I * Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE mv '])EFENSE

-

Best Design Practices for Effective Use of
N-Version Programming

Raphaél Khoury
Mario Couture
DRDC Valcartier

Abdelwahab Hamou-Lhadj
Concordia University

Defence R&D Canada - Valcartier

Technical Memorandum
DRDC Valcartier TM 2013-017
February 2013

Canadi

Best Design Practices for Effective Use of
N-Version Programming

Raphaél Khoury
Mario Couture
DRDC Valcartier

Abdelwahab Hamou-Lhadj
Concordia University

Defence R&D Canada - Valcartier

Technical Memorandum
DRDC Valcartier TM 2013-017
February 2013

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013

Abstract

N-version programming is a software development paradigm that draws upon the concept of
diversity to increase the reliability of software. The central idea is to independently produce
multiple functionally equivalent versions of a program, and execute them in parallel. If the
versions fail independently, then the probability of multiple versions producing a faulty output on
any given input is very small; much lower than the failure probability of any single version. In
this technical memorandum, we examine and contrast various experiments that have been
performed to evaluate the benefits of this approach and draw some conclusions with respect to the
most effective way that N-version programming can be utilized. We find that for diversity to be
effective, it must be introduced in a targeted and informed manner and encompass several phases
of the software’s development.

Résumé

La programmation en N-versions (N-version programming) est un paradigme de programmation
qui s’appuie sur le concept de diversité pour assurer la fiabilité des logiciels. L’idée clef est de
développer de multiples versions fonctionnellement équivalentes et de les exécuter en paralléle.
Si I’occurrence de failles dans chacune de ces versions exhibe une distribution indépendante de
celle des autres versions, alors la probabilité¢ d’un échec lors de 1’exécution simultanée de toutes
les versions est trés faible. Dans ce mémorandum technique, nous examinons les résultats de
diverses études académiques qui ont évalué les bénéfices de ce paradigme de cette approche, et
synthétisons des conclusions quant a son utilisation efficace. En particulier, nous concluons que
pour que I'usage de la diversité soit efficace, celle-ci doit étre introduite d’une manicre ciblée et
informée, et ce, dans plusieurs phases du développement du logiciel.

DRDC Valcartier TM 2013-017 i

ii

This page intentionally left blank.

DRDC Valcartier TM 2013-017

Executive summary

Best Design Practices for Effective Use of N-Version
Programming

Raphaél Khoury; Mario Couture; Abdelwahab Hamou-Lhadj; DRDC
Valcartier TM 2013-017; Defence R&D Canada — Valcartier; February 2013.

Introduction: N-version programming is a software development paradigm that draws upon the
concept of diversity to increase the reliability of software. The central idea is to independently
produce multiple functionally equivalent versions of a program, and execute them in parallel. If
the versions fail independently, then the probability of multiple versions producing a faulty output
on any given input is very small; much lower than the failure probability of any single version. In
this technical report, we examine and contrast various experiments that have been performed to
evaluate the benefits of this approach and draw some conclusions with respect to the most
effective way that N-version programming can be utilized.

Results: A central concept in the evaluation of N-version architecture is that of independence of
failure. Two instances fail independently if the occurrence of failure in one instance provides no
information about the likelihood of failure of the other instance on the same input. It is from the
presence of independence of failure that gains in reliability can be accrued from the use of N-
version programming. However, we find that the independence of failure is not certain to be
achieved simply by developing multiple instances independently. Indeed, for diversity to be
effective, it must be introduced in a targeted and informed manner and encompass several phases
of the software’s development. We also find that the care taken to isolate the development team
of the various versions is unwarranted.

Significance: The use of diversity can be an effective strategy to increase the reliability of
software, but only if it is introduced in a targeted manner, aimed at maximizing the differences
between the instances.

Future plans: Introducing diversity in the context of security, rather than reliability, is an
important topic for future research. We also believe that a metric that would allow us to
quantifying objectively how much diversity exists between two instances would allow a more
precise evaluation of diverse architectures. Another useful avenue for future research is to
develop a reasoning framework that will allow us to evaluate objectively how much reliability is
gained by the introduction of diversity in an architecture in different manners.

DRDC Valcartier TM 2013-017 il

Sommaire

Best Design Practices for Effective Use of N-Version
Programming

Raphaél Khoury; Mario Couture; Abdelwahab Hamou-Lhadj; DRDC

Valcartier TM 2013-017; R & D pour la défense Canada — Valcartier; février

2013.
Introduction: La programmation en N-versions (N-version programming) est un paradigme de
programmation qui s’appuie sur le concept de diversité pour assurer la fiabilité des logiciels.
L’idée clef est de développer de multiples versions fonctionnellement équivalentes et de les
exécuter en paralléle. L’idée clef est de développer de multiples versions fonctionnellement
¢quivalentes et de les exécuter en parallele. Si I’occurrence de failles dans chacune de ces
versions exhibe une distribution indépendante de celle des autres versions, alors la probabilité
d’un échec lors de I’exécution simultanée de toutes les versions est trés faible, bien moindre que
la probabilité d’échec de chacune des versions qui la compose. Dans ce mémorandum technique,
nous examinons et contrastons plusieurs études antérieures qui visaient a évaluer les bénéfices de
cette approche, et tirons des conclusions quant a la mani¢re la plus efficace d’utiliser la
programmation en N-versions.

Résultats: Le concept d’indépendance des échecs a été identifié dans plusieurs études comme
¢lément essentiel des architectures a N-versions. On dit de deux instances d’un logiciel qu’elles
exhibent une indépendance d’échec si I’occurrence d’un échec dans 1’une des instances sur une
entrée donnée n’apporte aucune information quant a la probabilité d’échec de I’autre instance sur
la méme entrée. La présence d’indépendance d’échec dans une architecture N-versions assurerait
une amélioration significative de la fiabilité¢. Néanmoins, nous trouvons qu’il n’est pas certain
d’obtenir I’indépendance des échecs simplement par ’entremise du développement indépendant
de multiples versions. En effet, pour que I’usage de la diversité soit efficace, celle-ci doit étre
introduite d’une maniére ciblée et informée, et ce, dans plusieurs phases du développement du
logiciel. Nous concluons aussi que le soin habituellement pris pour isoler les différentes équipes
de développeurs de chacune des versions n’est pas nécessaire.

Importance: La diversité peut étre une stratégie efficace pour assurer la fiabilité des logiciels,
mais seulement si elle est introduite d’une maniére ciblée, de telle sorte a maximiser les
différences entre les instances.

