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Abstract

A method for finding least-cost paths through an area by collaborating agents is presented.
The method relies on extending existing dynamic path planning algorithms, namely D*,
to the multi-agent case. The search tree is centrally updated and then used by the agents
to cooperatively decide upon which areas to survey, the results of which are then used
to update the current best path. Several numerical examples are given where it is shown
that, on average, a competitive ratio — the ratio between the cost of the path found by
dynamic algorithm and one operating with full knowledge of the area — of nearly one can
be achieved while requiring a survey of less than half the total area. It is also shown that the
total mission time scales linearly with the number of vehicles, meaning little to no effort
wasted on vehicle coordination. In the context of mine countermeasures (MCM) operations
with autonomous underwater vehicles (AUVs), the results indicate that a channel through
a potentially mined area representing an amount of risk nearly equal to the optimal path
can be found in significantly less time than the time required to survey the entire area.

Résumé

Voici une méthode permettant de trouver le parcours le moins coûteux dans une zone au
moyen d’agents collaboratifs en étendant à ces derniers les algorithmes actuels de plani-
fication dynamique de parcours, à savoir D*. L’arborescence de recherche, mise à jour de
façon centralisée, est utilisée par les agents pour décider conjointement des zones à cou-
vrir. Les résultats ainsi produits collectivement servent alors à mettre à jour le meilleur
parcours. Plusieurs exemples quantitatifs montrent qu’on atteint un rapport concurrentiel
moyen de près de un entre le coût du parcours trouvé par l’algorithme dynamique et celui
obtenu lorsque la totalité de la zone a été couverte, mais en limitant la couverture à moins
de la moitié de l’ensemble de la zone. Ils montrent également que la durée totale de la
mission varie de façon linéaire avec le nombre de véhicules, ce qui signifie qu’il n’y a pra-
tiquement pas de temps perdu à coordonner le mouvement des véhicules. Dans un contexte
d’opérations de lutte contre les mines marines (LMM) au moyen véhicules sous-marins
sans équipage (VSSE), les résultats indiquent qu’il est possible de trouver une voie traver-
sant une zone potentiellement minée présentant un niveau de risque presqu’égal à celui du
parcours optimal dans un temps considérablement plus court que la couverture de toute la
zone.
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Executive summary

Cooperative dynamic pathfinding for multiple
autonomous underwater vehicles using D*

Vincent Myers; DRDC Atlantic TM 2011-044; Defence Research and Development
Canada – Atlantic; January 2011.

Background: In the context of naval mine countermeasures (MCM) missions, one com-
mon task is to survey a channel using sonar such that mines — up to a degree of probability
— are detected, classified and neutralized such that the number of mines that remain af-
terwards represents an acceptable degree of risk to the follow-on traffic. However, the
probability of detecting and classifying objects, and the time required to neutralize them,
is not the same in all areas, with some areas (e.g. a flat seafloor with little clutter) requir-
ing much less effort than others (e.g. a rough seafloor with high clutter). Obviously, one
would prefer that the channel in question contain areas where minehunting is easy, there-
fore reducing risk and on-task time (OTT). However, the actual placement of the channel
by the Tasking Authority (TA), especially in expeditionary scenarios, is typically placed in
a convenient location, one that minimizes transit distance or simply connects two staging
areas.

This report presents a methodology where a path between two points is found through an
initially unknown area. The method is greedy in that it continually attempts to minimize
the cost of the current path. This method would be implemented using autonomous un-
derwater vehicles (AUVs) equipped with side-scan sonar. In addition, several vehicles can
collaborate together to more quickly find a suitable path; the vehicles perform surveys to
assess the minehunting conditions (in this report, the number of mine-like objects in a area)
and update one another’s search spaces, which can result in a change in the best path, and
corresponding adaptation of each AUV’s mission.

Principal results: The technique is tested on simulated data and the fitness of the path
found by the proposed on-line algorithm compared to the path that would be found if
complete information about the area was known in advance. It is shown that essentially the
same path as the optimal one can be found using this method, but requiring one to survey
significantly less of the area, which directly translates into less surveying time and less time
spent prosecuting contacts.

Military significance: It is hoped that the preliminary results shown in this report leads
to a shift in tactics in relation to the location and placement of channels and staging ar-
eas during MCM operations when little to no previous information about the minehunting
environment is known. The capability for AUVs to perform on-board sensor processing,
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adaptive mission autonomy and collaboration is reaching a point where it may be feasible
to allow a team of AUVs to find the best channel or box in a significantly larger area that
meets the mission objectives while also minimizing the risk, subject to certain constraints
such as water depth or distance from shore. This would compel the TA to issue an order
to ”find a 200 meter wide channel from A to B with the most easy minehunting condi-
tions,” rather than simply picking one semi-arbitrarily and leaving the resulting conditions
to chance.

Future work: The near future could see a version of this algorithm implemented in DRDC’s
IVER2 vehicles and tested in a real scenario. This would require modules implemented in
the Mission Oriented Operating Suite (MOOS) autonomy framework that drives the DRDC
vehicles. The present work is a proof of concept of using incremental search algorithms in
a cooperative way. As such, many technical improvements are possible, such as

• A decentralized version of the algorithm which could significantly decrease the amount
of data that needs to be shared between vehicles.

• A modification of the algorithm that not only greedily chooses the next best area
to survey (in the present case, the closest to the present location of the vehicle is
selected), but also looks ahead a few time steps to see if perhaps another area has
better long-term payoffs.

• Plan surveys that more quickly survey the potential path.

