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Abstract ……..

In this report, we study the expressiveness of the theory of belief functions in the particular case of Search 
And Rescue (SAR) operations. The theory of belief functions is a mathematical framework, which is used, as 
the probabilities, to represent the imperfections of a source of information. These imperfections are of 
di erent natures: reliability, vagueness, uncertainty, to name only a few. Representing and dealing with these 
imperfections in a SAR context is a major issue especially when one needs to combine and update 
information coming from heterogeneous and subjective sources.

After having reminded some background results of the theory of optimal search, we have suggested some 
approaches of the SAR problem founded on the theory of belief functions.

Résumé ….....

Dans ce rapport, nous étudions l’expressivité offerte par la théorie des fonctions de croyance pour le problème de
la planification d’une mission de recherche et sauvetage. La théorie des fonctions de croyance est un formalisme
mathématique qui, au même titre que les probabilités, est utilisé pour représenter les imperfections d’une source 
d’information. Ces imperfections peuvent être  liées  ̀a la non-fiabilité de la source, l’impŕecision ou l’incertitude
de l’information issue de la source. Modéliser toutes ces nuances  pour  un  problème  de  recherche  et  sauvetage
peut  s’avérer  fort  utile  pour combiner et mettre à jour les informations, surtout lorsque les informations dont on 
dispose  pour  définir  les  localisations  possibles  de  l’objet  disparu  et  la  capacité  à  le retrouver sont de nature
subjective.

Après  avoir  rappelé  des  résultats  classiques  issus  de  la  théorie  de  la  recherche  op- timale, nous avons suggéré
plusieurs approches de modélisation du problème de re- cherche et sauvetage dans le cadre la théorie des
fonctions de croyance.
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Executive summary 

Modeling and combining information within belief functions theory in 
Search And Rescue applications   

Pierre-Emmanuel Doré; Irène Abi-Zeid; Anne-Laure Jousselme; Arnaud Martin; Patrick 
Maupin
; DRDC Valcartier TR 2010-224; Defence Research and Development Canada – Valcartier;
April 2014. 

Introduction or background: Every year, there are hundreds of aeronautical Search and Rescue (SAR) 
incidents in Canada. In 2005, for example, there were 858 incidents. Al- though most of these incidents are 
of minor nature, some do evolve into major search operations requiring the use of numerous SAR resources 
over a period of many weeks. As a matter of fact, in 2005, there were 51 lost lives during aeronautical 
incidents and Canadian Forces aircraft have been tasked for 1091 missions[1]). Due to the dra- matic nature 
of these operations, it is crucial to ensure that the best available tools and technology are used to help plan 
and conduct search operations. In Canada, search planning is conducted by search mission coordinators who 
are highly trained individuals.

The use of search theory [2] and computer tools can be very helpful for planning an optimal search and 
maximizing the chances of finding survivors. The geographic decision support tool SARPlan was developed 
with this purpose in mind. It is based on search theory and uses a probabilistic framework to quantify the 
uncertain whereabouts of the searched object as well as the uncertainty surrounding detection capabilities.

One of the challenges in developing an appropriate optimization model for search planning is related to the 
adequate representation of the uncertainty surrounding a SAR case. The most common way is to use 
probability theory. There is, however, an alternative to probability theory, namely the use of belief functions 
from evidence theory. This powerful tool for representing uncertainty is also a practical formalism that 
allows one to merge several sources of information. This motivated us to explore the applicability of belief 
function theory to optimal search planning. 

Results: We first review the framework of optimal search. Two kinds of probabilities are considered: The 
probability of containment which sums up the in- formation on the plane location and the probability of 
detection which describes the probability to detect a plane taking into account the interaction between the 
environment, the lost object and the observer. Using this approach, some strate- gies exist to split the effort 
available to search the lost object. In particular, we implemented the De Guenin algorithm. The main result 
of this work relies on the definition of several novel ways to represent the uncertainty surrounding the 
location of a missing aircraft in SAR operations. As a matter of fact, using belief functions has allowed us to 
take into account uncertainty in a finer, richer and more subtle way than the traditional probabilistic 
approach. The technique proposed relies on a discretization of the continuous space into a set of cells. One 
limitation of the proposed approach is directly linked to the granularity of the discretization as the 
computational complexity increases exponentially with the number of cells.

Significance: We showed that belief function has undeniable practical interests in SAR applications. This 
work can easily be extended to include reliability models, the ignorance of a source of information or the 
dependence between two sources of information by using more relevant combination rules than the 
conjunctive one. The results of this work can be adapted to situation monitoring problems with sensors or 
drones. 
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Future plans: Possible future works include the use of belief assignments obtained by applying the least 
commitment principle (choosing among a set of belief functions the least informative one). Also, new 
approaches will address the problem of finer granularity of the discretization of the continuous space: 
Continuous belief functions would be a good candidate.
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Introduction ou contexte : Des milliers d’incidents aéronautiques surviennent chaque année au Ca- nada. En
2005, il a fallu mettre en œuvre des opérations de secours lors de 858 acci- dents aériens [1]. Bien qu’ils soient
dans la majorité des cas sans grande importance, des dizaines de personnes meurent ou disparaissent dans des
incidents nécessitant la miseenœuvre de recherches de grande ampleur. En 2005, 51 personnesont perdu la vie lors
de catastrophes aériennes qui se sont produites au Canada [1]. Chaque année, il  arrive  que  des  opérations  de
recherches  s’étalent  sur  plusieurs  semaines.  Dans  ce cas,  une  bonne  utilisation  des  moyens  de  recherche  devient
un élément crucial. De nos jours, cette planification est assuŕee par un coordonnateur de mission.

Tenir compte de manière formelle des informations physiques portant sur la nature du terrain, ses interactions 
avec l’objet disparu et les observateurs serait un pas en  avant  important,car  celles-ci  influencent  directement  la
capacité  des  ́equipes  de recherche  à  détecter  l’objet  porté  disparu.  C’est  pour  répondre  à  ce  besoin  que  le 
système d’aide à la décision géographique SARPlan a été développé. Le but à terme est d’aider à la planification
des efforts mis en œuvre pour retrouver un aéronef porté disparu sur le sol canadien.

Un  cas  de  recherche  et  sauvetage  reste  une  situation  complexe  à  appréhender.  Des modélisations  des
phénomènes  mis  en  jeu  existent,  telle  la  théorie  de  la  recherche optimale de Koopman qui repose sur une
représentation probabiliste de l’information. La  théorie  des  fonctions  de  croyance  est  une  option  de  rechange  à
la  théorie  des probabilit́es et permet de repŕesenter avec plus de richesse l’ignorance et l’incertitude inhérentes  aux
sources  d’information.  De  plus,  elle  offre  une  panoplie  de  méthodes de combinaison d’information permettant de
gérer le conflit entre les sources. Ainsi, la théorie des fonctions de croyance constitue un outil attrayant pour
modéliser le  problème  de  recherche  et  sauvetage.  Dans  ce  rapport,  nous  proposons  plusieurs modélisations du
problème de recherche à l’aide des fonctions de croyance.

Résultats : Nous commeņcons par introduire le formalisme propre au problème  de  recherche  et  sauvetage,  dans
lequel  on  tient  compte  de  deux  types  de probabilité : La probabilit́e de localisation nous renseigne sur
l’information dont nous disposons  a priori  sur  l’emplacement  de  l’avion  porté  disparu,  et  la  probabilit́e  de 
détection  décrit  la  probabilité  de  détecter  un  objet  tenant  compte  de  l’interaction entre l’environnement, l’objet
recherché et l’observateur. On peut ainsi proposer des stratégies  pour  répartir  l’effort  de  recherché  de  fa̧on
optimale. Notamment,  nous avons implémenté l’algorithme de De Guenin. Le principal résultat de ce travail 
est  constitué  par  la  définition  de  nouveaux  modèles  du  problème  de  recherche  et sauvetage  à  l’aide  des
fonctions  de  croyance,  grâce  à  qui  nous  sommes  parvenus  à représenter les incertitudes sur la présence de l’avion
dans la zone de recherche ainsi que l’évènement “détection” de manière plus fine et plus riche qu’avec les
probabilit́es. Cela a des conséquences sur la fa̧con dont les informations sur la localisation probable de l’avion sont
mises à jour. Ayant testé plusieurs méthodes pour générer des fonctions de croyance, il est apparu que certains
types de transformations utilisées pour les créer sont à éviter si l’on veut être en mesure de travailler avec des
outils d’une complexité raisonable. En effet, l’approche proposée repose sur une discŕetisation de l’espace continu 
en un ensemble de celulles, ce qui engendre une limitation directe- ment líee à la granularité de la discŕetisation,
puisque la complexité de calcul crô de façon exponentielle avec le nombre de cellules.
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Importance : Nous  avons  proposé  de  nouveaux  outils  de  fusion  d’information et de nouveaux critères de
décision fondés sur les fonctions de croyance pour le  problème  de  recherche  et  sauvetage.  Ayant  posé  les  jalons
d’une  représentation du  problème  de  recherche  et  sauvetage  avec  des  fonctions  de  croyance,  il  est  fa- cile
d’imaginer des extensions de notre travail exploitant pleinement le potentiel de ce  formalisme,  de  la
modélisation  de  la  fiabilité  d’une  source  à  la  modélisation  de l’ignorance ou encore celle de la dépendance de
sources en utilisant des règles de combinaison de l’information dépassant le cadre de la simple règle conjonctive.
Si cette étude a été faite à l’origine pour des problèmes de recherche et sauvetage d’avions, on peut facilement
adapter ces résultats et représenter des problèmes de surveillance effectués par des capteurs ou des drônes.

