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Abstract ……..

When faced with potentially disruptive events, the state of a network may unexpectedly evolve to 
regions of the state space where safe operating conditions are no longer ensured. It is thus highly 
desirable to relate the network characteristics and operating conditions to its vulnerabilities, if 
any, in order to mitigate risk expressed as a function of network inoperability and loss of quality 
of service. A pattern recognition approach is adopted to relate the structural features of the 
network to the loss of operating nodes and edges. Two types of networks are considered for 
analysis and simulation in this document. A network characterized by flow conservation and 
capacity constraints is adapted from a fuse model, which may lead, in some instances, to 
cascading events. A tactical swarm of robots is deployed either to achieve terrain surveillance 
coverage or to maintain client connectivity so that every client can communicate in remote area. 
In both cases, the swarm of robots should maintain its connectivity at each time instant. The 
swarm deployment adapts to the loss of a robot caused by such factors as hardware/software 
failure, enemy action, or the presence of malware. The motion strategy prioritizes the client 
coverage, which may entail possible losses of connectivity. Given the motion strategy at hand, the 
swarm presents vulnerabilities related to the loss of some nodes. The classifier, instrumental in 
performing pattern recognition, is trained from a sample of networks obtained by some 
probabilistic generator.  The classifier is shown to model, and to some extent, predict quickly the 
vulnerabilities of a class of networks as a function of their structural properties.      

Résumé ….....

La présence d’événements perturbant le fonctionnement des réseaux peut entraîner, sous certaines 
conditions, des dysfonctionnements importants. Il est  donc souhaitable de cerner les conditions 
de fonctionnement et les caractéristiques pertinentes du réseau afin de modéliser ses 
vulnérabilités et d’en atténuer les risques encourus exprimant, entre autres, les baisses du niveau 
de qualité de service du réseau. Les techniques de reconnaissance de forme sont appliquées avec 
comme hypothèse de travail, une corrélation importante entre caractéristiques structurelles et 
vulnérabilité du réseau. Deux types de réseaux présentant des phénomènes d’avalanche sont 
proposés pour tester l’approche. Un réseau respectant le principe de conservation de l’énergie et
intégrant des contraintes sur la capacité maximale de transport des liens (inspiré d’un réseau de 
fusibles) permet de générer, dans certain cas, des phénomènes de cascade. Un réseau tactique de 
robots est déployé dans un environnement dynamique afin de répondre  au problème posé par 
deux scénarios possibles : (i) la couverture d’un terrain pour y accomplir des tâches de 
surveillance, et (ii) le maintien de la connectivité d’un réseau de clients voulant communiquer à
partir de régions éloignées. Le déploiement des robots est capable de s’adapter à d’éventuelles 
pertes, notamment causés par des bris, une attaque ennemie ou par la présence de programmes 
malveillants. La stratégie de déplacement priorise la couverture des clients et maintient, lorsque 
cela est possible, la connectivité du réseau. La perte d’un ou plusieurs robots peut constituer une 
vulnérabilité car le redéploiement du réseau peut engendrer de nouvelles pertes de liens et des bris 
de connectivité. Le classifieur est entraîné à partir d’un échantillon de réseaux obtenu à l’aide 
d’un générateur aléatoire de réseaux. Il est montré que ce classifieur représente assez bien le lien 
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entre les caractéristiques structurelles de la classe de réseaux étudiée et ses vulnérabilités 
potentielles, permettant ainsi une prédiction rapide des vulnérabilités d’une classe de réseaux.             
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Executive summary  

Pattern Recognition of Socio-technical Network Vulnerabilities: 
Modeling and preliminary results  

Nicolas Léchevin; Anne-Laure Jousselme; Patrick Maupin; DRDC Valcartier TR 
2013-409; Defence R&D Canada – Valcartier; December 2013. 

Introduction or background: Risk mitigation of large networks is carried out by means of 
digital, time-domain simulations that try to predict the outcome of a time-varying, event-driven 
system as a function of current operating condition, a partially unknown environmental context, a 
set of possible stressors including exogenous threats and policies. Simulations based on the 
application of first principles and engineering protocols may yield accurate results but are time 
consuming when dealing with large amounts of data, which are typical of complex networks. It is 
believed that a pattern recognition approach would speed up the vulnerability analysis of such 
networks. Two types of networks, which have the potential to experience cascading events in 
response to some triggering events, are considered to validate the proposed approach. One 
network is based on the fuse model where subsets of edges and nodes are sequentially removed 
whenever the corresponding subsets of capacity constraints are exceeded, following a change in 
the flow of energy in response to the initial loss of a node or an edge. The other network involves 
a tactical swarm of robots whose main objective is either to perform terrain surveillance coverage 
or to maintain communication connectivity among of a set of clients equipped with handheld 
devices and evolving in remote areas. These two objectives are achieved by implementing an 
adaptive motion strategy. The removal of robots, caused by enemy action, the unexpected 
presence of malware, or hardware/software failure, may also entail a sequential loss of robot 
connectivity.     

Results: A set of triggering events is applied to the networks and results, after simulations, in a 
data set used to train a classifier. This classifier is built on the assumption that the structural 
properties of a network are central to its vulnerability analysis. Considering a class of networks 
obtained by applying a probabilistic generator, a classifier relating the network class structural 
features to vulnerability labels is then derived. The classifier can be simplified by extracting the 
most relevant features and improved by combining several classification approaches. As 
expected, the classifiers derived are able to provide fast results with a classification rate of up to 
70%, meaning that up to this fraction of vulnerabilities can be identified for a prescribed class of 
networks.    

Significance: Although classifier training may require a lot of computational power, especially 
for large networks, the training phase is achieved prior to online use of the classifier. Once a 
classifier is derived, obtaining the label vector of vulnerability and thus identifying parts of the 
network that are vulnerable is a very fast process. The classifier can be used for any networks of a 
same class defined by a prescribed set of parameters, that is, generated using the same generator. 
However, the robustness of the proposed classification methods with respect to parametric 
uncertainties of the network generator is not shown.     

Future plans: Other classification techniques involving advanced combination functions, and the 
use of non-structural features such as dynamical-system-based features and signal-based features 
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should be exploited to improve the classification rate. Pattern recognition has been applied to 
synthetic data. The approach should be tested and evaluated with actual data and improved 
accordingly.  
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Introduction ou contexte : La simulation numérique du comportement de grands réseaux est 
souvent utilisée pour analyser et atténuer le risque encouru par de telles infrastructures. Celles-ci 
répondent à des actions de commande par l’intermédiaire d’une dynamique le plus souvent  
instationnaire, événementielle, potentiellement perturbées par des menaces, et évoluant dans des 
environnements incertains. Les modèles, qui sont obtenus à partir de lois fondamentales et de 
protocoles d’ingénierie, fournissent des résultats assez précis mais au prix d’une charge 
calculatoire d’autant plus élevée que les réseaux à analyser sont de grande taille. La 
reconnaissance de forme est l’approche privilégiée dans ce projet en raison de la rapidité 
d’exécution d’un classifieur une fois entraîné pour une classe de réseaux donnée. Les modèles de 
deux types de réseaux sont proposés dans le but de tester une famille de classifieurs utilisés pour 
identifier les vulnérabilités potentielles de ces réseaux. Ces deux types de réseaux peuvent, sous 
certaines conditions, présenter des phénomènes d’avalanche. En effet, la désactivation d’un nœud
ou d’un lien d’un réseau de transport peut engendrer une séquence de bris si les capacités de 
transport des liens sont violées suite au recalcul du point d’équilibre du réseau. Un réseau de 
robots assurant la surveillance d’un environnement dynamique ou assurant le maintien de la 
connectivité d’un réseau de clients voulant communiquer à partir d’une zone éloignée peut 
également subir une série de perte de connectivité de certains de ses robots,  suite à la perte 
initiale d’un robot causée par l’apparition d’une panne, la présence d’un maliciel ou d’une action 
ennemie.       

Résultats : Un ensemble de classifieurs est entraîné à partir de données obtenues des simulations 
de deux classes de réseaux suite à un événement perturbateur initial. Les relations entre 
caractéristiques structurelles d’une classe de réseaux générés à partir d’un mécanisme probabiliste 
et de leur vulnérabilité constituent l’hypothèse de base à partir de laquelle ces classifieurs sont 
engendrés. Le classifieur peut être simplifié en sélectionnant les caractéristiques structurelles les 
plus pertinentes. Une fois l’apprentissage réalisé, le classifieur peut fournir une réponse sur la 
vulnérabilité d’un réseau d’une classe définie par un ensemble de paramètres donnés avec un taux 
de classification pouvant atteindre 70%.  

Importance : Bien que la phase d’apprentissage puisse s’avérer très exigeante en besoin 
calculatoire, l’identification des vulnérabilités d’un réseau par classifieur est très rapide. Un seul 
classifieur peut fonctionner pour tous les réseaux d’une même classe définie par un générateur. La 
robustesse des classifieurs par rapport aux variations paramétriques du générateur n’est cependant 
pas démontrée.      

Perspectives : Des caractéristiques non structurelles, telles que celles liées aux propriétés 
dynamiques du réseau et aux signaux mesurables, ainsi que des classifieurs obtenus à partir de 
fonctions de combinaison plus sophistiquées que celles utilisées dans le présent travail, devraient 
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être exploitées afin d’améliorer l’identification des vulnérabilités. L’évaluation de l’approche 
proposée doit être validée avec des données réelles et améliorée en conséquence.  
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1 Introduction 

1.1 Context 

As suggested by the multidimensional description of civilian infrastructures1 proposed by Rinaldi 
et al. (2001) and extending Perrow’s taxonomy (Perrow, 1984), numerous factors may 
detrimentally affect the course of action of very large interconnected infrastructures, which often 
correspond to complex networks. This multidimensional description puts forward various factors 
that substantially render more complex the analysis of infrastructures involved in modern 
societies.  This description involves (i) various states of operation such as maintenance operations 
and the state of service delivery (disrupted or stressed), (ii) organizational, social, operational, 
temporal and spatial scale factors, (iii) several types of interdependencies, namely physical, social 
(psychological), cybernetical, geographic or logical, (iv) several types of dependencies, which are 
related to such properties as resource storability (the resource can be accumulated at several 
places of the infrastructure), and resource compressibility, referring to the maximum pressure 
supported by the storage of resources (Svendsen and Wolthusen, 2007), (v) several types and 
degrees of coupling (tight or loose, coupling order referring to event causality) and response 
behaviour (linear interactions, complex interactions), and (vi) a variety of environments such as 
business and economic opportunities, public or private investment, legal and regulatory concerns, 
and safety and security issues. It should be noted that parallels between federal and Department of 
National Defense (DND) perspectives on the protection of infrastructures can be established 
(Bozek, 2002)2.

Possible occurrence of malfunctions may impact linked infrastructures by virtue of 
interdependencies; that is dependencies possibly characterized by feedback loops or complex 
adaptive systems (Wildberger, 1998) with, to some extent, self-healing behaviour. Couplings may 
in turn give rise to major failures, which are classified as cascading failures, escalating failures 
and common cause failures (Rinaldi et al., 2001). Since an infrastructure is a network of 
manmade systems (President’s Commission, 1997), it is important to delineate conditions and 
patterns that have the potential to lead to a crisis.  

