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Abstract

This report is first and foremost an analysis of the decision surfaces associated with
common detection statistics used for hyperspectral target detection. The intention
is to clarify the process leading to detection using those statistics and show where
their differences and similarities lie. The large number of available detection statis-
tics, along with their numerous parameters, makes formal comparisons complicated
and sometimes produces ambiguous or uncertain conclusions. This document tries
to establish a solid framework on which to base this analysis and then demonstrates
how detection statistics can be grouped in distinct classes based on their decision
surface’s geometry. In doing so, possibly new detection statistics (or methods that
can be used to build them) are exposed.

Résumé

Ce rapport se veut principalement une analyse des surfaces de décision associées
aux statistiques de détection utilisées couramment en détection hyperspectrale de
cibles. L’intention premiere est la clarification du procédé menant a la détection en
utilisant ces statistiques, ainsi que l'exposition de leur différence et similarités. Le
grand nombre de statistiques de détection disponibles, couplées avec leurs nombreux
parametres, rend les comparaisons formelles complexes qui parfois produisent des
conclusions ambigues ou incertaines. Ce document tente d’établir un formalisme solid
sur lequel cette analyse peut se baser et démontre ensuite comment les statistiques
de détection peuvent etre groupées en classes distinctes en se basant sur la géométrie
de leurs surfaces de décision. Ce faisant, des statistiques de détection possiblement
nouvelles, ainsi que des méthodes pouvant étre utilisées pour les batir, seront exposées.
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Executive summary

Decision surfaces of binary tests in hyperspectral

detection

Francois Bouffard; DRDC Valcartier TR 2013-1213-000; Defence
R&D Canada —Valcartier; April 2013.

Background: Defence R&D Canada — Valcartier is involved in the stand-off de-
tection of gases or aerosols in the atmosphere, and liquids or solids on the ground,
vehicules and structures, using passive hyperspectral measurements. Algorithms were
previously studied and developed in order to automate the detection and identification
of a wide range of substances. The detection methods described in the literature use
many various formalisms, sometimes coming from different fields (acoustics, radar,
etc.) and most often using different notations expressing the same general ideas
differently. Comparing the performances of various detection algorithms is difficult
because of theses differences and depend entirely on the ability to properly implement
the proposed methods.

Principal results: This work presents a unifying formalism which allows the com-
parison of detection statistics by examination of their most basic geometric features,
namely the shape of the decision surfaces themselves. It was found that most popular
detection statistics can be grouped in two classes that share the same basic decision
surface geometries (either planes or cones). Variations of these statistics give rise to
cylindrical, wedge-shaped, closed, or hyperbolic decision surfaces, the exact position
of which can be adjusted with few parameters. Extensions to this framework are also
proposed, leading to new detection statistics having novel properties.

Significance of results: The main result of this work is the implication that multiple
detection statistics can be implemented through the parameterization of a single
expression. This greatly simplifies the work required to implement different detection
algorithms on various platforms, including specialized hardware such as digital signal
processors or graphical processing units. A corollary of this main result is that it
demonstrates the futility of testing and comparing the performances of detection
statistics from the same class since they can be made to exhibit the exact same
decision surface using the appropriate parameters. The extensions to the proposed
framework also provide a process to create new decision statistics to solve specific
detection problems. Generally, this framework allows an increased comprehension of
decision surfaces that will be used to evaluate the potential usefulness of any further
detection algorithms.
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Future work: This work is principally of a theoretical nature. A simulated or exper-
imental confirmation of the predicted equivalence of many detection statics found in
the literature would be interesting as this would allow implementing a large number
of statistics with a compact code base, and generally facilitate optimization. Work on
the proposed extensions to the framework presented herein, in which new detection
statistics could be created, evaluated and compared, could also lead to operational
advantages in specific hyperspectral detection scenarios.
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Sommaire

Decision surfaces of binary tests in hyperspectral

detection

Francgois Bouffard; DRDC Valcartier TR 2013-121 ; R & D pour la défense
Canada —Valcartier ; avril 2013.

Contexte : R & D pour la défense Canada — Valcartier est intéressé par la détection
de gaz et d’aérosols dans I’atmosphere, ou de liquides et solides sur le sol, les véhicules
ou les structures, en utilisant des mesures hyperspectrales passives. Des algorithmes
ont été étudiés et développés précédemment pour automatiser la détection et 'iden-
tification d’un grand nombre de substances. Les méthodes de détection décrites dans
la littérature utilisent des formalismes variés, parfois provenant de champs d’études
différents (tels I'acoustique ou le radar) et utilisent le plus souvent des notations
incompatibles qui expriment des idées similaires de maniere entierement différente.

Résultats : Ce travail présente un formalisme général qui permet la comparaison
des statistiques de détection par 'examen de leur propriétés géométriques les plus
fondamentales, c’est-a-dire la forme meéme de leur surfaces de décision. Il a été déter-
miné que la plupart des statistiques de détection les plus populaires pouvaient étre
groupées en deux classes dont les membres partagent la méme surface de décision
(plans et cones, respectivement). Des variantes de ces statistiques produisent des sur-
faces de décision cylindriques, en forme de coin, fermées, ou hyperboliques, dont la
position exacte peut étre ajustée avec un petit nombre de parametres. Des extensions
a ce formalisme sont également proposées, et pouvant mener a de nouvelles surfaces
décision possédant des propriétés uniques.

Importance : Le résultat précipal de se travail est la réalisation que de multiples
statistiques de décision peuvent étre implantées par la paramétrisation d'une seule ex-
pression. Ceci simplifie énormément le travail requis pour 'implantation de différents
algorithmes de détection sur différentes plateformes, incluant le matériel spécialisé tel
les processeurs de signaux digitaux et les processeurs graphiques. Un corollaire de ce
résultat est la démonstration qu’il est futile de tester et comparer les performances
de détection de statistiques appartenant a la méme classe, puisqu’elles peuvent adop-
ter exactement la méme surface de décision en ajustant précisément les parametres
adéquats. Les extensions au formalisme proposé suggerent également une maniere de
créer de nouvelles statistiques de détection pouvant étre utilisées pour des problemes
de détection spécifiques. Généralement, ce formalisme permet une compréhension ac-
crue des surfaces de décision qui sera utilisée pour évaluer I'utilité potentielle de tout
algorithme de détection subséquent.
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Perspectives : Ce travail est principalement de nature théorique. Une confirma-
tion simulée ou expérimentale de I’équivalence prédite entre plusieurs statistiques de
détection retrouvées dans la littérature serait évidemment intéressante, puisque ceci
permettrait de calculer un grand nombre de statistiques avec un nombre restreint
de lignes de code. L'optimisation de ces statistiques de détection serait également
grandement facilitée . Des travaux futurs sur les extensions proposées au formalisme
présenté ici, dans lesquels de nouvelles statistique de détection pourraient étre créées,
évaluées et comparées, pourraient également mener a des avantages opérationels dans
des scénarios de détection hyperspectrale spécifiques.
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1 Introduction

This report is first and foremost an analysis of the decision surfaces associated with
detection statistics commonly used for hyperspectral target detection. The intention
is to clarify the process leading to detection using those statistics and show where
their differences and similarities lie. The large number of available detection statis-
tics, along with their numerous parameters, makes formal comparisons complicated
and sometimes produce ambiguous or uncertain conclusions. This document tries to
establish a solid framework on which to base this analysis and then demonstrates how
detection statistics can be grouped in distinct classes based on their decision surface’s
geometry. In doing so, possibly new detection statistics (or methods that could be
used to build them) are exposed.

