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Abstract

Robot navigation requires reliable perception that generates an appropriate world 
representation. This is especially true for outdoor, unstructured or semi-structured 
environments where impediments to traversal are more complex than simple insur-
mountable obstacles. Such environments include negative features, such as ditches, as 
well as positive features in the form of sloping rises, that may constitute obstacles to 
traversal. These features must be captured by the world representation in a manner that 
properly handles the uncertainty associated with range data and the vehicle pose. An 
analysis of this representation can then extract traversable and non-traversable regions. 
Finally, this processing must proceed in near real-time in order to allow the robot 
to travel at reasonable speeds. This paper presents a statistical approach that starts 
with a 2.5D terrain map, follows through to the traversability analysis, and continues 
to the ancillary global terrain and traversability representations. At all stages the 
data’s statistical relevance is carried forward and incorporated into the analysis. This 
technique has been verified using simulations and heavily exercised on a physical robot 
under real world conditions. These experiments have revealed that the proposed 
approach performs well, producing both terrain and traversability maps that adequately 
portray their environment.

Résumé

La navigation par robot exige une perception fiable selon laquelle une représentation 
appropriée du monde est produite. Cela est particulièrement vrai pour les environnements 
extérieurs, non structurés ou semi-structurés où les entraves au déplacement sont plus 
complexes que de simples obstacles insurmontables. Ces environnements comportent des 
particularités négatives, comme des fossés, ainsi que des particularités positives se 
présentant sous la forme de pentes montantes, qui peuvent gêner le déplacement. Ces 
particularités doivent être saisies lors de la représentation du monde d’une manière qui 
permette de gérer l’incertitude associée aux données télémétriques et à la pose d’un 
véhicule. Une analyse de cette représentation permet ensuite d’extraire les régions où des 
obstacles gênent le déplacement et où ce dernier peut se faire librement. Enfin, ce 
traitement doit se faire en temps quasi-réel afin de que le robot puisse se déplacer à des 
vitesses raisonnables. Le présent document décrit une approche statistique établie d’après 
une carte topographique 2.5D; il traite ensuite de l’analyse des entraves au déplacement et 
se poursuit par des représentations auxiliaires globales concernant le terrain et le 
déplacement sans gêne. À toutes les étapes, la pertinence des données sur le plan 
statistique est reprise et intégrée à l’analyse. Cette technique a été vérifiée au moyen de 
simulations et a été mise à l’épreuve de manière intensive sur un robot physique dans des 
conditions du monde réel. Ces expériences ont révélé que l’approche proposée fonctionne 
bien; elle produit des cartes du terrain et des entraves au déplacement qui décrivent de 
manière adéquate l’environnement.
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Executive summary

End-to-End Statistical World Representations
G.S. Broten, J.A. Collier, D.J. Mackay, S.P. Monckton, B.L. Digney;
DRDC Suffield TR 2013-060; Defence R&D Canada – Suffield; November 
2013.

Background: For a robot traversing semi-structured environments a local world rep-
resentation is a crucial component of an obstacle and hazard avoidance capability. 
Additionally, a global world representation, constructed as the robot explores its en-
vironment, is also desirable as it enables long range path planning. The key challenge is 
to represent unstructured terrain in a manner that captures its uncertainty, yet is still 
amenable to real-time or near real-time analysis. This paper exploits range sensor 
data’s statistical properties from its acquisition through all aspects of its anal-ysis. 
Under this end-to-end approach, all algorithms incorporate the data quality, providing 
probabilistic estimates of world representation.

Principal Results: This systematic statistical approach has been tested extensively via 
simulations and under real world conditions. These experiments have revealed a 
robust implementation that reliably and accurately represents the environment. Cross 
validation experiments highlighted the statistical implementation’s superior 
performance over an alternative heuristic based approach.

Significance of Results: In simulation where the range data was corrupted by a spe-cific 
amount, the probabilistic traversability approach was an improvement over the previous 
purely heuristic approach. With real world data the probabilistic traversabil-ity map 
reliably identified impediments to traversal.

Future Work: This statistical approach is amenable to other types of traversability 
analysis. Vehicle roll over is another significant hazard where, traditionally, purely 
heuristic approaches have been the norm. This statistical approach has been adapted to 
predict the roll over hazard, but experiments to quantify its performance have yet to be 
conducted.

Additionally, it would be highly desirable to compare the presented technique’s per-
formance against other traversability implementations, especially the probabilistic 
technique used by the Stanley UGV. Unfortunately such comparisons are difficult to 
perform given that this would require an independent implementation of the “prob-
abilistic terrain analysis” approach, which is not a simple and straightforward task.
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Contexte : Lorsqu’un robot se déplace dans des environnements semi-structurés, il est 
crucial de pouvoir disposer d’une représentation locale du monde dans lequel il se trouve 
afin qu’il puisse éviter les obstacles et les dangers présents. De plus, il est aussi souhaitable 
d’obtenir une représentation globale du monde, construite à mesure que le robot explore 
son environnement, car cela permet de planifier le déplacement sur une longue distance. Le 
défi principal est de représenter le terrain non structuré d’une manière qui permette de 
prendre en compte l’incertitude, et cela se prête par ailleurs à une analyse en temps réel ou 
quasi-réel. Le présent document exploite les propriétés statistiques en regard des données 
télémétriques d’un capteur, et ce, depuis l’acquisition de ces dernières jusqu’à une analyse 
de tous leurs aspects. Selon cette approche de bout en bout, tous les algorithmes intègrent la 
qualité des données, donnant lieu à des estimations probabilistes de la représentation du 
monde. 

Résultats principaux : Cette approche statistique systématique a été mise à l’épreuve de 
manière intensive au moyen de simulations et dans des conditions du monde réel. Ces 
expériences ont révélé que cette approche pouvait donner lieu à une solide mise en œuvre 
afin de permettre de représenter de manière fiable et précise l’environnement. Des 
expériences de validation croisée démontrent que la mise en œuvre par des moyens 
statistiques produit des performances supérieures à celles obtenues selon une autre 
approche heuristique. 

Importance des résultats : Dans une simulation où les données télémétriques ont été 
corrompues dans une certaine mesure, l’approche probabiliste liée aux entraves au 
déplacement a donné un meilleur résultat que l’approche purement heuristique précédente. 
En présence de données du monde réel, la carte probabiliste des entraves au déplacement a 
permis d’identifier de manière fiable ces dernières. 

Travaux futurs : Cette approche statistique se prête à d’autres types d’analyse liée aux 
entraves au déplacement. Le renversement d’un véhicule constitue un autre risque 
important où, traditionnellement, l’on a recouru en règle générale à des approches purement 
heuristiques. Cette approche statistique a été adaptée afin de prédire le risque de 
renversement d’un véhicule, mais il reste à mener des expériences visant à quantifier les 
performances de celle-ci. 



