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Abstract ……..

A survey on the state of data mining and fusion technologies and methodologies for structural 
health monitoring (SHM) is presented in this document. Current research and development efforts 
are briefly introduced and reviewed. Implementation and application of the diagnostics, 
prognostics, and health management (DPHM) concepts are also presented, highlighting the 
significance of data mining and fusion as key components of the concept’s architecture. 
Methodologies and fusion performance metrics are further identified, reviewed and summarized 
and the potential use of data mining and fusion for SHM and DPHM applications is also 
discussed. Recommendations on future research and development and on the most promising 
approaches are also provided.  

Résumé ….....
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Executive summary 

Data Mining and Fusion in Health Monitoring Applications

Introduction or background: The philosophy for aircraft maintenance evolves with the 
emergence of new technologies and methodologies from run-to-failure maintenance and time-
based preventive maintenance, to condition-based maintenance (CBM) so that major maintenance 
expense can be saved.  The CBM program only conducts maintenance on the evidence of need, 
which comes from the information collected though health monitoring.  For complex systems like 
aircraft structures, structural health monitoring (SHM) is a key step to implement a CBM 
program.  In addition, diagnostics and prognostics are two important aspects of the CBM 
program. Two critical techniques, namely data fusion and data mining, play a significant role in 
developing better understanding and interpretation of collected information with an SHM or 
CBM framework.

Results: This document provides a state-of-the-art review of data fusion and data mining 
techniques in the realm of aircraft SHM and diagnostics, prognostics, and health management 
(DPHM). Current research and development work at National Research Council is briefly 
reviewed.  The role of data fusion and data mining in the SHM and/or DPHM systems is 
identified and described.  This report also summarizes the algorithms and methodologies, as well 
as the fusion performance assessment metrics that have been applied to SHM or DPHM 
applications.  Although most of the techniques themselves are not new and have been used in 
other fields already, the novel use of these techniques provides a better solution to the specific 
application.  A recommendation for future research and development is given at the end of the 
report.  

Significance: This review on data mining and data fusion methodologies, concepts and 
techniques introduces the links that exist between SHM, CBM, and DPHM and the significance 
of the integration of these system components within the overall framework.  It is anticipated that 
this knowledge and understanding will contribute to efforts in the development of a CF CBM 
strategy.   

Future plans: Selected data mining and data fusion approaches will be demonstrated as a 
component of the current structural health monitoring demonstration activity.
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1 Introduction

1.1 Background

Structural health monitoring (SHM) is defined as a process of implementing a damage 
identification strategy for aerospace, civil and mechanical engineering infrastructure [1]. The 
"health" refers to the ability of the structure to continue to perform its intended function in light of 
inevitable aging and damage accumulation resulting from the operational environments. SHM has 
recently been recognized as one of the statistical pattern recognition problems. According to the 
description in [1-2], the SHM process involves the observation of a structure or mechanical 
system over time with periodic measurements, the extraction of damage-sensitive features from 
these measurements, and the statistical analysis of these features to determine the current state of 
system’s health. Currently, most structural and mechanical system maintenance is carried out on a 
time-based mode. The time-based maintenance philosophy is now evolving to a more cost 
effective condition-based maintenance (CBM) philosophy. Although the major focus of the 
document is on structural health monitoring, a high level view on the use of data fusion and 
mining techniques, methodologies and approaches  in the context of a much broader concept, i.e. 
diagnostics, prognostics, and health management (DPHM), is provided.

This document provides a survey on the state of data mining and data fusion techniques and 
methodologies for structural health monitoring (SHM) and prognostic health management (PHM) 
applications.  It provides a brief overview of some of the research and development efforts. It 
reflects on the implementation and application of DPHM, highlighting the significance of data 
mining and fusion as key components of the concept’s architecture.  Finally, this report presents 
methodologies and fusion performance metrics with recommendations for future research and 
development and the most promising approaches.

1.2 Definitions and Concepts

An industry lead, government supported aerospace diagnostics, prognostics health management 
working group (WG) was established in 2004 [3]. As stated on its official website [4], the 
primary objective of this working group is to develop and implement a structured approach for 
continuing consideration of DPHM programs and issues from a Canadian Aerospace sector 
perspective. 

In 2004, the working group developed a technology insight document [3]. This insight document 
describes the DPHM initiative and technology concepts. The basic definitions and terminology, 
which are largely derived from the Joint Strike Fighter (JSF) terminology, are given below [5]: 

• Enhanced diagnostics: the process of determining the state of a component to
perform its functions having a high degree of fault detection and fault isolation
capability with very low false alarm rate;

• Prognostics: the actual material condition assessment which includes predicting and
determining the useful life and remaining performance life of components by
modeling fault progression;
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• Health management: the capability to make intelligent, informed, appropriate
decisions about maintenance and logistics actions based on diagnostics/prognostics
information, available resources and operational demand.