Perspectives: Introduire la diversité dans I’optique d’assurer la sécurité des systémes, plutdt que
leur fiabilité, est un objectif important de recherche future. Nous croyons aussi qu’une métrique
permettant de quantifier objectivement le niveau de diversité existe entre deux instances
permettrait une évaluation plus précise des architectures en N-Versions. Une autre avenue de
recherche intéressante serait de développer un cadre de raisonnement formel, permettant
d’évaluer objectivement les gains en fiabilit¢ obtenus quand la diversité est introduite de
différente maniére.

v DRDC Valcartier TM 2013-017

Table of contents

ADSITACE ... oo ettt ettt ettt ettt ae e e e st et se st et e e eas et e teenbees e neanneeeeens i
RESUIME ..o ettt s et eae et et ess e s e e eeae e i
EXECULIVE SUMIMATYocvoiiiiieiecee ettt e e e e e e ns iii
SOTMITIAITE ...ttt ettt ettt e ettt e eteee e e e e e esse s e neanseeseemeanseessensanseeeseeseneanseesenns v
Table Of COMLEIIESouiiiiieiiit ettt ettt ettt es et ee s et e e eeae s e e enn e v
| o 1431 ¢SSR vi
LSt OF tADIES ...ttt r et eea et enee e vii
L, IO AU C IO s s e s e e es et 2 en e e anaanesn e asan e snasanassaarsean et aransat st assssassasansassasans 1
0 S 1Y (015 0721 2 o) 1 AU 1
N < 4011410 (o YOS 2
2 Current State OF The ATtcooie e 4
2.1 Diversity of Implementation.............c..cc.ooeuieiiriie e 4
2.2 Diversity of Programming Languages...............c.ccoueeouiioeioieeeieeeeeceeeeeee e 6
2.3 Diversity of Specification and DeSign...............cooouiiiiioiioiieieeeeeeeeeeeee e 7
2.4 Data DIVEISIEY....ccuoiiii ettt ea 8
2.5 Summary of the TEeChNIQUES............coviieeiiee e 9
2.6 Synthesis Of FINAINGSccooooiiiiiiiiiiieeeeeee e 12
3 Challenges and Recommended SOIUtIONS.............ccoooiiiiiiiiiieceeeee e 15
T 07 1 o] 1313 o) s WSS RRR 19
RETETEICES ... oottt ee et e e et e e s ne e e 20
(€3 (o1 Y: 1 OSSR 23

DRDC Valcartier TM 2013-017 v

List of figures

Figure 1: Redundancy and itS OULCOMESc.oouieiiiiiie ittt 12
Figure 2: Redundancy and itS OULCOMES.c.oouieiiiiiiiitieice ettt 12
Figure 3: Diversity and itS OULCOIMESc.eooiiiuiiieetiei ettt ettt ee e eeae e 13
Figure 4: Impact of design choices on the level of diversity in an N-version architecture. 13
Figure 5: Impact of altering the number of instances present in an N-version architecture. 14

vi DRDC Valcartier TM 2013-017

List of tables

Table 1: Summary of the experiments in diversity for reliabilitycccooooiiiiiiiiiiiie.

Table 2: Independence of failure in €Xperimentsccooevrieieiieiiece e

Table 3: Main causes of coincident failures

DRDC Valcartier TM 2013-017

viii

This page intentionally left blank.

DRDC Valcartier TM 2013-017

1 Introduction

1.1 Motivation

Redundancy has long been used in engineering and hardware to increase reliability and fault
tolerance when operating in an uncertain environment. The key insight is that even if one instance
fails, an alternative redundant one is available to replace it.

This approach can also be adapted to the context of software development. However, since every
identical instance of software will, in principle, behave in the exact same manner when exposed
to the same situation, diversity, rather than simply redundancy, must be employed to avoid having
the defect that caused the failure to propagate to other instances.

This idea of a diverse environment was first described by Avizienis in [1], and takes the form of
N-version programming. The guiding principle of this approach is to produce several distinct
versions of a given software, and execute them in parallel with the same inputs. In case of a
discrepancy between the outputs of the various instances, an output is chosen by majority voting.
The intuition behind this is that while it may be impossible to produce a single flawless instance
of any complex system, multiple instances of this system would normally exhibit different faults.

A recurrent goal in N-version programming is that failure between versions should be
independent. Independence of failure can be formally defined in several ways (see for e.g. [2]),
and captures the intuition that the faults occurring in each version are unrelated. In the presence
of statistical independence of failure, the probability of two instances failing simultaneously (i.e.
on the same input) is substantially smaller than that of the original programs, and the reliability of
overall architecture can always be improved by the incorporation of additional diverse
components [3]'. Interestingly, it is, in principle, possible for an N-version architecture to have
better-than-independence failure behavior if the incidence of failure between its components is
negatively correlated [4].

While the study of software diversity for reliability dates back to Avizienis in 1985 [5], a new
generation of researchers has recently revisited the idea of software diversity, but in a context of
security rather than reliability and much work has already been done on this topic. For example,
Gao et al. [6][7] propose architecture for intrusion detection, analogous to that of N-version
programming, in which multiple versions of a system are run in parallel. An intrusion can then be
detected by the abnormal divergence in the behavior of the multiple instances. In the same vein,
other researchers have also argued that there are substantial benefits to the use of diversity in anti-
virus software [8]. Schneider [9], and Littlewood et al. [10] discuss some of the issues involved in
using diversity for security purposes. This line of research also intersects the emerging idea of
breaking the software monoculture, defined as the tendency of having multiple connected
computers running the same software [11]. Researchers drawing an analogy from biological
systems have argued that the presence of a monoculture in a network exposes it to a substantial

Tt is important to stress that considerable gains in reliability can be achieved through N-version
programming even in the absence of independence of failure [15] . Independence of failure should then be
seen as a desirable goal in the development process, rather than an essential property that must be met for
N-version programming to be valuable.

DRDC Valcartier TM 2013-017 1

security risk, as identical softwares can be compromised simultaneously by the same attack
vector. In this context, diversity can also be employed to decrease the attacker’s knowledge of
the target system’s implementation details, thus making it harder for him to engineer a successful
intrusion.

The renewed interest in N-version programming motivates us to revisit earlier research on this
topic. Much of our knowledge about how to build effective N-version architectures comes from
experiments that have been conducted in academic or industrial settings. In this paper, we review
some of these experiments and contrast their conclusions. The object of this paper is to synthesize
the lessons learned from these experiments on developing reliable software, rather than to
exhaustively survey all research related to software diversity. We further identify open questions
and remaining challenges and suggest possible avenues of solution. While we chose to focus
specifically on experiments aimed at the development of highly reliable systems as this was the
main object of most of the experiments conducted with N-version architectures, we believe this
study would be useful to researchers and practitioners working in any of the related fields of
dependability, availability, reliability, or security.

1.2 Terminology
Throughout the remainder of this paper, we will use the following terminology:

Reliability is defined as the probability of a system or a component to perform its required
functions under stated conditions for a specified period of time. In other words, reliability is the
probability of failure-free software operation for a specified period of time in a specified
environment. Reliability is itself a component of dependability, defined as the ability of a system
to provide a service that can justifiably be trusted. In addition to reliability, dependability includes
another of other desirable attributes, namely availability, safety, integrity and maintainability
[12]. While the focus of this study is on reliability, it is important to stress that the use of N-
version programming in software systems affects every component of dependability. Intuitively,
we can assume that availability will improve in tandem with reliability, while the maintainability
of the system will be decreased by the introduction of additional components.