De plus, il serait fortement souhaitable de comparer les performances de la technique 
présentée à celles d’autres activités mises en œuvre relativement à l’analyse des entraves au 
déplacement, en particulier la technique probabiliste utilisée par le VTSP Stanley. 
Malheureusement, de telles comparaisons restent difficiles à concrétiser, car cela nécessiterait 
une mise en œuvre indépendante de l’approche liée à l’« analyse probabiliste du terrain », ce 
qui n’est une tâche ni simple ni facile.
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1 Introduction

Outdoor, unstructured or semi-structured environments feature man made obstacle
forms such as buildings, vehicles and curbs, along with impediments to traversal
such as rocks, berms, ditches, and vegetation. For a robot traversing these types of
environments a local world representation is a crucial component of an obstacle and
hazard avoidance capability. Additionally, a global world representation, constructed
as the robot explores its environment, is also desirable as it enables long range path
planning. The key challenge is to represent unstructured terrain in a manner that
captures its uncertainty, yet is still amenable to real-time or near real-time analysis.

A common first stage in converting sensor data into a world representation is the
terrain map. The terrain map represents the environment around the vehicle through
a 2.5D elevation grid, where each grid element is uniform in size. Grid elements
with valid data encode the terrain elevation and grid elements without data are
marked as unknown terrain. The terrain map is a simple world representation that can
easily be analysed in near real-time, thus allowing obstacles to be detected. Given the
terrain map’s geometric-based representation it requires sensory data that samples the
environment’s geometry. Laser rangefinders, time-of-flight cameras and stereo vision
are common sensors used to provide data. Before the advent of high density data
sources, the sampling of the environment was often sparse, hence providing limited
opportunities for a statistical representation. Stereo vision can provide dense data sets
and has been used extensively in space rover implementations where weight and power
consumption are important considerations. Unfortunately it suffers from common
camera issues such as a limited field of view, sensitivity to lighting conditions and a
non-linear error associated with the range determination. On the other hand, laser
rangefinders are lighting invariant and have a small, consistent range error, thus they
have attained a significant level of acceptance for outdoor applications. Early lasers
were only capable of low data densities that sparsely sampled the environment, even if
deployed as multiple instances. High density laser rangefinders, such as the Velodyne
HD Laser, provide data densities comparable to stereo vision and 360◦ of coverage.
Regardless of the originating sensor, dense data sources provide an opportunity to
construct a local terrain map where the underlying data’s statistical properties are
meaningful.

The terrain map is an intermediate world representation that is not directly usable
in the obstacle avoidance problem. Analyzing a terrain map for traversability pro-
duces a grid map of traversable, non-traversable and unknown spaces. In general,
for this type of traversability analysis, obstacle detection is just one of a number of
traversal impediments. Other impediments include a roughness hazard, pitch hazard
and border hazard. Obstacle detection is commonly implemented as a thresholded
step hazard, which determines the maximum height difference between any pair of

DRDC Suffield TR 2013-060 1



cells in a patch. Such a heuristic approach, based upon rigid thresholds, doesn’t take
advantage of the statistical properties of the source terrain and provides the same
conclusions regardless of the data’s goodness. Using a statistical approach, the data’s
quality becomes an intrinsic part of the obstacle prediction process. This in turn leads
to a more reliable obstacle detection scheme.

The main contribution of this paper is a systematic implementation that exploits the
data’s statistical properties from its acquisition through all aspects of its analysis.
Under this end-to-end approach, all algorithms incorporate the data quality, pro-
viding probabilistic estimates of world representation. The terrain map captures the
statistical significance of the underlying range data. The traversability map estimates
the probability of an obstacle. Additionally, the global traversability map statistically
fuses together traverse map patches that have been acquired at different times. This
statistical approach is enabled by this paper’s second contribution; a method of esti-
mating the variance associated with the acquired range data. The estimated elevation
variance is shown to be both a function of the range and vehicle’s orientation. This
systematic statistical approach has been tested extensively via simulations and un-
der real world conditions. These experiments have revealed a robust implementation
that reliably and accurately represents the environment. Cross validation experiments
highlighted the statistical implementation’s superior performance over an alternative
heuristic based approach.

This paper is divided into 5 sections. Section 2 broadly reviews previous research
into world representations, including terrain maps, traversability maps, and other
approaches to detecting obstacles. The proposed end-to-end statistical implementa-
tion is presented in Section 3. This includes a theoretical derivation of the elevation
variance, a description of the statistical terrain map, and details on the probabilistic
approach for constructing the traversability, along with the global traversability map
implementation. The results of experiments, conducted in simulations and in the real
world, are presented in Section 4. These experiments include cross validation com-
parisons to other techniques, where applicable. Finally, conclusions are presented in
Section 5.

2 Related Work

A robotic vehicle that deliberatively plans traversal in a world containing obstacles,
must sense its world and create some type of world representation[1]. Even SRI’s
Shakey and Stanford’s cart, the grandfathers of mobile robotic platforms, featured
camera based perceptual systems that provided a rudimentary world representation
[2, 3]. Another contemporary, the JPL cart, used stereo vision and a laser rangefinder
to create a grid based traversability map to represent the terrain surface [4]. By
the 1980’s sonars provided data to create a grid map representation where elements

2 DRDC Suffield TR 2013-060



were defined as empty or occupied [5], and drove the virtual force field [6] and its
descendant the vector field histogram [7]. With advances in technology and compu-
tational power, higher fidelity sensors, including stereo vision and laser rangefinders,
were adopted by robotics researchers and their theoretical statistical properties were
investigated [8, 9]. Although stereo vision offers many advantages such as high data
densities, a non-emmisive nature, a compact size and low power requirements [10],
the active laser rangefinder has proven more popular for outdoor environments. The
performance of the popular SICK laser rangefinder has been extensively studied [11],
though its low data densities have often forced researchers to use a ganged approach
to ensure adequate terrain coverage [12]. In response to both low data densities and
the experiences of the DARPA Grand Challenges, manufactures developed high defi-
nition (HD) lasers that can sample terrain at high data densities. The most significant
development, the Velodyne HD Laser, was instrumental on the vehicle that won the
DARPA Urban Challenge in 2007 [13]. Unfortunately high density lasers, such as the
Ibeo and Velodyne, are physically large and power intensive, thus are not suitable
for smaller robotic platforms. Time-of-flight cameras providing high data rates while
preserving a compact size could also be attractive alternatives in such situations [14].

Regardless of the sensor, range data’s importance lies in its utility in detecting ob-
stacles. To that purpose the occupancy grid has become the dominant paradigm for
environmental modeling in mobile robotics [15]. From the classical occupancy grid [16]
to current day implementations, the occupancy grid is an enabler of robot navigation
capabilities such as localization, path planning and obstacle avoidance. The occu-
pancy grid implementation can take on numerous forms and the merits of differing
techniques have been investigated [17].

