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Abstract

Defence R&D Canada (DRDC) is extending its considerable experience in teleoperated
air, land and seaborne systems to the development of autonomous systems for the
Canadian Forces. Not surprisingly commercial organizations have developed a variety
of unique and proprietary autopilots for unmanned aircraft vehicle control. Typically
each provider claims multi-vehicle control as part of their product capabilities, but the
lack of common standards between manufacturers makes such capabilities functionally
of little value. Though some emerging standards (such as JAUS) show promise,
DRDC has recognized that proprietary controllers are unavoidable and have chosen to
incorporate such systems into a larger multi-vehicle system based on CORBA, an open
networking standard. This report describes the integration of a GCS/autopilot system
into the MIRO environment.

Résume

Recherche et développement pour la défense Canada (RDDC) désire accroitre sa vaste
expérience dans le domaine des systeémes aériens, terrestres et maritimes téléguidés en
développant des systémes autonomes pour les forces canadiennes. Bien entendu, des
organismes commerciaux ont développé une variété d’engins autopilotés uniques et
exclusifs servant a commander des véhicules aériens sans pilote. De maniére générale,
chaque fournisseur déclare que leur produit peut controler plusieurs engins en méme
temps, mais le manque de normes communes pour les fabricants fait en sorte que ces
produits ne valent pas grand-chose sur le plan fonctionnel. Bien que certaines normes
émergentes (comme les JAUS) semblent prometteuses, RDDC reconnait que les
controleurs privés sont indispensables, et a donc choisi d’intégrer ces systeémes au
systeme multi-engins basé¢ sur CORBA, une norme ouverte sur les réseaux. Le présent
rapport décrit I’intégration du SCS/autopilote dans I’environnement MIRO.
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Executive summary

Incorporating Commercial Autopilots into DRDC’s Middleware for
Robotics (MIRO)

S. Monckton, R. Desgagnés, E. Gagnon, M. Lauzon; DRDC Suffield TM
2010-178; Defence R&D Canada — Suffield; December 2010.

Background: Unmanned Air vehicles have a long history of teleoperated control and lim-
ited waypoint following capabilities exploiting both GPS and INS sensing. Most autopilot
providers use proprietary vehicle command interfaces and multivehicle control protocols.
Though STANAG 4586 represents an existing industry standard multivehicle control in-
terface for ground stations, few providers adhere to nonproprietary standards for network-
enabled control. This report documents the integration of two autopilots, the Cloudcap Pic-
colo Plus and the Rotomotion autopilot into a single multi-vehicle control network through
the use of DRDC’s Middleware for Robotics or MIRO. Given the number and variety of air
vehicles based on similar architectures, incorporating these devices into a common frame-
work could provide a foundation to expand the capabilities of DRDC’s control network.

Principle Results: The Cloudcap and Rotomotion autopilots embody two basic and for-
mative UAS communication techniques: serial RF communications and wireless UDP com-
munications. As a more recent standard based on 802.11 wireless networking, Rotomotion’s
wireless UDP solution is less mature than CloudCap’s Piccolo autopilot, based on tradi-
tional serial wireless communication. With a longer commercial history, Cloudcap’s ground
control station is more mature than Rotomotion’s, yet both fail to provide a network enabled
nonproprietary multivehicle control comparable to DRDC’s MIRO framework. Similarly,
both systems use different aircraft dynamic simulators to train and visualize UAS opera-
tions. With more commercial history, the Piccolo API is both more capable and complex
than the Rotomotion’s. Despite this maturity, Rotomotion’s nonproprietary networking
approach makes vehicle communications relatively clear, portable, and extensible. As a
result, the Rotomotion MIRO driver has no dependence on external code, using a proven
publish-subscribe model founded on direct socket communication with the autopilot. In
contrast, the resulting Cloudcap driver leverages proprietary libraries to establish a socket
connection to the GCS and not the autopilot. While any driver must be updated with
any changes to an API, this work suggests that MIRO’s direct connection used for the
Rotomotion driver remains a more difficult, but more portable cross platform solution.

Significance of Results: For the first time at DRDC, multiple independent commercial
autopilots have been added to a single network-enabled open robot architecture. While suc-
cessful in exploring both the likely avenues and problems of integrating commercial systems
designed to proprietary standards, the work reveals weaknesses of proprietary approaches
and identifies problems with the current MIRO infrastructure that limit both the simulation
and visualization of multiple air and ground vehicles. Further, this work suggests the adop-
tion of a generic autopilot service that glosses over the substantial structural differences
between autopilot memory, state, and communication protocols.
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Future Plans: This work clearly points to the necessity for a standard model of an idealized

UAV mission control system that, in turn, can be mapped through appropriate drivers onto a
specific system’s GCS and/or autopilot. Further, MIRO’s existing simulation infrastructure,
Gazebo, must be federated with simulators of other dynamic environments, such as sea and
air. While MIRO provides many powerful capabilities missing from commercial autopilot
solutions, incorporating third party autopilots into a CORBA infrastructure is clearly only
the first step to a genuinely seemless multivehicle simulation, visualization, and control
environment.
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Contexte : Les véhicules aériens sans pilote possédent depuis longtemps une commande
téléguidée et des capacités de poursuite d’un point de cheminement limité tirant profit du
GPS et du INS. La plupart des fournisseurs d’autopilotes utilisent des interfaces de
commande privées et des protocoles de commande multi-engins. Bien que la norme
STANAG 4586 représente une norme de 1’industrie relative a I’interface de commande
multi-engins pour les stations au sol, trés peu de fournisseurs adhérent aux normes du
domaine public pour les commandes facilitées par réseau. Le présent rapport documente
I’intégration de deux (2) autopilotes, le Cloudcap Piccolo Plus et le Rotomotion, en un
seul réseau de commande multi-engins via Middleware for Robotics ou MIRO de
RDDC. Etant donné le nombre et la variété de véhicules aériens basés sur des
architectures semblables, 1’intégration de ces deux dispositifs en un seul cadre de travail
pourrait constituer une bonne base qui permettrait d’¢élargir les capacités du réseau de
commande de RDDC.

Résultats : Les autopilotes Cloudcap et Rotomotion incarnent deux techniques de
communication pour UAS : les communications RF en série et les communications sans
fil PNU. Le systeme de communications sans fil PNU de Rotomotion constitue une
solution plus récente que I’autopilote CloudCap, lequel est bas¢ sur une communication
en série classique. Sur le marché depuis longtemps, la station de commande au sol
Cloudcap est plus évoluée que celle de Rotomotion, mais les deux stations sont
incapables de fournir une commande multi-engins du domaine public facilitée par réseau
comparable au cadre de travail MIRO de RDDC. De méme, les deux systémes utilisent
des simulateurs d’aéronefs dynamiques différents pour I’entrainement et la visualisation
des opérations UAS. Le Piccolo API, fort d’une longue présence sur le marché, posséde
une capacité supérieure et plus complexe que celle de la station de Rotomotion. Malgré
son manque d’expérience sur le marché, 1’approche de réseautage du domaine public de
Rotomotion fournit un systéme de communication avec le véhicule relativement plus
clair, portable et extensible que d’autres. Ainsi, le pilote MIRO de Rotomotion ne
dépend nullement de code externe et utilise un modele publication-abonnement éprouvé
qui se base sur des communications directes a raccordement avec ’autopilote. A
I’opposé, le pilote CloudCap tire profit des bibliothéques privées pour établir une
connexion a contact avec le PCS et non avec I’autopilote. Bien que tous les pilotes
doivent étre mis a jour lorsque I’ API est modifié, les présents travaux suggerent que la
connexion directe du MIRO utilisée par le pilote Rotomotion est une interplateforme
beaucoup plus portable bien que plus difficile.
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Importance des résultats : Pour la premicére fois a RDDC, plusieurs autopilotes
commerciaux indépendants ont été ajoutés a une seule architecture robotique ouverte
facilitée par réseau. Bien que RDDC ait connu du succes dans 1’exploration des
probléemes d’intégration les plus susceptibles de survenir avec les systémes
commerciaux congus selon les normes privées, les travaux ont permis d’exposer les
faiblesses des approches privées, et d’identifier les problémes avec ’infrastructure
MIRO actuelle qui limitent la simulation et la visualisation de plusieurs engins
aériens et terrestres. De plus, les travaux recommandent I’adoption d’un service
d’autopilote générique qui fait abstraction des différences structurelles substantielles
entre la mémoire, [’état et les protocoles de communication de 1’autopilote.

