
Optimal Decisions for Canadian Military
Airlift Problem

Abdeslem Boukhtouta, Jean Berger
(DRDC Valcartier)

Warren B. Powell, Belgacem Bouziane-Ayari
(Princeton University)

Defence Research and Development Canada – Valcartier
Technical Report

DRDC Valcartier TR 2010-517
September 2010

Optimal Decisions for Canadian Military
Airlift Problem

Abdeslem Boukhtouta, Jean Berger
(DRDC Valcartier)

Warren B. Powell, Belgacem Bouziane-Ayari
(Princeton University)

Defence Research and Development Canada – Valcartier
Technical Report
DRDC Valcartier TR 2010-517
September 2010

IMPORTANT INFORMATIVE STATEMENTS

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2010

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2010

DRDC Valcartier TR 2010-517 i

Abstract ……..

A modeling and algorithmic framework for analyzing and simulating the military airlift is
presented in this report. Central to the framework is the modeling of the flow of information and
decisions. A series of models demonstrating how different levels of information can be
represented when making a decision are presented. These information sets are simulated to
demonstrate their impact on costs and throughput. A detailed comparison of classical
optimization and the current framework is presented. Using historical data for the airlifts
conducted by the Canadian Air Force, a series of simulations were conducted to test the effect of
uncertainty in customer demands as well as aircraft failures. It is demonstrated in this report that
this effect is reduced when adaptive learning is used in the simulation process. There are a
number of sources of randomness that arise in military airlift operations: random demands,
aircraft failures, weather delays, etc. The cost of uncertainty can be difficult to estimate it
is difficult to give the mathematical expression of this cost. However, it is easy to overestimate
this cost if we use simplistic decision rules. The military airlift problem, considered in this report,
is modeled as a dynamic program, and solved using approximate dynamic programming. The
experiments show that even approximate solutions produce decisions that substantially reduce the
effect of uncertainty.

Résumé ….....

Une approche de modélisation et de résolution pour l’analyse et la simulation du problème du
transport aérien militaire est présentée dans ce rapport. La modélisation des flots d’informations
et de décisions en constitue l’élément central. Nous présentons plusieurs modèles pour montrer
comment l’information est traitée et présentée durant le processus de prise de décision. Plusieurs
scénarios sont simulés pour déterminer l’impact de l’information sur les coûts ainsi que sur la
solution. Nous faisons une comparaison détaillée entre l’approche d’optimisation classique et
celle qui est proposée dans ce rapport qui est le simulateur d’optimisation. En utilisant des
données historiques des opérations aériennes des Forces Canadiennes, une série de simulations a
été effectuées pour mesurer l’impact des incertitudes liées aux requêtes de dernière minute et aux
bris mécaniques des avions. Nous démontrons que cet impact est réduit lorsque nous utilisons le
concept d’apprentissage adaptatif dans le processus de simulation. Il y a plusieurs sources
d’incertitude liées au problème du transport militaire aérien : requêtes imprévues, bris d’avions,
retards dus à la météo, etc. L’estimation du coût d’incertitude est difficile à obtenir puisque ce
dernier est difficile à exprimer mathématiquement. Par ailleurs, ce coût est facile à surestimer
quand on utilise des règles de décisions simplistes. Le problème du transport militaire aérien
abordé dans ce rapport est modélisé comme un programme dynamique qui est résolu via la
programmation dynamique approximative. Les expériences numériques montrent que même les
solutions approximatives donnent des décisions qui réduisent substantiellement l’effet
d’incertitude.

DRDC Valcartier TR 2010-517

This page intentionally left blank.

DRDC Valcartier TR 2010-517 iii

Executive summary

Optimal Decisions for Canadian Military Airlift Problem
A. Boukhtouta; J. Berger; W. B. Powell; B. Bouzaiene-Ayari; DRDC Valcartier
TR 2010-517; Defence R&D Canada – Valcartier; September 2010.

The Canadian military airlift problem involves managing a fleet of aircraft to serve demands to
move passengers or freight. The aircraft are characterized by attributes, some of which may be
dynamic, such as the current location, the earliest time when it can be used to serve a demand,
whether it is currently loaded or empty, and so on. A demand is also described using features
such as type, origin, aircraft type required to serve the demand, priority, and arrival and departure
times. Aircrafts are used to execute decisions such as pick up and move missions, and can be
reallocated to alternate locations to serve emerging demands. Demand is not fully deterministic,
meaning that last minute requests may occur in some particular locations. Other forms of
uncertainty, such as random equipment failures, may also happen.

The goal of this study is to compare, for the military airlift problem, the performance and
capabilities of the optimizing-simulator technology (handling uncertainties) against that of
classical deterministic optimization. The optimizing-simulator, rather than fostering a
competition between alternative analysis technologies, actually combines the best features of
simulation and optimization. In the process, it combines cost-based and rule-based decision
technologies, providing an analysis technology that handles the high-dimensionality of problems
that typically arise in transportation, as well as the complex behaviours that may be difficult to
capture using a cost model, but which can be expressed as patterns of behaviour.

The optimizing-simulator allows us to run studies on ‘‘what if’’ questions such as:
What is the effect of random customers’ demands over time?
What is the value of knowing all orders in advance?
What is the effect of equipment failures, delays due to weather or problems at airbases?

The report provides a tutorial on how to model the flow of information and the airlift complex
problem dynamics using a simple, intuitive vocabulary. We then demonstrate this modeling
framework in the context of the Canadian military airlift problem. Finally, we present a series of
computational experiments that evaluate the effect of random demands and equipment failures on
system performance. The experiments clearly demonstrate the capability of the optimizing-
simulator. In terms of validating the methodology, the main outcome is that computational results
are all intuitively reasonable. We observed that increasing the level of uncertainty (random
demands, aircraft breakdowns or both) reduces solution quality. Also, the adaptive learning
approach is found to improve solution quality as well as to reduce the cost of uncertainty.

DRDC Valcartier TR 2010-517iv

Sommaire

Optimal Decisions for Canadian Military Airlift Problem
A. Boukhtouta ; J. Berger ; W. B. Powell ; B. Bouzaiene-Ayari ; DRDC
Valcartier TR 2010-517, R & D pour la défense Canada – Valcartier ;
Septembre 2010.

Le problème de transport aérien des Forces canadiennes consiste à gérer une flotte d’avions pour
répondre à des requêtes (missions) de transport de passagers et de marchandises. Les avions sont
caractérisés par des attributs (ex. localisation, disponibilité prochaine pour une mission, état de
chargement) qui peuvent varier en fonction du temps. Une requête ou une mission peut aussi être
décrite en fonction de certaines caractéristiques telles que type de demande, origine, type d’avion
requis pour accomplir cette mission, priorité, périodes d’arrivée et de départ. Les avions sont
utilisés pour exécuter des décisions et missions du genre cueillette de marchandise et transport, et
peuvent être réaffectés à un site alternatif pour répondre à une autre requête. Les requêtes
associées aux différentes missions ne sont pas complètement déterministes indiquant que des
requêtes de dernière minute peuvent survenir à des endroits quelconques. D’autres formes
d’incertitudes, peuvent également se manifester, tels les bris d’équipement inattendus.

L’objectif de la présente étude est de comparer pour le problème militaire de transport aérien les
performances d’un simulateur-optimiseur (considérant les incertitudes) avec l’optimisation
déterministe classique (sans incertitude). Le simulateur-optimiseur combine les avantages de
l’optimisation et de la simulation dans la résolution des problèmes. Il combine, dans le processus
de résolution, une approche basée sur les coûts avec une autre approche basée sur les règles de
décision, pour donner naissance à un outil d’analyse qui peut traiter les problèmes de grandes
tailles comme ceux du transport. Aussi, il permet de tenir compte des caractéristiques complexes
qui peuvent être difficiles à modéliser en utilisant une approche basée sur les coûts.

Le simulateur-optimiseur permet d’accomplir des analyses par simulation/anticipation telles que :
Quel est l’effet de réception aléatoire des requêtes?
Quelle est la valeur de la connaissance a priori de l’information relative aux requêtes?
Quel est l’effet de bris des équipements, des retards dus au climat ou aux problèmes
relatifs aux bases aériennes?

Le présent rapport présente un cadre de travail traitant de la dynamique de modélisation des flots
d’information et du problème de transport aérien en utilisant un vocabulaire simple et intuitif.
Nous appliquons ce cadre de travail à la modélisation et la résolution du problème de transport
militaire aérien. Nous présentons une série d’expériences numériques pour évaluer l’effet de la
réception aléatoire des requêtes et des bris des équipements sur la performance du système. Les
expériences numériques démontrent bien les capacités du simulateur-optimiseur. En matière de
validation de la méthodologie, les résultats obtenus sont logiques et raisonnables. Nous avons
remarqué que l’augmentation du niveau d’incertitude (requêtes aléatoires, bris mécanique de
l’avion ou les deux) réduit la qualité de la solution. Aussi, les solutions données par l’approche
basée sur l’apprentissage adaptatif améliorent la qualité de la solution tout en réduisant le coût
d’incertitude.

DRDC Valcartier TR 2010-517 v

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary ... iii
Sommaire ... iv
Table of contents .. v
List of figures ... vii
List of tables .. ix
1 Introduction ... 1
2 Modeling airlift mobility problem .. 3

2.1 Resources ... 4
2.2 The information process .. 6
2.3 Decisions ... 7
2.4 The transition function .. 8
2.5 The objective function ... 10

3 The optimizing simulator .. 11
3.1 Rule-based decision making .. 11
3.2 A myopic cost-based policy .. 13
3.3 Decisions with forecasts .. 15
3.4 Decisions with value functions .. 15
3.5 Decisions with patterns .. 17
3.6 Optimization versus the optimizing simulator ... 19

4 Measuring the value of increasing information .. 24
4.1 The effect of information on costs ... 24
4.2 The effect of information on throughput ... 25
4.3 Matching patterns .. 27

5 A model of the CF airlift problem .. 28
5.1 Resources .. 28
5.2 Decisions ... 29
5.3 System dynamics ... 31
5.3 Costs and rewards ... 33
5.4 The decision function .. 33
5.5 Updating the value function .. 35

6 Results of experiments with Canadian military air mobility datasets 37
6.1 PILOTVIEW diagnostic tools ... 38
6.2 Experiments on a deterministic dataset .. 40

DRDC Valcartier TR 2010-517vi

6.3 Experiments with random demands .. 42
6.4 Experiments with random aircraft failures ... 44

7 Conclusion .. 49
References 51
List of symbols/abbreviations/acronyms/initialisms .. 54

DRDC Valcartier TR 2010-517 vii

List of figures

Figure 1: Relationship between continuous time information processes, and discrete time
decision processes. .. 7

Figure 2: Multiple aircraft may be considered for multiple demands. Rule-based logic picks
one possible assignment and determines feasibility (the solid line show that the
Aircraft is assigned to the requirement). ... 12

Figure 3: Illustration of different elements of a cost of assigning an aircraft to a demand. 13

Figure 4: Choosing the best of a set of aircraft to serve a demand. ... 14

Figure 5: An assignment problem considering multiple aircraft and demands. 14

Figure 6: Total costs as a percent of the optimal for deterministic multicommodity flow
problems. ... 20

Figure 7: Total costs from approximate dynamic programming and rolling horizon procedures
as a percent of the posterior optimal solution.. 21

Figure 8: Costs produced by simulations for each of the five information sets and decision
rules. .. 25

Figure 9: Cumulative throughput produced by each decision function and information set. 26

Figure 10: Total throughput curves for each of the information sets and decision functions. 26

Figure 11: Percent of flow through airbase EGA that was C-141's versus the desired
percentage for different values of theta. .. 27

Figure 12: Relationship of brief and load times to departure and arrival time windows. 32

Figure 13: Decision problem, assigning aircraft to demands or to locations. 35

Figure 14: Airlift flows (blue = loaded, red = empty). .. 37

Figure 15: Flows over eastern Canada. ... 38

Figure 16: Detailed depiction of aircraft and demands, and all possible assignments. 38

Figure 17: Following assignments over time. ... 39

Figure 18: Drill down capabilities for aircraft and demands. .. 39

Figure 19: Drill down capability for individual decisions. .. 40

Figure 20: Effect of planning horizon and approximate dynamic programming for a
deterministic dataset. ... 41

Figure 21: Objective function for prebook times of 0, 2 and 6 hours, with and without
approximate dynamic programming. .. 42

Figure 22: Demand coverage (as a percent of the total available) for prebook times of 0, 2 and
6, with and without approximate dynamic programming. .. 43

Figure 23: Improvement in demand coverage as a result of adaptive learning, for three
different prebook times. .. 44

DRDC Valcartier TR 2010-517viii

Figure 24: Objective function for a) breakdowns with no learning, b) breakdowns with
learning, c) learning with no breakdowns. All runs are shown smoothed and
unsmoothed. .. 45

Figure 25: Reduction in profits due to breakdowns, with and without adaptive learning. 46

Figure 26: Order fill rate, with and without breakdowns, run with and without adaptive
learning. ... 46

Figure 27: Reduction in fill rate due to breakdowns, measured with and without adaptive
learning. ... 47

Figure 28: Objective function for all combinations: random and deterministic demands, with
and without aircraft failures, and with and without adaptive learning. 48

DRDC Valcartier TR 2010-517 ix

List of tables

Table 1: The approximate dynamic programming algorithm. ... 17

Table 2: Comparison of classical optimization and the optimizing-simulator. 21

DRDC Valcartier TR 2010-517x

This page intentionally left blank.