The concepts of data mining and data fusion are also defined in the context of DPHM:

• Data mining: machine learning, statistical and soft computing techniques to develop
diagnostic and predictive models from data.

• Data fusion: the integration of heterogeneous data produced throughout the operation
of modern and future aircraft;

The role of data mining and data fusion in the DPHM concept and architecture can be identified 
from these definitions. Data mining enables the transformation of large amounts of data into 
useful knowledge which then supports the decision making process. Data fusion is to fuse 
heterogeneous data in varied formats and at diverse levels. While data fusion can be applied to 
process sensory data, it can also be used to facilitate decision reasoning through fusing multiple 
evidences derived from measurements, depending on the application requirements. Therefore, 
data fusion and mining methods provide learning and reasoning functionalities that can 
characterize and predict the component or subsystem states from available data [6].

Figure 1: Official website of Canadian aerospace industry DPHM. 
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1.3 Overview of R&D Efforts

The overview provided in this section focuses on R&D efforts within the National Research 
Council of Canada (NRC).

1.3.1 Signal-Level Data Fusion

A study by the Institute for Aerospace Research (IAR) of the National Research Council Canada 
(NRC) investigated the fusion of multi-modal non-destructive inspection (NDI) data for the 
detection and quantification of hidden corrosion in aircraft lap joints [7]. The NDI techniques 
considered included multi-frequency eddy current, pulsed eddy current, and enhanced visual 
inspection. The multi-source data fusion is implemented at the signal level for image 
enhancement, classification, and quantification. For example, as illustrated in Figure 2, each NDI 
technique provides an estimation of the material loss through a corresponding calibration 
procedure. Each measurement is represented by a voltage or gray scale value. The percentage of 
material loss is estimated from the calibration with such value. To obtain enhanced results, signal-
level fusion for the inspection results with different techniques was implemented.  Applying 
wavelets and image pyramid transform, Bayesian inference, Dempster-Shafer evidence theory, 
and generalized additive model to the multi-modal NDI data, better estimation and 
characterization of the corroded joints are made [8-10]. The corrosion is characterized by the 
percentage of material loss by layer. Higher accuracy was achieved when employing data fusion 
[7, 11-12]. 

Figure 2: Fusion of multi-modal NDI data for corrosion detection and quantification in aircraft 
lap joints. 

1.3.2 Data Mining

Another study by the Institute for Information Technology (IIT) investigated the use of data 
mining techniques for the application of aircraft component replacement [13]. Three predictive 
models were employed: decision tree, instance-based learning, and naive Bayesian learning. 
These models predicted the need for replacement of various aircraft components based on more 
than three years of data from a fleet of 34 Airbus A-320. Additionally, the failure of start motor 
was predicted with rough set theory in [14].  As illustrated in Figure 3 [13], four basic steps are
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required for the collection and accumulation of representative and valuable data for prediction 
purposes [15-16].  These are data gathering, data labelling, model building, and model evaluation.
It should be highlighted that the building of data mining models requires extensive integrated set 
of data with specific inputs and outputs. 

Figure 3: Development of data mining techniques for application of aircraft component 
replacement. 

1.3.3 NRC Collaborative Research 

Recently, a collective effort between IAR and IIT, has focused on DPHM applications. An open 
system architecture condition based maintenance (OSA-CBM) was proposed as shown in Figure 
4 [12]. The whole process included data acquisition, manipulation, detection, health assessment,
health prediction, and action recommendations. 

Figure 4: OSA-CBM functional blocks. 
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Figure 5: An integrated framework of a Prognostics Health Management system (PHM). 

Figure 6: A high-level integrated framework infrastructure. 
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In addition, an integrated framework of a Prognostics Health Management system (PHM), shown 
in Figure 5 was developed [17]. The framework that was considered for aircraft propulsion 
systems consists of three main sub-frames: life prediction, state awareness, and information 
management. The objective of the sub-frame state awareness is to deliver awareness of 
component state of health and performance. The information management sub-frame is to build 
data-driven PHM models for component failure predictions and anomaly detection. These life 
prediction models will further be fused or combined with the model-based state awareness and
life prediction approaches to achieve a more accurate and robust result. An open software 
platform called EBM3 (Environment to Build Models for Maintenance of Machinery) was 
developed to incorporate multiple PHM functionalities.

A high-level infrastructure of the integrated framework of a PHM system is given in Figure 6 
[17].  To deliver core PHM functionalities, three central modules are identified, i.e. data 
processing, information creation, and reasoning, where data fusion is identified as a key
component in the "information creation" module. The data mining technique could be applied in 
the "reasoning" module for diagnostics and prognostics.
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2 Diagnostics, Prognostics and Health Management 

2.1 Concepts

Diagnosis and prognosis are assessment processes for a system's health (past, present, and future) 
based on observed data and available knowledge [18]. Figure 7 illustrates the functions of 
diagnosis and prognosis in condition-based maintenance. According to Hess et al. [15,16], 
prognostics is defined as the capability to provide early detection and isolation of precursor 
and/or incipient fault condition of a component or sub-element failure , and to manage and predict 
the progression of the possible failure. This definition includes diagnosis and prognosis for
condition-based maintenance (CBM) and decision making. Health management uses health 
monitoring tools and techniques to detect structural damage, evaluate residual strength and then 
estimates remaining useful lifetime (RUL) [19].