1.1 Context

Defence R&D Canada — Valcartier has been involved in the passive detection of gases
and aerosols in the atmosphere, and liquids and solids on the ground, vehicules and
struc-tures, since the mid-90’s [1]. Long-wave (thermal) infrared hyperspectral
measure-ments, typically acquired using a Fourier transform spectrometer, is the
technique of choice to achieve this because of the unique spectral features found in
most chemical species of interest. The technique was refined using the CATSI
spectroradiometer [2], which was operated by scientists who, aided by analysis
software such as GASEM |[3], determined if any species of interest was present in a
given measurement. In an effort to push the technique into the hands of the Canadian
Forces (spearheaded during the CATSI EDM project [4]), algorithms were developed
in order to automate the detection and identification of a wide range of substances.

An extensive survey of the literature [5] have shown multiple hyperspectral target
detection formalisms, sometimes coming from different fields (acoustics, radar, etc.)
and most often using different notations expressing the same general ideas differ-
ently. Comparing the performances of various approaches to hyperspectral detection
is rendered tedious because of theses variations and depend entirely on the ability to
properly implement the proposed algorithms. During the development of the iCATSI
and MoDDIFS sensors [6], a new, generic code base for hyperspectral detection was
developed!, which higlighted similarities between many of the detection methods
found in the literature.

!This will be the topic of a future report.
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1.2 Scope

This report is a review of the most common detection statistics in usage for hy-
perspectral target detection, where the geometry of the associated decision surfaces
is explored. It will be shown that most detection statistics can be grouped in two
or three broad categories that share basic properties. The framework developed to
perform this analysis is then be applied to further explore extensions and possibly
altogether new detection statistics. However this report will not compare the actual
performance of any detection statistic using either real or simulated data. Comparison
will be restricted to the geometry of decision surfaces associated with each statistic;
however this can be used to steer performance comparison efforts in new directions.

1.3 Structure of document

In order to enable progress in subsequent sections, Section 2 will first establish nota-
tion and review basic concepts such as hypothesis testing and associated performance
metrics, generalized likelihood ratio tests and background clutter models. Section
3 will present, in increasing complexity, the detection statistic categorized by the
shape of their decision surfaces, begining with planes and up to hyperboloids. The
following section (Section 4) explores avenues for creating novel detection statistics
by extending the concepts developed previously: combinations of existing decision
surfaces, creation of arbitrary axially-symmetric decision surfaces and usage of differ-
ent background clutter model transformations. Concluding remarks are regrouped in
Section 5.
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2 Basics
2.1 Notation

We begin by establishing the mathematical notation that will be used throughout this
report. Generally speaking, vectors and matrix will be represented by bold, upright
characters such as X (matrices will use capital letters such as A) while scalars will
use normal case, italic characters such as a. Idempotent matrices (projectors) will be
noted with a P, but sporting an index noting the subspace into which it projects. If
they also feature the 1 symbol, then they project into the subspace perpendicular to
the one denoted by the index.

The measurement under test will be denoted x. Typically x will be composed of a
background clutter component b, to which is added sensor noise n and possibly a
contribution containing the target signature s. All those vectors are column vectors
of size k x 1, where k is the number of spectral elements. In many detection statis-
tic formulations, the measurement under test and the target signatures are linearly
transformed for various purposes. For now we note this generic transformation A.
We will note the transformed measurement and target signature Ax =y and As = t,
respectively.

2.2 Hypothesis testing

Detection of a particular material in a hyperspectral measurement is, most of the
time, construed as a binary hypothesis testing problem. The detection procedure
aims to choose, between two hypothesis, which one explains the measurement the
best. The first hypothesis, often designated the “null” hypothesis and denoted Hy,
asserts that the target is not present in the measurement; while the second, designated
H, asserts that the target is present. In mathematical terms, each hypothesis is
associated to a different measurement model. For example, a very common set of
measurement models (adequate for the case of translucent or sub-pixel targets in the
thermal infrared) is give by:

Hy : x=b+n, (la)
Hy : x=b+as+n. (1b)

Under hypothesis Hy, the measurement X is composed of instrument noise n added to
background clutter b. Under hypothesis H;, the term as is added, which is the target
signature s times a strength (or abundance) factor a. In most realistic scenarios,
those terms are not known precisely. The instrument noise term n for example is
generally characterized by its covariance matrix 3,, which is often assumed to be
diagonal, if not outright proportional to the identity matrix (i.e. X, = o2l). Likewise,
the background clutter term b is not known exactly. Some models assume that
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its statistics (such as covariance matrix ) are known a priori; others need them
estimated from background clutter samples. Most models assume § to be known a
priori (which may or may not be a reasonable assumption depending on the target
and physics in play), and a to be unknown. In the latter case, deciding between H
and H; is thus the same as deciding whether a = 0 or a # 0. Such an additive target
model can be useful even if it does not faithfully represent the physics of how the
target’s signature appear in the measurement. For example, radiance coming from
gases will typically add a density-contrast product term of the form:

DCP =A-(1—e 3, (2)

which approaches 0 whenever C' (a concentration parameter) is small, and saturates
to A (a contrast parameter) when C' becomes very large [7]. This term is not linear
in s, but when C's < 1, it can be approximated by DCP ~ as with a = AC' (hence
the name “density-contrast product”).