Perspectives : De nombreux points sont encore à developer. En particulier, générer des fonctions de croyance en
appliquant le principe de moindre engagement (choisir parmi un ensemble de fonctions de croyance compatibles la
moins informative possible).  Ensuite,  l’utilisation  des  fonctions  de  croyance  continues  pourrait  éviter une
discŕetisation de l’espace et ainsi ŕesoudre le problème d’explosion combinatoire.
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1 Introduction

The theory of optimal search was developed during the World War II by B. Koopman
[3, 4, 5]. One of the aims of his work was to detect German U-boats in the Atlantic
Ocean. Current research efforts apply this theory in a Search And Rescue (SAR)
context in order to develop optimal search plans [6]. The goal of an optimal search
plan is to make the best use of available search resources in order to locate and
rescue people in distress. There are two main components for modeling this problem:
i) information on the possible location of the missing search object, ii) a sensor’s
capability to detect the search object. This capability depends on the search object
type, on the environment where search missions are conducted, and on the sensor and
amount of effort spent on searching. In the search and rescue literature, location and
detection information are usually modeled using probabilities: the Probability Of
Containment (POC) which describes the location distribution of the search object
and the Probability Of Detection (POD) which is the conditional probability of
detecting a search object with a given amount of effort.

A search plan defines the way effort is distributed over a search area. Optimal
search planning consists of allocating the available resources in a way to maximize a
given performance criterion. Today various sensors are available and are used in the
context of searches such as drones for example [7]. In this report, we propose a new
way to deal with sensors information based on the theory of belief functions. This
theory is based on the work of Dempster and Shafer [8, 9], a mathematical framework
useful to represent uncertainty and imprecision. Moreover, it is a powerful tool to
merge several sources of information and take into account conflict and ambiguity.
In Chapters 2 and 3, we present basic notions of search theory and belief functions
theory, respectively. We then develop a belief function approach for the classical
optimal search problem in Chapter 4 and extend it to the false alarm cases. Finally,
in Chapter 5, we present simulations results to compare the different models and
conclude on future works in Chapter 6.

DRDC Valcartier TR 2010-224 1
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2 Theory of optimal search

The theory of optimal search was developed during the World War II. The earliest
publications are by Bernard O. Koopman [3, 4, 5]. The application at the time
was the detection of German U-boats in the Atlantic Ocean. There are two main
components to a search theory problem: representing uncertainty and allocating
the available effort. Uncertainty is normally represented using probability theory.
Optimal effort allocation is obtained using optimization methods.

2.1 Search object modeling
The objective of developing an optimal search plan is to allocate the available re-
sources in such a way that the survivors will be located as quickly as possible. To this
end, we must firstly use the available information on the whereabouts of the searched
object as well as the detection capabilities of the sensor in its surrounding environ-
ment. The Probability Of Containment (POC) describes the location distribution
of the searched object, while the Probability Of Detection (POD) is a conditional
probability of detecting the searched object with a given amount of effort. These
two functions must be defined prior to developing a search plan.

2.1.1 Probability of containment

Let R be the search area. If R is continuous, the location of the searched object can
be represented using a probability density function fl. Hence following [2] we have:∫

x∈R
fl (x) dx = β (1)

where β ∈ [0, 1]. A value of β lower than 1 allows us to consider that the object may
be outside the search area.

If the search area R is discrete, we have:∑
c∈R

POC (c) = β (2)

with POC (c), the probability the searched object is in Cell c.

There are various ways to define the POC in the literature. The most traditional one
consists in defining a bivariate Gaussian function centered on the Last Known Point

DRDC Valcartier TR 2010-224 3



(LKP) and with standard deviation σ2 = σ2
x + σ2

y and σx = σy, such that the radius
of the circle in which there are 50% of chances of containing the searched object is
equal to 1.1774σ. This method is appropriate when the only available information
is the LKP. However, when the original destination of the searched object is also
known, a line datum may be used. The POC is then required to be uniform on the
paths of the line linking the LKP to the destination datum and to follow a Gaussian
law on the orthogonal paths [6]. Other methods have been proposed to generate
more complex probability of containment distributions. They use several scenarii to
define possibility areas [10].

2.1.2 Probability of detection

The probability of detecting a searched object given that it is in a cell c (POD (c))
depends on several parameters such as the environment, the amount of search effort
applied, the type of searched object and the sensor’s performances.

2.1.2.1 Sweep width

To characterize the detection ability of a sensor, we use the lateral range function α
[2] illustrated in Figure 1). α(r) provides the probability that an object, located at a

Figure 1: Lateral range functions

distance r perpendicular to the trajectory of the sensor, can be detected by a sensor
(cf. Figure 2).

4 DRDC Valcartier TR 2010-224



Figure 2: Area swept by the sensor

The integration of the lateral range function α gives the sweep width W :

W = 2

∫ ∞

0

α (r) dr (3)

In the discrete case, we consider that the sweep width is uniform in a given cell and
equal to W (c).

A classical lateral range function is α̂ defined by [2]:

α̂ (r) =

{
1 for 0 ≤ r ≤ d
0 for r > d

(4)

with W = 2d (cf. Figure 2). A sensor described by this lateral range function α̂ is
called a definite-range law sensor.

The concept of sweep width must be used carefully. As shown in Figure 3, for
a same W , the number of detected targets (if we assume that they are uniformly
distributed) is the same, but their location in space is different and directly connected
to the function α [11].

2.1.2.2 Search effort

There are several ways to define the effort: as a length, as a time spent in an area,
as the cost of a mission, etc. [2]. We chose here to define it as the length of the
trajectory followed by the sensor. Let z be this length, V be the speed of the sensor
and T the time spent in an area, then z = V ·T . The product of z by W provides an
idea of the area swept by the sensor. In the literature [11, 6], C is defined as the area
coverage. It is equal to W · z/A where A is the area to which the effort is applied.

DRDC Valcartier TR 2010-224 5



(a) Sensor with any lateral range function α (b) A definite-range law sensor (α̂)

Figure 3: Sensor detections: detected targets in white, non detected targets in black

The smaller this ratio, the bigger the probability of detection. However, increasing
C indefinitely will not contribute much to the POD.

2.1.2.3 Probability of detection

The probability of detection depends on both the lateral range function and the
search effort. Let the sensor follow a definite range law of Equation (4), we can use
W instead of α. If the sensor scans the search area with parallel paths spaced of W
(cf. Figure 4), the probability of detection will be equal to [2]:

b (z) =

{
z ·W/A if z ≤ A/W
1 if z > A/W

(5)

This is the case where, for a given amount of effort and this type of sensor, the
covered surface is as high as possible (cf. Figure 5). However, if the same type of
sensor follows a random walk, the probability of detection will be [2]:

b (z) = 1− exp (−zW/A) (6)

Hence the detection function given by (6) is a lower bound on the probability of
detection obtained with α̂.

There are other detection models. For example, in [4] Koopman introduces the
inverse cube detection model for visual searches where the sensor follows a specific
α function and scans an area following parallel paths.
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Figure 4: Area swept with parallel paths

Figure 5: Several kinds of POD

2.1.3 Update of POC after a search

Between two search missions (search steps), the POC is updated by using the Bayes’
rule accounting thus for unsuccessful searches. In discrete time, we have:

POCn (c) =
POCn−1 (c) · (1− PODn (c))

1− POSn

(7)

with Xn, the amount X known at the n step. POS is the Probability Of Success (to
be defined in Equation (14)) and is used as a normalization factor. A non-normalized
POC can also be used:

POCn (c) = POCn−1 (c) · (1− PODn (c)) (8)
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Instead of redistributing the POC on all the search area, we assume that the searched
object is somewhere else. This corresponds to lowering β.