Although occupancy grids are of utility in structured environments, they are not
directly applicable where the shape and form of the terrain may itself constitute
an obstacle. In contrast to structured environments where obstacles occupy vertical
spaces in an assumed flat world, such structural expectations are not available in
unstructured/semi-structured outdoor environments [18]. In such situations a 2.5D
terrain map or digital elevation map is more appropriate. A terrain map represents the
environment through a 2.5D elevation grid, where elements with valid data encode
the terrain elevation and elements without data are marked as unknown terrain.
Early research at Carnegie Mellon University relied upon the ERIM laser rangefinder,
providing 64 rows by 256 columns of range value, to construct a snapshot terrain map
[19]. Given the poor pose estimation, available at that time, much effort was expended
on merging successive snapshot maps into a single representation [20, 21, 22]. With
the advent of adequate processing power, the terrain map took its modern form as
real-time, wrappable and scrollable region, as succinctly described by Kelly and Stenz
[23].

Analysing the terrain map for significant surface changes yields a traversability map

DRDC Suffield TR 2013-060 3



[24, 25]. The Ranger algorithm, an early implementation of this traversability map-
ping [26], has spawned descendants such as the Morphin algorithm [27] and a NASA
implementation called GESTALT [28, 29]. In general, for these types of traversability
analysis implementations, obstacle detection is just one of a number of traversal im-
pediments. Other impediments include a roughness hazard, pitch hazard and border
hazard. Obstacle detection is commonly implemented as a thresholded step hazard,
which determines the maximum height difference between any pair of cells in a patch.
Heuristic approaches, based upon rigid thresholds, don’t take advantage of the statis-
tical properties of the source terrain, thus provide the same conclusions regardless of
the data goodness. Additionally, a heuristic implementation requires manual tuning
whenever the platform or environment changes.

In contrast to the world representation and subsequent traversability analysis paradigm,
it is possible to directly detect obstacles in the laser point cloud. A variety of ap-
proaches have been implemented including heuristics, classifiers, and statistical im-
plementations. The heuristic approach, similar to traversability analysis, uses prede-
fined thresholds and, hence, suffers from similar limitations [30, 31]. Classification
techniques automatically group terrain with similar qualities [32, 33] but the signifi-
cance of this grouping requires human intervention in terms of data labeling, which
is itself a difficult problem [34]. Stanley, the unmanned vehicle that won the Second
DARPA Grand Challenge, addressed the obstacle detection problem from a system-
atic, probabilistic approach [12]. This technique does not create a statistical terrain
map, but instead analyzes the raw rangefinder point clouds in order to determine
the presence of an obstacle. Thrun et al. recognized that small errors in the vehicle’s
roll/pitch estimation could lead to significant terrain classification error. Their key
insight was that the classification error was strongly correlated with the elapsed time
between the two rangefinder scans used in the classification. To counteract this prob-
lem, Stanley used a first-order Markov model to track the drift in pose estimation
over time [35]. Hence, the test for the presence of an obstacle became a probabilistic
test that was distributed normally with a variance that scaled linearly with the time
difference between data samples. The Markov model possesses a number of unknown
parameters, such as the threshold height and the statistical acceptance probability
threshold that were optimized using a discriminative learning algorithm.

3 Terrain Mapping for Unstructured
Environments

Building a world representation from sensors mounted on a moving platform, poses
unique and difficult problems. Sensory data of varying quality, from differing poses,
must be integrated into a single coherent representation. Unstructured environments
impose additional burdens as the rough terrain causes the platform to roll and pitch
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unpredictably. The impact of the platform’s pose on the acquired range data must be
understood and modeled in order to maximize the utility of the world representation.

3.1 Pose and Range Data Relationship
The 2.5D terrain map represents the world as an elevation for each grid element
within the map. The (x, y, z) components are a function of both the vehicle’s pose
and the measured range provided by a ranging sensor, as show in Figure 1.
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Figure 1: Converting Range to an Elevation in a Terrain Map

For a vehicle of position (x(t1), y(t1), z(t1)) the grid element (gx(t), gy(t), gz(t)) is a
function of the orientation, (Φ(t1),Θ(t1),Ψ(t1)) with Φ as roll, Θ as pitch and Ψ as
yaw, and the measured range, r(t1), at a projected angle of α(t1), as shown in Figure
1 (a). As the vehicle moves to a new position, (x(t2), y(t2), z(t2)), the obstacle will be
ranged again. Figure 1 (b) shows the vehicle at its new position at time t2, where the
obstacle is now located at (gx(t2), gy(t2), gz(t2)). The key insight to be drawn from
Figure 1 is that the elevations rz(t1) and rz(t2), corresponding to map elements gz(t1)
and gz(t2), are not of equal quality, as will be shown in the next section.
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3.1.1 Quality of Elevation Data

The vehicle’s pose is only known to a given degree of certainty, with the following
mathematical representation (x± δx, y± δy, z± δz,Φ± δΦ,Θ± δΘ,Ψ± δΨ). For an
outdoor vehicle equipped with a differential GPS the error in the position component,
δx, δy, δz, is relatively small 1 and has a minimal impact on terrain map representation
as it is a small fraction of grid cell size (∼ 10%). In contrast, the error in orientation
can have a significant and negative impact on the quality of the elevation estimate.
This error is defined as all uncertainties that affect the measurement of the orientation
for a projected range and is given by (δφ, δθ, δψ). This includes:

– The orientation error associated with the vehicle’s pose, (δΦ, δΘ, δΨ),

– The accuracy to which the ranging device measures the range projection, and,

– Correspondence issues related to timing of range and pose data acquisition.

Figures 2 and 3 illustrate the geometric interaction between the range projection and
the orientation error for a 2-D planar example. Figure 2 shows an instance where
the range projection encounters an obstacle, and Figure 3 illustrates the nominally
flat ground situation. Using the small angle assumption, the error in elevation can
be approximated as δz = rδθ, where the angle is measured in radians. Even though
δθ may be small, if the measured range, r, is sufficiently large the error in elevation,
δz, is significant. The geometry of a tall vertical obstacle is most intuitive, but the
small elevation change shown in Figure 3 is less obvious. In this case the pitch error
contributes to both an elevation error, δz, and a location estimate that is δx distant
from the true measurement point.

X

δθ

δz

rZ

Figure 2: Geometry and Error in Pitch: Vertical Surface

Although useful for illustrating the principles of orientation, the planar 2-D repre-
sentation doesn’t represent the orientation error in 3 dimensions. The effects of pitch
and yaw errors are shown in Figure 4 (a). As can be seen the pitch error, δθ, yields
an elevation error of δz and the yaw error, δψ produces an error of δy.

1. Example: The Novatel Span INS specifies a position error of ± 2 cm.
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X

Z

r

δx

δz

δθ

Figure 3: Geometry and Error in Pitch: Nominally Flat Surface

δθ

δψ

δyr

δz

Detail
Roll

X

Z
Y

(a) 3 Dimensions

Roll

Y

Z

δs

δφ

δz

δy

(b) Detail of Error Sur-
face

Figure 4: Orientation Error in 3-D
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The planar representation, Figure 4 (b), illustrates the error surface, where it is
obvious that a roll error, δφ, simply rotates vector sum of the pitch and yaw errors,
given by δs, around the x-axis. For this illustration a static system is assumed with
the vehicle center of gravity, IMU and sensor origin all co-located together.