Recherches futures : Les présents travaux démontrent clairement la nécessité d’un
modele standard de systeme de contréle de mission UAV idéal qui pourrait, en
retour, étre rattaché, via divers pilotes adéquats, a un PCS précis et/ou a un
autopilote. De plus, ’infrastructure de simulation actuelle du MIRO, Gazebo, doit
étre fédérée avec les simulateurs d’autres environnements dynamiques, notamment
en mer et dans les airs. Bien que MIRO offre de nombreuses capacités puissantes que
d’autres solutions sur le marché n’offrent pas, incorporer des autopilotes de tierce
partie a Dinfrastructure CORBA constitue la premicre étape pour obtenir un
environnement harmonieux de simulation, de visualisation et de commande multi-
engins.
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1 Introduction

With a long history of teleoperation research, Defence R&D Canada (DRDC) Autonomous
Intelligent Systems Section (AISS) has embarked on autonomous systems development
projects for the Canadian Forces. Unmanned Air vehicles have a long history of tele-
operated control and, increasingly, limited waypoint following capabilities that exploit GPS
and INS sensing. Though capable, most companies that provide such limited autonomy
autopilots have extended their basic architecture to include proprietary vehicle command
interfaces and multivehicle control protocols. Without an industry standard that imposes
open interfaces onto these systems, consistent vehicle and multivehicle control irrespective
of manufacturer remains elusive. This report documents the integration of disparate plat-
forms into a single multi-vehicle control network through the use of DRDC’s Middleware for
Robotics or MIRO. Given the number and variety of air, land, and marine autopilots and
the profusion of interfaces, the ability to incorporate these devices into the more
sophisticated MIRO framework will greatly expand the scope of MIRO control.

This document describes the marriage of network enabled layers with proprietary or com-
mercial autopilots, the necessary techniques and the possible benefits arising from this
union. DRDC Suffield and DRDC Valcartier simultaneously explored strategies for mating
network oriented upper level controllers to existing commercial controllers. Both centres
used MIRO as the common network communications framework, DRDC Valcartier incorpo-
rated the nascent UNIX based Rotomotion helicopter Autopilot into MIRO using custom
network drivers while DRDC Suffield developed MIRO control for the popular but more tra-
ditional Cloudcap Fixed Wing Autopilot using a blend of custom and commercial drivers.

1.1 Objective

The objective of this study is to explore and compare practical methods required to in-
corporate computationally proven, dedicated commercial vehicle microcontrollers into the
evolving model of network enabled battlefield unmanned systems. By identifying alterna-
tive architectures, building, running and examining the resulting software, a qualitative
assessment can be established on the relative merits and appropriate conditions of use for
each method.

1.2 Background

With the rise of commercial Unmanned Air Vehicles (UAVs) and the similar commercial-
ization of Unmanned Ground Vehicle (UGV component, developers of autonomous systems
must decide whether to support or supplant commercial autopilot or vehicle control hard-
ware. In [2], DRDC reviewed an internal architecture ANCAEUS to determine whether it
constituted a ’foundation’ for autonomy. The report concluded that though the hardware
and software were reliable and, in many respects, visionary for their time, they would be
unable to support truly distributed network enabled operations. Later reviews identified
evolving frameworks and toolkits that had these capabilities [4].

DRDC Suffield TM 2010-178 1



As part of the Technical Investment Fund project “A unified approach for the Command and
Control of UxV teams”, DRDC Suffield procured Rotomotion helicopters for both DRDC Suffield
and DRDC Valcartier to augment DRDC Suffields fleet of ACR Silverfox Fixed Wing UAVs and
Raptor UGVs.

In 2005, the ALS project [6] set a philosophical precedent of network based control coupled to
simplified low level control.The Raptor UGVs, used extensively for the ALS project were
controlled through a network of processes communicating through MIRO software to various
sensing and high level control devices. Final low level control came from a custom built UGV
MPC555 control module developed by XJ designs of Ottawa. This project demonstrated the utility
and flexibility of such network control in the context of a complex sensing for a complex
environment on a custom vehicle.

For all its success, the ALS project revealed some limits to the approach. Low level custom
controllers are unique to the UGV domain — a commercial arena still in its early stages. This gives
developers both the luxury and responsiblity of developing even the most basic route following
logic. The more mature UAV market has largely dispensed with custom control, specializing into
airframe, powerplant, and control manufacturers. Airframes can be quickly and readily mated to a
variety of possible autopilots to produce useful capabilities in short order. Significantly, these
autopilots encapsulate many of the problems encountered in the ALS project such as vehicle
monitoring, basic route following, and GPS-IMU localization. If the future of UGV component
markets proves to be similar to UAVs, how will the MIRO netcentric need to adapt? If UAV
sensing and control complexity grow to match mission complexity, low level controllers and
netcentric high level control networks will surely meet as UAVs descend lower in the Battlespace
[7] or outside of guaranteed communications.

1.3 Middleware for Robotics (MIRO)

Robot systems integration has evolved from small hand built programs running on specialized
computers to large software systems distributed over many processors. The difficulty of designing
and maintaining flexible communications between multiple processes, each devoted to sensing,
modeling, planning, and acting (or SMPA) drove the development or adoption of dedicated
multiprocess control and communications software or middleware. In 2003, DRDC Suffield
examined the middleware market and the needs of autonomous systems to assemble a toolkit of
useful technologies. The Middleware for Robotics was selected as a provisional middleware
standard for DRDC Suffield’s Autonomous Land Systems project demonstrated in 2005 [4]. As
depicted in figure 1, MIRO serves to simplify multiprocess intercommunication common to large
or distributed unmanned systems by using the Common Object Request Broker Architecture
(CORBA) standard developed in the late 1990s. Embodying the wide scope of multinode
networked communications and a decade of industrial development, CORBA can be difficult to
grasp and complex to manage. Thus MIRO’s singular strength comes from forming CORBA into a
set of simpler robot-specific capabilities with powerful software frameworks. Originally designed
to support soccer robots at the University of Ulm, MIRO has become a powerful open source
project that leverages popular collaborative efforts such as the more modest Player/Stage/Gazebo
and Carmen
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Figure 1: Corba processes resolves the location of other processes on a network through a
Naming Service, before communicating with a new process.

robot toolkits while mirroring complex CORBA based defence projects such as OCP used on the
USAF/USN JUCAV project. This report overviews basic MIRO concepts, describes the Piccolo
and Rotomotion autopilots integration efforts. Finally these two methods are reviewed for their
respective advantages, disadvantages, and applicability.

1.4 MIRO Design Patterns

The basic software design must bridge the polling functionality of the Piccolo Communi-cation
Driver with the subscription model of typical event-based MIRO notifications. MIRO supports
three basic design patterns, or design templates of event servicing detailed in the next section.