Dependability intersects with security, the absence of unauthorized access to, or handling of,
system state [13]. More specifically, security is defined as defined as the conjunction of
availability, confidentiality and integrity. The connection between reliability and security has
been observed in several contexts, and we will discuss the use of N-version programming for
security purposes in section 4.

N-version programming is a programming paradigm that consists in independently generating N
functionally equivalent programs. Each of the independently generated programs is termed a
version or an instance. A system that contains an element of N-version programming is N-version
architecture.

A failure occurs when a resource does not deliver the expected service i.e., the system does not
behave as specified, or the specification itself does not adequately capture the intended behavior
of the system [14]. The cause of a failure is a faulr. A fault causes the system to deviate from its
expected behavior, and instead enter an incorrect state, called an error. Once the error causes the

2 DRDC Valcartier TM 2013-017

system to fail to deliver its intended service, a failure has occurred. Fault tolerance describes the
capacity of a system to continue to provide correct service in the presence of faults. N-version
programming can be seen in this context as a strategy to increase system fault tolerance.

Of particular interest in the context of N-version programming are coincident failures. Two
failures present in two different instances are coincident if they both occur when the instances are
fed the same input, indicating the possible presence of a common fault between the two instances.
Observe that this definition does not require that both instances originate with the same fault or
return the same erroneous output.

The remainder of this paper is organized as follows. In Section 2, we survey several experiments
that have been conducted in an academic setting to evaluate the feasibility of using N-version
programming to increase the reliability of systems. In Section 3, we analyze the results of these
experiments to uncover the challenges and research opportunities. Concluding remarks are given
in Section 4.

DRDC Valcartier TM 2013-017 3

2 Current State of The Art

We have reviewed several studies that focus on diversity of N-version programming techniques.
We found that the proposed approaches can be categorized based on the software layer in which
diversity is introduced. We distinguish between four main layers: diversity of implementations,
diversity of the programming languages, design diversity, and finally data diversity.

2.1 Diversity of Implementation

The choice of the layer or layers that are to be diversified is the most central question arising
when developing an N-version architecture, as alternative choices differ greatly with respect to
both cost and the level of failure independence that can be achieved. Generally speaking,
experiments have shown that the earlier diversity is introduced in the development process; the
more likely that the final product will exhibit independence of failure.

The most common strategy is to develop several instances from the same specification, and using
the same programming language. This is, for instance, the strategy used by NASA [15], Campbell
et al. [16], Shimeall et al. [17] and Knight et al. [18]. In the former experiment, software that
determines the acceleration of a vehicle was coded 20 times by 20 teams of coders, in 4
universities. All teams proceeded using the same specification and worked in isolation. Results
were not completely encouraging. For instance, in the NASA experiment, despite the fairly low
rate of occurrence of failures of each version, the various instances exhibited a higher rate of
coincident failures than would have been expected if failures were completely independent. As
the authors starkly conclude: “Coincident failures occurred at rates that greatly exceed the rates
expected by chance under the assumption of independence.” And furthermore: “The assumption
if independence is clearly not justified”.

Common faults leading to coincident failure between two or more systems seemed to have two
causes: difficulties on the part of the programmers in manipulating the complex mathematical
objects needed to solve the problem at hand, and misunderstandings of the specification. In the
latter case, it must be stressed that ambiguities in the specification cannot be faulted for the
coincident failures since in the worst case at most 6 of the 20 versions exhibited a given fault.
Dissimilar faults causing coincident failure were also observed.

Similar results were found by Knight et al. who developed 27 versions of a launch interceptor, all
in Pascal, and from the same specification and subjected the resulting programs to one million
input tests. The reliability of the 27 instances was very high, with 6 instances exhibiting no failure
for any the one million inputs tested, and every other being successful for over 99% of inputs.
There were, however, a number of cases in which multiple (up to 8) versions failed for the same
input. Using a statistical analysis, Knight et al. showed that the occurrences of common failures
were higher than would have been expected under an assumption of independence. They
concluded categorically that: “the assumption of independence of errors that is fundamental to the
analysis of N-version programming does not hold” (emphasis in original). Indeed, about one half
of all failures involve at least two instances.

4 DRDC Valcartier TM 2013-017

In subsequent work [19], Brilliant et al. re-examined the results of this experiment and try to
identify, amongst the possibilities listed above, the main cause of coincident failures. They found
that there are a number of cases of faults that are not logically related (in the sense that they
reflected the same or similar mistakes, and occurred in the processing of the same part of the
problem), and yet produce coincident failures. This is explained by the fact that in these cases,
both faults involve mishandling inputs that share a certain specific characteristic. It is not so much
that the same mistakes were made in programming as that the inputs creates conditions which the
programmers did not anticipate. Rather than logically related faults, the authors propose
reasoning about input domain related faults, which occur when a given input value triggers
certain execution paths. The extent of failure correlation thus depends on the proportion of inputs
which lie inside the failure region. This result argues in favour of data-based diversity as seen in
[20].

A similar experiment was conducted by the University of Iowa and the Rockwell/Collins
Avionics Division [20]. Twelve programming teams of graduate students independently
designed, coded, and tested 12 computerized airplane landing systems in C, from a single
specification. The purpose of this experiment was to test a software development paradigm
specifically tailored to the development of highly diverse N-version software. The results
showed great benefits to using this development paradigm. Despite extensive testing, only two
pairs of common faults were found between the 12 instance programs. Furthermore, 3-version
architectures with output voting exhibited, on average a seven-fold improvement in reliability
compared with single version, while deploying these same 12 programs in 5-version architectures
yielded an average improvement in reliability by a factor of 7. When the architecture considered
the timing of the occurrence of a failure, rather than simply contrasting outputs, the benefits of
diversity where even more evident, with the 3-version architectures being on average 12 times
more reliable than single versions, and no coincident failures detected in the 5-version
architecture.

The final experiment in N-version programming at the implementation layer which we will
examine is that performed by Shimeall et al. [17]. The goal of this experiment was to compare the
efficiency of N-version programming against that of other fault-detection techniques, and
determine if the cost incurred by developing multiple instances of the same software could be
offset by a reduction in the costs of verification and validation.

Their experiment was performed using eight programs coded in Pascal from the same
specification of a system that models the movements of military units. Each of the versions was
subjected to five different fault detection or fault tolerance techniques, namely: code reading by
step-wise abstraction, data flow analysis, runtime-assertions, functional testing and 3-version
voting. The 3-version voting was conducted by subjecting each instance to 10 000 randomly
generated inputs and checking the behaviour of the architecture for each of the 56 possible
triplets.

Interestingly, the authors found that faults that were tolerated were not the same as those that
were detected using traditional fault detection techniques. A total of 67 distinct faults were
tolerated (by at least one triplet) but not detected (the total number of faults was not given).
Conversely, only 24 of the 103 faults that caused coincident failures were detected by any of the
fault detection techniques used. These results strongly suggest that N-version programming and
fault detection should be seen as complementary tools rather than alternatives. The authors also

DRDC Valcartier TM 2013-017 5

hypothesize that this result indicates that the faults that cause coincident failures are amongst the
most difficult to detect.