Given that the roll error is random, on average, it will not bias the δs towards either
the x or z components. Thus, δs is proportional to the position error and is a function
of both the range and orientation error. Building upon the idea of inverse distance
weighting [36], the data quality, q, can be defined as proportional to the inverse of
δs, as follows:

q ∝ 1

δs
=

1

δx+ δy

∝ 1
(δx)2 + (δy)2

∝ 1
(rδθ)2 + (rδφ)2

∝ 1

r

δθ2 + δφ2

(1)

The above derivation is originally described in [37] and included here for clarity. This
approach is only one of a number of techniques that have been proposed to address
uncertainty in position provided by range data. A Kalman filter has been used in [38]
to account for the uncertainty in elevation measurement, although details with respect
to the sensor model and filter coefficients are not provided. Thrun et al. also noted
that small errors in roll/pitch can lead to significant terrain classification error when
directly analysing the point cloud for obstacles [12]. This error was modeled by a first-
order Markov model where the unknown parameters were tuned via a discriminative
learning algorithm and human labeled real data.

3.2 Terrain Map Representation
A scrollable and wrappable 2.5-D terrain map, analogous to that proposed by Kelly
[26], represents the world as a grid where each element encodes the elevation. This map
is globally referenced to North with the egocentric perspective being extracted when
required [39]. Similar to GESTALT [29], the first and second order moment statics
are collected for all range points for each map element, as is graphically illustrated
in Figure 5.
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Figure 5: Statistical Moments Stored by the Terrain Map for Fixed Grid Cells

3.2.1 Weighted Statistics

The position data, derived from the range and pose, is of varying quality. In Section
3.1.1 the elevation data quality is proposed as q and is a function of the inverse dis-
tance and orientation error. Thus, the statistical approach for estimating the elevation
for each map element must also include a quality factor as well. Weighted statistics
are well suited for this task [40]. The weighted mean and variance is given by:

τ̄ =

N
i=1wiτiN
i=1wi

(2)

σ2 =

N
i=1wi(τi − τ̄)2N

i=1wi

τ =

N−1
i=1 wiτi + wNτNN−1

i=1 wi + wN

(3)

σ2 =

N
i=1wi

N
i=1wiτ

2
i −

N
i=1wiτi

2

N
i=1wi

2 (4)

where the latter expressions are employed for computations as they are an efficient
representation and ammenable to a real-time implementation:

For the purposes of updating the terrain map, the quality factor squared, qi, will be
used as the weighting factor, hence,
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wi = qi =
1

ri

δθ2i + δφ2

i

(5)

In this form the weighting factor is analogous to the gain associated with a Kalman
filter where it serves as an estimate of the variance. The normal format for the Kalman
filter is given by [41]:

x̂ (t2) = x̂ (t1) +
σ2
z1

σ2
z1
+ σ2

z2

(z2 − x̂ (t1)) (6)

where x̂ (t1) = z1 and, σ2
z1

and σ2
z2

are the estimates of the variances. Equation 6 can
be rewritten as:

x̂ (t2) =
σ2
z2

σ2
z1
+ σ2

z2

z1 +
σ2
z1

σ2
z1
+ σ2

z2

z2 (7)

The mean value given by weighted statistics, Equation 3, can be written as:

τ̄ =
w1τ1

w1 + w2

+
w2τ2

w1 + w2

(8)

With weighting factors w1 =
1
σ2
1
and w2 =

1
σ2
2
representing the variance estimates:

τ̄ =

τ1
σ2
1

1
σ2
1
+ 1

σ2
2

+

τ2
σ2
2

1
σ2
1
+ 1

σ2
2

(9)

=

σ2
2τ1+σ2

1τ2
σ2
1σ

2
2

σ2
1+σ2

2

σ2
1σ

2
2

=
σ2
2

σ2
1 + σ2

2

τ1 +
σ2
1

σ2
1 + σ2

2

τ2 (10)

Obviously, weighted statistics where the weight value is proportional to 1
σ2 , is equiva-

lent to the Kalman filter given in Equation 6. Under this implementation the quality
factor, q, defined in Equation 1 is used as the Kalman filter estimated variance.
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3.2.2 Map Statistics

Besides containing the mean elevation, z̄n, and variance, σ2
n, each map element also

includes the sums that allow for the computation of the weighted mean and standard
deviation. Table 1 shows the sums that must be maintained:

Count Entry Sum Name

1 z̄n -
2 σ2

n -

3
N

i=1wi Sw

4
N

i=1wizi Swz

5
N

i=1wiz
2
i Swz2

Table 1: Moment Statistical Entries Tallied for each Terrain map element

From this table it can be seen that only 5 entries are required per map element.
The current mean and variance are stored to eliminate the necessity to compute
them from the underlying statics. This statistical map representation, in terms of
the mean elevation and variance, and the means to compute these values is similar
to the approach taken by Miller et al. [42]. Although the resulting statistical map
representation is similar, the approach and assumptions are different. This approach
starts from the Kalman filter perspective, whereas Miller et al. approach the problem
from a pure statistical basis. The computing values are of importance to the global
terrain map and traversability map, as will be detailed in the following sections.

3.3 Global Terrain Map
The global terrain map, although having no specific role to play in terms of au-
tonomous operations, provides a human readable display that charts the robots
progress. Unlike the local terrain map, which recycles elements as the map wraps
and scrolls, the global terrain map is persistent and has a fixed maximum size. If and
when a robot closes the loop, as shown in Figure 6, and revisits previously explored
regions, the new local map data must be integrated with existing global map data.

Under the weighted statistical approach, combining data viewed at time tu with data
acquired at tv is easily achieved. Using the weighted statistics computing forms, as
given in equation 3 and 4, and summed components shown in Table 1 the estimated
elevation and variance is given by:

DRDC Suffield TR 2013-060 11



Start
tv

Revisited Terrain

tu

Detail

z̄u, σ
2
u

z̄v, σ
2
v

Figure 6: Terrain Map Revisiting Terrain

zv′ =
Swz(tu) + Swz(tv)

Sw(tu) + Sw(tv)
(11)

σ2
v′ =

Swz(tu)× (Swz(tu))
2 − (Swz2(tu))

2 + Swz(tv)× (Swz(tv))
2 − (Swz2(tv))

2

(Swz(tu))
2 + (Swz(tv))

2 (12)

Where the data at tu exists within the global terrain map and the data at tv is supplied
from the local terrain map. The combined estimation, tv′ includes the estimated
elevation, zv′ , and variance, σ2

v′ , and is stored in the global terrain map where it
overwrites the previous elevation estimate.

3.4 Traversability Map
The data required to construct the traversability map is supplied by the terrain
map. Similar to both Morphin [27] and GESTALT [28], this traversability analysis
calculates the elevation difference between the a given grid and its neighbours, and
then compares this value to a user defined obstacle height.

3.4.1 Obstacle Height

For a uniformly sampled obstacle, under conditions of no orientation error, the mean
elevation is given by h̄ = h

2
, with a variance of σ2 = h2

12
. The best approximation of

a terrain map’s cell elevation is given by z = h̄ +
√
12
2
σ, as proposed by Kelly [23].