Figure 1 displays such descending scenarios, which, although derived from lessons 
learned in the electric power industry (Heydt et al., 2001), may to some degree be applicable to 
other infrastructures. The steps of the scenario are classified in order of severity, along with 
aggravating factors (AF) that increase the likelihood of the system transitioning to the next step 

                                                      
1 Following the report in (President’s Commission, 1997) an infrastructure is “a network of manmade 
systems and processes that function collaboratively and synergistically to produce and distribute a 
continuous flow of goods and services.”  Following the US Critical Infrastructure Assurance Office (CIAO, 
2003), infrastructures are defined as “the framework of interdependent networks and systems comprising 
identifiable industries, institutions (including people and procedures), and distribution capabilities that 
provide a reliable flow of products and services essential to the defense and economic security of the 
United States, the smooth functioning of governments at all levels, and society as a whole.”
2 The continuous flow of goods and services through the military supply chain from domestic bases and 
industrial units to foreign bases and operational theatres can be paralleled to some extent with global 
industries, although battle command involves infrastructures that are unique to DND (Léchevin and 
Maupin, 2011). 
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(Heydt et al., 2001; Léchevin and Maupin, 2009) from stressed state to a crisis state. As suggested 
in  Figure 1, the network state may evolve toward unsafe regions (characterized by system 
instability, physical failure, disconnection, outage) of the state space as a result of the action of 
exogenous and endogenous disturbances, or of inappropriate system operation. In normal 
operating conditions, the system is in secure3 state, meaning that the system operates safely4 and 
that threats are detected and properly handled. A system in secure state may evolve to a system in 
stressed state when, for instance, its facilities tend to operate close to their respective limits5;
therefore, reserve resources, if any, are minimal. Aggravating factors include lack of information 
and erroneous real-time assessment of the system state.    

System in
Secure State

System on
the Edge

Insecure
System

System with
instabilities

Disconnection
of the System 
Into Clusters

1. System in stressed state:
• Facilities operated close 

to operational limits;
• Reserve resources are 

minimal or nonexistent
2. Lack of information (AF);
3. Erroneous assessment of system conditions (AF);
4. Inadequate safety margins (AF).

Avalanche: Pre-Catastrophic event
Instabilities in the flow give rise
to islanding. 

1. Initiating event: fault, failure, attack;
2. Hidden failure of protection systems (AF);
3. False triggering of protection systems (AF);
4. Erroneous interpretation made by operators and

decision makers (AF).  

1. Behaviour at risk: unexpected transient, 
triggering of oscillatory divergence; 

2. Inadequacy of local protection and control  
systems: overreaction, overtripping (AF);

3. Incorrect actions by operators and
decision makers (AF). 

System in Crisis
Catastrophic event

Failure of overloaded components. 

Blackout

Operational
limits

Safe
region

Figure 1: Mechanisms that lead to catastrophic events within infrastructures.

                                                      
3 Security refers to the prevention and detection of, and response to theft, sabotage of material, 
unauthorized access, illegal transfer or other source of malicious acts (IAEA, 2007). 
4 Safety refers to achieving proper operating conditions, preventing accidents and mitigating their impact on 
workers, the public and the environment (IAEA, 2007). 
5 Operational limits correspond to the parameter limits, the functional capability and the performance levels 
of equipment and personnel for safe operation of a facility (IAEA, 2007). 
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Indeed, vulnerabilities of a network are closely related to safety margins6 defined with respect to 
operational limits. Exceeding operational limits may incur accident, thus possibly leading to the 
failure of a component or network and impacting workers, the public and the environment. The 
continued shrinking of these margins (system on the edge in  Figure 1), owing to (i)
economic and financial pressures, and to (ii) the lack of tools7 for accurate, real-time evaluation 
of network state rather than relying on pre-calculated margins (Heydt et al., 2001), are some 
conditions that are the most conducive to the occurrence of behaviour at risk, and possibly to 
catastrophic events. And since various infrastructures tend to be less robust to disturbances in 
terms of safety margin, a triggering event (considered as an aggravating factor such as an attack, a 
fault, or a failure), although inoffensive in secure state, may push the infrastructure closer to an 
avalanche dynamic (behaviour at risk in  Figure 1). Aggravating factors such as (i) the inadequacy 
of local protection and control systems in response to a global problem, false triggering and slow 
response times of those systems, and (ii) the inadequacy of human interpretations and decision 
making, lead to the tripping of additional facilities and finally to the catastrophic event shown in 
the lowest tier of  Figure 1.

1.2 Prediction and Recognition of Vulnerabilities 

To mitigate inoperability risks, a Prediction and REcognition of VUlnerabilities (PREVU) 
toolbox is being developed building on Pattern Recognition (PR) techniques (Léchevin et al.,
2011a). Building upon the objectives of PREVU and the Pattern Recognition (PR) formalization 
presented in Léchevin et al., (2009, 2011a), we present in this report a classification-based 
vulnerability analysis focused on the exploitation of the structural features of networks. While 
other types of features8 should also be exploited to analyze complex networks (Hines et al.,
2010), we aim at analyzing the effect of structural feature selection on the sensitivity of network 
vulnerability model to a class of triggering events corresponding to node and edge removal.  

Two examples of network vulnerabilities are considered in this technical report. First, an 
avalanche mechanism corresponding to a variant of the fuse model (Hansen, 2005) is proposed. It 
is based on the energy conservation law across the network and on the fact that an edge is 
removed when the flow across it exceeds a prescribed value. While being a simplistic model 
when compared to an actual electric network, it is believed that this class of model can display 
dynamical features that are sufficiently informative to conduct and analyze pattern recognition 
experiments.  

Second, vulnerabilities of a simplified model of a tactical, mobile, robot swarm deployed for 
surveillance coverage or for ensuring client connectivity are analyzed (Jousselme et al., 2012a). 
For such a network, the individual robots are at risk of losing contact with the rest of the swarm 
owing to the local sparseness of the surveillance coverage or to clients’ move, terrain complexity, 

                                                      
6 The safety margin is defined as the difference between the operational limits (safe operating conditions) 
and the actual parameter value, functional capability or performance level of the system (infrastructure, 
personnel).   
7 Not being able to accurately estimate the network state may entail improper operation of the network, 
which in turn may steer the network state closer to the state-space boundary corresponding to its 
operational limit.  
8 For instance, it is shown in (Léchevin et al., 2011b) how to derive dynamical system features for 
monitoring the stability of a class of cyber-physical systems in response to corrupted control systems. 
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and the accidental loss of a robot or a subset of robots due to a mechanical failure or enemy 
action. Identifying the swarm vulnerabilities expressed in terms of loss of communication 
connectivity may prevent detrimental events such as the inability for the swarm to maintain an 
acceptable level of target detection and identification. 

The classifier proposed in this report outputs a label determining whether or not a local 
representation is deemed vulnerable. A local representation of a network corresponds to a 
subgraph of the network including edge, node, clique, cluster, community (Caldarelli, 2007). The 
training and classification phases discussed in this report are performed with the two 
aforementioned classes of network, namely, random geometric networks (fuse model) and with a 
class of mobile ad hoc communication network (mobile robot swarm). Random geometric graphs 
are characteristic of randomly deployed wireless sensor networks. As shown in this report, a 
classifier generated by PREVU can be interpreted as a predictive vulnerability model as it maps a 
set of appropriately selected structural features characterizing every network local representation 
to a set of corresponding vulnerability labels.  

Experiments conducted to evaluate PREVU consist in training a set of classifiers and then 
evaluating classification rates. The two aforementioned avalanche mechanisms, that is, the 
modified fuse model and the robot swarm, both serve two purposes:  

generating training datasets, and 

generating datasets used to assess the performance of classifiers.  

Eighteen simple classifiers are considered. Combined classifiers using six combination functions 
applied to the best six simple classifiers are also analyzed. The misclassification rate of a 
classifier is computed by comparing the actual vulnerability labels obtained from avalanche 
simulations with vulnerability label estimates resulting from the application of a classifier. The 
best classifiers (simple and combined) achieve classification success up to 70%, meaning that up 
to 70% of the vulnerabilities as a result of threat realizations (node removals) were correctly 
detected.    

1.3 Outline of the report 

The report is divided as follows. A brief literature review is presented in Chapter 2. It should be 
noted that further details and references can be found in Léchevin and Maupin (2009). Modeling 
of the two proposed networks and avalanche mechanisms is the subject of Chapters 3 and 4. 
Motivations for designing a vulnerability analysis tool are also discussed in these two chapters. 
The classifier-based model, which is central to PREVU, is described in Chapter 4, where 
notations, definitions, design methodology, and structural features of interest are provided. 
Chapter 6 presents key results of a first version of PREVU applied to the analysis of the 
vulnerabilities of the two networks presented in Chapters 3 and 4 (fuse model and robot swarm). 
Concluding remarks are provided in Chapter 7, including future work.    
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2 Avalanche modeling 

Forecasting the pattern of an avalanche is not a trivial task. Various mechanisms leading to 
cascading events have been reported in Léchevin and Maupin (2009). Several approaches can be 
drawn.

The use of simplified models allows the application of techniques that pertain to statistical 
physics, although the accurate prediction of avalanches occurring in actual technical networks is 
unlikely, owing to unrealistic models. For instance, the fibre bundle and the fuse model are 
simplified abstractions of the mechanism of cascading failures in electrical circuits, or more 
generally in networks characterized by flow conservation such as Kirchhoff’s laws. These models 
can also be used to analyze the occurrence of cracks in loaded materials represented by means of 
a network of fuses (Hansen, 2005). The distribution of cracks, as the result of edge removal, can 
be derived from statistical physics techniques. The extension of this approach to manmade 
networks does not seem feasible.  

Approaches consisting in defining the load of a node by its betweenness centrality9 or variants 
may also lead to cascading failures by comparing the load of each node resulting from the 
removal of a set of edge and nodes to a prescribed load limit (Motter and Lai, 2002; Wang and 
Rong, 2009).  While providing interesting insights concerning the importance of structural 
features on the possible occurrence of avalanches, there is no evidence that the models proposed 
in (Motter and Lai, 2002; Wang and Rong, 2009) comply with the power flow that is specific to 
networks ruled by energy conservation, and thus by Kirchhoff’s laws.  

Branching processes have been leveraged, with some success, to approximate the pattern of 
cascading failures in response to the occurrence of potentially harmful events (Dobson et al.,
2010). Such probabilistic models give the number of line removals at each step of the iteration 
given the number of lines at the preceding step. A queue-model interpretation with a single server 
is also provided in (Dobson et al., 2005).  

On the other hand, approaches followed by industries for analyzing and predicting the behaviour 
of networks aim to comply with design constraints, technological and economic constraints, 
functions of network components, and various design trade-offs, which are notions that are 
understated by mainstream sciences of networks (Alderson and Doyle, 2010). For instance, the 
power system industry develops forecasting tools based on the integration of various techniques 
such as the simulation of dynamic model coupled to power flow model, dynamic decision event 
trees, and N-k contingency analysis (Heydt, 2001), each of which attempts to faithfully represent 
a facet of network behaviour. 

Networks may experience outage and denial of service despite failure detection and recovery 
mechanisms. In particular, uncontrolled and unexpected propagation of an isolated problem 
beyond local proportions when the network operates close to its physical limits is likely to arise 
under non-optimal operating conditions, occurring for instance near maximum allowable 
capacity. In the next two chapters, two types of avalanche mechanisms are detailed for the 

                                                      
9 Betweenness refers to a measure of the importance of a vertex or edge in a graph. The betweeness is 
obtained by counting the number of shortest paths that pass through a vertex (vertex-betweenness) or 
through an edge (edge-betweenness) to connect two parts of the graph (Freeman, 1979). 



6 DRDC Valcartier TR 2013-409

purpose of illustrating the proposed pattern-recognition-based vulnerability analysis. Both 
mechanisms express the interplay between 

the effect of the redistribution of some physical quantities through a network (e.g., power 
flow, distance between communicating robots) after a failure or a set of failures, and  

constraints, whereby link capacity must not be exceeded.   

