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Abstract

A survey on the state of data mining and fusion technologies and methodologies for structural
health monitoring (SHM) is presented in this document. Current research and development efforts
are briefly introduced and reviewed. Implementation and application of the diagnostics,
prognostics, and health management (DPHM) concepts are also presented, highlighting the
significance of data mining and fusion as key components of the concept’s architecture.
Methodologies and fusion performance metrics are further identified, reviewed and summarized
and the potential use of data mining and fusion for SHM and DPHM applications is also
discussed. Recommendations on future research and development and on the most promising
approaches are also provided.

Résumé

Le document présente une étude sur les technologies et les méthodologies relatives a I’exploration
et a la fusion de données pour la surveillance de 1’état de structure. On y dresse aussi brievement
la liste des efforts actuels en recherche et en développement. On aborde la mise en oeuvre et
I’application des concepts de diagnostics, de pronostics et de gestion de 1’état, dans lequel on met
en évidence I’importance de 1’exploration et de la fusion de données comme composantes clés de
I’architecture du concept. Les paramétres de rendement des méthodologies et de la fusion sont
recensés, examinés et résumés. On discute de I’emploi possible de 1’exploration et de la fusion de
données pour les applications de surveillance de 1’état de structure et de diagnostics, de pronostics
et de gestion de 1’état. On formule des recommandations en vue de travaux futurs de recherche et
de développement et sur les approches les plus prometteuses.
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Executive summary

Data Mining and Fusion in Health Monitoring Applications

Nezih Mrad; Zheng Liu; DRDC Atlantic TM 2011-082; Defence R&D
Canada - Atlantic; October 2012.

Introduction or background: The philosophy for aircraft maintenance evolves with the
emergence of new technologies and methodologies from run-to-failure maintenance and time-
based preventive maintenance, to condition-based maintenance (CBM) so that major maintenance
expense can be saved. The CBM program only conducts maintenance on the evidence of need,
which comes from the information collected though health monitoring. For complex systems like
aircraft structures, structural health monitoring (SHM) is a key step to implement a CBM
program. In addition, diagnostics and prognostics are two important aspects of the CBM
program. Two critical techniques, namely data fusion and data mining, play a significant role in
developing better understanding and interpretation of collected information with an SHM or
CBM framework.

Results: This document provides a state-of-the-art review of data fusion and data mining
techniques in the realm of aircraft SHM and diagnostics, prognostics, and health management
(DPHM). Current research and development work at National Research Council is briefly
reviewed. The role of data fusion and data mining in the SHM and/or DPHM systems is
identified and described. This report also summarizes the algorithms and methodologies, as well
as the fusion performance assessment metrics that have been applied to SHM or DPHM
applications. Although most of the techniques themselves are not new and have been used in
other fields already, the novel use of these techniques provides a better solution to the specific
application. A recommendation for future research and development is given at the end of the
report.

Significance: This review on data mining and data fusion methodologies, concepts and
techniques introduces the links that exist between SHM, CBM, and DPHM and the significance
of the integration of these system components within the overall framework. It is anticipated that
this knowledge and understanding will contribute to efforts in the development of a CF CBM
strategy.

Future plans: Selected data mining and data fusion approaches will be demonstrated as a
component of the current structural health monitoring demonstration activity.

DRDC Atlantic TM 2011-082 il



Sommaire

Data Mining and Fusion in Health Monitoring Applications

Nezih Mrad; Zheng Li; DRDC Atlantic TM 2011-082; R & D pour la défense
Canada — Atlantique; Octobre 2012.

Introduction ou contexte : La philosophie associée a la maintenance des aéronefs évolue avec
I’arrivée de nouvelles technologies et méthodologies, allant de la maintenance visant les
défaillances et la maintenance préventive en fonction de la durée, a la maintenance selon 1’¢tat
(MSE), dans le but de réduire les grandes dépenses en maintenance. Le programme de MSE
fonctionne selon les besoins constatés, a partir de 1’information recueillie au moyen de la
surveillance de 1’état. Dans le cas de systémes complexes comme les structures d’aéronefs, la
surveillance de 1’état de structure est une étape clé pour la mise en oeuvre d’un programme de
MSE. De plus, les diagnostics et les pronostics sont deux aspects importants d’un programme de
MSE. Deux techniques essentielles, a savoir 1’exploration de données et la fusion de données,
jouent un roéle prépondérant dans la compréhension et dans I’interprétation de I’information
recueillie dans le cadre des programmes de MSE et de surveillance de 1’état de structure.

Résultats : Le document présente une étude de 1’état actuel des techniques d’exploration et de
fusion de données dans le domaine de la surveillance de I’état de structure et du diagnostic, du
pronostic et de la gestion de I’état des adronefs. Les travaux actuels en recherche et
développement au Conseil national de recherches sont brievement abordé€s. Le rapport comporte
aussi un résumé des algorithmes et des méthodologies , de méme que les parametres d’évaluation
du rendement de la fusion des données qui ont servi dans les applications de surveillance de I’état
de structure et de diagnostic, de pronostic et de gestion de 1’état. Méme si la majorité de ces
techniques ne sont pas nouvelles en soi, et ont servi dans d’autres domaines, leur utilisation dans
de nouveaux domaines offre une meilleure solution pour des applications précises. A la fin du
rapport, on formule une recommandation pour des travaux futurs de recherche et de
développement.

