure 13 shows several samples from the data set.

One sample of DIDSON data that was shown in Figure 13 is shown again in Figure 14
with annotations on the image explaining what the main features are. The most visible
features in the image are the shadow of the target bed and further in range, the highlight
from a junction in the PVC piping. The target bed edges have been outlined in red in the
image. Two rectangular sections of the flow suppression system on the floor of the tank
can be seen to either side of the PVC piping highlight. Darker color in the images indicates
lower acoustic backscatter level, so the rectangular flow suppression grids have lower target
strength than the surrounding floor.

11 Lessons Learned

In a general sense, the sonars performed in a ranking according to the priorities for the dif-
ferent systems that were established for the testing prior to the trial. The Imagenex Delta-T
did not provide any usable imagery of the targets — it will require careful synchronization of
the carriage position data and the video imagery with the Imagenex sonar data to determine
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Figure 13: Samples of sonar data. Upper row: BlueView P900 data from the carriage of
the rocks (left) and the dome (right). Middle row: DIDSON data of the rocks (left) and
the dome (right). Lower row: DIDSON data showing the shadow of the ROV (left) and
BlueView P900 data from the ROV of the ping pong ball arrays (right).
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Figure 14: Annotated DIDSON sonar sample data image showing the target bed, dome
target highlight and shadow, and other features.

whether the targets were seen at all. The DIDSON, in high frequency (1.8 MHz) mode,
provided the best imagery, with the exception of the pyramid target which resonated, as
discussed later in this section. The BlueView P450 provided some good imagery, though
not as clear as hoped and the P900 was operating almost outside its maximum operating
range when mounted on the tow carriage. The most consistently imaged targets were the
three natural rocks, which showed up well with all systems (examples are shown in Figure
13).

11.1 Acoustic Environment

Performing acoustic measurements in tank environments is always problematic due to
acoustic backscatter and multiple reflections from the boundaries and other objects that
are part of the tank structure. One of the reasons for choosing the NRC IOT facility for this
testing was that the width of the tank was quite large (12 m) — it was hoped that this would
lessen the effect of interference due to multiple reflections. This was indeed the case, as
spurious reflections from the side walls were practically never observed. The presence of
structures on the floor of the tank, specifically the network of PVC piping that was part of
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the flow suppression system (see Figure 12), was a source of problems for two different
reasons. Firstly, the piping itself was an extremely strong acoustic reflector at the many
junctions, which probably contained air pockets in addition to having facetted surfaces. An
example is shown in Figure 14. In some cases, where a junction in the PVC piping was lo-
cated near the leading edge of a target bed, the acoustic ringing from the junction extended
in range past the target, masking it completely in the sonar imagery.

The second reason for this PVC piping causing trouble was that the target beds were built
with legs to provide clearance so they would not be resting on the pipes. This meant that
with the elevation and look angle geometry best for imaging with the sonars, as a target
was approached, the sonar was imaging the tank floor under the leading edge of the bed,
including this piping system. The targets were placed closer to the leading edge to allow
for the shadow, however the strong return from the floor below usually overwhelmed the
return signal from the target itself at the same range from the sonar. It was found that
in some cases, better target imaging results were obtained approaching from the opposite
direction than was intended when the layout of the target beds was planned.

In hindsight, the targets should have been placed nearer to the center of the target beds, and
the beds themselves should not have been placed on the centerline of the tank. A site visit
prior to the trial would have been invaluable in making these decisions.

11.2 Resolution Targets

The pyramid resolution target was constructed from hollow metal boxes. It was assumed
that this structure would resonate over some range of frequencies, however without de-
tailed modeling or testing being possible beforehand, it was impossible to predict what that
range of frequencies would be. It turned out that the pyramid did not resonate at 450 kHz
(BlueView P450), but resonated very strongly at the higher frequencies (BlueView P900
and DIDSON). The ringing echo return from the target fills in the acoustic shadow behind.
The highlight from the target, received at the sonar ahead of the ringing, may still be useful
for determining resolving ability and work on that is planned. The placement of the pyra-
mid was unfortunately very near to a junction in the PVC piping (the pipes leading into that
junction can be seen behind the pyramid in the frame shown in Figure 12), which means
that the pyramid imagery is often contaminated with strong ringing from that structure as
well.