Hypothesis testing thus involves a binary function of the measurement X, ¢(x), whose
value can be either 0 (in which case hypothesis Hy is favored) or 1 (H; favored).
Most often, the binary nature of this function is realized by comparing a continuous
detection statistic d(X) to a fixed threshold 7:

> choose H;
d(x) =74 Hyor H . (3)
< choose Hy

While it is possible to devise ways to perform target detection without resorting to
a comparison between a continuous detection statistic and a threshold?, it is safe
to say that this is the most common and studied way of posing and solving the
binary testing problem. It is useful to build a picture of the geometry of d(x) (the
continuous detection statistic) and ¢(x) (the actual binary test). Different values of
X are points in a k-dimensional space; d(X) assigns a scalar value for each possible
X, creating a scalar field in the measurement space. t(X) assigns either 0 or 1 to the
each possible X, by comparing the corresponding scalar value to a threshold. This
creates a (k—1)-dimensional surface in measurement space separating measurements
assigned to hypothesis Hy from those assigned to H;. This surface is called the
decision surface or the decision boundary, and specifying its exact shape and position
is entirely equivalent to specifying the test ¢(x). One obvious consequence of this is
that hypothesis tests sharing the same decision surface are in fact the same test.

2.3 Performance metrics

Choosing the best hypothesis test ¢(x) (meaning here the best combination of a de-
tection statistic d(x) and a threshold 7) is a hard problem in general [8]. It depends

2For example, classification via clustering is not based on a threshold comparison.
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upon the actual measurement model, which may or may not be accurate in the first
place. It also depends on the acceptable false alarm rate. Every hypothesis test has
a probability of detection pp (that a measurement containing the target is correctly
assigned to H;) and a probability of false alarm pp (that a measurement not con-
taining the target is incorrectly assigned to H;), which both depend upon the chosen
threshold 7. Assuming a detection statistics such that d(x) > 0, setting the threshold
to zero means assigning H; to every measurement. This implies pp = pr = 1 in all
conditions. Conversely, choosing an arbitrarily large threshold is akin to assigning H
to every measurement, implying pp = pr = 0. Values of 7 between these extremes
result in tuples (pr,pp) that describe a curve between (0,0) and (1,1). This curve
is called the receiver operating characteristics curve, or ROC curve. It is interesting
to note that choosing between Hy and H; at random — which is a valid, hypothesis
test — produces a ROC curve that is a straight line between (0,0) and (1, 1), the
exact value of pp and pp being set by the probability of choosing either hypothesis?.
This constitutes the worst possible ROC curve, as this hypothesis test does not even
take into account the information present in the measurement. Any ROC curve pre-
senting lower probabilities of detection could be interpreted differently by reversing
the decision and thus obtaining better-than-random results. It can be shown that
ROC curves for threshold-based hypothesis tests must be monotonically increasing,
and that ROC curves that are not convex are not optimal [9, 10].

Comparing probabilities of detection (pp) alone is meaningless when trying to design
the best hypothesis test, as it says nothing about the associated false alarm rate,
which we wish simultaneously as low as possible. Any comparison of pp must be
done at the same pyr to be meaningful; and some values of pr (typically very low
ones) generally present a greater interest than others. Comparing ROC curves is thus
the preferred way to assess the performance of detection tests. One way to reduce this
comparison to a single figure is to quote the area below the ROC curve, or variants
of this metric in which lower values of pr carry more weight.

While ROC curves are useful to compare different detection statistics, they do not
answer two important questions:

1. Is there, for a given measurement model and associated statistical distributions,
a detection statistics that offers an even better performances; and

2. How to find or build it if it is indeed the case.

First, “better performances” must be defined. A detection test that offer the best
pp for all pr and for all values of the parameters on which x depends is called the
universally most powerful (or UMP) test. An UMP test for a given detection prob-
lem is not guaranteed to exist. However, for a given pp and given values of all the

3This can be implemented as a threshold-based test by randomly generating values between 0
and 1 and using the desired probability of choosing H( as the threshold.
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parameters on which X depends, the locally most powerful (or LMP) test is guaran-
teed to exist. Finding the UMP or LMP can be straightforward or mathematically
intractable depending on the chosen measurement model and statistical distributions
associated with its parameters [11].

Other performance metrics can also be sought. For example, some detection statistics
provide the same false alarm rate regardless of the values of the parameters affecting
the measurement model X (in particular, noise power o2). This property is called
constant false alarm rate, or CFAR. CFAR tests greatly simplify choosing an appro-
priate threshold, as it does not have to be adjusted whenever measurement conditions
change. In the absence of any certitude regarding the optimality of a detection statis-
tics, a statistic which is proven to provide CFAR is quite appealing. However such
proofs depend again on the specific measurement model and associated statistical
distributions, and their validity in real-world scenarios may be questionable.

2.4 Generalized Likelihood Ratio Tests

In this context, the Neyman-Pearson lemma [11, 12] is an island of certitude upon
which test designers often rely. It basically states that the likelihood ratio test, or LRT,
is LMP for the test’s size! (and may also be UMP). The LRT consists in comparing the
likelihood ratio (or likelihood function) A(X) to a threshold. The likelihood ratio is the
ratio of the conditional probabilities that H; and Hy be true, given the measurement
under test:

_ p(x|Hy)

A(X) = SCTAR (4)

However, the LRT requires knowledge of the exact values of all parameters upon
which x depends (including, for example, noise power ¢2).

When this knowledge is unavailable, estimating the value of the unknown parameters
from one or many measurements using mazimum likelihood estimates (MLES) results
in the generalized LRT, or GLRT. While the GLRT does not possess the same general
optimality properties as the LRT, it provides a solid framework on which to build de-
tection statistics given a measurement model and assumed statistical distributions. In
fact, we previously showed that many popular detection statistics are indeed GLRTs
for specific measurement models [5]; furthermore, it may be possible in some cases to
deduce for which measurement model a particular detection statistic is a GLRT.

Readers interested in a more detailed discussion of hypothesis testing, ROC curves,
constant false alarm rates and detection and estimation in general are invited to read

4The size « of a statistical test is the maximum probability of incorrectly rejecting the null hy-
pothesis — which is the maximum allowable false alarm probability in the context of this discussion.
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the works of Kay and Poor [12, 11] and our previous report on the topic of detection
algorithms [5].