Taken together, these experiments seem to play in favour of using multiple instances to increase
reliability, despite the observed absence of failure independence. However, the absence of
statistically verified failure independence is troublesome, as it indicates that the reliability gains
associated with N-version programming are not as great as we could have hoped. It is thus
necessary to investigate whether or not introducing diversity at another layer of software
development would provide better results.

2.2 Diversity of Programming Languages

Since diversifying only at the level of the implementation alone is insufficient to ensure
independence of failure between the instances, an added measure of diversity can be introduced
by diversifying both the implementation and the programming language i.c., developing each
instance in a different programming language. This is the strategy taken by Gmeiner et al. [22],
Avizienis et al. [23][24] and Adams et al. [25]. In the latter case, N-version architectures built
using the same programming languages were compared to architectures built using different
programming languages.

In the experiment conducted by Avizienis et al., six teams of two developers each produced a
flight simulator. Every team was working from the same specification, written in English, and
cach team was assigned a different programming language. The six programming languages
chosen for the experiment were C, Pascal, Ada, Modula-2, Prolog and T. These six languages
cover a broad spectrum of programming paradigms since two are procedural languages, two are
object-oriented, one is logic programming and one is functional programming. A similar
experiment had been performed by Gmeiner and Voges [22] in 1979. In this experiment, safety-
critical software, a reactor safety system, was coded in three instances, from a single
specification, using three different programming languages, namely IFTRAN, Pascal and PHI2.

While the hypothesis of failure independence was not formally tested, these experiments show
that substantial improvements in reliability can occur through the use of this type diversity.
Coincident failures were rooted in misunderstandings or ambiguities of the specification.

Adams et al.’s experiment is particularly revealing since it contrasted diversity introduced at the
layers of implementation and programming language in a controlled setting and tested the
hypothesis of independence. In effect, Adams et al. repeated the experiment from [18] using two
sets of programs coded using two different programming languages, namely Modula-2 and
PROLOG. As was the case in the experiments conducted by Avizienis et al. and Gmeiner et al.,
it was hypothesized that a high level of diversity could be achieved using these two languages
since they are based upon different programming paradigms.

The experiment was conducted using six Modula-2 programs and 5 PROLOG programs, coding
the same launch interceptor as was used in [18]. These programs were then subjected to 9878
input tests and in each case the output of each version was contrasted against that of a gold
version to determine its level of reliability.

6 DRDC Valcartier TM 2013-017

Adams et al.’s data shows that the hypothesis of independent failure is not warranted if two
versions are coded using the same programming languages, with common failure occurring
between one and two order of magnitudes more frequently than would be the case if failure was
independent. However, their analysis shows that using two versions written using different
programming languages increases the chances to achieve true independence of failure.

A recent investigation by van der Meulen et al. [26] adds credibility to these results. Their
research was conducted with upwards of 36,000 programs submitted by students to a contest
website. The programs were written in C, C++ and Pascal and computed a well-known
mathematical formula. The programs were tested using a 2-Version approach with randomly
selected pairs of programs. A failure is detected if the two instances returned different result. In
a second phase, the same experiment was repeated for 61 different problems, with a combined
total of 89,402 programs, in order to generate a statistically significant dataset. Interestingly, the
authors found that the size of the pool of programs from which those in a 2-version architecture
were drawn does not affect reliability. Van der Meulen et al. found that the effectiveness of this
approach for the more unreliable programs is close to the independence of failure assumption. For
more reliable programs, the 2-version architecture still brought improvements in reliability in the
order of 100 on average. The authors also found that different programmers using different
programming languages did tend to make different faults, leading to lower rate of coincident
failures.

2.3 Diversity of Specification and Design

In several of the experiments discussed above, the principal causes of common faults were
misunderstandings of the specification or outright errors in the specification. It is thus natural to
ask if better results could be obtained by introducing diversity in the design phase of software
development. This is the strategy that was used by Avizienis et al. [26] [5] and [27] in an
experiment conducted at UCLA and by the PODS project on diverse software [28], a
collaborative research project aimed, amongst other objectives, at evaluating the effectiveness of
N-version programming.

In the UCLA experiment, a single specification for an airport scheduler was written in English,
and in the specification languages OBJ and PDL. 18 programs were then produced in PL/1, of
which seven were constructed from the OBJ specification, five from the PDL specification and
six from the English specification. The programs were tested with 100 inputs.

The percentage of good outputs ranged from 35% to 98%. 21 common faults have been
identified. Of these, five were rooted in common specification errors; seven resulted from logic
errors made by the programmers and nine from implementation errors. The 18 instances were
then arranged into the 816 possible combinations of three programs, and execution in a 3—version
architecture with majority voting.

The results of this experiment do not indicate that 3-versions built from three programs written
from different specifications are more reliable than those built from programs written using the
same specification. The authors did not advance an explanation of this somewhat surprising
result. One possibility is that this results from the fact that specification errors, which were the

DRDC Valcartier TM 2013-017 7

most frequent source of common faults between the instances in other experiments, were in this
case the rarest source of common faults.

The experiment conducted as part of the PODS project [28] was even more thorough in
introducing diversity in every step of the development process simultaneously. Three instances
of a reactor over-consumption protection system were developed independently. Each
development team produced its own software specification from a customer-supplied requirement
specification, and then produced an implementation accordingly. Two teams used Fortran and the
third used assembly code. Yet another layer of diversity was introduced by supplying each team
with one of two possible power consumption calculation algorithms. Finally, the programs also
differed with respect to the kind of testing that was applied to them during a verification phase.

The three programs were then tested against each other to detect residual faults by comparing
outputs values. The three versions contained a total of seven faults, of which six were attributable
to mistakes in the original customer specification, and the last related to ambiguity in one of the
software specifications (written by the development team). There were two common faults, both
of which arose from the customer specification.

Experiments in 3-version voting show substantial improvement in reliability over a single version
architecture. Indeed, the failure rate of the N-version architecture was substantially lower failure
rate than any of the single versions composing it, thought the rate of coincident failures is not
reported.

Another interesting conclusion of the approach is that iteratively improving the component
comprised in an N-version architecture does not result in correspondingly monotonic gains in
reliability for the overall system. Instead, the majority vote failure rate seems to reach a series of
“plateaux”, and does not improve until several corrections have been brought to every version.

2.4 Data Diversity

As a final alternative, diversity can be introduced at the level of the data manipulated by software.
This strategy was suggested by Ammann et al.[20]. For most complex systems, any given input
can be expressed in a number of different but equivalent ways. For instance, the specifications
have some tolerance when it comes to input values. Experiments show that for many faults, a
given input will cause an error to occur even though another equivalent input value will not.
Faults can thus be detected by inputting multiple re-expressions of the same value and correlating
the results.