2.1.4 Search with false alarms

In a real case, false alarms need to be considered [2]. To model the detection problem
we have to consider two cases:

• We take the decision D0, ie. we decide there is nothing (hypothesis H0),

• We take the decision D1, ie. we decide there is an object (hypothesis H1).

Hence, four different probabilities need to be considered:

H1 H0

D1 True detection False detection
P (D1|H1) P (D1|H0)

D0 False rejection True rejection
P (D0|H1) P (D0|H0)

In Figure 6, we assume that detector is created using the output of a sensor. If
this value is higher than a threshold δ, the decision D1 is taken, otherwise it is the
decision D0. The output of the sensor is modelized with a random variable. If H0

is true, it follows the distribution N (μ0, σ). If H1 is true, it follows distribution
N (μ1, σ). Hence, for a given threshold, we obtain a probability of false detection
and a probability of true detection.

For characterizing the sensor’s performances, the ROC (Receiver Operating Charac-
teristics) curve is commonly used. This curve gives the probability of a true detection
as a function of the probability of a false detection and depends on the signal to noise
ratio. In [12], the author suggests to consider the average number of false alarms nf

during a given interval of time and to associate it with a mean cost in terms of effort
τ wasted in order to check the origin of the alarm. We have T = Ts + nfTsτ , where
T is the searching time and Ts is the effective searching time. To take into account
the false alarm, the easiest way is to use W ′ equal to W/(1+nfτ) instead of the real
W in order to compensate for the lack of efficiency of the sensor.
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Figure 6: Area under the curve gives the probability of true and false detection

2.1.5 W uncertain

In some cases, W is unknown on the search area [13] and we thus need to represent
the uncertainty surrounding it. W is then modeled as a random variable, with a
distribution equal, to the probability that W is bigger than w for a given location x
and a given w [2]:

G (w, x) = Pr{W ≤ w|Target in x} (9)

The POD becomes then [2]:

b (z, x) =
∫∞
0

Bw (z, x)G (dw, x) (10)

with Bw, the probability of detection for a w.

In the literature [13, 2], W is assumed to be independent of the sensor’s location.
Therefore, G depends only on w. A classical example of a distribution proposed for
W is the gamma distribution:

∂

∂w
G (w) = wν−1γνeγw/Γ (ν) (11)
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where Γ is Euler’s function, while γ and ν are the parameters that determine the
shape of the distribution. The average of W is then equal to ν/γ and its standard
deviation is equal to ν/γ2 [2]. Under an exponential law assumption for the POD
(cf. Equation (6)), we have:

Bw (z) = 1− exp (−zw) (12)

Based on Equations (10), (11) and (12), we obtain:

b (z) =

∫ ∞

0

Bw (z)
∂

∂w
G (w) dw = 1− (1 + z/γ)−ν (13)

Considering the uncertainty on the sweep width modifies the values of the probability
of detection and the way the effort is splitted.

2.2 Search planning
The goal of optimal search planning is to make the search as efficient as possible
based on a given criterion.

2.2.1 Optimization criterion

To optimally plan a mission, the effort is distributed so that to optimize a relevant
measure of performance. The criterion to maximize is often chosen as the probability
of success (POS) defined as the likelihood of finding the searched object with an
available effort Ξ [6]. In continuous space, the following quantity is to be maximized:

POS =

∫
x∈R

fl (x) b (ξ (x)) dx

with Ξ =

∫
x∈R

ξ (x) dx
(14)

where ξ (x) is the amount of effort applied on x.

2.2.2 Effort allocation - De Guenin’s algorithm

If the effort is continuous and infinitely divisible, we can use the de Guenin’s algo-
rithm [14] to distribute it over the search area in an optimal way, as described by
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Figure 7: Diagram describing the de Guenin’s algorithm

(14). The principle of this algorithm is simple. De Guenin proved that for a given
amount of effort the POS is maximized if for all x of R we have:

fl (x) b
′ (ξ (x)) = λ (15)

with b′ being the derivative in ξ of b and λ being a constant. So for a fixed λ, by
inverting b′ we can find the allocation of ξλ maximizing the POS on the search area
for a global amount of effort. We then have Ξλ =

∫
x∈R ξλ (x) dx. The optimization

problem is thus transformed. Our aim is now to find the λ that satisfies Ξλ = Ξ.
The flowchart of De Guenin’s algorithm is provided in Figure 7 and the MATLAB
code in Appendix A.

If the effort is not infinitely divisible (for example, a finite number of indivisible
observers) and if we suppose several stages of search (time is discrete), an alternative
algorithm to de Guenin’s one, called branch and bound algorithm, may be used to
obtain a distribution of the effort [15].

For stationary objects, forward planing is done one step at a time. If the searched
object is moving, we need to consider several planning steps and update the POC.
In [16] and [15], some algorithms are proposed to solve this problem.
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2.3 Limits
We have briefly presented the basic elements of search theory. The main observation
regarding the theory is that, after a large amount of effort has been unsuccessfully
applied in an area, it is assumed that the searched object is not within the area.
This representation of uncertainty is unsatisfactory since a search area containing a
searched object may be well covered without detecting the object. Belief functions
theory allows us to take into account ignorance regarding the location of the searched
object, and we will explore this representation in the upcoming chapter.
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3 Belief functions theory

The theory of belief functions has been introduced by Arthur Dempster [8] and
Glenn Shafer [9]. It is a mathematical framework useful to represent uncertainty
and imprecision. It provides us powerful tools to combine pieces of information and
to manage conflict.

Given a problem, a frame of discernment is a finite set of disjointed possible answers
denoted Ω. The set of all subsets of Ω is called the power set of Ω and denoted by
2Ω. In the case of an SAR application, we can consider that our search area is split
in a grid. Hence the “Search Area”, the frame of discernment, is composed by a set
of disjoint elements.

A basic belief assignment (bba) is a mappingmΩ from 2Ω to [0, 1] such that
∑
A⊆Ω

mΩ (A) =

1. The value of mΩ (A) for all A included in Ω is called the basic belief on A. This
mapping allows us to assign a weight on a set of hypothesis without making any
assumption on the hypothesis of the set. Hence, we can model ignorance or impreci-
sion. For example, if we do not know where the lost object is, we can assign a mass
of 1 on the set “Search Area”. We do not have to assign mass on his subsets. A
subset of Ω, A, such that mΩ (A) is strictly positive is called a focal element of mΩ.

In their original theory, Dempster and Shafer required the bba (that they called basic
probability assignment) of the empty set to be 0, i. e. mΩ(∅) = 0. In other words,
that the frame of discernment is an exhaustive set of hypothesis. This restriction has
been further dropped by Smets and Kennes in their Transferable Belief Model [17],
allowing the empty set to be a focal element, an hypothesis they called the open-
world assumption. There are several ways to explain the presence of a basic belief
on the empty set. The most common one is to assume that the frame of discernment
is not exhaustive and that the truth could be modelized by an hypothesis which is
not included in Ω.

Using a bba mΩ, we define the following functions:

Belief function:

belΩ (X) =
∑

A⊆X,A �=∅
mΩ (A) , ∀X ∈ 2Ω (16)
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Plausibility function:

plΩ (X) =
∑

A⊆Ω,A∩X �=∅
mΩ (A) , ∀X ∈ 2Ω (17)

Pignistic probability [18]:

betPΩ (X) =
∑

A⊆Ω,X∈A

mΩ (A)

|A| (1−mΩ (∅)) , ∀X ∈ 2Ω (18)

The pignistic transformation is used to make a probability from a bba. It represents
the bet an evidential source of information could have made in order to take a
decision. The principle is to share the basic belief on a set to its constituent elements.
The belief function is a kind of lower bound of probability. Indeed, this measure only
considers pieces of evidence included in the set that is tested. On the contrary, the
plausibility function is a kind of upper bound of probability because it includes all
the pieces of evidence that are not in contradiction with the tested hypothesis.

In fusion applications, we assume we dispose of several sources of information. A
major issue is to combine these sources of information. Let mΩ

1 and mΩ
2 be two bbas.

The conjunctive rule of combination [19] of mΩ
1 by mΩ

2 denoted by mΩ
1 ⊗mΩ

2 or by
mΩ

1⊗2 is given by:

mΩ
1⊗2 (A) =

∑
X∩Y=A

mΩ
1 (X)mΩ

2 (Y ) , ∀A ⊆ Ω (19)

This rule can be generalized to N bbas mΩ
i :

⊗
i∈[1,N ]

mΩ
i (A) =

∑
C1∩...∩CN=A

∏
i∈[1,N ]

mi
Ω (Ci), ∀A ⊆ Ω (20)

Such a rule is used under the assumption that the sources of information are inde-
pendent. After the combination process, a part of the mass can be transfered to the
empty set. In this context, we can assume that this phenomenon occurs because the
different sources of information are in conflict. To deal with non independent and
conflicting sources of information, we can use other operators of combination [20].