2.5 Background models

We conclude this section with a note about background clutter models. This work
will deal with three models for modeling background clutter b; other models of course
exist but to our knowledge, our selection includes most popular detection statistics.
The first model consists simply in assuming that there is no clutter, i.e.

b=0, (5)

reducing the additive measurement model to X = as + n. The second model is by far
the most common and assumes the clutter to be completely characterized by first-
and second-order statistics (namely the clutter mean, by, and covariance, Xy):

b ~ N(by, Zp) . (6)

We will refer to this model as the statistical background model. The third model as-
sumes that clutter b is a linear combination of a limited set of orthogonal components,
forming the basis of a background subspace. According to this background subspace
model,

b = Bc, (7)

where the columns of B generate the background subspace and ¢ is a vector of coeffi-
cients that are typically unknown. B is generally estimated (typically using singular
value decomposition, eigenvalue decomposition or linear unmixing techniques) based
on samples included in a training set, as are by and Xy,

Parameters by, 3 and B appear in detection statistics when transforming the mea-
surement and target signatures so as to lessen the influence of the background clutter.
1

For example, the matrix square root of the inverse covariance matrix, X, 2, is com-
monly called the whitening transform because when applied to the measurement X, it
reshapes the background clutter term to white noise (so that its covariance matrix 3y,
is transformed into the identity matrix I). Another commonly used transformation
is:

Ps —1-B(B'B) 'B’, (8)

which is an orthogonal projector outside of the background subspace B. In order
to remain general, the arbitrary transform A will be used in this work to denote
either of those transformations (or even the identity matrix in the case where clutter
is neglected). Again, without loss of generality, and in order to simplify notation,

DRDC Valcartier TR 2013-121 7



we will use y = AXx and t = As to denote the transformed measurement and target
signature.

Note that when using either the statistical or background subspace model, there is
a distinction to be made between the real clutter covariance matrix or projector (if
known or assumed a priori) and an estimate thereof computed from a training set
containing a number of clutter samples. When an estimate from a training set is
used, the detection statistics are often referred to as being adaptive.

8 DRDC Valcartier TR 2013-121



3 Taxonomy of decision surfaces

As stated in section 2, a binary hypothesis test is entirely defined by its decision
surface. In this section, popular detection statistics are sorted into increasingly com-
plex categories according to the shape of their decision surfaces. In the following
subsections, each decision surface will be described in the transformed measurement
(y = AX) space first, as it will be common to (and thus share basic properties with)
many detection statistics using different transformations A. The effect of transfor-
mation A on the decision surface in the real measurement space will be discussed
afterwards.

3.1 Planar decision surfaces

Planes are arguably the simplest decision surfaces. A plane in the (transformed) mea-
surement space can be defined by specifying the norm (i.e. length) of the projection of
y onto the the plane’s normal vector, which is generally chosen to be the transformed
target signature t = As:

[Pyl = 7. (9)

In other words, the set of transformed measurements y for which the norm of their
projection unto t is the same will constitute a plane (see Figure 1). Any monotonic
(order-preserving) transformation of ||Pyy|| and 7 constitutes the same constraint and
thus will yield the same specific plane. This implies that a large number of detection
statistics can be reduced to a test equivalent to the one of Equation (9). Noting first
that:

P =t(tTt) t, (10)

by definition of the projection transformation (see [13] and [5]), the following test
also generates a planar decision surface, as it is simply the quantity of Equation (9)
squared:

(tTy)2 > choose H;
= 74 Hy or Hy . (11)
< choose Hy

Pyl =
[Py It

This is also true of any test of the form:

> choose H;
C (tTy)n =T HO or Hl s (12)
< choose Hy

DRDC Valcartier TR 2013-121 9



since multiplication by a scalar and exponentiation constitute monotonic transforma-
tions which do not change the constraint specifying the basic shape of the decision
surface. If the same monotonic transformation is also applied on the threshold, then
the position of the plane along its normal t will also be preserved. Note that in
Equation (11), the term t"t on the denominator is not dependent upon the measure-
ment y; and since t is assumed to be known, or at least is not estimated from the
measurement, it reduces to a scalar.

y
[Pyl /

Figure 1: Planar decision surfaces arise from specifying ||Pyy]||.

The linear transformation A can only scale and rotate the decision boundary. A is
typically applied in order to orient the plane as to better separate the background
clutter from measurements containing the target. However, the decision boundary
remains a plane whether or not A = 1. An important implication of this is that by
choosing the right threshold 7 and transformation A, all the tests having a planar
decision surface can thus be made to produce the exact same output for any X, and
thus have the same ROC and overall performances. In essence, all tests having planar
decision surfaces are in fact the same, up to position and orientation parameters.

Detection statistics that produce planar decision surfaces include simple correlators
that can be expressed as t"y. When background clutter is neglected (A = 1) this yields
the matched filter s"X, which is often normalized (without affecting its performances)
to yield the quantity:

s'x

a=—.
s's

(13)
This quantity is the MLE estimator a for the abundance factor a, given the additive
measurement model of Equation (1). Note that assuming s known, the denominator
is simply a scalar.

_1
When a statistical clutter model is used and A = 3 *, the resulting detection statis-

tics, 8" X, ', is often called clutter-matched filter or Fischer’s linear discriminant
[12, 11], and is also often normalized to produce the corresponding abundance esti-
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mator:

s'3, 'x
T s s (14)

Q>

Using the background subspace model produces the analogous statistic s Pgs and
abundance estimator:

s'Pgx
= —0—.
s'Pgs

Q>

(15)

An interesting case is the constrained energy minimization (CEM) detector [14, 15,

16], which has the same form but uses A = Ry %, where Ry is an estimate of the
correlation matrix instead of the covariance matrix. While such a switch changes
its position and orientation in measurement space, the decision surface generated by
using this detection statistic remains a plane.

Squaring the numerator and using the form of Equation (11), the resulting detection
statistics become energy estimators because they are the MLE for o2, given the addi-
tive measurement model. When the covariance matrix is known a priori, the matched
subspace detector (MSD) is thus produced; when an estimate from a training set
is used instead, the detection statistics is called adaptive matched filter (AMF) or
sometimes adaptive subspace detector (ASD) [17, 18, 19, 14].

Since variations in o2 will always change the proportion of measurements X that are on
either side of the decision boundary for noise distributions that extend radially around
a mean, detection statistics that produce planar decision surfaces cannot possess the
CFAR property under this assumption. Indeed, a larger value for o2, which would
swell the distribution of X under hypothesis Hy, would have to be compensated with
a larger threshold 7 in order to keep the same false alarm rate.’

Table 1 presents a summary of various detection statistics that generate planar deci-
sion surfaces.

3.2 Cylindrical and closed decision surfaces

It is possible to use the detection statistics described in subsection 3.1 to decide
whether any combination of two or more target signatures (aSp + a181 + - - - + a,S,)

5This is true for radial distributions of X unless the planar decision surface includes the mea-
surement mean by under Hy and thus splits the distribution under Hy exactly in half, yielding a
constant 50 % false alarm rate when o2 changes. This would happen when setting the threshold to
zero and ignoring transformed measurements with the opposite sign to the signature; this situation
is thus a trivial case.
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Table 1: Examples of detection statistics with planar decision boundaries.