• Choose locations that also take into account the ability of the agents to communicate
with each other.
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Introduction : Le déroulement habituel des missions de lutte contre les mines marines
(LMM) est marqué par la couverture d’une voie au moyen du sonar pour y détecter, classi-
fier et neutraliser des mines avec dans un certain degré de probabilité afin que le nombre
de mines résiduelles présente un niveau de risque que peut accepter le trafic qui emprunte
par la suite la voie dégagée. En revanche, la probabilité de détecter et de classifier des ob-
jets et le temps nécessaire pour les neutraliser varient d’une zone à l’autre. En effet, cette
durée et le degré d’encombrement du fond marin sont étroitement liés. De toute évidence,
il est préférable que la voie à couvrir comporte des zones faciles à déminer pour réduire
le degré de risque et le temps alloué à la tâche. Mais, l’autorité de l’attribution des tâches,
surtout dans le cadre de scénarios expéditionnaires, choisit habituellement la voie en fonc-
tion de son utilité, c’est-à-dire la plus courte possible ou simplement entre deux zones de
regroupement et d’attente (ZRA). Le présent compte rendu décrit une méthode qui permet
de trouver un parcours entre deux points dans une zone inconnue au départ. Elle repose sur
un principe d’économie, en ce sens qu’elle tente à tout moment de réduire au minimum le
coût du parcours. Cette méthode est mise en oeuvre au moyen de véhicules sous-marins
sans équipage (VSSE) équipés de sonar à balayage latéral. De plus, plusieurs véhicules
peuvent collaborer pour trouver plus rapidement un parcours approprié. Ils effectuent des
levés pour évaluer la situation en termes de chasse aux mines (dans le présent compte
rendu, il s’agit du nombre d’objets de type mine présents dans la zone) et se transmettent
entre eux des données à jour sur leurs espaces de couverture respectifs. Le tracé du meilleur
parcours peut être ainsi modifié à chaque instant, et la mission de chaque VSSE est adaptée
à ces changements.

Principaux résultats : Des données simulées ont servi à mettre la méthode en pratique.
La pertinence du parcours trouvé par l’algorithme en ligne proposé a été comparée à celle
du parcours optimal tracé à l’aide de données exhaustives connues d’avance sur la zone. Les
tests montrent que les deux parcours sont pratiquement identiques. En revanche, le premier
a nécessité une couverture considérablement moins importante de la zone. On obtient ainsi
une économie substantielle de temps consacré aux levés ainsi qu’à la poursuite des contacts.

Portée militaire : Il est à souhaiter que les résultats préliminaires dont fait état le présent
compte rendu mèneront à un changement de tactique en termes de choix de l’emplacement
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des voies et des ZRA au cours des opérations de LMM lorsque l’environnement où s’ef-
fectue la chasse aux mines est peu connu ou totalement inconnu. La capacité actuelle des
VSSE de traiter les données des capteurs embarqués, d’adapter leur mission et de collaborer
entre eux est telle qu’il est maintenant possible de laisser un groupe de ces véhicules loca-
liser la meilleure voie ou région dans une zone considérablement plus vaste qui répond aux
objectifs de la mission tout en minimisant le risque et qui comporte certaines contraintes,
comme la profondeur de l’eau et la distance par rapport au littoral. L’autorité d’attribution
des tâches pourrait ainsi émettre l’ordre de ≪ trouver une voie de 200 mètres de largeur
entre les points A et B qui présente les conditions les plus faciles en termes de chasse aux
mines≫ plutôt que choisir cette voie de façon quasi arbitraire et de s’en remettre à la chance
pour que les conditions soient favorables.

Recherches futures : Dans un proche avenir, on pourrait voir une version de cet algo-
rithme appliquée à des véhicules IVER2 de RDDC et testée en situation réelle. Il fau-
drait pour cela mettre en oeuvre des modules dans le cadre d’autonomie de l’outil (Mis-
sion Oriented Operating Suite (MOOS), qui commande les véhicules du RDDC. Le travail
présenté ici constitue une validation du concept de l’utilisation d’algorithmes de recherche
incrémentiels en mode coopératif. De nombreuses améliorations techniques sont ainsi pos-
sibles, notamment :

– une version décentralisée de l’algorithme qui réduirait considérablement le volume
de données échangées entre les véhicules ;

– une version modifiée de l’algorithme qui choisit la meilleure alternative à la zone
à couvrir en termes d’économies réalisées (dans le cas présent, celle qui se trouve
le plus à proximité du véhicule) tout en analysant également quelques pas de temps
pour identifier une autre zone plus rentable à long terme ;

– une planification des levés pour couvrir plus rapidement le parcours possible ;

– une sélection des emplacements en tenant également compte de la capacité des agents
de communiquer entre eux.
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1 Introduction

Autonomous Underwater Vehicles (AUVs) equipped with high-resolution imaging sonar
have become a common tool for many seabed surveying tasks, particularly those where
it is either difficult to send a manned platform such as under-ice operations, or when it is
desirable to keep personnel out of danger, such as mine countermeasures (MCM) activities.
One common minehunting task is to survey a potentially mined channel or area using sonar
so that all mines — up to a degree of probability — are detected, classified and neutralized
such that the number of mines that remain afterwards represents an acceptable degree of
risk to the follow-on traffic. However, the probability of detecting and classifying objects,
and the time required to neutralize them, is not the same in all areas, with some areas (e.g.
a flat seafloor with little clutter) requiring much less effort than others (e.g. a rough seafloor
with high clutter). Obviously, one would prefer that the channel in question contains areas
where minehunting is easy, therefore reducing risk and on-task time (OTT). However, the
actual placement of the channel by the Tasking Authority (TA), especially in expeditionary
scenarios, is typically placed in a convenient or semi-optimal way with respect to, for
instance, the transit distance between two connected staging areas. This channel, however,
may be severely suboptimal with respect to the amount of effort that must be expended to
reduce the risk to an acceptable effort.