Two steps are involved in DPHM applications: system development and system implementation 
[20]. As illustrated in Figure 8, the development process begins from the identification of 
components or subsystems critical to the performance and reliability of the overall system. Once 
the components or subsystems are identified, appropriate sensors are selected and instrumented. 
Physical models of the selected components or subsystems are built and used in model-based
diagnosis and prognosis. These models employ algorithms based on physical models. At the 
implementation step, selected sensors or sensing units collect three types of data: data from 
healthy and working systems, data from systems with faults, and data from system's transitional 
failure stage. Features related to the components health state are extracted from the collected data. 
Then, algorithms for fault and damage detection are applied and the remaining useful life is 
estimated from the prognostic modules. 

Figure 7: Diagnosis and prognosis in condition-based maintenance. 
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Figure 8: DPHM system development and implementation. 

2.2 Implementation 

2.2.1  An Integrated Diagnostics and Prognostics Framework

A framework for integrated diagnosis and prognosis system (IDPS) was proposed by Qualtech 
System Inc. as illustrated in Figure 9 [18]. With this framework, one can detect degradation, 
anomalies, failures, and causes while being able to assess the health of the system and determine 
the maintenance requirements.

The IDPS consists of five key components: 

1. System configuration editor;

2. Executive;

3. Signal processing module;
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4. Diagnostic module;

5. Prognostic module;

6. Database.

The system configuration editor provides an environment for editing system models, diagnostic 
and prognostic test definitions. The executive is a run-time engine that manages data retrieving 
from a database or a data acquisition environment. The signal processing module is responsible 
for feature selection, treatment of reduced/missing data, and training set usage. The diagnosis 
module provides diagnoses in the presence of multiple and simultaneous failures using a multi-
signal modeling methodology. The prognosis module carries out the usage and useful remaining 
life calculations, while the database is used for local and varied data management.

Figure 9: An integrated DPHM system architecture. 

2.2.2  Interactive Vehicle Health Management (IVHM) Technology

An IVHM system for air and space transportation systems was proposed in [21] (Figure 10). The 
goal of this system is to develop validated technologies for automated damage detection,
diagnosis, and prognosis [21]. There are two types of diagnostic and monitoring systems, i.e. 
active sensing and passive sensing, presented in [21]. In the active sensing mode, sensors data are 
collected and diagnostic information is generated. For example, piezoelectric sensors are active 
transducers acting for both the generation of controlled diagnostic signals and the collection of 
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measurement data. The passive system is to monitor changes in the environment, such as loads 
and impacts [22]. This information is sent to other sub-systems for estimating the residual 
strength and remaining useful lifetime in order to optimize the performance and off-service 
schedule of the transportation system [21]

Figure 10: The interactive vehicle health management (IVHM) system. 
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3 Aircraft DPHM 

3.1 Engine Health Management

Prognostic approaches for gas turbine engine health management utilize measured or inferred 
features as well as different models to predict the condition of the engines’ performance and 
health status. There are seven approaches proposed in [23]. 

• Component reliability and usage-based approaches: In a statistical reliability or
usage-based approach, historical failure data or operational usage profile data are
used to predict the failure or degradation of a component.

• Performance trend-based approaches: In this approach, trend deviations and
associated change rates for specific engine features or measurements from normal
operating condition are tracked. This approach requires sufficient sensory data and
the parametric conditions of a known performance.

• Data-driven approach: In this approach, nonlinear network approximators are used
to predict future failure based on historical failure data. The data-driven methods
include artificial neural networks and fuzzy logic systems.

• State estimator based approaches: In this state estimation technique, Kalman filters
are used to predict future feature states or systems’ behavior through the
minimization of error between the model and the measurement.

• Physics-based modeling approaches: In physics-based model, the damage as a
function of operating conditions, can be calculated and determined.

• Probability density function for remaining life: The remaining useful life (RUL)
failure probability density function (PDF) is employed to determine the RUL of an
engine component. The engine component will be removed from service before
attaining a high probability of failure (e.g. a just-in-time point is defined for removal
from service that corresponds to a 95% probability that the component has not yet
failed).

• Adaptive prognosis: In the adaptive prognosis module, current available information
is used to update prognosis PDF so that a more accurate prognosis can be established.

The architecture of a distributed prognosis system is illustrated in Figure 11 and as stated in [23], 
there are many benefits to this type of architecture:

• Optimal computational resource management;

• "Smart subsystem" concept support;

• Multiple faults and damages isolation and assessment;
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• Multiple data and information sources capability management;

• Systems degradation capture and localization.