Simple  Abundance Energy
correlators estimators  estimators

2
t'y (t'y)
Clutt del th -
utter mode y Tt I
2
A=l s'x s'x (s'x)
s's s's
1 s’y 'x (sTZ]‘lx)2
A=X"2 s' 2 'x
s’y ls s’y ls
L 2
A — PJ_ sTPJ_x sTPJB_X (STPB X)
B B sTPis sTP:s
B B

is present using the same additive model as previously used. In that situation, the
projector Py into the (transformed) target signature is simply replaced by Py, the
projector into the target subspace T = [tot;---t,]. For this reason, such detection
statistics are generally called subspace detectors [20].

The condition ||Pry|| = 7 generates a hyper-cylinder in the transformed measurement
space, curving the planar decision in such a waw that it becomes perpendicular to all
targets (see Figure 2). The linear transformation A skews (and rotates) this cylinder,
giving it an elliptic cross-section in the original measurement space.

t, b

—
|\ )/
—

Pry

\

Figure 2: Hyper-cylinders are formed when specifying ||Pry||.

As an increasing number of targets are added to the target subspace T, more dimen-
sions are folded into the hyper-cylinder. An interesting phenomenon arises when
Pr = |, meaning that all possible targets are to be detected. This completely
wraps the decision boundary around the measurement mean under H, so that it
becomes perpendicular to all directions. The decision surface is then a closed sphere
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in transformed space (see Figure 3), producing a category of detection statistics called

anomaly detectors, since they are used when no a priori information about the tar-

get signature is known. For example, using the statistical background clutter model
1

(A =X, ?) with Py = I, the energy estimator form of the binary test reduces to:

> choose H;
||y||2 =x"2,'x = 7{ Hy or H, , (16)
< choose Hy

which is the Reed-Xiaoli (or RX) anomaly detector. This detection statistic works
by imposing a threshold on the Mahalanobis distance from the measurement mean
under Hy, which is ||y|| assuming mean-removed measurements. The decision surface
in the original measurement space is an ellipsoid shell, choosing H; over Hy for all x

outside.

Figure 3: Spheres are formed when specifying ||y||, which is the case when Py =
. In the non-transformed measurement space, this translates into ellipsoids as the
Mahalanobis distance is fixed.

When A = I, the corresponding anomaly detector is simply x'x = ||x||2: any mea-
surement with a norm larger than the threshold (typically some multiple of the noise
power) makes the test choose H;. Using the background subspace model, the corre-
sponding anomaly detector would be x"Pgx, but it does not seem to be commonly
used as it was not found in the literature.

3.3 Conical decision surfaces

A way to turn a detection statistic with a planar decision surface into a CFAR statistic
is to dynamically adjust the threshold 7. This can be accomplished by making 7
proportional to the noise power 2. However this is only useful when o2 is variable,
in which case it is generally unknown. The MLE estimate for o2 is y'y (which
is true for all background models — meaning any transformation A — considered
under the additive model of Equation (1)). Thus, the decision surface specified by

DRDC Valcartier TR 2013-121 13



the constraint:

Pyl =y Py=r7(y"y) (17)

can be seen as a plane which distance to the origin® depends upon the noise power
estimate. However, rearranging terms, this constraint can be written as:

y'Py
y'y

The left hand side in the above equation is nothing else than the squared cosine of the
angle o between y and t. A threshold test on this value generates a decision surface
that is a cone around t (see Figure 4) and with its apex at the origin. Transformed
measurements Yy having a large angular distance with t are classified as pertaining to
H,, while those inside the cone are deemed to correspond to H;. It is to be noted
that strictly speaking, the decision surface is a double cone. Testing for the sign of
Py can be used to reject one of the cones if necessary (e.g. if the measurement model
forbids negative values for the abundance factor a).

Py
Pty1 y
(| Pyl
1%

Pyl _
= COS
Iyl

(18)

Figure 4: Cones are formed when specifying the angle o between y and t.

The transformation A = 3, : generates flattened cones having elliptical cross-sections
in the original measurement space. The case of A = Pg is a bit more peculiar however.
The projector effectively suppresses any constraint in the directions spanned by B,
producing “hyper-wedges” in the original measurement space along the dimensions
spanned by B (see Figure 5). The situation is in fact slightly more complicated as
the surface decision is closed (cone-like) around s along other dimensions (which is
especially difficult to illustrate and was not attempted in Figure 5). Cones and wedges
become very similar in the original measurement space if the cross-section of the cones
are elongated ellipses.

The statistic of Equation (18) can be monotonically transformed in numerous ways,
resulting in different expressions that nonetheless generate the exact same decision

5The origin corresponds to the measurement mean if this quantity has been removed from all
tested measurements prior to processing.
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I
P3s
. Pz X
0) Bl

Figure 5: When A = Pg, angular constraints in subspace B create wedge-shaped
decision surfaces along B in measurement space. The decision surface actually wraps
around s in directions orthogonal to s and B, which cannot be easily illustrated in
three dimensions.

surface and thus the same ROC. The most frequent forms of detection statistics gen-
erating conical decision boundaries are listed in Table 2. The F-form is so called
because being a ratio of variance estimates, it constitutes an F-statistic, following a
Fischer-Snedecor distribution if y follows a normal distribution. This ratio of vari-
ances can be interpreted as the ratio of the energy of the target contribution alone
(yTPy = ||Pyy]||*) to the energy of the measurement y excluding any target contribu-
tion (y"P{y = H PtLyH2); thus it constitutes an estimate of the signal-to-noise ratio (or
more precisely, the signal-to-clutter ratio). Detection statistics with conical decision
surfaces are thus SNR estimators.

Table 2: Common forms and expressions for detection statistics with conical decision
surfaces.

a-form p-form F-form Expressions Range
F  |Pyl* _y'Py
cos? o = 0,1
1 1 IPyl® _ y'Py
2 1-— 4 l 2T T i [0, 0]
tan? o n |Py||”  Y'Pry
1 1 Iyl _ y'y
—5 . F+1 T3 T ol [1, 00[
sin” o n IPiy|” Y Py

The sector-shaped decision boundary confers the CFAR property to the associated
detection statistics: any radial swelling of the measurement distribution due to vari-
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ations of noise power o2 will not change the ratio of target-free measurements in-
tercepted by the cones. There are many detection statistics in the literature that
generate conical decision surfaces. The spectral angle mapper or SAM is perhaps the
simplest of them[14]. It can be obtained by neglecting background clutter (A = 1),
which results in the following statistic:

(s™x)"
COS2 Q= - :

(19)

When the statistical background model is employed, the resulting detection statistics
is often called adaptive coherence (or cosine) estimator (ACE), also called CFAR MSD
(when the covariance matrix is known a priori) or CFAR ASD (when an estimate from
a training set is used instead) [17, 18, 14]. When A = Pg, the corresponding detection
statistic [20] is bizarrely often called GLRT, despite all other statistics cited in this
paper being also generalized likelihood ratio tests for different assumptions about the
measurement model [5]. This detector will be refered to as Scharf’s GLRT.