If one had complete information about the surrounding area into which the channel must be
placed, then it would be trivial to choose a path that minimizes the minehunting difficulty.
However, in general this information is not available, and an AUV must first survey the
entire area in order to find the optimal path from the start to end points. When considering
the area of typical sea lanes of communication — on the order of 10-20 km × 0.5-1 km
— versus the sweep rate of a vehicle — 60 m × 1.5 m/s — this can require a significant
amount of time, on the order of several days. One obvious way to speed up mission time is
to employ n vehicles to survey the area in question. This currently done by simply dividing
the area into na ≥ n smaller areas, each assigned to a vehicle, perhaps depending on that
vehicle’s particular capability or environment [1]. While advantageous, this method still
requires that the entire area be surveyed in order to find the best channel. An improved tac-
tic would be to direct survey activities in such a way as to find a suitable path around those
regions that are particularly poor in terms of minehunting performance as those regions
are discovered. In addition, when employing multiple vehicles, these should be allowed to
communicate (as much as the available bandwidth permits) and coordinate their actions as
much as possible. For instance, if the path that one vehicle is surveying seems particularly
promising, then the other vehicles should alter their mission in such as way as to take into
account this fact.

In this report, the area will be discretized into a number of cells of resolution r≪ ℓ, where ℓ
is the length of the channel; a graph G = (V,E) will then be created using these cells as ver-
tices V and edges E connecting them to neighbours in the north/south/east/west directions,
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such that standard graph search algorithms can be applied. The shortest path problem is
finding a path between two vertices that minimizes the total cost between the two vertices
with the edges of the graph are assigned a cost, typically the Euclidean distance between
the two vertices. Such algorithms are widely used in automatic navigation systems based
on GPS-enabled route finding tools as well as web mapping services such as MapQuest R⃝

and Google Maps R⃝. Many algorithms exist to solve the shortest path problem for two ver-
tices in G, the most widely known being the A* algorithm [2], a method that uses heuristics
to speed up the search for the shortest path.

1.1 Related Work
Generally, in the route finding problem defined above for AUVs, the graph G, specifically
the edge costs E, are not known in advance. As the vehicle surveys the area and gath-
ers sonar data, the true costs are discovered. These costs can be based on, for instance,
some classification of the bottom in terms of the difficulty of finding targets of interest
or, as in this report, some measure of the number of target-like contacts in the area. The
problem becomes one of minimizing the total edge costs — a path that minimizes the to-
tal minehunting difficulty or one that minimizes the total number of contacts that require
investigation and potential neutralization (in addition to the higher probability of missing
targets in areas of high-clutter) — while the costs can change from the initial assumptions.

Path planning in a dynamic or unknown environment is a well-studied problem with many
proposed solutions, such as D* [3], Focused D* [4], Lifelong planning A* [5] and its
derivative, D* Lite [6]. Of course, when G changes one could simply opt to re-run an algo-
rithm such as A* from scratch. However, if changes happen frequently, this becomes pro-
hibitively expensive. These algorithms are extensions of heuristic search with incremental
search methods, and attempt to re-use as much of the the search tree that has already been
computed, and quickly identify those vertices that need to be updated, resulting in faster
replanning times. This report will apply incremental search algorithms to the route finding
problem to obtain a cooperative behaviour from multiple vehicles, and different strategies
for assigning which regions of the area should be surveyed in order to reveal the values of
the edges of G, and how the vehicles can cooperate in doing so.

The use of multiple agents in incremental search has been limited to hunter/prey scenarios,
where one agent (the hunter) must move to the same location as a second agent (the prey),
while the latter moves around the graph, usually while trying to evade the former. An
example of this is Moving Target D∗Lite [7]). In the present problem formulation, vehicles
are permitted to communicate and cooordinate their actions as well as update each other’s
search trees. Multiple collaborating agents have been studied in exploration-type problems,
which is in fact related to the present problem.

The coverage [8] and exploration [9] problems are related to the present path finding prob-
lem, and both have been extended to included teams of cooperating robots [10, 11]. The
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coverage problem determines the path a robot must take in order to cover the space (i.e.
visit each node in the search tree), and the back-and-forth pattern employed by AUVs
while surveying (see the example in Figure 2 below) is precisely the same as the technique
used in most coverage problems (the boustrophedon algorithm). However, research has
focused on finding efficient ways of decomposing the free space, which contains obstacles
and walls, in such a way as to allow an efficient coverage path to be computed. Efficient
path planning methods for an AUV in an arbitrary environments, including the effect of
underwater currents, were presented in [12]. The present problem is much more related to
exploration, and the strategies described here can be seen as using the paths defined by the
incremental search methods to compute the value of the different potential candidate cells
for exploration.

The following section reviews the general shortest path problem, and presents the idea
behind incremental search. In Section III, numerical examples are shown, where several
AUVs are used to cooperatively search for a channel through an area. Some comments on
those results, as well as future work, is given in Section IV.

DRDC Atlantic TM 2011-044 3



2 Path finding in dynamic environments

In the single-source path finding problem [13] one is given a connected graph G=V,E with
vertices V and edge costs E, with the function c : E → R that maps edges to real-valued
costs. A path p = ⟨v0,v1, . . . ,vk⟩ in G is an ordered set of vertices and the total cost of p is:

c(p) =
k

∑
i=1

c(vi−1,vi), (1)

is the sum of the costs of the edges connecting the vertices in the path. The minimum cost
from the start vertex vs to the goal vertex vg is

c∗(vs,vg) =


minc(p) for p =


vs, . . . ,vg


if a path exists from vs to vg

∞ otherwise (2)

and p∗ is any path where c(p) = c∗.