Importance : Cette étude sur les méthodologies, les concepts et les techniques d’exploration et
de fusion de données montre les liens qui existent entre la surveillance de 1’état de structure, la
maintenance selon 1’état (MSE) et le diagnostic, le pronostic et la gestion de 1’état et I’importance
de I’intégration de ces composantes de systéme dans le cadre général. On prévoit que ces
connaissances contribueront aux efforts de développement d’une stratégie de MSE pour les FAC.
Plans futurs : Des approches choisies en matiere d’exploration et de fusion de données seront
démontrées au titre d’une composante de 1’activité actuelle de démonstration de surveillance de
1’état de structure.

Plans futurs : Des approches choisies en matiére d’exploration et de fusion de données seront

démontrées au titre d’une composante de 1’activité actuelle de démonstration de surveillance de
I’état de structure.
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1 Introduction

1.1 Background

Structural health monitoring (SHM) is defined as a process of implementing a damage
identification strategy for aerospace, civil and mechanical engineering infrastructure [1]. The
"health" refers to the ability of the structure to continue to perform its intended function in light of
inevitable aging and damage accumulation resulting from the operational environments. SHM has
recently been recognized as one of the statistical pattern recognition problems. According to the
description in [1-2], the SHM process involves the observation of a structure or mechanical
system over time with periodic measurements, the extraction of damage-sensitive features from
these measurements, and the statistical analysis of these features to determine the current state of
system’s health. Currently, most structural and mechanical system maintenance is carried out on a
time-based mode. The time-based maintenance philosophy is now evolving to a more cost
effective condition-based maintenance (CBM) philosophy. Although the major focus of the
document is on structural health monitoring, a high level view on the use of data fusion and
mining techniques, methodologies and approaches in the context of a much broader concept, i.e.
diagnostics, prognostics, and health management (DPHM), is provided.

This document provides a survey on the state of data mining and data fusion techniques and
methodologies for structural health monitoring (SHM) and prognostic health management (PHM)
applications. It provides a brief overview of some of the research and development efforts. It
reflects on the implementation and application of DPHM, highlighting the significance of data
mining and fusion as key components of the concept’s architecture. Finally, this report presents
methodologies and fusion performance metrics with recommendations for future research and
development and the most promising approaches.

1.2 Definitions and Concepts

An industry lead, government supported acrospace diagnostics, prognostics health management
working group (WG) was established in 2004 [3]. As stated on its official website [4], the
primary objective of this working group is to develop and implement a structured approach for
continuing consideration of DPHM programs and issues from a Canadian Aerospace sector
perspective.

In 2004, the working group developed a technology insight document [3]. This insight document
describes the DPHM initiative and technology concepts. The basic definitions and terminology,
which are largely derived from the Joint Strike Fighter (JSF) terminology, are given below [5]:

* Enhanced diagnostics: the process of determining the state of a component to
perform its functions having a high degree of fault detection and fault isolation
capability with very low false alarm rate;

*  Prognostics: the actual material condition assessment which includes predicting and

determining the useful life and remaining performance life of components by
modeling fault progression;

DRDC Atlantic TM 2011-082 1



* Health management: the capability to make intelligent, informed, appropriate
decisions about maintenance and logistics actions based on diagnostics/prognostics
information, available resources and operational demand.

The concepts of data mining and data fusion are also defined in the context of DPHM:

* Data mining: machine learning, statistical and soft computing techniques to develop
diagnostic and predictive models from data.

* Data fusion: the integration of heterogeneous data produced throughout the operation
of modern and future aircraft;

The role of data mining and data fusion in the DPHM concept and architecture can be identified
from these definitions. Data mining enables the transformation of large amounts of data into
useful knowledge which then supports the decision making process. Data fusion is to fuse
heterogeneous data in varied formats and at diverse levels. While data fusion can be applied to
process sensory data, it can also be used to facilitate decision reasoning through fusing multiple
evidences derived from measurements, depending on the application requirements. Therefore,
data fusion and mining methods provide learning and reasoning functionalities that can
characterize and predict the component or subsystem states from available data [6].

HOME | SITEMAP | CONTACTUS ke

What's New ; 2 Improvements Announced for
Projects b L L¥ 8 £ # ‘ Canada’s Industrial and

— “ , 3 Regional Benefits Policy
Participants . o Thursday September 24, 2009
Steering Committee B e i e
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Tuesday July 18, 2006
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Figure 1: Official website of Canadian aerospace industry DPHM.
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1.3 Overview of R&D Efforts

The overview provided in this section focuses on R&D efforts within the National Research
Council of Canada (NRC).

1.3.1 Signal-Level Data Fusion

A study by the Institute for Aerospace Research (IAR) of the National Research Council Canada
(NRC) investigated the fusion of multi-modal non-destructive inspection (NDI) data for the
detection and quantification of hidden corrosion in aircraft lap joints [7]. The NDI techniques
considered included multi-frequency eddy current, pulsed eddy current, and enhanced visual
inspection. The multi-source data fusion is implemented at the signal level for image
enhancement, classification, and quantification. For example, as illustrated in Figure 2, each NDI
technique provides an estimation of the material loss through a corresponding calibration
procedure. Each measurement is represented by a voltage or gray scale value. The percentage of
material loss is estimated from the calibration with such value. To obtain enhanced results, signal-
level fusion for the inspection results with different techniques was implemented. Applying
wavelets and image pyramid transform, Bayesian inference, Dempster-Shafer evidence theory,
and generalized additive model to the multi-modal NDI data, better estimation and
characterization of the corroded joints are made [8-10]. The corrosion is characterized by the
percentage of material loss by layer. Higher accuracy was achieved when employing data fusion
[7, 11-12].