Conical detection statistics can also be used for subspace detection, using Py instead
of Py; however the cone opens up as a wedge around the volume formed whenever
a dimension is added to T, and thus does not produce an anomaly detector when
setting Pt = | (which results in a division by zero).

3.4 Hyperboloids and paraboloids

In the previous sections, we found detection statistics having decision surfaces in
the shape of planes, cylinders, ellipsoids, cones and wedges. It is then only mildly
surprising to discover hyperboloid detection surfaces. However they can arise in
different situations. In the case of Kelly’s detector, in which Kelly [21] used the joint
probability distributions of both the measurement under test and the training set to
build the likelihood ratio, the GLRT he obtained is the harmonic average of a planar
and conical decision surface, producing an hyperboloid of two sheets (with t as the
axis) instead of back-to-back cones. Kelly’s detection statistic can be expressed as:

y' Py . 1

- Ty L 4 1
F+Y'Y oot aw

dn(y) (20)

where d,(y) is a planar detection statistic and d.(y) a conical detection statistic given
by:

y Py
v'y

.
P
dy) =Y and dily) =

(21)
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One can show that the statistic of Equation (20) generates an hyperbolic decision
surface by comparing it to the equation of an hyperbola in the cartesian (z,y) plane:

Lo =1, (22)

and by associating the y-axis with the direction of the target signature in the trans-
formed space, t, and the x-axis with the subspace perpendicular to the target sub-
space. Projecting a transformed measurement y unto each subspace, the norm of the
projection along x becomes HPtLyH while the norm of the projection along y becomes
IIPty|| (see Figure 6). By noting that:

1Py +|[PEy|” = lyll? (23)

and making the following subtitutions into Equation (22):

v = [Pyl (24a)
2
2 = |[PEy[]" = lyl* — 1Pyl , (24b)
v =k, (24c¢)
kT
2
T (24d)

one effectively obtains a constraint on the detection statistics dj,(y) of Equation (20):

2 2
Y T
PERRR T
1—7 > lvl? Pyl
P _ =
ka ” ty” k + k 17
1—71 2 2 2
TPyl + IRl =yl
Py
P _ et e
Py  y'Py

(25)

k+lyl? k+yly

In Kelly’s formalism, k is the number of elements of the spectral vectors, but together
with the threshold, this parameter controls the depth and opening of the hyperboloid.
The slope m of the hyperbola’s asymptote is entirely defined by the threshold 7:

= ) (26)
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and the hyperbola’s minimum is located at

kT
1—7

[Pyll = a = (27)
Thus, the aperture of the hyperbola (but also the position of the minimum) is con-
trolled by 7 through m, and the position of the minimum can be adjusted by k once
T is fixed.

Kelly’s detector presents a very interesting compromise between the non-CFAR planar
decision boundary and the CFAR conical boundary. The second half of Kelly’s original
article is dedicated to showing that the statistic of Equation (20) has the CFAR
property; but barring a different interpretation of the meaning of this property, it
simply cannot be considering the shape of its decision surface. Interestingly, this
decision surface becomes an ellipsoid (the RX anomaly detector) when Py =1. When
A = P35, the detection statistic produces wedges with hyperbolic cross sections; to
our knowledge, this has not been described in the literature, but is analogous to both
Scharf’s GLRT and Kelly’s detector.

tx
P.y y
a
O Py

Figure 6: é constraint on Kelly’s detection statistic matches the equation of an

hyperbola, % — ﬁ—; = 1, in the plane defined by z = ||P{y|| and y = ||Pyy||. The
decision surface is thus an hyperboloid of revolution around t.

Another way in which hyperboloids can arise is shown by Schaum [22], in which the
Joint Affine Matched Filter emerges as a way to discriminate between background
clutter and target distributions that lie along different spectral directions, but coincide
at the origin when illumination drops’. In this scenario, the decision surface is an
hyperboloid of one sheet, the asymptotes being half-way between the background and
target subspaces.

Paraboloids of revolution appear in measurement models in which a distance metric
is held constant between a point and a hyperplane, as in the Affine Matched Filter
(AMF) [22, 23], which is used for a measurement model where the distribution of the
measurement under hypothesis H; is a hyperplane whereas it is radially symmetric

"This is the case when the clutter is substituted by the target instead of being mixed with it,
such as when the target is translucent or sub-pixel in size.
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around the measurement mean under Hy. This could also generate a hyperbolic
paraboloid (Pringles-shaped) decision surface depending on the particular geometry
of the problem.
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4 Expanding the family

The detection statistics presented in the previous section are described by expres-
sions that often hide the simplicity of their associated decision surfaces. Once an
understanding of the mechanism by which decision surfaces are generated is reached,
building detection statistics having different decision surfaces becomes easier. This
section explores ways to use the mathematical framework of the previous sections to
build new detection statitics. This work is not meant to evaluate their performance
or compare them, but simply to show that it is possible to precisely craft new decision
surfaces if the need arises. We present in this section three vehicles for tweaking the
shape of decision surfaces.

4.1 Combinations of detection statistics

Logical operations between the previously visited detection statistics may in turn
produce interesting decision surfaces. For example, it might be tempting to limit the
false alarm rate of a detection system by raising an alarm only when multiple detec-
tion tests have reached the same conclusion. This operation generates the geometrical
intersection (logical and) of the various decision surfaces involved. For a given mea-
surement X, the more stringent combination of detection statistics and threshold sets
the “active” decision surface.

For example, the intersection of a planar an conical decision surface results in a
truncated cone. If a measurement is found inside the tip of the cone but under
the plane, Hj is chosen because while it is angularly close enough to the target
signature for an alarm to be raised considering the conical statistic alone, it is not far
enough from by to warrant an alarm according the the planar statistic. Likewise, a
measurement found above the plane but outside of the cone will not trigger an alarm
because while far enough from by according to the planar statistic, it is angularly too
far from the target signature to warrant an alarm according to the conical statistic.
The resulting decision surface is in fact very close to the hyperbolic surface described
in subsection 3.4, and as such, may not present a significant performance difference®.
The Continuum Fusion framework proposed by Schaum[24] can be used to build de-
cision statistics by performing the union of an infinite number of decision surfaces
generated by continuously varying a parameter of interest in the expression a gener-
ating statistic.