In the variant of the fuse model presented in Chapter 3, an edge between two nodes is removed 
whenever the flow through it exceeds a prescribed capacity. In this network, flows satisfy 
Kirchhoff’s laws. 

A communication link between two robots of the tactical mobile cloud presented in Chapter 4 is 
disabled whenever the distance separating the two robots is greater than a prescribed 
communication range. The distance between two robots is the output of a dynamical system 
consisting of robot dynamics, communication processes, and a motion strategy. 
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3 Fuse model variant 

Despite its relative simplicity, a variant of the fuse model is used as one example of mechanism 
allowing to generate avalanches and thus the data sets that will be used to train the classifier. This 
model is used for several reasons.  
First, it is flexible enough to generate data from virtually any types of graph structures, which will 
be very useful for  

feature extraction based on structural properties of the graph,  

classifier training, and for 

analyzing the impact of possible network representations on the accuracy of avalanche 
prediction.  

Second, structural and flow parameters of the network, constraints, and the number and location 
of source and sink nodes can be selected arbitrarily.  

Last, the classification techniques will not be dependent on manmade networks’ specific 
technological considerations such as design constraints and protocols.  

However, this model does not account for the wide variety of network components such as 
protection and control systems, whose behaviour may contribute to triggering and feeding 
cascading failures. That is the reason why it is intended to complete the current work with tests 
involving actual data such as those obtained with the tactical mobile cloud whose model is 
presented in the next section.    

3.1 Principle 

The proposed avalanche mechanism is equivalent to a sequence of steady states, resulting in a 
discrete-event system whose state jumps at each iteration step k, (i.e., at time instant tk), from an 
equilibrium of the system to the next one, if any. The jump condition (JC) is related to the 
infringement of the flow constraint of every edge of the network and to the initial structural 
perturbation as described later on.  

More precisely, the envelope of the time trajectories corresponding to the flows through network 
edges, occurring in nominal conditions, must remain within some prescribed safety domain, as 
illustrated in Figure 2. At t1, one of those trajectories crosses the safety boundary outward, which 
entails the removal of the corresponding edge and in turn impacts the entire tube through the 
jump condition (JC1). Typically, JCi where i={1,2,…} is a set of algebraic conditions that 
initializes the modified continuous-time, dynamical system that evolves over [ti, ti+1). One of the 
remaining trajectories is particularly affected and leaves the safety domain at t2. A sequence of 
events occurring at t1, t2, t3, and t4 along with jump conditions JC1 to JC4 may lead to an 
avalanche, which involves the loss of a fraction of the network edges. (Léchevin and Maupin, 
2011).

It should to be noted that the hybrid nature of the avalanche mechanism proposed in the next 
section is a simplified version of the avalanche dynamics shown in Figure 2 since the continuous-
time dynamics leading to transient behaviours is disregarded. 
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Indeed, it has been shown in (Simonsen et al., 2008) that accounting for the transient may reveal 
vulnerabilities unseen by it discrete-time counterpart. The discrete-event model is thus used as a 
first approximation of very large networks whose continuous-time transients are not considered 
by the classificatory problem. The model of avalanche is applied to various types of graphs, 
which are randomly generated.  

Random geometric graph, as illustrated in Figure 4(a), small-world graphs, and graphs with 
exponential degree distribution and power-law distribution are graphs of interest since some of 
their structural properties have been shown to comply with those of several networks such as 
power networks (Bakke et al., 2006), the Internet (Barabási, 2007), social network (Dorogovtsev 
and Mendes, 2004), and wireless communications networks (Penrose, 2003). 

t1

t2

t3 t4

t1
t2

t3 t4

Safety boundary

JC1

JC2

JC3 JC4

t1

t2

t3 t4

t1
t2

t3 t4

Safety boundary

JC1

JC2

JC3 JC4

Figure 2: Onset of an avalanche in the hybrid time domain. 

3.2 Model 

Given a graph, its weighted Laplacian matrix, L=D A, is computed. Matrices D and A stand for 
the degree matrix10 and the adjacency matrix of the graph, respectively (Godsile and Royle, 
2001). Each nonzero and nondiagonal entry (i, j) of A is equal to the weight characterizing the 
corresponding edge (i, j), which links nodes i and j. The ijth entry of A is zero when nodes i and j
are not connected. Building upon analogies with electric circuits, the weight represents the 
conductance of the branch linking i to j, whereas each nonzero entry of a standard adjacency 
matrix is equal to one. The graph is assumed undirected. Applying Kirchhoff’s laws, one obtains 
at time instant tk

))(,(
,

,,,

,

kVkVkkE

kVkk

ijij
ssjiLs

sLo
(1) 

                                                      
10 D is a diagonal matrix. The iith entry of D is the degree (or valency) of node i; that is, the number of 
edges incident to i.
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where sE,k and sV,k stand for the state vectors characterizing the edge set E and the vertex set V of 
the graph at tk, respectively. kEij

s ,  and kVi
s ,  stand for the state associated with edge (i,j) and node i,

respectively. Lk(i, j) denotes the  (i,j) entry of the Laplacian matrix at tk. Each entry of ok is equal 
to zero when the corresponding node is neither a source nor a sink; otherwise, it is equal to an 
incoming or outcoming flow accordingly.  
Consider, for instance, the three-node network shown in Figure 3 and characterized by mutual 
admittances y12, y23, and y31 and by self-admittances y1, y2, and y3. Its weighted Laplacian matrix 
(or admittance matrix) and its state vectors are given by sE,k =[I1, I2, I3]T, sV,k = [V1, V2, V3]T, and 

231332313

232312212

131213121

yyyyy
yyyyy
yyyyy

Lk .

I1 I2

I3

y12

y13
y23

y1

y3

y2

V1 V2

V3

I1 I2

I3

y12

y13
y23

y1

y3

y2

V1 V2

V3

Figure 3: Example of a circuit with shunt impedances. 

Inflows Ii are nonzero whenever the node is connected to a source or a sink node. Each pair of 
source Ei+ and sink nodes Ei- is assumed characterized by flow variables kEi

s , and kEi
s , , and the 

state difference kVkV ii
ss ,, kVi

s , , where kVi
s ,  and kVi

s ,  stand for the entries of sV,k that 
correspond to source Vi+ and sink Vi-, respectively. The knowledge of the flow variables and state 
differences allows  

to simplify (1) by eliminating algebraic dependencies, which leads to   

),...,(0 ,,, 1 kVkVkVk p
ssfsL , (2) 

and to compute state sV,k and then sE,k.

kL , kVs , , and f in (2) stand for the reduced-order Laplacian matrix and vertex state, and for a 
function of source-sink state differences.  

Unfortunately, the Laplacian matrix is singular when self-admittances are equal to zero. 
Moreover, computing the Laplacian matrix inverse, if any, can be computationally cumbersome 



10 DRDC Valcartier TR 2013-409

when dealing with very large networks. State sV,k can be approximated by leveraging the Jacobi 
relaxation method (Batroumi and Hansen, 1998), which is applied to (2) by adding a derivative 
term in (2) 

))(),...,(()(
)(

,,,
,

1
tstsftsL

dt
tsd

c kVkVkVk
kV

p
, (3) 

for all t [tk,tk+1) and c>0, which is selected such that 

*
,, )(lim

1
kVkVtt

sts
k

. (4) 

*
,kVs  denotes the network equilibrium resulting from the jump at tk caused by the infringement of 

flow constraints. In steady state, system (3) is equivalent to (2) since d *
,kVs /dt 0. The iterative 

process corresponding to (3) can be expressed as  

)),,...,(( ,,,,,,,,1,, 1 ikVikVikVkikVikV p
ssfsLss (5) 

where =T/c. ikVs ,, , pkVl
s ,, , and T denote state variables kVs ,  and ikVl

s ,, , at the ith iteration of 
(5) over [tk,tk+1), and the time step, respectively.

Jump condition: The relaxation process in (5) is triggered at tk when at least one flow constraint 
is no longer satisfied, leading to a jump entailed by setting several entries of the Laplacian matrix 
to zero, and is stopped when the relative error in ikVs ,,  is less than or equal to some prescribed 
value.  

Stopping rule: The avalanche, that is, the sequence of jumps is stopped either when the 
connection between sink and source nodes is lost or when every remaining flow constraint is 
satisfied.  

3.3 Network vulnerability: motivation for developing an 
analysis tool 

Figure 4 shows seven such transitions when one node, randomly selected, has been removed from 
the 1000-node, random geometric network. Two nodes i and j are connected if dist(i,j) is less than 
a prescribed value r<1. The weight of each edge is a decreasing function of the internode 
distance; that is, the (i,j) entry of Lk is equal to (1 dist(i,j))/R, where R denotes an upper bound 
of all internode distances.  

To obtain interesting network behaviour in response to structural disturbances, the flow constraint 
is set to 150% of the network equilibrium in nominal operating condition. Higher flow constraints 
would decrease the frequency of avalanche occurrence and even prevent the network from 
experiencing avalanches. Whenever the absolute value of the flow of an edge exceeds 1.5 times 
the corresponding flow equilibrium obtained before any edge or node removal, the edge is open 
for all subsequent tk. The avalanche stops after the last transitions whereby one edge is lost. The 
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source and sink nodes of the network resulting from the avalanche are still connected owing to 
the fact that the equilibrium satisfied the flow constraints.  

In Figure 4(a), the nodes of the random geometric graph are drawn from a uniform distribution 
over [0,1]×[0,1]. Each edges is established whenever the distance between the corresponding pair 
of nodes is less than or equal to r=0.047, giving rise to 495713 edges. In Figure 4(b), two nodes 
are disabled from the nominal network in Figure 4(a), entailing the succession of seven jumps 
each of which occurs from one equilibrium to another. Transitions (a) (b), (b) (c), (c) (d), 
(d) (e), (e) (f), (f) (g), and (g) (h) entail the removal of 202, 49, 158, 47, 139, 123 and 20 
edges, respectively. 

The avalanche shown in Figure 5 differs quantitatively and qualitatively from that in Figure 4 
although both avalanches are triggered from the same network. The removal of node 2 leads to a 
completely different avalanche than observed in Figure 4, where node 1 was removed. Transitions 
(a) (b), (b) (c), (c) (d), (d) (e), and (e) (f) entail the removal of 2, 150, 6, 2, and 3 edges, 
respectively. 

As suggested by the dynamics shown in Figure 4 and Figure 5, predicting the final state of the 
network following a possible avalanche, or estimating the cost of network malfunctioning is 
intricate since the removal of a limited set of edges and nodes is not necessarily localized near to 
a salient feature, if any, of the network. Loss of edges and nodes depends on the flow equilibrium 
established prior to a change of network topology. It thus motivates the recourse to network 
vulnerability analysis techniques that will exploit signals and systems properties of the network. 
This approach amounts to assessing the sensitivity of the flow equilibrium to structural changes 
characterizing the network. A node of the network is deemed vulnerable when the cost entailed 
by its removal and the possible sequence of cascading events is greater than a threshold 
expressing an upper bound of acceptable costs.     
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Sequence of networks (r=0.047) following the loss of one node (node 1). 
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Sequence of networks (r=0.047) following the loss of one node (node 2). 
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4 Tactical mobile cloud 

4.1 Definitions, assumption and objective formulation 

The objective for the robot swarm presented in this chapter is to perform terrain surveillance 
coverage or to maintain client connectivity in as economical manner as possible, which implies 
successfully combining the swarm’s goal of dispersing itself over a wide area while reducing 
unnecessary coverage duplicity at the local node level. One of the major threats lies in the 
swarm’s individual robot’s lack of self-awareness. PREVU applied to the robot swarm thus aims 
to provide and maintain a state of situation awareness for a group of agents, namely robots, 
observing a scene or maintaining the communication connectivity of a group of clients evolving 
in a remote area. In the context of the present surveillance swarm monitoring problem, the 
vulnerability pattern recognition entails swarm members automatically identifying situations that 
could pose a connectivity threat to the swarm.    