The challenge for the design of a prognostic system remains the ability to fuse measured data and 
use the results from physics-based models to estimate current and future damage states. The 
potential for fusing multi-source measurements from C17-T1 flight was investigated [24] and
applied to C17-T1 PHM. Positive impact of the data fusion for gas path analysis was observed. 

Figure 11: Distributed prognostic system architecture.

3.2 Actuator Health Management

Impact Technologies developed a prognostic and health management (PHM) methodology for 
aircraft actuator components [25]. This data-driven approach only requires data collected within a 
flight control system and enables faster algorithm run-times and lower development costs 
compared with physical modeling. The overall process flow is given in Figure 12 [25]. 

The flight control data are pre-processed using a “mode detect" algorithm, which recognizes 
certain operational regimes from the load profiles. The processed data are further extracted for 
features that are relevant to the current health of the system. Fast Fourier transform and neural 
networks are employed to extract features from sensor data. A fuzzy logic classification system 
establishes the relation between extracted features and current health status. The fusion operation 
combines the operational mode information with the outputs from the classifiers to produce a 
health state condition [25]. The prognostic reasoner predicts the remaining useful life within 
specified confidence bounds using the classification and fused information. Kalman filtering is 
used to predict future health state based on historical health data. 
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Figure 12: Data-driven methodology for actuator PHM. 
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4 Functionalities of Data Fusion and Data Mining 

4.1 Concepts of Data fusion and Data Mining

A definition of data fusion, as recommended by the U.S. Department of Defense Joint Directors 
of Laboratories Data Fusion Subpanel [26], is 

"data fusion is a multilevel, multifaceted process dealing with the automatic detection, 
association, correlation, estimation, and combination of data and information from 
multiple sources."

According to [27], the definition of data mining is

“data mining is an analytic process designed to explore data in search of consistent 
patterns and/or systematic relationships between variables, and then to validate the 
findings by applying the detected patterns to new data.”  

The ultimate goal of data mining is prediction. The techniques used in data mining include: 
regression, classification, time series, association and sequence analysis, and clustering. It is a 
combination of three technologies, namely computing power, statistical learning algorithms and 
tools, and advances in data gathering and management. 

4.2 Role of Data fusion and Data Mining

As described in the Canadian Insight Document [28], data mining employs all machine learning, 
statistical and soft computing techniques to develop data driven diagnostic and predictive models; 
whereas, data fusion employs techniques and software to integrate heterogeneous data. 

4.2.1  Role of Data Fusion

Figure 13 illustrates the role of data fusion within a DPHM process [29]. The fusion of multi-
sensory data permits feature extraction and desired signals qualification. Coupled with 
experience-based information or physical model predictions, these provide optimal diagnostic and 
prognostics tools. 

4.2.1.1 Fusion of information from sensors and models

As described in [30], sensor data are available in two forms: state awareness data and usage data. 
The state awareness sensors provide information about the current state of material health from 
initial indications of defect to crack size estimations. The uncertainties of state awareness sensors 
include false alarms and measurement errors. Usage sensors, directly or indirectly, provide 
information on external impacts that may lead to material damage. Data from usage sensors may 
include information about local stresses and environmental parameters (e.g. such as temperature, 
humidity, and local chemistry.)  The uncertainties of usage sensors include measurement and 
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mapping errors (translation of one type of measurement like accelerations into another data form
such as local stresses) [30].

Figure 13: Role of data fusion in DPHM. 

Failure models use a variety of input parameters to provide estimates of current state and 
anticipation of future usage. The input parameters reflect in general material properties and 
environmental conditions.  Due to the limited knowledge of the structure and/or the inadequate 
representation of its physical characteristics, parameters uncertainties are characterized 
statistically.

As both models and sensors are imperfect, it is necessary to use the information from both models 
and sensors to dynamically adjust any predictions. Such predictions reflect health condition at 
future points, and/or at expected times to reach specified health conditions [30]. The fusion of 
both sensor and model data reduces the uncertainty associated with output, represented as the 
probability of failure (POF). A two-stage process of reasoning and prediction fusing sensors and 
models data is proposed in [30] and is illustrated in Figure 14. In the first stage, sensors are used
to detect the presence or absence of a defect, i.e. the current state. The assessment of current state 
defines the probability density of the time to form a crack of specific size. This assessment is used 
to update the input parameters to failure models through the Bayesian theorem. The second stage 
combines updated model predictions and its uncertainties with current state estimates to 
determine the probability of failure as a function of time and/or usage.  

In [31], another fusion scheme based on Kalman filter was proposed to fuse imperfect state 
information such as environmental measurements with failure models. This type of fusion enables 
an adaptive prognosis for structural corrosion damages. 

DRDC Atlantic TM 2011-082



Figure 14: Process of reasoning and prediction by fusing information from sensors and models. 