The situation for a moving vehicle, where the sampling is random with orientation
errors, is shown in Figure 7. Figure 7 (a), shows range projections onto flat terrain
and Figure 7 (b) shows the situation for an obstacle.

Given that pitch has an error, the resulting elevations, z1, z2, z3, are also in error,
as shown in Figure 7. For flat terrain, a random pitch error and a large number
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(a) Flat Terrain

X

Z

(R1,Φ1,Θ1,Ψ1) (R2,Φ2,Θ2,Ψ2)

z2

z1

z3

(R3,Φ3,Θ3,Ψ3)

h

(b) Obstacle

Figure 7: Properties of Terrain Sampling

of samples, the resulting elevation estimation, z̄ = 1
N

N
i=1 zi is ≃ 0. Even though

the mean elevation is near 0, the corresponding variance, σ2, is not. Hence, the cell
elevation approximation proposed by Kelly is not a suitable representation. A similar
argument can be applied when an obstacle is present. In this case the cell elevation
estimate, given by z̄ = 1

N

N
i=1 zi, is ≃

h
2
. Thus, for a moving vehicle sampling terrain

under conditions where there are orientation errors, the best approximation of a
terrain map’s cell elevation is z = z̄ × 2.

3.4.2 Step Height Determination

The step height for each grid element in the traversability map is determined by
the elevation difference between a given grid element and its four neigbours, as is
illustrated in Figure 8.

For each terrain map grid element, (z̄c, σ
2
c ), where neighbours


(z̄n+1, σ

2
n+1) . . . (z̄n+4, σ

2
n+4)


exist, the maximum difference in terrain height between the center grid element and
its neighbours, termed the step hazard, is given by:

∆z = max |z̄c − z̄n+i| (13)

∆z ≥ ∆zmax, where ∆zmax is a user supplied step height threshold, implies the

DRDC Suffield TR 2013-060 13



z̄n+1

z̄c

σ2
n+4

z̄n+4

σ2
c

z̄n+2

σ2
n+1

σ2
n+2

z̄n+3

σ2
n+3 σ2

∆z

∆z

Figure 8: Step Height Determination using Adjacent Grid Cells

presence of a traversability hazard, i.e. an obstacle of either positive or negative
magnitude.

A heuristic step height comparison is not statistical and, thus, does not fully exploit
the available data. To predict an obstacle’s presence the data quality must also be
incorporated. In its general form the variance is estimated as follows, where the
weighting factor is given by equation 5:

σ2 =

n
i=1wi × (zi − z̄)2n

i=1wi

=

n
i=1wi ×

n
i=1wiz

2
i − (

n
i=1wizi)

2

(
n

i=1wi)
2 (14)

For the traversability map the variance, associated with the step height, must be
determined. The elevation error, around the true elevation, is assumed to be normally
distributed, hence the step height error is also normal. The variance for the step
hazard, using the weighted statistics computing forms from Table 1, is as follows:

σ2
∆z =

Swz(c)× Swz2(c)− (Swz(c))
2 + Swz(n+ i)× Swz2(n+ i)− (Swz(n+ i))2

(Swz(c))
2 + (Swz(n+ i))2

(15)

3.4.3 Probability of an Obstacle

The first stage of the traversability analysis determined the step height, ∆z, and the
corresponding variance, σ2

∆z for each grid element in the terrain map. The second
stage uses these values, along with the user defined obstacle height, to determine the
probability of flat terrain, given by P (T ). Normally distributed orientation errors have
been assumed. Under this assumption it follows that the elevation variance will also
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be normally distributed. With the standard normal distribution, µ = 0 and σ = 1,
distance from the mean is described by z-scores (ζ), as given in the following section.

3.4.3.1 Probability Density Function

The probability density function (PDF) best illustrates the obstacle detection tech-
nique. For the normal distribution the z-score is given by:

ζ =
x± µ

σ

=
∆z ±∆zmax

σ
(16)

Assume the laser ranges nominally flat terrain, as shown in Figure 1, with a measured
elevation and variance (z̄i, σ

2
i ). Then, for all grid elements i, z̄i ≃ 0, as the terrain is

flat. Hence the step hazard, ∆z defined by equation (13), is also ≃ 0 and the z-scores
reduce to:

ζi =
∆z ±∆zmax

σi
≃ ±∆zmax

σi
(17)

The corresponding probability density function (PDF) is shown in Figure 9. The
area Ti represents the probability of all hazards less than ∆zmax and greater than
-∆zmax. As this is the probability of flat terrain, the probability of a hazard is given
by P(O) = 1− P(T ), represented by the area 2Hi.

Hi Hi

ζ−i ζ+i

Ti

0
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z-score

Figure 9: Probability Density Function (z̄i, σi)

When the data quality is better, the variance decreases. Consider the situation in
which σ2

j ≪ σ2
i where its corresponding PDF shown in Figure 10. Again the z-scores

for (z̄j, σ
2
j ) are given by ζj = ±∆zmax/σj, since for flat terrain z̄j ≃ 0. Once again,
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Figure 10: Probability Density Function (z̄j, σj)

the area Tj under the curve represents the probability of flat terrain and the area 2Hj

corresponds to the probability of a step hazard. As expected the area 2Hj is much
less than the area 2Hi, indicative of an increased confidence that the terrain is indeed
flat.

The presence of an obstacle results in an expanded range of elevation values. In
the case where the mean elevation equals the step hazard threshold, as given by
z̄k = ∆zmax, the z-scores are given by:

ζk =
z̄k ±∆zmax

σk

Hence, ζ+k =
2∆zmax

σk
and ζ−k = 0. In Figure 11 the area Tk represents the probability

of flat terrain and the summed area Hk +H1
k is the hazard probability.
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Figure 11: Probability Density Function (z̄k, σk)

The step height threshold, ∆zmax, and the variance, σ2, are the same for both Fig-
ures 9 and 11. Hence, the magnitude ζdiff =


ζ+i − ζ−i


=


ζ+k − ζ−k


remains constant.
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As can be seen in Figures 9 and 11, the introduction of a mean elevation, z̄k, has
simply shifted flat terrain region position’s under the PDF curve.