Though very powerful and robust, CORBA is complex and difficult to exploit, the MIRO
framework hides some of this complexity within a small, manageable toolset [9]. A succinct
description of MIRO’s features and use can be found in [3] As a very brief summary, MIRO
exploits five concepts: The Interface Description Language (IDL), The Naming Service, Servers,
Clients, and Data Exchange Patterns.

The Interface Description Language describes the properties of data to be passed between
processes and the remote methods that operate on them through a C++ or Java-like in-
termediate language. When compiled, IDL descriptions perform the marshalling and de-
marshalling necessary to construct and transmit data types over socket connections. When
repeatedly broadcast as a stream, these transmitted data structures are known as events.

The Naming Service is a process that maintains a process database, in effect a ’yellow pages’ of
locations, of registered CORBA clients and servers. Registration allows other processes to resolve
publishers or subscribers of data types and, to a point, removes dependence on particular machine
locations.

Servers are usually processes that receive requests and ’serve’ information back. MIRO
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Figure 2: A typical subscribe component. The reactor handles hardware interrupts, passing
the data for parsing and, ultimately, publication over the network.

Servers publish or broadcast events over an event channel to one or more subscribers. Further
the MIRO Server can respond to traditional 'polling' requests for data.

Clients and MIRO Clients are usually processes that generate requests to servers. Historically, this
form of unique bilateral communications has been the most common form of interpro-cess
communication because of its simplicity. However, the overhead of repeated requests through
polling has driven the adoption of ’publish-subscribe’ client-server communications for .

Event Channels and Polling are two forms of interprocess communication. Event Chan-nels
provide a vehicle for processes to ’subscribe’ anonymously and asynchronously to data
published by the server. Polling is the traditional client-server ask-receive interaction be-
tween two processes. Patterns are templates that describe common functional architectures.
Miro’s Data Exchange patterns fall into three broad categories:

1. Subscribe-Publish Server allows a MIRO server to receive events, process the data, and
publish new events.

2. Subscribe-Reactor Server handles external hardware events, processes and publishes the
data as events.

3. Client Patterns capture the typical client server relationship and establish a framework for a
process to respond to multiple client requests.

Figure 2 depicts how a ’typical’ subscribe component relates to both the MIRO network and
external processes. The subscribe-publish and subscribe reactors sharer identical publish logic,
differing only in how the source data is received. Most MIRO processes both receive
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and transmit MIRO events across event channels and, therefore, fall into the Subscribe-
publish pattern. However, sensor input is virtually always taken into the MIRO network
through hardware subscribe-reactor drivers.

Subscribe-reactors are unique to the incoming data source. Serial, TCP, and UDP subscribe
reactors are designed to manage their respective input transport mechanism. Beneath the transport
layer of abstraction each subscribe-reactor must uniquely interact and parse with its partner
hardware device, meaning that the programmer must be intimately familiar with the device
interface structures and data flow control. Generally, these reactors are configured to place the
hardware in a specific set of modes that start, stop, or maintain the data transactions with the
device. The MIRO IDL may establish additional controls to switch hardware modes or states —
relatively rare for sensors, but common for actuator driven machines.
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2 Cloudcap Piccolo Il Autopilot

Cloudcap Technologies of Hood River, Oregon, manufactures a line of autopilots based on an
MPC555 chipset are depicted in Figure 3. As of 2008, the Piccolo II serves as the core of
Cloudcap’s product line that includes the Piccolo Plus and Piccolo LT variants. The Piccolo
line is one of acommon commercial fixed wing autopilot platforms and has been extended to
support helicopter platforms and pan/tilt balls. Since the entire product line is founded on
the same Motorola MPC555 chipset, all autopilots possess a common code foundation and
communications interfaces. All have GPS (and DGPS), microelectromechanical (MEM)
accelerometers and magnetometers, in addition to analog and digital I/O. Each autopilot
has a unique radio address, meaning multiple Piccolos can reside and be controlled on the
same frequency by a single ground station.

2.1 Piccolo Overview

The Piccolo system is composed of a flying autopilot, a groundstation, an operator interface,
and a simulator. Both groundstation and autopilot are composed of an autopilot chipset
communicating with one another through a wireless radio link. Each groundstation can
address up to 256 aircraft through an internal round-robin wireless networking protocol
and each flying Piccolo has a unique address. Cloudcap provides a rudimentary operator
interface as a basic vehicle control station and a simple simulator to permit mission practice
without autopilot or groundstation hardware.

2.1.1 The Autopilot

The autopilot uses both operating modes and configuration settings to prescribe different
stages of vehicle operation. In effect, the autopilot is a state machine with performance gov-
erned by configuration parameters, but driven by the vehicle’s sensed state and command
modes. Piccolo’s 2nd generation controller has the following modes: Prelaunch, Transition,
Liftoff, Climbout, Flying, Landing, Final Approach, Short Final, Touchdown, and Roll-
out. Each of these states maintains control using specific parameter settings and control
strategies, many governed by configuration sets and exit conditions into the next state.
Flying mode represents the most common running state or 'nominal’ mode of the autopilot
and all other state are directed towards (e.g. Prelaunch and Launch) or away from (e.g.
landing) this mode. In this state, the autopilot gives instructions to the vehicle to follow
flightplans composed of a list of waypoints, each representing a desired latitude, longitude
and altitude. The autopilot can store 100 waypoints and an arbitrary number of flightplans
to a maximum of 50. The waypoint list is represented as a linear array of waypoints each
labelled with an array index. Flightplans are, in effect, linked lists of waypoints with each
waypoint array entry containing a reference to the next waypoint index. This technique
facilitates repeating or circular flightplans.
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Figure 3: The older Piccolo Plus (left), used in the ACR Silverfox, conforms to the same API
and form factor as the Piccolo II Family, though with less capability. DRDC’s current family

of Piccolo equipment (right) includes the Plus, the TASE(EO) and TASE Duo(EO/IR)

stabilized Piccolo II-based camera balls.

2.1.2 Ground Control Station

The Piccolo architecture exploits a Ground Control Station (GCS) to configure, command,
and control all of the flight operations on the airborne Piccolo II. Interestingly, the GCS
is itself a Piccolo II configured specifically as a ground control element. A Piccolo appears
as a node on an airborne network. The GCS uses round-robin sessions to communicate
to each vehicle in the network, a strategy common to other multi-vehicle systems such as
DRDC’s own ANCAEUS and Micropilot’s Horizon autopilot of the same class. The GCS
communicates with a simulated Piccolo through a server connection.

2.1.3 Piccolo Operator Interface

To control the GCS, a basic Operator interface known as the Pilot Command Console
(PCC), depicted in Figure 4, provides the means to set aircraft parameters, calibrate sur-
faces, and upload/download waypoint trajectories. Before version 2.1 Cloudcap considered
the Piccolo Operator Interface a crude starting point for more serious interface efforts (such
as CDL Systems GCS)!. Cloudcap provides this software at no cost and a free, though not
open, software development kit for communicating to the GCS, vehicle and payload. Though
the GCS communication specification is freely available, the extensive instruction set and
subtlety of the interface make this SDK an appealing alternative to pure driver de-
velopment. The GCS communication library facilitates networked connection to the GCS
again over a TCP port.

'However, with more recent versions, this interface is now marketted as a genuine ground control station
and supported by Solutions Engineering Inc.

DRDC Suffield TM 2010-178 7



Figure 4: The Map view using Cloudcap’s Operator Interface V1.3.2. Additional Command
and Telemetry views permit direct observation and control of vehicle state and track. Red
arrow symbols indicates aircraft position and heading, red line segments indicate stored
tracks, and yellow indicates the current desired track.