ET System I voltage 10%

ET System IT voltage _ - | ™ 7.8%
P-ET voltage [ § 12%

'| grayscale —I_: 6.7%

Other NDI grayscale — 11%
- o{ time of fight 5%

Figure 2: Fusion of multi-modal NDI data for corrosion detection and quantification in aircraft
lap joints.

1.3.2 Data Mining

Another study by the Institute for Information Technology (IIT) investigated the use of data
mining techniques for the application of aircraft component replacement [13]. Three predictive
models were employed: decision tree, instance-based learning, and naive Bayesian learning.
These models predicted the need for replacement of various aircraft components based on more
than three years of data from a fleet of 34 Airbus A-320. Additionally, the failure of start motor
was predicted with rough set theory in [14]. As illustrated in Figure 3 [13], four basic steps are
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required for the collection and accumulation of representative and valuable data for prediction
purposes [15-16]. These are data gathering, data labelling, model building, and model evaluation.
It should be highlighted that the building of data mining models requires extensive integrated set
of data with specific inputs and outputs.

Building models to predict need for component replacement

Data Data Modeling & Model
N . : — S .
Gathering Labeling Evaluation Fusion

Final
Models

Figure 3: Development of data mining techniques for application of aircraft component
replacement.

1.3.3 NRC Collaborative Research

Recently, a collective effort between IAR and IIT, has focused on DPHM applications. An open
system architecture condition based maintenance (OSA-CBM) was proposed as shown in Figure
4 [12]. The whole process included data acquisition, manipulation, detection, health assessment,
health prediction, and action recommendations.

Open Systems Architecture Condition Based Maintenance

N (OSA-CBM)

data acquisition

A

data manipulation

A

A

data & state of detection

A

health assessment

health prediction

A

recommendation/advice

Figure 4: OSA-CBM functional blocks.
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Figure 5: An integrated framework of a Prognostics Health Management system (PHM).
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Figure 6: A high-level integrated framework infrastructure.
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In addition, an integrated framework of a Prognostics Health Management system (PHM), shown
in Figure 5 was developed [17]. The framework that was considered for aircraft propulsion
systems consists of three main sub-frames: life prediction, state awareness, and information
management. The objective of the sub-frame state awareness is to deliver awareness of
component state of health and performance. The information management sub-frame is to build
data-driven PHM models for component failure predictions and anomaly detection. These life
prediction models will further be fused or combined with the model-based state awareness and
life prediction approaches to achieve a more accurate and robust result. An open software
platform called EBM3 (Environment to Build Models for Maintenance of Machinery) was
developed to incorporate multiple PHM functionalities.

A high-level infrastructure of the integrated framework of a PHM system is given in Figure 6
[17]. To deliver core PHM functionalities, three central modules are identified, i.e. data
processing, information creation, and reasoning, where data fusion is identified as a key
component in the "information creation" module. The data mining technique could be applied in
the "reasoning" module for diagnostics and prognostics.

6 DRDC Atlantic TM 2011-082



2 Diagnostics, Prognostics and Health Management

21 Concepts

Diagnosis and prognosis are assessment processes for a system's health (past, present, and future)
based on observed data and available knowledge [18]. Figure 7 illustrates the functions of
diagnosis and prognosis in condition-based maintenance. According to Hess et al. [15,16],
prognostics is defined as the capability to provide early detection and isolation of precursor
and/or incipient fault condition of a component or sub-element failure , and to manage and predict
the progression of the possible failure. This definition includes diagnosis and prognosis for
condition-based maintenance (CBM) and decision making. Health management uses health
monitoring tools and techniques to detect structural damage, evaluate residual strength and then
estimates remaining useful lifetime (RUL) [19].

Two steps are involved in DPHM applications: system development and system implementation
[20]. As illustrated in Figure 8, the development process begins from the identification of
components or subsystems critical to the performance and reliability of the overall system. Once
the components or subsystems are identified, appropriate sensors are selected and instrumented.
Physical models of the selected components or subsystems are built and used in model-based
diagnosis and prognosis. These models employ algorithms based on physical models. At the
implementation step, selected sensors or sensing units collect three types of data: data from
healthy and working systems, data from systems with faults, and data from system's transitional
failure stage. Features related to the components health state are extracted from the collected data.
Then, algorithms for fault and damage detection are applied and the remaining useful life is
estimated from the prognostic modules.

Condition-Based Maintenance

Observed (historical} data
and available knowledge Future usage and external factors
L & EE 1E
Diagnosis Prognosis
identify the CHnspR of & problem: anticipate and prevent critical failures:
— anomaly detection; <::> — estimate failure probability distribution;
— root-cause isolation. — predict time to failure.
¥ ¥
Reactive decision Proactive decision
repairfreplacement actions prevent/evasive actions

Figure 7: Diagnosis and prognosis in condition-based maintenance.
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Development

Identify critical components
or subsystems for performance
and reliability of whole system

!

Select sensors for components
or subsystems

Y
Develop physical models for
components or subsystems

Data from
healthy working
gystems

k 4

Develop diagnostic and prognostic
algorithms based on physical models

Detect faulis and damagesi

k

,lEstimate remaining l.lsefull

fe

Figure 8: DPHM system development and implementation.

2.2 Implementation

2.21 An Integrated Diagnostics and Prognostics Framework
A framework for integrated diagnosis and prognosis system (IDPS) was proposed by Qualtech
System Inc. as illustrated in Figure 9 [18]. With this framework, one can detect degradation,
anomalies, failures, and causes while being able to assess the health of the system and determine
the maintenance requirements.
The IDPS consists of five key components:

1. System configuration editor;

2. Executive;

3. Signal processing module;
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4. Diagnostic module;
5. Prognostic module;
6. Database.