2.1 A* review
A* is a heuristic search algorithm for finding p∗. The algorithm makes use of a function

f (v) = g(v)+h(v), (3)

to guide the search, which is composed of the function g(v) which maintains the cost of
the path from the start vertex vs to the current vertex v and the heuristic h(v) which is
an estimate of the cost from a given vertex v to the goal vg. The algorithm maintains a
priority queue Q which initially contains only vs, as well as a closed list C which is initially
empty. The vertices in Q are indexed by their f value. The algorithm repeatedly removes
the element v from Q with the smallest f value and adds it to C. It then adds all of the
successor vertices of v to Q, indexed by their f value. This process continues until the
goal vertex vg is at the top of the priority queue, after which the optimal path p∗ can then
be reconstructed by starting in vg and following the parent of each vertex back to the start
vertex. The algorithm is given in pseudo code in Algorithm 1.

A* is an example of a best-first search — or seemingly best-first — since at every iteration,
the vertex with the smallest f value, and so the one which appears to be the best, is chosen
for expansion. One of the properties of A* is that if h is an admissible heuristic, meaning
that it never overestimates the true distance to the goal node, then A* is guaranteed to find
the shortest path. While A* is probably the most widely-known path finding algorithm,
it can require a significant amount of computation time. In the present application, as the
autonomous vehicles explore the space and discover changes in edge costs for the current
path, the current path estimate will not be valid. Every time that an edge cost changes,
one needs to re-run A* in order to compute a new optimal path. Since the entire area is
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unknown at the beginning, this will result in A* constantly being called, and will result in
prohibitively long computation times. To address this, a number of techniques have been
developed to find paths in dynamic, changing environments that use incremental search
methods to speed up search times. This is discussed next.

Algorithm 1 Rough outline of A*. The algorithm makes use of the POP function which
removes the first element of the priority queue — corresponding to the one with the smallest
f value — and returns it; and the SUCC(v) function, which returns all the vertices that are
successors of v (that is, all vi for which there exists a directed edge from v to vi).

C← /0 ◃ The closed set C is initially empty
g(vs)← 0
h(vs)← heuristic distance to vg
f (vs)← g(vs)+h(vs)
vs→ Q ◃ Add the start vertex to priority queue
while Q /= /0 do

v← POP(Q) ◃ Take the first element of the priority queue
if v = vg then

return ◃ Found a path to vg
end if
v→C ◃ Insert v into the closed set
for each vi ∈ SUCC(v) do

PARENT(vi)← v
g(vi)← g(v)+ c(v,vi)
h(vi)← heuristic distance to vg
f (vi)← g(vi)+h(vi)
if vi /∈C then ◃ If vi is not already on the closed set ...

vi→ Q ◃ ... add it to the priority queue
end if

end for
end while

2.2 D* review
In order to speed up search times with changing edge costs, incremental search methods
that reuse the results from previous searches to avoid repeatedly solving the same problem
from scratch have been developed. The algorithms considered here transform the current
search tree to the new search tree by identifying which nodes need to be added and deleted.
The search is then able to carry on from this search point, reducing the computation time.

The original D* (meaning Dynamic A*) [3] and Focused D* [4] were developed to solve
the robot navigation problem in unknown terrain. D*Lite [6] is another technique, de-
rived from Lifelong Planning A* [14], and is the one used in this report. The main search
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procedure is given in Algorithm 2 with support functions given in Algorithms 3 and 4.

Unlike A*, the dynamic algorithms start from the goal node vg and work their way back to
the start node vs. D*Lite maintains two estimates to guide the search, a g-value, similar to
the one above for A* (except that it is the distance from the goal, since the search has been
reversed) and a rhs 1 value which is a one step look-ahead value for g, so:

rhs(v) =


0 if v = vs

min
vi∈PRED(v)g(vi)+c(vi,v)

otherwise (4)

where PRED is a function that returns the predecessor vertices of v. Like A*, D*Lite
maintains a priority queue which is kept sorted not by f , but by a two-valued key k defined
as (see Algorithm 4):

k = [k1,k2], (5)

where,
k1 = ming(v),rhs(v)+ km +h(v), (6)

and
k2 = ming(v),rhs(v). (7)

The key also uses the heuristic function h(v) as an approximate distance to the start node
vs. A vertex v is called consistent when g(v) = rhs(v). Otherwise it is called inconsistent,
specifically underconsistent if g(v) < rhs(v) and overconsistent if g(v) > rhs(v). The pri-
ority queue Q contains only those vertices which are inconsistent. The goal node is first
added to Q with rhs(vg) = 0 and g(v) = ∞, making it overconsistent, and calls the COM-
PUTESHORTESTPATH function, shown in Algorithm 3 , which again repeatedly removes
the element with the smallest key from Q and expands it until the start node is reached. At
this point, the same nodes as those that would have been expanded by A* are expanded.
Then, the agent begins to move in the world, and discovers changes in edge costs. At this
points, rhs values must be recomputed and nodes added or removed from Q as necessary,
with updated keys. Then, COMPUTESHORTESTPATH is run again from the goal node but
now to the current position of the robot using the nodes already in Q.

A large amount of computation time is spent on keeping Q sorted. To speed this up, D*Lite
makes use of a key modifier km that keeps track of how much must be added to the first
component of the key when a new key needs to be computed (see [6]) and avoids having to
constantly re-order Q. The priority queue is this report has been implemented in a binary
heap [13] in the MATLAB R⃝ environment.