2.1.4 Aircraft Simulator

To rehearse vehicle missions, Cloudcap provides a configurable dynamic simulator (as shown
in Figure 5) that simulates the motion of a user described vehicle and generates both sensor
inputs to the Piccolo IT and full vehicle state to data subscribers. User’s can fully configure a
selection of aerodynamic, actuator, and sensor properties to describe an aircraft of their
design. The simulator produces sensor outputs (e.g. pitot-static pressures), actuator
commands, IMU sensing, and GPS consistent with this model, responding to control surface
commands appropriately. Further, the simulator broadcasts the kinematic vehicle state over
a UDP connection to FlightGear clients, greatly simplifying vehicle rendering.

2.1.5 Piccolo Simulator

To permit full software simulation of a UAV system, Cloudcap has produced a simulated
version of the autopilot, PiccoloPC. This simulator is identical in all respects to the hard-
ware version of the Piccolo, but receives and broadcasts state information over TCP ports.

2.1.6 GroundStation Simulator

The simulation system permits developers to simulate all components of the system, includ-
ing the groundstation, GroundStationPC. This command-line service mimics the behaviour

8 DRDC Suffield TM 2010-178
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Figure 5: The Simulator GUI depicting the Aircraft State (in this case an R/C Cub
sen-sor/actuator model).

of the groundstation hardware and software and can communicate with a genuine or simu-
lated Piccolo through serial or network ports. Similarly, communication with the Operator
interface continues transparently through a dedicated network port.

2.2 Communications Interface

The Piccolo communicates vehicle state and accepts commands through the GCS, itself a
Piccolo. The Piccolo GCS, in turn, communicates to a host computer through a serial port
(RS-232) connection. PC based software can communicate with the flying Piccolo either
through directly decoding the Piccolo GCS packet stream or using Cloudcap’s native serial
driver. The PCC uses Cloudcap’s native drivers to communicate with the GCS, but can also
package unaltered data streams direct to a socket connection. Thus developers seeking to
further increase mission autonomy through smarter ground control have three alternatives
to marshall/demarshall Piccolo GCS data streams:

e develop custom Piccolo serial drivers
e use Cloudcap’s Piccolo serial drivers
e use Cloudcap’s Piccolo network drivers combined with the PCC.

The Piccolo uses a hierarchy of data structures to encapsulate the function of the autopilot.
Perhaps the most important or central data structure is the CloudCapUserData
structure.
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2.3 Software Design

To add mission capabilities with the least risk, DRDC Suffield implemented MIRO compo-nents
using the third option: network drivers with PCC. The development of custom serial drivers is
common practice for robotics toolkits, for example DRDC’s MIRO gps and imu drivers — an
approach that reduces transaction processing overhead, but greatly increases the developer’s
responsibility to maintain code. Using Cloudcap’s linux serial drivers would reduce this burden but
would render the PCC unusable on the same GCS. The solution is to use the network driver
embedded in the Cloudcap SDK. This driver exposes the full vehicle mission control interface to a
network client without displacing the PCC — an unavoidable outcome of a direct serial connection
with the GCS. In short, experimental mission control software can be tested with proven ground
control software acting as safety oversight. Given the number and variety of air, land, and marine
autopilots and the profusion of interfaces, the ability to incorporate these devices into the more
sophisticated MIRO framework will greatly expand the scope of MIRO control.To understand the
final design approach, requires an examination of the Cloudcap communication driver, the options
for mission autonomy, and the limits of the aircraft.

2.3.1 Piccolo Generator Component: PiccoloServer

The typical Miro driver, like the one depicted in Figure 6 could replace not only the Pic-colo
Communication Driver, but the PCC completely. This approach requires parsing the Piccolo serial
data stream and mimicking the PCC’s management of Autopilots. Though the structures are large
and demarshalling the packets complex, the Piccolo’s serial data structure is publicly available
through published APIs and, therefore, demarshalling is dif-ficult, but achievable. However
removing or replacing the PCC places the vehicle at risk. The PCC provides both extensive visual
warnings to operators and graphically represents mission progress on a moving map display.
Removal of this display without replacement is not reasonable until a MIRO based ground station
becomes available. Cloudcap antici-pated the need for continuous PCC control during
development and subsequently provided a network interface to the PCC to which clients could post
requests. In effect the PCC broadcasts the autopilots datastream over a UDP socket connection.
Clients on this socket make requests to the PCC’s server and receive packets that closely resemble
the native serial packets arriving over the serial port from the GCS. This relationship is depicted in
Figure 7.

This approach retains the PCC in the command loop while providing developers with an
unmodified connection to the autopilot. However, the marshalling and demarshalling of data
remains a problem with developers having to decode the incoming stream, manage errors,
and maintain the Piccolo network model. So while this model retains pilot control and
MIRO provides the SocketConnection Reactor, development remains substantial.
Again, Cloudcap anticipated this impediment and provides a Software Development Kit
(SDK) that marshalls/demarshalls and performs basic autopilot network housekeeping.
To merge MIRO with the SDK means creating and maintaining a Cloudcap autopilot
client within some form of Timed Publish pattern.
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Figure 6: Typical MIRO approach replaces the PCC with a MIRO Reactor as the
primary vehicle communication module.

2.3.2 Timed Publish Poll

The resulting PiccoloServer depicted in Figure 8 is a variant of the Subscribe-Reactor 2. The
Subscribe-Reactor of Figure 3 responds to hardware events, such as activity on the serial
port, to then generate a CORBA event. However, in some cases hardware devices must be
polled to generate events. A good example is the Microstrain 3dmg that will not produce
quaternion, homogeneous matrix, and RPY representations in a continuous stream. The
solution is to prompt the 3dmg with round-robin polling for these values, finally passing the
cumulative result as a single IMU event. The resulting design pattern, a Publish-Poll is thus
a simplified variant of the basic Publish-Reactor.

The Piccolo generator depicted in Figure9 adopts the basic structure of the Publish-Poll,
but exchanges round-robin triggering for timers to both sample the Piccolo Driver and
issue timed updates on the Piccolo state. The result is a Publish-Timed-Poll containing
two timers, one devoted to poll sampling of the Piccolo data stream and the other devoted
to updating the Publish stream as depicted in Figure 9.

2.3.3 Cloudcap IDLs

Piccolo Events are published (and polled) through the Cloudcap IDL. The IDL is composed
of a data portion, describing data structure candidates used in either polled or published
data exchanges, and an interface part, describing methods available to client processes. The
data structures substantially mirrors the data structure of the original serial data stream,
though actual data types are not necessarily identical due to differences between CORBA
and Piccolo integer and floating point definitions.

2really a misnomer for Publish-Reactor, since the component reacts to hardware and publishes events
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Figure 7: One solution augmenting the PCC with custom UDP MIRO components
that maintains the GCS in the loop.

The interface part permits clients of the IDL event stream to retrieve and control the
publication frequency. Though the IDL describes data candidates for publication, only
those data types actually published in the component are available for subscription.

PiccoloServer currently publishes three data structures: Pose, CloudCapUserDataIDL, and
CloudCapAutopilotCmd. The Pose IDL describes a basic position and orientation in space
through an Homogeneous Transform with respect to UTM coordinates. CloudCapUserDataIDL
is a large hierarchical data structure essentially similar to Piccolo’s Communication SDK
UserData_t structure. CloudCapAutopilotCmd encapsulates commands sent by the opera-
tor to and echoed by the piccolo. Reactor based components that must decode an external
hardware stream will often simply rebroadcast the native interface as an IDL. This strategy
serves two purposes: rebroadcasting the device interface greatly speeds component design
and development and produces data consistent with device documentation albeit through a
CORBA medium. However, such expediency reveals hardware details into the MIRO in-
formation flow — violating information hiding principles. At a more abstract level, the
information flowing from the device should be generalized away from a specific product
towards a generic "autopilot’ IDL, for example.