A suit of PHM algorithms were developed for detecting faults in critical bearings associated with 
aircraft gas turbine engines in [32]. A material-level spall initiation model is used to predict the 
initiation of a fault. A model that relates the survival rate of the bearing to a stress weighted 
volume integral developed by Yu and Harris was adopted [32]. However, the modeling 
predictions have broad confidence bounds due to uncertainties. The health state awareness data 
from sensors can provide measurements of component condition and can be used to update the 
modeling assumptions and reduce the uncertainty. Thus, the fusion of sensor data and 
probabilistic component models can achieve a better decision on the overall health prognostics. 

4.2.1.2 Fusion of different prognostic approaches for uncertainty reduction

Both physics-based model and data-driven model can be used to estimate future failure or damage 
state [33]. The physics-based model requires detailed knowledge about the system, such as 
material properties and dynamic behavior; whereas, a data-driven model needs sufficient data at 
known conditions and damage level.  Both models implementation possesses pros and cons. The 
physics-based model relies on the assumption that the fault mode modeled using the specific 
geometry, material properties, temperature, load, and speed conditions will be similar to the 
actual fault mode [33]. Any deviations in those parameters will likely result in an error that is 
amplified over time. The data-driven model assumes the available data sufficiently maps the 
space and the interpolations/extrapolations from that map can capture the fault rate properly. 
Therefore, it would be beneficial to fuse the output of both methods which may produce a more 
accurate and robust result. 

In [34], two prognostic models were built to estimate bearing indent damage on outer race. The 
physics-based model used historic data and estimated future operating conditions (e.g. material 
properties, geometry, bearing surface interaction, lubrication, and variable operating conditions) 
to determine future condition by providing a probability density function of the remaining useful 
life. The data-driven model estimated the spall growth rate based on speed and load. The fusion 
of these two models is implemented in a prognostic reasoner that employs a combination of 
damage PDFs, subjective quality assessments, and a kernel-based regression through time [34] 
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4.2.1.3 Fusion of multiple classifiers for damage location

Piezoelectric accelerometers were applied to locate damage in starboard wing in a Gnat trainer 
aircraft [35]. Signal features from the accelerometers measurement were extracted. The features 
selection process was conducted by inspecting the transmissibility functions to find small regions 
of the frequency range which distinguishes between damage conditions [36]. Then, a multi-layer 
perceptron (MLP) neural network and a Dempster-Shafer neural network were used to classify 
the damage locations respectively. The results from these two classifiers were fused with 
Bayesian and Dempster-Shafer methods to improve the classification rate. 

4.2.1.4 Fusion of dynamic and performance analyses

A health monitoring system was developed to diagnose the degradation of aircraft hydraulic 
pumps [37]. The dynamic analysis of high frequency content of pump pressure and case drain 
signals provided eight reliable diagnostic features. Each four were used for pump pressure and 
case drain, respectively. The performance analysis is based on a physics-based approach, which 
models the performance characteristics of the pump. Fuzzy logic based classification was 
performed for each analysis approach and Bayesian fusion was applied to fuse the classification 
results. The procedure for health monitoring of an aircraft hydraulic pump is illustrated in figure 
15[37].

Figure 15: Health monitoring process of an aircraft hydraulic pump. 

4.2.2 Role of Data Mining
Data mining searches historical data for unknown patterns. It helps to determine [38]: 

Which component or subsystem should be monitored?
How often should these components or subsystems be monitored?
What types of failures occur on a particular component or subsystem?
What are the warnings of a particular failure?

Data mining methods are also helpful in sensor placement and in determining alert thresholds.
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4.2.2.1 Data mining for decision support analyses

Data mining is the process of searching and retrieving useful information from a large data set. It 
has been applied to decision support in vehicle health management [39]. The process for building 
and applying data mining models is depicted in Figure 16. The models building step is based on a
collected diagnostic, prognostic, and maintenance action data set, where the attributes of past 
occurrences and corresponding actions are known. In the application step, these models are used 
to estimate the outcome of current situations. Domain knowledge is usually needed to evaluate 
the models.  

In the modeling step, the raw historical data need to be manipulated to get a set of attribute 
vectors, which represent a higher level data abstract with complex hybrid information. Such 
vectors may comprise historical data entries, fault index number, equipment identifiers, test 
identifiers, and other relevant data. The vectors are fed into the data mining block for the learning 
process, which generates data mining models. These vectors are used as training examples. The 
application step applies learned models to new data. The same attribute vectors are created for 
new data. Decisions are made based on the projected outcome of the current input attributes. It 
should be mentioned that the quality of the model depends on the quality and span of the data 
used for training. A detailed discussion can be found in [40]. 

4.2.2.2 Data mining for system development

Data mining can facilitate the DPHM system development from several aspects [20]. First, data
mining techniques can help analyze system degradation mechanisms and identify parts usage, 
repairs, maintenance, and logistic impacts on component failures. Second, data mining techniques 
can select appropriate sensors for monitoring based on sensors' reliability, performance records 
and false alarm rates. The sensor reliability information can be used in the diagnostic and 
prognostic algorithms, where probabilistic weight may be applied. Third, the models for fault 
detection, diagnosis, and prognosis can be built with data mining techniques from historical data. 
The challenge is that there are not enough data, which is statistically significant and 
representative for the performance of the system.