The swarm model and motion strategies presented in this chapter follow from Jousselme et al.
(2012a, 2012b), which result from collaboration with the US Military Academy of West Point.  

The notation and basic definitions are now introduced. Let R={r1, …, rN} be the set of robots and 
C={c1, …, cM} the set of clients. The set C combined with their spatial location is a configuration.
We denote as a robot’s unique communication range, which could be adjusted based on 
environmental demands. Next, E={e1, …, eN} is the set of communication links between the 
robots and Gc=(R, E) is the corresponding communication graph.  Let Nc, be the set of node 
coordinates. Two robots ri and rj are separated by a distance of dij and are connected if their 
distance is less than . In the remainder of this section, dij will denote the distance between two 
robots, two clients, or one robot and one client. We assume that   

indirect links are possible through intermediate nodes acting as relays, and  

at least one of the nodes is connected to an external communication node such as a satellite 
or UAV.  

It is thus assumed that there exists a communication resource capability within the network to 
ensure that clients’ messages are handled properly through the mobile cloud via an external wide 
range communication relay. 

The initial state shown in Figure 6  corresponds to an equilibrium state in which the three 
surveillance objectives are satisfied. Robots are represented by red stars, while clients are blue 
circles. The communication connection between two robots is represented by black lines.  

The objectives of the motion strategy consist of  

maintaining the network connectivity, 

maintaining the client’s communication coverage, and

maintaining an acceptable level of sensing coverage. 

It should be noted that maintaining the network connectivity at each time instant is a strong 
constraint. This time constraint could be relaxed, to some extent, by considering a time sequence 
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of networks that are jointly connected, that is, the union of the sequence of networks results in a 
connected network. This relaxation is not implemented in the motion strategy in the next section. 

Figure 6. A tactical mobile cloud of 100 robots for communication coverage of 100 clients. 

Given the stochastic nature of the clients’ move as well as of the robots’ performances, the
equilibrium state where the last three objectives are satisfied may be weakened. Two major 
causes of such a weakness are: 

a loss of a node (robot’s failure), and

a loss of a link caused by a client’s move, or an obstacle to the communication link.

The following assumptions are considered: 

the swarm of robots has a motion strategy to recover that state of equilibrium and ensure the
clients’ coverage, the network connectivity, and the network sensing coverage;

both the original network structure and the motion strategy are robust enough to absorb
small perturbations.
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The network vulnerability assessment presented in Chapter 5 and applied to the robot swarm in 
Chapter 6 is used as an early warning system and is intended to modify the motion strategy, 
should the perturbation grow larger than what the network can absorb. Closing the loop on the 
motion strategy will be the topic of future work.   

4.2 Motion strategies 

Each client knows its own location via a location finding device such as a GPS. The continuous 
behavior of clients and robots are modeled as a sequence of instances.  At each time instance, 
each robot evaluates the current position of its clients as well as the set of neighbouring robots.  
Based on this evaluation, each robot calculates the optimum position to provide coverage to 
clients as well as to maintain connectivity to at least one neighbouring robot.  If both goals cannot 
be attained, then the priority is to maintain coverage for clients. 

At the initial equilibrium state, the network optimally covers the set of clients (communication 
coverage), optimally covers the area under consideration (sensing coverage) and is fully 
connected (each client is able to communication with an external node relaying the 
communication). That means in particular that  

each client is within the communication range of at least one robot (clients’ coverage), and  

each robot is within the communication range of at least one other robot (network 
connectivity). 

The robot motion strategy is based on the work in (Bezzo and Fierro, 2011).  Each robot in the 
swarm follows a spring-mass virtual physics.  In particular, the motion of the ith node in a swarm 
of N robots is as follows: 

ii
Sj

ijijijiji XdllkX
i

ˆ)( 0 , (6) 

with i=1,..,Nr and i j.

Xi, iX , and iX are the robot’s position, velocity, and acceleration respectively. Sij is the set of 
robot neighbours for the ith robot while lij is the length of the virtual spring between ith and jth 
robot.  The symbol 0

ijl  represents the spring relaxed length while ijd̂  is the unit vector indicating 
the direction of the spring force.  Finally, the equation uses two constants, kij and i.  The former 
is the spring constant between robots i and j and the latter is the damping coefficient with a value 
assumed to be greater than zero.   

The spring-mass model described above could create a mesh with limited expandability and thus 
restrict a swarm’s ability to cover a region adequately.  To overcome this challenge, the inter-
node spring-mass links is implemented within the constraints of a Gabriel graph (Bullo et al., 
2009). 
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In particular, a spring is formed between two robots i and j if and only if there is no k robot inside 
the circle with a diameter formed by ij  (Bezzo and Fierro, 2011).  More formally, consider  that 
evaluates to 1 if there is a spring between robots i and j and 0 otherwise.  Hence, we have the 
following: 

,2/>if0

,2/if1

xkj

xkj
ij (7)

with i, j, k=1,..,Nr and i j and j k. is the interior angle formed by robots x, k and j.

Given the supporting equations above, the distributed algorithm that each robot in the swarm 
executes reads as follows. 

for each robotj neighbour of roboti do
 while 0

ijij ll do
   Compute the next move from (6) subject to (7) 

if roboti detects a user then
   place a spring connection between roboti and the user using (7) 

end if 
return Xi, iX , and iX

end while 
end for 

4.3 Swarm coverage objective 

4.3.1 Definition 

The problem formulated in Section 4.1 involves the following two types of coverage: 

a sensing coverage, since the swarm is responsible for covering a given area and detect
possible intruders, and

a communication coverage, that can be split into:

– clients’ coverage, since the swarm of robots is responsible for providing
communication coverage to the set of clients within the given area, and

– robots’ coverage, since the swarm is responsible for maintaining the network
connectivity.

We consider the following general definition of coverage, which encompasses the three notions 
above. Let q be an emitter and p be a point of interest of a given area. The coverage provided by q
at p is expressed as follows: 
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),(),( pqdfqpcov (8) 

where dpq is the distance separating p from q and f is a decreasing function. Both p and q are 
located in space and are represented by their spatial coordinates along x and y axes, e.g. (xp,yp). 

4.3.2 Connectivity 

As an instance of (8), the network connectivity is defined as follows. We say that two robots are 
connected if they are in their respective range of communication. We then define  

otherwise,0
,if1),( ciji drrcon j (9) 

where c is the communication range of the robots and dij is the distance separating ri form rj. f is 
thus a step function of the distance and a value of 1 means then that a link exists between the two 
robots. We say that the global network connectivity holds if for each pair of robots (ri,rj) there 
exists a path linking ri to rj:

.),()...,,(),,(;),...,(,),(if1)( 2111
2 ErrrrrrRrrRrrRcon jmi

m
mji (10) 

Alternative definitions could easily replace these binary definitions and define different 
connectedness indices such as the algebraic connectivity (Godsile and Royle, 2001). Indeed, 
allowing real values for the connectivity would increase flexibility in the definition of vulnerable 
states and lead to different cost functions. 

4.3.3 Client’s communication coverage

For simplicity, a binary definition of coverage is adopted and consists of the following two states:  
covered or not covered. However, this definition can be easily extended to other models, such as 
probabilistic ones. We define coverage provided by robot ri to client cj as 

otherwise,0
,if1),( cijji dcrcov

(11) 

where  is the communications range of ri and dij is the distance between ri and a client. The set 
of clients covered by robot ri is then given by 

.
1

),(),(
M

j
crcovCrcov jii (12) 
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Given the coverage definitions from the perspectives of both the client and the robot, Equation 
(13) describes the global coverage of the network relative to the set of clients:

.
1 1
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cRcov
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i
CrcovCRcov jiji (13)

4.3.4 Sensing coverage 

The sensing coverage provided by a robot ri at a given point of interest p is given by the 
following exponential model (Jousselme and Maupin, 2012b) 

else,))(exp(
,if1

),(
Rd

Rd

ip
i prcov (14)

where  and  are real parameters, dip is the distance between robot ri and the point of interest p,
R is the sensor range. It should be noted that other models of sensing coverage could be used to 
build the swarm model. Figure 7 shows an example of this degradation model that will be used in 
the simulations. The degradation model is a function of the distance between robot ri, represented 
by a red star in Figure 7, and the point being observed. Within a range of 16 meters, the sensing 
coverage is assumed to be perfect while decreasing to reach 0 at around 30 meters. 

Figure 7. Exponential model of detection performance degradation. 

Figure 8 shows a network of 100 robots and 572 possible positions of interest. Each circle 
represents the coverage at 16 meters according to the exponential model described above. Robots 
are represented by red stars, while positions of interest are black dots. 
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Figure 8. A tactical mobile cloud of 100 robots for sensing coverage of 572 positions of interest.  

4.4 Network vulnerability: motivation for developing an 
analysis tool 

A mobile network vulnerable state can be defined as an instance of the network state that may 
evolve in time until it affects the network functions and the completion of its goals.  Endogenous 
and exogenous threats to the network include the robots’ inability to proceed as intended, possibly 
due to hardware-software failures or malevolent acts, electronic warfare, obstacles, or unexpected 
client moves that cause some robots to move beyond their neighbours’ communication range. A 
component of the graph, that is an edge, a node, or a subgraph, is classified as vulnerable when a 
graph connectedness-related cost associated to this component is above a prescribed threshold. A 
node is thus vulnerable if its loss (failure) leads to a break in the network connectivity. 

The mechanism that may lead the network state to some undesired set of operating conditions, as 
a response to some threat or failure, is presented next, and will be instrumental in assigning labels 
for classification training (see Chapter 5).  
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Consider a sample set of possible client configurations C0 (Figure 9(a)) and a corresponding robot 
deployment represented by graph G0=(R, E0).  Include also the set Nc,0 of node coordinates at time 
instant t0 (encoded as attributes of the nodes).  Various experiments are conducted by triggering 
the loss of a robot (Figure 9(b)). The occurrence at t1 of this triggering event gives rise to an 
adaptive robot deployment (Figure 9 and Figure 10) as a result of the motion strategy presented in 
Section 4.2, whereby communication links can be either permanently lost (Figure 10) or re-
established (Figure 9), depending on the relative distance to neighbouring robots. 

From an initial optimal deployment in Figure 9(a), where blue dots and red stars represent the 
clients and the robots, respectively, the loss of two communication (Figure 9(b)) links is entailed 
by some triggering event. This event may result from the robot’s inability to operate properly 
owing to software or hardware failures, robot destruction, or the presence of malware. 

In Figure 10(a), robots are deployed adaptively to recover an optimal coverage of the area despite 
the loss of a robot (one link is recovered). In Figure 10(b), a new optimal robot deployment can 
be achieved without the missing robot; therefore, its loss is not classified as being a vulnerability 
to the initial robot network.  

(a) (b)

Figure 9. Initial state of a swarm of six robots. 

(a) (b)

Figure 10. Robot loss is not classified as a vulnerability. 
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In Figure 11, the environment evolves in time and space leading to possible cascading events. 
Since the motion strategy prioritizes the coverage function, robots adaptive deployment results in 
a loss of connectivity (Figure 11(b)); that is, two operating robots are disconnected from the rest 
of the swarm. 

(a) (b) 

Figure 11. Robot loss is a vulnerability.    