2.3.4 An Example Subscriber: qtEventPiccolo

To test both the CloudCapUserDataIDL and CloudCapAutopilotCmd IDLs, a Qt-based
graphical test module was written, qtEventPiccolo shown in Figure 10. As mentioned
earlier, the PiccoloServer generates events based on timers. With these two IDL streams
to service, PiccoloServer uses two timers to govern the publication of events. Therefore,
both IDLs provide a poll interface mechanism to permit clients to set the timer update
rate. qtEventPiccolo demonstrates this capability through a simple timer setting GUI
element that permits users to observe the domain, type, and timestamp of arriving events
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Figure 8: A solution augmenting the PCC with an SDK-based MIRO component that
retains the GCS in case of failure.

and to change the update rates for each event type. A sample of Autopilot state data
contained in the CloudCapUserDataIDL is updated at the assigned rate, specifically the
the position and heading of the Piccolo Autopilot. The client automatically downloads
the entire Waypoint memory of the autopilot, and uses the
CloudCapAutopilotCmd to retrieve the current tracking waypoint. Using this basic Ul
client as a foundation, additional capabilities can be added including waypoint editing,
moving map displays, and low level vehicle teleoperation.

qtPoseEvent, another graphical service, permits inspection of the published Pose IDL
stream.

2.4 Visualization

MIRO and Cloudcap make a number of visualization options possible. Three notable
avenues are direct Simulator to FlightGear rendering, indirect Groundstation to Gazebo
rendering, and still more removed Groundstation to Google Earth.

2.4.1 Simulator to FlightGear

The Piccolo command console can direct aircraft state information via socket connections
to the FlightGear [1] open source flight simulator. Since FlightGear’s API permits external
sources to feed and update the location of an aircraft, Cloudcap provides the simulator with
a mechanism to represent the a Piccolo-controlled aircraft in Flightgear. This approach
works very well. However, since the simulator is not used during actual flight this approach
has little practical value. Though a similar method could be developed using MIRO to drive
the rendering, FlightGear’s lack of solid mechanics simulation makes this only a short term
solution.
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2.4.2 Simulator to Gazebo

Gazebo is a popular 3D dynamic modeling and rendering environment used in conjunction
with the Player [5], a "device server’ and simulation toolkit. Gazebo is founded on the Open
Dynamics Engine (ODE), an open source rigid body mechanical simulator. Like all rigid
body simulators, ODE integrates the kinematic state of a virtual mechanical 'world’, as
a set of constrained rigid bodies, to ultimately produce the body positions. By applying
virtual forces to these bodies, mechanisms can move and interact with a virtual environment.
Gazebo wraps ODE with a simplified and dedicated device list that both inserts rigid body
components into the world and samples the world to produce synthetic sensor data. Clients
can call upon Gazebo services through a traditional client server model.

Though Player/Stage/Gazebo provides a no-cost entry to robot simulation and/or render-
ing, Gazebo’s ODE does not support Computational Fluid Dynamics (CFD). Therefore,
either an external aerodynamic simulator must be used to simulate an autopilot controlled
UAV or a live/logged UAV state must be provided to the renderer. Though, Cloudcap and
Rotomotion do provide a simple simulator for training, both lacks the exhaustive simulation
capabilities of systems such as FlightGear [1]. Thus building a Simulator/Gazebo adaptor
could provide the means of either simulating or merely viewing vehicle motion in a rendered
environment.

A primitive polling client to Gazebo, PlayerBase, is provided with the base MIRO
release. Using the Piccolo IDL in conjunction with the PlayerBase MIRO API, a UAV
location can be
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Figure 10: The Network tab (top) contains poll interface controls for both
CloudCapUserDataIDL and CloudCapAutopilotCmd IDL update rate settings. The
System tab (middle) reports on the vehicle position, while the Waypoint tab (bottom)
provides the waypoint list and current waypoint.

sent to the Player/Stage/Gazebo robot simulator for visualization. Though a useful starting
point, PlayerBase proved to make vehicle rendering an awkward process and was rewritten
by DRDC Suffield into GazeboServer. This direct connection to Gazebo replaces the player
client with a MIRO reactor task. This service may provide improve engine performance in the
rendering role. Though more successful than PlayerBase, GazeboServer cannot correct the
basic problem in Gazebo that externally driven bodies have no mass properties. Thus
vehicles rendered through this mechanism tend to ’snap’ from position to position based on
external simulator updates and do not move smoothly as expected.

Despite this deficiency, Gazebo offers a simple open and widely supported rendering sys-
tem and could provide the core foundation elements for a federated simulation system. A
federated system employs a dynamic modeling engine for each physical environment (e.g.
air, water, and ground). With this future in mind, ModelServer and its supporting assem-
bly and body modeling file formats, were modified to provide limited Support for Gazebo.
ModelServer relies on a tree-like structure to reflect the typical hierarchical relationship
between discrete mechanical components on a robot. For example the relationship between
the cameras, GPS antenna, and autopilot on a UAV can be related to a fixed coordinate
system on the fuselage. Thus a typical ModelServer Assembly file for a Silverfox contains
airframe and component geometry data. ModelServer can export this data into a simpli-
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Figure 11: Flightgear accepts state assignment from external simulation engines. The po-
sition and orientation of the vehicle is applied to a vehicle ’skin’ through an established
Flightgear APL

fied Gazebo world file structure and provides a rudimentary structure that Gazebo can be
render. More elaborate rendered structures are possible through Gazebo’s Mesh support
that permits a ’skin’ to be applied to basic body components.

2.4.3 Ground Station to Google Earth (GE)

Google Earth is a free online imaging and mapping utility provided by Google Inc. This
software provides users with the capability to mark points of interest, paths, and regions
on satellite imagery. Further, this imagery is laid over digital terrain and may be viewed
from arbitrary perspectives to clarify detail in altitude. Able to periodically poll or sample
files or network services, GE has been used to present vehicle movement in a number of
applications [8].

GE maintains a continuous connection through a network link composed of two files. The
first describes the network connection and protocol to sample the second file. The second file
contains the sampled data. Once loaded into GE, the network link is sampled periodically
over an HTTP connection. Simultaneously, another process can write to this file to update
the data. The Piccolo Generator provides an option for periodically sampling network link
files describing one or more vehicle positions. In Figure 12, the following description file for a
fixed wing Silverfox is updated through a MIRO driver:
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<?xml version="1.0" encoding="UTF-8"?7>
<kml xmlns="http://earth.google.com/kml/2.1">

<NetworkLinkControl>
<Update>
<targetHref>http://enkidu/KML/NetworkLinkTest.kml</targetHref>
<Change>
<Placemark targetId="pm123">
<name> SF1 0.00 m:0.00 deg</name>
<Point>
<coordinates>0.000000,0.000000,0.000000</coordinates>
</Point>
</Placemark>
</Change>
</Update>
</NetworkLinkControl>
</kml>

PiccoloServer periodically writes the Sampled Data file. An example:

<?xml version="1.0" encoding="UTF-8"7>
<kml xmlns="http://earth.google.com/kml/2.1">
<Document>
<Style id="FriendlyFWUAV">
<IconStyle>
<scale>0.5</scale>
<Icon>
<href>http://enkidu/KML/UAV-FixedWing-friendly.bmp</href>
</Icon>
</IconStyle>
</Style>
<Placemark id="pm123">
<name>SilverFox01</name>
<styleUrl>#FriendlyFWUAV</styleUrl>
<Point>
<coordinates>-111.112897,50.298282,609.270000</coordinates>
</Point>
</Placemark>
</Document>
</kml>

This same interface can be used to present any vehicle data desired. Unfortunately, the
Network Links facility is limited to data sampling only. Google Earth requires AJAX
techniques for richer interaction with other services. GE can sample the Network Link at
no faster than 1Hz. Practically, however, high speed sampling increases the probability of
a file block condition between the PiccoloServer and GE. Though GE ignores with blocked
links, 1 Hz sample rates cannot be gauranteed if the Server is writing at a similar rate.
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3 Rotomotion Autopilot

Rotomotion provides an experimental UAV autopilot with roots in an open source project
(http://autopilot.sourceforge.org) for rotorwing aircraft. The Rotomotion Autopilot is

SF1321.85m:-39.77 deg™a

Figure 12: Using Network Links Google FEarth can provide a simple low cost method of
observing vehicle tracks over a network. Vehicle Control, however, will require greater
access to the Google Earth API.

based on a Linux embedded computer chipset and has flown at least three scales of he-
licopter in the 5 to 25kg payload range (the SR20, SR100, and SR200). The SR20 is an
all-electric and both SR100 and SR200 are gas-powered helicopter.

3.1 Ground Control Station

Like the Piccolo II, the Rotomotion Ground Control Station (GCS) depicted in Figure 13
may be used to configure, command, and control all of the flight operations on the airborne
Autopilot. Since all the vehicles in a Rotomotion network use basic IEEE 802.11b TCP/IP
communications, the GCS is merely a client process running on either a Windows or Linux
desktop computer. Each Rotomotion autopilot appears as a node on an airborne network.
Communication scheduling between air and ground is left to the wireless router and is
transparent to the user, an interesting strategy that delegates communications to
international standards, but remains limited to short range line of sight.

The ground station comes with a crude graphical user interface (GUI) for interacting with
the autopilot on the UAV. The flight computer (or autopilot) communicates with the ground
control software (GCS) through a network using the User Datagram Protocol (UDP) proto-
col from the TCP/IP family. The relatively uncertain wireless communication environment
and the resulting reduced overall bandwidth makes UDP a better choice for air-ground
communications.

The flight computer acts as the server and the GCS as a client connecting to the server.
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Figure 13: The Rotomotion GCS software is relatively crude compared to the Cloudcap
PCC, though the basic client server approach is arguably more polished.

The server provides information such as current attitude, current position, currently desired
attitude, currently desired position, raw sensor data, video feed and other. Logging data is
done on the client side. The GUI is compatible with both Windows and Linux platform.
The ground station software allows the user to program the waypoint mode and to see the
realtime status of the UAV systems via a moving map display, an artificial horizon and
other multifunction display panels (MFD) such as status, servo commands, etc. The radio
link between the GCS and the flight controller is done with two wireless routers.

3.2 Aircraft Simulator

To test vehicle performance, Rotomotion provides a simple dynamic simulator that gener-
ates sensor inputs to the autopilot and full vehicle state to data subscribers. The simulator
produces sensor outputs such as altimetry, control servos, IMU sensing, and GPS consis-
tent with a flying model of the user’s design and responds to control surface commands
appropriately.

3.3 Autopilot

The autopilot hardware, shown in Figure 15 is an integrated package designed to control and
guide an R/C-class helicopter. A 1.251b avionics unit is mounted to the helicopter and the
control parameters tuned for the specific airframe. An additional 7.2V battery is required to
run the guidance system. The servo driver, safety over-ride and receiver are powered by a
separate conventional 4.8V R/C RX battery.
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Figure 14: The Rotomotion driver adopts a more traditional MIRO approach, replacing the
GCS with MIRO components as the primary vehicle control station.

The operator may either take-off and land the helicopter manually or use auto take-off and
auto-landing modes. Once the helicopter airborne and placed into a hover, a toggle switch
on the transmitter shifts the helicopter into autonomous mode. At this point, the helicopter
no longer requires direct manual control. The autonomous flight control system uses an
advanced stable-hover control system. Out of hover, the helicopter has a number of path
following modes:

3.3.1

e Velocity command mode (VC-Mode): the transmitter controls position through pro-

portional velocity commands. For example, the cyclic control stick becomes the ve-
locity control stick in velocity command mode. The stick commands the helicopter
to move in the command direction at a speed proportional to the amount of stick
movement on the transmitter.

Waypoint route mode (WAY-Mode) : the vehicle flies a preprogrammed series of
waypoints

Fast forward flight mode (FFF-Mode) : the helicopter flies in fast forward flight
similar to a fixed wing aircraft and, since forward flight is less power consumptive,
the mode can force the helicopter to orbit an area, increasing flight efficiency.

Flight Controller

The Rotomotion Automatic Flight Control System (AFCS) consists of five modular com-
ponents :

20

1. 3 axis, 6 degrees of freedom inertial measurement unit (IMU)
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2. 3 axis magnetometer
3. GPS with optional DGPS receiver
4. Proprietary radio receiver with servo interface and safety pilot override

5. Linux-based flight computer

Figure 15: A view of the Rotomotion autopilot revealing onboard I/O, GPS antennas, and
basic construction.

3.4 MIRO Implementation

Though Rotomotion does not provide driver to decode incoming messages, supplied doc-
umentation describes each message structure. Since MIRO natively supports the TCP
protocol, the MIRO Subscribe-Reactor was modified to support UDP messages. By electing
to create code to parse Rotomotion messages, DRDC assumes responsibility for the tracking
any changes to the autopilot’s software implementation. Any change in message structure
must be mirrored DRDC software.

Depending on an autopilot’s design, a MIRO driver might not be able to run alongside the
ground control station (GCS). Fortunately, the Rotomotion autopilot and GCS have been
designed using client-server principles, meaning the server (autopilot) accepts more than one
client connection so we can simultaneously run GCS and MIRO services. The resulting
structure is depicted in Figure 14 If this were not the case and the server could not accept
more than one connection, a “server-in-the-middle” (as in Figure 16) could be devised which
would accept at least two connections (one from a GCS software and one from a MIRO
service) and connect to the “real” server and broadcasting incoming data to all clients.

Autopilots that use ethernet protocols for air-to-surface communication must use either
TCP or UDP protocols. This section will explore the advantages and disadvantages of
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these respective protocols. CORBA exploits TCP as the low level, transport layer for
interprocess communications.

3.4.1 Transmission Control Protocol (TCP)

The transmission control protocol (TCP) is a connection-oriented protocol intended for
reliable transmission between two processes. This means that one end point needs to open a
socket on the machine/computer/device and initiates a connection with the other end point
(3-way handshake). A socket or network socket is an interface between an application and
the TCP/IP protocol stack. The term “connection-oriented” implies that an initialization
step establishes a continuous relationship between sender and receiver. Usually, end points
are called respectively client and server, where the client process submits requests to and
receives answers from a server process.

TCP is reliable because it guarantees no packet loss, error-free data transfer, discarding du-
plicate packets and packet ordering for example. To avoid packet loss, an acknowledgement
system is used where a receiving process transmits an ACK message to the transmitting
process for every message received meaning the receiver is ready for another data trans-
fer. TCP also provides flow and congestion control. Flow control is implemented to avoid
having the sender send data too fast for the TCP receiver to reliably receive and process
it. Congestion control manages traffic on a network to avoid oversubscription of any of
intermediate network nodes by taking resource reducing steps, such as reducing the packet
transmission rate. Each TCP header size is at least 20 bytes long without the options and
data.