DRDC Valcartier TR 2010-517 1

1 Introduction

The Canadian military airlift problem involves managing a fleet of aircraft to serve demands to
move passengers or freight. The aircraft are characterized by attributes, some of which may be
dynamic, such as the current location, the earliest time when it can be used to serve a demand,
whether it is currently loaded or empty and so on. The demands are also described using features
such as the type of demand, their origin, and the type of aircraft that is required to serve the
demand, their priority, and arrival and departure times. Aircrafts are used to execute decisions
such as pick up and move missions, or reallocated to an alternate location to serve emerging
demands. Demand is not fully deterministic, last minute requests may occur for any specific
location. Other forms of uncertainty, such as random equipment failure may emerge as well.

The optimizing-simulator is an analysis technology that focuses on the modeling of complex
resource allocation problems, using an explicit model of the information available to make a
decision. We begin in this report with a brief presentation of how we model complex resource
allocation problems, covering both the representation of the resources themselves and modeling
the information.

We present in this report a series of models that illustrate how we model the information content
of a decision (such as move aircraft, load aircraft, delay a demand, etc.) and the value of
increasing this information content. The results show that providing more information reduces
costs and increases throughput. Also reported are the results of research comparing the objective
function produced by the optimizing-simulator to optimal solutions for deterministic problems,
and the results of rolling-horizon experiments for problems which exhibit uncertainty.

An important feature of the technology used in this report, is its ability to combine cost-based and
rule-based control technologies. Rules are expressed in the form of low-dimensional patterns
(“try to send C-17s to Europe”), and we penalize deviations from these patterns.

A detailed comparison of classical optimization approach and the optimizing-simulator is
presented, focusing on both solution quality and the ability of the optimizing-simulator to model
dynamic information processes, complex operational dynamics, and the information content of a
decision. We then show how this modeling framework can be used to represent the Canadian
military airlift problem. We should mention that the dataset used to solve the problem have been
prepared for an optimization model, and as such lacked the richness that we typically find in real
applications.

Finally, a series of experiments were run to test the capabilities of the modeling and algorithmic
framework. We start by demonstrating the quality of the solution achieved using the approximate
dynamic programming algorithm. With no uncertainty, and with a modest level of advance
information, a simple simulation provides very high quality solutions. We then assumed that
generic demands became known over the simulation, varying the time interval between a new
demand and the time it has to be served (the prebook time). We were able to quantify the value
of knowing orders in advance (we assumed 0, 2 and 6 hours), and we also showed that the value
of advance information is reduced if we use adaptive learning logic.

DRDC Valcartier TR 2010-5172

Approximate dynamic programming helps the model produce decisions that are robust, which is
to say that they work well under different potential outcomes in the future. It might send five
aircraft to handle work that could be covered by three or four aircraft in anticipation of possible
failures. It might also position extra aircraft at locations which can handle potential failures in
nearby locations. Our interest is in estimating the cost of different forms of uncertainty, and
determining the extent to which robust decision making affects the cost of uncertainty. Our
analysis focuses on two forms of uncertainty: uncertainty in customer requests, and the possibility
of equipment failures that introduce additional delays in the movement of aircraft. This document
analyzes the effect of these two forms of uncertainty (customer requests and equipment failures)
and quantifies the effect of these forms of uncertainty using two simulation methods. The first
method uses a standard simulation in which decisions are made myopically. The second uses
approximate dynamic programming to produce more robust decisions. We then compare and
contrast the cost estimates of uncertainty using both policies.

This report is organized as follows. Chapter 2 provides a model for the airlift mobility problem
using the notation and vocabulary of dynamic resource management. In Chapter 3, we review a
range of decision making strategies (implemented in the optimizing simulator), starting with
elementary rule-based policies that are commonly used in simulation, and extending through
myopic, cost-based policies, closing with the policies derived from solving dynamic programs.
Classical optimization is compared to the proposed optimizing simulator approach as well.
Chapter 4 reports on a series of simulations which address the question of estimating the cost of
uncertainty, and how this estimate depends on the type of decision function used. The model
related to the Canadian military airlift problem is presented in Chapter 5 and the results related to
this model are presented in Chapter 6. Finally, some concluding remarks are given in Chapter 7.

DRDC Valcartier TR 2010-517 3

2 Modeling airlift mobility problem

Different modeling strategies have been used to solve the military mobility problems (air and
sea): deterministic linear programming, simulation, and stochastic programming. Ferguson &
Dantzig are one of the first to apply mathematical models to air-based transportation [1].
Subsequently, numerous studies were conducted on the application of optimization modeling to
the military airlift problem (see [2] for more details).

Military airlift (and sealift) problems have typically been modeled either as deterministic linear
(or integer) programs or with simulation models which can handle various forms of uncertainty.
Much of the work on deterministic optimization models started at the Naval Postgraduate School
with the Mobility Optimization Model (See [3])). The development of THRUPUT which is a
general airlift model but which does not capture time is described in [4]. THRUPUT and the
Mobility Optimization Model were combined to produce THRUPUT II (See [5]) to obtain a
model which accurately captured airlift operations in the context of a time-dependent model. A
similar model was produced by RAND called CONOP (CONcept of OPerations), which is
described in [6]. Both THRUPUT II and CONOP possessed desirable features which were
merged to a system called NRMO (See [7]). These models could all be solved using linear
programming packages. The problem of routing and scheduling vehicles in the context of theatre
of operations is addressed in [8]. The resulting model was solved using group-theoretic Tabu
Search.

Despite the attention given to mathematical programming-based models, there remains
considerable interest in the use of simulation models, primarily because of their ability to handle
uncertainty as well as the flexibility in capturing complex operational issues. The Argonne
National Laboratory developed TRANSCAP to simulate the deployment of forces from Army
bases (Burke et al. [9]). TRANSCAP uses a discrete-event simulation module developed using
the simulation language MODSIM III. The Air Mobility Command at Scott Air Force Base uses a
simulation model, AMOS (derived from an earlier model known as MASS), to model airlift
operations for policy studies.

As early as 1956 there has been interest in solving these problems where decisions explicitly
account for uncertainty in the future [1]. Much of this work has evolved within the discipline of
stochastic programming, which focuses on representing uncertainty within linear programs. The
approach developed in [10] accounts for uncertainty in demands, while the study presented in
[11] proposes an extension of THRUPUT II to handle uncertainty in aircraft reliability. Niemi
proposes a stochastic programming model which captures uncertainty in ground times [12]. A
Stochastic Sealift Deployment Model (SSDM) is introduced in [13] to model sealift operations in
the presence of possible attacks.

A different line of investigation uses dynamic programming to find decisions in the presence of
uncertainty. Yost & Washburn uses the theory of partially observable Markov decision processes
to find decisions in the presence of uncertainty [14]. The resulting model, however, suffers from
the classic curse of dimensionality, restricting its use to very small problems.

DRDC Valcartier TR 2010-5174

The framework proposed in this report is based on the field of approximate dynamic
programming (See [15], [16], [17] and [18]) which solves Bellman’s equation by approximating
the value function using statistical methods. This general strategy has been adapted to multistage,
stochastic optimization problems in order to combine the power of linear programming (which is
needed to handle the high dimensional problems that arise in transportation) with the power of
dynamic programming (see, for example [19]). This algorithmic strategy has been demonstrated
in the context of a variety of fleet management problems (See [20], [21], [22], [23] and [24]),
including the military airlift problem (See [25] and [26]). In addition to the academic research
literature, these techniques have also been used in industrial truckload trucking, rail (boxcars and
locomotives) and business jets applications.

We describe below the most important dimensions facing a resource allocation problem such as
airlift mobility problems. These include:

The resources being managed.

The information available when making a decision.

The decisions that act on the resources being managed

The transition function that describes how the system evolves over time.

Performance measures.
This discussion is based on a general model for resource allocation problems called the dynamic
resource transformation problem (DRTP). A DRTP is comprised of three major dimensions
which are represented using:

Knowledge || Processes || Controls

A detailed summary of this problem class is given in [27]. This presentation captures only the
most important elements of this problem. Our modeling approach is developed to handle all of
the dimensions (and subdimensions) of a full-scale DRTP.

2.1 Resources

The airlift mobility problem is often modeled using two resource classes, or layers, which might
be the aircraft and the requirements (the requests to move passengers or freight). A third resource
layer might be the pilots. Other resource layers could be maintenance capabilities or
loading/unloading equipment. The resource layers are represented using

Set of resource layers (pilots, aircraft, demands).
= , ,

R

P A D
C

Note that a resource layer describes anything that constrains the system over time. Thus,
requirements in the form of freight or passengers limit our ability to move aircraft loaded. At the
same time, our ability to satisfy requirements is limited by aircraft, pilots (as well as other
potential limiting factors).

A resource layer is described using:

DRDC Valcartier TR 2010-517 5

Attributes of a resource.
=The set of potential attributes for resources in class .c R

a
a cA C

We capture the state of our resources using:
Number of resources in class with attribute that we

 at time .

Resource state vector at time for resources in class .

Complete resource stat

c

R

c R
ta

c c R
t ta a

c
t t c

R c a
know about t

R R t c

R R
A

C

C

C

e vector at time .t

Thus, P
tR would be our resource vector for pilots, A

tR would be our resource vector for aircraft,

and D
tR would represent our set of demands.

It is important to understand the power of the attribute vector a for describing resources. We start
by illustrating potential attributes for an aircraft. These might be:

1

2

3

4

5

6

7

Current or future location
Estimated time of arrival
Aircraft type
Fuel level
Maintenance status
Load attributes
Pilot attribu

a
a
a

a a
a
a
a tes

We can obtain layered resources when, for example, we put a pilot in an aircraft, or a load of
freight in an aircraft. In our attribute model above, these would be captured by attributes 6a and

7a . Thus, these attributes may actually be vectors of attributes themselves.
It is important to understand the “estimated time of arrival” field. It is very common to have a
resource that will have a particular attribute in the future (e.g. it is flying toward a destination),
where you cannot act on the resource until it has arrived at this point in time. This time is known
(in our vocabulary) as the actionable time. The attribute vector may evolve over time (for
example, it may be delayed due to weather, changing the actionable time, or there may be an
equipment failure, changing the maintenance status. We would let:

The attribute of the resource with the information available at time .ta t

Here, we would represent time t as the knowable time. It is important to understand that
throughout our presentation, time t represents what information is available, whereas the time at
which something actually happens (such as, arriving at an airbase) is the actionable time.
The requirements to be satisfied (loads of freight, people to be moved) might be represented
using:

DRDC Valcartier TR 2010-5176

1

2

3

4

5

6

Origin
Destination

Pickup time window
Delivery time window

Pounds
Cubic feet

a
a
a

a
a
a
a

Here we see the actionable time in a different format: the pickup time window (this might again
be a vector, possibly consisting of earliest, latest and target pickup time). The earliest time (the
beginning of the window) would be the actionable time. This means that the vector D

tR
represents the demands that we know about at time t. When the demands have to be served is part
of the attribute vector. Sometimes (as we do in this document) it is useful to bring out the
actionable time, at which point we would use notation such as

, ' '

' , ' ' '

Number of resources that we know about at time , that will have attribute
' at time '.

Vector of resources that we know about at time that are

actionab

t t a

tt t t a a

t
a t

R R t
A

le at time '.t
Thus, we would say that 'ttR is the vector of resources that we know about at time t that are

actionable at time t’. The vector 0 '
D
tR represents the demands that are known at the very

beginning (the “strategic” demands) that have to be served at a time starting at t’, while ' 0

D
tt t

R
is all the demands that become known during the simulation.
An important aspect of our mathematical model is the flexibility inherent in the use of the
attribute vector. It is quite easy to add dimensions to the attribute vector. The software library is
designed assuming that the attribute vector is sufficiently complex that we cannot enumerate the
attribute space (even small problems can have an attribute space A with millions of elements;
for complex resources such as pilots and aircraft the attribute space may be orders of magnitude
larger).