In several cases, it happens that the information transmitted by a source is compat-
ible with a set of belief functions. When we have no clue about the one to choose,
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it is usual to decide that the least committing one is the best suited. It is called the
least commitment principle. Hence, we have to define an ordering between the belief
functions to determine if a belief function is more or less committed than an other.
One partial ordering for the belief functions is the relation of specialization. mΩ

2 is
a specialization of mΩ

1 if and only if there is an operator s from 2Ω to | [0, 1] such as
for all A included in Ω :

mΩ
2 (A) =

∑
X⊆Ω

sΩ (A,X)mΩ
1 (X) (21)

An operator of specialization splits the mass assigned into a set onto its subsets.

Let mΩ be a bba representing the information given by an evidential source. We
obtain an information that the truth is included in B, a subset of Ω. Hence we must
update our bba using a conditioning process. Let mΩ [B] be the bba obtained after
a conditioning of mΩ on B. According the conditioning rule of Dempster:

mΩ [B] (A) =

⎧⎨
⎩

∑
X:X⊆B

m (A ∪X) if A ⊆ B,

0 otherwise.

(22)

This bba fulfils the following condition. It is the least committed bba such as
belΩ [B] (B) = 1 and mΩ [B] is a specialization of mΩ.

When we handle different frames of discernment, we cannot always apply the con-
ditioning rule of Dempster to update information. Let T be a frame of discernment
linked to a posteriori data (measures) and Ω be the frame of decision. Let assume
that we can define for each hypothesis ω ∈ Ω the evidential knowledge on the mea-
sures mT [ω]. According the general Bayesian theorem [17], if an information or
measure reveals that the truth is in t∗ ⊆ T , we can deduce information on the frame
of discernment Ω and build the bba mΩ [t∗]1 :

mΩ [t∗] (A) =
∏
ω∈A

plT [ω] (t∗) ·
∏
ω∈A

(
1− plT [ω] (t∗)

)
(23)

In the following parts, we use belief functions to model problems associated to search
and rescue applications.

1By using Equation (17), we have plT [ω] (t∗) =
∑

A⊆Ω,A∩t∗ �=∅
mT [ω] (A).
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4 Models

We use belief functions theory to represent the uncertainty on the information. Our
objective is to show the richer expressiveness of this theory in modeling uncertainty
and knowledge during a SAR operation. We begin by proposing models not account-
ing for false alarms in Section 4.1, and subsequently include the possibility of false
alarms in Section 4.2.

4.1 Without false alarm
The classical approach in SAR is to consider that the detector (a human being),
cannot transmit a false alarm. In this context, we will study how to represent the
problem with belief functions.

4.1.1 Hypotheses

We use Koopman’s theory to represent the SAR problem [3, 4, 5]. There are two
sources of information: the sensor and the information on the system.

4.1.1.1 The sensor

We assume that the sensor does not produce any false detection. It is characterized
by a detection function and a sweep width W (i). Hence we know the conditional
probability POD(i) of detecting the searched object given it is in the cell i as a result
of applying an effort z(i).

4.1.1.2 Information on the system

We consider the information we have on the searched object at time t before applying
any effort and initialize it with POC(i), the a priori probability of containment. This
probability can be viewed as the memory of the search planning tool.

4.1.2 Model 1: Working with a cell

We represent the information at the cell scale.
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4.1.2.1 The frames of discernment

We distinguish two frames of discernment:

• Πi = {pi; pi}, which refers to the presence (pi) or the absence (pi) of the
searched object in Cell i.

• Di =
{
di; di

}
, which refers to the detection (di) or the non-detection (di) in

Cell i.

4.1.2.2 Basic belief assignment (bba)

We consider two bbas:

• mci,t which is linked to the information the sensor in Cell i provides at time
t > 0.

• mi,t−1 which is linked to the information at time t−1 about the presence of the
searched object in Cell i at time t. mi,t−1 is a kind of memory for the system
and can be updated by combining it with the information given by the sensor
at time t.

Using the classical model in search theory [2], we can define mDi
ci,t [pi], and we have:

mci,t
Di [pi] (di) = POD(i)

mci,t
Di [pi]

(
di
)
= 1− POD(i)

(24)

This is the belief we have on the event detection in Cell i provided that the searched
object is in Cell i.

The bba mi,t−1 can be initialized based on the a priori information. Usually, a POC
is assumed and we therefore use it to define the bba mi,0

Πi which is null everywhere,
except for:

mi,0
Πi (pi) = POC(i)

mi,0
Πi (pi ∪ pi) = 1− POC(i)

(25)

Indeed, since we only have information on the presence in a cell i, so the rest of the
mass must be assigned to the ignorance.

At the end of a search, if the searched object has not been located, mi,t−1 is updated.

We must know mci,t
Πi

[
di

]
, the belief function on the presence of the searched object
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in Cell i given that there is no detection. We can set:

mci,t
Πi

[
di

]
(pi) = POD(i)

mci,t
Πi

[
di

]
(pi ∪ pi) = 1− POD(i)

(26)

Indeed, there were POD(i) chances to detect the searched object if it were present.
We assume that there are POD(i) chances not to find the searched object. The rest
of the mass can be transferred to the ignorance since the absence of a detection does
not provide any information about the presence of the object. Combining mΠi

i,t−1

with mci,t
Πi

[
di

]
allows to update the information about the location of the searched

object and we obtain mΠi
i,t .

4.1.2.3 Combination of information

We chose the conjunctive rule of combination:

mi,t
Πi = mi,t

Πi

[
di

]
= mi,t−1

Πi ⊗mci,t
Πi

[
di

]
(27)

Hence we obtain:

pi pi pi ∪ pi ∅
mci,t

Πi

[
di

]
0 POD(i) 1− POD(i) 0

mi,t−1
Πi mi,t−1

Πi(pi) mi,t−1
Πi (pi) mi,t−1

Πi (pi ∪ pi) mi,t−1
Πi (∅)

mi,t−1
Πi(pi) mi,t−1

Πi (pi ∪ pi) mi,t−1
Πi (pi ∪ pi) mi,t−1

Πi (∅)
mi,t

Πi

[
di

]
(1− POD(i)) POD(i) (1− POD(i)) +mi,t−1

Πi (pi)

+mi,t−1
Πi (pi) POD(i)

The belief assignment to the presence of the searched object in a cell decreases each
time we update it as it does in the probabilistic case (Equation (8)). The mass
transferred to the ignorance Ω decreases also following the application of effort. In
probability theory, the probability of the presence of the searched object outside of
the search area (1− β) increases. In belief function theory, the mass on ∅ increases
because of the conflict between the two sources of information considered. At the end
of a search, even if a great amount of effort has been used, the use of the proposed
belief function approach does not allow to state that the searched object is not in
the cell that was already searched. This is quite reasonable since it is very possible
to look in an area containing the searched object without finding it.
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4.1.3 Model 2: Extension of Model 1 to a grid

Now, we work at the grid scale.

4.1.3.1 The frames of discernment

We consider again two frames of discernment:

• Π = {p1; . . . ; pN}, the presence of the searched object in the different N cells.

• D =
{
d1; d1; . . . ; dN ; dN

}
, the detection of the searched object in the N possible

cells.