1meaning right-hand-side
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Algorithm 2 Summary of (unoptimized) D* Lite for a mobile agent (from [6])
vℓ = vs ◃ vℓ is used to compute the key modifier when edge costs change below
km = 0
rhs(vg)← 0
g(vg)← ∞

vg→ Q
COMPUTESHORTESTPATH

while vs /= vg do
vs = min

vi∈SUCC(vs)
c(vs,vi)+g(vi)

move to vs
if any c(u,w) have changed then

km← km +h(vℓ)
UPDATE(u)

end if
COMPUTESHORTESTPATH

end while

2.3 Cooperative D*Lite
So far, we have described methods from the literature on path planning in static (A*) and
dynamic (D*) environments. With few modifications, D*Lite can be used directly to solve
the single vehicle path finding problem. D*Lite was conceived for a robot that is moving
and discovers changes in edge costs, usually in the form of obstacles, and must now re-plan
its route from its current location. The channel-finding problem described here is slightly
different, in that an AUV is able to move directly (at some transit speed) to any part of the
space, that is, any vertex in G. It should be noted that, unlike other path-finding problems
with mobile robots, the AUV’s movement is not affected by the terrain costs of the area;
those terrain costs represent some fitness criterion for the traffic that will follow afterwards.

At each invocation of COMPUTESHORTESTPATH, D*Lite computes the path from the cur-
rent location of the robot to the goal vertex vg. In the MCM problem defined above, vs
never changes. The objective is always to find a path from vs to vg and, while the robot
may move around the space, these vertices never change. One consequence of this is that
the key modifier km is not required.

In D*Lite, when a path is found, the robot at position vs begins to move to the vertex vi
successor of vs that minimizes:

vnext = min
vi∈SUCC(vs)

c(vs,vi)+g(vi). (8)

For the AUV, it can directly proceed to any vertex in the graph at a constant transit speed.
In this case, it shall move to the nearest vertex vi that is on the current computed path p that
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Algorithm 3 Function to compute the shortest path for D* Lite. Notes: The TOPKEY

function returns the key of the top element in the priority queue, and UPDATEKEY(v) sets
the key of vertex v using the COMPUTEKEY function. The PRED(v) returns the set of
vertices which are predecessors of v. In this report the PRED and SUCC functions are
equivalent. However, this may not always be so in the general case.

function COMPUTESHORTESTPATH

k = TOPKEY(Q)
while k <COMPUTEKEY(vs) or rhs(vs) /= g(vs) do

v← POP(Q)
if k <COMPUTEKEY(v) then

UPDATEKEY(v)
v→ Q

else
if g(v)> rhs(v) then ◃ Vertex v is overconsistent

g(v)← rhs(v) ◃ Make v consistent
for vi ∈ PRED(v) do

UPDATE(vi)
end for

else ◃ Vertex v is underconsistent
g(v) = ∞ ◃ Set the g value to ∞ and update the queue.
for vi ∈ PRED(v) ∪ v do

UPDATE(vi)
end for

end if
end if

end while
end function
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Algorithm 4 UPDATE and COMPUTEKEY functions used in D*Lite.
function UPDATE(v)

if u /= vg then
rhs(g)← min

vi∈SUCC(v)
c(u,vi)+g(vi)

end if
if v ∈ Q then

Q←{Q− v} ◃ Remove v from the priority queue, since only inconsistent
vertices are permitted in Q

end if
if g(v) /= rhs(v) then ◃ v is now inconsistent and must be added to Q

UPDATEKEY(u)
u→ Q

end if
end function
function COMPUTEKEY(v)

k1 = ming(v),rhs(v)+ km +h(v) ◃ First element of the key
k2 = ming(v),rhs(v) ◃ Second element of the key
return [k1,k2]

end function

has yet not been explored, that is:

vnext = min
vi∈p

d(vi,vs) and c(v j,vi) = γ, (9)

where d(u,v) is a distance function and γ is the assumed cost of getting from v j to vi, before
any information is gained about that edge. If no costs on p are equal to γ, then a path has
been found and the process terminates. Once the AUV arrives at the position corresponding
to vnext it must then start a slower speed survey in order to discover the actual costs of those
edges. The new costs are updated, with corresponding updates to the priority queue, and a
new path is computed.

One way to extend the the single vehicle procedure to n vehicles is to first initially position
each vehicle at n points along the first path that is computed before any information has
been gathered — the straightest line path from vs to vg. Then, as vehicles survey the area,
information about new edge costs is broadcast to the other vehicles, which then possibly
changes the current path. The vehicles must each choose a new vertex to explore, which is
basically Eqn (9), except that

• each vehicle must maintain an exclusion zone around the vertex a given vehicle is in-
tending to survey. That way, vehicles do not spend time surveying the same area, and
in practice, manages the waterspace to avoid collisions. Priority is given arbitrarily
from vehicle 1 down to vehicle n.
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• if, for a given vehicle, several vertices satisfy (9) then ties are broken in favour of the
vertex that maximizes the distance from the other vehicles. This encourages a group
behaviour where vehicles do not cluster together and spread out as much as possible
around the search space.

The discrete time version of this algorithm is shown in Algorithm 5.
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Algorithm 5 The multiple vehicle version of D*Lite. The function EXCLUSIONZONE(v)
returns the vertices found on the defined exclusion zone around v – in this report these are
the vertices that will be surveyed in addition to the vertex v. The function TIEBREAK(v) de-
cides between several potential vertices in favour of the one which maximizes the distance
between itself and the other vehicles’ positions

rhs(vg)← 0
g(vg)← ∞

vg→ Q
COMPUTESHORTESTPATH ◃ Returns the current best path p
Vγ←


vi ∈ p∩ c(v j,vi) = γ


◃ Vγ contains nodes on p that have unknown edge costs

while Vγ /= /0 do X ← /0 ◃ X contains the vertices in the exclusion zone
for z = 1 to n do ◃ Sequentially loop through the n vehicles

vnext = min
vi∈Vγ

d(vi,vz) ◃ vz is the current location of vehicle z

if more than one vi = d(vnext ,vz) then
vnext = TIEBREAK ◃ Tie-break rule.