This hybrid dynamical system is thus characterized by switching time instants {t1, t2, …, tm},
where ti+1>ti.  At ti, the edge set jumps from Ei to Ei+1. An edge (i, j) is lost whenever the distance 
between robots ri and rj is greater than the communication range.  It is assumed that the node set 
R remains invariant whether or not a robot is able to operate. 

Stopping rule:  The final time instant tm is defined by the absence of any future triggering events 
such as a robot failure or a client move. 
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5 Structural-Feature-based modeling of networks for 
Vulnerability Pattern recognition   

5.1 Preliminaries 

Standard approaches used to identify the vulnerabilities of a dynamical system consist of 
performing a N k contingency analysis based on the time-domain simulation of this system. k out 
of N components of a network are removed. The time evolution of the network state, which 
includes flows (edges) and potential functions (vertices), is obtained by simulating the network 
dynamics over a finite horizon, following the hybrid approach presented in Chapter 3. In so 
doing, one can verify whether the network state remains within its security domain. Simulations 
are started by exploiting the last available data that characterize the network and its environment. 

Starting from a set of initial conditions, 
k
N 11 simulations are required to achieve a N k

contingency analysis; therefore, the length of the prediction window as well as the value 
associated with k are determined to meet computational load constraints and decision-making 
constraints.12

The approach proposed in this chapter is based on pattern recognition. Based on data set obtained 
with such models as those presented in the last two chapters, a classifier is devised to build a 
representation that is particularly suited to vulnerability recognition problems. The classifier is 
thus not equivalent to simulating a network since it will not provide the time-evolution of the 
network state. The novelty of the approach consists in building a network model, namely, a 
classifier, that establishes a map between a set of network features and a set of vulnerability 
labels. The selection of the map and of the set of features seeks to minimize the error rate of a 
function that discriminate the vulnerable states from the non-vulnerable states, as shown in 
Section 5.4.  

The PR approach is thus preferred over the model of network dynamics for the following reasons 
(Léchevin et al., 2011): 

features are naturally geared to the modelling of classificatory problems; 

handling physics-based models of large interconnected networks as well as large measurement 
sets can be computationally prohibitive, thus requiring model and dataset reduction;  

                                                      
11 The number of combinations obtained by selecting k unordered outcomes from N possible components of 
the network. 
12 The N-k contingency analysis amounts to solving a combinatorial optimization problem when a system 
dynamics is replaced by a set of algebraic equations obtained when the system is in steady state. Transients 
are thus disregarded even though they may behave abnormally. When contingencies result from the effect 
of exogenous threats such as a group of attackers, the identification of network vulnerabilities can be 
related to the defence planning of infrastructures, which can be expressed as a defender-attacker 
optimization problem (see Brown et al. (2005)). 
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once the classifier  is derived, fast and efficient recognition is expected when compared with
the approach consisting in using network hybrid models.

However, adopting a PR approach may entail the following drawbacks: 

statistically significant training data is necessary to generate a classifier with satisfactory
measures of performance;

labelling is central to the vulnerability analysis since it defines how to attribute the
vulnerability status to a local representation, whose  state is characterized by the value of a
score function. If the labeling process changes over time13, a new classifier should be
generated.

5.2 PREVU objectives 

Given a knowledge base constituted of (i) past events that have affected a network or a class14 of 
networks and of (ii) partial network information15 obtained from measurement and observations, 
identify a set of vulnerable components (edges, nodes, or subgraphs) that is likely to affect the 
network, should an attacker exploit the knowledge of this set of components.   

The identification of vulnerable network components consists of determining the identity and 
location of these components. 

Vulnerability is to be related to risk assessment and thus to the cost associated with the loss of 
components or network inoperability. The definition of risk and determination of thresholds that 
expresses the level of acceptable risk should be considered as design parameters of PREVU. 

5.3 Notation  

Let Y={V, V }, y Y, ŷ Y, yx  Yx, ),(1
rr

m
r
m yxz , and ,.)( 1

r
mz denote 

the set of possible labels V and V , which stand for vulnerable and non-vulnerable,
respectively,

a class label,

an estimated class label,

a vector of x class label,

13 The computation, perception, and acceptation of risk may change over time, which in turn impact the 
labelling process, for instance, by selecting new threshold values.   
14 A class of networks refers to the combination of (i) a class of graphs (e.g., random geometric, power law, 
small world) and (ii) a class of diffusion processes (e.g., cascading failures, behaviour, gossip, epidemics, 
computer viruses)  
15 Network states include edge and node attributes such flows and network topological properties such as 
various notions of centrality. 
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a training data set (features and labels) of r local representations Si S( )=2E×N  of the 
network , and

the trained classifier, respectively. 

A local representation Si  (Figure 12) of a graph G =(N, E ), where N  and E denote the edge set 
and node set of G, corresponds to any possible subgraphs including nodes, edges, clusters, 
cliques, and communities (Caldarelli, 2007). Indeed, the selection of the local representations 
constitutes a design parameter of the pattern recognition toolbox.  

Sj
Li

Figure 12. Local representations of a network.  

The loss of Si entails a cost Li, expressing performance degradation, inoperability, or decrease of 
the quality of service (Figure 12). Following (Léchevin et al., 2011a), a risk function, with Li as 
argument, allows to define the vulnerability of a network component as follows. A set *( ) of 
components of the network is classified as vulnerable when the protection effort that could be 
applied to this set minimizes the risk function given constraints involving cost functions. 
Alternatively, *( ) could be determined by identifying, from the training data set z, the local 
representations Si that have been lost following the occurrence, if any, of a major detrimental 
event (cascading failure, service disruption, etc). 
yr=[ y1… yr]T and r

mx  are the vector of labels and the table of m features representing the set Sr( )
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Features are divided into two classes, depending on whether local information about a node or 
global information about the network is required. Further details on the features used for the 
vulnerability analysis of networks are given in Section 5.6. 

5.4 Basic principles of classification 

A classifier is derived, at the training phase, from a labelled data set ),(1
rr

m
r
m yxz , where r

mx
and yr  stand for a r-by-m feature matrix, which characterizes the objects to classify, and the label 
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vector, respectively. The feature matrix consists of r instances of m-feature vectors. Two sets of 
features are shown in Figure 13 and clearly form two classification (or decision) regions 
separated by a classification (or decision) boundary (Duda et al. 2001).  

A classification problem aims to find a mapping  from the feature space to the label set yielding 
a score for the respective class where an object might be. The mapping, illustrated by the decision 
boundary in Figure 13 and Figure 14, is not unique. In Figure 13, LDC stands for linear 
discriminant classifier whereas Parzen classifier belongs to the set of nonparametric classifiers. 
Numerous classifier design methods, each of which is based on a specific discriminant function, 
are proposed in the literature. These methods are based on probabilistic models or on 
approximations of discriminant functions (See Kuncheva (2004) and references therein for a 
taxonomy of classified method designs). 

The classifiers derived is then tested, possibly refined and adapted online when used with actual 
data. A set of observational data leads to a corresponding set of scores each of which indicates a 
class to which the observation belongs to (Figure 14).    

Figure 13. Building the decision boundary from a training data set (Jousselme and Maupin, 
2012d).   



DRDC Valcartier TR 2013-409 29

Figure 14. Assign a class in the feature space (Jousselme and Maupin, 2012d). 

The classification performance is defined by means of various classification error function some 
of which express classification rate and misclassification rates, as shown in Table 1, where TP, 
FP, FN, and TN stand for true positive, false positive, false negative, and true negative 
respectively. 

Table 1. Confusion matrix given a classifier , a feature vector x, and a class label y.

True label 

y ¬y

(x) = y TP FP 

(x) = ¬y FN TN 

From the confusion matrix and the number of misclassified samples that has been counted, 
various measures of performances16 can be computed. 

In a context of target detection, the receiver operating characteristic (ROC) curve shown in Figure 
15 illustrates the trade-off that the optimal design of a classifier may take into account. A Pareto 
front between the probability of detection, which corresponds to true positive (TP) and the rate of 
false alarms (FP), delineates the domain that both measures of performance may take on. A 
measure of performance often computed from the ROC curve is the area under the curve. 

                                                      
16 True positive rate, false positive rate, false negative rate, true negative rate, accuracy, precision, positive 
predictive value, negative predictive value, Kappa index (Jousselme and Maupin, 2012d). 
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Figure 15. Classifier performance (Jousselme and Maupin, 2012d). 

5.5 Classifier learning and testing 

As shown in Figure 17, the pattern recognition system consists of the training module and the 
classification module (Jain et al., 2010).  Generating a classifier amounts to seek a mapping 

,.)( 1
r
mz : P(S) Yn

nn
m yx ˆ ,

(15)

within a solution space, where in (15) P(S) and nŷ stand for the power set of S and the estimate of 
label set of network , respectively. The classifier model in (15) is generated by minimizing the 
estimate error r

nn ˆˆ yy in Figure 16 and by defining decision boundaries within the feature 
space.  

Error minimization thus involves a feedback loop from the training error nn yŷ  to the classifier 
mathematical representation, whose parameters are modified accordingly. Various simple and 
combined classifiers are tested in Chapter 6. 

Figure 16. Training of the network vulnerability classifier (Jousselme and Maupin, 2012d).

Trained
classifier

Untrained
classifier

Training
error

Training
dataset

Error
estimation
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It should be noted that, instrumental in providing the hard label vector nŷ 17, whether in the 
training or classifying phase shown in Figure 17, a score vector ,.)( 1

r
mg z : nn

m yx  , considered 
as a soft label vector18, is first computed. The score is then processed by a labelling function (e.g., 
the score is compared with a threshold), which yields the hard label vector nŷ . The elements of 

nŷ represent the output of a mapping between the feature space shown in Figure 14 and the hard 
label set {V,V }.

The feedback path in Figure 17 (dashed line) allows optimizing the training phase of a given 
classifier by selecting the most appropriate set of features and possibly by modifying the set of 
local representations of the networks. This last option is not presented in this report and is left for 
future investigations. When a classifier is trained, actual data feeds the classifier used for the 
purpose of vulnerability recognition, as shown in the lower part of Figure 17.  
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Figure 17: Vulnerability recognition systems (Adapted from Jain et al. (2010)).  

The trained classifier can be interpreted as a vulnerability model of networks, whose sensitivity to 
triggering events is maximized. It should be noted that this model can be related to a Stackelberg-
game-based model involving the definition of a risk function (Léchevin and Maupin, 2011c). 
Game-theoretic approach typically allows to identify vulnerabilities of moderately complex 
networks (Brown et al., 2005). 

When the classifier training is deemed satisfactory19, the classification phase consists in applying 
the trained classifier ,.)( 1

r
mz to an unlabelled dataset (i.e. only data set xn

m is available) that has 
never been handled by the classifier at the training phase (Figure 18).  

The set ( ) of local representations Si S( ) that are considered as being vulnerable is obtained 
as follows : 
                                                      
17 A hard label vector is a discrete-valued vector, whose entries belong to Yn.
18 A score is the output of a discriminant function from P(S) to R or to the normalized interval [0, 1].  
19 Each selected measure of performance must satisfy a criterion of success; for instance, the area under the 
ROC curve must be greater than some prescribed threshold.   



32 DRDC Valcartier TR 2013-409

VSS j
r
mi ),(|)( 1 xz , (16) 

where   ]...[ 1
j

m
j

j xxx .

In Figure 18, a network that does not belong to the training set feeds the classifier, which 
identifies its vulnerable subgraphs Si S( ). Following (16), ( )={S1, S2}.

A classification error estimate is computed based on the training phase.  

Estimated 
label

Trained
classifier

Dataset
to be

classified S1

S2

Estimated 
label

Trained
classifier

Dataset
to be

classified S1

S2

Figure 18: Classification phase.  