4.1.3.2 Basic belief assignment

We use the bba described in Model 1 in Equation (24). Instead of using mi,t
Πi we

rather use mt
Π. Hence the information is memorized at the grid scale and not at the

cell scale:
m0

Π (pi) = POC(i)

m0
Π

⎛
⎝ ⋃

j∈[1;N ]

pj

⎞
⎠ = 1−

∑
j∈[1;N ]

POC (j)
(28)

We apply the same idea put forward in Model 1 but we consider mci,t
Π instead of

mci,t
Πi . If the searches are not successful, we update the information set. Using the

same results as in the previous model (Equation (26)), we represent the information
returned by the sensor following an unsuccessful search in Cell ci:

mci,t
Π
[
di

]⎛⎝ ⋃
j∈[1;N ]−{i}

pj

⎞
⎠ = POD(i)

mci,t
Π
[
di

]⎛⎝ ⋃
j∈[1;N ]

pj

⎞
⎠ = 1− POD(i)

(29)

We can combine the several sources of information to obtain mt
Π, the updated bba

of mt−1
Π.
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4.1.3.3 Combination of information

Again, we use the conjunctive rule of combination:

mt
Π = mt

Π
[
di

]
i∈[1;N ]

= mt−1
Π⊗i∈[1;N ]

(
mci,t

Π
[
di

])
(30)

This is a result of the computations we conducted2:

pi Π\pi Π∪ ∅
mci,t

Π
[
di

]
0 . . . POD(i) 1− POD(i) 0

...
mt−1

Π mt−1
Π(pi) mt−1

Π
(
Π\pi

)
mt−1

Π (Π∪) mt−1
Π (∅)

mt
Π

[
dj

]
j∈[1;N ]

mt
Π

[
dj

]
j∈[1;N ]

(pi) mt
Π

[
dj

]
j∈[1;N ]

(
Π\pi

)
mt

Π
[
dj

]
j∈[1;N ]

(Π∪) mt
Π

[
dj

]
j∈[1;N ]

(∅)

When we develop the computations:

mt
Π

[
dj

]
j∈[1;N ]

(pi) = mt−1
Π(pi) (1− POD(i))

+mt−1
Π (Π) (1− POD (i))

∏
j∈[1;N ]−{i}

POD (j) + . . .

mt
Π

[
dj

]
j∈[1;N ]

(
Π\pi

)
= POD(i)

∏
j∈[1;N ]−{i}

POD (j)mt−1
Π (Π∪)

mt
Π

[
dj

]
j∈[1;N ]

(Π∪) =
∏

j∈[1;N ]

mt−1
Π (Π∪)

mt
Π

[
dj

]
j∈[1;N ]

(∅) = mt−1
Π (∅) +mt−1

Π (pi)POD(i) . . .+ . . .

(31)

We did not developed all the expressions because this kind of model may not be
applicable due to computational complexity issues (i.e. computation made on the
powerset). A part of the mass is transferred to the ∅ due to the conflict between the

2We have Π\pi
=

⋃
j∈[1;N ]−{i}

pj and Π∪ =
⋃

j∈[1;N ]

pj .
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sources and to a missing information: the searched object could be outside the grid.
The assignment to ∅ can be compared with the probability that the searched object
is outside the grid 1− β. Although this representation is more appropriate than the
previous one, it is not usable if the number of cells is too large.

4.1.4 Model 3: Another model on the grid

In order to avoid having a large powerset, we propose a new way to represent the
information with a bba.

4.1.4.1 The frames of discernment

Two elements are important: the presence of the searched object in a cell and the
detection event. We consider three frames of discernment:

• Πi = {pi; pi}, the presence of the searched object in cell i.

• Π = {p1; . . . ; pN}, the presence of the searched object in any of the cells.

• D =
{
d1; d1; . . . ; dN ; dN

}
, the detection in a cell.

4.1.4.2 Basic belief assignments

We consider the following two bbas:

• mi,t, the information given by the sensor in Cell i at time t > 0 given the
information on the system at time t− 1.

• mt, the information on the system at time t.

We initialize mt:
mΠ

0 (pi) = POC(i)

mΠ
0

⎛
⎝ ⋃

i∈[1;N ]

pi

⎞
⎠ = 1−

∑
i∈[1;N ]

POC(i)
(32)

We then have:
mΠi

t (pi) = mΠ
t (pi)

mΠi
t (pi ∪ pi) = 1−mΠ

t (pi)
(33)
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As in Model 1, we use:

mΠi
i,t

[
di

]
(pi) = mΠi

t−1(pi) · (1− POD (i)) (34)

To avoid having a large powerset, we assign the rest of the mass to the ignorance:

mΠi
i,t

[
di

]
(pi ∪ pi) = 1−mΠi

i,t (pi) (35)

Then we apply the following ballooning extension:

mΠ
i,t

[
di

]
(pi) = mΠi

i,t

[
di

]
(pi)

mΠ
i,t

[
di

]⎛⎝ ⋃
j∈[1;N ]

pj

⎞
⎠ = mΠi

i,t

[
di

]
(pi ∪ pi) ;

(36)

To update mΠ
t , we combine all the mi,t

Π
[
di

]
.

4.1.4.3 Information combination

To update mt, we use the conjunctive rule of combination. Then we have:

mΠ
t = mΠ

t

[
di

]
i∈[1;N ]

= ⊗i∈[1;N ]

(
mi,t

Π
[
di

])
(37)

We defined the bbas to avoid an explosion of the number of focal elements. The belief
remains on the set of Pi and on the ignorance. When we update the information,
a part of the belief is transferred to the ∅. This is the consequence of the conflict
between the sources and an incomplete frame of discernment.

4.2 With false alarms
In this part, we consider false alarms. This is common particularly when drones are
used [7]. To represent false alarms, we use the model described by Pollock [12].
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4.2.0.4 The sensor

We assume that the sensor sometimes returns false alarms, i.e. detects an object
while none is present. Assuming a detection function and sweep width W (i), for
a given effort z(i), we know POD(i). The effort z(i) is assumed to be discrete,
indivisible, and to correspond to one sensor scan. The probability of a false alarm
(or false detection) is defined by POD′(i).

4.2.0.5 Information on the system

This is the information available on the searched object at time t before any effort
has been applied. It can be considered as the memory of the search planning tool.
We initialize it with POC(i), the prior probability of containment.

4.2.0.6 The frames of discernment

Two elements are important: the presence of the search object in a cell and the
observation of a bip or no bip in a cell. In this model, a bip of the sensor is considered
as an uncertain detection. We therefore have three frames of discernment:

• Πi = {pi; pi}, the presence of the search object in cell i.

• Π = {p1; . . . ; pN}, the presence of the search object in any cell of the grid.

• Bi =
{
bi; bi

}
, a bip (bi) or a no bip (bi) in cell i.

4.2.0.7 Basic belief assignments

We consider two bbas:

• mci,t, the information of the sensor in Cell i at time t > 0.

• mt−1 the a priori information we have on the presence of the search object in
Cell i at time t. It can be updated by combination with the information on
the sensor at time t. It represents a kind of memory of the system.
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We chose3:
mci,t

Bi [pi] (bi) = POD(i)

mci,t
Bi [pi]

(
bi
)
= 1− POD(i)

mci,t
Bi [pi]

(
bi ∪ bi

)
= 0

mci,t
Bi [pi] (bi) = POD′(i)

mci,t
Bi [pi]

(
bi
)
= 1− POD′(i)

mci,t
Bi [pi]

(
bi ∪ bi

)
= 0

(38)

According to the general Bayesian theorem (23), we have:

mci,t
Πi [bi] (pi) = plci,t

Bi [pi] (bi) ·
(
1− plci,t

Bi [pi] (bi)
)

mci,t
Πi [bi] (pi) = plci,t

Bi [pi] (bi) ·
(
1− plci,t

Bi [pi] (bi)
)

mci,t
Πi

[
bi

]
(pi) = plci,t

Bi [pi]
(
bi
)
·
(
1− plci,t

Bi [pi]
(
bi
))

mci,t
Πi

[
bi

]
(pi) = plci,t

Bi [pi]
(
bi
)
·
(
1− plci,t

Bi [pi]
(
bi
)) (39)

Using the definition (17), we obtain:

mci,t
Πi [bi] (pi) = mci,t

Bi [pi] (bi) ·
(
1−mci,t

Bi [pi] (bi)
)
= POD(i) (1− POD′(i))

mci,t
Πi [bi] (pi) = mci,t

Bi [pi] (bi) ·
(
1−mci,t

Bi [pi] (bi)
)
= POD′(i) (1− POD(i))

mci,t
Πi

[
bi

]
(pi) = mci,t

Bi [pi]
(
bi
)
·
(
1−mci,t

Bi [pi]
(
bi
))

= POD′(i) (1− POD(i))

mci,t
Πi

[
bi

]
(pi) = mci,t

Bi [pi]
(
bi
)
·
(
1−mci,t

Bi [pi]
(
bi
))

= POD(i) (1− POD′(i))

(40)

So:
mci,t

Πi [bi] (pi ∪ pi) = 1−
(
mci,t

Πi [bi] (pi) +mci,t
Πi [bi] (pi)

)
mci,t

Πi

[
bi

]
(pi ∪ pi) = 1−

(
mci,t

Πi

[
bi

]
(pi) +mci,t

Πi

[
bi

]
(pi)

) (41)

If the probability of a false alarm is null we obtain Model 2. Taking into account
false alarms justifies the representation of ignorance. Indeed, a bip can indicate
the presence as well as the absence of the search object (false detection). Assuming
multiple drones, we can combine the information of several cells [7] with the following
ballooning:

3ex: mci,t
Bi [pi] (bi) as the value of the bba for bi given pi at time t, on the frame of discernment

Bi.
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mΠ
ci,t [βi] (pi) = mΠi

ci,t [βi] (pi)

mΠ
ci,t [βi]

⎛
⎝ ⋃

j∈[1;N ]−{i}
pj

⎞
⎠ = mΠi

ci,t [βi] (pi)

mΠ
ci,t [βi]

⎛
⎝ ⋃

j∈[1;N ]

pj

⎞
⎠ = mΠi

ci,t [βi] (pi ∪ pi)

(42)

with βi ∈ Bi. We initialize mΠ
t with the POC:

m0
Π (pi) = POC(i)

m0
Π

⎛
⎝ ⋃

i∈[1;N ]

pi

⎞
⎠ = 1−

∑
i∈[1;N ]

POC (i)
(43)

Hence we can combine these bbas to update mt−1
Π.