Each input is passed through a rewriting algorithm to generate a series of equivalent inputs.
Alternatively, if it is not possible to find an equivalent input, the input could be distorted, and the
distortion removed on the output. The set of input values for which a given program returns an
invalid value is called the failure domain of this program. The possibility of using data diversity
to increase reliability or tolerate faults is thus contingent on the capacity to generate alternative
input values that lie outside of a given failure domain, even if the original input does not. Since
failure regions vary greatly in size, the difficulty of successfully using this technique varies
accordingly.

8 DRDC Valcartier TM 2013-017

Ammann et al. conducted an experiment to evaluate the efficiency of this technique on a program
that simulates the decision procedure of a hypothetical antimissile missile launch system. The
experiment was performed for both 3-copies and S5-copies diversity, with voting performed by
majority vote. Input data associated with seven known faults was used. In both cases, four faults
were successfully tolerated and three were not.

An open question that deserves future attention is to identify exactly which faults are more likely
to be tolerated using data diversity. Unfortunately, this method seems ill-suited to tolerate faults
arising from misunderstandings of the specification, which is the main cause of coincident failure
in other diversity based architectures.

One of the main benefits of introducing diversity at the level of the data is that multiple copies of
the same program can be used (N-copies instead of N-versions). This greatly reduces the costs
associated with the method. Furthermore, since the alternate inputs are automatically generated, it
should be possible to experiment with a very high number of diverse instances without incurring
prohibitive overhead costs. However, voting can be problematic since the various inputs may
return different acceptable (equivalent) outputs, with no clear majority.

This strategy is not mutually exclusive with the other design diversity approach discussed above,
and they could be used complementarily. It remains to be seen if the complementarily between
these approach can be used to successfully tolerate faults that resist to either approach when they
are used independently.

2.5 Summary of the Techniques

Table 1 summarizes how the experiments surveyed in this paper can be classified with respect to
the following criteria. The level of communication allowed between development teams is not
shown in this table since in every experiment, teams where allowed the same minimal level of
communication.

e The layer where diversity is introduced: As can be seen in the discussion above, diversity
can in principle be introduced at any layer of a program’s development or usage. This
choice is consequential in several respects, but most importantly w.r.t. whether or not failure
independence between the instances is achieved.

e The number of instances present in each diversified layer: In the context of increasing
reliability, N-version programming can be constructed for any value of N greater than two.
Different Ns have been used as shown in the table.

e The method used to correlate the instances: This refers to the way instances of a diverse
architecture are compared including input/output correlation and comparing a running
instance with a gold version. A more precise method of comparison, for instance one that
compares intermediate steps rather than simple outputs, is more likely to detect errors.
Furthermore, a more precise comparison method might distinguish between multiple faults
that reveal themselves in identical failures.

e The method by which diversity is introduced in the development: We distinguish
between two methods by which diversity can be introduced in a given architecture. Random
diversity occurs as a result of the unique experience and intuition of each programmer. If

DRDC Valcartier TM 2013-017 9

10

this path is taken, then the specifications and programming instructions given to the
developers of each instance should be minimal, thus giving maximal leeway to each
developer or developing team to make design decisions. This is contrasted with required
diversity, in which the developers of each instance are purposefully given different
instructions, with the object of maximizing diversity between the instances.

The level of isolation of the teams developing the various instances: In all experiments, a
fairly rigid protocol was used to prevent any kind of collaboration between the developers of
the various instances. Only form of collaboration was generally allowed: requests for
clarifications about the specification were broadcast to all developers. In principle, other
channels of communications could be considered permissible.

DRDC Valcartier TM 2013-017

Table 1: Summary of the experiments in diversity for reliability

Experiment | Layer Source Correlation Number of Main Conclusions

of Instances
diversity

Gmeiner Programming Random | Input/output& | 3 oThe faults detected by correlating the N-versions are not the

and Voges languages intermediate same as those detected using traditional fault detection

[22] steps techniques.

The Design | Specification Random | Input/output 18, arranged eThere was no noticeable gain from introducing diversity at the

Diversity in 816 level of the specification, rather than at the implementation.

Experiment combinations | However, the number of common faults rooted in the

[51127] of 3-versions | specification seems diminished.

PODS [29] Specification, Random | Input/output 3 eN-version is effective at reducing the rate of failure.
programming eImprovements to the instances of an N-version architecture do
language, immediately result in corresponding gains in reliability for the
algorithm and overall system. Instead, the failure rate reaches a series of
testing “plateaux”, and does not improve until several corrections have

been brought to every version.

Knightand | Implementation Random | Input/output 27 copies, eCommon failure occurred at a rate far higher than would be

Levenson tested in 3- expected under the assumption of independence.

[18] versions o“[The assumption of independence of errors [...] programming

does not hold.”

6-language Programming Random | Input/output 6, tested in eSubstantial improvements can occur through the use of N-

Experiment | languages both 3- and version programming.

[23] 5-versions eReliability is increased by using a higher value of N.

NASA [15] | Implementation Random | Consistency 20 o“Coincident failures occurred at rates that greatly exceed the

Relation rates expected by chance under the assumption of independence.”
“The assumption if independence is clearly not justified”.
eNonetheless, the use of N-version programming seems justified
to increase reliability.

Shimeall Implementation Random | Input/output 8, tested in oThe faults causing common failure are not the same as those

and and a gold 3-versions which are easier to detect using other fault detection methods.

Levenson version Conversely, faults that are tolerated may not be detected.

[17]

Adams and Programming Req. Input/output 7 versions eIndependently written programs using the same programming

Taha [25] Language and coded in 2 language do not exhibit independence of failure.

Programming programming | eUsing two versions written using different programming
paradigm languages. languages is sufficient to achieve true independence of failure.

Data Data N/A Input/output N/A eLxhibits a substantially lower cost compared with the other

Diversity layers where diversity may be introduced.

[20]

Lyuand He | Implementation Random | Input/output, 12 versions, e Average improvements in reliability on the order of 7-fold for 3-

[21] and time of arranged in version architectures with output voting and 12-fold for 5-version

occurrence of both 3-and architecture.

the fault 5- versions eEvent greater gains in reliability occur when the timing of a fault
is taken into consideration.

Van der Implementation Random | Input/output 2-versions, eThe failure rate exhibited by the 2-versions is close to

Meulen and | and Language chosen from independence of failure for unreliable programs, and the approach

Revilla[26] a pool of exhibits substantial improvements even for the more reliable

36,123 ones.
programs oThe use of different programming languages is an effective way

to increase the rate of coincident failures between the versions.

DRDC Valcartier TM 2013-017

11

2.6 Synthesis of Findings

The main conclusions of this study can be synthesized in the form of influence diagrams. Such
diagrams allow us to model how a given design choice or factor affects other factors or attributes,
and to display this relation using a concise and visual representation. For the moment, we will
limit our analysis to whether or not the impact is positive (+) or negative (-), and sometimes add a
conditional predicate to this outcome. An objective of further research is to quantify at least some
of the dependencies shown here.