The union (logical or) of a large number of planar decision surfaces having different
normals can also technically be used to create a facetted global decision surface that

8Notably, as is the case with the hyperbolic statistic, the truncated cone cannot possess the
CFAR property for radial clutter distributions
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could have an arbitrary shape. The difficulty of this proposition mostly lies in spec-
ifying the exact shape of the surface (i.e. the normals and thresholds), and may be
better suited for anomaly detectors or “broad-spectrum” detectors that makes use of
a large number of possible target signatures.

4.2 Arbitrary axially-symmetric surfaces

The formalism developed in subsection 3.4 to analyze Kelly’s detector makes it easy to
build a detection statistic associated with decision surfaces having an axial symmetry
around t, but otherwilse an arbitrary profile along this axis. Tlhe ideas is to specify
y =[Py = (yTPty)§ as a function of x = HPtLyH = (yTPtLy)ﬁ. Since the resulting
decision surface is axially-symmetric, its profile only needs to be specified in the first
quadrant. For example, this technique can be used to specify the conical statistics
discussed in subsection 3.3. The double-cone’s profile in the first quadrant is simply
given by the equation:

y=maz, (28)

where m is the slope of the cone’s profile. The cone is completely open with m = 0
and closes as m — oo. Using the substitutions discussed above, one obtains:

[Py =m Pyl ,

||Pty||2 y Py 2
_ —m?, 29
Pyl vy (29)

which is the F-form of the conical statistics as listed in Table 2. Thus, a detection
test using this statisic is a threshold comparion on the square of the slope of the cone.

By noting that ||ly||* = ||Py|* + HPtLyH2, that form can be changed to:

IPy[* = m?* (lylI* — IPwy]”) .

||Pty||2 _ VTPtV _ 1
lyl>  yly  14+m?’

(30)

which is the cos? a-form of Equation (18). The corresponding detection test is a then
a threshold comparison on the right term, which has an inverse ordering compared to
m?: it takes the value 1 when the spectral angle is zero or 7 and is zero-valued when
the angle is 7/2.

We now proceed to use the same technique to build axially-symmetric decision sur-
faces along t with profiles that were not described in Section 3.
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4.2.1 Double cones with offset tips

Creating a decision surface in the shape of back-to-back cones whose tips are offset
(i.e. not set at the origin) becomes a matter of starting with the profile y = mx + b,
where b is the distance from the origin to the tip of the cones. The presence of the b
term prevents the creation of an elegant expression using pure quadratic forms (such
as Y ' Pyy); instead the square root of the quadratic form must be used:

[Py =m||Ply||+0,

Py
m (YTPy)? +b
TP %
(y ty) =m, (31)

(V'Py)? + 2

The offset cone cannot possess the CFAR property but is another way to compromise
between a planar and a conical decision surface.

4.2.2 Paraboloid

It is also easy to create a decision surface shaped as a paraboloid of revolution having
t as its axis. By using the equation for a vertical parabola centered on the y-axis:

y=azr’+c (32)

and using the substitutions:

y — [Pyl (33a)
2t — HPﬁsz , (33Dh)
a— T, (33c)
c— kt, (33d)

one obtains the detection test:

hoose H;
P y'Py)'Z "
T T (34)
kA [Py YRy <

doffset cone —

choose Hy

This is another compromise between a planar and a conical decision surface; how-
ever, contrary to the hyperboloid of Kelly’s detector presented at subsection 3.4, the
paraboloid is not bounded by asymptotes and thus opens wider around t.
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4.2.3 Square root profile

One valid critism of conical decision surfaces is that it fails to prevent false alarms
that corresponds to target-free measurements found at the tip of the cones, i.e. close
to by, where the distribution under Hj typically shows a high probability density.
This is unavoidable if the detection statistics is to have the CFAR property under
a radial swelling of the distribution under Hy. Yet imposing a bottom limit on the
axial well of the decision surface, as is the case when considering the union of a cone
and a plane, or ofsetting the cones’s tips, or using either a paraboloid or hyperboloid
as a decision surface, may totally preclude the detection of targets at very low SNRs.
Another way to limit the false alarm rate without completely preventing detection
of low-SNR targets is to pinch the tips of the cone, employing a profile shaped as a
square root, for example.

A square root profile would be given by y = y/ax:

[Pyl = /a HPtLVH ;

IPy[* = a|Ply| .
vy Py > choose H;
———= —=a =7 Hyor H; . (35)
(yTPtL y)i < choose H,

In this case the threshold adjusts the aperture of the decision surface. However it
opens very fast in the shape of a trumpet bell, meaning that the constraint on angular
proximity of the tested measurement with the target is very lax when its norm is large.
This may be an interesting behavior but we are not aware of a scenario in which this
could provide useful.

4.2.4 Piecewise-continuous profile

Limiting the trumpet-like extension of the decision surface found in the previous
example can be done by providing a piecewise-continuous profile, in which the square-
root dependance is replaced by a linear dependance at higher measurement norms:

Y= { \/ﬂ (I < C) . (36)

mr+b (xr>c)

This detection statistic behaves like a conical one at high measurement norm (x > ¢)
but is more restrictive at low norm. It is however more complex to implement because
of the necessary test on the norm of the input measurement. Note that the same
decision surface can be obtained by the union of a square root and a conical surface.
First-order continuity can be obtained by carefully chosing parameters a, b, ¢ and m.
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4.2.5 Another cylindrical decision surface

In the additive measurement model of Equation (1), the measurement distribution
under H; is translated (by the vector quantity as) but its covariance is unchanged
by the presence of the target. Thus, there is no need for an axially-symmetric de-
cision surface that keeps expanding along the direction of the target signature: at
large abundance factors a, a constant threshold on the accepted spectral angle will
probably include a measurement subspace that is much larger than the measurement
distribution under H;. One possible fix to that problem is to use a decision surface
that is not expanding but which is still axially-symmetric around t. A cylinder having
t as its axis would fit that description and would be given by the constraint x = r,
leading to the test:

s choose H;
y' Py =1r? =14 Hyor H; . (37)
< choose Hy

This test would however possess a false alarm rate close to 1, because the bulk of the
measurement distribution under Hj is also contained within the resulting cylinder.
In order to prevent this, the cylindrical decision surface should be combined with
another constraint that would act as a bottom on the cylinder. This could be planar
decision boundaries, but also (and perhaps more simply), an anomaly detector: the
intersection (logical and) between the Hj region of an anomaly detector (i.e. the
exterior of its shell) and the H; region of the cylindrical decision surface above (its
interior) would produce cylinders capped with curved surfaces following the Hy dis-
tribution profile. Note that the cylindrical decision surfaces presented in subsection
3.2 are not axially-symmetric along t; instead the cylinder wall of planar subspace
detectors is perpendicular to all targets signatures.