3.4.2 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is a connectionless protocol that provides unreliable
transmission and with very few error recovery services. It’s primarily used for broadcasting
messages over a network. UDP does not guarantee reliability or ordering in the way that
TCP does. Datagrams may arrive out of order, appear duplicated, or go missing without
notice. Avoiding the overhead of checking whether every packet actually arrived makes
UDP faster and more efficient, for applications that do not need guaranteed delivery. The
size of a UDP packet is at least 8 bytes long without the data.

Real Server

Server-in-the-
middle

[ GCS ] [ Miro Service ] [ Other clients ] Clients

Figure 16: Server-in-the-middle structure

Server

Server
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3.4.3 Difference between TCP and UDP

TCP is a connection-oriented protocol, which means that upon communication it requires
3-way handshake to set up end-to-end connection.

e Reliable - TCP manages message acknowledgment, retransmission and timeout. Many
attempts to reliably deliver the message are made. If it gets lost along the way, the
server will re-request the lost part. In TCP, there’s either no missing data, or, in case
of multiple timeouts, the connection is dropped.

e Ordered - if two messages are sent along a connection, one after the other, the first
message will reach the receiving application first. When data packets arrive in the
wrong order, the TCP layer holds the later data until the earlier data can be rear-
ranged and delivered to the application.

e Heavyweight - TCP requires three packets just to set up a socket, before any actual
data can be sent. It handles connections, reliability and congestion control.

e Streaming - Data is read as a stream, with nothing distinguishing where one packet
ends and another begins. Packets may be split or merged into bigger or smaller data
streams arbitrarily.

UDP is a simpler message-based connectionless protocol. In connectionless protocols, there
is no effort made to setup a dedicated end-to-end connection. Communication is achieved
by transmitting information in one direction, from source to destination without checking
to see if the destination is still there, or if it is prepared to receive the information.

e Unreliable - When a message is sent, it cannot be known if it will reach its destination;
it could get lost along the way. There is no concept of acknowledgment, retransmission
and timeout.

e Not ordered - If two messages are sent to the same recipient, the order in which they
arrive cannot be predicted.

e Lightweight - There is no ordering of messages, no tracking connections, etc.

e Datagrams - Packets are sent individually and are guaranteed to be whole if they
arrive. Packets have definite bounds and no split or merge into data streams may
exist.

3.4.4 Design contraints

Usually, the weakest link between a ground control station (GCS) and an aircraft is the
wireless link. The available bandwidth and the subsequent volume of data transfer depends
significantly on the link transmitters, vehilce operating altitude, antenna propertie — all
often bounded by the vehicle payload. By choosing a UDP protocol over a TCP, one
can eliminate or reduce the overhead due to error recovery, handshakes, packet ordering
and packet retransmission. However, by opting for UDP, the autopilot needs to implement
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Table 1: A raw UDP Rotomotion Packet

Offset | Field name | Type Description
0 | tv_sec uint32_t | Time in seconds since the epoch
4 | tv_usec uint32_t | Fraction of a second
8 | type uint32_t | Message id
12 | data — Message data

Table 2: A DESIRED POSITION Message

Name | Col | Offset | Type Description

n 3 0 | double | North position in m in the local tangent plane.
e 4 8 | double | East position in m in the local tangent plane.
d 5 16 | double | Down position in m in the local tangent plane.
hdg 6 24 | double | Absolute heading in radians relative to north.

measures in case of communication loss. Typically, UAVs with on-board waypoint following
will fly to and either orbit or hover at a ’loss of communication’ position if the radio link is
lost more than a specific time interval.

The short range and overhead of TCP/UDP make these protocols less popular than propri-
etary serial protocols for UAV applications. However, with the appearance of longer range
ethernet (e.g. WiMAX), integrated chipsets, and the relatively sophisticated and standard-
ized management of node addressing, it is inevitable that some derivative of TCP/UDP
will be adopted eventually.

3.5 Rotomotion’s UDP Message details

All messages have a 32 bit value that identify the type of message. In general, all mea-
surements are in the local tangent plane, in meters or radians and referenced to a standard
right hand rule coordinate system. Floating point values are IEEE doubles stored in the
Intel representation. Integer values are store in network byte ordering. A packet consists
of a 12 byte header followed by up to 65524 data bytes. Table 1 describes the raw UDP
packet (network byte order) structure.

The payload may be extracted from the UDP packet by substracting the UDP 12 byte
header from the total packet length and be interpreting the remaining content as appropriate
for the message type. Each message type has a unique 32 bit message 1D identifying it to
the system (though only the lower 8 bits are currently in use). The most common messages
are the AFCS_STATE, AFCS_STATE, AUTOPILOT_STATE, FADEC, GPS_STATE, PPM, FLYTO,
PLATFORM and TELEOP_CMD.

An example of the DESIRED_POSITION message appears in Table 2. The desired position
is sent as a response to a flyto packet. The UAV will try to fly to the position indicated in
the NED frame. The message size is 32 bytes long. Table 3 lists the current message ids.
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Table 3: Though this small list belies the Rotomotion system’s immaturity, these messages
are sufficient for typical line-of-sight, experimental operations.

ID | Enumeration ID | Enumeration
0 | COMMAND_NOP 23 | VELSCALE
1 | COMMAND_OPEN 24 | MAGCAL
2 | COMMAND_ACK 25 | FADEC
3 | COMMAND_CLOSE 26 | TRIM
4 | SIM_QUIT 27 | AUTOPILOT_FFF
5 | SIM_RESET 28 | KILL
6 | SAVE_CONFIG 29 | TAKEOFF_PHASE
7 | GET_-CONFIG 50 | ATTITUTE_.GAIN_ROLL
8 | SET_CONFIG 51 | ATTITUDE_GAIN_PITCH
9 | COMMAND_SETRATE 52 | ATTITUDE_GAIN_.YAW
10 | AHRS_STATE 53 | VELOCITY_GAIN_X
11 | PPM 54 | VELOCITY_GAIN_Y
12 | GPD_STATE 55 | VELOCITY_GAIN_Z
13 | SVINFO 56 | GUIDANCE_GAIN_X
14 | AUTOPILOT_STATE 57 | GUIDANCE_GAIN_Y
15 | AFCS_STATE 58 | GUIDANCE_GAIN_Z
16 | FLYTO 80 | SERVO_ROLL
17 | TANGENT_PLANE 81 | SERVO_PITCH
18 | COMMAND_MODE 82 | SERVO_YAW
19 | PLATFORM 83 | SERVO_COLL
20 | DESIRED_POSITION 84 | SERVO_ANTENNA
21 | TELEOP_.CMD 90 | SIM_DISPLACE
22 | FAILSAFE 255 | NOTES

3.6 Visualization
3.6.1 X-Plane

The X-Plane flight simulator by Laminar Research? runs on a variety of hardware platforms
including iPhone, Linux, Mac and Windows-based PCs. X-Plane also includes a powerful
editor to build and customize aircraft and scenery, to produce a complete flight simulation
environment. X-Plane’s plugin architecture 4 allows users to create modules extending
software’s base functionality.

Like other flight simulators, X-Plane is intended for aerodynamic simulation and has very
limited rigid body dynamics support. This deficit makes realistic air and ground vehicle
simulations difficult. Nevertheless, the Rotomotion driver and X-Plane simulator were used
successfully with Rotomotion Hardware during trials in 2006 at DRDC Valcartier.