3.4.3.2 Cumulative Density Function

Although the PDFis a useful tool for illustrating the statistics of probabilistic obstacle
detection, the cumulative density function (CDF) is more appropriate for implemen-
tation. The CDF, FX(x) = P(X ≤ x), is the probability that a random variable X
will have a value less than or equal to x; in terms of the PDF, f(x),

F (x) =

 x

−∞
f(τ)dτ

The probability of flat terrain is given as follows:

P(T ) = F (ζ+)− F (ζ−)

= P(ζ− ≤ X ≤ ζ+)

=

 ζ+

ζ−
f(τ) dτ (18)

where f(x) is the normal PDF, ζ+ = (∆z+∆zmax)/σ and ζ− = (∆z−∆zmax)/σ. P(T ) rep-
resents the probability of flat terrain and corresponds to the area under the PDF
between the limits ζ+ and ζ−, as shown in Figures 9, 10 and 11. The CDF, shown in
Figure 12, represents the PDFintegration, thus, the probability is read directly from
the vertical axis.
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Figure 12: Cumulative Density Function (±ζ)

3.4.4 Probabilistic Traversability Map

Following the steps described in the preceding sections, each valid terrain map grid
element can be mapped into a traversability map, where each grid element is as-
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signed the probability of an obstacle, P(O). Figure 13 illustrates the mapping be-
tween the terrain map and the traversability map, with the terrain on the left and
the traversability map located on the right.
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Figure 13: Probabilistic Traversability Map

3.4.4.1 Advantages

The probabilistic approach incorporates the range data quality and this is crucial as
the quality of a range datum varies with the distance of its corresponding terrain
patch from the vehicle and the vehicle’s orientation accuracy. Thus, the probabilistic
approach automatically accounts for the effects of elevation changes, resulting from
orientation errors and long range measurements, hence this research is congruent
with and reinforces the probabilistic terrain analysis approach used by the Stanley
robot [35].

3.4.4.2 Interpretation

In a traditional, heuristic-based traversability map each grid element was either oc-
cupied, free or unknown. In contrast, a probabilistic traversability map is open to a
number of interpretations:

– If traversability is examined at a specified confidence level, the grid elements
of the resulting map are in the traditional occupied, free or unknown format.
Additionally, the selected confidence level can be influenced by outside factors
such as the vehicle being located on a known road or the fact the location
corresponds to unstructured terrain.

– The obstacle probability, P(O), can be interpreted as traversal cost associated
with the given grid element. Thus, traversability map explorations sum the total
traversal cost for a selected route through the map.

– The traversability map could be a hybrid, where each grid element has an
associated traversal cost up to a given probability, Pmax(O). Grid elements with
probability Pi(O) ≥ Pmax(O) would be deemed impassible.
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3.4.5 Rollover Hazard

Obstacles are not the only hazards faced by a UGV. Steep slopes can be a stability
hazard where the vehicle is at the risk of a rollover. Two approaches have been
proposed to quantify the rollover hazard, area-based and path-based. The area-based
technique, exemplified by Morphin, evaluates all possible terrain patches [27]. When
the rollover risk is sensitive to the vehicle’s approach direction then a path-based
approach is more appropriate. Similar to Ranger [43], this paper proposes a path-
based rollover hazard technique. To quantify this hazard the UGV’s wheel locations
are projected onto the terrain map for each selected traversal path. These four wheel
patches, illustrated by the brown squares in Figure 14 (a), provide the data that
allows the determination of the plane shown in pink.

Wheel Patch

Plane

Detail

(a) Terrain Map

n n+1 n+2 n+3 n+4

G

m

m+1

m+2

m+3

m+4

yn+1,
zm+1,n+1)

yn+3,
zm+3,n+3)

Y

X

(xm+1,

(xm+3,

(b) Wheel Patch

Figure 14: Vehicle Plane

The wheel patch detail, shown in Figure 14 (b), encompasses a number of terrain map
elements, dependent on both the wheel and grid size. Each grid element is represented
by a point Pi(xm, yn, zm,n):

xm = G×

m+

1

2


(19)

yn = G×

n+

1

2


(20)

where G is the grid size, xm is the element’s center in the X direction, yn is the
element’s center in Y direction and zm,n is the weighted elevation from the terrain
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map. The weighted elevation ensures that the underlying data goodness is factored
into the elevation determination.

3.4.5.1 Fitting a Plane

Any plane can be represented by an equation of the form:

Ax+By + Cz +D = 0 (21)

The terrain map elements, Pi, under each of the four wheel patches create a vector
of points that lie on the plane.

P0(x0, y0, z0)

P1(x1, y1, z1)
...

PQ(xQ, yQ, zQ)

Substituting the point, for all Q points, into the equation of a plane yields:

Ax0 +By0 + Cz0 +D = 0 (22)

Ax1 +By1 + Cz1 +D = 0
...

AxQ +ByQ + CzQ +D = 0

Represented in matrix format:

b = Ax (23)

where b is:

b =


0
0
...
0

 (24)
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and A is:

A =


x0 y0 z0 1
x1 y1 z1 1
...

...
...

...
xQ yQ zQ 1

 (25)

and x is:

x =


A
B
C
D

 (26)

The coefficients, x, can then be determined using a best fit solution, in matrix format
[44]:

x = Pb (27)

where the projection matrix P is defined as:

P =

ATA

−1
AT (28)

Hence:

x =

ATA

−1
ATb (29)

Solving these simultaneous equations using an ordinary least squares fit to yield the
(A,B,C,D) coefficients of the plane can be accomplished by various methods 2.

3.4.5.2 Quality of the Parameter Estimate

The least squares residuals are given by:

ε̂ = b−Ax (30)

2. Specifically Lapack DGELS is used to solve these simultaneous equations.
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The least squares estimator for variance, σ2, is:

σ2 =
1

Q
ε̂2 (31)

=
1

Q
ε̂T ε̂

=
1

Q
(b−Ax)T (b−Ax)

where Q is the number of points used for the plane fit.

3.4.5.3 Estimating the Rollover Hazard

The terrain map used for hazard avoidance is ego-centric [39], thus the X direction
is perpendicular to the bumper and the Y direction is parallel, as shown in Figure
15 (a).
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Figure 15: Ego-centric Map Frame and Co-ordinate System

Vehicle roll is defined as about the X axis, at the center of gravity, hence only (y, z)
components influence it. Determining roll of the plane is straight forward. Using the
plane’s equation and the point Pr(0, 1, zr) allows for the calculation of a line parallel
to the bumper, where zr is:

zr =
−D −B

C
(32)
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A vector from the front center bumper, to the point Pr, is given by u = ĵ + zrk̂. For
flat terrain there is no elevation change, thus the k̂ component is zero, and the vector
is given by v = ĵ. Given two vectors, uc = a1ĵ + b1k̂ and vc = a2ĵ + b2k̂, the angle
between the vectors is given by:

cosφ =
a1a2 + b1b2
|uc| |vc|

(33)

For the vector in the plane, u and the vector of flat terrain, v, a1 = 1, b1 = zr, a2 = 0
and b2 = 1:

cosφ =
zr

12 + z2r ×
√
12

=
zr
1 + z2r

(34)

Solving for the roll angle φr yields:

φr = cos−1

 −D−B
C

1 +
−D−B

C

2
 (35)

3.4.6 Probability of Roll Hazard

The probability of a roll hazard is determined in a manner similar to that presented
for the probability of an obstacle. Although a maximum roll angle, ∆rmax, is defined
it is not directly compared to the calculated plane roll, φr. As was implemented
for obstacles, calculated roll is assumed to have a normal distribution and the area
representing not a roll is determined. For the normal distribution the z-score is given
by:

ζ =
φr ±∆rmax

σ
(36)

where plane fit quality is given by σ2, as determined by Equation 32. The probability
of not a roll hazard, P(ṙ), is given by:

P(ṙ) = F (ζ+)− F (ζ−) (37)

The roll hazard, P(r), is then given as P(r) = 1− P(ṙ).

