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Abstract

Electro-optical (EO) guided weapons represent a significant and rapidly proliferating threat to
Canadian Forces (CF). Therefore, developing and maintaining appropriate countermeasures is
critical to improve platform survivability. The CF have a need for a comprehensive and thorough
approach to provide the best reliable answer to EO warfare problems, timely and adapted to the
needs. In this perspective, the Virtual Range for Advanced Platform Protection (VRAPP) is a
system of systems providing technology for an EO virtual proving ground for the purpose of
achieving a more robust, adaptable and agile force protection and, ultimately, to improve combat
effectiveness in high threat environments. The project documentation includes guidelines, system
overviews, a technical data package, a statement of requirements and technical specifications.
This report presents the system overview of the KARMA simulation framework. The system
overview summarizes the KARMA facility and its capabilities with references to existing
technical documentation. The KARMA system overview will be the starting point for the design
of the VRAPP simulation framework. The KARMA system will be updated and integrated
throughout the spiral development phases and will be documented in a final VRAPP system
overview.

Résumé

Les armes guidées par électro-optique (EO) représentent une menace appréciable et qui prolifére
rapidement pour les Forces canadiennes (FC). Par conséquent, il est critique de développer et
d’entretenir des contre-mesures appropriées pour améliorer la survie des plates-formes. Les FC
ont besoin d’une approche globale et approfondie pour fournir la meilleure réponse aux questions
de guerre EO, dans un délai opportun et d’une fagon adaptée aux besoins. Dans cette optique, le
polygone virtuel pour la protection évoluée de plates-formes, ou VRAPP, est un systéme de
systémes offrant la technologie requise pour développer un polygone virtuel d’essais EO visant a
assurer une protection de la force plus fiable, adaptable et souple et, ultimement, a améliorer
I’efficacit¢ au combat dans des environnements ou le degré de menace est ¢levé. La
documentation de projet comprend des lignes directrices, des vues d’ensemble de systémes, un
jeu de documents techniques, un énoncé des besoins et des spécifications techniques. Ce rapport
présente la vue d’ensemble du cadriciel de simulation KARMA. La vue d’ensemble du systéme
résume l’installation KARMA et ses capacités tout en faisant référence a la documentation
technique existante. La vue d’ensemble du systtme KARMA servira de point de départ a la
conception du cadriciel de simulation de VRAPP. Le systtme KARMA sera mis a jour et intégré
tout au long du développement en spiral et sera documenté dans un document final de vue
d’ensemble du systéme VRAPP.
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Executive summary

VRAPP system overview: KARMA

N. Harrison; C. Belhumeur; M. Lambert; J.-F. Lepage; E. Rouleau; E. Boivin; M.-
A. Labrie; DRDC Valcartier TM 2010-208; Defence R&D Canada — Valcartier;
October 2013.

Introduction or background: Electro-optical (EO) guided weapons represent a significant and
rapidly proliferating threat to Canadian Forces (CF). Therefore, developing and maintaining
appropriate countermeasures is critical to improve platform survivability. The CF have a need for
a comprehensive and thorough approach to provide the best reliable answer to EO warfare
(EOW) problems, timely and adapted to the needs.

In this perspective, the Virtual Range for Advanced Platform Protection (VRAPP) Technology
Demonstration Project (TDP) aims at demonstrating an EO virtual proving ground as the basis of
a robust capability in support of EOW enginecering and training. VRAPP includes the
development of a synthetic environment framework using three levels of engagement simulation
services integrating constructive, virtual and live simulation systems for the purpose of
conducting engagement analysis between EO threats, platforms and countermeasures. VRAPP
will also demonstrate processes driving the engineering of EO countermeasure techniques. A
verification and validation methodology will be defined to ensure that the analysis output is
reliable and that the level of details is fit for purpose.

VRAPP integrates the KARMA, SEMAC with IR jammer, SAMSARA, HARFANG and MAWS
facilities developed through several applied research projects by the EOW and the Precision
Weapon Sections at Defence R&D Canada — Valcartier. In preparation for VRAPP’s
specification, all the existing documentation on each facility was gathered in a technical data
package and system overview documents were written to summarize each facility.

Results: This report presents the system overview of the KARMA simulation framework. The
system overview summarizes the big picture of the system and its capabilities with references to

existing technical documentation.

Significance: The KARMA system overview will be the starting point for the design of the
VRAPP simulation framework.

Future plans: The KARMA system will be updated and integrated throughout the spiral
development phases and will be documented in a final VRAPP system overview.

DRDC Valcartier TM 2010-208 iii
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Introduction ou contexte: Les armes guidées par électro-optique (EO) représentent une menace
appréciable et qui prolifére rapidement pour les Forces canadiennes (FC). Par conséquent, il est
critique de développer et d’entretenir des contre-mesures appropri¢es pour améliorer la survie des
plates-formes. Les FC ont besoin d’une approche globale et approfondie pour fournir la meilleure
réponse aux questions de guerre EO, dans un délai opportun et d’une fagon adaptée aux besoins.

Dans cette optique, le Projet de Démonstration Technologique (PDT) Polygone virtuel pour la
protection ¢évoluée de plates-formes, ou VRAPP, vise a faire la démonstration d’un polygone
virtuel d’essais EO servant a développer une capacité fiable en appui a l’'ingénieric et a
I’entrainement pour la guerre EO (GEO). VRAPP comprend le développement d’un cadriciel
d’environnement synthétique faisant appel a trois niveaux de services de simulation
d’engagement qui intégrent des systémes de simulation constructifs, virtuels et réels afin
d’analyser efficacement des engagements entre des systémes EO menagants, des plates-formes et
des contre-mesures. VRAPP fera la démonstration de processus d’ingénierie qui appuient le
développement de techniques de contre-mesures EO. Une méthodologie de vérification et de
validation sera définie afin d’assurer la fiabilité des conclusions de 1’analyse et d’atteindre le
niveau de détails approprié au probléme a I’étude.

VRAPP intégre les installations KARMA, SEMAC avec brouilleur IR, SAMSARA, HARFANG
et MAWS développées dans le cadre de plusieurs projets de recherche appliquée par les sections
GEO et Armes de précision du centre de R & D pour la défense Canada — Valcartier. En
préparation a la spécification de VRAPP, toute la documentation existante a propos de chacune
des installations fut rassemblée dans un jeu de documents techniques et des documents de vue
d’ensemble de systémes furent écrits pour résumer chaque installation.

Résultats: Ce rapport présente la vue d’ensemble du systéme KARMA. La vue d’ensemble
résume le systéme global et ses capacités tout en faisant référence a la documentation technique

existante.

Importance: La vue d’ensemble du systeme KARMA servira de point de départ a la conception
du cadriciel de simulation de VRAPP.

Perspectives: Le systtme KARMA sera mis a jour et intégré tout au long du développement en
spiral et sera documenté dans un document final de vue d’ensemble du systeme VRAPP.
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1 Introduction

11  Background

Electro-optical (EO) guided weapons represent a significant and rapidly proliferating threat to
Canadian Forces (CF). Therefore, developing and maintaining appropriate countermeasures is
critical to improve platform survivability. The CF have a need for a comprehensive and thorough
approach to provide the best reliable answer to EO warfare (EOW) problems, timely and adapted
to the needs.

In this perspective, the Virtual Range for Advanced Platform Protection (VRAPP) Technology
Demonstration Project (TDP) integrates the five following facilities of the EOW and the Precision
Weapon Sections developed at Defence R&D Canada — Valcartier (DRDC Valcartier) through
several applied research projects:

o KARMA simulation framework [1];

e Simulator of Engagement for Missiles, Aircraft and Countermeasures (SEMAC) with
infrared (IR) jammer;

e SAMSARA hybrid hardware-in-the-loop IR tracking and guidance loop simulator;
¢ HARFANG mobile IR countermeasure field testing facility; and
e Missile Approach Warning System (MAWS) hardware-in-the-loop (HWIL) simulator.

VRAPP is a System of Systems (SoS) providing technology for an EO virtual proving ground for
the purpose of achieving a more robust, adaptable and agile force protection and, ultimately, to
improve combat effectiveness in high threat environments.

1.2 VRAPP components

As illustrated in Figure 1, the main components of the VRAPP SoS will include three levels of
engagement simulation services linked through a collaborative network for data sharing and
distribution.

The Tier 1 workstations will offer to external customers a direct access to EO engagement
services for distributed simulation exercises or for standalone usage. They will include all
required components (computer-generated forces, model repository, etc.) to carry out EO
engagement simulations with medium-to-low level-of-details physics-based models of threats,
platforms, countermeasure systems and environment.

Although very similar in nature, the Tier 2 workstations will serve as the development, test and
evaluation platform for software components that are subsequently migrated in their validated
form to the Tier 1 for operational usage. Models will be developed and validated within this tier
before they are made available to external customers.

DRDC Valcartier TM 2010-208 1



The Tier 3 workstations will offer high-level-of-details EO engagement services. The Tier 3
services comprise three independent HWIL simulators providing high-level-of-details
representations of specific elements of the self-protection problem (threat, countermeasure,
MAWS, etc.). These simulators will be used either on a standalone basis for specific
investigations or could be linked to participate in other simulations as high-level-of-details
components.

VRAPP will also include a comprehensive experimental database of results for different uses,
including component validation. The engagement simulation services of the VRAPP SoS will be
managed through a series of engineering processes to ensure consistency in usage and the validity
of the results.

The VRAPP components will be accessible to the users through a web portal providing
collaborative tools for posting and viewing requests, updating and upgrading versions, browsing
and searching the database and model repositories, sharing documentation and lessons learned,
and stepping through processes.

- Tier 1 Tier 1 HLA
Workstation Engagement Server ~ Federation
;@’ Tier 1
<
Operational
N C ] applications
— — — X —— —— —— ——— —— — — — — — — — — —
VRAPP VRAPP
s S Development
erver erver Tier 2 Tier 2 Tier 2 Tier 2 applications
Unclassified Classified Workstation Workstation Workstation Workstation
@} @} Tier 2
| | 3 |
SEMAC MAWS SAMSARA
Tier 3 Tier 3 Tier 3
Tier 3 Local Workstation Local Workstation Local Workstation
Master Workstation ISAC Tier 3
Processor
; : Land Interface Unit
Optical Simulator Hybrid Simulator
Control Unit

Figure 1: VRAPP envisioned architecture.

1.3 VRAPP documentation

The VRAPP documentation tree is depicted in Figure 2. The system overview documents
summarize each facility integrated under VRAPP. The technical data package gathers the existing
documentation on each facility. The guidelines documents present existing software development
best practices. The Statement of Requirements (SOR) document introduces the VRAPP
overarching requirements while the technical specification documents detail the requirements for
each of the main functionalities: collaborative environment, simulation tools, simulation
framework, software development, network, SEMAC Tier 3, MAWS Tier 3 and SAMSARA Tier
3.

2 DRDC Valcartier TM 2010-208



This document presents the system overview of the KARMA simulation framework, a component
of the VRAPP SoS referred as the VRAPP simulation framework. Information on the technical
specifications and its development history can be found respectively in the Simulation framework
technical specifications VO document and in the VRAPP technical data package. This document
refers specifically to files in the VRAPP Technical Data Package [2] (file names in blue
underlined font).

VRAPP
SOR

System Overviews

Collaborative Simulation; Simulation ;
Environment  Tools : Framework/:

--------------------

Software Network
Development

Technical Data Package

SEMAC MAWS SAMSARA
Tier 3 Tier 3 Tier 3

Figure 2: VRAPP documentation tree.

1.4  System description and purpose

The KARMA facility is primarily a generic Modelling and Simulation (M&S) process
implemented in a specific integrated suite of tools. KARMA is inspired from the Model-Driven
Architecture® (MDA®) to capture the knowledge of the experts into persistent M&S assets.
KARMA is not an acronym; it refers to the incarnation of the knowledge of real-world systems
into different forms of models [3].

DRDC Valcartier has fostered the teaming of software engineers with experts from different
Communities Of Interest (COI), namely the COI for weapons and EO phenomenology, to
transition their expertise into Synthetic Environments (SEs). Due to the proliferating use of M&S
to solve a broad range of problems, these COI are challenged to deliver their knowledge in
models for different applications and different clients. To maximize the return on the investment
and to remain responsive to the various clients, the team has developed solid foundations to offer
persistent weapon engagement M&S services. Please refer to the document KARMA Team
Structure.pdf for more details.

DRDC Valcartier TM 2010-208 3



KARMA was scoped to help focusing its development and ensure the production of useful
deliverables because of its several potential applications and very broad reach. The underlying
idea was to develop a M&S process of wide applicability and extensibility (growth potential) to
any engagement simulation, but to limit its demonstration to a specific problem. This ensured that
the efforts devoted to the development of KARMA were focused on achieving realistic objectives
and on providing deliverables that were agreed upon. Consequently, it was decided to limit the
extent of KARMA to engagements between EO-guided weapon systems, aircrafts and
countermeasures (CMs). However, KARMA was designed without any limitations with respect to
the type of environment to be modelled and simulated. Indeed, KARMA offers the flexibility for
potential extension to other engagement environments (land and sea platforms) or different
weapon technologies. It is expected that KARMA will eventually include Radio Frequency (RF)
weapon system engagements.

In addition to flexibility, KARMA was designed to optimize models reusability. In fact,
reusability is maximized through the uncoupling of the scenario modelling from the physics-
based modelling. A system is divided into small models that are likely to be part of a more
complex system. These fine-grained models have clear responsibilities. Therefore, this approach
reduces the number of models and data files required for different simulation engagements.
Without systematic reuse of components and configuration files, all the information would be
duplicated, which could result in an unmanageable number of desynchronized versions of the
models.

The KARMA process, its associated suite of tools and the simulation framework are detailed in

Section 2; its usage is presented in Section 3; and finally, its development is presented in
Section 4.
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2 KARMA M&S

2.1 Modelling process

The KARMA modelling process is based on iterative micro-engineering development cycles that
could be part of a larger process, such as the Federation Development and Execution Process
(FEDEP). This approach proposes a concrete day-to-day working process for modellers. The
generic KARMA modelling process is shown on Figure 3 and comprises three main aspects:
modelling, simulation execution and analysis. KARMA mostly focuses on the simulation
modelling phase to capitalize on experts' knowledge. In line with the MDA® philosophy, the
conceptual model is independent from the implementation of the model and they are all linked
through automatic code generation. The modelling process is based on software engineering
concepts, tools and best practices to guide modellers in the development of models. The
component-based development environment of KARMA allows reusable and interoperable model
configurations. These components are defined at the conceptual modeling level, which becomes
the reference for design.