end if
X ← X∪ EXCLUSIONZONE(vnext) ◃ Add vnext to the exclusion zone
move to vnext and perform survey

end for
if any c(u,w) have changed then

UPDATE(u)
COMPUTESHORTESTPATH

end if
end while

function TIEBREAK ◃ Tie-breaking function

J←


v j,d(v j,vz) = min
vi∈Vγ

d(vi,vz)


◃ Set of vertices with the same min. distance

W ←{vw,w = [1, . . . ,z−1]} ◃ Locations of the other (lower priority) vehicles
vnext = max

v j∈J
MEAN(d(v j,vw ∈W )) ◃ Maximize the mean dist. from the other AUVs

return vnext
end function
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3 Numerical Results

In this section the method developed above is demonstrated with some numerical simula-
tions. Data is generated to estimate its performance in finding a route through an area such
that this route minimizes the total amount of MCM effort required to reach a given degree
of clearance/risk, the cost function defined by Eqn (1). In practice, this could be defined
in any number of ways: By using doctrinal bottom type definitions2, one could instruct the
vehicle to minimize the risk by staying as much as possible in areas in which it is easier
to carry out MCM. In this study, the approach taken will be to minimize the total number
of detected mine-like objects found on the path. Practically, in addition to the increased
difficulty of finding targets in areas of high clutter, each one of these objects would need
to be identified and possible neutralized, and so it makes sense to try to choose a route that
contains the smallest possible amount of objects. Therefore, each vertex v that make up
the area is assigned an integer number of objects M(v) = [1, . . . ,mmax]. With the minimum
number of objects equal to 1, it is possible to use the Manhattan distance as an admissible
heuristic h for the informed search algorithms.

The type of vehicle modeled is based upon the specifications of a small man-portable AUV
such as the DRDC’s IVER2 [15] vehicle shown in Fig 1. The two parameters that affect
the total mission time are used: The transit speed — the speed at which a vehicle will
travel from one vertex to another — is set to vtran = 2.5 m/s; and the survey speed —
the speed at which the vehicle will perform a search for objects in an area — is set to
vsss = 1.5 m/s3. The sensor that is modeled is a side-looking high-frequency imaging
sonar, such as the MarineSonic 900/1800 kHz sidescan sonar [16]. This sensor is assumed
to have a maximum (one-sided) range of 30 m, so that its coverage rate can be calculated
as 1.5 m/s×60 m = 90 m2/s.

The data is generated by randomly drawing uniformly distributed integer numbers in the
range [mmin . . .mmax]. A representative channel finding task is defined by delineating an
area of length ℓ = 10 km and width w = 3 km, gridded at a resolution r = 200 m and an
additional one-cell border around the outer perimeter, resulting in a graph with |V | = 884
vertices. Each vertex is connected to its east, west, north and southern neighbours. When
a vehicle is tasked with surveying vertex vi, it first transits there from its current location
and plans a characteristic sidescan sonar survey that, once completed, reveal the number of
mine-like objects in its 8-connected neighbourhood (i.e. the vertex vi itself, plus its nord-
south-east-west connected neighbour vertices as well as the diagonal vertices), as shown in
Figure 2.

Three metrics will be used to assess the performance of the proposed technique: the total
2The are the definitions of minehunting difficulty as defined by military doctrine, such as e.g. type A for

easy, B for more difficult, and type C for most difficult.
3AUVs typically have different transit and survey speeds, as the sensors such as synthetic aperture sonar

(SAS), require slow speed in order to create a good image
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mission time T , the percent of the area surveyed PS and the competitive ratio ρj, defined
below.

The total mission time T is defined as the time when the last of the n vehicles finishes
its survey before a path is declared. This includes time spent surveying and time spent
transiting from one part of the area to another. Note that, unlike most maze or terrain
navigation problems found in the path finding literature, a underwater vehicle can transit
from a vertex vi to v j at a fixed speed, and is not affected by terrain modifications, much
like an aerial vehicle. As a baseline reference for the area defined above, to survey the
entire area a single vehicle surveying would require a total of 109.14 hours (all time spent
surveying). If one had nAUV vehicles available and subdivided the area into v disjointed
sub-regions is 109.14/nAUV

4. In the case of nAUV = 2 , this means 54.57 hours of mission
time is required to survey the entire area, after which the best path would be computed
using A*.

The percent of the area surveyed, PS, indicates the fraction ×100 of the area that was
required to be surveyed before a path was found. Again, in the baseline scenario, 100% of
the area would be surveyd before finding the optimal path. Finally, the competitive ratio
ρ compares the cost of the path p found by the on-line algorithm with the cost of the path
p∗ that would be found if the agents knew in advance the number of mine-like objects in
the area. In this latter case, the optimal path p∗ would be found by running the off-line A*
algorithm on the known map. Then

ρ =
c(p†)

c(p∗)
, (10)

where p† is the optimal path determined by the on-line algorithm, to differentiate it from
p∗ which is the optimal path found with full knowledge of the space. A competitive ratio
of 1 means that the cost of the best path and the cost of the one found using the proposed
algorithm are the same. We will also compare the cost of the straight-line or shortest-
distance path from vs to vg using

ρd =
c(pd)

c(p∗)
, (11)

where, similarly, a competitive ratio ρx of 1 indicates no improvement over arbitrarily
picking the path to be pd , the one that corresponds to the shortest distance from the start
node to the goal node.