DRDC Suffield TR 2013-060 23



3.5 Global Traversability Map
The global traversability map remembers all obstacles encountered within a X by Y
region and is crucial for long range path planning. Similar to the global terrain map,
the global traversability map must fuse current and previous data under situations
where terrain is revisited, as is illustrated in Figure 16. Once again weighted statistics
are the basis for the fusion, but in this case the probability of obstacles are weighted by
their corresponding variances. The weighted computing formula presented in equation
10 is the means of performing this fusion. Where the probability of an obstacle is given
by τi = P(O)i = 1−P(T )i and the variance is given by σ2

i , then for the grid elements
shown in the map of Figure 16 is:

τ ′v =
σ2
v

σ2
u + σ2

v

τu +
σ2
u

σ2
u + σ2

v

τv

Hence the probability of an obstacle, for the revisited grid element, is the variance
weighted sum of the existing probabilities in a manner that is analogous to a Kalman
filter.

Start
tv

Revisited Terrain

tu

Detail

τu, σ
2
u

τv, σ
2
v

Figure 16: Traversability Map Revisiting Terrain
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4 Results
4.1 Implementation
All world representation software and all supporting software was developed under
the Miro framework [45, 46]. The Miro framework inherently supports data logging
and playback. Additionally, its flexible event-based implementation allows the user
to seamlessly switch between real world, simulated and logged data.

4.1.1 Simulation Environment

A dedicated Miro interface allows the Gazebo simulator [47] to directly publish/re-
ceive Miro based events. The Gazebo interface currently supports range data and the
vehicle pose. Additionally it receives steering and speed commands, which are passed
along to Gazebo, thus, commanding the simulated vehicle.

4.1.2 Raptor UGV

Experiments in the real world were conducted using the Raptor UGV shown in Fig-
ure 17. The Raptor features: A Velodyne HDLaser, a Point Grey BumbleBee XB3
Stereo camera, the Novatel HG1700 Span INS, and, a dual Quad Core Intel Xeon
CPU at 2.66 GHz.

Figure 17: Raptor Unmanned Ground Vehicle

4.2 Simulations
Simulations are an excellent tool for designing, debugging and testing algorithmic
implementation. Although the perfect data sets don’t accurately represent the real
world, they allow for the systemic investigation of an algorithm’s performance. For
this research, the simulated Raptor UGV uses two fixed angle SICK lasers, one at
12◦ below the horizon and second laser mounted at 20◦. Both lasers are mounted
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1.7 m above the ground plane. Additionally, the Gazebo simulator provides data that
simulates the performance of the Novatel HG1700 Span IMU. Figure 18 (a) and (c)
show simulated terrain maps where elevation is denoted by colour. As can be seen
the world is flat, as denoted by the green area, and the walls are shown in blue.
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Figure 18: Traversability Maps using Simulated Gazebo Data

The corresponding probabilistic traversability maps are shown in Figure 18 (b) and
(d). For these maps, traversible terrain is shown in green and obstacles are denoted
by red. Not surprisingly the simulations, providing perfect data where the ground is
absolutely flat, the obstacles are vertical, and both the range and pose data is error
free, yield accurate terrain and traversability maps. For the traversability analysis the
probability of an obstacle is set to 80%.

The cost of traversal, shown in Figure 19, corresponds to maps (c) and (d) in Fig-
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ure 18. For this map blue denotes a low cost and red represents a high traversal cost.
The transition from flat to elevated obstacles is evident from the green/yellow colours
located near the obstacles.
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6
0
 m

Low Cost

High Cost

Figure 19: Cost of Traversal Map using Simulated Gazebo Data

A Gazebo simulation also provided the data for a comparison between a heuristic
traversability analysis and the probabilistic implementation. Gazebo created a ter-
rain map using simulated data with random roll/pitch errors up to 1◦. The terrain
was analysed for traversability using a heuristic approach [48] and the technique de-
tailed by this paper. This analysis attempted to identify obstacles denoted by a step
height threshold, ∆zmax, of 0.35 m. As is evident by observation, the probabilistic
traversability analysis shown in 20(a), with the probability of an obstacle set to 90%,
produced a traversability map that better identified the true block obstacle than did
the heuristic map shown in 20(b). Additionally, when the probabilistic map, 20(a),
and heuristic map, 20(b), are visually compared, it is obvious that the probabilistic
approach was significantly less affected by the random orientation errors as fewer grid
elements were misidentified as obstacles.

4.2.1 Simulations with Errors in Orientation

Simulations were performed to quantify the performance of the weighted statistical
terrain map. For the terrain maps shown in Figure 21 the error in pitch and roll was
uniformly distributed between 0◦ and 1◦.

The variance between the ground plane and the terrain map was determined for the
area where the two lasers have overlapping coverage. This corresponds to approxi-
mately 4.0 m in front of the vehicle and 10 m on either side of the vehicle’s center
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Figure 20: Traversability Maps using Simulated Gazebo Data

line. Figure 21 (a) shows the terrain map that results when a simple average is used.
In Figure 21 (b) the results for a weighted average are presented. For the simple
averaging approach the standard deviation was 36.1 mm. When the technique was
switched to weighted statistics the standard deviation dropped by just over 1 mm to
34.9 mm. Not surprisingly, visually there is little apparent difference between the two
maps where the terrain in predominately flat and portrayed by the green color.

A second data set was acquired with the pitch and roll error increased to 2◦. As seen
in Figure 22 this larger roll and pitch error results in a terrain map where elevation
variations are visually apparent as given by the red, yellow and blue discolorations
mainly evident at the map margins. Within the region of analysis, the map based
upon standard statistics, while visually quite similar to the weighted statistics map,
seems to show slightly more color variation.

The standard deviation from the ground plane was 86.1 mm when simple averaging
statistics were employed. For weighted statistics the standard deviation from the
ground plane decreased to 83.1 mm. In both experiments, the configuration of the
shallowest laser, at an angle of 12◦ below the horizon, limited the advantages of the
weighted statistics approach, since the shallow laser provided a lookahead distance of
only 8 m.

The final experiment used a laser at the standard 20◦, with the shallow laser set to
an angle of 3.8◦. Once again the roll and pitch error was specified as uniform between
0◦ and 1◦. As is obvious in Figure 23, the roll and pitch error significantly affects
the range data from the shallow angle laser. In the region under analysis there are
no obvious visible differences in appearance. The analysis of the standard deviation
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Figure 21: Terrain Maps using Simulated Data: Roll/Pitch error up to 1◦

from the ground plane reveals a value of 70.7 mm for standard statistics and a mean
of 59.5 mm for weighted statistics.

4.2.2 Simulations with Obstacle Detection

Simulated data using lasers mounted at 20◦ and 12◦, with no orientation error, and
with a uniform roll/pitch between 0◦ and 1◦ added to the orientation, was used for
the experiments on obstacle detection. Figure 24 (a), shows the terrain map produced
when there is no error in orientation. In Figure 24 (a) both obstacles are identified
by the elevation changes, as shown in blue. Both the terrain and traversability maps
are 60× 60 metres, with the terrain map grid size set to 200 mm and a traversability
map grid size of 400 mm.