4.2.2.3 Data mining for system implementation

In the implementation of a DPHM system, data mining can be used to update fault detection and 
diagnosis algorithms when new data become available. Data mining techniques can also be used 
to collect relevant data to build models based on system inputs and outputs so that the future 
usage of the components or subsystems can be predicted. With this information, the prognostic 
algorithm can estimate the useful remaining life.
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Figure 16: Data mining process for decision support. 

4.3 Data Fusion and Data Mining Technologies

Data fusion can be implemented at three levels, i.e. sensor level, feature level, and decision level. 
At its lowest (sensor) level, the fusion operation combines information from multiple sensors to 
validate signals and derive features. At its highest level, the fusion operation combines derived 
features to obtain diagnostic information. Additionally, at this level, the fusion incorporates 
experience-based information or physical model predictions with signal-based information to 
facilitate the decision making process. This is illustrated in Figure 17. The implementations for 
the three-level fusion are different processes.  Three approaches to data fusion architectures are 
presented in Figure 18 [41]. These three approaches correspond to the three levels.  The 
centralized fusion aligns and correlates multi-sensor data in its raw form. The autonomous fusion
implements feature extraction before the fusion process. This operation will significantly reduce 
the dimensionality of the information. The hybrid fusion considers both raw sensory data and 
extracted features. Therefore, it provides a better solution to practical applications. 
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Figure 17: Different level data fusion in a DPHM framework. 
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(a) Centralized fusion

(b) Centralized fusion

(c) Centralized fusion

Figure 18: Data fusion architectures (MUX: multiplexer).
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4.3.1  Data Fusion Algorithms

There is a variety of multi-source data fusion algorithms that have been developed in recent years. 
A comprehensive review of the fusion methods and descriptions of detailed implementation are 
available in relevant monographs and literatures [42]. This section discusses only work that has 
been applied in DPHM applications.

4.3.1.1 Bayesian inference and Dempster-Shafer theory

Bayesian inference provides a mechanism to calculate a posteriori probability of a hypothesis 
being true given support evidence.   The hypothesis space for fault types is 1 2{ , , , }mf f f ,

which is mutually exclusive and exhaustive with ( ) 1i
i

P f . The Bayesian updating is given

as:

( | ) ( )
( | )

( | ) ( )
j j

j
i i

i

P O f P f
P f O

P O f P f
(4.1)

where ( | )jP f O is the a posteriori probability that fault ( )jf is true given a diagnostic output 

( )O . The probability of getting a diagnostic output ( )O for a given fault ( )jf is denoted by 

( | )jP O f where ( )jP f is the probability of the fault jf  occurring or the a priori probability for 

the fault ( )jf . For multiple diagnostic outputs, the probability of fault is expressed as:

1 2
1 2

1 2

( ) ( | ) ( | ) ( | )
( | )

( ) ( | ) ( | ) ( | )
i j j n j

j n
i i i n i

i

P f P O f P O f P O f
P f O O O

P f P O f P O f P O f
(4.2) 

The probability ( | ), ( 1, 2, , )k jP O f k n can be learned from the available training data. 
However, the a priori probability is not easy to obtain. In other words, the probability of the fault 
( )jf  occurring is not known in practice. Sometimes, an equal a priori probability is assumed and 
may lead to even worse results. 

In the Dempster-Shafer approach, a frame of discernment is constructed for every possible 
hypothesis. Every hypothesis is assigned a value by a mass function (4.3). An updating process 
for the mass values ( )im A  and ( )jm B is expressed as:

( ) ( )
( )

1 ( ) ( )

i j
A B C

ij
i j

A B

m A m B
m C

m A m B
(4.3)
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The output is the belief value, i.e. total probability mass, which provides information on how 
much a measurement matches the distribution of certain data types. The definition of the mass 
function is critical for using the Dempster-Shafer approach and depends on the specific 
application. 

4.3.1.2 Disjunctive, conjunctive, and compromise feature fusion

In feature-based fusion, a projection function  is used to project a vector of the prior perception 

priorB  to a posterior consensus posteriorB , i.e. [43]

: ,for andn
prior posterior prior posteriorB B B I B I (4.4) 

where I is a measure set of the degree of each prior perception, or the degree of the posterior 
consensus [43]. There are three basic operators for feature-based data fusion: disjunctive, 
conjunctive, and compromise [44]. If there are two prior perceptions with their degree of x  and
y , the posterior consensus will be:

is disjunctive if ( , ) max( , )x y x y ;

is conjunctive if ( , ) min( , )x y x y ;

is compromise if min( , ) ( , ) max( , )x y x y x y .