3.1 Example 1 - No defined path
The first example consists of simply generating uniformly distributed random integers
M(vi) = U(mmin,mmax) from mmin = 1 and mmax = 10 for each vertex in vi ∈ V . The

4This is the total time the AUV spends on task, and does not include things like vehicle recovery, battery
charging times, repair, etc... that would increase to total mission time.
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CF/DRDC deployment of IVER2 AUV 
in Halifax harbour,  fall 2010

Figure 1: The IVER2 Autonomous Underwater Vehicle, manufactured by OceanServer
Technology Inc. of Fall River, MA, USA, being deployed from a RHIB by DRDC and CF
personnel in Halifax harbour. 2010.
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Figure 2: Example track plan to survey the area surrounding the center vertex (marked with
a yellow circle) of this 1 km× 1 km area (each vertex represents a square area of resolution
200× 200 meters. On the left, the standard lawnmower / ladder search, with survey legs
spaced at 60 meters apart to ensure complete coverage. After the survey, the number of
mine-like objects is reported for the vertices as well as its 8-connected neighbours, as
shown on the right hand side of the figure.
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Figure 3: Representative terrain from Example 1 — there is no defined path through the
area, however in this case p† = p∗. Much of the area has been surveyed, with PS = 67.19%.
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cost of all edges leading into vi are equal to:

c(v j,vi) = M(vi),∀v j ∈ PRED(vi). (12)

This is the true cost of the edge and is only known after the vertex has been surveyed
by one of the vehicles. Before any surveying has taken place, the assumed cost is equal
to γ, which in this case has been set to γ = 3. Twenty random areas were generated and
the technique applied using nAUV = 2 vehicles. The mean and standard deviations of the
performance metrics for these samples are reported in Table 1. The time taken for the
proposed cooperative pathfinding method is on average 39.61 hours (versus 54.57 hours
for the full survey), with an average competitive ratio very near unity. So for 73% of the
time required to perform the full survey, one is able to find a path through the area that is
essentially the same. An example of the area and path and resulting survey are given in
Figure 3.

These results depend heavily on the choice of the assumed edge costs γ. A choice of γ that
is too high will result in the agents taking any path that quickly gets them to the destination
and making them unwilling to explore area in search of a better path. Conversely, a choice
of γ that is too low will result in the agents being very much willing to spend time surveying
unexplored areas in search of a better path. Here, the choice of γ = 3 reflects the value
chosen in the next set of experiments, where a clear path does exists and must be found,
for easier comparative purposes. Intuitively, γ must represent some value that signifies how
much one is willing to tolerate a suboptimal path, or some prior knowledge about the best
or average possible value of cost of the path. For the present example using uniformly
distributed numbers everywhere, while the value of γ will definitely affect the amount of
the area that is surveyed (and the corresponding mission time) it will, statistically, not have
an effect on the cost of the resulting path c(p†) since on average this will be the same
as there is no clear path through this area. The next set of examples present a clear path
through the area that can be found by the proposed strategy. The mean value of ρd = 1.279
means that the direct path from start to goal had roughly 27.9% more targets on it, so that
it was definitely possible to find a better path even in this setup.

3.2 Example 2 - Clear path with non-overlapping
distributions

The second set of experiments is derived from the first one, except that now there will be a
clear path from vs to vg where the density of objects follows a distribution that has a lower
mean. The maximum number of objects that can be present in any cell on the path is lower
than the minimum number of objects that be in any cell not on the path, i.e. the distributions
do not overlap. The data is generated by first creating a random path from the start vertex
to the goal vertex using a random walk in all possible directions of variable step lengths.
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mean µ std deviation σ

Mission Time (T in hours) 39.61 7.35
Time transiting (v1, v2) 5.13 , 5.22 1.35, 1.36
Time surveying (v1, v2) 34.2, 32.98 5.90, 5.83

Percent Area Surveyed (PS) 61.555 10.64
Competitive Ratio (ρ) 1.001 0.002
Direct Path Ratio (ρd) 1.279 0.138

Table 1: Performance of the first experiment for nAUV = 2 cooperating survey vehicles for
20 random samples.

The vertices along this path are randomly assigned a number of targets that is drawn from
U(mp

min,m
p
max) and those not on the random path are drawn from U(mq

min,m
q
max), and

where mp
max < mq

min. Here, the edges on the path are drawn from the interval [1, . . . ,3]
and those not on the path are drawn from [4, . . . ,10]. Note that the random walk method
for generating the path also generates dead-ends and false leads. An example using two
vehicles is shown in Figure 4.

Table 2 shows the results using 1, 2 and 4 vehicles. Now, there is a clear path to find that has
significantly less objects and thus a significantly lower total cost. The competitive ratio is
nearly unity meaning that this optimal path was indeed found the vast majority of the time;
however, the time required to find the path is less than half that of surveying the entire area
(21.70 versus 54.57 hours in the case of two vehicles). It is also worth noting that even with
a single vehicle performing an adaptive survey, it is possible to reduce significantly on the
time required to find an optimal or near-optimal path (42.03 hours versus 109.14 hours to
survey the entire area). The direct line competitive ratio ρd is now roughly 1.71, meaning
a significant improvement of 71% in the cost of the path has been obtained. The value of
mp

max = 3 provides an easy method for choosing γ = 3, since any value above it cannot be
on the path, as the distributions are non-overlapping. It is also noted that the mission time
and area surveyed appears to scale linearly with the number of vehicles, meaning that the
vehicles do not waste an excessive amount of time de-conflicting and transiting, and thus
are used efficiently.