Conceptual Modelling

Simulat.ion Scenario Physical -

WGLEI [ B Modelling Modelling g

Automatic Code Generation =

=

: [ —

2

T

3

=)

)

- . :

Siuation S
Execution

Simulation Vi
" NI

Analysis

Figure 3: The generic KARMA M&S process.

The outcome of the modelling phase is a software model that is referred as a component and its
associated data defined separately to foster reusing the same model into different simulation
engagements. To maximize reusability, the models are adapted (from the Adapfer design pattern)
to specific simulation frameworks. Adapters reduce the dependence on a particular software
product or environment. Moreover, they contribute to improve the reusability of generic models,
the modularity of the dependence to simulation execution and the extensibility of the simulation
framework. Theoretically, the adaptation is possible with any Object-Oriented (OO) and
component-based simulation framework that supports plug-ins.

An option analysis originally led to the selection of Commercial-Off-The-Shelf (COTS) and
custom tools to support the generic KARMA M&S process for the specific purpose of the
KARMA team. The suite of tools is presented on Figure 4 and forms a collaborative integrated
development environment.
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Figure 4: The KARMA integrated suite of tools.

The following subsections present different phases of the process that are detailed in the
document A M&S Process to Achieve Reusability and Interoperability (NMSG 2002).pdf [4].

211 Modelling

Figure 5 presents the Level of Detail (LOD) pyramid where the engineering level is the most
realistic representation for a simulation up to the campaign level which often trades fidelity for a
broader analysis scope. A trade-off between output accuracy and computational time is made
during the modelling stage to produce results as realistic as possible while maintaining the
execution within the required time constraints.

Engagement

KARMA
Engineering

Figure 5: The M&S LOD pyramid.

The KARMA simulation framework is intended to allow for a varying LOD. Indeed, it is possible
to use the KARMA simulation framework in closed loop for simulation execution having real-
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time constraints or to perform engineering level analysis where real-time constraints are no longer
required. However, as shown in Figure 5, the application of KARMA is intentionally focused on
the engineering and engagement LODs. This approach was selected to establish a bottom-up
integration of the M&S, which is believed to be the most effective way of developing models.
The distinction between these two levels is not particularly well defined, even in the literature.
This is made even fuzzier by the fact that there are variations within each category which,
therefore, can overlap each other. It should be noted that the key element to discriminate these
levels is the purpose of the model or the simulation. For instance, an engineering model will have
a focus different from an engagement model depending on the particular needs of the simulation.

¢ Engineering level — at this level, the focus is essentially on modeling and simulating the
physics of single entity parts over the duration of a physical phenomenon in order to assess
system performance issues for design, systems/subsystems evaluation and test support.

e Engagement level — at this level, the focus is on modelling and simulating the behaviour of
one or a few entities as a whole, or with some detailed subsystems of interest, over the
duration of an interaction in order to assess system effectiveness issues.

Simulation modelling includes three main activities for each element to be simulated: conceptual
modelling, physical modelling and scenario modelling which describes the interactions between
the various simulated elements.

2111 Conceptual modelling

Conceptual modelling is the first step of any structured M&S process. It is a high level
representation of the simulation requirements for a model which includes its behaviour, properties
and interactions. A conceptual model is presented in a form that allows everyone involved in the
project to agree on and is the reference for the design stage. Modellers always go back to the
conceptual model when any changes are required for a model. As a standard for representing
these concepts, the Unified Modeling Language® (UML®) was selected to support the conceptual
modelling. Therefore, applications of the simulation are described using use case diagrams while
the static and dynamic aspects of the simulated elements are represented using cl/ass and sequence
diagrams, respectively. Finally, the implementation of the elements is conceptualized using
component diagrams.

211.2 Physical modelling

Once the stakeholders and the modellers agree on the conceptual model, each specialist can
model the physics that is under its responsibility. This activity is the physical modelling which
aims at producing the mathematical representation of the real-world behaviour. Parameters are
used whenever it is possible since they increase the reusability potential by specifying what is left
generic in the model; each component having customizable parameters and initial conditions.
Parameters are the model data that remain constant over the simulation while initial conditions
change over time. At the end of the physical modelling stage, the model is implemented into a
software format that is independent from any COTS simulation framework and compiled as a
Dynamic Link Library (DLL) which allows loading and instantiating the model dynamically at
run-time. The software model can be directly written in an OO programming language (C++ was
selected for KARMA) while legacy models are encapsulated into a class. However, since
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modellers are not necessarily programmers, it is often impossible to require structured and
standardized code from them. Therefore, automatic code generation tools are used for providing a
standardized code skeleton and reducing the code to be written. Visual programming and
simulation tools such as MATLAB®/Simulink® are also favoured for physical modelling without
specific programming skills. Indeed, these tools were especially created for specific domain
engineering-level rapid prototyping, test and validation. They often allow the reuse of
functionalities through common libraries and the interoperability with other specialists. The only
constraint is then to design physical models compliant with the OO and component-oriented
conceptual model. The main challenge resides in switching from the block and wire
representation of visual programming to the OO paradigm. Additionally, using component-based
simulation, the model execution order is critical and the time steps between the integration
schemes must be synchronized.

2113 Scenario modelling

The last activity of the modelling phase is the scenario modelling which produces configurations
of entity models with their associated parameters. The first two modelling activities (conceptual
and physical) are dealing with generic objects while scenario modelling refers to instances of
these objects. A scenario includes entities with their sub-models assemblies, the parameters
associated to each model component (including initial conditions for the outputs) and the log
settings for the simulation. The scenario modelling is based on the Extensible Markup Language
(XML) standard that fosters the exchange, the modularity and the portability of the scenarios.
This approach allows selecting different outputs to be logged or reusing the same model with
different parameters.

21.2 Simulation

Some part of the simulation execution can be delegated to an existing COTS framework that
provides functionalities such as scenario creation, execution control, doctrines, trajectories,
viewers, etc. Some frameworks may even include built-in models and data. This approach
originates from the fact that the expertise of the process initiators mainly resides in simulation
modelling not in time management, distributed simulation, terrain database, visualization, etc.

The use of a recognized simulation framework contributes to the interoperability between the
modellers by providing a common infrastructure. Within the defence community, such
interoperability may also be improved if the chosen framework is compliant with High-Level
Architecture (HLA).

213 Analysis

Results produced during a simulation can be used to validate the models created in the KARMA
simulation framework or to study EO-guided weapon engagements. KARMA users must know if
the models for a simulation represent an accurate picture of the reality and their validity for that
simulation. In this context, some analysis tools, presented in Subsection 3.4, are offered to the
KARMA users in order to validate the models.
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Simulation analysis often requires a defined set of variables for each type of viewer. Thus,
predefined log configurations can be reused between similar simulation analysis activities. As an
example, the same entities states must generally be logged for KARMA Viewer3D replay and the
same Line of Sight (LOS) angles must be logged for typical countermeasure effectiveness
analysis. Refer to Subsection 3.5.9 for more details about how simulation results are analyzed.

2.2 Simulation framework

Originally, the KARMA framework was designed to provide services like a scenario loader and a
data logger but not an execution scheduler. Indeed, one of the requirements of the KARMA
framework was that it could run with many simulation frameworks easily in order to benefit from
the scheduling and scenario edition functionalities. STRIVE®, developed by CAE, was the first
simulation framework used to perform simulation engagements using KARMA models. This
framework is described in Subsection 4.6. Additionally, a model execution scheduler was
developed for the KARMA framework in order to demonstrate that KARMA can be used with
many frameworks. STRIVE® is no longer used since it is more convenient to use the KARMA
scheduler and no commercial licence is required.

The following subsections present the main components of the KARMA simulation framework
and the implementation of this framework.

221 Main components

The KARMA simulation framework includes a simulation manager, named
SimulationEnvironment, which calls all the entities in the simulation throughout the simulation
execution. This component is also responsible for instantiating components having only one
instance during a simulation (singletons) like the Theatre and the Factory that play a key role
inside the simulation. The Theatre contains all the entities of the simulation while the Facrory is
in charge of instantiating the Loader and the Logger. The Loader loads all the models used in the
simulation and the Logger logs the variables of the simulation according to the selection made by
the user (log settings). Also, during a simulation, the SimulationEnvironment has the capacity to
instantiate dynamically and destroy entities.

2.2.2 Implementation

The KARMA simulation framework is developed in C++ using Microsoft Visual Studio 2005%.
The main components like the Theatre, the SimulationEnvironment, the Factory, the Logger and
the Loader are created in independent projects in order to be compiled as a separate DLL. The
models developed for the KARMA simulation framework are implemented using the C++
language or Simulink®. A DLL is created for each model. Thus, it is possible to modify a model
without the need of recompiling the main components and all other models.

The development of the KARMA simulation framework is also based on various third party

libraries; the majority being implemented in C++. Table 1 shows the libraries that are used in
KARMA.
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Table 1: External libraries used in KARMA.

Library Application

Standard Template Library (STL) Used to provide containers that store a
collection of objects. For example, the 7heatre
owns a map container that contains reference to
the objects in the simulation.

DataTypes Used as the data types standard. It was created
in order to have a common base class when
data of different types need to be set into a
container that needs data with same type.

Xercesc 2.8 Used to read/write the XML files and to keep
the simulation data in the XML format.

MODTRAN Used to generate atmospheric transmittances.

OpenSceneGraph (0SG) 2.2.0 Used to produce the rendering of IR signatures
based on 3D models.

OSMesa 7.0.1

OpenDynamicsEngine (ODE) 0.9 Used for collision detection based on 3D
models.
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3 Using KARMA

The user, as its name suggests, is someone who uses KARMA to perform a task like simulate an
engagement and analyze simulation results. This section aims at providing the information
required to perform these tasks properly. It targets typical end users but not necessarily experts in
M&S of weapon system engagements neither in information technologies. The role of the user is
defined in Subsection 3.1. The terminology and conventions used in KARMA are presented in
Subsection 3.2. Subsection 3.3 presents the models repository while Subsection 3.4 presents the
various tools available to the user. Finally, the basic principles that a user needs to know are
covered in Subsection 3.5.

3.1  Role

A KARMA user performs any kind of simulations using the models created by the developers
that is presented in Section 4. In addition, the user is able to analyse the results produced by the
execution of the simulations and is able to export simulation results to other simulation or
analysis tools. In the KARMA context, the user is able to simulate the engagement between a
weapon system and a target according to the following steps:

e simulation preparation (planning);
e simulation execution; and

e simulation analysis (results).

3.2 Terminology and conventions

KARMA users must be familiar with the terminology and the conventions used in KARMA in
order to understand the functionalities. The KARMA terminology is presented in
Subsection 3.2.1. The coordinate systems used are presented in Subsection 3.2.2. The
specification for the interface of guided weapon models is introduced in Subsection 3.2.3. Finally,
the library of the data types developed for KARMA is presented in Subsection 3.2 4.

3.21 KARMA terminology

The use of KARMA requires being familiar with the terminology presented below.
e Theatre — finished 3D volume containing all the entities that take part in the simulation.

e BaseEntity — entity representing any autonomous object of the real-world (e.g. aircraft,
missile, flare, etc.) having a role in a scenario. Each entity has an attitude (yaw, pitch, and
roll), a location (x, y, and z), a geometry and a signature.

e Part — subsystem of an entity (e.g. sensor, fuze, motor, secker, autopilot, etc.) that cannot
exist by itself.

o Characteristic — represents abstract information of an entity that people cannot touch (e.g.
IR signature, geometry, etc.).
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o Parent — element (BaseEntity or Part) that encompasses a given element. A BaseEntity or a

Part is the parent of the elements of its direct composition.

e Composition — children elements of a given element.

o SimulationEnvironment — manager that calls models during simulation execution and

manages the creation/deletion of the entities.

Some acronyms are frequently used in typical KARMA EO-guided weapon engagement

simulations. These acronyms are presented in Table 2.

Table 2: List of common acronyms.

Acronym Description
FOV Field of View
LOS Line of Sight
MAWS Missile Approach Warning System
CM Countermeasure
DIRCM Directed IR Countermeasure
ManPADS Man Portable Air Defence System
IR Infrared
uv Ultraviolet
RF Radio Frequency
DOF Degree of Freedom
NED North East Down
CMDS Countermeasure Dispenser System

3.2.2 Coordinates

Entities that take part of the Theatre have attitude and location properties defined with respect to
an carth-fixed coordinate system using the North East Down (NED) convention. Figure 6 shows
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the earth-fixed coordinate system (E) and the aircraft body coordinate system (B). The northern
axis, eastern axis, down axis corresponds respectively to the x-axis, y-axis and z-axis. The down
axis is chosen instead of the up axis in order to comply with the right-hand rule.

Figure 6. Earth-fixed (E) and the body (B) coordinate systems.

The orientation of an entity in relation to the NED coordinate system is given using the Tait-
Bryan convention for Euler angles rotations. The first Euler rotation, yaw, is around the z-axis
and the rotation angle is denoted by ¢. The second Euler rotation, pitch, is around the y-axis and
the rotation angle is denoted by 0. The last Euler rotation, roll, is around the x-axis and the
rotation angle is denoted by y. The Figure 7 presents the rotations on the aircraft body coordinate
system.

DRDC Valcartier TM 2010-208 13



Figure 7: Rotations on the aircraft body coordinate system.

It is really important, in a simulation framework, to be able to switch from one system of
reference to another. Sometimes it is also useful to get the data in the polar, the spherical, the
cylindrical and the rectangular coordinate format. Thus, in order to be able to do those
transformations into KARMA, a coordinate package has been created. Refer to the document
COORDINATE .pdf for more details.

3.2.3 MIST

The Munition Interface Specification for the TTCP (MIST) is an interface specification for 6DOF
guided weapon models [6]. It has been created to standardize the M&S technology applied to
guided weapon/munition models and to establish both a baseline and techniques for reusing such
models in a large range of applications and simulation environments through portability. Included
is a variable naming convention, a functional decomposition for a baseline guided weapon model
(including several variants), a signal specification for the data exchanged by weapon sub-
component models and a blueprint for developing both modelling architectures and models that
are independent of simulation architectures. This specification is not strictly applied in the
modelling for KARMA, but when the names of the MIST standard are adequate and do not
conflict with the KARMA naming convention, the MIST names are used.