As a starting example consider the introduction of redundancy in a system. The presence of
multiple instances running in parallel increases the reliability of the system, since if one instance
fails; alternative redundant one is available to replace it. However, the maintainability of the
system is increased, as is its cost, since multiple instances must now be built and maintained. This
is illustrated in figure 1.

Maintainability

Redundancy
+

+Rehab111ty

Figure 1 Redundancy and its outcomes

Both the maintainability and the reliability of a system correlate with its operating costs. The
above figure can thus be amended to reflect this reality.

Maintainability
Redundancy Operating
+ + Costs

+Reliabi1ity

Figure 2: Redundancy and its outcomes.

12 DRDC Valcartier TM 2013-017

Observe that two arrows enter the Operating costs node, one indicating a negative influence, and
the other a positive one. Since we have not yet quantified these relations, the influence diagram
does not inform us as to whether or not the benefits (with respect to costs) accrued from
introducing redundancy offset the increased costs.

As discussed in above, redundancy is insufficient to ensure the security and reliability of software
systems and diversity must be employed instead. For software systems, diversity affects
maintainability and reliability in the same manner as redundancy does in hardware systems.

Diversity _Malntalnablhty
Between
instances +
Reliability
+

Figure 3: Diversity and its outcomes

Several strategies are used to maximize the degree of diversity between the multiple instances of
an N-version architecture, since it is from this diversity that N-version programming draws its
promise of greater reliability. In particular, great care is often taken to isolate the different teams
developing each instance, in the belief that teams operating in isolation will make different design
decisions. However, the literature on N-version programming is unclear with respect to whether
or not this is an effective method of generating diversity. Indeed, programmers operating in
isolation often tend to make similar design choices and even to make similar mistakes.

On the other hand, tailored diversity occurs when different developers are given differing
instructions with respect to how the problem at hand should be addressed. Diversity is thus forced
in the system by design, rather than introduced randomly. In the optimal case, it is hoped that
certain instances will be more likely to fail on those instances where other instances are more
likely to succeed, thus maximizing the diversity and minimizing the occurrence of coincident
failures.

Independent

Diversity Diversity ~ ? development
introduced > +
+ ctween

earlier .
+ stances
+
Tailored

4 Diversity

Figure 4. Impact of design choices on the level of diversity in an N-version architecture.
13

The final aspect to consider is that of the number of instances present in the architecture.
Maintainability is predictably reduced propositionally to the increased number of instances. The
question whether or not an increase in the number of instance leads to a linear increase in
reliability is more subtle. Prior research seems to indicate that, in the presence of coincident
errors, there exists a threshold up to which each additional instance does increase the reliability of
the overall architecture. Beyond this threshold however, each additional instance may reduce the
reliability of the system.

Independent

Diversity Diversity ~ ? development
introduced > b +
+ etween
+

earlier)
1nstances
+
Tailored

4+ Diversity

Figure 5: Impact of altering the number of instances present in an N-version architecture.

14 DRDC Valcartier TM 2013-017

3 Challenges and Recommended Solutions

In this section, we elaborate on the main conclusions that can be drawn from surveying the
various experiments that have been performed in using diversity and suggest perspectives for
future research.

First, independence of failure has been seen by multiple authors as an important goal in the
development of multiple versions. However, the experiments detailed above disagree with
respect to whether or not independence of failure is achieved through independent development.
Unfortunately, most of the experiments do not provide data about whether or not failure
independence has been achieved. Table 2 summarizes the only results that are given.

Table 2: Independence of failure in experiments

Experiment Layer Independence
of failure
achieved

NASA [15] Implementation No

Adams and Programming Yes

Taha [25] Language
Adams and | Implementation No
Taha [25]
Knight Implementation No
Leveson [18]

As is clear from this table, different development teams working from the same specification may
not achieve independence of failure. The use of alternative specifications and programming
languages is thus clearly warranted. Introducing diversity at different layers however would also
affect the cost and the risks due to the difficulty of the approach. There is therefore a need to
study the trade-offs between accuracy of the approach, cost, and associated risks.

The sources of coincident failures are another important topic of discussion. In Table 3, we list

the main causes of coincident failures that have been identified. The table also shows the
experiments in which has been reported.

DRDC Valcartier TM 2013-017 15

Table 3: Main causes of coincident failures

Source of Coincident | Experiment
failures

Misunderstanding of the | [15][23]
specification

Ambiguous or erroneous | [22][28]
specification

Common programming | [15][17][18][25]
error or unexpected input
case

Each of these elements should be tackled independently. In the first two cases (misunderstanding
and erroneous specifications), the number of faults arising in the specification could be
effectively reduced through the use of formal or semi-formal specification languages and other
formal and semi-formal methods. Tackling the third may prove more difficult and necessitates
that every instance be developed with care. In fact, this result indicates that N-version
programming, while useful to increase the reliability of systems, is not a substitute for good
programming practices.

Another central question in any N-variant architecture is the number of instances that should be
developed (i.e. the value of N). As discussed above, only one study, that of Avizienis et al. [23],
experimented with several possible values. The choice of N raises several interesting questions: is
increasing the value of N an effective way to increase the reliability of the overall architecture or
to reduce the number of coincident failures? If this is the case, how can we balance the increase in
reliability with the increase in costs associated with developing more instances of the desired
software?

Partial answers to these questions are given in a theoretical study by Eckhardt et al. [2]. They
show that in the presence of common faults, a higher number of instances are required to achieve
the same reliability than would be the case if failures between the instances were completely
independent. Furthermore, if the number of coincident failures is high, then there exists an
optimal value of N, and increasing the number of instances in the system above N will lead to a
decrease in reliability. This result indicates that preliminary research suggesting that highly
reliable systems could be built from unreliable components simply by multiplying the number of
components does not bear out. Instead, every instance comprised in an N-version architecture
must be built with care if the overall architecture is to exhibit a high reliability. This confirms the
result of [28] to the effect that improving the reliability of an N-version architecture necessitates
improvement to every component.

In all cases which we have studied, the multiple instances were developed in isolation, with an
expectation this would increase the amount of diversity between them. While this hypothesis is

16 DRDC Valcartier TM 2013-017

intuitive, it, like any other, must stand the test of experiment before it is validated and adopted. In
this respect it is important to recall that the main causes of common faults in several experiments
were misunderstandings of the specification, and difficulty in dealing with unexpected conditions
of the input value. Allowing discussions between the programmers with respect to these points
would reduce the occurrences of such faults while not unduly restricting the amount of diversity
between the instances.

It is clear from the experimental data that enforced diversity achieves better results than random
diversity. Indeed, even when given broad liberty as to how to implement a given specification,
programmers often made similar design choices, thus leading to a reduction in the amount of
diversity of the overall architecture, and often to an absence of failure independence. A higher
level of diversity is thus achieved by imposing different choices (such as alternative programming
languages or algorithms) on each development team. The experiments surveyed above indicate
that diversity at the level of the specification and algorithms are particularly desirable.