The system configuration editor provides an environment for editing system models, diagnostic
and prognostic test definitions. The executive is a run-time engine that manages data retrieving
from a database or a data acquisition environment. The signal processing module is responsible
for feature selection, treatment of reduced/missing data, and training set usage. The diagnosis
module provides diagnoses in the presence of multiple and simultaneous failures using a multi-
signal modeling methodology. The prognosis module carries out the usage and useful remaining
life calculations, while the database is used for local and varied data management.

Prognostics User Interactive Diagnosis
Interface T

— wicided i-—iﬁsu
-_— - .-.I;;""'- r — . - '
1 w W =ill_
28 5F 5 -
= E = LIALL [T
S 8 A | ~
ﬁ = §. —_— =
g
o <
g § Prognostic
5 Methods
] . Library
2 Existing
CBM
Software
{e.g., ICAS)

Test
Executive

ignal
Processing
Library

CBM QOpen Interface

CBM
Database |55

Central DB
(Models, Config
Data)

'“Iﬂ

-

System Configuration
(TEAMS)

Figure 9: An integrated DPHM system architecture.

2.2.2 Interactive Vehicle Health Management (IVHM) Technology

An IVHM system for air and space transportation systems was proposed in [21] (Figure 10). The
goal of this system is to develop validated technologies for automated damage detection,
diagnosis, and prognosis [21]. There are two types of diagnostic and monitoring systems, i.e.
active sensing and passive sensing, presented in [21]. In the active sensing mode, sensors data are
collected and diagnostic information is generated. For example, piezoelectric sensors are active
transducers acting for both the generation of controlled diagnostic signals and the collection of
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measurement data. The passive system is to monitor changes in the environment, such as loads
and impacts [22]. This information is sent to other sub-systems for estimating the residual
strength and remaining useful lifetime in order to optimize the performance and off-service
schedule of the transportation system [21]

PASSIVE SYSTEM PROGNOSTICS
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> i
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Environmental
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SENSOR DATA
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Figure 10: The interactive vehicle health management (IVHM) system.
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3 Aircraft DPHM

3.1

Engine Health Management

Prognostic approaches for gas turbine engine health management utilize measured or inferred
features as well as different models to predict the condition of the engines’ performance and
health status. There are seven approaches proposed in [23].

Component reliability and usage-based approaches: In a statistical reliability or
usage-based approach, historical failure data or operational usage profile data are
used to predict the failure or degradation of a component.

Performance trend-based approaches: In this approach, trend deviations and
associated change rates for specific engine features or measurements from normal
operating condition are tracked. This approach requires sufficient sensory data and
the parametric conditions of a known performance.

Data-driven approach: In this approach, nonlinear network approximators are used
to predict future failure based on historical failure data. The data-driven methods
include artificial neural networks and fuzzy logic systems.

State estimator based approaches: In this state estimation technique, Kalman filters
are used to predict future feature states or systems’ behavior through the
minimization of error between the model and the measurement.

Physics-based modeling approaches: In physics-based model, the damage as a
function of operating conditions, can be calculated and determined.

Probability density function for remaining life: The remaining useful life (RUL)
failure probability density function (PDF) is employed to determine the RUL of an
engine component. The engine component will be removed from service before
attaining a high probability of failure (e.g. a just-in-time point is defined for removal
from service that corresponds to a 95% probability that the component has not yet
failed).

Adaptive prognosis: In the adaptive prognosis module, current available information
is used to update prognosis PDF so that a more accurate prognosis can be established.

The architecture of a distributed prognosis system is illustrated in Figure 11 and as stated in [23],
there are many benefits to this type of architecture:

Optimal computational resource management;
"Smart subsystem" concept support;

Multiple faults and damages isolation and assessment;
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*  Multiple data and information sources capability management;
»  Systems degradation capture and localization.

The challenge for the design of a prognostic system remains the ability to fuse measured data and
use the results from physics-based models to estimate current and future damage states. The
potential for fusing multi-source measurements from C17-T1 flight was investigated [24] and
applied to C17-T1 PHM. Positive impact of the data fusion for gas path analysis was observed.

logistic and decision support

1T

space vehicle level reasoner

A

Y

subsystem <:>
/ reasoner;

A

domain specified
models

anomaly detection/
diagnostics/prognostics software

line replaceable unit

Figure 11: Distributed prognostic system architecture.

3.2  Actuator Health Management

Impact Technologies developed a prognostic and health management (PHM) methodology for
aircraft actuator components [25]. This data-driven approach only requires data collected within a
flight control system and enables faster algorithm run-times and lower development costs
compared with physical modeling. The overall process flow is given in Figure 12 [25].

The flight control data are pre-processed using a “mode detect" algorithm, which recognizes
certain operational regimes from the load profiles. The processed data are further extracted for
features that are relevant to the current health of the system. Fast Fourier transform and neural
networks are employed to extract features from sensor data. A fuzzy logic classification system
establishes the relation between extracted features and current health status. The fusion operation
combines the operational mode information with the outputs from the classifiers to produce a
health state condition [25]. The prognostic reasoner predicts the remaining useful life within
specified confidence bounds using the classification and fused information. Kalman filtering is
used to predict future health state based on historical health data.
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4  Functionalities of Data Fusion and Data Mining

4.1 Concepts of Data fusion and Data Mining

A definition of data fusion, as recommended by the U.S. Department of Defense Joint Directors
of Laboratories Data Fusion Subpanel [26], is

"data fusion is a multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and information from
multiple sources."