3.24 Data types

The Datalypes library came from the necessity to have a common base class for all data types
used in the development of the KARMA simulation framework. It is useful to have a common
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base class when data of different types need to be set into a container that manages data with the
same type: integer, floating-point, boolean, character, string, array, vector3 and matrice.

Because other development projects than KARMA could need to use these data types, the
DataTypes library was done independently from KARMA, so it is possible to reuse it in other

applications.

Refer to the documents DataTypes.pdf and DataTypesPackage.pdf for more details.

3.3 Model repository

Over the years, the KARMA simulation framework has achieved a level of maturity that allows
every new application to contribute to a repository of models (referred as the Model Repository)
that is shared across DRDC stakeholders for future reuse. KARMA users benefit of the models
contained in this repository to create their different scenarios required for a specific simulation
execution.

The models used in KARMA are located in the ModelRepository folder which is structured using
three important subfolders for the users: doc, Models and xm/. All documentation related to the
modelling (model documentation template, Verification and Validation (V&V), etc.) are gathered
under the doc folder. The source code of the models and the documentation pertaining to these
models are in the Models folder while the scenarios (including parameter and composition files)
are located in the xm/ folder.

The models available in the Model Repository are sorted by categories.

e BaseEntity — contains Aircraft, Bomb, Expendable (Flare), Ground Vehicle, Lifeform
(Soldier) and Missile.

o Characteristic — contains Behaviour, Manoeuvre, Obscuration, Operation, Signature and
Structure.

o (Other — contains Environment and Transmittance.

e Part — contains Airframe, Autopilot, CMDS, Control Surface, DIRCM, Entity Dispensor,
Fuze, Gyroscope, Jammer, Laser Designator, MANPADS launcher, MAWS, Motor,
Navigation, Seeker, Sensor and Warhead.

e Utilities — contains Joystick.

In general, a folder is created for each subcategory in the folder of the corresponding category
(e.g. Aircraft for a BaseEntity category). If the subcategory can be further divided into
subcategories, then other folders are created, and so on. Each model is then stored in the folder
corresponding to its specific subcategory (e.g. Aircraft3DOF model for the Aircraft subcategory).
Every model must have an associated documentation: usually a Microsoft Word® document
having the same name that the model and included in the model folder.

For example, the BaseEntity category contains 12 subcategories: Bomb, Expendable, FixedWing,
GroundFixed, Lifeform, Missile, Other, RotaryWing, Ship, Tracked, Virtual and Wheeled. The
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FixedWing subcategory contains four models: Aircraft, Aircraft3DOF, Aircraft747 and
CommandedEntity.

It shall be noted that less than 25% of the models in the Model Repository are documented
because model documentation for existing models was not required at the beginning of KARMA.
For those undocumented models, sometimes documentation is contained in the mask of the
Simulink® models. However, every new model added to the Model Repository is fully
documented. There is no document that gives an overall picture on an object that aggregates other
objects (model composition).

3.4 Tools

3.41 KARMA Studio

KARMA Studio is a simulation management tool that allows the planning, the execution and the
analysis of engagement simulations. The various parameters required for the simulation are stored
in XML format and KARMA Studio contains several generic functionalities for editing the XML
files. The development phases of KARMA Studio were finished around 2005 and, except for
specific features, no development effort was dedicated since then. Development efforts have been
initiated in 2009 to replace this tool by other custom tools dedicated to specific functionalities that
are required for the preparation, execution and analysis of simulations (see Subsections 3.4.2 to
3.45).

KARMA Studio consists in a dynamic adaptive interface [5]. Thus, the Graphical User Interface
(GUI) that is presented to the user adapts to the content of XML files that are processed by the
application. This means that the data contained in parameter files or other XML files used in
KARMA (see Subsection 3.5.2) are interpreted and are presented to the user with appropriate
graphical components. As a result, KARMA Studio hides the XML layer that is not user-friendly
to users and developers. It contains six tabs, which are Planning, Scenario Configuration, Log
Configuration, Batch Run Configuration, Simulation and Analysis.

It should be noted that the documents mentioned in this section are not up to date. Some
modifications to the GUI were carried out since the last version of the documents. However, the
operational principles and the main functionalities are the same. Although the documents mainly
contain information for the developers, there are useful details for the users.

3411 Planning

The Planning tab, shown in Figure 8, allows the user to view and edit XML parameter files and to
create, view and edit XML composition files used to specify the composition of a model
(BasekEntity, Part or Characteristic). The XML parameter files contain the parameters of a model
and the XML composition files generated within the Planning tab contain the parts that compose
a specific BaseEntity.

16 DRDC Valcartier TM 2010-208



4.1 Karma Studio
File Edit Help

Planning | Scenario configuration | Log configuration | Batch run configuration | Simulation | &nalysis

) Composites
=+ AggregateDynamics
~- # AggregateDynamics
=) Airframe
(=1 AirframesDOF
# AirframesDOF
# FlarePyrotechnic_airfi
(=) Airframe6DOFGEUIL0
# Airframe6DOFGBU10
=) Airframe6DOFGBULZ
# Airframe6DOFGBU12
(=) Airframe6DOFGEUL6E
# pirframe6DOFGBU1E
=+ AirframeCylindricalFlare
# AirframeCylindricalFlal
® MIUZ7_airframe
® MIU32_airframe
(=) GBUSeriesAirframe
# GBUSeriesAirframe
(= MKSeriesairframe
# MKSerieshirframe
(=) PGAirframe6DOF
® PG_pirframe
(= SAMissiledirframe6DOF
# SAMissileirframesDO
® SAMissileWoF2Airfrar
® SAM_Airframe
=+ AirframeCharacteristics
@ firframeCharacteristics
o @ AirframeCharacteristicsGE

Aircraft3DOF. xml |

Parameters ¥

EntityDispensor
Mame:
ExpendableDispensorl

Parameters: Browse

§ (KARMA_ROOT) % Internall lutomatic
Compilation)Scenarios) XMLY Demo\ P
arameters) Aircraft3DOF_Expendabl
eDispensorl.xml

none
Priarity:
o
Dacumentation:
expendableDispensor

Remave

EntityDispensor
Mame:
ExpendableDispensor2

Parameters: Browse

§ (KARMA_ROOT) Y Internall lutomatic

AccelerationGain
_ 4
AccelerationVector
1 2
ol

AngularAcceleration
1 2
Ul 0fradfs~2

AngularvelocityYector

Ulradfs v

Maximumyelocity

200|... ¥
ModelType
SEMNSOR_LASSOS_SYSTEM

Orientation
1

=+ Contral 1.571

s Compilation’ Scenariosh XML, Demo’ P
[=+|2) BangBangControl .
# BangBangContral v arameters)Aircraft3DOF_Expendabl Period
| > eDispensorz.xml <

Figure 8: Planning tab in KARMA Studio.

The XML BaseEntity composition file is used to assemble several Parts and Characteristics that
compose a BasekEntity. The user can add any combination of components (Part, BaseEntity or
Characteristics) to a BaseEntity composition file by dragging the desired component into the
Composite tree and dropping it into the Part section of the composition file.

The XML parameter file contains all the parameters that the user could eventually be interested to
change for a specific instance of a model. The user can change some of these parameters and use
the resulting XML file without having to recompile the model.

It is possible to create a composition XML files using KARMA Studio but not parameters XML
files. However, each object has a default XML parameter file that can be copied and edited. Once
the parameters and composition files are created, the user is ready to create a KARMA scenario
composition file into the Scenario configuration tab.

Refer to the document Planning.pdf for more details.

3.41.2 Scenario configuration

The Scenario configuration tab, shown in Figure 9, allows the user to create, view and edit XML
composition files that correspond to a scenario composition. Scenario creation is detailed in
Subsection 3.5.7. The XML composition files generated within the Scenario configuration tab
contain the entities that compose a specific scenario. A scenario also contains the environment
and the log configuration for data logging. The log configuration file is selected under the Log
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information section and is used to determine the log format and which data to log during a
simulation.
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Figure 9: Scenario configuration tab in KARMA Studio.

Refer to the document Scenario.pdf for more details.

3.413 Log configuration

The Log configuration feature, shown in Figure 10, allows the user to choose the variables to log
during a simulation. The Log configuration tab contains two sections. The first one contains fields
that specify the directory and name of the destination file used to save the simulation results. The
second section contains an adaptive area that modifies its content according to the variables
selected. To select a given variable, one has to drag the variable from the tree and drop it in the
Selected variables area. For each variable it is possible to specify the log frequency by entering
the desired value in the frequency field or by selecting the final value option to log only the initial
and final values of the variable.
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Figure 10: Log configuration tab in KARMA Studio.

Refer to the document LogConfiguration.pdf for more details.

3414 Batch run configuration

The Batch run configuration feature, shown in Figure 11, allows the user to make a selection of
parameters that can be used for parametric studies which are detailed in Subsection 3.5.6. When a
parameter is selected, a graphical component containing its batch run details is added to the drop
arca. Each parameter is linked to a XML parameter file that will be used for the parametric study.

For each parameter value, the user can specify the starting and ending values and the step value
that will be used for the batch run simulation.

DRDC Valcartier TM 2010-208 19



4.1 Karma Studio Q@@
File Edit Help

Planning | Scenaio configuration || Log configuration | Batch run configuration | Simulation | Analysis

I Base entity # | | PolarBatchRun.xml

(=9 Aircraft :
- # Angulardcceleration

#® Accelerationvector ‘WorldLocation (Ffrom Aircraft)

# Orientation (@ Regular Mode

# AngularVelocityYeckc

Py /cricLocation O Polar Mode

# VelocityVector (O Monte Carlo Mode  Mumber of iterations:

# Mach |

# MaximumVelocity 1 2 3

® Period S
® ModelType {-1000.0 : 100.0 : 1000.0} }{2000.0: 100.0 : 3000.0} [{-1000.0: 50.0: 0.0} [EH ¥

|2) SensorEntities | Parameters file: C:\KARMAModelRepositoryixml| e ity Aircraft, xml
1-|2) EntityDispensorFlare
() EntityDispensorFlare
|2) EntityDispensorMissil
|2) EntityDispensar
1-|2) ThreatSensorl
() ThreatSensor2 [
|2) ThreatSensor3
| ThreatSensord
1100 MAWS
() Direm
[#-{) Aircraft3DOF
[#-{) Aircraft3DOFTest
[#-{2) Aircraft747
[#-) AircraftDemo
[#-{) AircraftLauncher
[#-{3) Bomb
[ CASESoldier
-3 CC130
[#-{5) CommandedEntity
[#-{3) FlarePyrotechnic
[#-2) Groundvehicle
[#-{2) HLARemoteBaseEntity
[#-{5) Lassos_StaticHalifaxFrige
[#-{7) Lassos_StaticSoldier ~|
< g 3 ||t

Selected parameters

Figure 11: Batch run configuration tab in KARMA Studio.

Refer to the document BatchRunConfiguration.pdf for more details.

3.41.5 Simulation

The main purpose of the Simulation tab, shown in Figure 12, is to execute KARMA simulations.
This tab is separated into four sections. The first section is Simulation loading allowing
specifying the scenario for the simulation. The second section is the Batch run information. When
the Batch run simulation box is checked, a batch run configuration file is used and many
simulations are executed using the same scenario but varying a parameter between each run. The
third section contains a hierarchy of entities and three tabs: Runtime option, Matlab plot and
Information. The hierarchy of entities is a tree that includes all the outputs available in the
BaseEntity of the scenario and theirs parts. It is possible to drag and drop the desired output in the
Runtime option tab to view the value or in the Matlab plot tab to plot the value during the
simulation. Once the simulation is started, the Simulation information section, in Information tab,
shows real-time information relative to the execution of the simulation. The last section is the
Simulation control, which contains the elements to control simulation execution.
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Figure 12: Simulation tab in KARMA Studio.

Refer to the document SimulationExecution.pdf for more details.

3.4.1.6 Analysis

The Analysis functionality allows the user to visualize and analyze results previously logged
during simulation. The Analysis tab, shown in Figure 13, contains six sections: Results file load,
Scene generation visualization, Viewer selection, Analysis configuration, Analysis control and
Analysis variables. The XML file that contains simulation results is selected using the Load
button. Any variables logged during a simulation are presented in the Analysis configuration as a
composition tree for each entity. A viewer must be selected into the Viewer selection section and
then, variables to analyze are dragged from the tree and dropped into the Analysis variables area.
Selected variables can be exported to Excel® or presented graphically using MATLAB®. The
Simplay 3D viewer is not supported anymore. Finally, the miss distance between two entities can
be computed using the Miss distance option.

When the results of a scenario that contains at least one sensor using the IRSG are loaded, the
Scene generation visualization section allows to create an .AVI file from images generated by
these sensors, when images have been saved on disk. The options for the .AVI file to be created
are selected using the AVI configuration button and the window shown in Figure 14.
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Figure 13: Analysis tab in KARMA Studio.
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Figure 14: Scene generation visualization window for AVI configuration.

Refer to the document Analysis.pdf for more details.

3.4.2 KARMA Viewer3D

The KARMA Viewer3D is an analysis tool for KARMA simulations that allows visualizing a
simulation at runtime or in post analysis. The viewer allows analysing an engagement simulation
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in 3D by selecting the point of view from any entity. It is also possible to show trajectory of the
entities and visualize the maximum range of the sensors/lasers. At runtime, all the entities in the
scenario are displayed in the viewer while only the logged entities are displayed in post analysis.
The commands of the KARMA Viewer3D are presented in Table 3.

Table 3: KARMA Viewer3D commandes.

Key sequence Command
Spacebar Change the point of view from one entity to another.
C Change the point of view from one camera to another:

- following camera;
- free camera;
- first person camera; and

- bird-eye view camera.

F Fit all entities in camera FOV (bird-eye camera view only).

L Lock/unlock camera so that camera will follow the entity or stay in
place (bird-eye camera view only).

\% Toggle the IR camera (post analysis mode only).
Up arrow Increase the speed of the simulation.

Down arrow Decrease the speed of the simulation.

0 Return to the normal simulation speed.

P Pause/resume the simulation.

R Rewind the simulation (post analysis mode only).

= Increase mouse scroll speed.