As described in Section 3.4.3, obstacle detection is probabilistic hence the detection
process can be assigned a confidence level. Experiments were performed where ob-
stacles were identified at four confidence levels: 85%, 90%, 95% and 99%. The step
height threshold was 350 mm for all experiments. The traversability map, Figure
24(b), clearly identifies the obstacles at a 95% confidence level. Table 2 provides the
number of obstacles within the traversability map, for each of the specified confidence
levels.

Figure 25 shows the traversability map results for the 99%, 90% and 85% confidence
levels. As is obvious from these figures, increasing the confidence level not only sup-
presses false-positives, but also suppresses the identification of real obstacles.

The experiment was then repeated with the row and pitch errors defined as a random
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Figure 22: Terrain Maps using Simulated Data: Roll/Pitch error up to 2◦

Confidence Level Grid Cells Identified as Obstacles

99% 33
95% 85
90% 132
85% 172

Table 2: Number of Obstacles Detected vs. Confidence Level

variable, normally distributed, with a standard deviation of 1◦. Figure 26 (a) shows
the terrain map produced under these conditions. As can be seen, one obstacle is
evident, but the second obstacle is partially obscured within the noise of the map.
The traversability map, at the 95% confidence level, is shown in Figure 26 (b). As
can be seen, it only identifies a single obstacle, and the map fringes are populated
with phantom obstacles.

The terrain map was also analysed for obstacles at the 99%, 90% and 85% confidence
intervals, as shown in Figure 27. From these figures it is obvious that the confidence
level has a significant impact on the resulting traversability map. For a high noise
environment, increasing the confidence level acts as a filter that suppresses spurious
obstacles. In these experiments increasing the confidence level resulted in a more reli-
able identification of obstacle-free terrain and a clearer delineation of true obstacles.
Thus, the obstacle near the map’s center becomes more evident as the confidence
level increases. Although this statistical approach provides solid results, it is unable
to reliably detect the obstacle on the top left side of the map. The roll and pitch
noise, in tandem with the long range of near 30 m effectively obscures the obstacle.
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Figure 23: Simulated Data with an Extended Lookahead Distance

Table 3 identifies the number obstacles identified at each respective confidence level.
The table and traversability maps illustrate how effectively this statistical approach
can suppress phantom obstacles, even in the presence of data with significant errors.

Confidence Level Grid Cells Identified as Obstacles

99% 1178
95% 2317
90% 3071
85% 3646

Table 3: Number of Obstacles Detected vs. Confidence Level, with a Roll/Pitch
Error

For comparison purposes, the same simulated data was feed into a GESTALT inspired
traversability analysis [48]. Again, the step hazard value was set to 350 mm. Figure
28 shows the traversability that results when there is no pitch and roll errors applied.
Under these circumstances the map labels 1278 elements as obstacles. Figure 28(b),
shows the traversability maps that results when the orientation error is applied. For
this analysis the map labeled 4178 grid elements as obstacles.
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Figure 24: Terrain and Traversibility Maps with no Orientation Error

4.3 Field Trials
Using the Raptor UGV, field data was logged while the traversing the local environ-
ment. Figure 29 shows the terrain for the first scene.

Figure 30(a) shows the terrain map of the environment. Once again colour denotes
elevation with red indicating low regions, green representing zero elevation and blue
denotes elevated regions. The road, ditches and exit are clearly evident. Applying the
probabilistic obstacle detection technique to the real world terrain map yields the
traversability map shown in Figure 30(b). For this traversability map the threshold
probability of an obstacle is specified as 90%. As is evident, the map identifies the road
and ditch margins. The cost of traversal map, shown in Figure 30(c), highlights the
probability of encountering a traversability hazard. In this figure red represents a high
traversal cost and the colors yellow, green, light blue through to dark blue represent
descending traversal costs. As can be seen, the traversal cost map follows the terrain
map’s form, while clearly identifying traversable and non-traversable regions.

A second data set was analysed in which the environment featured a fence line,
building and vehicles. Figure 31 (a) presents a snapshot as seen from the Raptor UGV
looking forward, where a building is evident to the left, a building is partially in view
to the right, and a vehicle is directly ahead of the Raptor UGV. The corresponding
terrain map, Figure 31 (b), clearly shows the building situated on both sides of the
Raptor UGV. The traversability map, given in Figure 31 (c), identifies both buildings,
as well as a fence line and two vehicles as obstacles. In the terrain map, Figure 31 (a),
two buildings, two vehicles, a fence line and flat terrain can be identified. For this
experiment the obstacle probability was again specified as 90%.
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Figure 25: Traversibility Maps with no Orientation Error

Finally, the cost of traversal map is given in Figure 32. As with the case for both the
terrain map and the traversability map, the cost of traversal map clearly identifies
flat terrain as low cost (given in blue) and higher cost regions are denoted in shades of
yellow to red. The correspondence between obstacles and the region associated with
a higher traversal cost are evident.

5 Conclusions

This paper presents a statistical technique that identifies the presence of obstacles.
The probabilistic traversability map, derived from the underlying statistical terrain
map, automatically accounts for and adjusts to terrain map reliability. Obstacles
measured at a longer range, or with a significant orientation error, yield terrain map
elements with larger variance. The traversability map, when determining the step
hazard, uses estimated elevation variance to provide a statistical estimate of the
terrain’s traversability.

This technique has been tested with both simulated and real world data. In simu-
lation where the range data was corrupted by a specific amount, the probabilistic
traversability approach was an improvement over the previous purely heuristic ap-
proach. With real world data the probabilistic traversability map reliably identified
impediments to traversal. It was tested with various semi-structured environments
and in each case the result was a faithful representation of the real world. Although
traversability maps have historically taken an occupancy grid format, this research
has opened a new avenue for traversability map interpretation. Given that the map
represents the probability of an obstacle, it can also be viewed as the cost of traversal.
Using this perspective route planners could avoid higher cost regions, corresponding
to a higher probability of an obstacle, even though the region is not specifically tagged
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Figure 26: Traversibility Map, Simulated Environment, with Obstacles and a Rol-
l/Pitch Error

as non-traversable.

6 Future Work

This statistical approach is amenable to other types of traversability analysis. Vehicle
roll over is another significant hazard where, traditionally, purely heuristic approaches
have been the norm. This statistical approach has been adapted to predict the roll
over hazard, but experiments to quantify its performance have yet to be conducted.

Additionally, it would be highly desirable to compare the presented technique’s per-
formance against other traversability implementations, especially the probabilistic
technique used by the Stanley UGV. Unfortunately such comparisons are difficult to
perform given that this would require an independent implementation of the “prob-
abilistic terrain analysis” approach, which is not a simple and straightforward task.
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Figure 27: Traversibility Maps resulting from Differing Confidence Levels
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Figure 28: Traversibility Maps resulting from the GESTALT Approach

Figure 29: Environment of the First Trial
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Figure 30: Traversability Maps
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