2.2 The information process
There are two types of information processes that we consider. The first and most important is
the arrival of customer requests to move freight and passengers. The second represents
information such as weather delays and equipment failures that affect the evolution of the system
over time (more on this later).

To begin, it is important to understand how we model time. We view information as arriving in
continuous time, but for practical reasons, we model decisions as occurring in discrete time. The
relationship between discrete and continuous time is given in Figure 1.

To describe the flow of customer requests for loads to be moved, let

DRDC Valcartier TR 2010-517 7

ˆ Number of customer demands with attribute that first become known
 at time .

ˆ ˆ
D

D
ta

D D
t ta a

R a
t

R R
A

Figure 1: Relationship between continuous time information processes, and discrete time
decision processes

ˆ D
tR is the arrival process of customer requests over time. Referring to Figure 1, we see that ˆ D

tR
is defined only for t=1, 2, … We might also let

'
ˆ The vector of customer requests that arrive during time interval that

can first be served at time '.

D
ttR t

t

The difference between the call-in time t, and the actionable time t’, is one of the major quantities
we wish to address in this study. In addition to the arrival process for new demands, we may have
other types of information that include weather delays and equipment failures. To keep our
notation compact, we let

Family of random variables representing all possible types of new information
(including customer demands) that may arrive during time interval .

tW
t

2.3 Decisions

For now, we represent decisions in a very simple way. We let:
Set of decision classes (move aircraft, load aircraft, repair aircraft,

reconfigure an aircraft for passengers, delay a demand, rest a pilot)
=Set of decision types in class
=Set of a

D

c Dc

C

D C
D ll decision types

= D
c

c C
DD

c
c CD D

DRDC Valcartier TR 2010-5178

In transportation applications, the most common decision type is to move from one location to
another. For this decision class, D represents the set of locations we can move to. But we can
also handle decisions which change the configuration of an aircraft, refill an aircraft with fuel, or
repair an aircraft.

The set of decisions typically depends on the attributes of the resource a decision is being applied
to. For this reason, it is useful to define

The decision set function, which returns a set of decisions given an
attribute vector .

a
a

D

Our decision vector is represented using

xtad = Number of resources with attribute a that we act with a decision of type d using

the information available at time t.

xt = (xtad) aϵA,dϵD

It is important to realize that we may make a decision d (for example, move from one location to
another) acting on an aircraft (or a demand) that is not actionable at time t. For example, at time
t, there may be an aircraft that is actionable now, which we wish to assign to a demand that is
actionable at, say, t+10 (assume that it takes only 2 time periods to get from the current location
of the aircraft to the origin of the demand). We assume that if you can implement the decision
later and still arrive in time to handle the demand, that we delay implementing the decision until a
later point in time.

In an optimizing-simulator, we are going to model a decision with variety of ways. For the
moment, it is enough to say that we have a decision function that we represent using

() Function returning a feasible vector given information . There
may be a family of functions , where is one function.

t t t tX I x I

When dealing with uncertainty, it is common to refer to a particular decision function as a policy.
We often find ourselves comparing different rules for making decisions, which we refer to as
comparing policies.

2.4 The transition function

In the vocabulary of dynamic systems, tR represents the state of our system (to be precise, it is
the resource state variable). For our purposes, our state variable is captured by the resource state
vector. If tW is the information arriving during time interval t and tx is the vector of decisions,
we can represent in a general way the evolution of our system over time using:

1, ,M
t t t tR R R W x

In this representation, we are writing tR as a post-decision state variable. That is, it is the state
of the resources immediately after a decision is made but before new information is used. We

DRDC Valcartier TR 2010-517 9

often use the post-decision state variable because it is easier to use algorithmically (see section
3.4). If we were to use a pre-decision state variable, we would write our recursion as:
 1 1, ,M

t t t tR R R x W

Sometimes, it is useful to use both pre- and post-decision state variables. In this case, we let tR

be the pre-decision state variable, and we let x
tR be the post-decision state variable. We can

break the transitions into two steps:

,

,
1 1

,

,

x M x
t t t

M W x
t t t

R R R x

R R R W

For most resource allocation problems, it is easier to work at the level of individual resources and
decisions. When we act on a resource with attribute a with decision d, we model the results of
this decision using:
 1(, ,) (, ,)t t t tM a W d a c

1(, ,)t t tM a W d is known as the modify function, which captures how a resource is modified as a
result of a decision. There are three outputs from this function: the modified attribute vector at,
the cost or contribution of the decision (we use cost if we are minimizing, contribution if we are
maximizing), and is the time required to complete the action. The terms at, c and are all
computed using the information available at time t. t would be the actionable time, which
can be stored as an attribute, but sometimes it is helpful to have explicit notation for it.
The modify function is a simple, rule-based function which can handle virtually any level of
complexity.

For mathematical modeling purposes, it is useful to define several terms that are based on the
modified function. The first is the terminal attribute function:

 (, ,) The attribute vector ' produced as a result of a decision acting
 on a resource with attribute with information .

Ma a W d a d
a W

The second is an indicator function for the terminal attribute function:

 '
1 If (, ,) '

(, ,)
0 Otherwise

M

a
a a W d a

a W d

The function ' (, ,)a t a d is useful for writing the equations that govern the evolution of the
resource vector over time:

 ' ' 1(, ,)ta a t t t tad
a d

R a W d x
A D

where flow conservation requires that

 1, ,
()

ˆ
tad t a t a

d a
x R R

D
x

DRDC Valcartier TR 2010-51710

2.5 The objective function
In general, we can say that we have a cost function that captures all the costs associated with a
vector of decisions. In practice, we typically find ourselves using a mixture of “hard dollar” costs
(e.g. the cost of flying an aircraft to a particular location) and “soft dollar” costs (such as penalty
for serving a demand late, or a bonus for using a particular type of aircraft to move passengers)
which we add to the objective function to get the model to behave in a certain way. We represent
the hard dollar cost function using

1

1

(, ,) Total costs from entering time interval 1 with resource vector
, combined with the new information and decision .

t t t

t t t

C R W x t
R W x

When we want to capture the presence of hard and soft dollar costs, we use

1(, ,) Total hard and soft dollar costs incurred during time interval .t t tC R W x t

We index the soft-dollar cost function by the same index (represents also a particular policy)
since a set of soft dollar costs is typically associated with a particular policy. For example, we
may put a bonus on serving a high priority demand. This bonus helps us decide whether to serve
a lower priority demand that is closer (and therefore lower cost) or a higher priority demand that
requires traveling longer distances. How this trade off is made constitutes a policy.

Our optimization problem is not one of choosing the best set of decisions, but rather choosing the
best set of decision functions, or policies. Because of uncertainty, we cannot say with certainty
what the state of the system will be in the future, so our problem is not to determine what we will
do in the future, but rather how we will choose to make a decision. This problem is posed
mathematically by writing

1
1

min , , (,)
T

t t t t t
t

E C R W X R W

We illustrate in the next chapter a variety of decision functions.

DRDC Valcartier TR 2010-517 11

3 The optimizing simulator

We now have the infrastructure we need to describe a variety of types of simulations that we can
run with an optimizing simulator. These simulations will help to understand the relationship
between classical simulation, classical optimization, and the optimizing-simulator framework
(See [28]).

Our experiments progress in a series of steps which illustrate different decision technologies
(rule-based and cost-based) and different levels of information available to make a decision.
These technologies consist of the following (See [28]):

Rule-based decision making – Here we consider rules that tell us “when in this state, take
this action.”

A myopic cost-based policy – This is the first step toward using a decision function that
requires a linear programming solver. It is restricted to optimizing over only what is
known at a given point in time.

Decisions using forecasts – This combines what we know right now with a forecast of
future demands.

Decisions with value functions – Here is where we first start using approximate dynamic
programming. We capture the impact of decisions now on the future by using value
function approximations.

Decisions with patterns – Now we come full circle, combining cost-based logic with rule-
based logic.

Each decision function requires its own information set. We illustrate the ideas through a series
of examples that arise in the military airlift problem.

3.1 Rule-based decision making
Most classical simulation models use simple rules to make a decision: when in this state, take this
action. In manufacturing simulations, a job might leave one machine, after which there might be
a choice of several downstream machines where we might assign the job to the machine with the
shortest queue.

In the airlift problem (as with many problems in transportation), it is typically necessary to juggle
multiple aircraft at the same time. For example, Figure 2 shows four aircraft and four different
demands that have to be served. It is impossible to design a rule that will handle all possible
combinations of assigning different aircraft to different demands. Instead, we can simplify the
problem by handling, say, one demand at a time. The “AMOS” simulator used by the Airlift
Mobility Command at Scott Air Force Base uses logic that takes the demand that has to be moved
first, then looks at the first available aircraft, and then determines whether it is feasible to assign
the aircraft to serve the demand. If it is possible, then this is what happens. Another aircraft
might be closer or better suited to the requirement. No attempt is made to find the “best” aircraft.

DRDC Valcartier TR 2010-51712

Figure 2: Multiple aircraft may be considered for multiple demands. Rule-based logic picks one
possible assignment and determines feasibility (the solid line show that the Aircraft is assigned to

the requirement)

If we apply our rule-based logic, we will produce (at a particular time t) one or more assignments
of aircraft to demands. We represent these decisions using:

If our rule specifies to use decision for an aircraft
1

with attribute
0 Otherwise

tad

d
x a

Let tI be the information that we had available to us when we made this decision at time t (in this
case, the information is the set of available aircraft and demands), and let

() A function returning a feasible vector .t t tX I x

Here, represents a particular policy (in this case, the rules we described above), and we might
let RB to represent this rule-based policy.

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

DRDC Valcartier TR 2010-517 13

3.2 A myopic cost-based policy
The next step is to introduce the use of a cost function. Figure 3 illustrates the different types of
costs and bonuses that might be used to evaluate a decision to assign an aircraft to a demand.
These will typically be a mixture of hard-dollar and soft-dollar costs. In practice, the transition
from a rule-based to a cost-based system requires developing a cost model, which can be quite
difficult in practice.

California

Germany

-8000Total “cost”

-1000Special maintenance at airbase

-3000Requires modifications

+8000Utilization

+5000Appropriate a/c type

-$17,000Repositioning cost

“cost”/“bonus”Issue

-8000Total “cost”

-1000Special maintenance at airbase

-3000Requires modifications

+8000Utilization

+5000Appropriate a/c type

-$17,000Repositioning cost

“cost”/“bonus”Issue

California

Germany

California

Germany

-8000Total “cost”

-1000Special maintenance at airbase

-3000Requires modifications

+8000Utilization

+5000Appropriate a/c type

-$17,000Repositioning cost

“cost”/“bonus”Issue

-8000Total “cost”

-1000Special maintenance at airbase

-3000Requires modifications

+8000Utilization

+5000Appropriate a/c type

-$17,000Repositioning cost

“cost”/“bonus”Issue

Figure 3: Illustration of different elements of a cost of assigning an aircraft to a demand

If we can develop a cost function, we can perform a very simple optimization by considering a
single demand and a list of aircraft that might be used to serve the demand. By ranking the
aircraft based on cost, we can choose the best aircraft. The problem is illustrated in Figure 4.

DRDC Valcartier TR 2010-51714

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

Figure 4: Choosing the best of a set of aircraft to serve a demand

Once we have made the transition to using a cost model to choose the best aircraft for a demand,
we can consider multiple aircraft and demands (as illustrated in Figure 5) where we have to use a
linear programming package to determine the optimal solution. These problems are typically
quite small and can be solved very quickly. Most of the computer time arises in generating the
network and computing the costs. For airlift problems, simply determining the cost of an option
can be expensive.

Figure 5: An assignment problem considering multiple aircraft and demands

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

California

Germany

New Jersey

Colorado

Taiwan

England

New Jersey

Aircraft Requirements

.

DRDC Valcartier TR 2010-517 15

Now that we have built up to a linear program, we need to return to the issue of ‘‘ knowability’’
versus ‘‘actionability’’. In our myopic problem, we assume that we are only considering the
assignment of aircraft whose attributes are known to demands that are known. However, we have
not discussed whether they are actionable now or later. We may know about an aircraft now, but
it may be in the process of flying from one location to the next (or in the midst of a repair) and
will not be actionable. Similarly, a customer demand may be known, but cannot be served until
some point in the future.

Let:
Information used to make a decision at time .tI t

We can choose what action is used to make a decision. For example, we may choose to consider
all aircraft and demands that are known now, and are actionable within a planning horizon phT .
In this case, our information set would be written:

' ' '
,

phTA D
t tt tt t t

I R R

This means we are considering all aircraft and demands that are known now and actionable within
the planning horizon.