- Decrease mouse scroll speed.
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Key sequence Command
S Toggle sensors detection range display.
T Toggle entity trajectories display.
F12 Take a screenshot of the viewer.
Esc Quit.
343 SMAT

The Signature Modelling and Analysis Tool (SMAT) is a computer program designed to associate
physical properties to a 3D model in order to perform IR analysis using the scene generation
module of KARMA [7] [8]. The physical properties are defined and indexed in a temperature and
material database. The indexes that are used in the database refer to the polygon /R Color Code
and IR Material Code attributes of the OpenFlight 3D model that can be set for each polygon
using a tool like Remo3D. The database also supports the use of a scaling varying in time. The
supported IR analyses in SMAT are the IR image, the contrast intensity polar plot, the intensity
spectrum plot, the contrast intensity range plot and the contrast intensity time plot. All the details
are available in the document SMAT User’s Guide.pdf [9].

3.4.4 KARMA Designer

The KARMA Designer tool is a computer program that provides functionalities for creating and
editing a scenario using entities for which the composition has been pre-defined outside of
KARMA Designer. It allows selecting entities of the scenario, their properties and their behaviour
used for a specific simulation while keeping the internal representation of a scenario, including
XML files management, transparent to the user. The KARMA Designer tool is shown in
Figure 15 and contains the following graphical elements:

Toolbar (1) for the most commonly used functionalities;
e Scenario section (2);
e [ntities section (3);
o Views section (4);
o Parameters section (5); and
o Parameter documentation section (6).
The KARMA Designer tool is configurable through a XML configuration file. It allows setting

different elements of the tool including the list of all available entities for the Enfities section, a
list of all available environments and a list of available collision detection techniques.
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The KARMA Designer tool allows to import and export KARMA formatted scenarios; open,
create, delete, save and rename (save as) a scenario file. It allows to visualize a scenario using 3D
views and supports different 3D formats for entities and terrain:

e OpenFlight (.flt);
e OpenSceneGraph Binary (.ive); and
e OpenSceneGraph ASCII (.0sg).

ityTatle [...]
ModelType __ SIGNATURE L0O.
Values 0
Wavelengths (3, 5]

Figure 15: KARMA Designer tool.

The user can control the camera in the 3D views using the Camera mode while the user can
control graphically the location and orientation of the entities in the Tramnslation and Rotation
modes, respectively. An icon is shown at the entity location when the 3D model of an entity is not
visible in a view due to the zoom level.

Once a scenario is open, the Scenario section allows browsing the different elements of the
scenario using separate tabs: the entities in the scenario (including their composition), the
environment, the collision detection technique, the terrain, the log configuration and the
simulation parameters. The scenario editor Entities section displays a list of all available entities
grouped under logical categories. An entity is added to the scenario by dragging the associated
item from this list and dropping it into the entities list of the Scenario section or in one of the four
views of the Views section.

Each entity can be edited (position/orientation/velocity, renamed, deleted, duplicated, translated
and rotated) from the entities list of the Scenario section. It is also possible to perform some of
these actions graphically within one of the four views of the Views section. While browsing the
entities and their composition in the Scenario section, the Parameters section displays a
parameters list with the parameter name, value and units. This section allows to edit the
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parameters that are not set as read only. The documentation of the selected parameter is shown in
the Parameter documentation section.

3.45 KARMA Executor

The KARMA Executor tool, shown in Figure 16, is a computer program being developed to ecase
simulation execution. It allows selecting KARMA scenarios already defined, choosing their
execution order, setting their batch run parameters and their execution mode. Scenarios are
selected from a tree comprising XML scenario files located under the KARMA ROOT folder or
by browsing other locations. A scenario is selected by dragging the associated item into the tree
and dropping it into the scenario list. A XML batch run configuration file can be set for a given
scenario in the list by double-clicking on the Batch parameters cell of the scenario. Its execution
mode is set similarly. Two modes are available As Fast As Possible (AFAP) and Real Time (RT).
The list of scenarios can be saved on disk with their properties and be loaded later. Finally, once
the simulation is started, each scenario is executed one after another according to the execution
order and the status of a scenario is set to Completed as soon as its execution is completed. Note
that a console window is open when a scenario is being executed.
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#- g doc I D Scenario Batch parameters Mode Status ‘
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Figure 16: KARMA Executor tool.
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3.5 KARMA basics

3.5.1 Composition

In KARMA, like almost each simulator, a system of composition is needed. The composition is
divided into three levels. The first level of composition is for the scenario. As mentioned
previously, a scenario is composed of several entities and an environment. The second level
represents the entities, which can be composed of other entities and parts. Finally, the last level of
composition represents the parts, which can contain other parts. Because KARMA has a flexible
system of composition, the users of KARMA can create complex objects that represent the reality
with several levels of composition if required.

3.5.2 XML

To support the application of syntactic composition, XML was identified as a technology that
provides the necessary modularity, extensibility and composition to script the various M&S
constituents. The different types of XML files used in KARMA are presented below [5].

e Composition — the scenario files as well as the entity files are based on this scheme. The
scenario composition files contain the list of BaseEntity (e.g. aircraft or missile) that are
involved in a scenario while the entity composition files contain each subsystems of an
entity.

e Parameters — the parameter files contain the values of the parameters and initial conditions
of a BaseEntity, Part or Characteristic.

e Batch run configuration — the batch run configuration files contain settings applied for
parameters variation from one simulation execution to another.

e Log configuration — the log configuration files contain the settings applied for data logging
during simulation execution.

e Log results — the log result files contain the data logged during a simulation execution.

3.56.3 Model inputs and outputs

A KARMA model might have inputs, parameters and outputs. The parameters are invariant
during the execution of a simulation. The inputs of a given model are connected to the outputs of
one or more models during the initialization stage and the search is carried out according to a
specific order as presented below. The inputs and the outputs are used to make the exchange of
information between the subsystems of the same BaseFEntity. The exchange of information can
also be carried out between a BaseEntity and one of its subsystems (Part, BaseEntity or
Characteristic).

In the case of a Part, the search of the outputs is done in the following order:
e composition of the Part;

e composition (Part only) of the parent;
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e composition (Part only) of the BaseEntity;
e outputs of the parent;

e outputs of the BaseEntity;

e outputs of the environment; and

e parameters of the Part.

In the case of a BaseEntity, the search of the outputs is done in the following order:

e composition of the BaseEntity (the composition of each composite is searched when the
output is not found in the composite); and

¢ outputs of the environment.

Thus, if an output name is employed by several objects, the input might not be connected to the
right output. It should be noted that in the case of a Part, if the output is not found and if a
parameter of the same name exists, then the value of the parameter is used for all the duration of
the simulation. The simulation can begin if and only if all the inputs are connected to outputs or
parameters. Some improvements have to be done in KARMA in order to better manage some
cases with multiple levels of composition.

3.5.4 Priorities

The priority is an attribute being used to establish the order of execution of the entities and the
components when at least two objects must be called at time t. The priority attribute is useful
when at least one input of an object depends on outputs of another object. It is then necessary to
guarantee that an output is updated before the object gets its value.

In the composition files, it is possible to specify the order of execution of the objects by two
methods. For example, if object I must be executed before object 2, object 1 can be declared
before object 2 in the composition file. Alternatively, the user can specify the value in the priority
label with a smaller integer. If object I and object 2 have a respective priority of 2 and 0, then the
second object will be called before the first object at each period. In this case, the order in the
composition file does not matter.

A modeller must be aware that an inappropriate execution order might introduce a delay of one
simulation step and produce a different behaviour.

3.5.5 Initialization

One of the first steps, before the execution of a scenario, is to read the contents of the
composition files to determine which models shall be used and load the corresponding DLL in
memory. Thereafter, parameters and initial outputs of each model are initialized according to the
parameter files. Finally, the input-output association is performed: inputs of each model are
connected to the outputs of one or more models.
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During the initialization stage, a BaseEntity that is used as equipment (¢.g. missile weapon for an
aircraft), being in the composition of another entity instead of being in the scenario, will be
activated under specific conditions. KARMA activates a BaseEntity at launch time when this
entity is not in the scenario initially. However, it is possible to activate an entity at a specific time
using an Activate behaviour (Characteristic) combined with a TimeCondition behaviour
condition.

3.5.6 Batch run

The batch run feature allows the user to make a parametric study of parameters or initial outputs
for a given scenario using KARMA Studio. The parametric study is a set of simulation where the
initial value of one of the studied parameters changes from one simulation execution to another.
For example, a typical study is to change the initial position of a BaseFEntity at each simulation
execution to determine a detection range prior to an engagement. The study can be done using
three modes by setting the starting, final and step values for each parameter being studied. A
batch run configuration file must be created to specify the studied parameters.

e Regular mode — a value is varied between an initial value and a final value between each
simulation execution.

e Polar mode — a vector is varied horizontally (X-Y plane) within a polar region, by setting the
starting, final and step values of polar coordinates (r and 0), between each simulation
execution. The r and 6 values are set using the X and Y elements respectively. Figure 17
shows how the location of an aircraft can be varied, for a total of 15 locations marked using
a black dot, using the polar coordinates.

e Monte Carlo mode — a value is varied between a minimum and maximum according to a
predefined probability distribution. A global parameter allows defining the number of
iterations required for the parametric study. The current implementation makes it possible to
perform a study with many values varying at the same time during the same Monte Carlo
simulation.

Figure 17: Polar coordinates for a polar batch run.
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3.5.7 How to create a scenario

The easiest way to create a scenario is by using KARMA Studio. Indeed, the GUI of KARMA
Studio simplifies the creation and edition of XML files for users that are not familiar with the
XML format. KARMA Studio also avoids browsing for the files referenced in a scenario or a
composition. Although an alternative method is to create or edit the XML files using any text
editor, it is not recommended for inexperienced users.

Scenario creation is divided into three main stages. First the user defines the entities that belong
to the scenario. In turn, composition and parameter files are created or selected. Then, the user
specifies the variables that will be logged during the simulation by creating or selecting a log
configuration file. Finally, when a parametric study is required for that scenario, the user defines
a batch run configuration file.

To create a scenario with KARMA Studio, it is necessary to open an existing scenario or to create
a new scenario file. The user can add entities to the XML scenario file by dragging the desired
BaseEntity into the entity tree and dropping it into the Base Entities section of the Scenario
configuration tab. It is possible to modify the parameter file or composition file of a BaseFEntity
by clicking on the corresponding Browse button. It is also possible to edit the contents of the
parameter file or composition file by clicking on the corresponding Open button. The user is then
led up to modify the file in the Planning tab.

In the Scenario tab, it is also possible to select the log format between no log, txt and xml and the
log configuration file, if appropriate. The text format produces a text file (.txt) that contains the
logged results for each time step in a sequential fashion. The XML format creates a XML file
with the results regrouped in a hierarchical way representing the BaseEntity composition for each
logged variable. The log configuration file contains the variables name of BaseEntity and Part to
log. The variables can be logged at a specific period or only for the initial and final value.

The document KarmaStudioGuide.pdf details the steps to create a scenario. As for other
documents related to KARMA Studio, this document is not up-to-date.

3.5.8 How to run a simulation

The KARMA simulator is used to perform the simulation execution. A scenario can run in real-
time or as fast as possible. The real-time mode means that the simulation framework tries to call
the entities and their parts in real time. If the entities cannot be called in a real-time fashion, the
user is informed at the end of the simulation with the warning message “The engagement is
unable to simulate in real time”. In the second mode, the simulator will call entities as fast as
possible. Sometimes the simulation framework will run faster than real time and sometimes it will
be slower. In this mode, the simulation can run quickly during a simulation while being slower
when many entities must be called at the same time. The simulator is also in charge of sending the
results to the user at the end of the simulation. The final location, orientation, velocity, angular
velocity and acceleration of all the entities in the scenario are shown to the user.

Three methods can be used to perform a simulation. The first method is to use KARMA Studio.

In this case, the user must load the scenario in the Simulation tab. It is possible to run a scenario
in batch if the Batch run simulation box is checked and if the batch run file is specified. Before
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starting the scenario, with KARMA Studio, it is necessary to start the server. When the simulation
is ready to start, a window appears to specify the duration of the simulation and if the simulation
must be simulated in real time.

The second method simply consists in executing the .bat file located in the bin directory of
KARMA. With a text editor, it is possible to specify the scenario, the duration of the simulation
and if the simulation must be done in real time. During the simulation, some information is
displayed in a DOS Command Prompt window.

The third method is similar to the second, except that the simulation is shown into the KARMA
Viewer3D. This tool is located in the directory utilities\ViewerDelta3D\ of KARMA. The .bat file
is located in the bin directory of the Viewer3D.

3.5.9 Results analysis

There are two main approaches to analyze simulation results in KARMA. There is an analytical
approach using KARMA Studio which allows the user to visualize and analyze results previously
logged during a simulation. Another way to analyze a simulation is using the KARMA Viewer3D
tool presented in Subsection 3.4.2 which generates a 3D representation of a simulation.

Using KARMA Studio, under the Analysis tab presented in Subsection 3.4.1.6, simulation results
are loaded by clicking on the Load button. The user selects the appropriate file then the logged
variables are summarized in the Analysis configuration as a composition tree for each entity. The
user is able to select any variable of interest and perform three kinds of analysis using the
corresponding viewer type: export to Excel®, generate a plot using MATLAB® or compute the
miss distance between two entities.

When exporting variables to Excel®, the user selects an item (variable or one of its elements)
using drag and drop. Each item is added in the Analysis variables area. As soon as the user clicks
on the Start analysis button, a Comma Separated Values (CSV) file is generated and then opened
with Excel®. The results are displayed with the time steps in the first column and the selected
items in the subsequent columns.

When generating a plot using MATLAB®, two types of graphs are available: XY plot and polar
plot. Both types of plot are generated by clicking on the Start analysis button. Using the first type,
the user has to drag and drop a variable element for the X-Axis and one for the Y-Axis. Using the
polar type, the user has to drag and drop the variables of interest; all the variable elements are
needed to compute the azimuth and elevation values. Before the polar plot is generated, the user
selects either a static plot (continuous lines) or a dynamic plot (values shown with a moving point
for each variable). A MATLAB® script file (m-file) is created and executed in a new MATLAB®
command window each time a plot is generated.

Finally, the 3D approach allows runtime analysis and post analysis. A batch file is used to start
the KARMA Viewer3D using specific settings stored in a XML file. Runtime analysis is achieved
by executing the Karma3d.bat file in the Utilities\ViewerDelta3d\bin directory, which starts the
scenario selected in the XML file and displays a 3D representation accordingly. Similarly, the
post analysis of results previously logged during a simulation is performed by executing the
ViewerDelta3DPostAnalysis.bat file.
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3.5.10 Limitations

3.5.10.1 General limitations

The requirements identified to develop a process for carrying out engagement-level M&S of
weapon systems are presented in the technical memorandum TM 2001-271 KARMA Definition
and Requirement.pdf [1]. However, the requirements below, amongst others, are not currently
addressed in KARMA.

e KARMA does not advise the user if a combination of components with various LOD sub-
categories is inappropriate.

e [t is not possible to perform multiple simulation runs based on various series of input
parameters (batch runs).

e The user is not able to attach analysis comments to the output data and monitored
parameters. The user can edit the graphs, but no formal tool is available to comment the
analysis and generate report.

e The user cannot import scenarios from other test or simulation tools.

e The user is not able to import scenario parameters (altitudes, aspects, weather conditions,
manoeuvres, etc.) from external sources (COTS spreadsheets, word processor, etc.).