It should be noted that the formulation of a multiclass problem may also be appropriate. The set 
of possible class labels is then defined by };,...,,{ 21 VVVV c , where Vi characterizes the type or 
degree of consequence associated with the vulnerability of Si. Classes are defined by comparing 
each element of the output vector of the score function, ,.)( 1

r
mg z , not to a single threshold but to 

a set of ordered thresholds {s1, s2,…, sc+1}; that is, given i {1,…,n} and j {1,…,c}, the ith 
element of the hard label estimate nŷ belongs to class Vj if the ith element of the score output 

ny (soft label) lies in [sj, sj+1[.    

A combined classifier, using such aggregation functions as product, mean, median, minimum, 
maximum, and vote, can be optimized in the same way as a simple classifier is, by noticing that a 
combined classifier is built as follows. Let { 1,…, p} be a set of p simple classifiers. Mean, 
average, median, minimum, and maximum functions, denoted A, are applied to the score function 
gi, i={1,…,p}; that is, A(g1,…,gp): (x1,…, xp) A((g1 (x1),…, (gp (xp)). More precisely, the 
following definitions are used: 

Mean: A(g1,…,gp) = (g1+…+gp)/p;

Minimum: A(g1,…,gp) = min(g1,…,gp); 

Maximum: A(g1,…,gp) = max(g1,…,gp); 

Product: A(g1,…,gp) = g1×…×gp;

Median: A(g1,…,gp) = g(1+p)/2 if p is odd; (gp/2+ g1+p/2)/2 , otherwise.  
A vote function such as the majority vote (Kuncheva , (2004) uses the hard labels as input 
arguments. Letting li be the ith labelling function, then A(l1,…,lp): ( 1y ,…, py ) A((l1 ( 1y ),…, (lp

( py )), whereby the class entailing a majority of identical hard label values is selected.     

The classifier design methodology aiming at generating the best classifier consists, as shown in 
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the experiments presented in Chapter 6, of evaluating the classification error of every simple 
classifier and combined simplifier. It should be noted that more sophisticated classification 
configuration will be investigated as future work to take into account modelling uncertainties and 
the automatic selection local representations (Jousselme and Maupin, 2012d). Possible extensions 
are discussed in Chapter 7.  

5.6 Structural features 

Four classes of features, based on structural, dynamical, functional and complexity properties of 
, were proposed in (Léchevin et al., 2011a; Léchevin and Maupin, 2011c) to frame the 

vulnerability PR of networks. A tentative list, shown in Figure 19, consists of 

the structural features fs of a labeled weighted graph (e.g., centrality, similarity, 
connectivity), 

the flow dynamics features fd obtained by exploiting information on signals and systems 
(e.g., bifurcation analysis, efficiency measures (Latora and Marchiori, 2004; Qiang and 
Nagurney,2007)), 

features fcs pertaining to complex system science and statistical physics (e.g., entropy, fractal 
dimension), and 

functional features ff on key components of the network (e.g., based on expert’s knowledge 
about the network). 

Figure 19: Categories of features. 
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In the remainder of the report, the pattern recognition of networks vulnerabilities in response to a 
class of threat is carried out by exploiting only the structural features. We restrict the set of 
features used by the classifier to a set of structural features for the following reasons. 

The structural features presented below characterise, to some extent, the topological
properties of a network, independently of the type of infrastructure it represents, whereas
flow dynamic features tend to depend on the physical properties of the system to be
analyzed. Nevertheless, it should be noted that structural properties may also take into
account time-invariant, physical attributes of nodes and edges such as transport capacity or
throughput of edges.

Efficient network analyzer toolboxes are widely available whereas features based on system
dynamics properties and complex system metrics remain to be developed for the analysis of
network vulnerabilities; therefore, it is natural to start the analysis of PREVU classifier-
based approach using only structural features.

Selecting structural features allows to assess the extent to which vulnerability analysis can
be performed by comparing the classification rates obtained with various sets of features,
with structural features serving as a reference.

However, the authors of this report are perfectly aware that improvements of classification 
performance are likely to be obtained by accounting for features that are not only structural.  

The structural features are selected to characterize the local representation of a network, as 
suggested by the feature matrix r

mx in Section 5.3. A structural feature that is specific to the 
whole network or to a type of local representation that is not part of the list of representations {S1,
S2,…} cannot be directly exploited by the classifier since it cannot comply with the format of the 
feature matrix r

mx . Thus, the development of PREVU is started with structural properties that
characterize only nodes and edges (no subgraphs are considered), which are the simplest local 
representations of a network. However, some of the proposed features could be applied to 
subgraphs such as clusters. Such an extension will be undertaken in future work. Features 
selected include such properties as degree distribution, various centrality measures, density 
measure, and clustering coefficient. 

igraph (Csárdi and Nepusz (2006a, 2006b)) is an open source, free software20, which proposes 
efficient routines for large networks analysis, generation and visualization. The following features 
are directly taken from igraph library and will thus be part of PREVU toolbox (see Csárdi and 
Nepusz (2006a, 2006b) and references therein for further details on network structural features):  

vertex betweenness: number of geodesics going through a vertex;

degree: number of edges incident to a given node;

closeness: number of steps required to access every other vertex from a given vertex;

alpha centrality: solution of x= ATx+e, where A is the adjacency matrix, e is a vector of
exogenous sources, and  is the relative importance of the endogenous factors versus
exogenous factors; (Csárdi and Nepusz, 2006a,b);

eigenvector centrality: values corresponding to the components of the first eigenvector of

20 igraph is developed as a Python extension module or as an R package. 
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the graph adjacency matrix;  

page rank (Brin and Page, 1998);  

average nearest neighbour degree (Barrat et al., 2004);  

graph strength: sum of the edge weights of the adjacent edges to a vertex;  

transitivity: ratio of the number of triangles21 connected to the vertex to the number of 
triples22 centered on the vertex, where the vertex is incident to both edges (Csárdi and 
Nepusz, 2006a,b); the transitivity is related to the local clustering coefficient (Wasserman 
and Fraust, 1994);  

Kleinberg’s authority score: principal eigenvector of ATA, where A is the graph’s adjacency 
matrix;  

graph coreness, where the coreness of a vertex is k if it belongs to the k-core but not to the 
(k+1)-core, noting that the k-core of graph is a maximal subgraph in which each vertex has 
at least degree k; and 

average shortest path per node obtained from the length of all shortest paths between every 
pair of nodes of the network.  

Considering the graph {{1,2,3,4,5,6,7}, {(1,2), (1,6), (2,3), (3,6), (3,5), (3,4), (4,5), (5,6), (6,7)}}, 
shown in Figure 20 (see its Laplacian matrix in Annex A.3), the structural features, which are 
computed for every node of the graph, result in a matrix whose rows, detailed below, are obtained 
using igraph (Csárd and Nepusz, 2006a, 2006b). 

1

2

3

4

5

6

7

Figure 20: A five-node graph generated by igraph. 
                                                      
21 A triangle is composed of three closed triplets, each of which is centered on a node of the triangle. A 
triplet is composed of three connected nodes. Connections involve either two edges or three edges. A three-
edge triplet is termed closed triplet. 
22 A triple is a subgraph composed of three vertices and two edges. 
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1. Vertex betweenness: 1.0000, 0.8334, 4.6667, 0.000, 1.3334, 7.1667, 0.0000;

2. Node degree: 2, 2, 4, 2, 3, 4, 1;

3. Closeness: 0.0909, 0.0909, 0.1250, 0.0833, 0.1111, 0.1250, 0.0769;

4. Alpha centrality: 1, 2, 3, 4, 8, 13, 14;

5. Eigenvector centrality: 0.4842, 0.50670, 1.0000, 0.6390, 0.8709, 0.9107, 0.3110;

6. Page rank: 0.1171, 0.1157, 0.2096, 0.1112, 0.1597, 0.2187, 0.0679;

7. Average nearest neighbour degree: 3.0000, 3.0000, 2.7500, 3.5000, 3.3333, 2.5000, 4.0000;

8. Graph strength: 2, 2, 4, 2, 3, 4, 1;

9. Transitivity: 0.0000, 0.0000, 0.3334, 1.0000, 0.6667, 0.1667,   NaN;

10. Graph coreness: 2, 2, 2, 2, 2, 2, 1;

11. Kleinberg’s authority score: 0.4842, 0.5069, 1.0000, 0.6390, 0.8709, 0.9107, 0.3110;

12. Average shortest path per node: 1.6667, 1.0000, 1.5000, 1.1667, 1.1667, 1.8333;

Following the definition of transitivity, the transitivity of a node cannot be defined if this node is 
not centered on an open triple of nodes (three nodes connected). In Figure 20, node 7 is not 
incident to both edges; therefore, the transitivity is not defined for this node. Since transitivity is a 
positive scalar lying in [0, 1], setting by convention a value outside this interval when the 
transitivity of a node is not defined allows the classifier to disregard this value.    

A submatrix of the feature matrix characterizing the 1000-node random network presented in 
Chapter 3 (fuse model) is given in Section 6.1.1. 

5.7 System architecture 

Every step of PREVU, from data generation to vulnerability analysis, can be performed 
seamlessly in Matlab (Mathworks, 2012), even if the graph analysis module necessitates using 
igraph (Csárdi and Nepusz, 2006a, 2006b), as illustrated in Figure 21. However, igraph can be 
started from Matlab, which can also retrieve the data resulting from igraph analysis (See Annex A
for the igraph script used to analyze networks and the Matlab script that calls the igraph script). 
igraph is run as an R package23. R is a free software environment for statistical computing and 
graphics.

The main program, which is coded in Matlab, acts as a task sequencer from data generation to 
network analysis carried out by igraph, and to vulnerability labeling output by the classification 
module developed as a Matlab toolbox (Jousselme and Maupin, 2012d). 

23 http://www.r-project.org/ (Date visited: January 24, 2013) 
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The data generator provides a training dataset and a dataset used to test the classifier 
performance. These datasets embed the graph definition (list of nodes and edges, or a graph 
Laplacian matrix) and the responses24 of the networks presented in Chapters 3 and 4 to the 
occurrence of disturbances (node removal). Random network generation and diffusion processes 
(avalanches, collective robot behaviour) are coded in Matlab. Other types of networks (power 
law, small word, actual data) and avalanche mechanisms (e.g. epidemics, gossip propagation) 
could be analyzed as long as the nomenclature of the graph data file (list of edges and list of 
labels), shown in Figure 21, is observed.  

Data exchanges between Matlab and igraph involves two text files, namely, a graph data file and 
a graph feature file. The latter is the input of a Matlab pattern recognition toolbox (PR Lab 
System) whereby classifiers, whether simple or combined, feature selections and different metrics 
generates a label vector and various performance indicators. The label vector identifies the graph 
local representations that are possibly vulnerable.   

A detailed description of the classifier generation system, which is implemented in Matlab and 
based on PRTools (2012), is given in Jousselme and Maupin (2012d). Up to eighteen simple 
classifiers are used for conducting the network vulnerability analysis experiment presented in the 
next chapter. Simple aggregation functions are also used to derive combined classifiers, as 
explained in Section 5.5 and Chapter 6. Further design options are left for future investigations. 
They include, as briefly presented in Chapter 7, feature filter, uncertainty modeller, and labeling 
functions. The search for classifiers in such a large decision space calls for optimization 
techniques particularly suited for high-dimensional problems.      

Data generator

Graph analyzer

Classifier
(simple, combined)

IGRAPH

MATLAB

GraphData.txt

Features.txt

Main

Figure 21: PREVU programming environment.  