3.3 Decisions with forecasts
The next step is to combine not only what we know, but a forecast of what we do not know. Let

'

'

Forecast of demands to be served at time ' based on what we know at
time .
Forecast of aircraft that are expected to be available at time ' based on
what we know at time

D
tt

A
tt

F t
t

F t
.t

We assume that these are “point forecasts”. For example, we might forecast that three aircraft
will become available. The information set for making decisions now looks like

' ' ' ' '
, , ,

phTA D A D
t tt tt tt tt t t

I R R F F

3.4 Decisions with value functions
We now introduce the idea of acting on an aircraft because we believe the action will add value
(increase the benefit from revenue perspective), although we do not know exactly what it will do.
This behaviour is achieved by estimating the value of an aircraft in the future (See [29][30] for
the approximation of the value function).

This strategy is based on solving the problem as a dynamic program. Stated in general terms, if
tR is our (resource) state of the system, and if ()t tV R is the value of being in state tR , then we

can use Bellman’s optimality equation to write:

DRDC Valcartier TR 2010-51716

1 1()
() min (,) ((,)) |

t t t
t t t t t t t t tx X R

V R C R x E V R R x R

This is the classical statement of Bellman’s optimality equation. Developed in the 1950’s, it was
quickly found to be a powerful theoretical device, but computationally impossible for most
practical problems. The problem is the “curse of dimensionality” which means that as the
dimensionality of the state variable tR increases, the state space increases exponentially.

Computational results are typically limited to problems with fewer than a dozen dimensions. For
airlift problems, the dimensionality can easily be in the thousands (or even millions). We have
overcome this problem.

The equation above is formulated using what is known as a pre-decision state variable. This is
the state of the system after new information becomes known, but before we make a decision.
Our first step (which we already took in Chapter 2) was to formulate the state variable using the
post-decision state variable, which is the state immediately after we make a decision. Formulated
this way, the optimality equations look like

1 1 1 1()
() min (,) ((,)) |

t t t
t t t t t t t t tx X R

V R E C R x V R R x R

We then drop the expectation and solve the problem for a sample realization of the information
that arrives during time interval t (before we make a decision)

1 1 1 1()
(, ()) min (, (),) ((, (),))

t t t
t t t t t t t t t t tx X R

V R W C R W x V R R W x

Finally, we have to replace the value function with a suitably chosen functional approximation:

1
1 1 1 1()
(, ()) min (, (),) ((, (),))

t t t

n n n n n n n n
t t t t t t t t t t tx X R

V R W C R W x V R R W xn n(V 1(,,1
n (t 1 ,1

We have represented the equation assuming that we are at iteration n. Given an approximation
1()n

tR at time t computed in the previous iteration, we can make a decision (call it n
tx), which

then determines the next state we will visit:

1(, (),)n M n n n
t t t tR R R W x

The idea is that we simulate forward in time, visiting only the state that the approximation tells us
to visit based on the decisions we make. The algorithm is sketched below.

DRDC Valcartier TR 2010-517 17

Table 1: The approximate dynamic programming algorithm

Step 0: Initialize 0ˆ ()t tV S , and pick an initial state 0S .
Set the iteration counter 0n .
Set the maximum number of iterations N

Step 1: Set 0 0
nR R , and select n

Step 2: (Forward pass)
Do for t = 1, 2,....,T-1:
Step 2.1 Let ()n n

t tW .
Step 2.2: Solve:

1
1 1 1 1()
(, ()) min (, (),) ((, (),))

t t t

n n n n n n n n
t t t t t t t t t t tx X R

V R W C R W x V R R W xn n(V 1(,,1
n (t 1 ,1 Let

n
tx be the optimal solution.

Step 2.3: Update the state of our system using:

1(, ,)n M n n n
t t t tR R R x

Step 3: If n N , set 1n n and return to Step 1.

It is this logic that makes the system truly an “optimizing simulator.” We literally simulate the
system forward in time (as we would with any simulation), but we do it iteratively, updating the
value function at each iteration based on the information we have obtained. If we design our
value function approximation properly, and if we are careful about how we update the value
function (these steps are critical), we obtain optimizing behaviour in the sense that our solution
will tend to get better over the iterations.

3.5 Decisions with patterns
A cost-model offers us the ability to handle problems with thousands of dimensions. However,
the limitation is that we depend on the accuracy of the cost function to achieve desirable
behaviours. If we do not like how the model is behaving, we have to change the costs and hope
that this achieves the desired effect. Interestingly, simple rule-based systems are relatively easy
to control (but they struggle with the challenge of working with high dimensional problems).

Our solution is to combine these two technologies. We are going to use the observation that
when knowledgeable users object to the behaviour of the model, the objections can typically be
represented as low-dimensional patterns. For example, “C-141’s should be used to serve
demands going to England” or “loaded C-17s should not be sent to airbases in Egypt.” These are
rules (when in this state, take this action) but they are expressed at a fairly aggregate level. They
are also not expressed as hard constraints. Often, users like to encourage or discourage specific
behaviours. As a result, these rules are not specific enough to replace a cost model, but they can
be used to help guide a model.

We have found a way to merge the strengths of both techniques. We start with an engineering
cost function of the sort expected by an optimization model. This would normally be written:

() arg mint t t tx
X I c x

X

DRDC Valcartier TR 2010-51718

Assume that an element of the decision vector tx is given by tadx which is the number of
resources with attribute a that we act on using a decision of type d at time t. In real problems,
the attribute vector a can be relatively complex (think of all the characteristics of an aircraft with
a pilot moving a requirement to a destination). A pattern is the likelihood of a particular decision
being used on a particular resource (note that we do not even consider the relationship between a
decision and the state of the entire system; we restrict our patterns to relationships between
decisions and the attributes of a single resource). However, it is very common for a pattern to be
expressed at some level of aggregation of the attribute of the resource being acted on, as well as
the decision itself. For example

1. Pattern: Aircraft CAN0123, a C-17 at airbase T2034 should move to airbase T2001 to
pick up demand DEM051204 to move to airbase EGAV in England.

a. Attribute: aircraft CAN0123 (which specifies all the characteristics of the
aircraft).

b. Decision: pick up DEM051204 to move to airbase EGAV in England.

2. Pattern: Demands out of T2001 should be served by CC130’s’s if they are going to
England.

a. Attribute: CC130s

b. Decision: Moving orders out of T2001 going to England.
Let â be an attribute at some level of aggregation (CC130s in T2034, CC130s) and let d̂ be a
decision at some level of aggregation (moving a demand to EGAV, moving a demand to
England). Let also xad be an aggregated value calculated using the vector xtad. In the simplest case
xad = ∑t xtad.

ˆˆ ,
ˆThe fraction of time that a resource with attribute should be acted

ˆon by a decision .

e
a d

a

d
The patterns ˆˆ ,

e
a d

(target) are specified exogenously, either from historical activities or (more
typically for a military setting) by a knowledgeable expert. We compare these to the patterns (at
the same level of aggregation) that we derive from our model, which we compute using

We incorporate patterns to our objective function by adding a penalty term for deviations from
the pattern.

Where is the frequency of using the decision across the simulation horizon and
represent the number of decision with particular attributes (aggregation of values).

DRDC Valcartier TR 2010-517 19

2

ˆ ˆˆ ˆ
ˆˆ ,

() arg min () e
t t t t ad adx

a d

X I c x x
X

These patterns can be quite simple. Since we use a cost function, it is not necessary that they
fully specify the behaviour of the system. As a result, we can use patterns (defined on aggregated
attribute vectors and decisions) that only have a few columns. We have found that in practice
(this work has been used at a major trucking company and at two railroads) the patterns can be
fairly simple. Furthermore, they may either be estimated from historical activities (as we have
done at the trucking company) or through manually specified files. There can also be different
types of patterns. For example, one pattern may specify the types of aircraft that we want to use
for certain types of demands (e.g. those that involve oversized freight or passengers), while
another might specify the size of aircraft (which may be an aggregation of types) that we prefer to
land at certain airbases.

3.6 Optimization versus the optimizing simulator
There are several dimensions on which we can compare a classical optimization model to an
optimizing simulator. These include:

 Solution quality – How do they compare in terms of providing the “best” solution?

 Realism – How well do they capture the real system? Can the model be calibrated to
match actual performance statistics?

 Sensitivity to key policy variables – For planning purposes, does the system respond to
the types of policy variables which are under study?

 Ease of use – How much preparation work is needed to produce a useful result?

 Speed – How much time does it take for the system to run?

It is important to emphasize that an optimizing simulator uses optimization. The major difference
is that when looking at problems over time, a deterministic optimization model requires that we
assume that all information is known in advance, whereas the optimizing simulator explicitly
models the flow of information. Even more than this, the central feature of the optimizing
simulator is that it models the organization and flow of information and decisions.

We begin our discussion by focusing on solution quality. Approximate dynamic programming
has been tested on a range of deterministic and stochastic multicommodity flow problems. These
are simpler than the problems faced in the military airlift arena, but we can solve them optimally
(although not necessarily obtaining integer solutions) using a commercial solver. For the
deterministic problems, we were able to find optimal solutions if we ignored the integrality
requirement (the approximate dynamic programming solutions are always integer). The objective
function produced by the approximate dynamic programming algorithm expressed in terms (as a
percent) of the optimal deterministic solution (ignoring integrality) is shown in Figure 6. Most of
the solutions are within one or two percent of the optimal. What is not known is the gap
associated to the integrality constraint relaxation.

DRDC Valcartier TR 2010-51720

Experiments on datasets with stochastic demands were then conducted. Here, we compare with a
rolling horizon procedure based upon future event point forecasts. All the results are reported as
a percentage of the optimal solution after all demands are known (this is referred to as the
posterior bound). The approximate dynamic programming procedure outperforms the rolling
horizon procedure, except for one case (See Figure 7).

A point by point comparison of classical optimization and the optimizing-simulator is given in the
Table that follows.

Approximate DP on deterministic problems

70

75

80

85

90

95

100

MC: B
as

e

MC: T
_30

MC: T
_90

MC: L
_1

0

MC: L
_4

0

MC: C
_II

MC: C
_II

I

MC: C
_IV

MC: R
_1

00

MC: R
_4

00

MC: C
_1

.6

MC: C
_8

Dataset

Pe
rc

en
t o

f o
pt

im
al

 s
ol

ut
io

n

Figure 6: Total costs as a percent of the optimal for deterministic multicommodity flow problems

.

DRDC Valcartier TR 2010-517 21

Approximate DP vs rolling horizon on stochastic problems

60

65

70

75

80

85

90

95

100

MC:
Base

MC:
L_10

MC:
L_40

MC:
C_II

MC:
C_III

MC:
C_IV

MC:
R_100

MC:
R_400

MC:
C_1.6

MC:
C_8

Dataset

Pe
rc

en
t o

f p
os

te
rio

r o
pt

im
al

Approximate DP
Rolling horizon

Figure 7: Total costs from approximate dynamic programming and rolling horizon procedures as
a percent of the posterior optimal solution

Table 2: Comparison of classical optimization and the optimizing-simulator

Comparison of optimization versus the optimizing-simulator
Issue Optimization Optimizing-simulator

So
lu

tio
n

qu
al

ity

For a well-defined objective function, if
there is no uncertainty and we accept how
the optimization model represents the
problem, a pure optimization model is
almost always going to provide a lower
cost solution. Exceptions arise when the
solution has been restricted to produce
faster run times.

When using approximate dynamic
programming, an optimizing
simulator has been shown to produce
solutions within one percent of the
optimal for single and
multicommodity flow problems. This
degrades somewhat when there is a
strong sequencing component to the
problem.

So
lu

tio
n

qu
al

ity

un
de

r u
nc

er
ta

in
ty

Deterministic optimization requires using
a point forecast of future events. These
can be “resampled” as we move forward
in time (a rolling horizon simulation).
Solution quality is generally good but
clearly suboptimal.

Approximate dynamic programming
can produce provably optimal results
in special cases, and very near optimal
solutions in others. Optimal solutions
do not exist for more realistic
problems under uncertainty, but ADP
consistently outperforms deterministic
optimization using a point forecast.

DRDC Valcartier TR 2010-51722

R
ea

lis
m

: r
ep

re
se

nt
in

g
re

so
ur

ce
s:

Column generation models can represent
resources using multiattribute vectors
which provides for a high level of realism,
but there is a limit to this (it is not the
case for all models or problems). To
produce rapid solutions, multicommodity
flow codes almost always have to
dramatically simplify the representation
of resources.