3www.x-plane.com

“as discussed on the Wiki site: http://www.xsquawkbox.net/xpsdk/phpwiki/
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4 Discussion

Increasingly, low-level vehicle control systems are being packaged as discrete products. This
product evolution reflects the demand for simple teleoperated or semi-automated vehicle
controllers and a supply driven by dropping production costs, and the appearance of novel
MEMS sensors. A secondary result of such commoditization is the growth in unmanned
vehicle interface protocols. From the standpoint of an integrated military unmanned vehicle
control structure, these market changes are crucial but expose the growing need for vehicle
integration into a coherent UAS control structure. The most notable attempt to achieve
uniformity in military robotics, the Joint Architecture for Unmanned systems (JAUS), has
had a mixed reception by the development community in part due to the fairly narrow
initial focus on ground vehicles and an implied prescribed design for of vehicle control
systems. Given that unmanned systems development has yet to settle on any particular
vehicle software architecture, JAUS’ scope has shrunk to a basic control instruction set,
dropping any pretense to a prescribed vehicle architecture. Despite its limited success, the
JAUS standard fails to address vehicle integration into military networks, a key requirement
for larger UAS adoption — a void filled by many commercial proprietary solutions.

The focus of this brief study has been an examination of issues surrounding commodity
autopilot integration into a networked vehicle control system. The autopilots assembled for
this study are representative of the two basic approaches to UAS communications, serial
RF communications and wireless UDP communications, and are arguably the most sophis-
ticated in their class. Significantly, the wireless UDP solution by Rotomotion, is clearly
less mature than CloudCap’s Piccolo autopilot in the depth and breadth of controllable
parameters and vehicle control algorithms.

4.1 Autopilots

While one could not expect identical autopilot design or performance from two independent
suppliers, the variation between these two designs has significant implications for future
net-enabled UAV services. The Cloudcap autopilot is complex, with a large memory and
an arbitrary number of flight plans. Industry wide this is an unusual approach. Many
systems store a finite number of specific paths: e.g. the current path, the loss of comms
path, an autoland path, etc.. These internal differences will have significant impact on an
exhaustive set of UAV services and have, to some degree, been captured within STANAG
4586 a GCS/Autopilot communication standard.

4.2 Aircraft Simulator

Both systems exploit rudimentary aircraft simulation allowing users to learn and practice
UAS operations. Both simulators are closed to external inspection but open to parameter
modification. Though adequate for mission practice, dynamic maneuver or more complex
dynamics (e.g. slung loads for rotorcraft) will require more accurate and extensible simu-
lation systems. In the long run, ’standard’ simulation tools such as MATLAB represent a
more flexible, rigorous approach to vehicle simulation.
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4.3 Ground Control Station

Though Cloudcap’s ground control station remains substantially more informative and flex-
ible than Rotomotions, neither completely fulfills the long term requirements of multiplat-
form multivehicle control. Both systems have some form of moving map display and full
vehicle state reporting. Both GCS systems are capable of multivehicle control with Cloud-
cap using Piccolo ID designators and Rotomotion using IP addresses. Not surprisingly both
systems are bound to both proprietary hardware and, to a lesser extent, closed protocols.
Similarities aside, Cloudcaps system is both more informative and easier to use.

4.4 Communications Interface

The Piccolo communication API is substantially more complex than the Rotomotion autopi-
lot — a clear indication that Cloudcap has more flight experience. However, Rotomotion’s
use of standard networking tools makes vehicle communications both clear and familiar to
novices with some internet experience — in the long run a more extensible solution than the
Cloudcap model. Further, Cloudcap’s system is neither open nor portable. The Cloudcap
system relies on an unknown handshake protocol between client and GCS on initialization.
This unpublished protocol ensures the user is dependent on Cloudcap or third party soft-
ware. Since Linux communication libraries often lag behind the Windows versions, code
portability becomes difficult with the Cloudcap model.

4.5 Software Design

Both DRDC designs succeed in embedding commercial UAVs into the MIRO infrastructure.
The Rotomotion MIRO driver embodies the preferred practice, with minimal dependencies
on external code, a proven publish-subscribe model, and direct communication with the
autopilot. In contrast, the Cloudcap controller represents a ’simple’, but unconventional
communication solution based on commercial libraries to establish an indirect link with the
autopilot moderated by the GCS. Even though the Piccolo continuously publishes flight
data to the GCS, the GCS uses a client-server model where the client polls the GCS server
for Piccolo data. Thus the Cloudcap MIRO driver is caught between a polling dialogue
with the GCS and the demands of MIRO’s publish-subscribe system. The MIRO driver
compensates for this deficit through repeated (but wasteful) polling of the Cloudcap server
and the Push timer mechanism. By comparison, the Rotomotion driver has more complex
packet parsing, but less complex control flow, pushing events as received directly from
the Rotomotion autopilot. Though the Rotomotion driver lacks the Push Timer and is
thus somewhat less flexible than the Piccolo MIRO driver, both systems provide effectively
identical event based performance to external consumers.

Clearly, the Cloudcap MIRO driver’s dependence on commercial libraries simplifies de-
velopment, but complicates support and portability of the driver. This approach greatly
speeds development and exposes a large API to an external user. However, the library and
GCS together hides a complex, proprietary low level serial communications and networking
model between GCS and aircraft. Cloudcap’s GCS server unnecessarily mimics some of
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these protocols and thus complicates communications with the GCS. Since Rotomotion’s
autopilot is founded on traditional 802.11g networking, the API is reduced to familiar IP
networking and exchanged bytestreams — a portable and transparent API.

4.6 Visualization

A persistent weakness in the MIRO infrastructure is a simple, stable and reliable
visualization environment. Though many proprietary rendering solutions are available, open
source solutions are preferable for ease of collaboration and modification. In general, the
benefits of open source must be carefully weighed against the complexity and effort of custom
software development and maintenance — particularly for animation software. Open Source
projects have the advantage that they can be very responsive to technological change and
can rapidly adopt new or emerging standards and/or methods. However, this same
responsiveness can and does lead to design instability where tools and techniques are always
changing. So while systems such as Gazebo (or the nominally HLA-compliant Delta3D) are
adequate in the short term, the simple engineering effort of growing these open source
systems into stable military systems could prove difficult and costly in the long term. It is
noteworthy that some open source projects (such as Flightgear) are remarkably sophisticated
and demonstrate industry leading capabilities and comparable robustness (to MS Flight
Simulator or X-plane, for example).

5 Future Work

In general, future development of UAV MIRO components will remain complicated by
the base transport layer decisions taken by manufacturers. Since proprietary serial
protocols will likely dominate the market for some time to come, the development of a
stronger library independent driver using a common IDL seems to be the best way forward.
While the risks of supporting new serial protocols will be ever present, the advantages of
a common UAV IDL architecture, ideally a subset of a more general vehicle IDL protocol
might be worth pursuing. This strategy, combined with appropriate information hiding
techniques within the driver will insulate the greater MIRO network until the transition to
TCP or UDP based UAVs.

As difficult as the communication structures may be, a further difficulty in MIRO based
control is the common representation of vehicle and/or GCS memory models. In addition to
proprietary communication protocols, manufacturers have adopted a wide variety of internal
memory models. Some include multiple paths and emergency procedures on board, some
reserve these functions for the GCS and others have only one active path at any time and
all adopt widely different means of representing these functions. At some point a standard
model will have to be developed that reflects an idealized UAV mission control system that,
in turn, can be mapped through appropriate drivers onto a specific system’s GCS and/or
autopilot. Without a consistent and generic capability driver, communicating with UAVs
will remain a vehicle specific procedure.
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