4.2.6 Tangent profile

A variation on the capped cylindrical decision surface presented above would be to
use a tangent-shaped profile:

y = btan (E—E)#—c. (38)

a 2

The 7 translation is meant to give a profile that is almost cylindrical when y is large
but pinched when it is small, reducing the false alarm rate more drastically than
a conical decision surface. Parameter a adjusts the radius of the limiting cylinder
(which is unity when a = 1). Parameter c raises the position of the tangent profile’s
knee, which should probably be adjusted at the distance from by where one would
traditionnaly use a planar decision surface. Parameter b is a stretch factor that adjusts
the slope of the knee.
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4.2.7 General profile

While it is unclear if any of the previous decision surfaces would provide an advan-
tage over conical or Kelly’s statistics, with which they share their axial symmetry,
they illustrate how any profile can be used with the proposed technique. In general,
arbitrary profiles specified by y = 7 f(z) will yield detection tests of the form

> choose H;

d:%zT Hyor Hi . (39)

choose Hy

Without loss of generality, if f(z) is expanded into its power series f(x) = ag+ ajx +
ax®+- -+, one can see that 7 pre-multiplies all of the coefficients when considering the
decision surface given by y = 7 f(x). Thus the threshold influences both the distance
of the decision surface in the direction of t, as is the case with planar surfaces; the
slope of the linear profile (and thus its opening angle), as is the case with conical
surfaces; and all further terms. In the non-transformed measurement space, the
axially-symmetric profiles adopt squished (elliptical) cross-sections instead of circular
ones.

It could be interesting to build decision surfaces that are tailored to the background
clutter distribution by carefully choosing f(x), perhaps by compiling an histogram
of the actual values of y from a training set. The decision surface profile would
then be obtained by interpolating the results and then computing an inverse profile
within the range of the histogram, and extrapolating the profile outside the range
of the histogram with either a cylindrical or conical shape. This idea has yet to be
tested but might provide a way to adapt an axially-symmetric decision surface to
non-elliptical measurement distributions.

4.3 Other transformations

We explored the three cases A =1, A =X, 2 and A = Pg, which are different ways of
dealing with background clutter. The formalism of specifying an arbitrary transform
A suggests that other background clutter models could be taken into account, or in
general, new properties can be injected into otherwise known detection statistics just
by tweaking the transformation matrix A.

One example of this is rendering detection statistics invariant to biases in y or t,

which could be useful for measurement models in which an unknown bias appears®.

9We are however not aware of such a model; errors in atmospheric compensation or signature
characterization may induce such biases.
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Intuitively, this could be achieved my removing the average levels z and s of X and s,
respectively, before computing the detection statistics. This operation is a projection
transformation out of the bias space 1=[11--- 1]":

Pr=1-1(1T1)"1T. (40)

The expression above is simply the same as in Equation (8), but with the background
subspace B replaced with the bias subspace 1. When using A = P, for example, the
conical detection statistics becomes Pearson’s coefficient of determination, r2. It is to
be noted that r? can be proven to be the GLRT for the additive model with unknown
biases [5].

It is interesting to see that this property can also be blended with projection outside
of a background clutter subspace. The projector:

Pg, = PsP; Pg, (41)

with z = Pg1, is a projector that is simultaneously orthogonal to 1 and B. Using
A= Péﬂ, one can add bias invariance to all detection statistics using the background
subspace model. Bias invariance could also be included in detections statistics based
on the statistical background model by using A = 3, 'Py.

The linear transformation A described in this paper could also conceivably be replaced
by a non-linear transformation of both X and s. This could be used to adapt the test’s
decision surface to the shape of the clutter’s distribution. Producing decision surface
tightly tailored for a clutter distribution is however aptly done using the so-called
kernel trick-based detection statistics [25], in which all the samples in a training set
are involved (at the cost of more computing effort).
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5 Conclusion

By examining the shape of the decision surfaces generated by threshold-based de-
tection tests, we established that a large number of popular detections statistics for
hyperspectral target detection can be bundled in a few categories that share the same
basic decision surface geometry, despite differences in nomenclature and form. Indeed,
detection statistics with different names and described by different equations can be
made equivalent by using the appropriate parameters. Equivalently, many detection
statistics found in the literature can be implemented as a parametrization of a single
expression. This also suggests that comparing the performances of detection statistics
of a same family is futile, since they can be made to have the exact same decision
surface with the use of the appropriate parameters.

An important class of detection statistics possess a planar decision boundary, the
position and orientation of which can be adjusted by the threshold value and a linear
transformation of the measurement and target vectors. These statistics can be seen
as (possibly monotone transformations of) abundance or energy estimators. They
cannot possess the CFAR property for radially symmetric background clutter, but
can be turned into anomaly detectors — which possess closed decision surfaces — by
choosing a target subspace that encompasses all measurement space.

Making the threshold of a planar statistic proportional to an estimate of the noise
power turns the planar decision surface into a cone around the target vector, and en-
ables CFAR operation for radially symmetric background clutter. In the case of the
background subspace model, in which the clutter is modeled as a subspace instead of
a normal distribution, the decision surface is wedge-shaped along the clutter dimen-
sions. The threshold controls the aperture of the cone or wedge in such statistics; the
linear transformation applied to measurements and targets produces flattened cones.
They can be expressed in a variety of forms which can complicate comparisons, but
they all can be seen as estimate of signal to noise ratio.

Kelly’s detector stands out in this tableau with its hyperboloid-shaped detection
surface, which share properties of both the planar and the conical statistics, at the
cost of using a supplementary control parameter. We propose in this work a way
to generate axially symmetric decision surfaces with arbitrary profiles using a simple
formalism used to analyze Kelly’s detector.

Finally, changing the linear transformation applied to the measurements and targets
allowed us to build detection statistics that, to our knowledge, are not yet described
in the literature, such as anomaly detectors and Kelly-like detectors that use the
background subspace model, or bias-insensitive statistics.

We conclude this work by nothing that while many detection statistics can be made
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equivalent, this emphasizes the role of choosing the right parameters over the right
statistic. Indeed, choosing the right threshold or the right linear transformation
(which is linked to background clutter estimation, and thus clutter sampling and
training set management) can have a much more important impact on performance
than choosing a particular statistic. It may be argued that conical statistics should
be preferred because of the CFAR property. However, CFAR operation for conical
statistics is only demonstrated for radially symmetric clutter distributions, which may
not fit experimental distributions. Thus, quasi-CFAR detection statistics, such as the
truncated cone, Kelly’s detector, or the paraboloid and offset cones proposed in this
work, may provide a compromise between planar and conical decision surfaces. The
cost of using these statistics is setting the value of a second parameter that will both
affect false alarm and detection rates.
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