Considering the case of N  sensors, ( 1, , )js j N , each sensor possesses a prior perception as 

to damage, ( | ) ( 1, , )jP E s j N . There are:

1

2
1 1

2 1

1

1 2

( ; , , , ) ( | ) ( | )· ( | )

( | )· | · ( | )

( | )· ( | ) ( | )

N N N

dis i N i i j
i i i j

N N N

i j k
i i j j k

N

E s s s P E s P E s P E s

P E s PE s P E s

P E s P E s P E s

           (4.5)

2 1 2( ; , , , ) ( | )· ( | ) ( | )conj i N NE s s s P E s P E s P E s  (4.6) 

2
1( ; , , , ) ( | )

N

comp i N i
i

E s s s P E s
N

(4.7) 

where E can be a variable that characterizes a specific damage parameter, such as location, 
degree, and orientation [43]. The posterior perception posteriorB can be written as:
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1 2( , , , )posterior NB s s s (4.8) 

In practice, it is required to establish the prior perception for all available sensors. There are two 
steps involved which vary from one application to another:

• Identification of all possible damage locations from individual sensor; and
• Construction of prior probabilities with regard to damage occurrence of each sensor

at all locations.

4.3.1.3 Linear combination in the hidden semi-Markov model

A framework based on hidden semi-Markov model (HSMM) was introduced in [45]. The sensor 
fusion is implemented within this framework by discriminant function analysis.  The hidden state 
at time t is defined by ts and the observation sequence is defined by O . For a specific 
component or system, health state can be defined as 1 2{ , , , }NH h h h , where N represents the 
distinct sequential states for a failure mechanism. If the duration of state i is id , the lifetime of 

the component or system is determined as 
1

N

i
i

T d .

For diagnosis, the HSMMs are trained to recognize N different states of a component or system 
for a given failure mode. The prognosis is implemented by the health-state duration models [45].
Within this hidden semi-Markov model (HSMM) framework, the weights for various sensors are 
estimated using discriminant function analysis and combined with a linear combination method. 

In discriminant function analysis, the weighting procedure is guided by the F values. The F
value for a variable indicates its statistical significance in the discrimination between groups. In 
other words, it is a measure of the extent to which a variable makes a unique contribution to the 
prediction of group membership. Therefore, the weights for different sensors can be obtained as:

1

i
i N

i
i

Fw
F

(4.9) 

where iw denotes the weight for sensor i , iF denotes the F value for sensor i , and N is the 
number of sensors. Once the weights for the different sensors are obtained, a linear combination 
based fusion scheme in HSMMs is developed:

1

N

i i
i

Y w O (4.10)

where iO is the measurement from sensor i  and Y is the fused result.
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4.3.1.4 Fuzzy measures and integrals

The description of fuzzy integral is based on [37]. A fuzzy measure on the set X of criteria is:

: ( ) 0,1P X (4.11) 

which satisfies:

( ) 0, ( ) 1X (4.12) 

implies ( ) ( )A B X A B (4.13) 

where 1{ , , }nX x x is the set of criteria, ( )P X is the power set of X ,  i.e. the set of all 
subsets of X , ( )A represents the weight of importance of the set of criteria A and denotes 
the empty set.

If a set function : ( ) 0,1g P X satisfies ( ) 1g X ,

If A B ,

( ) ( ) ( ) · ( )· ( )g A B g A g B g A g B

1

then g is a fuzzy measure. The g  is determined by 

1

1 (1 ) 1
n

i
i

g g (4.14) 

The Choquet fuzzy integral of a function h with respect to  is defined by 

1 1
1

( ), , ( ) ( ) ( ) ( )
n

n i i i
i

C h x h x h x h x A (4.15) 

where ( )A is the fuzzy measure representing the importance of the set of criteria A , where 

1{ , , , }i i i nA x x x .

The fuzzy integral data fusion was applied to the feature level and decision level for machinery 
fault diagnosis [37] where improved performance is observed.
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4.3.2  Data Mining Algorithms
Varied data mining algorithms have been developed and applied to structural health monitoring 
applications.  Table 1 and Table 2 summarize some current usage of these algorithms [46]. As the 
data mining technique utilizes statistical learning algorithms and tools, which are well 
documented in literatures like [27], these technical details will not be duplicated in this report. 

Table 1: Data mining algorithms applied to fault detection and diagnosis. 

Applications Data mining algorithms References
Failure detection from sensors Hidden Markov models (HMM) [47]
Helicopter fault detection Ensembles of neural nets [48]
Inductive monitoring system Clustering methods [49]
Rocket propulsion systems Orca and GritBot [50]
Space shuttle main engine Beacon-based exception analysis [51]
Aircraft avionics diagnosis Bayesian belief network [52]
Diagnosis of faults in valves of 
reciprocating pumps

Support vector machine [53]

Table 2: Data mining algorithms applied to prognosis. 