The ping pong ball arrays were not imaged as well as hoped. Since the height of the sonar
above the target beds was fixed, it was not possible to reduce the range to the targets and
still maintain a reasonable look angle, between 30° and 45° down from horizontal. Some
good closer range imagery was obtained with the BlueView P900 on the ROV (an example
is shown in Figure 13).
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11.3 Mosaicking Targets

The small rock targets that were scattered across the carpet were not imaged well by any
of the sonars. The objects already on the floor of the tank (piping and flow suppression
system, as well as other objects) provided plenty of features in the sonar imagery, so in
retrospect, the carpet area was unnecessary.

12 Recommendations and Future Plans

Careful consideration is recommended if further sonar testing is going to be done at this
facility. The technical support from NRC IOT staff was excellent and the tank and tow car-
riage are world class, however the acoustic environment was particularly unfavorable due
to the flow suppression system installed on the floor of the tank, specifically the network of
PVC piping that was the air supply for that system. It is not clear that any choice for place-
ment of the targets would overcome this. Having the targets placed along the centerline of
the tank was a very poor choice.

Analysis of the sonar data that was collected is ongoing in support of the trial goals that
were stated in the Introduction of this report. The imaging sonar data mosaicking contract
work by Intelligence Image Inc. is also ongoing, with the contract end date in August of
2012.
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Annex A: Schedule of Events at NRC IOT ,
February 6 to 10, 2012

Date & Time Activity

Feb 5 2012, PM travel to St John’s (Crawford, Spears, Connors), arrive after midnight

Feb 6 2012, AM | on site 8:45 AM

constructed target beds (NRC) and arranged targets

large carpet piece prepared for mosaicking targets (NRC)
set up electronics on tow carriage

built bracket for sonar pole (NRC)

Feb 6 2012, PM | BlueView P450 mounted on carriage & tested

pan-tilt calibration, zeroing

target beds and carpet set to soak

unpacked ROV

left site 3:30 PM

NRC divers deployed target beds and carpet in the evening

Feb 72012, AM | on site 8:40 AM (Rivet—Sabourin joins)

time synced sonar and pan-tilt logger laptops
measured target positions along—tank using carriage
sonar testing, angle adjustments

10 passes over pyramid target

assessed 0.25 m/s as good stable tow speed

pan angle rate experiment

Feb 72012, PM | 10 passes over ping pong balls, dome, sphere, clam
10 passes over rocks

2 passes over carpet

switch sonar to DIDSON

test sonar over pyramid (target is ringing)

left site 4 PM

Feb 8 2012, AM | on site 8:40 AM

planning meeting

measure depths to pan—tilt axis & target bed below

10 passes over ping pong balls, dome, sphere, clam

test ROV and monitor clearances between sonar connector and pan—tilt
reorient sonar tilt, 10 passes over ping pong balls, dome, sphere, clam
visit from REALM collaborators from MUN

2 passes over carpet

pass down to end of the tank and adjusting pan angle

Feb 8 2012, PM | truss targets scrounged and deployed

ROV survey of the tank

passes over trusses, experiment with sonar pan angle
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Schedule of events during the week of Feb 6—10 2012.

Date & Time Activity

translate and pan simultaneously

visit from MUN Physical Oceanography friends

check sonar cable slack for runs including carriage sway motion
passes over carpet and trusses with translation, sway & pan

left site 3:50 PM

Feb 9 2012, AM | on site 8:45 AM

discuss possibility of snow day tomorrow, contingency planning
DIDSON showing high internal humidity, but settles

time sync check on laptops

2 passes over ping pong balls, dome, sphere, clam

ROV survey of individual targets, BlueView P900 and video
switch sonar on tow carriage to BlueView P900

10 passes over pyramid (ringing)

Feb 9 2012, PM 10 passes over ping pong balls, dome, sphere, clam

reverse look direction & another 10 passes over same targets
3 passes over trusses and carpet

switch sonar to Imagenex Delta—T

tilt restricted by connector clearance

2 passes over all targets

packed up most equipment (sonar still on pole)

complete data backup, including NRC files

left site 4:20 PM (Rivet—Sabourin leaves)

Feb 10 2012, AM | on site 9 AM (not a snow day)

switched sonar to BlueView P900 and re-setup

experiments with tilt angle and range to targets (ping pong balls)
experiments with pan (rocks and clam)

start packing up at 11:15 AM

backed up final day’s data

Feb 10 2012, PM | left site 12:15 PM

return flights delayed somewhat

home by evening
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