3.5.10.2 KARMA Studio
Currently, there are several issues with KARMA Studio, but development is kept to a minimum

since it is expected to develop another tool in a near future. However, KARMA Studio is mostly
used to analyse simulation results as presented earlier.

32 DRDC Valcartier TM 2010-208



4 Developing KARMA

4.1 Role

The former section presented how KARMA can be used to generate simulations results. This
section presents the developer’s role in KARMA. At this point, it is worth defining developer and
modeller terms. A modeller is someone who creates new models by using existing functionalities
or elements (e.g. modelling classes, data logging, analysis tools, etc.) of the KARMA simulation
framework while the developer is someone who modifies or creates new ones. This development
is performed at the architectural level of KARMA. Although the current document focuses on the
developer, the most part of the description also applies to a modeller.

The KARMA project was started in 2000; its modelling process and simulation framework has
been developed during five years by introducing new modelling concepts and models. At the
beginning of the year 2006, KARMA development was strictly done through projects based on
KARMA. For the past two years, it has been clear that KARMA needed to be constantly updated
to accommodate the needs of different projects as new concepts are introduced, level of details of
models is increased and new analysis needs appear.

The developer must adhere to the KARMA philosophy, document every development effort and
make sure that every model used by the KARMA team remains compatible with the new or
modified code. It is the developer’s responsibility to report any problem or error to the delegate
architect. In order to minimize conflicts and leverage the development process, standardized tools
have been selected for the KARMA team.

4.2 Model repository

As mentioned earlier in Subsection 3.3, KARMA models are gathered into a database named
Model Repository. This repository contains only models that can be used into KARMA
simulations while any architectural or modelling elements are located into a separate section.

As mentioned in Section 3, the KARMA modelling process produces model data in XML
parameter file and model component in DLL. Moreover, scenarios are built using XML files. The
different versions of these files are tracked using TortoiseSVN®™, a Subversion (SVN) client
implemented as a Windows® shell extension. Practically, SVN automates the sharing and the
version control of the UML® conceptual models, the C++ source code, the Simulink® models and
many other files.

The KARMA team has elaborated an approach that ensures that models are stable enough before
being available in the repository. Each project has a development project where models are
gathered in the early stages of the modelling. When models are documented, tested and validated,
they are moved into the Model Repository section of the database. Once a model is available in
the Model Repository, one can assume that the model is stable and usable within the validation
bounds.
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KARMA models are stored into the Model Repository using a specific hierarchy. Each model is
derived from one of the KARMA object types (BaseEntity, Part, Characteristic) and gathered
according to its category and behaviour. For example, an aircraft model named AircrafiModel that
is a BaseEntity object type and classified under the FixedWing category is derived from
BaseEntity/PhysicalEntity/Platform. Table 4 lists the current model categories. Models that are
not derived from a KARMA object type are gathered under the Other category. This is the case
for the atmospheric transmittances. There is also a Legacy category for existing models not
compatible with KARMA and a Ulilities category for elements that can be used by different
models.

Table 4: Model categories.

Object Type Category
Bomb

Expendable

FixedWing
GroundFixed

Lifeform

Missile

BaseEntity Other

RotaryWing
Ship

Tracked

Virtual
Wheeled
Aggregate
Airframe
Autopilot
CMDS
ControlSurface
DIRCM
Dynamic
EntityDispensor
Fuze

Gyroscope
Jammer
LaserDesignator
Manocuvre
MANPADSLauncher
MAWS

Motor
Navigation
Seeker

Sensor
Warhead

Part
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Object Type Category

Behavior
Manoeuvre
Obscuration
Operation
Signature
Structure
Environment
Other Transmittance
Wind

Characteristic

KARMA supports two types of models: C++ and Simulink® models. Those models are gathered
under KARMA types and model categories as show in Subsection 3.3. Each model has its own
folder where its associated information can be found (e.g. project/model files, documentation,
etc.). Figure 18 shows an Airframe library (Simulink®) with two airframe models that can be
either C++ or Simulink®™ models.

.\Part\Airframe E

AirframeModelA

N

AirframeModelB

Simulink®

Vo

Airframe.mdl

Figure 18: Example of models library.

421 C++ models

Those models are developed using Microsoft Visual Studio®. A project is used to define how
source files (.# and .cpp) are compiled and linked in order to generate a DLL. Every properties of
a project are set using the environment variable KARMA ROOT. Typical settings are shown in
Figure 19. This project is included into the KARMA solution (KARMA ROOT\src\karma.sin)
which encompasses architectural and model projects.
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/ Dynamic Link Library generated \

Figure 19: Typical settings of C++ models.

All third party libraries used in KARMA are located into the Sofiware folder and dependencies
are defined using KARMA ROOT. Custom utility libraries are located into the Utilities folder
(e.g2. KARMA Datalypes). Architectural classes are gathered into packages under
KARMA ROOT\src folder and its package is specified (e.g. #include “BaseEntity\Root.h”) when
a header file is included into another class. Finally, when the C++ model is generated, the project
name is generally used and the letter d is added at the end of the name to specify a debug version
of the DLL. Please note that dependencies to specific models must be limited as much as
possible, but when the header file of a model is included into another class, a detailed path must
be supplied (e.g. #include “Part\Adirframe\AdirframeModelA.h” for models shown in Figure 18).

4.2.2  Simulink® models

There are two ways to define Simulink® models: using a model or library file. KARMA uses
libraries to gather Simulink® models of a given category. This approach allows reusing the model
into a different context or using the model inside a Simulink® scenario without having to worry
about modifications in the original model. Models referencing to a model inside a library are kept
linked to the library to allow for automatic update when the model is modified in the library.
Every model is made available into the Simulink® Library Browser shown in Figure 20 to ecase
model access. Moreover, utility blocks that can be used in many models are gathered into the
ModelRepository\Models\Utilities folder. Simulink® SFunctions are also located into this folder.
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SeekerProcessing

SeekerReferences

*

Ready

Figure 20: Simulink® models available into the Simulink® Library Browser.

A Simulink® model is converted into a KARMA model (DLL) by defining a separate model that
is linked to the library. Inputs and outputs names are defined at this stage, and the GUI shown in
Figure 21 is used to generate the DLL. This approach uses a script that generates a C++ KARMA
model from a Simulink® model and is based on Real-Time Workshop®” (RTW) that is presented in
more details in Subsection 4.5.2.3. Dependencies are defined as for C++ models (see Figure 19),
but this aspect is taken into account in RTW scripts.
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Parameters:

Figure 21: MATLAB® to KARMA Automatic Configurator GUI.

Sometimes different Simulink® models use the same library reference in order to maximize
reusability. For example, airframe models are generated with aecrodynamic coefficients hardcoded
into the DLL. Therefore it is possible to create two different airframe configuration models (e.g.
AirframeA and AirframeB) that are linked to the same model inside the Airframe library. When a
modification is made to the Airframe model inside the Airframe library, airframe configurations
will reflect these changes when regenerated.

4.3 How it works

This section presents the details about the main elements of the KARMA simulation framework
that allows data exchange between models.

4.3.1 Hierarchy

First of all, there are three object types in KARMA: BaseEntity, Part and Characteristic. These
were defined previously in Subsection 3.2.1. Hierarchies are made to tailor the model’s behaviour
using different interfaces that are shown in Figure 22 along with other basic types. When a similar
concept exists in the standard Real-time Platform Reference Federation Object Model (RPR
FOM), the RPR FOM hierarchy and names have been used for compliance. Models are used
through their interface (e.g. AbstractMAWS) in order to minimize dependencies and allow for
switching from a model to another seamlessly. All interfaces are located into the architectural
section of KARMA and are referenced by models located into the Mode! Repository. Typically,
interfaces are named using the Abstract prefix or using the letter / as prefix for pure interfaces.

38 DRDC Valcartier TM 2010-208



Root
(from BaseEntity)
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Figure 22: General hierarchy of KARMA models.

4.3.2 Data exchange

All KARMA models have a common base class that is responsible for data exchange between
models (parameters and outputs) and for storing subsystems composition: the Root class. This
class allows a model to be composed from many models that are derived from the Roof class. The
composition is recursive meaning that a sub-system can be composed of subsystems. For
example, an aircraft (BaseEntity) that is composed of a protection suite (Part), an infrared
signature (Characteristic) and missile and/or flares (BaseEntity). Furthermore, the protection
suite can be composed of other subsystems (¢.g. sensors, CMDS, etc.).

Figure 23 shows a class diagram for the three object types in KARMA, including the Roof class.
At this point it is important to distinguish between parameters, inputs and outputs. Parameters are
assumed to remain unchanged for the whole simulation while outputs will probably change
according to internal states and inputs. Finally, inputs are not buffered into each models, they are
linked to another model output instead. This association is performed during simulation
initialization and is detailed in Subsection 4.3.8.2. Therefore, as soon as an output is updated in a
model, other models depending on this value see the new output value.
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#ParentEntity
1

Root
§&Name : DataTypes::String
& Type : DataTypes::String
§XID : DataTypes::Int32
f&ParameterList : std::map<std::string,DataTypes::Any*>
InputsSelectionList : std::map<std::string,Root*>
InputsPreference : std::vector<int>
f&LibraryHandle : ModuleHandle
f&iComponent : std::string
f&ParameterFile : std::string
f&iCompositionFile : std::string
f&iCompositionList : std::multimap<int, KARMA::Root*>
f&<<XML>> ModelType : DataTypes::Int32

§&Priority : double
Entity

§&<<XML>> Period : DataTypes::Double = 0.01
_ fi&iCreationTime : DataTypes::Double = 0
f&iSystemOn : DataTypes::Boolean = 0
&iSmallestTime : DataTypes::Double = 0

#TheBaseEntity #TheBaseEntity
1 1
<<XML>> <<XML>>
BaseEntity Part
& <<XML_VAR>> AngularAcceleration : DataTypes::Vector3 = 0,0,0 f&<<XML_VAR>> RelativeLocation : DataTypes::Vector3 = 0,0,0
&<<XML_VAR>> CenterOfGravity : DataTypes::Vector3 = 0,0,0 &<<XML_VAR>> RelativeOrientation : DataTypes::Vector3 = 0,0,0

& <<XML_VAR>> AccelerationVector : DataTypes::Vector3 = 0,0,0
& <<XML_VAR>> Orientation : DataTypes::Vector3 = 0,0,0

& <<XML_VAR>> AngularVelocityVector : DataTypes::Vector3 = 0,0,0
& <<XML_VAR>> WorldLocation : DataTypes::Vector3 = 0,0,0

& <<XML_VAR>> VelocityVector : DataTypes::Vector3 = 0,0,0

& <<XML_VAR>> Mach : DataTypes::Double = 0
f&’SmallestPeriod : DataTypes::Double
i&iMessageToSimulationFramework : std::string

S&JEntityToLaunch : int

i&iDispensorToLaunchEntity : int

&z <<XML>> MaximumVelocity : DataTypes::Double = 0
fikzlsAttached : bool

Figure 23: KARMA object types UML® class diagram.

Model parameters and outputs are defined as attributes in the different classes of the hierarchy
and a reference is kept to allow other model accessing those values. A map container is used for
parameters and outputs. Methods are available to set a reference, shown in Figure 24, and retrieve
a value.

void KARMA: :Root::setParameterReference (const char* name, DataTypes::Any*
value)
{
typedef std::pair <std::string, DataTypes::Any*> map_Pair;
m_parameterList.insert (map_Pair (name, value)) ;

Figure 24: Source code of the setParameterReference method.
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KARMA Datalypes are used to store the values. Data exchange is accomplished using a map
container that stores references on parameters and outputs (4ny objects at the Roor level).
Datalypes are presented in Subsection 4.3.4. Inputs are associated to a model providing the
output and a getInput method, shown below, is used in the processing to access outputs of another
model.

KARMA: :Root* KARMA: :Root: :getInput (std::string inputName)
{

return m_inputsSelectionList[inputName] ;

}

Figure 25: Source code of the getInput method.

There are some outputs available for all BaseEntity and Part models. Outputs giving the entity
position, orientation, velocity, acceleration and angular acceleration are available for every
BaseEntity models while the outputs giving the relative position and orientation of a Part are
available for every Part models.

4.3.3 Composition

One of the main features of KARMA is its model composition. As mentioned previously in
Subsection 3.5.1, models are created according to a specific type and are based on different
interfaces to represent correctly their behaviour. These models are used into many configuration
through composition based on XML files. This way KARMA models are assembled to build a
high-level model. For a particular model, a composition XML file contains a list of models
having their associated parameter and composition files. Composition is recursive and
information is stored at the Root class level (composition multi-map) once a composition file is
loaded in memory for a given scenario. The composition map is filled during the initialization
stage of a simulation execution and is presented in Subsection 4.3.8. EnfityType is used to
associate a model to a type and many models of the same type are allowed in the composition. An
example of a composition file is presented in Annex A. It shows an example of an aircraft that is
composed of many parts (Entity dispensor, Threat system and Expendable dispensor),
characteristics (Structure aircraft, Manoeuvre and Signature) and base entitiecs (KARMA missile,
KARMA flare).

4.3.4 DataTypes

KARMA DataTypes are used for every XML parameter and output defined into models and their
interfaces. This approach is explained by the unique way to manage all types through a common
type called Any. The UML® class diagram is presented in Figure 26.
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Figure 26: DataTypes UML® class diagram.

When a parameter is retrieved from a model (the outputs-parameters map), its type is assumed
and a static cast is used (e.g. WorldLocation is casted into Datalypes::Vector3). If the DataTypes
are not casted properly, then an error is generated and the simulation is aborted.

More details about the DataTypes implementation are presented into the document
DataTypes.pdf.