Pushing this conclusion further, the results of the experiments we surveyed strongly argue in
favor of failored diversity[10], in which the different specifications given to the developers of
each instance are calculated so that one instance is more likely to fail in those cases where another
is more likely to succeed. Such an approach to the design and selection of diverse components has
been longstanding practice in hardware fault tolerance, and should be applied to software
diversity as well.

Throughout this paper, we have discussed the issue of “increasing the amount of diversity”
between instances, echoing similar language in present in the original articles we surveyed.
However, very little headway has been made in quantifying objectively how much diversity exists
between two instances. Lyu et al. [29], propose to use software metrics such as number of lines of
code and number of modules as a rough guide to how different two instances of the same
software are. However, these techniques do not take into account the control flow of the running
instances, which reveals important insights in the way the instances behave. A future direction
should therefore be correlating the behavior of instances based on execution traces and other
types of run-time information. We believe that this would allow a more objective comparison.

While this paper is chiefly concerned with research aimed at developing reliable software,
concurrent thread of research has sought to harness the potential of diversity to improve the
security of software [10]. There are several parallels between these two problems. For instance,
faults causing reliability failures can also be exploited by an attacker to gain unauthorized access
to the system. However, several important distinctions must also be stressed, for instance, as
observed in [9], important security attributes such as confidentiality cannot be improved by
replication. Adapting the paradigm of N-version programming to the issue of security will thus
necessarily involve the development of an alternative reasoning framework, more suited to
achieving security goals.

Another useful avenue for future research is to develop a reasoning framework that will allow us
to evaluate objectively how much reliability is gained by the introduction of diversity in an
architecture in different manners. How can we compare, for example, an N-version architecture
consisting of N instances, built from the same specification, but using different programming
languages with another architecture in which the versions are developed from different
specifications but using the same programming language?

DRDC Valcartier TM 2013-017 17

To answer this question, we first need to investigate pragmatic ways to measure how much
diversity exists between two instances of an N-version architecture. In this respect, it is important
to note that only some aspects of an architecture are diversified. For example, the instances may
share the same specification or the same operating system, but differ on the level of the source
code and system libraries. Diversity metrics would guide further research in determining the
optimal layers where diversity should be injected.

18 DRDC Valcartier TM 2013-017

4 Conclusion

In this paper, we discussed the various strategies for implementing the N-version programming
paradigm to inject diversity in a software system. The surveyed studies vary mainly depending on
the software layer in which diversity is introduced. Though an important objective of diversity is
to achieve independence of failure, most surveyed studies did not clearly show that this objective
was attained. We also discussed in this paper the main challenges along with research
opportunities of N-version programming. The latter include the necessity to study ways to select
an optimal N for diversity to be effective, the challenges related to the method by which diversity
is injected, the ways various instances of a diversified environment need to be correlated, and the
need to conduct cost-effectiveness analysis of a diversity solution. Despite these challenges, we
believe that N-version programming has good potential of becoming the design solution of choice
for making critical systems more reliable.

We would also like to point out that reliability is just one of several attributes describing two
interconnected goals of dependability and security. The other attributes are availability, safety,
integrity maintainability and confidentiality. Each of these attributes imposes constraints and
objectives to system developers, and diversity may play a role in all cases. It is certain that the
lessons learned in studying the use of diversity in the context of reliability can be transferred to
the use of diversity to ensure the other attributes mentioned above.

DRDC Valcartier TM 2013-017 19

References

[1] A. Avizienis. The N-Version Approach to Fault-Tolerant Software. 1985, IEEE Transactions
on Software Engineering 11 (12), pp. 1491--1501.

[2] D. E. Eckhardt, Jr. and L. D. Lee. A theoretical basis for the analysis of redundant software
subject to coincident errors. NASA Technical Memorandum 86369, 1985.

[3] B. Littlewood, P. Popov and L. Strigini. Modelling software design diversity - a review.
ACM Computing Surveys. ACM, June 2001, 33(2), pp. 177-208.

[4] D. Partridge and W. Krzanowski. Distinct Failure Diversity in Multiversion Software.
University of Exeter, U.K., 1997.

[5] A. Avizienis. The N-Version Approach to Fault-Tolerant Software. 1985, IEEE Transactions
on Software Engineering (TSE) 11(12), pp. 1491-1501.

[6] D. Gao, M. K. Reiter and D. Song. Behavioral Distance Measurement Using Hidden Markov
Models. In Proceedings of the 9th International Symposium on Recent Advances in Intrusion
Detection (RAID 2006), Hamburg, Germany, September 2006

[7] D. Gao, M. K. Reiter and D. Song. Behavioral Distance for Intrusion Detection. In

Proceedings of the 8th International Symposium on Recent Advances in Intrusion Detection
(RAID 2005), Seattle, WA, USA, September 2005

[8] L Gashi, et al. An Experimental Study of Diversity with Off-the-Shelf AntiVirus Engines. In
Proceedings of The Eighth IEEE International Symposium on Networking Computing and
Applications (NCA). Cambridge, Massachusetts , USA. 2009. pp. 4-11.

[9] F. B. Schneider. Beyond traces and independence. Dependable and Historic Computing.
Essays Dedicated to Brian Randell on the Occasion of His 75th Birthday, Lecture Notes in
Computer Science, Vol. 6875 (Cliff Jones and John Lloyd, eds). Springer Verlag, 2011,
479--485.

[10] B. Littlewood and S. Lorenzo. Redundancy and Diversity in Security. In Proceedings of the
9th European Symposium on Research in Computer Security (ESORICS 2004), Sophia
Antipolis, France, September, pp. 423-438, Springer-Verlag, Lecture Notes in Computer
Science 3193, 2004.

[11] D. Williams et al. Security through Diversity: Leveraging Virtual Machine Technology.
IEEE Security & Privacy. 2009,7 (1), pp. 26--33.

[12] ANSVIEEE. Standard Glossary of Software Engineering Terminology. STD-729-1991,
1991

20 DRDC Valcartier TM 2013-017

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Avizienis, J.-C. Laprie, B. Randell, Fundamentals of Dependability, Tech Report UCLA
CSD Report no. 010028, LAAS Report no. 01-145, Newcastle University Report no. CS-
TR-739, 2001.

A. Avizienis and J. Kelly. Fault Tolerance by Design Diversity: Concepts and Experiments.
1984, Computer 17(8), pp. 67 - 80.

D. E. Jr. Eckhardt et al. An experimental evaluation of software redundancy as a strategy
for improving reliability. NASA, 1990.

R. Campbell et al. Preliminary design of the redundant software experiment. NASA tech
report, 1985.

T. Shimeall and N. Levenson. An Empirical Comparison of Software Fault Tolerance and
Fault Elimination 1991, IEEE Trans. Software Eng. 17(2), pp. 173-182.

J. Knight, and N. Levenson. An Experimental Evaluation of the Assumption of
Independence in Multiversion Programming. 1986, IEEE Trans. Software Eng.