DRTP model allows resources to be
represented at an arbitrarily high level
of detail. Optimizing simulator can
represent resources in the future at a
lower level of detail, something that
optimization models cannot do. This
allows us to use more detail to
represent a resource.

R
ea

lis
m

: m
od

el
in

g
un

ce
rta

in
ty

Deterministic optimization models cannot
model the flow of new information that
arrives during the planning. They can be
solved on a rolling basis – this is identical
to an optimizing simulator using a
forecast.

Optimizing-simulator can easily
handle a broad range of dynamic
information processes. With
approximate dynamic programming,
solution quality matches or
outperforms solutions produced by
provably optimal stochastic
programming

M
od

el

ca
lib

ra
tio

n Deterministic optimization models must
be calibrated by manipulating costs and
constraints.

Optimizing simulator can also be
calibrated using costs and constraints,
but can also be calibrated using low-
dimensional patterms.

Se
ns

iti
vi

ty
 to

 p
ol

ic
y

pa
ra

m
et

er
s Optimization models have the feature that

it tends to respond very smoothly to
changes in inputs (more aircraft, more
demands, and changes in capacity). But it
can only capture changes to features that
it is able to model. These are restricted to
the technology used by optimization to
represent the problem.

An optimizing simulator tends to
bounce from one iteration to the next,
much as any simulation model would.
Small changes in inputs may have to
be analyzed statistically. The
exception is that it obtains gradient
information just like the dual
variables we can obtain from an
optimization model. The analysis
group at the airlift mobility command
prefers simulation over optimization
because it can model almost anything.

DRDC Valcartier TR 2010-517 23

Ea
se

 o
f u

se

If an analysis problem can be captured by
an optimization model, using optimization
can be quite easy because the algorithms
are relatively mature and stable.
Calibration can be difficult, but the
inherent intelligence of optimization tends
to produce realistic solutions with
relatively little tuning.

Cost-based optimization models
usually produce good solutions very
quickly (true of both technologies).
Optimizing simulator offers greater
flexibility for handling new issues,
but this generally requires custom
programming. Optimizing simulator
offers the use of patterns to improve
solution quality without changing
code, but the type of pattern has to be
coded into the model. The inherent
noise in an optimization simulator can
require the use of statistical
techniques for analysis (as with any
simulation package).

Sp
ee

d

With sufficient engineering, optimization
models can be reasonably fast, but they
struggle with long planning horizons as
well as flexibility in when a demand is
served. Adding dimensions such as pilots
can greatly complicate an optimization
model, but ultimately the speed depends
largely on the level of engineering put
into the project.

An optimizing simulator can be run
from a cold or warm start. From a
cold start, it can require as much or
more time than an optimization model
for initial training of the value
functions. Once these are trained,
many analyses can be done with a
single pass, which can be much faster
than an optimization model.

DRDC Valcartier TR 2010-51724

4 Measuring the value of increasing information

A series of experiments were run using an unclassified dataset from the US Airlift Mobility
Command. These experiments were designed to test the value of increasing the amount of
information available to make a decision. The first set of experiments compared rule-based logic
(emulating the logic currently used in the AMOS simulator currently used by the analysis group
at Scott Air Force Base in US) to various forms of cost-based logic, but excluding the logic that
included patterns. The following five classes of information sets (and decision functions) were
used:

1. Rule-based logic – The system would take the first demand that had to be filled, and try
to match it with the first aircraft available to move the demand. If the assignment was
feasible, the assignment would be made.

2. Cost-based logic, single demand – We would take the first demand that needed to be
served, develop a list of possible aircraft sorted on the basis of cost, and choose the one
with the least cost.

3. Cost-based logic, multiple aircraft and demands, but restricting to those which were both
known now and actionable now. A linear programming package was used to solve the
assignment problem, but ignoring the possibility of assigning an aircraft now to a demand
that is known but cannot be served until the future.

4. Cost-based logic, with aircraft and demands that are actionable within a planning horizon.
An aircraft that is actionable in the future might be assigned to a demand that is
actionable in the future, as long as these occurred within a specified horizon.

5. Decisions using value functions. Here, we use value function approximations to estimate
the value of an aircraft in the future.

The effect of simulation can be measured in three different ways: the costs generated, throughput
(how fast the freight moves), and how well the system matches desired patterns. These are
summarized below.

4.1 The effect of information on costs
The different policies (with different amounts of information) were first compared on the basis of
the total cost function. This included transportation costs, penalties for late deliveries, and repair
costs. We modeled the possibility that certain aircraft might have higher repair costs at certain
airbases. But these costs are only incurred if the aircraft actually fails at the airbase.

The results of this study are shown in Figure 8, demonstrating that increasing the information can
reduce the costs of the policy. Note that the repair cost component virtually disappears when we
use value functions that capture the cost of putting certain types of aircraft into certain types of
airbases.

DRDC Valcartier TR 2010-517 25

Figure 8: Costs produced by simulations for each of the five information sets and decision rules

4.2 The effect of information on throughput
We next compared the results based on total throughput. This is the measure that is of greater
interest to the military. Figure 9 shows the total pounds delivered as a function of time for each
of the decision rules. The left-most curve is the cumulative pounds as they enter the system. This
would be the throughput curve if every pound were immediately delivered (infinite capacity
aircraft flying at infinite speed). The area between this curve and an actual throughput curve is a
measure of the delay incurred as a result of system capacity. While there is no guarantee that the
throughput would get better, we did find, as shown in Figure 10, that the throughput did indeed
get faster as we increased the information content of a decision.

It is important to emphasize that we are not seeking optimal solutions. Rather, we are simulating
decision functions with increasing degrees of intelligence. Not surprisingly, there are decreasing
returns as we add intelligence, and it is entirely possible that we may decide that some policies
are unrealistically good.

DRDC Valcartier TR 2010-51726

Figure 9: Cumulative throughput produced by each decision function and information set

Areas between the cumulative expected thruput curve
and different policy thruput curves

0

50

100

150

200

250

300

350

400

M
illi

on
s

Policy

Po
un

d
* d

ay
s

1 2 3 4 5
Policy

To
ta

l d
el

ive
ry

 de
la

y

Areas between the cumulative expected throughput curve
and different policy throughput curves

0

50

100

150

200

250

300

350

400

M
illi

on
s

Policy

Po
un

d
* d

ay
s

1 2 3 4 5
Policy

To
ta

l d
el

ive
ry

de
la

y

Figure 10: Total throughput curves for each of the information sets and decision functions

T h r o u g h p u t c u r v e s o f p o l i c i e s

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0

M
il

li
o

T i m e p e r i o d s

P
o

u
n

C u m u la t i ve e x p e c t e d t h r u p u t
(R B : R - A)
(M P : R - A L / K N A N)
(M P : R L - A L / K N A N)
(M P : R L - A L / K N A F)
(A D P)

Rule-based policy

Myopic cost-based policy

Knowable now, actionable future

Throughput if everything moves instantly

C
um

ul
at

iv
e

th
ro

ug
hp

ut
 (p

ou
nd

s)

T h r o u g h p u t c u r v e s o f p o l i c i e s

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

0 3 0 6 0 9 0 1 2 0 1 5 0 1 8 0 2 1 0

M
il

li
o

T i m e p e r i o d s

P
o

u
n

C u m u la t i ve e x p e c t e d t h r u p u t
(R B : R - A)
(M P : R - A L / K N A N)
(M P : R L - A L / K N A N)
(M P : R L - A L / K N A F)
(A D P)

Rule-based policyRule-based policy

Myopic cost-based policy

Knowable now, actionable future

Throughput if everything moves instantly

C
um

ul
at

iv
e

th
ro

ug
hp

ut
 (p

ou
nd

s)

DRDC Valcartier TR 2010-517 27

4.3 Matching patterns
It is often the case that someone knowledgeable in operations will say that a model should do
more or less of an activity to be more realistic. We tested the ability of the model to match a
pattern which specified the percent of flow through a particular airbase which should be C-141’s.
If the pattern is ignored (0), then 18 percent of the flow through the terminal consists of C-
141’s. Now assume that we wish the percentage to be some fraction , which we may vary
between 0 and 1. We ran the model with increasing values of . The results are shown in Figure
11. With 0 , the fraction is 18 percent for all values of . As is increased, the model
more closely matches .

Figure 11: Percent of flow through airbase EGA that was C-141's versus the desired percentage
for different values of theta

Pattern flow v.s. expert knowledge

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
Expert knowledge

Pa
tte

rn
 fl

ow

Exact match

In
cr

ea
si

ng

Percent of flow through EGA that should be C-141’s

Pe
rc

en
t o

f f
lo

w
 th

ro
ug

h
EG

A
 th

at
 a

re
 C

-1
41

’s

Pattern flow v.s. expert knowledge

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6
Expert knowledge

Pa
tte

rn
 fl

ow

Exact match

In
cr

ea
si

ng

Percent of flow through EGA that should be C-141’s

Pe
rc

en
t o

f f
lo

w
 th

ro
ug

h
EG

A
 th

at
 a

re
 C

-1
41

’s

DRDC Valcartier TR 2010-51728

5 A model of the CF airlift problem

In this chapter, we provide a more complete model of exactly how we modeled the CF airlift
problem. Our model is restricted by the available data, and throughout the presentation we
indicate how the model could be generalized using the DRTP modeling framework and the
optimizing-simulator algorithmic framework.

5.1 Resources
For this initial demonstration project, we modeled only two resource layers:

A: Aircraft
D: Demands, representing loads of freight to be moved.

Aircraft were modeled using:

1

2

3

4

5

Aircraft type
Location

Time of availability
Loaded/empty

Equipment status

a
a

a
a
a

We included aircraft type (1a) although in the dataset, all the aircraft were identical. The
“location” field is not necessarily the actual physical location of the aircraft (which we can easily
include). Here, it means the next decision point, where “time of availability” is when we are
expected to be at this decision point. An aircraft could be at field AAA at time t = 100 (minutes),
but if the decision is to send it to BBB, with an expected arrival time of t = 192, then we would
show the location as BBB, with time of availability of 192. The equipment status field captures
whether the aircraft needs repair or not.

In addition to aircraft type, it would be normal to also include an attribute for configuration. The
deterministic optimization did not seem to allow for enroute changes in configuration. We would
have no difficulty adding this as a feature.

The time of availability is what we refer to as the actionable time. A plane that is enroute to a
destination will generally not be actionable until it arrives. However, we can model enroute
changes in plans by letting every time period be an actionable time. In this case, “location” is not
the ultimate destination (this would have to be captured with a new attribute) but instead is the
expected location at the time when the next decision can be made. We could also add attributes
such as maintenance status, with random changes in this status at the end of each flight.

To streamline the notation, we represent demands using the attribute vector b:

DRDC Valcartier TR 2010-517 29

1

2

3

4

5

6

7

8

9

10

11

12

Origin
Destination

Required a/c type
Brief time
Load time

Unload time
Debrief time

Depature time window
Arrival time window

Priority
Knowable

b
b
b
b
b
b

b
b
b
b
b
b
b

time
Type

The knowable time (11b) represents the time at which the demand becomes known. Strategic
demands are all known in advance and generic demands become known during the simulation.
Since data was not available for this element, we ran simulations with different assumptions of
when generic demands became known. In a full-scale system, the type of demand might include
whether it is a strategic (intertheatre), tactical (intra-theatre), refueling and search-and-rescue.

We note that the concept of departure and arrival time windows is a data representation that is
very common in deterministic optimization models. In a stochastic dynamic world, it is more
natural to have the beginning of a departure time window (the earliest time the cargo will be
available to be moved). Different forms of uncertainty make the end of a time window soft. For
example, we may assign an aircraft to move a cargo with the full expectation that it can arrive and
depart within the window, but an equipment failure may violate this. As a result, it is more
common to think of the beginning of the window as a hard constraint (the demand physically is
not ready to be moved), whereas there is a penalty for moving it after the end (but we allow for
weather delays and equipment failures). Similarly, arrival time windows tend to be goals rather
than constraints. Normally, once an aircraft takes off, it moves as quickly as possible to the
destination. Again, the beginning of the arrival time window may be a hard constraint (the
destination does not have the physical resources to handle the aircraft before this time), but the
end of the time window is a goal rather than a constraint. Time windows serve as useful pruning
rules for deterministic models (in fact, column generation methods become quickly impractical in
the presence of wide time windows). For consistency, we treated the time windows as hard
constraints. If we arrive before the beginning of a window, we wait. If we cannot arrive before
the end, we assume the demand cannot be served.

5.2 Decisions
We assumed that aircraft were an actionable resource (decisions could act on aircraft to change
its attributes), whereas demands were passive (an aircraft can pick up a demand, but we cannot
act on a demand by itself other than to “do nothing”).