4.3.5 Coordinates

Position and orientation are defined at two levels in KARMA: BaseEntity and Part. Any entity in
the Theatre has a position and an orientation defined in the earth reference system (also called
inertial system). Every Part (subsystem) of an entity has a position and an orientation relative to
its parent, the BaseEntity. Conversely, every Part of a Part is relative to its parent, but this time
the parent is a Part. When multiple levels of composition are used, transformations are performed
to convert a relative value into another reference system. Earth and BaseEntity (also called body)
reference systems are commonly used.

The KARMA Coordinate library offers the following transformations and the UML® class
diagram is shown in Figure 27:

e translation;

e rotation;

¢ transformation from one system of reference to another;

e conversion from Euler angles to quaternions and vice versa;

¢ transformation from cartesian to polar coordinates and vice versa;

o transformation from cylindrical to rectangular coordinates and vice versa;
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transformation from spherical to rectangular coordinates and vice versa; and

transformation from spherical to cylindrical coordinates and vice versa.
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Figure 27: Coordinate UML" class diagram.

Formulas of the Coordinate library and how to use transformations are presented into the
document CoordinatePackage.pdf.

4.3.6 Simulation

The main steps involved during a simulation execution are presented below and shown in
Figure 28.

o Initialization — the simulation modules (e.g. CollisionManager, Logger, and Theatre) are
initialized as well as the entities (and their associated models) used in the scenario.

e Execution — models are executed by calling their 7u» method until the end of a simulation
and a summary of the simulation execution is updated.

e Termination — the data logged during a simulation execution is saved in a log result file and
memory released.

o The SimulationEnvironment class is the base class of the scenario execution. As presented in
Subsection 2.2.1, this class calls several modules according to the scenario needs. The main
steps and modules are presented in following sections.
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Figure 28: Simulation (main steps) UML® sequence diagram.
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4.3.7 Execution

Simulation execution is controlled by the SimulationEnvironment class that offers methods for
controlling execution as listed in Table 5.

Table 5: Main methods of the SimulationEnvironment class.

Method Description

initializeSimulation Prepares a simulation by specifying a
scenario file, a duration and a simulation
mode (real-time or as fast as possible). Then,
loads the scenario file and add entities to the

Theatre.
initializeEntities Initializes all entities in the Theatre.
Update Runs entities and their parts until a specific

simulation time is reached.

terminateAction Terminates the simulation, shows entity
states and saves the simulation log results
file.

SimulationEnvironment is used by different programs such as the KARMA simulator
(karma.exe), the KARMA Viewer3D and any adapter for a COTS simulation environment. The
KARMA simulator is a program used to execute a simulation locally or using a client-server
architecture. This simulator is developed using the Main project of the KARMA Visual Studio®
solution and uses the SimulationEnvironment class to control simulation execution. The KARMA
simulator is launched from a command prompt or using a batch file. KARMA Studio performs
simulations using this program.

The Server class implements the User Datagram Protocol (UDP). The maximum length for the
messages is 512 bytes. When a simulation is executed from KARMA Studio, the KARMA

simulator is responsible for activating a server port and calling SimulationEnvironment methods.

Refer to the document Communication.pdf for more details on the communication architecture.

43.8 Initialization
An initialization stage is performed before beginning a simulation execution. The

SimulationEnvironment initializes the simulation modules (e.g. Theatre) as well as the entities
and their subsystems. Figure 29 presents the initialization sequence diagram.
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Figure 29: Initialization (main steps) UML® sequence diagram.

When the scenario being simulated is loaded, XML files are parsed to extract models used in the
scenario, along with their parameters and their respective composition. This process is
accomplished using the Loader library; its static class diagram is shown in Figure 30. Among the
different kinds of XML loaders, the XML Composition and XMLParameters loaders are used
during the initialization stage.
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Figure 30: Loader UML class diagram.

Figure 31 presents the sequence diagram for loading a scenario. SimulationEnvironment loads a
scenario by calling XML Composition::Load. For each model defined in the scenario, this method
loads the model DLL into memory then creates an instance using a generic function named
CompositionFactory. This function is implemented for each model by the way of a macro.
Indeed, the COMPOSITION FACTORY MACRO shown in Figure 32 calls the model constructor
with three arguments: instance name, model parameter file and model composition file. These
arguments are used in the /nitCreation call, allowing model parameters to be loaded using the
XMLParameters loader and then its composition to be loaded using XML Composition loader.
This is a recursive process that allows any composition levels. Other initialization activities that
are independent from the composition (other models) are performed into the constructor.
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Figure 31: Scenario loading UML® sequence diagram.

#define COMPOSITION_FACTORY_MACRO (CHILD) \
extern "C" _ declspec (dllexport) KARMA::Root* CompositionFactory

(std: :string name, std::string parametersFile, std::string compositionFile) ;\
KARMA: :Root* CompositionFactory (std::string name, std::string parametersFile,
std::string compositionFile)\
{\

KARMA: :Root *object = new CHILD (name, parametersFile, compositionFile);\

return object;\

Figure 32: Source code of the COMPOSITION FACTORY MACRO macro.

Each class registers its inputs, parameters and outputs during the call of a model constructor. The
SetParameterReference method is a service implemented in the Roof class and associates a name
to a reference on an attribute. The ParameterList is used to gather parameters and outputs. Model
inputs are stored into a separate list named InputsSelectionList by associating a name to a
reference on a Roof object. This reference is NULL initially until the model providing the input is
found (see Subsection 4.3.8.2).
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4.3.8.1 Model initialization

The model initialization is divided into three steps: creation, initialization and activation.

Creation — the InitCreation method is called when a model is created and is responsible for
setting model parameters (and initial outputs) and populating composition. Figure 33
presents the sequence diagram for this initialization step.

Initialization — the /nitComposite method is called once all models have been created and is
responsible for inputs location as presented in Subsection 4.3.8.2. This step is useful to
perform any initialization activities that depend on other models (e.g. explicit link to a
model from the composition) but that are independent of run-time conditions. Everything
that is performed during this step reduces the simulation execution time since simulation is
not started yet.

Activation — the InitActivation method is called when the BaseFEntity associated to a model
is inserted in the Theatre, ready to be executed. Usually, activation is made when starting
the simulation execution or when an entity is launched during a simulation as presented in
Subsection 4.3.8.3. However, it is possible to activate an entity before launching using an
Activate behaviour (Characteristic).
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InitCreation method
called by the model
constructor

Entity / Part / ParameterslLoader : = CompositionLoader : ) Composite :
Characteristic : Root XMLParameters ParametersObject XMLComposition CompositionObject Root

00f
1: Load(parametersFile) Q Q Q q q
2: ParametersObject
<
For every parameter in [
the ParametersObject
\xﬁebigcmame(inLex) ‘ ‘ ‘ ‘
t
4: parameterName
< —
5: GetParameter(index)
6: parameterValue
-
L
7. . ‘alue)
8: Load(lompositionFile) ‘ ‘ J
| 1 For every ite in the
compositionFile, create the composite
object using the factory macro and add it
to the compositonObject list.
9: C i actor 7” ile, itionFile)
10: InitCreatic ile, itionFile)
va ~
11: Add the ite to tt itionObject list L
Pm—]
12: conpositionObject
<« — — —— — | — —Y
For ewvery composite in 1 ‘ ‘ ‘ ‘
the compositionObject
T -
~_ ~——13; GetObject(indax)
14: Composite ‘ ‘ /U
< —— — — = -
‘ 15: Sst&%ﬁnlEnlity(this) ‘ ‘
16: Add the Composite to the C: itionList ‘ ‘ ‘ /U

Figure 33: Model initialization (InitCreation) UML® sequence diagram.

4.3.8.2 Input initialization

Inputs are initialized during the initialization step (/nitComposite) of a model initialization. The
process for locating model inputs is performed using the Initializelnputs method implemented at
the BaseEntity and Part levels. An input represents a reference to a model that generates the
corresponding output. Therefore, during input initialization, every input of a model is associated
to the output of another model. Outputs are searched using the exact name of the input, according
to the search order described in Subsection 3.5.3, from any composition level of its associated
BaseEntity. When there is a match, a reference is set into the InputsSelectionList for the input
name. If an input is not found, simulation is aborted with an error message.
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4.3.8.3 BaseEntity as equipment

Sometimes, BaseEntity are used into a model composition for equipment purpose (e.g. missiles
and flares). These entities are created and initialized before beginning a simulation execution,
during the initialization stage (corresponding to the first two model initialization steps). However,
they are not inserted into the 7heatre since these entities might be launched during simulation
(see Subsection 4.3.12.1 for more details).

The attribute IsAttached is used to indicate that a BaseEntity is used as equipment. This attribute
is set during the initialization step (/nitComposite method). When an entity is activated before
launching, while being attached to another BaseFntity (e.g. missile fixed onto a launch rail of an
aircraft), only specific parts types from its composition can be activated. The Activate behaviour
activates sensors, seekers and gyroscope types. Obviously, these components do not update the
dynamic states of the attached entity. Indeed, while used as equipment, the dynamic states of a
BaseEntity are updated using the BaseEntity that owns that equipment and assumes that the
equipment is located directly into the BaseEntity composition.

The Quantity property, in the XML BaseEntity composition file, can be used to create many
copies of the BaseEntity. Many copies of Part components can also be created using this
property. Instances of the model are created and initialized but they will be activated only when
the BaseEntity is inserted into the Theatre.

4.3.8.4 Log initialization

All the data that is logged during a simulation execution is saved into a log file. The sequence
diagram of the log initialization in the XML format is shown in Figure 34. The log settings are
applied for each model of the scenario and the log initialization is performed in the initComposite
method of a model. The XMLLogConfig loader allows loading and/or retrieving log settings.
Entries are created into the log file according to the log settings. Finally, every model that is
going to log data during the simulation has its unique ID made negative.
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BaseEntity/Part : : KarmaFactory Logger : - SimController| Loader :
Root LogXML XMLLogConfig

|:| 1: GetLogger("me")|:| D |:| D
2: Logger ‘ ‘

< - |
3: InitializeList(this, name) ‘ ‘
‘ If the log file has not ‘ ‘

been created yet.
‘ 4: GetLogé \péFlleName () ‘ ‘
‘ 5: Io%ConﬁgFlle ame H ‘
<
‘ 6: Load(log onﬁgFiIFName) ‘
‘ / 7: LogConfigObject U
é P
8: C(eate and initialize the log ?Ie using the LogConfigObject ‘
‘ If there are data to ‘ ‘
‘ log for that entity ‘ ‘
‘ 9: Add the entity node/@he xml log file ‘
10: hasDarToLog ‘
<~ — — | | |
If no data must be logged for that
entity, set the ID negative. ‘ ‘ ‘
/
11: S/etld(-ID)

- | | | |
| | | | |
| | | |

Figure 34: Log initialization (XML) UML® sequence diagram.

4.3.9 Sequencing

During simulation execution, models are executed by calling their 7un method until the end of
simulation. These calls are made according to the sequencing mechanism presented below. Each
model that is derived from BaseEntity or Part has a Period parameter. This parameter is used to
schedule the next time when the model needs to be executed. During the initialization process, in
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the initActivation method, the model schedules an execution call if the Period parameter is larger
than O (in fact there is a limitation on the call frequency that is set to 10 sec.). The run method is
called for the scheduled simulation time and the model can update its states and outputs.

Model sequencing is implemented into the Scheduler library. A multi-map for simulation time
and Root reference is used to keep track of the models to be executed in time. A priority is
attributed in the XML composition. This priority is added to the simulation time in order to sort
models by priority. A Priority attribute is maintained into the Entity class. Priority is defined as
an integer between 0 and 99 into XML, but is converted into a double value during initialization.
This value is used by the scheduler for operating on the scheduling map. It is important to note at
this point that for models being scheduled for the same time and having the same priority, the
priority is only determined by the composition. That means the first model that is initialized and
that performs its initial scheduling will be called before other models.

4.3.10 Data logging

KARMA allows logging model outputs, simulation events as well as a simulation summary
that can be used to trace simulation execution. The latter is referred as the developer log. These
three types of log are presented in the following subsections.

4.3.10.1 Output log

Simulation can be set to log outputs in two formats: XML and Text (TXT). For both formats,
there is a XML configuration file called LogConfig that is used to setup outputs to be logged. This
log is based on the model composition and uses model types. Figure 35 shows a typical XML log
configuration file.

When a BaseEntity or a Part is executed, outputs are logged at the beginning of the run method,
before updating outputs. The sequence diagram in Figure 36 presents typical calls involved into
the data logging.

<fileType>LogConfig</fileType>
<destination><directory>C:\</directory><fileName>LogFile</fileName></destination>
<logEntity name="MISSILE">
<logVariable frequency="0.1" name="WorldLocation" type="vector3"/>
<logVariable frequency="0.1" name="Orientation" type="vector3"/>
<logVariable frequency="0.1" name="Mach" type="double"/>
<logPart name="SEEKER_IR_FOR_DIRCM">
<logVariable frequency="0.1" name="LOS" type="vector3"/>
</logPart>
</logEntity>
<logEntity name="AIRCRAFT 3DOF">
<logVariable frequency="0.1" name="WorldLocation" type="vector3"/>
<logVariable frequency="0.1" name="Orientation" type="vector3"/>
<logVariable frequency="0.1" name="Mach" type="double"/>
</logEntity>
</data>

Figure 35: XML log configuration file example.
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‘ : KamaFactory. ‘

9

1: GetLogger("xml")

Q 2: Logger

BaseEntity/Part : Logger : : SimulationEnvironment
Entity LogXML

3: CheckForlLog(ld, this, simulationTime)

For every parameter that
must be logged for that entity
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— —

‘ 6: Create a logStep node {gr the time simulationTime with the value parameterValue anr add it to the intemal representation of the log file

Attheendof D
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7 WrileLogToFi‘le/

()
e using the intemal representation \T‘

8: Create the xml log fi

Pm—]

Figure 36: Data logging UML® sequence diagram.

4.3.10.2 Eventlog

Events are logged into the same log file as the outputs. The sequence diagram for event logging is
shown in Figure 37. The method /ogEvent is responsible for this log. All events are logged if the
flag to log the event is active. The method is called by the EventManager class when an event is
received. Please refer to Subsection 4.3.11 for more details. Note that the events cannot be logged
in a text format because the method is not implemented.
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‘ EventSender ‘ . EventManager ‘ . KarmaFactory ‘ Logger : LogXML ‘ ‘ . SimulationEnvironment

If the logEvent
flag is true

2: GetLoggel me)

3: Logger E
< —

4: LogEvent(simulationTime, eventType,}@ntValue, EventSender, even‘tReIatedEntity)

1: Notify(enentType, this,|eventValue, eventReIatedetlty, logEvent) D H

e

P—

5: (Lreate a logEvent node and ao|j it to the intemal representation of the log fi

‘ At the end of
the simulation

6: WriteLog oF le()

P—

7: Create the xml log ﬁt using the intemal representation m

Figure 37: Event logging UML"® sequence diagram.