S. Brillant, J. C. Knight, and N. Levenson. Analysis of Faults in an N-Version Software
Experiment. 1990, IEEE Transactions on Software Engineering (TSE), 16(2), pp. 238-247.

P. Ammann, and J. C. Knight. Data Diversity: An Approach to Software Fault Tolerance.
1988, IEEE Trans. Computers, pp. 418--425.

M. R. Lyu and Y. He. Improving the N-Version Programming Process Through the
Evolution of a Design Paradigm. IEEE Transactions on Reliability. 1993, Vol. 42, 2, pp.
179-189.

L. Gmeiner, L. U. Voges Software diversity in reactor protection systems: an experiment.
In Proceedings of the IFAC Workshop SAFECOMP 1979.

A. Avizienis, M. R. Lyu and W. Schutz. In Search Of Effective Diversity: A Six-Language
Study Of Fault-Tolerant Flight Control Software. Tokyo, Japan. Proceedings of the 18th
International Symposium on Fault-Tolerant Computing (FTCS-18) 1998. pp. 15-22.

M. R. Lyu, and A. Avizienis. Assuring Design Diversity in N-Version Software: A Design
Paradigm for N-Version Programming. In Proceedings 2nd IEEE International Working
Conference on Dependable Computing for Critical Applications, Tucson, Arizona, February
18-20 1991, pp. 89-98.

J. M.Adams, and A. Taha. An experiment in software redundancy with diverse
methodologies. In Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences. Kauai, HI, USA pp. 83-90.

A. Avizienis. Design diversity: an approach to fault tolerance of design. AFIPS Press, 1984.
In Proceedings if the AFIPS National Computer Conference. Las Vegas, Nevada,
California pp. 163-171.

DRDC Valcartier TM 2013-017 21

[27] A. Avizienis and J. P. L. Kelly. A specification-oriented multi-version software experiment.
In Proceedings of the Thirteenth International Symposium on Fault Tolerant Computing
(FTCS 13) Milan , 1983.

[28] P. Bishop et al. PODS—A project on diverse software.. 1986, IEEE Trans. Softw.
Eng.12(9), pp. 929--940.

[29] M. R. Lyu, J.-H. Chen, and A. Avizienis. Software Diversity Metrics and Measurements. In

proceedings of the Sixteenth Annual International Computer Software and Applications
Conference (COMPSAC '92), Chigaco,. IL USA. 1992. pp. 69-78.

22 DRDC Valcartier TM 2013-017

Glossary

Coincident Failure
The occurrence of a failure on more than one instance of the components of an N-version
architecture, on a given input.

Dependability
The ability of a system to provide a service that can justifiably be trusted.

Diversity
Fault-tolerance strategy based on the intuition of providing multiple different instances of a
component and of contrasting their outputs.

Error

The deviation in system state caused by a fault, and leading to a failure.

Failure
The occurrence of a situation where the target system does not deliver the expected service.
This can occur because the system does not behave according to its specification, or because
the specification itself does not adequately capture the intended behavior of the system.

Fault

The adjusted cause of a Failure.

Fault Tolerance

The capacity of a system to continue to provide correct service in the presence of faults.

Independence of Failure
The property of an N-version architecture in which the occurrence of a failure in one instance
on a given input does not provide any information with respect to the probability of failure on
the other instances on this same input.

Instance
Each of the independently generated programs used in an N-version architecture. Also called
version.

Maintainability

The probability of performing a successful repair action in a given time.

N-Version Programming

A programming paradigm that consists in independently generating N functionally equivalent
programs.

DRDC Valcartier TM 2013-017 23

Redundancy

Fault-tolerance strategy based on the intuition of providing multiple identical instances of a
component of switching to one of the remaining instance in case of failure.

Reliability

The probability of a system or a component to perform its required functions under stated
conditions for a specified period of time.

Security

The absence of unauthorized access to, or handling of, system state.

Version

See Instance.

24 DRDC Valcartier TM 2013-017

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document. 2. SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Centre sponsoring a (Overall security classification of the document
contractor's report, or tasking agency, are entered in section 8.) including special warning terms if applicable.)
Defence R&D Canada — Valcartier UNCLASSIFIED
2459 Pie-XI| Blvd North (NON-CONTROLLED GOOQODS)
Quebec (Quebec) DMC A
G3J 1X5 Canada REVIEW: GCEC JUNE 2010
3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)
Best Design Practices for Effective Use of N-Version Programming
4. AUTHORS (last name, followed by initials — ranks, titles, etc. not to be used)
Khoury, R.; Couture, M.; Hamou-Lhadj, A.
5. DATE OF PUBLICATION 6a. NO. OF PAGES 6b. NO. OF REFS
(Month and year of publication of document.) (Total containing information, (Total cited in document.)
including Annexes, Appendices,
etc.)
February 2012 40 29
7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)
Technical Memorandum
8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development — include address.)
Defence R&D Canada — Valcartier
2459 Pie-XI| Blvd North
Quebec (Quebec)
G3J 1X5 Canada
9a. PROJECT OR GRANT NO. (If appropriate, the applicable research 9b. CONTRACT NO. (If appropriate, the applicable number under
and development project or grant number under which the document which the document was written.)
was written. Please specify whether project or grant.)
10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
number by which the document is identified by the originating assigned this document either by the originator or by the sponsor.)
activity. This number must be unique to this document.)
DRDC Valcartier TM-2013-017
11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12.DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

N-version programming is a software development paradigm that draws upon the concept of
diversity to increase the reliability of software. The central idea is to independently produce
multiple functionally equivalent versions of a program, and execute them in parallel. If the
versions fail independently, then the probability of multiple versions producing a faulty output
on any given input is very small; much lower than the failure probability of any single version.
In this technical memorandum, we examine and contrast various experiments that have been
performed to evaluate the benefits of this approach and draw some conclusions with respect to
the most effective way that N-version programming can be utilized. We find that for diversity
to be effective, it must be introduced in a targeted and informed manner and encompass several
phases of the software’s development.

La programmation en N-versions (N-version programming) est un paradigme de programmation
qui s’appuie sur le concept de diversité pour assurer la fiabilité des logiciels. L’idée clef est de
développer de multiples versions fonctionnellement équivalentes et de les exécuter en parallele.
Si Poccurrence de failles dans chacune de ces versions exhibe une distribution indépendante de
celle des autres versions, alors la probabilité d’un échec lors de ’exécution simultanée de toutes
les versions est trés faible. Dans ce mémorandum technique, nous examinons les résultats de
diverses études académiques qui ont évalué les bénéfices de ce paradigme de cette approche, et
synthétisons des conclusions quant a son utilisation efficace. En particulier, nous concluons que
pour que ['usage de la diversité soit efficace, celle-ci doit étre introduite d’une maniére ciblée et
informée, et ce, dans plusieurs phases du développement du logiciel.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Software reliability, System design, N-version programming, fault-tolerance

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence Chef de file au Canada en matiére
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

52

DEFENCE ' DEFENSE

v

www.drdc-rddc.gc.ca