4.2.0.8 Combination of information

We use the conjunctive rule of combination to update the information:

mt
Π = mt

Π [βi]i∈[1;N ] = mt−1
Π ⊗
i∈[1;N ]

mcj,t
Π [βj] (44)

with βi ∈ Bi.

Within belief functions theory, we can easily combine pieces of information coming
from several sources. However, the number of focal elements that can ultimately
reach the size of the powerset is an important problem since it leads to computational
issues.

This mathematical framework is also useful for expressing uncertainty, ignorance and
conflict between several sources of information.
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5 Illustrations

In this part, we illustrate the comparative behaviors of the four models proposed in
the representation of uncertainty and the combination of several sources of informa-
tion.

5.1 Comparison of the models without false alarms
A way to compare belief function theory with probability theory is to transform
belief functions into probability ones through the pignistic probability, as defined
by Equation (18). Hence, instead of maximizing the POS like in the probabilistic
case, we can maximize the average product of the pignistic probability of the event
pi by the conditional pignistic probability of di given pi. Therefore, in Model 1 we
maximize 4:∑

i∈[1;N ]

betPΠi
i,t−1 (pi) betP

Di
ci,t [pi] (di)

=
∑

i∈[1;N ]

⎛
⎝ ∑

A∈2Πi ,pi∈A

mΠi
i,t−1 (A)

|A|
(
1−mΠi

i,t−1 (∅)
) ∑

A∈2Di ,di∈A

mDi
ci,t [pi] (A)

|A|
(
1−mDi

ci,t−1 [pi] (∅)
)
⎞
⎠

=
∑

i∈[1;N ]

(
mΠi

i,t−1 (pi)

1−mΠi
i,t−1 (∅)

+
mΠi

i,t−1 (pi ∪ pi)

2
(
1−mΠi

i,t−1 (∅)
)
)
POD(i)

(45)

For Models 2 and 3 we maximize:∑
i∈[1;N ]

betPΠ
t−1 (pi) betP

Di
ci,t [pi] (di)

=
∑

i∈[1;N ]

⎛
⎝ ∑

A∈2Π,pi∈A

mΠ
t−1 (A)

|A|
(
1−mΠ

t−1 (∅)
) ∑

A∈2Di ,di∈A

mDi
ci,t [pi] (A)

|A|
(
1−mDi

ci,t−1 [pi] (∅)
)
⎞
⎠

=
∑

i∈[1;N ]

⎛
⎝ ∑

A∈2Π,pi∈A

mΠ
t−1 (A)

|A|
(
1−mΠ

t−1 (∅)
)POD(i)

⎞
⎠

(46)

For simulation purposes, we assume that the sensor follows the exponential detection
function (6). To initialize the search, we use a grid of POC, of W , of area and a
global amount of available effort Z (determined at 100), as shown in Figure 8.

4See Model 1 for notations.
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Figure 8: Parameters of the problem on a grid

If the effort is infinitely divisible, we may use the de Guenin’s algorithm [15] (cf.
Appendix A).

Figure 9: Standard deviations of the effort as a function of the total effort allocated

When we use probabilities to represent uncertainty, we obtain the results in Figure
10(a).

The results obtained with Model 1 are shown in Figure 10(b). Models 2 and 3 use the
same prior information therefore the distribution of effort is the same in both cases.
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(a) Original POC.

(b) Model 1

(c) Model 2

(d) Model 3

Figure 10: Repartition of effort with the de Guenin algorithm and updated proba-
bility with the original probabilistic model and evidential models 1, 2 3
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However, since they are not updated in the same fashion the resulting information
is different (See Figures 10(c) and 10(d)).

To evaluate the models, it can be interesting to study the distribution of information
on the grid. We can use the standard deviation to verify if the distribution of a
parameter is spatially homogeneous. We fix W to a uniform value in all the grid
cells. In order to decide in which model the information on the searched object’s
location is degraded the fastest, we only use the information on the location of the
searched object to allocate effort.

We used a 4 × 4 grid for the test with equal cell areas of 1 and equal sweep widths
W of 1. Furthermore, the grid of the POC is defined with a bivariate Gaussian
distribution, as defined in Section 2.1.1 (Appendix B).

Figure 11: Regarding the information on the presence of the searched object as a
function of the total effort available

In Figure 9, we observe that the standard deviation of the effort is the same for
Models 2 and 3 since the same prior information is used. In Model 1, the standard
deviation is less important, so the effort is more homogeneously distributed on the
grid. For each model, there is a threshold above which an additional effort will not
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change the standard deviation of effort. This indicates that the information used
to distribute the effort is not relevant anymore. As a matter of fact, we observe in
Figure 11) that this occurs when the spatial standard deviation of the information
on the missing object after an update is near zero. In Model 2, the increase of the
curve above the threshold is due to a computational approximations required when
working with a too large number of focal elements.

5.2 Model with false alarms
We study the consequences of a bip or a no bip in this model. We begin by settling
a grid of POC, of area, of POD and of POD′. We use the data of the previous
section to define the POC and the area and define the grid of POD and POD′ (See
Figure 12).

Figure 12: The probability of a bip following a sensor scan of the cell

Referring to Figure 8, we first consider that the sensor in the cell of area 81 returns
a bip as illustrated in Figure 13. The pignistic probability that the searched object
is in this cell therefore increases.

Figure 13: Updated pignistic probability
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Next, we assume that the sensor in the cell of area 27 does not return a bip. The
pignistic probability on the grid is less heterogeneous (See Figure 13). The behavior
observed with these two examples must not be considered representative since the
evolution of the pignistic probability depends on the ratio POD/POD′. To verify
this, we conducted tests (cf. Appendix C) on a 4 × 4 grid on which the pignistic
probability is uniform. We set two ROC curves that represent the behaviors of a
sensor used by day or by night as represented in Figure 14.

Figure 14: ROC curves of the sensor

We now assume that the sensor scans the search area for each point of the ROC curves
and that random bips are generated. We obtain the number of bips for each point
of the curves shown in Figure 15 and the spatial distribution of pignistic probability
at the end of search shown in Figure 16. According to the point we use on the ROC
curves, the information we obtain on the plane location is more or less relevant. If
we do not have relevant prior information on plane location, the more informative
point of a ROC curve is the one where the ratio POD/POD′ is the biggest.

Among all the models we developed, the most interesting ones appear to be Models
2 and 4. However, the use of belief functions in these models require a particular
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Figure 15: Number of bips as a function of the sensor’s configuration

attention to avoid the “explosion” of the number of focal elements created during
the combination process.
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Figure 16: Standard deviation in the spatial distribution of pignistic probability as
a function of the sensor’s configuration

34 DRDC Valcartier TR 2010-224



6 Conclusions

This report proposes an original way to model and manage the information in a
Search And Rescue (SAR) problem. Instead of using the traditional probabilistic
framework we propose a representation of information based on belief functions the-
ory which allows to model and combine several sources of information in a finer and
richer way than probabilities do.

As a background introduction to this work, we first summed up the state of the art
in optimal search theory, introducing models and concepts commonly used in SAR
applications, and presented the belief functions theory. We proposed several models
for the SAR problem using this framework which account or not the false alarms,
either at the cell or at the grid level. We compare the results obtained in information
combination and update.

We observed that the allocation of effort on the search area highly depends on the
model used, which highlight the impact of the theoretical framework used. The model
also affects the way prior information on location is updated after mission planning.
It appears that in some cases, using belief functions to update information and split
the effort is more relevant than using probabilities. However, the framework of belief
functions theory may involve computational complexity and thus the model must be
selected with care.