According to [27], the definition of data mining is

“data mining is an analytic process designed to explore data in search of consistent
patterns and/or systematic relationships between variables, and then to validate the
findings by applying the detected patterns to new data.”

The ultimate goal of data mining is prediction. The techniques used in data mining include:
regression, classification, time series, association and sequence analysis, and clustering. It is a
combination of three technologies, namely computing power, statistical learning algorithms and
tools, and advances in data gathering and management.

4.2 Role of Data fusion and Data Mining

As described in the Canadian Insight Document [28], data mining employs all machine learning,
statistical and soft computing techniques to develop data driven diagnostic and predictive models;
whereas, data fusion employs techniques and software to integrate heterogeneous data.

4.2.1 Role of Data Fusion

Figure 13 illustrates the role of data fusion within a DPHM process [29]. The fusion of multi-
sensory data permits feature extraction and desired signals qualification. Coupled with
experience-based information or physical model predictions, these provide optimal diagnostic and
prognostics tools.

4.21.1 Fusion of information from sensors and models

As described in [30], sensor data are available in two forms: state awareness data and usage data.
The state awareness sensors provide information about the current state of material health from
initial indications of defect to crack size estimations. The uncertainties of state awareness sensors
include false alarms and measurement errors. Usage sensors, directly or indirectly, provide
information on external impacts that may lead to material damage. Data from usage sensors may
include information about local stresses and environmental parameters (e.g. such as temperature,
humidity, and local chemistry.) The uncertainties of usage sensors include measurement and
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mapping errors (translation of one type of measurement like accelerations into another data form
such as local stresses) [30].

Sensor array

I:l I:l I:l Prognosis ) [ Physical
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Multi-sensor - -
data fusion Diagnosis > <::| I ;
< nspection

. &
Signal feature . . maintenance
extraction Classification . )
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Figure 13: Role of data fusion in DPHM.

Failure models use a variety of input parameters to provide estimates of current state and
anticipation of future usage. The input parameters reflect in general material properties and
environmental conditions. Due to the limited knowledge of the structure and/or the inadequate
representation of its physical characteristics, parameters uncertainties are characterized
statistically.

As both models and sensors are imperfect, it is necessary to use the information from both models
and sensors to dynamically adjust any predictions. Such predictions reflect health condition at
future points, and/or at expected times to reach specified health conditions [30]. The fusion of
both sensor and model data reduces the uncertainty associated with output, represented as the
probability of failure (POF). A two-stage process of reasoning and prediction fusing sensors and
models data is proposed in [30] and is illustrated in Figure 14. In the first stage, sensors are used
to detect the presence or absence of a defect, i.e. the current state. The assessment of current state
defines the probability density of the time to form a crack of specific size. This assessment is used
to update the input parameters to failure models through the Bayesian theorem. The second stage
combines updated model predictions and its uncertainties with current state estimates to
determine the probability of failure as a function of time and/or usage.

In [31], another fusion scheme based on Kalman filter was proposed to fuse imperfect state

information such as environmental measurements with failure models. This type of fusion enables
an adaptive prognosis for structural corrosion damages.
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Figure 14: Process of reasoning and prediction by fusing information from sensors and models.

A suit of PHM algorithms were developed for detecting faults in critical bearings associated with
aircraft gas turbine engines in [32]. A material-level spall initiation model is used to predict the
initiation of a fault. A model that relates the survival rate of the bearing to a stress weighted
volume integral developed by Yu and Harris was adopted [32]. However, the modeling
predictions have broad confidence bounds due to uncertainties. The health state awareness data
from sensors can provide measurements of component condition and can be used to update the
modeling assumptions and reduce the uncertainty. Thus, the fusion of sensor data and
probabilistic component models can achieve a better decision on the overall health prognostics.

4.21.2 Fusion of different prognostic approaches for uncertainty reduction

Both physics-based model and data-driven model can be used to estimate future failure or damage
state [33]. The physics-based model requires detailed knowledge about the system, such as
material properties and dynamic behavior; whereas, a data-driven model needs sufficient data at
known conditions and damage level. Both models implementation possesses pros and cons. The
physics-based model relies on the assumption that the fault mode modeled using the specific
geometry, material properties, temperature, load, and speed conditions will be similar to the
actual fault mode [33]. Any deviations in those parameters will likely result in an error that is
amplified over time. The data-driven model assumes the available data sufficiently maps the
space and the interpolations/extrapolations from that map can capture the fault rate properly.
Therefore, it would be beneficial to fuse the output of both methods which may produce a more
accurate and robust result.

In [34], two prognostic models were built to estimate bearing indent damage on outer race. The
physics-based model used historic data and estimated future operating conditions (e.g. material
properties, geometry, bearing surface interaction, lubrication, and variable operating conditions)
to determine future condition by providing a probability density function of the remaining useful
life. The data-driven model estimated the spall growth rate based on speed and load. The fusion
of these two models is implemented in a prognostic reasoner that employs a combination of
damage PDFs, subjective quality assessments, and a kernel-based regression through time [34]
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4213 Fusion of multiple classifiers for damage location

Piezoelectric accelerometers were applied to locate damage in starboard wing in a Gnat trainer
aircraft [35]. Signal features from the accelerometers measurement were extracted. The features
selection process was conducted by inspecting the transmissibility functions to find small regions
of the frequency range which distinguishes between damage conditions [36]. Then, a multi-layer
perceptron (MLP) neural network and a Dempster-Shafer neural network were used to classify
the damage locations respectively. The results from these two classifiers were fused with
Bayesian and Dempster-Shafer methods to improve the classification rate.