                                                      
24 Recall that the network response to a particular stressor is represented by an element of the hard label 
vector yn that a classifier aims to estimate ( nŷ  in (15)) whenever the network operating condition differs 
from those characterizing the training dataset.  
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6 Pattern Recognition Experiments  

6.1 Fuse model  

6.1.1 Experiment description 

A random network consisting of 1000 nodes, generated using the process presented in Chapter 3, 
is used to train and test the classifiers. To trigger potential avalanches, a single node of the 
network is removed. The edge removal mechanism, as given by equation (5), the jump condition 
and the stopping rule in Section 3.2, is then applied. The number of nodes and edges lost, which 
are instrumental in determining the label, are measured. This process is repeated for every single 
node removed from the network. A 1000×11 feature matrix and a 1000×2 label matrix (number of 
nodes and edges lost) are obtained for allGr,I with i {1,…,10} and r  R., resulting in the 
labelled matrix of features shown in Figure 22, where feature and label values have to be 
multiplied by a factor of 103. From the soft labels provided in the matrix shown in Figure 22, hard 
labels (binary labels) are obtained by comparing the soft label with a threshold expressing a 
prescribed cost constraint.  

The cost constraint expresses the maximum number of disabled edges and nodes that can be 
tolerated. This constraint is context specific and depends on the type of infrastructure. For 
instance, defining the quality of service delivered by an infrastructure includes a risk assessment 
whereby the acceptable/unacceptable domains of a risk graph (impact versus event probability) 
are determined (see, for instance, Hydro-Québec’s risk graph in Trudel et al. (2005)). The 
boundaries of the acceptable/unacceptable domains thus constrain the cost25 of a class of 
detrimental impacts to some value. This value serves as a threshold used to set the labels to one or 
zero. Since the fuse model does not represent any actual system such as a specific infrastructure 
or a network of infrastructures, the cost constraint has been set so that the occurrence of 
avalanches is not considered as being a rare event (i.e., an event with a probability less than 10-5). 
In so doing, the frequency of avalanche occurrences allows to train and to evaluate the classifier 
with an acceptable level of confidence. It should be noted that, with actual networks, elaborate 
risk functions could be used in the decision-making process; see, for instance, McCalley et al. 
(1999) for risk functions derived to assess the security of bulk transmission networks.  

0.5679    0.0050    0.0001    0.0012    0.0000    0.0000    0.0026    0.0002    0.0007    0.0040    0.0000    0.0310    0.0870 
4.1842    0.0050    0.0001    0.0013    0.0000    0.0000    0.0028    0.0002    0.0006    0.0040    0.0000    0.0590    0.1390 
1.1081    0.0050    0.0001    0.0012   -0.0000    0.0000    0.0049    0.0001    0.0005    0.0040    0.0000    0.0400    0.1170 
1.2845    0.0130    0.0000    0.0011    0.0000    0.0000    0.0171    0.0001    0.0006    0.0060   -0.0000    0.0620    0.1940 
0.9496    0.0080    0.0001    0.0015   -0.0000    0.0000    0.0054    0.0004    0.0007    0.0060    0.0000    0.0590    0.1380 
1.2053    0.0060    0.0000    0.0011    0.0000    0.0000    0.0132    0.0000    0.0007    0.0040   -0.0000    0.0370    0.0920 
9.7415    0.0130    0.0001    0.0013   -0.0000    0.0000    0.0130    0.0002    0.0007    0.0070    0.0000    0.0300    0.0460 

Features Soft labels

Figure 22. Sample of the 1000×11 labelled matrix of features.  

                                                      
25 The cost is often expressed as an economic cost. 
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Simple and combined classifiers, coded as Matlab scripts (see Figure 21) and available in PRtools 
(PRTools, 2012), are considered to map the feature domain to labels. Simple classifiers consist of 
(Duin et al., 2007): 

normal densities-based linear classifier (ldc);

normal densities-based quadratic classifier (qdc);

normal densities-based classifier with independent features (udc);

nearest mean classifier (nmc);

scaled nearest mean classifier (nmsc);

minimum least square linear classifier (fisherc);

linear perceptron-based classifier (perlc);

quadratic classifier (quadr);

linear classifier by Karhunen-Loeve  expansion of the common covariance matrix (klldc);

logistic linear classifier (loglc);

An arbitrary classifier is run with polynomial features (polyc);

Parzen classifier; and

k-nearest neighbour classifier (k=1, 3, 4, 5, 7, 9).

The classifier combination functions, instrumental in generating combined classifiers, consist of: 

product combining classifier (product);

averaging combining classifier (mean);

median combining classifier (median);

minimum combining classifier (minimum);

maximum combining classifier (maximum); and

vote combining classifier (vote).

Given p simple, trained classifiers, { 1,…, p}, a combined classifier results from the application 
of one of the six aforementioned combination function to { 1,…, p}, as explained in Section 
5.5.

Following Figure 17 and Figure 21, a classifier, whether simple or combined, receives as input 
the network feature matrix illustrated in Figure 22 and outputs a label set, which can be used to 
assess the classifier performance. The training of a combined classifier is performed similarly to 
that of a simple classifier by minimizing its classification error. 

To assess the performance of a classifier, whether it is simple or combined, an error estimate is
computed. The error estimate is a deviation metric between actual vulnerability labels obtained 
from avalanche simulations and vulnerability label estimates resulting from the application of 
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each type of classifiers. The error estimate is obtained by means of cross validation26 using three 
folds and ten repetitions.     

6.1.2 Results 

The best recognition rate (68%) is obtained with classifiers ldc, fisher, klldc and polyc (see the 
four dark blue bars in Figure 23). This rate means that the predicted vulnerability label vector 
corresponds, up to a proportion of 68%, to the actual vulnerability vector obtained by simulation; 
that is, up to 68% of the network local representations are identified with the correct labeling.   

ldc qdc udc nmc mscFisherperlquadr kll logl poly 1-nn 3-nn 4-nn 5-nn 7-nn 9-nnparzen

Figure 23. Misclassification rate computed for 18 classifiers. The best four classifiers are 
coloured in dark blue (ldc, fisher, klldc, polyc).  

It is believed that the combination of several classifiers could result in better classification rates 
that those obtained with individual classifiers. The combination functions in Section 6.1.1 (see 
Section 5.5 for a formal description) are applied to the best six classifiers (ldc, fisher, klldc, polyc, 
logl, msc) in Figure 23.

The best recognition rate (71%) is obtained with the product function, as shown in Figure 24. 

                                                      
26 Let Z be a dataset containing n-dimensional features describing N objects. Z is divided into K subsets of 
dimensions N/K. One subset is used to test the performance of the classifier trained on the union of the K-1 
other subsets. This procedure is repeated K times; the test subset is changed every time (Kuncheva, 2004). 
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prod mean med max min vote

Figure 24. Misclassification rates obtained by combining the best six classifiers in (ldc, ficherc, 
klldc, polyc, loglc, msc).  

The relevance of the structural features presented in Section 5.6 is obtained by computing the 
Fisher criterion (Duda et al., 2000). The best four features among those listed in Section 5.6 are, 
in order of decreasing Fisher criterion values, closeness, transitivity, graph strength, and vertex 
betweenness (Figure 25).  
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Figure 25. Relevance of structural features that are part of the classifier.  

6.2 Tactical swarm 

6.2.1 Experiment description 

Given an initial clients configuration C0 and a corresponding robot deployment G0, (including the 
robots’ coordinates Nc,0), the training data set z used to derive the classifier in (6), is obtained 
from the disturbance sample set D={D1,…,Dn}. Di stands for a set of sequence of disturbances 
{ ij1, ij2,…, ijm}. This sequence is in a one-to-one correspondence with the occurrence time set    
{t1 ,t2, …, tm}, ti+1>ti. ijk represents a random realization of the jth disturbance of the sequence 
applied to the network of robots at time tk and for experiment i. The first disturbance ij0

corresponds to a robot failure and is followed by a series of new client configuration Cj,
{ ij1,…, ijm}.

It assumed that the first triggering event (first disturbance) ij1 is a robot failure occurring at t1 and 
that all ij1 span R, the set of robots. The following disturbances are a series of new client 
configuration Cj, { ij1,…, ijm} representing new client configurations arising from clients 
adjusting their positions.  In order to evaluate the vulnerability of each robot, they will be 
removed successively. Di is then defined as the following union j R{ ij1, ij2,…, ijm}. Di is 
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instrumental in defining experiment i. Indeed, sequence Di generates the sequence of edge sets 
{{E11,…, E1m},…,{E|R|1,…, E|R|m}}, where |R| denotes the total number of robots.  

The state of Gm is used to determine the cost Cij,(coni,covi) associated with a disturbance 
sequence j of experiment i. This cost depends on the connectedness of the graph through a 
disconnectedness index, coni(Gm), derived from Equation (10), and the coverage covi(Gm,,Cm) of 
the set of clients by the robot network at time tm. In the binary case, when Gm is disconnected, 
coni is equal to 1 and when Gm is connected, coni is set to zero. The binary (see Equation (10) in 
Section 4.3.2) case is implemented.   

Sequence j of experiment i is thus associated with the following mapping  

{dij1,dij2,…,dijm} Cij yij

Each experiment i is characterized by the set of labels {yi1,…, yi|R|}.

6.2.2 Results 

A classifier is trained to recognize the vulnerable components of a network and thus predict its 
vulnerabilities, should a potential set of triggering events occur. Each node of a network is labeled 
as vulnerable or non-vulnerable. To obtain the data pertinent to the classifier training, various 
simulation runs are performed. Starting with a swarm configuration that initially corresponds to 
an equilibrium state, as shown in Figure 6, a node is labelled as vulnerable if its removal affects 
the network connectivity by virtue of the adaptation mechanism presented in Chapter 4. A swarm 
of 100 robots is considered, a number which is beyond current autonomous robotics practical 
applications. The simulation runs are initiated from a series of 100 swarms of robots, which are 
randomly deployed and designed to cover a set of 100 clients whose positions are also randomly 
generated. Figure 5 shows such a network.

Then, similarly as in Section 6.1.1, features are extracted for each node, leading to a matrix of 
features r

mx as described in Section 5.6. Besides the structural features, a coverage feature, which 
is defined as the number of clients covered by each robot, is computed. Furthermore, a vector of 
labels is built where each component corresponds to a  node of the network. The value of a 
component is determined by the connectivity index expressed in (10). 

We obtained a recognition rate of 69,7% with a nearest mean classifier over a cross-validation 
error estimation with 5 folds and 10 repetitions. These preliminary results show that we are able 
to predict vulnerabilties within the porposed tactical swarms with a success rate less than 70%. 

Selecting a limited number of features, indeed up to 11 features, may allow to implement the 
vulnerability analysis in real time by distributing the classification process over the group of 
robots. However, the real-time, distributed computation of several features such as the edge 
betweenness or the eigenvector centrality is not straightforward since such features require global 
knowledge of the network, which in turn may call for more memory and possibly more 
computation time as suggested by Table 2, where n, N, and M stand for the number of vertices to 
calculate, the number of vertices in the graph, and the number of edges in the graph, respectively.  



DRDC Valcartier TR 2013-409 45

Table 2: Some structural features and their computational complexity. 

Features Space Time Required
information

Vertex betweenness O(M) O(M N) Global

Degree O(n) O(n) Local

Eigenvector centrality O(M) O(M) Global

Kleinberg’s authority 
score

O(M) O(M) Global

Average shortest path 
per node

O(M 2) O(M N logN+M) Global
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7 Conclusion 

7.1 Summary of current capability 

Establishing a mapping linking a limited set of structural features of a graph to a set of 
vulnerability labels is deemed central to building a model that is expected to yield fast results for 
the analysis and prediction of large network vulnerabilities. Based on a Matlab pattern 
recognition toolbox, this approach consists in training a classifier or a set of classifiers using 
datasets obtained from networks that may experience cascading failures when affected by the loss 
of links or nodes. Two networks are considered in this document, namely, a fuse model and a 
tactical robot cloud. 