As a conclusion, the results obtained are promising and encouraging. The uncertainty
is better handled within the framework of belief functions theory, and the model has
a clear impact on the effort allocation over the search area. The quality is planned
to be quantified and analyzed in further works.
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Annex A: De Guenin’s algorithm

This program was written for MATLAB 7.5.0 (R2007b). The detection law is expo-
nential (cf. eq.(6)).

function [ phi ,POS] = algodeGuenin (POC,w, area , ph i t o t a l )

lambda = 1 ; % parameter to e s t imate
e p s i l o n = 0 . 0 0 1 ;
ok = 0 ; % to know i f we cont inu the a l go .
de l t a =lambda /2 ; % Step o f the dichotomy
phi = zeros ( s ize (POC) ) ; % I n t i t i a l i z a t i o n o f e f f o t on c e l l s

while ( ok == 0 )
% i f x i s in the search area
tmp = POC−lambda . / (w. / area ) ;
i n d i c e = find (tmp>0);
% No e f f o r t in the c e l l
phi = zeros ( s ize (POC) ) ;
% To be sure we have something in the search area
t e s t = s ize ( i n d i c e ) ;
i f ( t e s t (1 ) ˜= 0)

% Repar t i t i on o f the e f f o r t
phi ( i nd i c e ) = 1 . / (w( i nd i c e ) . / area ( i nd i c e ) ) . . .

.∗ log ( (w( i nd i c e ) . / area ( i nd i c e ) ) . . .

.∗POC( i nd i c e )/ lambda ) ;
end
% To know i f we must cont inue
philambda = sum( phi ( i n d i c e ) ) ;
i f ( ph i t o t a l+eps i l on<philambda )

% Increase lambda
lambda = lambda + de l t a ;
d e l t a = de l t a /2 ;

e l s e i f ( philambda<ph i t o ta l−e p s i l o n )
% Decrease lambda
lambda = lambda − de l t a ;
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de l t a = de l t a /2 ;
else

ok = 1 ;
end

end

% Compute POS
POD = 1−exp(−w.∗ phi ) ;
POS =sum(sum(POD.∗POC) ) ;
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Annex B: Distribution of effort according to
the models (1,2,3).

This program was written for MATLAB 7.5.0 (R2007b). The detection law is expo-
nential (cf. eq.(6)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close a l l
clear a l l

% In i t POC
mu = [0 0 ] ; % Mean
Sigma = [1 0 ; 0 1 ] ; % Standard d e v i a t i on
% Set the g r i d
x1 = −3 :2 :3 ; x2 = −3 :2 :3 ;
[X1 ,X2 ] = meshgrid ( x1 , x2 ) ;
POC = mvnpdf ( [X1 ( : ) X2 ( : ) ] ,mu, Sigma ) ;
POC = reshape (POC, length ( x2 ) , length ( x1 ) ) ;
% Beta
prob=0.8 ;
% Normal izat ion o f POC
POC = POC/(sum(sum(POC) ) )∗ prob ;
% w uniform on the g r i d
w = ones ( s ize (POC) ) ;
% area uniform on the g r i d
area = ones ( s ize (POC) ) ;
% Set amount o f e f f o r t
phi to =0.1 ;

% For s e v e r a l amounts o f a v a i l a b l e e f f o r t
for i n d i c e =1:150

ph i t o t a l=phi to ∗( ind i c e −1);

% Pr o b a b i l i s t i c model
[ phi ,POS] = algodeGuenin (POC,w, area , ph i t o t a l ) ;
POD = 1−exp(−w.∗ phi ) ;
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POC1 = POC.∗(1−POD) ;

% Model 1
% P i g n i s t i c a t the beg inn ing
BETP = 1/2+POC/2 ;
% Di s t r i b u t i o n o f e f f o r t
[ phi1 ,POS] = algodeGuenin (BETP,w, area , ph i t o t a l ) ;
% P i gn i s t i c update
POD = 1−exp(−w.∗ phi1 ) ;
BETP1 = BETP.∗(1−POD) ;

% Model 2
% P i g n i s t i c a t the beg inn ing
BETP2 = POC+(1−prob )/ ( length ( x2 )∗ length ( x1 ) ) ;
% Di s t r i b u t i o n o f e f f o r t
[ phi2 ,POS] = algodeGuenin (BETP2,w, area , ph i t o t a l ) ;
% I n i t i a l i z e bba
POC2=reshape (POC, length ( x2 )∗ length ( x1 ) , 1 ) ;
mm{1}=[POC2;1−sum(sum(POC2 ) ) ] ;
FF{1}=zeros ( length (POC2)+1 , length (POC2) ) ;
FF{1} (1 : length (POC2) , 1 : length (POC2))=eye ( length (POC2) ) ;
FF{1}( length (POC2)+1 ,1 : length (POC2))=ones (1 , length (POC2) ) ;
POD = 1−exp(−w.∗ phi2 ) ;
POD2=reshape (POD, length ( x2 )∗ length ( x1 ) , 1 ) ;
% Update bba
% We use a T. Denoeux ’ s and de Ph . Smets ’ Matlab l i b r a r y
for ind=2: length (POD2)+1

mm{ ind }=[POD2( ind−1);1−POD2( ind −1) ] ;
FF{ ind}=zeros (2 , length (POD2) ) ;
FF{ ind}=ones (2 , length (POD2) ) ;
FF{ ind } (1 , ind−1)=0;

end
% Combination o f bba
K=2ˆlength (POC2) ;
version=’ out ’ ;
[m, Fv ,F ,C]=comb coars (mm,FF,K, version ) ;
% Compute P i g n i s t i c
BETP3=zeros ( s ize (POC2) ) ;
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gg=sum(F ’ ) ;
for i =1: length (POC2)

for ind=1: length (m)
i f (F( ind , i )==1)

BETP3( i )=BETP3( i )+m( ind )/ ( gg ( ind )∗(1−m( 1 ) ) ) ;
end

end
end
BETP3 = reshape (BETP3, length ( x2 ) , length ( x1 ) ) ;

% Model 3
BETP4=BETP2;
phi3=phi2 ;
% Update POC
POC3 = POC2.∗(1−POD2) ;
% bba a f t e r combinat ing
m5=POC3;
m5 ignorance=1; % Mass on ignorance
for i =1: length (POC3)

m5 ignorance=m5 ignorance∗(1−POC3( i ) ) ;
for j =1: length (POC3)

i f ( i ˜=j )
m5( i )=m5( i )∗(1−POC3( j ) ) ;

end
end

end
% Mass on the empty s e t
m5 empty=1−(sum(sum(m5))+m5 ignorance ) ;
% P i gn i s t i c
BETP5=m5+m5 ignorance /((1−m5 empty )∗ length (m5 ) ) ;
BETP5 = reshape (BETP5, length ( x2 ) , length ( x1 ) ) ;

% reshap ing data
POC1 r=reshape (POC1, length ( x2 )∗ length ( x1 ) , 1 ) ;
BETP1 r=reshape (BETP1, length ( x2 )∗ length ( x1 ) , 1 ) ;
BETP3 r=reshape (BETP3, length ( x2 )∗ length ( x1 ) , 1 ) ;
BETP5 r=reshape (BETP5, length ( x2 )∗ length ( x1 ) , 1 ) ;
ph i r=reshape ( phi , length ( x2 )∗ length ( x1 ) , 1 ) ;
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ph i 1 r=reshape ( phi1 , length ( x2 )∗ length ( x1 ) , 1 ) ;
ph i 2 r=reshape ( phi2 , length ( x2 )∗ length ( x1 ) , 1 ) ;
ph i 3 r=reshape ( phi3 , length ( x2 )∗ length ( x1 ) , 1 ) ;
% Compute the standard d e v i a t i on
POC1 r sqrt ( i n d i c e )=sqrt ( var (POC1 r ) ) ;
BETP1 r sqrt ( i nd i c e )=sqrt ( var (BETP1 r ) ) ;
BETP3 r sqrt ( i nd i c e )=sqrt ( var (BETP3 r ) ) ;
BETP5 r sqrt ( i nd i c e )=sqrt ( var (BETP5 r ) ) ;
p h i r s q r t ( i nd i c e )=sqrt ( var ( ph i r ) ) ;
p h i 1 r s q r t ( i nd i c e )=sqrt ( var ( ph i 1 r ) ) ;
p h i 2 r s q r t ( i nd i c e )=sqrt ( var ( ph i 2 r ) ) ;
p h i 3 r s q r t ( i nd i c e )=sqrt ( var ( ph i 3 r ) ) ;

end

% Draw
f igure ;
semilogy ( 0 : 0 . 1 : ph i t o ta l , p h i r s q r t , ’ ∗ ’ ) ;
hold on ;
semilogy ( 0 : 0 . 1 : ph i t o ta l , ph i 1 r s q r t , ’+ ’ ) ;
semilogy ( 0 : 0 . 1 : ph i t o ta l , ph i 2 r s q r t , ’ s ’ ) ;
semilogy ( 0 : 0 . 1 : ph i t o ta l , ph i 3 r s q r t , ’−− ’ ) ;
xlabel ( ’ E f f o r t a v a i l a b l e (u . a . ) ’ ) ;
ylabel ( ’ Standard dev i a t i on o f e f f o r t on the g r id ’ ) ;
h = legend ( ’ Standard dev i a t i on o f e f f o r t on the g r id in . . .