4.3.10.3 Developer log

This functionality is only available for the debug version of KARMA. It is implemented by the
LogManager class (UtilityClass library). This class is static, so it can be called in any class
without having to instantiate it. There are some methods to write a string into a buffer and the
buffer is written into a text file using WriteLog method. The log file is located into the
KARMA \src directory and named /og.txt. This log is used to monitor the main activities of the
base services, namely the XML loading, initialization, and so on.

4.3.11 Events

Events can be used during simulation to notify other models that something occurred and might
affect their behaviour or solely to inform the user. A parameter is used when notifying an event to
specify whether or not the event needs to be logged (see Subsection 4.3.10). There are predefined
events listed in Table 6, but other event types can be added in the Events header. Events are
defined as an integer value and a string for display is associated. Informative events that do not
change the simulation are MESSAGE events and are not handled by the models.
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Table 6: Event types.

Event Type Description

Any Used to register for all event notifications.

Time When a given simulation time is reached.

LaunchEntity When an entity must be launched.

EntityLaunched When an entity has been launched.

ObjectCreated When an object is created.

SensorCreated When a sensor is created.

Detection When a model detects a threat.

MawsDetection When a MAWS model detects a threat.

Declaration When a model declares a threat.

MawsDeclaration When a MAWS model declares a threat.

Dazzling When a model performs a dazzling CM.

SendDircmCode When a DIRCM model updates its code.

LaunchLaser When a laser is being activated or
deactivated.

[lumination On/Off When a laser designator starts or stops target
designation.

MissDistance When the closest point of approach for two
specific entities is reached.

Proximity When a proximity is detected by a proximity
target detection device.
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Event Type

Description

Collision When a collision between two entities or
between an entity and the terrain is detected.
ObjectDestruction When an object is about to be destroyed.
DestroyEntity When an entity must be destroyed.
RunCompleted When a model run is completed.
SimulationTerminated When a simulation is completed.
SystemMessage When an informative system message could
be of interest to a user.
ChangeAnimation When a 3D model animation of an entity
must be changed in the 3D viewer.
Load2dImage When a 2D image must be loaded in the 3D

viewer.

There is an EventManager that is responsible for intercepting events and dispatching them to the
models that has subscribed to the event. The notify method is used to send an event. A model that
is interested in receiving events is derived from [EventListener class and implements the
eventResponse method. The Register and Unregister methods are used to subscribe/unsubscribe
to specific events. Figure 38 shows the UML® class diagram of the Event module.

<<Singleton>> <<enum>>
EventType
BPRegistrationList : std::map< int, eventListenerList > BUANY = -1
B RegistrationTimeList : std::multimap< , [EventListener*> &TME = 0
[Ri<<static>> Destroyer : KARMA::Sil Destroyer<KARMA: EUSIMULATIONEND
figi<<static>> Uniquelnstance : KARMA: = NULL EJDECLARATION
& Period : DataTypes::Double = 1 EYDETECTION
&IDAZZLING
WE ventManager() EOMISSDISTANCE
$<<virtual>> ~EventManager() EDENTITYLAUNCHED
S Type : int, eventl ity : KARMA::Root*, eventValue : DataTypes::Any, eventSecondEntity : KARMA::Root* = NULL, logEvent : bool = true) : void DETECTION
SregisterForEvent(root : KARMA::IEventListener®, eventType : int) : void EJILLUMINATION
SregisterForTimeEvent(root : KARMA::IEventListener®, simulationTime : double) : void B)coLLisioN
Srun(simulationTime : DataTypes::Double) : void EJRUNCOMPLETED
Sunregister(listener : KARMA::[EventListener”, eventType : int) : void BJOBJECTCREATED
Sunregister(listener : KARMA::IEventListener”, simulationTime : double) : void EOBJECTDESTRUCTION
& i ) : KARMA: = EJLAUNCHENTITY
@initComposite(parent : KARMA::Root") : void EYSEND_DIRCM_CODE_EVENT|
EJLAUNCH_LASER_EVENT
OR_CREATED_EVENT
BUDESTROYENTITY_EVENT
O
[EventListener
Type : int, eventL ity : KARMA::Root", eventValue : DataTypes::Any, eventSecondEntity : KARMA::Root* = NULL) : void
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4.3.12 Dynamic behaviours

The outcome of a simulation execution is often dictated by the entities available in the 7Theatre
and their interactions. In that sense, the following subsections present the main dynamic
behaviour: launching entities, detecting entities, detecting collisions between entities and
destroying entities.

4.3.12.1 Launching entities

As mentioned earlier, entities defined as equipment are created and initialized during the
simulation initialization stage, but are not activated until launch time. As soon as an entity is
launched, the following steps are performed. First the BaseEntity is removed from the
composition, then inserted into the Theatre. Finally, the BaseEntity and its associated models are
activated using the InitActivation method. Figure 39 presents the sequence diagram of entity
launch.

ExentManager n ] [ EntityTolaunch EntityDispenser Theatre —
I BaseEnfity | BaseEntity AbstractEnfityDispensor Coli lanager | | SequentialScheduler
2 /_EVENT, L 3 EntityToLaunch)
3 UNCHENTITY_EVENT, Laumqrﬁmwmm, dispenserToUse, Entity ToLaunch)
4 GetCe ToUse)

5: EntityDispenser
S —
6: Meetl aunchingConditions| )

‘7|sMToLaunch
<~ — —  —
N

8: RemoveF tibn{Entity ToLaunchType, Lu«yToLaunm) ‘

\
o SetQ\JFI\ ‘L}}mula‘mnme)

10: L junch, L

? et
11 GetveocityVector |

I
12: GetWorldLocation )
\ \ 13: GetOrientation( )

‘ 15: GetVelpcity Vector()

|
|
|
|
|
|

ﬁ GetAngu\%VelocnyVeclm()

19: Compute the inital dyjnamic state of the entity to launch

16 GetWdeLocation)
17: @uq"emaumu

s

| \E
AT

25: WitActiation()

isionManager

2 SchemleEmninlal\mﬁmg this)

27 . Launch)

| | \
‘ i Man%ecdhsmn() ‘ u
[ [ I
| | |

-
|
|
|
|
|
|
|
|
|
|

LauncherEntity
Entity.
’7 1; RegisterForEvent(this, LAUNCHENTITY_EVENT) ?
|

.
| |

Figure 39: Entity launching UML® sequence diagram.
Dispensers are used to launch entities (e.g. launch flares or missiles). AbstractEntityDispensor is

responsible for computing initial dynamic states when launch occurs. The inputs of the dispenser
are the velocity, the location, the angular velocity and the orientation of the entity that wants to
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launch flares or missiles. The outputs are the velocity, the location, the angular velocity and the
orientation of the entity that will be launched. The parameters of the dispenser are the ejection
velocity and the ejection angular velocity. These parameters will determine the velocity and the
orientation of entity that will be launched.

4.3.12.2 Detecting entities

The Intersection class allows gathering all entities visible in a given FOV (e.g. a sensor or laser
beam). An entity is considered visible in the FOV if its location (WorldLocation) is within the
FOV region up to a specific detection range and is not hidden by another entity. The visible
entities are added to the list of entities seen.

An entity is hidden if there is another visible entity closer to the sensor and its radius, assuming a
sphere based on its largest dimension (width, height or depth), hides completely the entity.
Figure 40 shows an example of a 7Tested entity that is hidden by Entity 3. Entity 3 is considered
seen by the sensor because it is not hidden by the three other entities.

Entity 2

AN
N

Tested entity

\

Entity 1

AN

Sensor

Figure 40: Intersection example.

In the actual implementation of KARMA, this class is used to declare a threat in the MAWS.
Refer to the document Intersection.pdf for more details.

4.3.12.3 Detecting collision between entities
The collision detection between entities is activated into a KARMA scenario by using the

collision model (Col/lision library). There are two types of collision mechanisms: BoundingSphere
and CollisionDetection3D.
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BoundingSphere — simple algorithm based on a sphere that is calculated for each entity using its
largest dimension (width, height or depth) as a radius. Collision detection is called at a variable
pace, according to the shortest period for which a collision between two entities might occur.
Collision detection must be performed as soon as an entity is launched to update the time for the
next collision detection call.

CollisionDetection3D — algorithm based on the intersection of 3D geometries defined in a 3D
model associated to the BaseEntity. Collision detection is called at a fixed pace, according to the
Period of the collision detection algorithm.

For both collision algorithms, collision detection is performed at the beginning of the simulation
time, before advancing in time. The UML® class diagram shown in Figure 41 presents the main
classes involved in collision detection.

j[emain AbstractCollision
(from Theatre)l<c— ————
IEventListener
(from Event)
#PKComputation
1
- — - ODES:! E i
1 BoundingSphere 1 | BoundngOrientedBox 1 1 Coll|5|onDetectlon3D1 -TheODESceng| ODEScene | PKComputation 1y
[ ] [ ] 1
/F ‘ ‘ T IProbability OfKill Computation
Root - -
(from BaseEntity) ‘ AutomaticKillWhenCollision
|
e —

<<Singleton>> J

CollisionManager —— —m —— ——— ————

Figure 41: Collision detection UML® class diagram.

The sequence diagrams for each collision algorithm are shown in Figure 42 and Figure 43. The
CollisionManager calls the appropriate collision algorithm and collision is checked between
every entities. When a collision is detected, an event is launched and the collide method is called
for both entities. A simple probability of kill method is implemented for the moment. The level of
damage is 100% when there is an impact between two heavy entities (aircraft, ground vehicle and
ship) or for the life form implicated in an impact, otherwise the level of damage is 0%. Thus, if a
missile intercepts an aircraft, the aircraft will not be deleted, neither the missile. Additional
behaviour must be implemented if the entity needs to be destroyed. This is the case for the missile
in the preceding example. The collide method is simply overridden at the Munition level and
detonation is activated before destroying the missile.
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Figure 43: BoundingSphere collision detection UML® sequence diagram.

4.3.12.4 Destroying entities

When an entity is destroyed and removed from the 7heatre, some steps must be followed, as
shown in the sequence diagram in Figure 44. A DESTROYENTITY EVENT event is sent to
destroy the entity. The SimulationEnvironment subscribes to this event and is responsible for the
entity destruction. Entity deletion is postponed until all models involved into the simulation are
executed for the current simulation time (corresponding to the destruction time). To insure that
invalid references will not occur, any model that keeps a reference to a model must subscribe to
this event and perform appropriate actions prior to the entity destruction. This approach allows
other models to perform action for the current simulation time, before the entity is effectively
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destroyed. Once all models are executed and the simulation time is ready to be changed, entities
are destroyed and removed from the 7heatre and the DLL is freed.

EntityRequestingAn : EventManager : SimulationEnvironment Scheduler : : Theatre
EntityDestruction SeguentialScheduler

2: Notify(DESTROYENTITY_EVENT, entity ToDestrdy, nulValue)

3 DESTROYENTITY_EVENT, entityToDestroJ. nullValue, NULL)

4: Add the entityTol roy to the EntitiesToDestroy list
Pm—]

At the end of an
iteration, for every
entity in the
EntitiesToDestroy list

‘ 5 Delelesmﬁ!\enEntily(entilToDeslroy)

6: DeleteBas: tily(enlity';Heslroy)

1: RegisterF is, DESTROYENTITY_EVENT) q

7: Notify(OBJECTDE

8: delete baseEntityToDestroy and remowe it from the BaseEntityList

P—

I
|
|
|
1
|

TRUCTION_EVENT, 0, baseEntity ToDestroy|) J

—_— 1

Figure 44: Entities destruction UML® sequence diagram.

4.3.13 HLA interface

The KARMA simulation framework has an HLA layer designed to allow a KARMA simulation
to participate as a federate in an HLA federation. The KARMA HLA module is designed to be as
generic as possible to efficiently support multiple RTIs and multiple FOMs. Although the HLA
layer is not fully RTI and FOM-agile, it is an important step in that direction. Figure 45 illustrates
how KARMA interfaces with two RTIs and two FOMs through an HLA Manager and a FOM
Mapper. Figure 46 shows the KARMA HLA architecture that is described in detail in the
document Support to CASE Griffon Mothership — DRDC Valcartier ECR 2006-424.pdf [11]. The
KARMA HLA layer may not be fully functional any more since it has not been maintained
recently.
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Figure 45: KARMA HLA layer.
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4.4 Work approach

The development guidelines are presented into the document KARMA Development
Guidelines.pdf and the programming conventions are listed into the document KARMA Coding

Standards.pdf.

The KARMA team has been structured to foster communication between projects by discussing
project needs, past/current/future developments and also debating architectural matters since any
changes might impact more or less other projects. The KARMA team development organization
is presented in the document KARMA Team Structure.pdf. Each project has a delegate architect
which attends weekly architectural meetings. This delegate architect is responsible for all
development and modelling in its project; he must check that the KARMA philosophy is
preserved and the standardized modelling and development practices are followed by every
member of his team. The delegate architect is the first person contacted by the other team
members of a project for any aspects related to KARMA. In addition to the architectural
meetings, quarter meetings are held to inform members of different projects about approaches,
tools, developments, needs or any subject related to KARMA.

Abstract classes or interfaces, like the one in the class diagram shown in Figure 22, shall be used
whenever it is useful in order to reduce dependencies and to standardize the behaviour of the
models. This is performed at modelling time. As one can see, the object types are specialized to
meet subsystems requirements.

Sometimes bugs come up when several people work on a complex software like the KARMA
simulation framework. To help the KARMA developers to locate problems in the code, KARMA
and each model created in C++ or Simulink® must be generated in a debug version as well as in a
release version. Obviously, the release version of KARMA and of the models is far more efficient
than the debug version. Also, the KARMA developers have decided to create a package,
LogManager, to help them to locate problems in the code. It is sometimes very useful to have
some information logged for debugging purposes. The KARMA team has developed a central
message system that logs information for developers only in debug mode.

4.5 Tools and libraries

KARMA development and modelling is based on some commercial tools, libraries and custom
tools.

451 Commercial tools

Commercial tools can assist in the development and modelling of the KARMA simulation
framework and of its models, as well as in the edition of 3D models and documentation.