4.21.4 Fusion of dynamic and performance analyses

A health monitoring system was developed to diagnose the degradation of aircraft hydraulic
pumps [37]. The dynamic analysis of high frequency content of pump pressure and case drain
signals provided eight reliable diagnostic features. Each four were used for pump pressure and
case drain, respectively. The performance analysis is based on a physics-based approach, which
models the performance characteristics of the pump. Fuzzy logic based classification was
performed for each analysis approach and Bayesian fusion was applied to fuse the classification
results. The procedure for health monitoring of an aircraft hydraulic pump is illustrated in figure
15[37].
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Figure 15: Health monitoring process of an aircraft hydraulic pump.

4.2.2 Role of Data Mining

Data mining searches historical data for unknown patterns. It helps to determine [38]:

Which component or subsystem should be monitored?

How often should these components or subsystems be monitored?
What types of failures occur on a particular component or subsystem?
What are the warnings of a particular failure?

Data mining methods are also helpful in sensor placement and in determining alert thresholds.

18
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4.2.21 Data mining for decision support analyses

Data mining is the process of searching and retrieving useful information from a large data set. It
has been applied to decision support in vehicle health management [39]. The process for building
and applying data mining models is depicted in Figure 16. The models building step is based on a
collected diagnostic, prognostic, and maintenance action data set, where the attributes of past
occurrences and corresponding actions are known. In the application step, these models are used
to estimate the outcome of current situations. Domain knowledge is usually needed to evaluate
the models.

In the modeling step, the raw historical data need to be manipulated to get a set of attribute
vectors, which represent a higher level data abstract with complex hybrid information. Such
vectors may comprise historical data entries, fault index number, equipment identifiers, test
identifiers, and other relevant data. The vectors are fed into the data mining block for the learning
process, which generates data mining models. These vectors are used as training examples. The
application step applies learned models to new data. The same attribute vectors are created for
new data. Decisions are made based on the projected outcome of the current input attributes. It
should be mentioned that the quality of the model depends on the quality and span of the data
used for training. A detailed discussion can be found in [40].

4.2.2.2 Data mining for system development

Data mining can facilitate the DPHM system development from several aspects [20]. First, data
mining techniques can help analyze system degradation mechanisms and identify parts usage,
repairs, maintenance, and logistic impacts on component failures. Second, data mining techniques
can select appropriate sensors for monitoring based on sensors' reliability, performance records
and false alarm rates. The sensor reliability information can be used in the diagnostic and
prognostic algorithms, where probabilistic weight may be applied. Third, the models for fault
detection, diagnosis, and prognosis can be built with data mining techniques from historical data.
The challenge is that there are not enough data, which is statistically significant and
representative for the performance of the system.

4.2.2.3 Data mining for system implementation

In the implementation of a DPHM system, data mining can be used to update fault detection and
diagnosis algorithms when new data become available. Data mining techniques can also be used
to collect relevant data to build models based on system inputs and outputs so that the future
usage of the components or subsystems can be predicted. With this information, the prognostic
algorithm can estimate the useful remaining life.
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Figure 16: Data mining process for decision support.

4.3 Data Fusion and Data Mining Technologies

Data fusion can be implemented at three levels, i.e. sensor level, feature level, and decision level.
At its lowest (sensor) level, the fusion operation combines information from multiple sensors to
validate signals and derive features. At its highest level, the fusion operation combines derived
features to obtain diagnostic information. Additionally, at this level, the fusion incorporates
experience-based information or physical model predictions with signal-based information to
facilitate the decision making process. This is illustrated in Figure 17. The implementations for
the three-level fusion are different processes. Three approaches to data fusion architectures are
presented in Figure 18 [41]. These three approaches correspond to the three levels. The
centralized fusion aligns and correlates multi-sensor data in its raw form. The autonomous fusion
implements feature extraction before the fusion process. This operation will significantly reduce
the dimensionality of the information. The hybrid fusion considers both raw sensory data and
extracted features. Therefore, it provides a better solution to practical applications.
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4.3.1 Data Fusion Algorithms

There is a variety of multi-source data fusion algorithms that have been developed in recent years.
A comprehensive review of the fusion methods and descriptions of detailed implementation are
available in relevant monographs and literatures [42]. This section discusses only work that has
been applied in DPHM applications.

4311 Bayesian inference and Dempster-Shafer theory

Bayesian inference provides a mechanism to calculate a posteriori probability of a hypothesis
being true given support evidence. The hypothesis space for fault types is {f,, f5,-**, f, },

which is mutually exclusive and exhaustive with ZP( f;)=1. The Bayesian updating is given

as:

_ POI/)P)
2 POIfHPL)

P(f,10) (4.1)

where P(f;|O) is the a posteriori probability that fault (f;)is true given a diagnostic output
(O) . The probability of getting a diagnostic output (O) for a given fault (f;) is denoted by
P(O| f;) where P(f;) is the probability of the fault f; occurring or the a priori probability for
the fault ( f]) . For multiple diagnostic outputs, the probability of fault is expressed as:

P(f)[ PO, | /)P0, | f)-+ PO, | f)]

P(f;10,00,n--N0,) = 2 PUDPO PO, | £)+ PO, )]

4.2)

The probability P(O; | f;), (k=1,2,--,n) can be learned from the available training data.

However, the a priori probability is not easy to obtain. In other words, the probability of the fault
( fj) occurring is not known in practice. Sometimes, an equal a priori probability is assumed and

may lead to even worse results.