p r o b a b i l i s t i c case ’ , . . .
’ Standard dev i a t i on o f e f f o r t on the g r id in model 1 ’ , . . .
’ Standard dev i a t i on o f e f f o r t on the g r id in model 2 ’ , . . .
’ Standard dev i a t i on o f e f f o r t on the g r id in model 3 ’ , 4 ) ;

set (h , ’ I n t e r p r e t e r ’ , ’ none ’ ) ;
f igure ;
plot ( 0 : 0 . 1 : ph i t o ta l , POC1 r sqrt , ’ ∗ ’ ) ;
hold on ;
plot ( 0 : 0 . 1 : ph i t o ta l , BETP1 r sqrt , ’+ ’ ) ;
plot ( 0 : 0 . 1 : ph i t o ta l , BETP3 r sqrt , ’ s ’ ) ;
plot ( 0 : 0 . 1 : ph i t o ta l , BETP5 r sqrt , ’−− ’ ) ;
xlabel ( ’ E f f o r t t o t a l d i s p on i b l e (u . a . ) ’ ) ;
ylabel ( ’ ’ Standard dev i a t i on o f in fo rmat ion on the grid ’ ) ;
h = legend ( ’ ’ Standard dev i a t i on o f updated p i g n i s t i c . . .
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on the grid ’ ’ , . . .
’ Standard dev i a t i on o f p i g n i s t i c on the grid in model 1 ’ ,
’ Standard dev i a t i on o f p i g n i s t i c on the g r id in model 2 ’ ,
’ Standard dev i a t i on o f p i g n i s t i c on the g r id in model 3 ’ , 4 ) ;
set (h , ’ I n t e r p r e t e r ’ , ’ none ’ ) ;
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Annex C: Model with false alarms(4).

This program was written for MATLAB 7.5.0 (R2007b). The detection law is expo-
nential (cf. eq.(6)).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close a l l
clear a l l

% I n i t a l i z e POC
mu = [0 0 ] ; % Mean
Sigma = [1 0 ; 0 1 ] ; % Standard d e v i a t i on
% I n i t g r i d
x1 = −3 :2 :3 ; x2 = −3 :2 :3 ;
POC = ones ( length ( x2 ) , length ( x1 ) ) ;
% Beta
prob=0.8 ;
% Normal izat ion o f POC
POC = POC/(sum(sum(POC) ) )∗ prob ;
% P i gn i s t i c a t the beg inn ing
BETP = POC+(1−prob )/ ( length ( x2 )∗ length ( x1 ) ) ;
% In i t bba
POC1=reshape (POC, length ( x2 )∗ length ( x1 ) , 1 ) ;
mm{1}=[POC1;1−sum(sum(POC1 ) ) ] ;
FF{1}=zeros ( length (POC1)+1 , length (POC1) ) ;
FF{1} (1 : length (POC1) , 1 : length (POC1))=eye ( length (POC1) ) ;
FF{1}( length (POC1)+1 ,1 : length (POC1))=ones (1 , length (POC1) ) ;
% Points on ROC curves
POD f0 = 0 : 0 . 1 : 1 ; % Prob o f f a l s e alarm
POD f1 = [ POD f0 , POD f0 ] ;
POD1(1) = 0 ;
POD2(1) = 0 ;
for ind=1:9

% Prob b ip search o b j e c t by day
POD1( ind+1) = POD1( ind )+(1/3)∗(1−POD1( ind ) ) ;
% Prob b ip search o b j e c t by n i gh t
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POD2( ind+1) = POD2( ind )+1/2ˆ ind ;
end
POD1(11) = 1 ;
POD2(11) = 1 ;
POD = [POD1,POD2 ] ;
% Random b ip
a l ea = rand ( length ( x2 )∗ length ( x1 ) , 1 ) ;
% Number o f f a l s e alarms
nbbip =zeros ( length (POD) ) ;
% FOR ALL THE POINTS
for ind=1: length (POD)

% Pro b a b i l i t y o f having a b ip
Pbit{ ind} = POC1∗POD( ind)+ . . .

( ones ( s ize (POC1))−POC1)∗POD f1 ( ind ) ;
% bba l i n k e d to the sensor
for index=2: length (POC1)+1

% I f b ip
i f ( ( a l ea ( index−1))<(Pbit{ ind }( index −1)))

nbbip ( ind ) = nbbip ( ind )+1;
mm{ index }=[POD( ind )∗(1−POD f1 ( ind ) ) ; . . .

POD f1 ( ind )∗(1−POD( ind ) ) ; . . .
1−(POD( ind )∗(1−POD f1 ( ind ) ) . . .
+POD f1 ( ind )∗(1−POD( ind ) ) ) ] ;

FF{ index}=zeros (3 , length (POC1) ) ;
FF{ index } (1 , index−1)=1;
FF{ index } ( 2 : 3 , 1 : end)=ones (2 , length (POC1) ) ;
FF{ index } (2 , index−1)=0;

else
mm{ index }=[POD f1 ( ind )∗(1−POD( ind ) ) ; . . .

POD( ind )∗(1−POD f1 ( ind ) ) ; . . .
1−(POD( ind )∗(1−POD f1 ( ind ))+ . . .
POD f1 ( ind )∗(1−POD( ind ) ) ) ] ;

FF{ index}=zeros (3 , length (POC1) ) ;
FF{ index } (1 , index−1)=1;
FF{ index } ( 2 : 3 , 1 : end)=ones (2 , length (POC1) ) ;
FF{ index } (2 , index−1)=0;

end
end
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% Combination o f bba
K=2ˆlength (POC1) ;
version=’ out ’ ;
[m, Fv ,F ,C]=comb coars (mm,FF,K, version ) ;
% Compute updated p i g n i s t i c
BETP1=zeros ( s ize (POC1) ) ;
gg=sum(F ’ ) ;
for i =1: length (POC1)

for i n d i c e =1: length (m)
i f (F( ind i c e , i )==1)

BETP1( i )=BETP1( i )+m( i nd i c e )/ ( gg ( i nd i c e )∗(1−m( 1 ) ) ) ;
end

end
end
% Standard d e v i a t i on
BETP1 r sqrt ( ind)=sqrt ( var (BETP1) ) ;

end
% trace
f igure ;
plot (POD f0 ,POD1, ’−ob ’ ) ;
hold on ;
plot (POD f0 ,POD2, ’−∗r ’ ) ;
xlabel ( ’ P robab i l i t y o f f a l s e alarm ’ , ’ f o n t s i z e ’ , 2 0 ) ;
ylabel ( ’ P robab i l i t y o f d e t e c t i on ’ , ’ f o n t s i z e ’ , 2 0 ) ;
h = legend ( ’ROC curve o f the s enso r by night ’ , . . .

’ROC curve o f the s enso r by day ’ , 2 ) ;
set (h , ’ I n t e r p r e t e r ’ , ’ none ’ ) ;
f igure ;
plot (POD f0 , BETP1 r sqrt ( 1 : 1 1 ) , ’−ob ’ ) ;
hold on ;
plot (POD f0 , BETP1 r sqrt ( 1 2 : 2 2 ) , ’−∗r ’ ) ;
xlabel ( ’ P robab i l i t y o f f a l s e alarm ’ , ’ f o n t s i z e ’ , 2 0 ) ;
ylabel ( ’ Standard dev i a t i on o f p i g n i s t i c on the g r id ’ , . . .

’ f o n t s i z e ’ , 2 0 ) ;
h = legend ( ’ Resu l t s obta ined with senso r by night ’ , . . .

’ Resu l t s obta ined with senso r by day ’ , 2 ) ;
f igure ;
plot (POD f0 , nbbip ( 1 : 1 1 ) , ’−ob ’ ) ;
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hold on ;
plot (POD f0 , nbbip ( 1 2 : 2 2 ) , ’−∗r ’ ) ;
xlabel ( ’ P robab i l i t y o f f a l s e alarm ’ , ’ f o n t s i z e ’ , 2 0 ) ;
ylabel ( ’Number o f b ips ’ , ’ f o n t s i z e ’ , 2 0 ) ;
h = legend ( ’ Resu l t s obta ined with senso r by night ’ , . . .

’ Resu l t s obta ined with senso r by day ’ , 2 ) ;
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représenter les imperfections d’une source d’information. Ces imperfections peuvent être liées à la
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