3.3 Example 3 - Clear path with overlapping
distributions

The final example consists of the same general setup that was used in example 2, meaning
that there is a clearly defined but random path from the start vertex to the goal vertex.
However, instead of having two non-overlapping distributions for the vertices on and off
the path, now those two distributions will overlap somewhat, but the mean number of
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nAUV = 1 nAUV = 2 nAUV = 4
µ σ µ σ µ σ

Mission Time (T in hours) 42.03 10.93 21.70 3.40 12.51 2.34
Time transiting (avg all v) 3.49 1.20 1.93 0.41 1.49 0.37
Time surveying (avg all v) 38.54 9.74 19.34 3.03 10.21 1.98

Percent Area Surveyed (PS) 35.31 8.93 35.44 5.52 37.42 6.89
Competitive Ratio (ρ) 1.0076 0.010 1.0072 0.011 1.008 0.012
Direct Path Ratio (ρd) 1.707 0.214 1.707 0.214 1.707 0.214

Table 2: Performance of the first experiment for varying number of vehicles for 20 random
samples.
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Figure 4: Terrain from Experiment 2— there is a clear path which was found (ρ = 1) and
PS = 33.03%.
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Figure 5: Terrain from Experiment 3— the path is more difficult to find, however ρ = 1
and PS = 32.58%.

objects for the vertices that are on the path will be lower than the ones off the path, and is
accomplished by allowing mp

max ≥ mq
min, specifically mp

max = 5 and mq
min = 3. As shown in

Figure 5, the path is no longer as clear and becomes lost in the background. In the previous
example, since the path was connected it could be considered easier to follow the path from
start to finish by, for instance, considering any vertex v with M(v)> mp

max to be effectively
infinity. This is no longer the case in this example.

Results are shown in Table 3. In spite of the more challenging circumstances, the search
strategy is still able to achieve a competitive ratio of near unity, with PS less than half of the
total search area. The value of ρd shows an improvement of over 32% in the total number
of mine-like objects versus the straight line path. Again, mission time scales linearly with
the number of vehicles, as was the case in Example 2. The value of γ = 3 was also used in
these simulations.
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nAUV = 1 nAUV = 2 nAUV = 4
µ σ µ σ µ σ

Mission Time (T in hours) 48.974 16.549 24.53 7.17 14.06 3.74
Time transiting (avg all v) 4.529 2.107 2.57 1.18 1.80 0.61
Time surveying (avg all v) 44.44 14.48 21.49 5.81 11.41 2.93

Percent Area Surveyed (PS) 40.72 13.27 39.39 10.71 41.83 10.64
Competitive Ratio (ρ) 1.001 0.005 1.005 0.018 1.001 0.003
Direct Path Ratio (ρd) 1.327 0.132 1.327 0.132 1.327 0.132

Table 3: Performance of the third experiment for varying number of vehicles for 20 random
samples.
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4 Discussion and Future Work

This report has extended single agent pathfinding algorithms for dynamic environments to
the case with multiple collaborating agents. This was applied to a mine countermeasures
(MCM) task of finding a channel through a larger area that contains the minimum total
number of mine-like objects. It was shown that it is indeed possible to find paths with the
same or nearly the same total cost as that which could be found by surveying the entire
area, without having to do so. In some cases, such as the one where a clearly defined path
exists, the path can be found by surveying only roughly 40% of the entire survey area. This
result applied equally to the single vehicle and multiple vehicle case.

The methodology presented here provides some initial results as a proof of concept, how-
ever many improvements could be imagined, especially when considering a practical im-
plementation. Notably, communications requirements, while not especially onerous in the
case of bandwidth — a position and number of targets found in a small area to be trans-
mitted occasionally is generally considered to be within the bandwidth capacity of today’s
underwater acoustic modems — could be however problematic in terms of transmit ranges
and scheduling. In the multi-vehicle version of D* (Algorithm 5) one could choose the next
vertex could be further optimized to keep in mind acoustic Tx/Rx constraints. In fact the
present form of this algorithm is greedy and does not look ahead more than one step. This
could lead to situations where, for instance, a vehicle must transit a large distance from an
one region of the area of the current path whose cost has suddenly become very high. One
possibility could be to include a look-ahead function for the vehicles, where the group can
plan two or more time steps in the future as to where they will likely be, as was done by
Chitre [17] for a beacon vehicle that positions other vehicles. Such a scheme would require
some stability in the estimated path, so as to be able to plan ahead, and some study on how
quickly the best estimated path is changing from one time step to the next would be needed.

Communications requirements can also be potentially reduced by adopting a decentralized
method versus the proposed centralized method. If a vehicle performs the dynamic path
planning itself and only relies on occasional updates from the other vehicles, then the
amount of data that needs to be transmitted could be minimized. For instance, a technique
where two vehicles each try to compute a lowest cost path to the other’s current position
would require only the occasional exchange of positioning information. However, in this
case, one would expect that the decrease of situational awareness and information would
result in a decrease in performance. Quantifying this decrease is essential.

In short, the (cooperative) D* method presented here only allows one to more quickly be
able to find a path between two vertices given the information available. While this is a
fundamental piece of the overall system, future research should focus on the strategies that
the agents or vehicles use to explore that potential path, coordinate their search, and satisfy
any constraints placed upon their formation.
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The results shown here suggest a new way of thinking about how MCM missions are
planned. When the Tasking Authority (TA) needs a sea lane from one area to another,
they will likely place a suitable channel (probably in a straight line), from the one conve-
nient location at the edge of one area to the next5. The result could be a channel that is
unnecessarily risky or in which it is particularly difficult and time consuming to hunt for
mines. However, if the TA prefers to spend effort searching for a safer channel, then it
would require a complete search of a large area to then be able to pick a low risk channel
through the area. What has been shown here is that it is possible to find a channel through
the area that is optimal or nearly optimal, while only requiring a survey of a fraction of the
area.

5Notwithstanding other factors that come into play when making such a decision, such as e.g. channel
depth, or likelihood of anti-AUV barriers or fire from the shore.
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