In the Dempster-Shafer approach, a frame of discernment is constructed for every possible
hypothesis. Every hypothesis is assigned a value by a mass function (4.3). An updating process

for the mass values m,(A4) and m (B) is expressed as:

2. m(Am,(B)
" O S om (B) *3

ANB=J
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The output is the belief value, i.e. total probability mass, which provides information on how
much a measurement matches the distribution of certain data types. The definition of the mass
function is critical for using the Dempster-Shafer approach and depends on the specific
application.

4.31.2 Disjunctive, conjunctive, and compromise feature fusion

In feature-based fusion, a projection function J is used to project a vector of the prior perception

B i.e. [43]

to a posterior consensus B

prior posterior

3:B__ —>B forB . el"and B el (4.4)

*  prior posterior prior posterior

where [ is a measure set of the degree of each prior perception, or the degree of the posterior
consensus [43]. There are three basic operators for feature-based data fusion: disjunctive,
conjunctive, and compromise [44]. If there are two prior perceptions with their degree of x and
y, the posterior consensus will be:

e 3 isdisjunctive if 3(x, y) > max(x,y);

~

e 3 is conjunctive if J(x,y)<min(x,y);

~

e 3 is compromise if min(x, y) < 3(x, y) < max(x, y).

Considering the case of N sensors, s, (j=1,---,N), each sensor possesses a prior perception as

to damage, P(E[s;) (j =1,--+,N). There are:

N N-1 N
Sdis(E;Si’Sz"”’SN)ZZP(E|Si)_ZZP(E|Si)'P(E|Sj)
i=l i=l i<j
N-2N-1 N
=Y 3> P(E|s,)PE|s, P(E|s)—" (4.5)
i=l i<j j<k
—P(E|S1)'P(E|S2)-~-P(E|SN)
Sconj(E";Si’SZ"..’SN)=P(E‘‘Sl).])(ﬁ"’S2)“'P(E"SN) (46)
1 N
Smmp(E;sl.,sz,---,sN)=WZP(E|SI.) 4.7)

where FE can be a variable that characterizes a specific damage parameter, such as location,
degree, and orientation [43]. The posterior perception B can be written as:

posterior
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Bposterior = S('Sl > 52 PR SN) (48)
In practice, it is required to establish the prior perception for all available sensors. There are two
steps involved which vary from one application to another:

* Identification of all possible damage locations from individual sensor; and
*  Construction of prior probabilities with regard to damage occurrence of each sensor
at all locations.

4.31.3 Linear combination in the hidden semi-Markov model

A framework based on hidden semi-Markov model (HSMM) was introduced in [45]. The sensor
fusion is implemented within this framework by discriminant function analysis. The hidden state

at time ¢ is defined by s, and the observation sequence is defined by O. For a specific
component or system, health state can be defined as H = {h,, h,,---,h, }, where N represents the

distinct sequential states for a failure mechanism. If the duration of state 7 is d,, the lifetime of
N
the component or system is determined as 7" = Z d,.

i=l1

For diagnosis, the HSMMs are trained to recognize N different states of a component or system
for a given failure mode. The prognosis is implemented by the health-state duration models [45].
Within this hidden semi-Markov model (HSMM) framework, the weights for various sensors are
estimated using discriminant function analysis and combined with a linear combination method.

In discriminant function analysis, the weighting procedure is guided by the F' values. The F
value for a variable indicates its statistical significance in the discrimination between groups. In
other words, it is a measure of the extent to which a variable makes a unique contribution to the
prediction of group membership. Therefore, the weights for different sensors can be obtained as:

F.
W, = — (4.9)
2
=1

i

where w, denotes the weight for sensor i, F, denotes the /* value for sensor i, and N is the

number of sensors. Once the weights for the different sensors are obtained, a linear combination
based fusion scheme in HSMMs is developed:

N
Y => w0, (4.10)
i=1

where O, is the measurement from sensor 7 and Y is the fused result.
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4314 Fuzzy measures and integrals

The description of fuzzy integral is based on [37]. A fuzzy measure on the set X of criteria is:

w1 P(X)—[0,1] 4.11)

which satisfies:
(@) =0,u(X)=1 (4.12)
Ac Bc Ximplies u(A) < u(B) (4.13)

where X ={x,,---,x,} is the set of criteria, P(X) is the power set of X, i.e. the set of all

subsets of X' (A) represents the weight of importance of the set of criteria 4and @ denotes
the empty set.

If a set function g, : P(X) = [O,l] satisfies g, (X) =1,
e IfANB=D,
* 8(AuB)=g,(A)+g,(B)+1g,(4)g,(B)
e A>-1

then g, is a fuzzy measure. The g, is determined by

1 n
g, :Z[H(l+/1gi)—l} (4.14)
i=1

The Choquet fuzzy integral of a function & with respect to x4 is defined by

n

C, (h(x) h(x,)) =D (h(x,) = h(x_))u(A4) (4.15)

i=l1
where 1(A) is the fuzzy measure representing the importance of the set of criteria A4, where

A =1, X,50005 X, )

1

The fuzzy integral data fusion was applied to the feature level and decision level for machinery
fault diagnosis [37] where improved performance is observed.
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4.3.2 Data Mining Algorithms

Varied data mining algorithms have been developed and applied to structural health monitoring
applications. Table 1 and Table 2 summarize some current usage of these algorithms [46]. As the
data mining technique utilizes statistical learning algorithms and tools, which are well
documented in literatures like [27], these technical details will not be duplicated in this report.

Table 1: Data mining algorithms applied to fault detection and diagnosis.