It has been shown that the proposed approach is able to identify the vulnerabilities of a network of 
a prescribed class27 with a classification success up to 70%. Although this result may not be as 
accurate as that obtained with model-based simulations, the computation of a vulnerability label 
vector is very fast when the classifier is appropriately trained.  

The classifier-based approach presented in this document is general enough to be applied to any 
types of networks. It is believed, however, that the efficiency of the approach may depend on the 
class of networks, avalanche mechanisms considered and of triggering event, explaining why the 
results reported in this document are preliminary.  

7.2 Way ahead 

The preliminary results presented in this document suggest further improvements and 
experiments.  

First, possible ways to increase the classification rate include accounting for (i) extended 
classifier design options, for (ii) extended network features, and for (iii) more general network 
local representations. 

Classifier could be improved by combining, as shown in Figure 26, various design options 
(Jousselme and Maupin, 2012d): 

feature filter f, which selects a subset of the initial feature set; 

uncertainty modeller g, which provides posterior probabilities, fuzzy sets and belief 
functions, to name a few;  

labelling functions l, which outputs labels based on scores, formal uncertainties, or hard 
labels.  

                                                      
27 Recall that a class of networks refers to a specific type of graph whose node or edge attributes evolve 
with time following some dynamics: (i) a static random geometric graph serves as a layer in Chapter 3 for 
the proposed fuse model of avalanche, whereas (ii) the robot swarm in Chapter 4 is a mobile network 
whose dynamics results from the neighbour-based motion strategy implemented in every robot and from 
the location of each client. 
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These options along with the combination functions  presented in Chapters 5 and 6 can be 
considered as part of the decision variables of the classifier design optimization problem since 
the resulting classifier can be expressed, in its most general form, as the following 
composition = l h g f, where g stands for classification mapping, whose input and output 
are a feature subset and a score vector, respectively. The application of genetic algorithm is 
considered to automate the search for a near-optimal solution to this classifier design 
(Jousselme and Maupin, 2012d).  

Figure 26. Multiple classifier system (Jousselme and Maupin, 2012d). 

Design options related to network representations and properties consist of: 

optimizing PREVU classifier training by selecting a subset of local representations over the
set of all local representations of a network, which include some of its subgraphs such as
cliques, clusters, and communities; and

integrating other types of features, especially those based on signal analysis using various
transforms and on the dynamical content of a network.

Second, application of the proposed approach to other types of graphs and avalanche mechanisms 
should be undertaken to assess PREVU performances as a function of graph topological class and
diffusion process class (e.g., cascading failures, epidemics). Conversely, it would be interesting to 
build a taxonomy of graph topology and avalanche mechanisms as a function of the classification 
efficiency. 

Third, the class of initiating event considered in this report consists in removing a single node 
from the graph, therefore restricting the vulnerability analysis to the identification of a single 
point of failure. However, removing a limited subset of nodes may significantly increase the cost 
of network malfunctioning beyond linear extrapolations as a result of couplings inherent to 
networks. It is thus desirable to extend the vulnerability analysis of PREVU to triggering events 
that could directly affect subgraphs.     

Last, it is expected in 2013 that PREVU toolbox be tested with actual data such as that obtained 
with the tactical mobile cloud as part of collaboration with West Point US military academy. 
Ultimately, it is expected that the classifier be used in closed loop with the motion strategy to 
improve the overall performance of the tactical mobile cloud. Furthermore, the robustness of 
PREVU to parametric uncertainties that may affect the network generation and the avalanche 
mechanism is of interest. 
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Annex A Structural analzer

A.1 Matlab script used to call igraph routine 

In this section, the Matlab script that manages the network structural analysis performed with 
igraph is provided.  A graph Laplacian matrix (see Section A.3 for an example of Laplacian 
matrix) and a vector of edge capacities are provided as input arguments to the Matlab function 
StructuralProperties_Ava. A text file containing a |E | 2 matrix28 whose rows are the 
graph edges (couples of nodes) is generated from the Laplacian matrix. This text file is then read 
by the igraph routine presented in Section A.2. This igraph routine, which is called by 
StructuralProperties_Ava, provides a text file for each structural property analyzed. 
StructuralProperties_Ava then generates a feature matrix that stacks row vectors each 
of which is contained in an igraph-generated text file.   

function[MatFea,MatFea_Edge]=StructuralProperties_Ava(TrueLaplaci
anMat,CapacityOut)

% This function derives the structural properties of the graph 
% associated with TrueLaplacianMat by calling igraph code.
% Data is saved in txt files.

% TrueLaplacianMat: Network Laplacian matrix 
% Capacityout     : Vector of edge capacity 

% A list of edges is built from the network Laplacian matrix 
% TrueLaplacianMat 

[rTL,cTL]=size(TrueLaplacianMat);
i=1;
for u=1:rTL-1 

for v=u+1:cTL 
if TrueLaplacianMat(u,v)~=0 

Edges(i,:)=[u v]; 
i=i+1;
end

end
end

% Create a file with edge list when a Laplacian Matrix is given 
f=fopen('EdgesMatIgraphNet.txt','w');
fprintf(f,'%d %d\r\n',Edges');    % List of edges 
fclose(f);

28 |E | is the number of edges of a graph G =(N, E ).
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% Create a file with edge attribute (edge capacity) 
capa=CapacityOut(:,3);
save EdgesAttributesNet.txt capa -ASCII

capaAbsVal=abs(capa);
save EdgesAttributesValAbsNet.txt capaAbsVal -ASCII  

% Run igraph code in StructuralFeaturesPR and save the resulting
% matrix, which is obtained for every structural feature, in a  
% txt file. 

system('"C:\Program Files\R\R-2.11.1\bin\R" CMD BATCH 
"C:\NL\TIF_PREVU\SIM\Test\Avalanche_1\StructuralFeaturesPR"
ResultRMatlab.txt')

load betweenness_ava.txt 
load degree_ava.txt 
load closeness_ava.txt 
load alpha_centrality_ava.txt 
load eigenvector_centrality_ava.txt 
load page_rank_ava.txt 
load graph_knn_ava.txt 
load graph_strength_ava.txt 
load transitivity_ava.txt 
load graph_coreness_ava.txt 
load authority_score_ava.txt 
load shortest_path_node_ava.txt 
load edge_betweenness_ava.txt 

% NaN in transitivity_ava are replaced by 0 

transitivity_ava_aux=transitivity_ava;
iii=find(isnan(transitivity_ava)==1);
transitivity_ava_aux(iii)=0;
transitivity_ava=transitivity_ava_aux;

% Create an overall feature matrix from the matrices in txt 
files; First row is deleted
[ro,co]=size(betweenness_ava);

MatFea=[betweenness_ava(2:ro,1) degree_ava(2:ro,1) ... 
closeness_ava(2:ro,1) alpha_centrality_ava(2:ro,1) ... 
eigenvector_centrality_ava(2:ro,1) page_rank_ava(2:ro,1)... 
graph_knn_ava(2:ro,1) graph_strength_ava(2:ro,1) ... 
transitivity_ava(2:ro,1) graph_coreness_ava(2:ro,1) ... 
authority_score_ava(2:ro,1)];
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[roE,coE]=size(edge_betweenness_ava);
MatFea_Edge=[edge_betweenness_ava(1:roE)];

A.2 igraph routine 

The igraph routine that provides the structural feature is presented next. The graph representation 
and edge attributes are obtained from EdgesMatIgraphNet text file as a |E | 2 matrix and 
from EdgesAttributesNet text file as a |E |-dimensional vector, respectively. Each 
structural feature vector is saved in a corresponding text file; for instance, the between vector is 
saved in betweenness_ava. A feature matrix is output by Matlab function 
StructuralProperties_Ava when all the feature text files have been read.  

# Structural properties of the electrical network 

library(igraph)

# Load the graph file

g <- read.graph("EdgesMatIgraphNet.txt","edgelist", 
directed=FALSE)
edge_attrib <- read.table("EdgesAttributesNet.txt", 
col.names=c("Attrib1"))

E(g)$attrib1 <- edge_attrib$Attrib1 
summary(g)
plot(g)

exo<-
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

# Edge attribute list
edge_attrib2 <- read.table("EdgesAttributesValAbsNet.txt", 
col.names=c("Attrib2")) # 
read.table("EdgesAttributesValAbsNet50_3.txt",
col.names=c("Attrib2"))
E(g)$attrib2 <- edge_attrib2$Attrib2 
E(g)$weight <- edge_attrib2$Attrib2 
summary(g)

# 1] Local (representation) structural properties: Nodes 

bet<-betweenness(g)
write(bet, 'betweenness_ava.txt',ncolumns=1) 
remove(bet)

deg<-degree(g)
write(deg, 'degree_ava.txt',ncolumns=1) 
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remove(deg)

clo<-closeness(g)
write(clo, 'closeness_ava.txt',ncolumns=1) 
remove(clo)

alcentrality<-alpha.centrality(g,alpha=1) #,exo) 
write(alcentrality, 'alpha_centrality_ava.txt',ncolumns=1) 
remove(alcentrality)

eigcentral<-evcent(g)
# Eigenvector Centrality Scores of Network
write(eigcentral$vector, 'eigenvector_centrality_ava.txt', 
ncolumns=1)
remove(eigcentral)

parank<-page.rank(g)
write(parank$vector, 'page_rank_ava.txt',ncolumns=1) 
remove(parank)

grknn<-graph.knn(g)
write(grknn$knn, 'graph_knn_ava.txt',ncolumns=1) 
remove(grknn)

G_strength<-graph.strength(g) # Edge weights are needed 
write(G_strength, 'graph_strength_ava.txt',ncolumns=1) 
remove(grknn)

trans<-transitivity(g,"local")
write(trans, 'transitivity_ava.txt',ncolumns=1) 
remove(trans)

coren<-graph.coreness(g)
write(coren, 'graph_coreness_ava.txt',ncolumns=1) 
remove(coren)

authsco<-authority.score(g)
write(authsco$vector, 'authority_score_ava.txt',ncolumns=1) 
remove(authsco)

# Computation of the average shortest path for each node: sp_node 
sp<-shortest.paths(g)
dimen<-dim(sp)
sp_node<-numeric()
for (i in 2:dimen[1]){ 
sp_node[i-1]<-sum(sp[i,2:dimen[1]])/(dimen[1]-1)
}
write(sp_node, 'shortest_path_node_ava.txt',ncolumns=1) 
remove(sp_node)
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# 2] Global properties(not used) 

# Average shortest path for the whole graph 
av_path_length<-average.path.length(g)
# Diameter of the graph, i.e. length of the longest geodesic 
# (shortest path) 
diam<-diameter(g)
ggg<-girth(g)
# length of the shortest circle in it. 
girth<-ggg$girth

A.3 Laplacian matrix of the 7-node graph in Figure 20

The Laplacian matrix L (=D-A) of the unweighted graph in Figure 20 is expressed as follows (see 
an example of weighted Laplacian matrix in Section 3.2): 

1100000
1410101
0131100
0012100
0111410
0000121
0100012

L .
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List of symbols/abbreviations/acronyms/initialisms 

AF Aggravating Factor

DND Department of National Defence

GPS Global Positioning System

JC Jump Condition

PR Pattern Recognition

PREVU Prediction and REcognition of VUlnerabilities

ROC Receiver Operating Characteristic

UAV Unmanned Aerial Vehicle
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