DRDC Valcartier TR 2010-51730

If we wish to allow the leasing of aircraft from outside the fleet for specific moves, then we could
move a load without using one of the aircraft in our fleet.

We model decisions using:
Set of decisions to move an aircraft to a specific location. The set is the set of

 locations we can move to.
Set of decisions to ``serve a demand'' of a particular type. The set is the s

L L

D D

D D

D D et of
 all demand types.
"Do nothing" decision.

L D

d
dD= D D

The set LD captures our ability to move to a location in anticipation of a demand that we do not
yet know about. The set DD may require moving to another location, but the decision is to cove
a specific known demand. DD could be the set of demands we know about at time t (in this case,
we would write it D

ttD) but we have found it more convenient from a notational perspective to let
DD be demand types, where a type is characterized by a vector of attributes. For our discussion,

it is possible to think of DD as being a specific demand (the attribute vector is so specific that it
is virtually impossible to have two separate demands with the exact same attributes).

We have modeled an element Dd D as being either a single demand, or a set of two or three
demands which the dataset has already linked as potentially being served together. The same
demand can be covered by more than one decision (we can decide to serve a demand by itself, or
as part of one pair of demands or a separate group of three demands). We introduce a linking
constraint to restrain the model so that it cannot cover the same demand twice.

Over the course of a simulation, a single aircraft can, of course, cover a number of demands in
sequence. In our initial implementation, the decisions to cove these demands are made one at a
time. That is, at a given time t, we will decide to assign an aircraft to at most one demand at a
time (with the exception of demands that are already grouped into an external dataset). It is also
possible to solve a more difficult problem where we plan the movement of an aircraft through a
sequence of demands that are all known at time t. This is exactly what is done in a column
generation (or multicommodity flow) model. Thus, a decision d can be a sequence of several
demands (a “column”), where we would use a set partitioning formulation to determine which of
the “columns” (d) we should choose. Such an approach would provide higher quality solutions
for a deterministic dataset. But in practice, it does not always make sense to plan a schedule for
several days in the future if new information (new demands, weather delays, equipment failures)
are going to disrupt this schedule. In addition, it makes the algorithm considerably slower.

It would be quite easy to model other types of demands. For example:

DM = Set of decisions to “modify” an aircraft

DRDC Valcartier TR 2010-517 31

The set MD could represent a decision to change the configuration, repair an aircraft or refuel an
aircraft.

5.3 System dynamics
System dynamics describes how the state of our system evolves over time. We model physical
events in continuous time (for example, departures and arrivals can occur at any time), but we
model decisions in discrete time (we used six hour time steps for our experiments here). For this
reason, we have to model the evolution of what we know about the system in discrete time.
The state of our system is given by
 ,A D

t t tR R R
Where

A A

t ta a

D D
t tb b

R R

R R
A

B

In our software, we model an aircraft as an attribute vector a that changes over time. In our
mathematical model, we prefer to use the notation A

tR , which makes the description of the
algorithm easier.

The attribute vector a of an aircraft changes because of decisions and exogenous information. We
let A

ad aD represent a decision acting on a single aircraft (with attribute a), and we let tx be the

vector of decisions acting on all the aircraft represented by A
tR . It is easiest to focus on the effect

of a decision d acting on a single aircraft. Earlier, we modeled this effect using the modify
function, which we wrote as follows:

1 1(, ,) (, ,)t t t tM a d W a c
Here, the attribute ta takes the form of a pre-decision attribute vector, which is to say the

attribute vector just before we make a decision. We may let x
ta be the attribute vector

immediately after we make a decision, but before any new information has arrived. Finally, 1ta
is the attribute vector after the information 1tW (weather delays, equipment failures) is included.
Below we illustrate an initial attribute vector, the attribute after a decision is made (with a new
location and estimated time of arrival, which is added to the current actionable time of the
aircraft) and finally the attribute after the plane arrives (which was delayed enroute, which
includes updates to the original actionable time).

 Initial attribute Attribute after decision After new information
 t=2005:07:20:06:00 t=2005:07:20:06:00 t=2005:07:20:12:00

1

2

3

4

CC130
AAA

2005 : 07 : 20 : 09 :30
Empty

a
a

a
a
a

CC130
BBB

2005:07:20:11:47
Loaded

CC130
BBB

2005:07:20:12:22
Empty

DRDC Valcartier TR 2010-51732

A number of calculations take place in the modify function. For example, consider the decision
to assign an aircraft in one location to a demand in another. To determine feasibility, the modify
function would have to perform the series of calculations indicated in Figure 12. Before loading,
the aircraft (and crew) have to pass through a brief time followed by the aircraft loading time.
This may take place before the start of the departure time window, so that the actual departure
time occurs within the time window.

The movement from one airbase to another may have to progress through one or more
intermediate airbases for refuelling. We assumed an aircraft could be refuelled at any of the
locations we were given, and found the shortest path through these points. In practice, it is more
likely that there are only a small handful of eligible refuelling stations. The modify function
ensures that it is possible to arrive within the arrival time window (if we arrive early, the aircraft
will simply wait).

The modify function can handle a vast range of operational issues, at the level of one aircraft at a
time. The concept is identical to what is happening within a column generation routine, with the
exception that we do not plan the entire path of the aircraft over the entire simulation (this is the
logic used in column generation). It is exactly this property that makes our methods so much
faster than a column generation method.

[]

Departure
time window

Arrival
time window

[]
()Brief

time
Load
time

()Debrief
time

Unload
time

[]

Departure
time window

Arrival
time window

[]
()Brief

time
Load
time()Brief

time
Load
time

Brief
time

Load
time

()Debrief
time

Unload
time

]]]]]

Figure 12: Relationship of brief and load times to departure and arrival time windows

The most important source of exogenous information is new customer requests. We model these
using:

DRDC Valcartier TR 2010-517 33

 ˆ D
taR =Number of new demands that are first learned at time t with attribute a.

Within the attribute vector a is the departure time window that determines when the order can
first be moved. The evolution of our resource vector is given by

1, ' ' 1, '
ˆ(,)A A

t a a t t tad t a
a d

R a d x R
A D

The first term is the number of aircraft with attribute a’ immediately after we have made our
decisions, while the second term captures the effect of new information. Here:

 '

1 If decision acting on produces a resource with attribute '
(,)

0 Otherwise
t t

a t t

d a a
a d

is modeled deterministically. That is, a’ is the attribute vector before any new information
arrives.

5.3 Costs and rewards
For this initial demonstration, we used a fairly simple cost structure:
 “Hard” costs:

Transportation cost: $50 per hour of travel time.
Rewards for moving a demand: This was set to $2000 plus a coefficient times the
priority (priority = 1 is the lowest priority, 8 is the highest). We used a
coefficient of $10 (this is primarily a tie-breaking bonus).

“Soft” costs
At time t, it is more important to serve demands with shorter departure time
windows. Let t be the current time, and endt be the end of a time window. We
subtract $20 ()endt t from the value of a demand, making demands with a lot of
remaining time less valuable.
If two demands are served as part of one movement, this is preferred over serving
them individually. We add a $30 bonus for serving requests together.

We do not allow late pickups or deliveries, but it would be very natural to allow these with a
penalty.

5.4 The decision function
At any one point in time, we can assign aircraft to demands, or as movements to physical
locations (see Figure 12). A movement to a physical location has the effect of creating an aircraft
with a vector of attributes in the future. As we pointed out earlier, we can also consider decisions
that modify the attributes without moving the plane to another location (e.g. reconfiguring the
aircraft).

From each aircraft node (these nodes may have zero, one or more than one aircraft) we either
generate an assignment arc (to a demand) or an arc to a node from which we have a series of
parallel arcs which model a piecewise linear value function. These parallel arcs capture the
marginal value of an additional aircraft with a particular set of attributes. We note that when we
model the value of a particular type of aircraft (for use in the value functions) we typically do so

DRDC Valcartier TR 2010-51734

at a more aggregate level (that is, we use a simpler vector of attributes). For these experiments,
the attributes were already quite simple, so additional aggregation was not necessary.
The problem depicted in Figure 13 is a linear program (actually, an integer program).

Mathematically, the problem is given by
1

' '('
max ()

t t t
a

n n x
t tad tad ta ta tx X S a d a

x c x V R x
A D A

(1)

Subject to

a

n
tad ta

d
x R

D

x (2)

d

D D
tad tb

a
x R d

A
D (3)

' '(, ,) 0
a

x
a tad ta

a d
t a d x R

A D
(4)

0tadx (5)
1

' ()n x
ta ta tV R x is a piecewise linear function of the total flow into attribute node a’. Equation (2)

is our flow conservation constraint. Equation (3) applies only to decisions Dd D that represent
serving demands, where for each Dd D , there is a corresponding demand type db B (where
B is the set of all possible demand types). The constraint tells the model that we can only cover
an order once. The entire problem is being solved for a particular sample realization n

(representing the thn sample realization of all random variables).

Solving it returns a vector tx . If 1tadx , then we are acting on an aircraft with attribute a with
decision d. Often, these linear programs are networks, which means a linear programming solver
naturally returns an integer solution. When there are different aircraft types, or if there are
airbase capacity constraints, then resulting linear program is not a network, but has a near-
network structure so that the integer program is quite easy to solve.

It is important to understand how constraints are handled in this setting. When we solve a
decision problem, the only constraints are flow conservation, capacity constraints (two aircraft
cannot pick up the same cargo; a tanker cannot perform mid-air refuelling for two aircraft at the
same time; an airbase may have a limit on the number of aircraft that can be on the ground at the
same time), and nonnegativity. It is common for optimization models to handle other issues using
the language of “constraints” (time windows; travel times). We handle these issues in the modify
function. We do not think of the modify function as a “constraint.” In the simulation literature,
this is often called a transition function. We use “constraints” to ensure valid decisions at a point
in time, and we use a transition function (such as the modify function) to handle the dynamics of
the system over time.

Once we have an optimization decision vector tx , we now have to update the state of the system.
If 1tadx , then this means we are acting on an aircraft with attribute ta with decision type d to

DRDC Valcartier TR 2010-517 35

produce an aircraft with attribute '
ta (this is the post-decision attribute vector). We can then

simulate additional information (weather delays, equipment failures) to produce the attribute
vector 1ta .

Figure 13: Decision problem, assigning aircraft to demands or to locations

It is important to emphasize that the discrete time steps t, t+1, …, represent the times at which we
make decisions, and not when physical events happen. We ran our simulations using time steps
of 360 minutes. We might decide at t=360 to assign an aircraft which is available (actionable) at
t=420. If the movement requires 200 minutes, then the decision at t=360 to assign the aircraft
would produce a departure at 420 with a subsequent arrival to the destination at t=620. If we
wish to introduce random travel times (due to weather delays, we might then randomly sample a
weather delay of 32 minutes (for example), producing an arrival time of t=652.

5.5 Updating the value function
There are several strategies for updating the value function. Here we illustrate only the simplest
strategy.
When we solve the linear program, in addition to obtaining the optimal decision vector n

tx , and

we also obtain dual variables ˆn
tav for the resource conservation constraints (2). These dual

variables are an approximation of the marginal impact of the resource vector n
taR . We illustrate the

updating strategy when the value function is linear in the resource vector:

Aircraft Demands

Assignments to known
demands.

Repositioning movements
based on forecasts

Aircraft Demands

Assignments to known
demands.
Assignments to known
demands.

Repositioning movements
based on forecasts

DRDC Valcartier TR 2010-51736

1 1(()) ()n x n x
t t t ta ta t

a
V R x v R x

A
v

The marginal value of resources of type a, given by 1n
tav , is updated using

1 ˆ(1)n n n n n
ta ta tav v v

where n is a stepsize between 0 and 1 which has to have certain properties. For example, one
formula is of the form

1
n

n
In our work, we will use a linear value function approximation when the resource attribute vector
is moderately complex, since for these problems we typically have ()x

ta tx (the number of
aircraft with type a) on the order of 0, 1 and 2. For the experiments in this project, the attribute
vector is very simple, and larger resource values are possible. For this reason, we used a
piecewise linear value function approximation. There are a number of methods for updating this
function. We do not provide the details of how we update the value function approximation. For
more information on this, details are provided in the book [31].

When we are modeling simple assets, we will enumerate the attribute space, solving the
optimization model (1)-(5) (and in particular, the flow conservation constraint) for all a A ,
even when 0n

taR . For more complex problems, we cannot enumerate the attribute space.
When this happens, we solve the optimization problem for a subset of attributes that we denote (at
iteration n), nA which expands from one iteration to another. One problem we face is that we
may wish to consider acting on an aircraft with attribute a with decision d producing an attribute
a’, but we have not created a value function approximation 1

'
n

taV . Techniques for solving this
problem are described in [31].