Applications Data mining algorithms References
Failure detection from sensors Hidden Markov models (HMM) | [47]
Helicopter fault detection Ensembles of neural nets [48]
Inductive monitoring system Clustering methods [49]
Rocket propulsion systems Orca and GritBot [50]

Space shuttle main engine Beacon-based exception analysis | [51]
Aircraft avionics diagnosis Bayesian belief network [52]
Diagnosis of faults in valves of Support vector machine [53]
reciprocating pumps

Table 2: Data mining algorithms applied to prognosis.

Applications Data mining algorithms References
Structural prognosis Dynamic wavelet neural [54]
networks, reinforcement learning,
and genetic algorithm

Gas turbine engine Neural nets with rule extractors [55]
Helicopter gearboxes Polynomial neural networks [56]
Batteries Autoregressive moving average, [57]
neural net, and fuzzy logic
algorithms
Complex systems Bayesian belief net (BBN) [58]

4.4 Performance Metrics for Data Fusion

The fusion of multi-source data or information is to reduce the uncertainty associated with the
sensing and monitoring and improve the accuracy of the produced/expected data or information.
The fusion performance evaluation depends on the specific application and the fusion algorithms
used. The performance metrics also vary with the fusion level due to the change of requirements.
For instance, in the application of defect detection, the sensor level fusion can be assessed by
comparing the probability of detection (POD) curve of the fused result with the sensors' POD
curves. The benefits of data fusion can also be assessed from system point of view. In [41], the
technical value of a diagnostic or detection technology for a particular failure mode is defined as
a cost function:

TechnicalValue = P, *(D*a +1* ) —(1- P )*(F,*¢— P, *0)  (4.16)

where:
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P, : Probability (time-based) of occurrence for a failure mode

D : Overall detection confidence metric score

a : Savings realized by detecting a fault prior to failure

I : Overall isolation confidence metric score

[ : Savings realized through automated isolation of a fault

P, : False positive detection metric score
¢ : Cost associated with a false positive detection
P, : False positive isolation metric score

@ : Cost associated with a false positive isolation

The value of a fusion-based diagnostic tool is the summation of the benefits over all the failure
modes that it can diagnose less the implementation cost, operation and maintenance cost, and
consequential cost of incorrect assessments as expressed:

TotalValue = Z TechnicalValue, - 4-0—-(1-P)*0 (4.17)

Failure modes

Where,
A : Acquisition and implementation cost
O: Life cycle operation and maintenance cost

P : Computer resource requirement score
O : Cost of a standard computer system

Detailed information about the performance and effectiveness metrics is available in [59]

4.5 Potential Use of Data Mining and Fusion Techniques

The potential use of the data fusion and data mining techniques is summarized in Table 3. It can
be seen that the data fusion and data mining techniques are exploited and used in almost every
function in SHM or DPHM systems. They provide a flexible and efficient tool for the
implementation and integration of a SHM and DPHM system.

Table 3: Potential use of data fusion and mining techniques.

Functionality of SHM and DPHM Data fusion | Data mining
Identification of critical components or subsystems \
Sensor selection N

Sensor validation

Data and signal feature extraction
Fault and damage detection
Diagnostics

Prognostics

Decision making

<L |2 |2 (2 |2 (2
2 |2 |2 | <
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5 Summary and Recommendations

This document provided an overview of research and development efforts in the areas of data
fusion and data mining techniques and methodologies for diagnostic, prognostics and health
management applications, including structural health monitoring. The role of data fusion and
data mining techniques in these fields was presented. When the information transits from a low
level to a high level, data fusion takes advantage of the heterogeneity with multiple information
sources to derive a more accurate and abstract result.

The implementation of data fusion and data mining algorithms is a computational issue, which
relies on sensors, available and historic data. The TRL (technology readiness level) of the
techniques used depends on how the algorithms are used, e.g. on-line or off-line, onboard or off-
board. The technology efficiency also depends on the availability of computational power and
resources. The effectiveness or performance of the sensor level fusion is determined by the choice
of sensors, which can be complementary to each others. For data mining, the collection of
representative historical failure data is important for the success of this technology.

The following recommendations are provided for potential future activities.

1. As described in this report, sensor-level fusion relies on the reliability of measurements,
which is typically represented by a ROC (receiver operating characteristics) curve or a POD
(probability of detection) curve. The determination of sensor reliability is critical for multi-
sensor applications in a DPHM system. Sensor technologies remove some uncertainties
associated with human inspection, but introduce new uncertainty associated with sensors.
Therefore, a sensor reliability model needs to be developed to understand the uncertainty
associated with sensor measurements. Such information can further be used at the sensor data
fusion level for reduced prediction uncertainty.

2. Carry out redundancy analysis for sensor failures and sensor anomalies to understand the
robustness of the sensing system.

3. Develop a test bed for the evaluation of existing and emerging data mining and data fusion
methodologies, algorithms and techniques.

4. Although physics-based models are not easily obtained, the effort on developing such models
is still encouraged. It is a source of information for data fusion algorithms and it is a tool that
is used to compare data-driven models or/and real-time (or near real-time) sensory data.

5. A software platform named EBM3 (Environment to Build Models for Maintenance of
Machinery) was prototyped by the National research Council [60] and was used for executing
data mining approaches. An open-architecture platform is needed for the development and
implementation of aircraft SHM systems. This platform is not only needed for processing
data but also for integrating the whole SHM system. It may encompass all activities for
information processing and analysis. Different modules can be implemented and added to this
platform, and available for reuse in different applications. It is recommended that the
suitability of such a software platform, for example EBM3, should be evaluated.
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