Applications Data mining algorithms References
Structural prognosis Dynamic wavelet neural 

networks, reinforcement learning, 
and genetic algorithm

[54]

Gas turbine engine Neural nets with rule extractors [55]
Helicopter gearboxes Polynomial neural networks [56]
Batteries Autoregressive moving average,

neural net, and fuzzy logic 
algorithms

[57]

Complex systems Bayesian belief net (BBN) [58]

4.4 Performance Metrics for Data Fusion
The fusion of multi-source data or information is to reduce the uncertainty associated with the 
sensing and monitoring and improve the accuracy of the produced/expected data or information. 
The fusion performance evaluation depends on the specific application and the fusion algorithms 
used. The performance metrics also vary with the fusion level due to the change of requirements. 
For instance, in the application of defect detection, the sensor level fusion can be assessed by 
comparing the probability of detection (POD) curve of the fused result with the sensors' POD 
curves. The benefits of data fusion can also be assessed from system point of view. In [41], the 
technical value of a diagnostic or detection technology for a particular failure mode is defined as 
a cost function: 

TechnicalValue ( ) (1 )*( )f f D fP D I P P P  (4.16) 

where:
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fP : Probability (time-based) of occurrence for a failure mode
D : Overall detection confidence metric score

: Savings realized by detecting a fault prior to failure
I : Overall isolation confidence metric score

: Savings realized through automated isolation of a fault

DP : False positive detection metric score
: Cost associated with a false positive detection

IP : False positive isolation metric score
: Cost associated with a false positive isolation

The value of a fusion-based diagnostic tool is the summation of the benefits over all the failure 
modes that it can diagnose less the implementation cost, operation and maintenance cost, and 
consequential cost of incorrect assessments as expressed:

Failure modes
TotalValue TechnicalValue (1 )i cA O P  (4.17) 

Where,
A : Acquisition and implementation cost 
O : Life cycle operation and maintenance cost

cP : Computer resource requirement score 
: Cost of a standard computer system 

Detailed information about the performance and effectiveness metrics is available in [59]

4.5 Potential Use of Data Mining and Fusion Techniques

The potential use of the data fusion and data mining techniques is summarized in Table 3. It can
be seen that the data fusion and data mining techniques are exploited and used in almost every 
function in SHM or DPHM systems. They provide a flexible and efficient tool for the 
implementation and integration of a SHM and DPHM system.

Table 3: Potential use of data fusion and mining techniques. 

Functionality of SHM and DPHM Data fusion Data mining
Identification of critical components or subsystems
Sensor selection
Sensor validation
Data and signal feature extraction
Fault and damage detection
Diagnostics
Prognostics
Decision making

DRDC Atlantic TM 2011-082



5 Summary and Recommendations

This document provided an overview of research and development efforts in the areas of data 
fusion and data mining techniques and methodologies for diagnostic, prognostics and health 
management applications, including structural health monitoring.  The role of data fusion and 
data mining techniques in these fields was presented. When the information transits from a low 
level to a high level, data fusion takes advantage of the heterogeneity with multiple information 
sources to derive a more accurate and abstract result. 

The implementation of data fusion and data mining algorithms is a computational issue, which 
relies on sensors, available and historic data. The TRL (technology readiness level) of the 
techniques used depends on how the algorithms are used, e.g. on-line or off-line, onboard or off-
board. The technology efficiency also depends on the availability of computational power and 
resources. The effectiveness or performance of the sensor level fusion is determined by the choice 
of sensors, which can be complementary to each others. For data mining, the collection of 
representative historical failure data is important for the success of this technology.

The following recommendations are provided for potential future activities. 

1. As described in this report, sensor-level fusion relies on the reliability of measurements,
which is typically represented by a ROC (receiver operating characteristics) curve or a POD
(probability of detection) curve. The determination of sensor reliability is critical for multi-
sensor applications in a DPHM system. Sensor technologies remove some uncertainties
associated with human inspection, but introduce new uncertainty associated with sensors.
Therefore, a sensor reliability model needs to be developed to understand the uncertainty
associated with sensor measurements. Such information can further be used at the sensor data
fusion level for reduced prediction uncertainty.

2. Carry out redundancy analysis for sensor failures and sensor anomalies to understand the
robustness of the sensing system.

3. Develop a test bed for the evaluation of existing and emerging data mining and data fusion
methodologies, algorithms and techniques.

4. Although physics-based models are not easily obtained, the effort on developing such models
is still encouraged. It is a source of information for data fusion algorithms and it is a tool that
is used to compare data-driven models or/and real-time (or near real-time) sensory data.

5. A software platform named EBM3 (Environment to Build Models for Maintenance of
Machinery) was prototyped by the National research Council [60] and was used for executing
data mining approaches. An open-architecture platform is needed for the development and
implementation of aircraft SHM systems. This platform is not only needed for processing
data but also for integrating the whole SHM system. It may encompass all activities for
information processing and analysis. Different modules can be implemented and added to this
platform, and available for reuse in different applications. It is recommended that the
suitability of such a software platform, for example EBM3, should be evaluated.
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