DRDC Valcartier TR 2010-517 37

6 Results of experiments with Canadian military air
mobility datasets

A series of simulations were run using Canadian Air Mobility data. The geographical coverage is
shown in Figure 14, with a closeup of eastern Canada in Figure 15. Noting that loaded
movements are shown in blue while empty movements are in red, we see that almost every loaded
move is preceded by an empty move, some of which require an aircraft to move over long
distances.

Figure 14: Airlift flows (blue = loaded, red = empty)

DRDC Valcartier TR 2010-51738

Figure 15: Flows over eastern Canada

6.1 PILOTVIEW diagnostic tools
The PILOTVIEW1 diagnostic system allows us to see what the model is doing as well as to drill
in and examine decisions at a high level of detail. The “PILOTTOUR” module allows us to see
detailed aircraft and demands. We can see not only what assignments the model made, but also
which were considered (but not chosen), and which were not considered at all (when no link is
generated). Figure 16 shows a closeup of individual assignments of aircraft to demands at a point
in time.

Figure 16: Detailed depiction of aircraft and demands, and all possible assignments

1 PILOTVIEW is a diagnostic tool (developed at Princeton University) allowing people to understand what
a model is doing, and why.

DRDC Valcartier TR 2010-517 39

Figure 17 shows how PILOTTOUR allows us to follow the paths of vehicles over time. This
capability allows us to track the path of an aircraft over the entire simulation.

Figure 17: Following assignments over time

We also can click on an individual aircraft or demand and see detailed information about each
asset, as shown in Figure 18. This drill-down capability allows us to see not only the attributes of
the aircraft, but also other information that is derived within the optimizing-simulator (such as
dual variables value functions). For the demands, we have access to information such as the type
of aircraft (and configurations) that can cover a demand, the departure and arrival time windows,
and the priority.

Figure 18: Drill down capabilities for aircraft and demands

DRDC Valcartier TR 2010-51740

In addition, we can click on a specific link (representing a decision) and access additional
information about the decision (Figure 19). This drill-down allows us to see all the calculations
produced when we evaluated the cost (and feasibility) of covering a demand with a particular
aircraft. For example, if we have to stop at intermediate airbases for refuelling, we can list these
airbases.

Figure 19: Drill down capability for individual decisions

6.2 Experiments on a deterministic dataset
Our first set of experiments assumed that all demands are known in advance. We started our
experiments by testing the effect of using different planning horizons within an approximate
dynamic programming algorithm. For these runs, when we made a decision at time t, we
considered only aircraft and demands that were actionable within a specified planning horizon.

Figure 20 shows the percent of orders that were covered for planning horizons of 0, 12 and 24
hours, over the iterations of the approximate dynamic programming algorithm. The results show
that the approximate dynamic programming algorithm produces a significant improvement in
coverage if the planning horizon is set to zero, but achieving almost 99 percent coverage. When
the planning horizon is lengthened to 6 or 12 hours, we obtain virtually 100 percent coverage
even without the value functions.

DRDC Valcartier TR 2010-517 41

Coverage for deterministic data

86

88

90

92

94

96

98

100

102

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iteration

C
ov

er
ag

e
ra

te

Know n before 0 hours

Know n before 12 hours

Know n before 24 hours

Figure 20: Effect of planning horizon and approximate dynamic programming for a deterministic
dataset

A careful analysis of the data and these initial results showed us that the problem is extremely
simple. All the aircraft are identical. If all the orders can be covered, and there is no
differentiation between the aircraft, then looking into the future offers almost no value. The
travel times are quite short. Most movements can be made within 6 hours, and virtually all can be
made within 12 hours.

The most difficult problem we faced was the classical challenge of sequencing orders within their
time windows. Typically, in a stochastic, dynamic problem, we are trying to serve as many
orders as we can as quickly as possible. If we cannot serve all orders with available aircraft, we
determine which ones to solve using a combination of assignment costs, the value of the order
(determined by its priority) and the downstream value function. It is the value function (which
gives the value of the aircraft after the order is completed) that helps us with the sequencing (for
example, that we can serve a short demand now and still cover another demand later).
The execution times for the optimizing-simulator are not affected by the presence of wide time
windows (by contrast, wide time windows can produce a dramatic increase in the execution times
for column-generation methods). We can obtain very high quality solutions with tight time
windows, or very wide time windows. When there is a mixture of tight and wide time windows,
we will notice a modest degradation in solution quality (run times are the same under all
scenarios).

DRDC Valcartier TR 2010-51742

6.3 Experiments with random demands
The next set of experiments introduced uncertainty in the generic loads. We assumed that each
generic load was first learned at time pb (the prebook time) before the demand had to be served.
That is, if t is the knowable time (the time at which we learn about the demand), then the
actionable time (the earliest time at which the demand can be served) is pht . For simplicity,
we did not randomize pb , although this would be quite easy to do. In addition, we randomized
the loads themselves by taking the original set of generic loads, replicating each one five times,
and then choosing a load from this set with probability 0.2.

Figure 21 shows the objective functions for prebook times of 0, 2 and 6 hours. Each run was
performed with and without approximate dynamic programming. The value functions produce a
noticeable improvement if the prebook time is 0, but the improvement is negligible when the
prebook time is 2 or 6 hours.

Objective function

270000

280000

290000

300000

310000

320000

330000

340000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Prebook = 0

With value functions

Without value functions

Prebook = 2 hours
Prebook = 6 hours

Objective function

270000

280000

290000

300000

310000

320000

330000

340000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Prebook = 0

With value functions

Without value functions

Prebook = 2 hours
Prebook = 6 hours

Iterations

Figure 21: Objective function for prebook times of 0, 2 and 6 hours, with and without
approximate dynamic programming

Figure 22 shows the percent of demands that were covered for the same runs. Again, we see a
large improvement when we use approximate dynamic programming and a small (but noticeable)
improvement when the prebook time is 2 hours. When we have six hours notice, coverage with
and without the approximate dynamic programming is virtually 100 percent.

DRDC Valcartier TR 2010-517 43

Percent coverage

84

86

88

90

92

94

96

98

100

102

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Prebook = 0

With value functions

Without value functions

Prebook = 2 hours
Prebook = 6 hoursPercent coverage

84

86

88

90

92

94

96

98

100

102

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Prebook = 0

With value functions

Without value functions

Prebook = 2 hours
Prebook = 6 hours

Iterations

Figure 22: Demand coverage (as a percent of the total available) for prebook times of 0, 2 and 6,
with and without approximate dynamic programming

These runs show that the performance of the system improves significantly as the prebook time
ranges from 0, 2 and 6 hours. The value of the additional prebook time, however, is reduced
significantly when we use value functions estimated using approximate dynamic programming.
Without ADP, the improvement in the coverage as the prebook time increases from 0 to 2 hours
appears to rise from just over 90 percent to 96 percent. With approximate dynamic programming,
the coverage increases from just under 96 percent to 98 percent.

Figure 23 gives the difference between the coverage with and without approximate dynamic
programming. We note that each run (with and without value functions) was performed with the
exact same set of demand realizations (we use a different random sample of demands at each
iteration, but use the exact same sample for each run).

DRDC Valcartier TR 2010-51744

-1

0

1

2

3

4

5

6

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Im
pr

ov
em

en
t i

n
co

ve
ra

ge
 (%

)

Iterations

Prebook Time vs Learning (coverage)

Prebook = 0H

Prebook = 6H

Prebook = 2H

Figure 23: Improvement in demand coverage as a result of adaptive learning, for three different
prebook times

6.4 Experiments with random aircraft failures
We next introduced the behaviour that aircraft may breakdown at the end of each segment. The
first set of results is shown in Figure 24 which reports on the following runs:

a) Aircraft which break down and no adaptive learning (value functions are set to zero).

b) Aircraft which break down, but with adaptive learning.

c) Aircraft do not break down, and no adaptive learning adaptive learning (this number
does not change with the iterations – there is no random sampling of breakdowns,
and no learning).

d) Aircraft do not break down, but with adaptive learning.

All runs are shown in Figure 24 smoothed and unsmoothed (a smoothed curve is created by
approximating a function that attempts to capture important patterns in the data),

DRDC Valcartier TR 2010-517 45

Figure 24: Objective function for a) breakdowns with no learning, b) breakdowns with learning,
c) learning with no breakdowns. All runs are shown smoothed and unsmoothed.

These runs assumed demands were deterministic, but generic demands become known with no
advance warning. The results clearly show that the solution quality degrades in the presence of
equipment breakdowns, whether or not there is adaptive learning.

260000

270000

280000

290000

300000

310000

320000

330000

1 9 17 25 33 41 49 57 65 73 81 89 97

Objective Function

No Learning, w/ breakdown

No Learning w/ breakdown
Smoothed

Learning w/ breakdown

Learning w/ breakdown
Smoothed

Learning No Break Down

Learning No Break Down
Smoothed

No learning, w/o break
down

Iterations

DRDC Valcartier TR 2010-51746

Figure 25 shows the reduction in profits as a result of introducing breakdowns. This change is
shown with and without adaptive learning. The results show that the adaptive learning reduces
the drop in profits due to equipment failures by approximately 15 percent (considering only the
last 50 iterations).

Figure 25: Reduction in profits due to breakdowns, with and without adaptive learning

Figure 26: Order fill rate, with and without breakdowns, run with and without adaptive learning

0

2000

4000

6000

8000

10000

12000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

C
ha

ng
e

in
 o

bj
ec

tiv
e

fu
nc

tio
n

Effect of breakdowns, with and without learning

Dif w/learning

Dif w/o learning

Iterations

84

86

88

90

92

94

96

98

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Fi
ll

ra
te

Fill rate with and without breakdowns, with and without learning

w/o breakdown

w/ breakdown

w/o breakdown

w/ breakdown

Iterations

DRDC Valcartier TR 2010-517 47

Similar graphs are shown in Figure 26 and Figure 27 for the fill rate. Again, we get a measure of
the effect of aircraft failures, and see that adaptive learning reduces this effect by approximately
15 percent.

Figure 27: Reduction in fill rate due to breakdowns, measured with and without adaptive
learning

Figure 28 shows the objective function for all combinations: random and deterministic demands,
with and without aircraft failures, and with and without adaptive learning (eight runs in total).
The runs are listed in the legend in the same order as the final objective function. These runs
produce the following expected results:

 The best results are obtained with deterministic demands, no breakdowns and with
adaptive learning.

 The worst results are obtained with random demands, aircraft failures and no learning.

 Randomness in demands or aircraft failures produces worse results than without this
source of randomness (and all else held equal).

 Learning always outperforms no learning (with all else held equal).

Other results are not obvious, and probably depend on the specific dataset. For our experiments:

 Randomness in demands has a more negative impact than aircraft failures, with or
without adaptive learning.

 Randomness in demands with adaptive learning outperforms deterministic demands and
no learning, when aircraft breakdowns are allowed (this result is especially surprising).

0

0,5

1

1,5

2

2,5

3

3,5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Re
du

ct
io

n
in

 fi
ll

ra
te

Reduction in fill rate due to breakdowns

Dif w/o learning

Dif w/learning

Iterations

DRDC Valcartier TR 2010-51748

These experiments are primarily designed to demonstrate the capability of the optimizing-
simulator. In terms of validating the methodology, the important result is that the results are all
intuitively reasonable. Specifically:

Increasing the level of noise (random demands, aircraft breakdowns or both) reduces
solution quality.

Adaptive learning improves solution quality.

Adaptive learning reduces the cost of uncertainty (eg. by measuring the effect of aircraft
failures).

Figure 28: Objective function for all combinations: random and deterministic demands,
with and without aircraft failures, and with and without adaptive learning

250000

260000

270000

280000

290000

300000

310000

320000

330000

1 9 17 25 33 41 49 57 65 73 81 89 97

Determ demand|No
Break|Learn

Determ
demand|Break|Learn

Random demand|No
break|Learn

Determ demand|No
Break|No learn

Random
demand|Break|Learn

Determ
demand|Break|No learn

Random demand|No
Break|No learn

Random
demand|Break|No learn

Iterations

DRDC Valcartier TR 2010-517 49

7 Conclusion

We showed in this report how the airlift problem can be modeled as a complex resource
allocation problem, covering both the representation of the resources themselves and modeling
the information. We also presented in this study a modeling Framework that is based on an
optimizing-simulator to solve the airlift problem. The optimizing-simulator is an analysis
technology that focuses on the modeling of complex resource allocation problems, using an
explicit model of the information available to make a decision. We presented a series of models
that illustrates how we model the information content of a decision, and the decision making
technology. Using the specific context of military airlift, we presented a series of models of the
information available to make a decision. We showed how this modeling framework can be used
to represent the Canadian military airlift problem. We should mention that the dataset used to
solve the problem have been prepared for an optimization model, and as such lacked the richness
that we typically find in real applications.

The goal of this study is to compare, for the military airlift problem, the performance and
capabilities of the optimizing-simulator technology (handling uncertainties) against that of
classical deterministic optimization for the military airlift problem. For comparison, we also
provide a brief comparison to classical simulation. The optimizing-simulator, rather than fostering
a competition between alternative analysis technologies, actually combines the best features of
simulation and optimization. In the process, it combines cost-based and rule-based decision
technologies, providing an analysis technology that handles the high-dimensionality of problems
that typically arise in transportation, as well as the complex behaviours that may be difficult to
capture using a cost model, but which can be expressed as patterns of behaviour.

This report has shown how to model information flow and the airlift complex problem dynamics
using a simple, intuitive vocabulary. We demonstrated this modeling framework in the context of
the Canadian military airlift problem. We presented a series of computational experiments that
evaluate the effect of random demands and equipment failures on system performance. The
experiments clearly demonstrate the capability of the optimizing-simulator. In terms of validating
the methodology, the important result is that the results are all intuitively reasonable. We
observed that increasing the level of uncertainty (random demands, aircraft breakdowns or both)
reduces solution quality. Also, the adaptive learning approach found to improve solution quality
as well as reduce the cost of uncertainty.

A series of experiments were run to test the capabilities of the modeling and algorithmic
framework. We demonstrated the quality of the solution achieved using the approximate
dynamic programming algorithm. With no uncertainty, and with a modest level of advance
information, a simple simulation provides very high quality solutions. We then assumed that
generic demands became known over the simulation, where we varied the time between when a
demand became known and when it had to be served (the prebook time). We were able to
quantify the value of knowing orders in advance (we assumed 0, 2 and 6 hours), and we also
showed that the value of advance information is reduced if we use adaptive learning logic.

DRDC Valcartier TR 2010-51750

We reported in this report the results comparing the objective function produced by the
optimizing-simulator to optimal solutions for deterministic problems, and the results of rolling-
horizon experiments for problems which exhibit uncertainty. The results of our experiments show
that providing more information reduces costs and increases throughput.

Our experiments on the CF airlift problem clearly demonstrate the capability of the optimizing
simulator. In terms of validating the methodology, the important result is that the results are
intuitively reasonable. Specifically, we observed that increasing the level of noise (random
demands, aircraft breakdowns or both) reduces solution quality. Also, adaptive learning was
found to improve solution quality as well as reduce the cost of uncertainty.

DRDC Valcartier TR 2010-517 51

References

[1] Dantzig, G. & Ferguson, A. (1956), ‘The allocation of aircrafts to routes: An example of
linear programming under uncertain demand’, Management Science 3, 45–73.

[2] Wu Tongqiang, W.B. Powell and A. Whisman, (2008),“The Optimizing-Simulator: An
Illustration using the Military Airlift Problem,” ACM Transactions on Modeling and
Simulation, Vol. 19, No. 3, Issue 14, pp. 1-31.

[3] Wing, V., Rice, R. E., Sherwood, R. & Rosenthal, R. E. (1991), Determining the optimal
mobility mix, Technical report, Force Design Division, The Pentagon, Washington D.C.

[4] Yost, K. A. (1994), The thruput strategic airlift flow optimization model, Technical report,
Air Force Studies and Analyses Agency, The Pentagon, Washington D.C.

[5] Rosenthal, R., Morton, D., Baker, S., Lim, T., Fuller, D., Goggins, D., Toy, A., Turker, Y.,
Horton, D. & Briand, D. (1997), ‘Application and extension of the Thruput II optimization
model for airlift mobility’, Military Operations Research 3(2), 55–74.

[6] Killingsworth, P. & Melody, L. J. (1997), Should C17s be deployed as theater assets?: An
application of the CONOP air mobility model, Technical report rand/db-171-af/osd, Rand
Corporation. 2 Midler, J. L. &Wollmer, R. D. (1969), ‘Stochastic programming models for
airlift operations’, Naval Research Logistics Quarterly 16, 315–330.

[7] Baker, S., Morton, D., Rosenthal, R. & Williams, L. (2002), ‘Optimizing military airlift’,
Operations Research 50(4), 582–602.

[8] Crino, J. R., Moore, J. T., Barnes, J. W. & Nanry, W. P. (2002), ‘Solving the theatre
distribution vehicle routing and scheduling problem using group theoretic tabu search’,
Submitted to Mathematical and Computer Modelling 0(0), 17

[9] Burke, J. F. J., Love, R. J. & Macal, C. M. (2002), ‘Modelling force deployments from army
installations using the transportation system capability (TRANSCAP) model: A standardized
approach’, Submitted to Mathematical and Computer Modelling 0(0), 00. 3 24.

[10] Midler, J. L. & Wollmer, R. D. (1969), ‘Stochastic programming models for airlift
operations’, Naval Research Logistics Quarterly 16, 315–330

[11] Goggins, D. A. (1995), Stochastic modeling for airlift mobility, Master’s thesis, Naval
Postgraduate School, Monterey, CA.

[12] Niemi, A. (2000), Stochastic modeling for the NPS/RAND Mobility Optimization Model,
Department of Industrial Engineering, University of Wisconsin-Madison, Available:
http://ie.engr.wisc.edu/robinson/Niemi.htm.

DRDC Valcartier TR 2010-51752

[13] Morton, D. P., Salmeron, J. & Wood, R. K. (2002), ‘A stochastic program for optimizing
military sealift subject to attack’, Stochastic Programming e-print series.
http://www.speps.info.

[14] Yost, K. A. & Washburn, A. R. (2000), ‘The LP/POMDP marriage: Optimization with
imperfect information’, Naval Research Logistics 47(8), 607–619.

[15] Bertsekas, D. & Tsitsiklis, J. (1996), Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA.

[16] Sutton, R. & Barto, A. (1998), Reinforcement Learning, The MIT Press, Cambridge,
Massachusetts.

[17] Si, J., Barto, A. G., Powell, W. B. & D. Wunsch II, e. (2004), Handbook of Learning and
Approximate Dynamic Programming, IEEE Press, New York.

[18] Si J., A. Barto, W.B. Powell and D. Wunsch (eds.), (2004) Learning and Approximate
Dynamic Programming: Scaling up to the Real World, John-Wiley and Sons, New York.

[19] Powell, W. B. & Van Roy, B. (2004), Approximate dynamic programming for high
dimensional resource allocation problems, in J. Si, A. G. Barto, W. B. Powell & D. Wunsch
II, eds, ‘Handbook of Learning and Approximate Dynamic Programming’, IEEE Press, New
York.

[20] Godfrey, G. and W.B. Powell, “An Adaptive Dynamic Programming Algorithm for Single-
Period Fleet Management Problems I: Single Period Travel Times,” Transportation Science,
Vol. 36, No. 1, pp. 21-39 (2002).

[21] Godfrey, G. and W.B. Powell, (2002),“An Adaptive Dynamic Programming Algorithm for
Single-Period Fleet Management Problems II: Multiperiod Travel Times,” Transportation
Science, Vol. 36, No. 1, pp. 40-54.

[22] Powell, W. B., Shapiro, J. A. & Simao, H. P. (2002), ‘An adaptive dynamic programming
algorithm for the heterogeneous resource allocation problem’, Transportation Science 36(2),
231–249.

[23] Spivey, M. & Powell, W. B. (2004), ‘The dynamic assignment problem’, Transportation
Science 38(4), 399–419.

[24] Powell, W. B. & Topaloglu, H. (2004), Fleet management, in S. Wallace & W. Ziemba,
eds, ‘Applications of Stochastic Programming’, Math Programming Society - SIAM Series in
Optimization, Philadelphia.

[25] Wu, T. T., Powell, W. B. & Whisman, A. (2003), The optimizing simulator: An intelligent
analysis tool for the military airlift problem, Technical report, Princeton University,
Department of Operations Research and Financial Engineering.

DRDC Valcartier TR 2010-517 53

[26] Powell, W. B., Wu, T. T. & Whisman, A. (2004), ‘Using low dimensional patterns in
optimizing simulators: An illustration for the airlift mobility problem’, Mathematical and
Computer Modeling 29, 657–665.

[27] Powell, W.B., J. Shapiro and H.P. Simao, (2001) “A Representational Paradigm for
Dynamic Resource Transformation Problems,” Annals of Operations Research on Modeling
(C. Coullard, R. Fourer, and J. H. Owen, eds), Vol. 104, pp. 231-279.

[28] Powell, W.B., T. Wu, H. P. Simao and A. Whisman, (2004) “Using Low Dimensional
Patterns in Optimizing Simulators: An Illustration for the Military Airlift Problem,”
Mathematical and Computer Modeling 29, pp. 657-675.

[29] Topaloglu, H. and W.B. Powell, (2005) “A Distributed Decision-Making Structure for
Dynamic Resource Allocation with Nonlinear Functional Approximations,” Operations
Research, Vol. 53, No. 2, pp. 281-297.

[30] Powell, W.B., A. Ruszczynski and H. Topaloglu, (2004) “Learning Algorithms for
Separable Approximations of Stochastic Optimization Problems,” Mathematics of Operations
Research, Vol. 29, No. 4, pp. 814-836.

[31] Powell, W.B. (2007), Approximate Dynamic Programming: Solving the curses of
dimensionality, John Wiley and Sons, pp. 488.

DRDC Valcartier TR 2010-51754

List of symbols/abbreviations/acronyms/initialisms

AF Air Force

CF Canadian Forces

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

R&D Research & Development

DRTP Dynamic Resource Transformation Problem

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Optimal Decisions for Canadian Military Airlift Problem

4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Boukhtouta, A., Berger, J., Powell, W.B., Bouziane-Ayari, B.

5. DATE OF PUBLICATION
(Month and year of publication of document.)

September 2010

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

6b. NO. OF REFS
(Total cited in document.)

31

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

13du

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TR 2010-517

10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

A modeling and algorithmic framework for analyzing and simulating the military airlift is
presented in this report. Central to the framework is the modeling of the flow of information
and decisions. A series of models demonstrating how different levels of information can be
represented when making a decision are presented. These information sets are simulated to
demonstrate their impact on costs and throughput. A detailed comparison of classical
optimization and the current framework is presented. Using historical data for the airlifts
conducted by the Canadian Air Force, a series of simulations were conducted to test the effect
of uncertainty in customer demands as well as aircraft failures. It is demonstrated in this report
that this effect is reduced when adaptive learning is used in the simulation process. There are a
number of sources of randomness that arise in military airlift operations: random demands,
aircraft failures, weather delays, etc. The cost of uncertainty can be difficult to estimate because
it is difficult to give the mathematical expression of this cost. However, it is easy to
overestimate this cost if we use simplistic decision rules. The military airlift problem,
considered in this report, is modeled as a dynamic program, and solved using approximate
dynamic programming. The experiments show that even approximate solutions produce
decisions that substantially reduce the effect of uncertainty.

Une approche de modélisation et de résolution pour l’analyse et la simulation du problème du
transport aérien militaire est présentée dans ce rapport. La modélisation des flots d’informations
et de décisions en constitue l’élément central. Nous présentons plusieurs modèles pour montrer
comment l’information est traitée et présentée durant le processus de prise de décision. Plusieurs
scénarios sont simulés pour déterminer l’impact de l’information sur les coûts ainsi que sur la
solution. Nous faisons une comparaison détaillée entre l’approche d’optimisation classique et
celle qui est proposée dans ce rapport qui est le simulateur d’optimisation. En utilisant des
données historiques des opérations aériennes des Forces Canadiennes, une série de simulations a
été effectuées pour mesurer l’impact des incertitudes liées aux requêtes de dernière minute et
aux bris mécaniques des avions. Nous démontrons que cet impact est réduit lorsque nous
utilisons le concept d’apprentissage adaptatif dans le processus de simulation. Il y a plusieurs
sources d’incertitude liées au problème du transport militaire aérien : requêtes imprévues, bris
d’avions, retards dus à la météo, etc. L’estimation du coût d’incertitude est difficile à obtenir
puisque ce dernier est difficile à exprimer mathématiquement. Par ailleurs, ce coût est facile à
surestimer quand on utilise des règles de décisions simplistes. Le problème du transport
militaire aérien abordé dans ce rapport est modélisé comme un programme dynamique qui est
résolu via la programmation dynamique approximative. Les expériences numériques montrent
que même les solutions approximatives donnent des décisions qui réduisent substantiellement
l’effet d’incertitude.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

airlift problem; approximate dynamic programming; simulation; uncertainties

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