4511 Modelling

KARMA is designed according to the UML® standard and using the Rational Rose® (IBM) visual
modelling tool. Every classes of the KARMA simulation framework, including C++ and
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MATLAB® models are modeled using UML®. Use cases, sequence diagrams and class diagrams
are mainly used. Classes are gathered into packages (e.g. BaseEntity, Theatre, Signature) to ease
navigation through many classes and these packages are saved into separate units (.cat files) to
minimize conflicts due to team working. Components (.sub files) are created for each dynamic
library that is created. These components are used for code generation. KARMA development
starts from a UML® specification of the models. Rational Rose® generates class skeletons and
programming is performed into Visual Studio® as presented below. In addition to code
generation, XML parameter file are generated automatically using scripting capabilities of
Rational Rose® (see Subsection 4.5.2.3 below).

As mentioned earlier, scenarios are defined using XML files. Each type of XML file
(composition, parameters, log configuration, log results and batch run) has an associated schema
that is used for validation. These schema are edited using XMLSpy® (Altova). This tool offers a
graphical interface that ease modelling of the XML schema and also offers schema validation.

4.51.2 Development

KARMA is developed using tools like Visual Studio® (Microsoft™), Eclipse and MATLAB®
(Mathworks). The development is divided into different parts: simulation framework, simulation
component (model) and GUL

The simulation framework is developed using Visual Studio®. This tool is also used for the
development of C++ models. An add-in named Visual Assist® (Visual Tomato) is used to
enhance development features. Visual Studio® is configured straightforward and dependencies are
located using the KARMA ROOT environment variable according to the structure presented
carlier into Subsections 3.3 and 4.2.

Additionally, KARMA relies on a configuration management tool, named SVN. There is only
one SVN database, but the Model Repository is treated as a distinct database to ease the concept
of repository in the current section. KARMA and its Model Repository are version-controlled to
case tracking the development process. This approach reduces recovery time when a
configuration problem arises (e.g. hard drive broken) or an earlier version of a file (¢.g. model
executable, model source code, documentation, etc.) is needed. It is recommended to perform
releases as often as possible to allow users to use a stable version of KARMA and available
models. The release mechanism is also used to create a subset of the Model Repository. It is
useful when some models are distributed to a KARMA user (e.g. client, analyst, R&D
international exchange).

In addition to C++ models, KARMA supports MATLAB® models. MATLAB® is an engineering
tool that allows performing computation tasks easily and that is widespread in the scientific
community. This tool offers many specialized add-in to reduce development time. One of this
add-in is Simulink® that is used for rapid prototyping and for modelling of dynamic systems.
Several KARMA models are developed using Simulink®. These models are created graphically
and do not require any programming skills. Another add-in, RTW, is used to generate a KARMA
model from a Simulink® model. RTW generates stand-alone C code that is wrapped by a
KARMA C++ model using scripting capabilities (see Subsection 4.5.2.3 for more details).
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Besides the development of the simulation framework and model components, three GUIs were
developed and are presented in the Subsection3.4. The first one is KARMA Studio that is
developed in Java using Eclipse. The second GUI is SMAT that is developed in C++ using
DialogBlocks which allows building GUI graphically using the wxWidgets® library that is
presented in the Subsection 4.5.3.1 below. The last one is Matlab to Karma Automatic
Configurator that was developed using MATLAB®.

4.5.1.3 3D Models

KARMA simulations are based on 3D models for IR scenes, collision and for 3D visualisation of
the engagement. 3D models are mainly purchased from RealDB, but sometimes, minor
modifications are required.

PolyTrans® (Okino) is used to convert and optimize 3D models. This tool supports many formats
as import and export files. However, KARMA uses mainly OpenFlight® (.f//) models so an add-in
is used to export OpenFlight® models. It is worthwhile to note that the conversion process might
leave out some details about the 3D models.

Another tool is used to edit existing OpenFlight® models. Remo3D® (Remograph) allows for
creating/editing models and support the OpenFlight® features almost completely. This tool is the
starting point for IR signature modelling along with SMAT (SMAT Developer's Guide.pdf) [10].

4514 Documentation

KARMA is documented at different levels in addition to the UML® modelling and the source
code. High-level documentation is produced using Word® (Microsoft®) and Visio® (Microsoft®).
Sometimes, MindManager® (Mindjet) is also used to structure ideas and concepts graphically. It
is a mind mapping tool that can be used for brainstorming and even for conceptual modelling.

Doxygen® (OpenSource) is used at the developer’s level to capture the class hierarchy of
KARMA.

45.2 Custom tools

The KARMA success story and its ease of use are explained by well suited tools and automatic
code generation. The following aspects are targeted by custom tools developed as a part of
KARMA: M&S, engagement simulation analysis and automatic code generation.

4.5.21 M&S

At the very beginning of the KARMA project, XML was selected to foster reusability of
simulation components and in turn to maximize the benefits of M&S. KARMA Studio was
created to help the user and the developer during scenario development as well as for the
simulation execution and analysis. However, due to funding difficulties, maintenance and
development of KARMA Studio have been neglected in the past years. Soon after the beginning
of the KARMA project, it appears to the KARMA team that a tool to ease the automatic code
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generation of Simulink® models would be very useful for modellers. The Karma Automatic
Configurator GUI was then created using MATLAB.

More recently, in 2007, the implementation IR signatures in KARMA have been revisited to
introduce spatial sources. These signatures are modeled using SMAT and Remo3D®. Basically,
SMAT is a GUI based on wxWidgets® (GUI), OpenSceneGraph® (3D), OSMesa® (3D),
ChartDirector™ (graphics) and that uses KARMA’s IR scene generation. More details about the
use of SMAT were presented in Subsection 3.4.3 while SMAT development is described in the
document SMAT Developer's Guide.pdf.

4.5.2.2 Analysis

The analysis of simulation results has a key role into M&S. In addition to KARMA Studio
analysis capabilities, 3D playback is offered by a custom tool: 3D Viewer.

This 3D viewing tool was developed in 2007 by the KARMA team. This 3D Viewer exploits the
benefits of OpenFlight® models but also offer other file formats. There is a run-time version that
executes a KARMA simulation while displaying entities and there is a post-simulation version
that is based on the simulation XML log file. An advantage is the possibility to display sensor
viewing regions. This tool is based on the Delta3D® library. More details about 3D Viewer are
presented in the document Karma 3DViewer.pdf.

4523 Code generation

As mentioned earlier, automatic code generation is used in the KARMA development process,
starting from UML® diagrams. Rational Rose® scripting capabilities are used to generate XML
parameters as well as the Simulink® core model.

The Rose Script® language is used to convert UML® into XML parameters through the use of
XML stereotype. Essentially, there are three scripts:

e XML Generation;

e UML® to MATLAB®; and

e MATLAB® to UML".
These scripts can be launched via a Rational Rose® menu (Tools = KARMA). For each class
having the XML stereotype, the script named XML Generation parses the model hierarchy and

generates all attributes having the XML stereotype. See the following document to learn how
these scripts are used: ROSE SCRIPT.pdf.

A similar script, UML® to MATLAB?®, is used to generate a Simulink® core model: a location on
disk is selected, inputs, outputs and parameters are created according to the UML®. Also the
initial value of the outputs and the parameters are saved in a MATLAB® file (.m). The developer
can do reverse engineering from the Simulink® model with the script MATLAB® to UML® to
generate the UML® class. It should be noted that the parameter file must be a .m file.
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The steps to generate a C++ KARMA version of a Simulink® model are presented in the
document KARMA development Guidelines.pdf. There is a nice feature for Simulink® models,
some code can be inserted at specific locations (between tags). This code will not be overwritten
during the code generation process and allows to perform custom actions based on model’s
inputs/outputs or any other conditions.

A C++ KARMA version of Simulink® models is generated using RTW scripting. The Target
Language Compiler (TLC) allows controlling code generation by the use of TLC scripts (.zlc
files). These scripts are described in Table 7. There is a script file for different stages of the
generation process, including one for a model header file and one for a model implementation
file. A script has ASCII characters that are generated as is into a selected file and commands can
be embedded to perform specific tasks (e.g. generate a code section for each parameters of the
model).

Table 7: Description of the TLC scripts.

TLC file name Description

KARMA makefile debug.tic This script generates a makefile template, for the debug mode,
specific to a Simulink® model (OBJECT value only, which
contains the KARMA model name without suffix) for code
generation using RTW. It allows to retrieve the name of the
Simulink® core model (generated model) witha CodeGen
suffix and the name of its wrapper for KARMA without this
suffix.

KARMA makefile release.tlc Same as KARMA makefile debug.tlc except for the release
mode.

KARMA malloc.tlc KARMA C++ model in a DLL in release mode with a wrapper
around Simulink® core model generated using RTW.

KARMA malloc debug.tic Same as KARMA malloc.tlc except for the debug mode.

KARMA objdoc.tic Creation of the documentation file.

KARMA cppbody.tlc KARMA model wrapper for Simulink® core model generated
using RTW.

KARMA cpphdr.tlc KARMA model wrapper for Simulink® core model generated
using RTW.
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TLC file name Description

KARMA formatbody.tlc This file is responsible for generating the model.c file for the
various code formats. Currently supported code formats are:
grt, grt malloc, s-function (with accelerator).

KARMA formathdr.tlc This file formats header information into
CompiledModel. ModelFiles fields.

KARMA formatwide.tlc This system file is the entry point for RTW RealTimeMalloc
code format. The files model.h, model.c, model private.h,
model data.c are produced.

It should be noted that the TLC scripts must be updated for each MATLAB® version. Also, the
new dependencies with the other library (./ib) must be added to the makefile scripts.

Code generation is launched from a custom interface (KARMA.m) that calls different MATLAB®
scripts (.m files) to execute appropriate tasks. Information is retrieved from the Simulink® model
while the script is being executed (e.g. list of inputs). It is important to select the root block of the
model to allow correct behaviour. The configuration for code generation is stored in the model’s
properties, under the description tab. A reserved section is inserted in the description. A
Simulink® model is generated in two steps: generation and build. The first step generates the core
model (C code) along with the model wrapper (C++ code). A makefile is also generated for the
next step. The second step builds the model DLL by invoking the makefile. The DLL is generated
into the DLL section of the Model Repository. The developer has the possibility to insert custom
code between the two steps. The code must be placed in predefined sections of the model header
and implementation files. This code is preserved at the beginning of the first step. It is imperative
to keep these files into the configuration management repository (SVN) for persistency purpose
(e.g. KARMA automatic compilation). Another key element for code generation is the way a
Simulink® model is linked to a library. The path to each library must be listed into the MATLAB®
paths. Thus, when a model is loaded, its dependencies are searched for inside each library found
in the paths. The path to each model is also required for KARMA automatic compilation.

453 Libraries

The following libraries were used for the development of custom tools and for the development of
the KARMA simulation framework.

4.5.3.1 GUI

SMAT relies on a multiple platforms windowing library named wxWidgets® (OpenSource) and a
chart components library ChartDirector® (Advanced Software Engineering).

The library wxWidgets® offers a single, casy-to-use Application Programming Interface (API) for
writing GUI applications on multiple platforms that still utilize the native platform's controls and
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utilities; giving the look and feel appropriate to that platform. This library has many features such
as:

window components (e.g. file browser, button, tree control);
e online help;

e network programming;

® streams;

e clipboard and drag & drop;

e multithreading;

e image reader/writer (variety of popular formats);

e database support; and

e HTML viewing and printing.

Many chart types are available with ChartDirector® and user interactions are implemented
through events replication allowing tooltips, zoom and mouse interactions.

The use of these libraries is presented in the document SMAT Developer’s Guide.pdf.

4.5.3.2 XML

KARMA is based on XML files and two libraries are used to read/write XML files. The first one,
Xerces C++° (OpenSource), is used by the loader and logger modules of KARMA. The other
one, Jaxp”® (Sun), is used by KARMA Studio. Jaxp® stands for Java API for XML Processing.

453.3 3D
KARMA uses 3D models into its simulations and for viewing purposes.

Simulations might use the IR scenes generation module (SceneGenerator3D) that is based on
OpenSceneGraph® (OpenSource) and OSMesa® (OpenSource). The first one manages a scene of
3D models and offers many functionalities such as 3d model loader and attributes edition. The
second one is another implementation of OpenGL that is responsible for graphics rendering. This
library is used to allow for 16-bit rendering.

Simulations might also use collision detection based on 3D models. The implementation relies on
an open source library, OpenDynamicsEngine®, which performs collision detection using 3D
geometries. OSG is used to load 3D models that are converted into geometries for ODE.

Finally, the Delta3D® library is used by the 3D Viewer. This library already integrates other

libraries, including OSG and ODE. The two versions of the viewer, run-time and post-analysis, as
mentioned carlier are implemented using Delta3D®.
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4.53.4 Atmospheric model

KARMA integrates two atmospheric models: the MODerate resolution atmospheric
TRANsmission (MODTRAN) and the Suite for Multi-resolution Atmospheric Radiative
Transmission (SMART). The first one is a recongized model in the scientific community,
developed by the industry in collaboration with the US Air Force Research Laboratory while the
second one was developed by DRDC Valcartier and is based on MODTRAN.

KARMA uses a custom version of the MODTRAN 4 software that has been modified to output
transmittances in a correlated-k space. This custom version of MODTRAN is integrated in
KARMA by the ModtranAdapter and is presented in the document ModtranK in KARMA .pdf.

SMART is integrated in KARMA by the SmartAdapter using the SMART Interface (SMARTI)
C++ library. This library was developed to simplify the interfacing of DRDC’s SMART C++
library into projects. The main objective of SMARTI is the calculation of atmospheric radiative
quantities such as transmitted solar irradiance, atmospheric radiative fluxes, path and background
radiances, and transmittance. Although the SMART library is much more versatile, that makes it
by design quite complicated and time consuming to learn. SMARTI provides an interface to many
of the more useful features of SMART, while taking care of the more complicated aspects of
working with SMART internally. SMARTI is capable of calculating radiative quantities at
moderate resolutions (1, 5 or 15 cm™ wavenumber bins) or for an entire band using the wideband
correlated-k theory. The use of the SMARTI library is presented in the document Smarti

Library.pdf.

4.6 Adapting KARMA for a SE

KARMA offers its own simulation environment named SimulationEnvironment that is presented
in details in the Subsection 2.2. However, it is possible to run KARMA models from an external
SE. The feasibility was demonstrated in the past by adapting KARMA to STRIVE® (from CAE
Inc.), but this SE is no longer used. This section presents how STRIVE® was adapted to give an
overview of how any other SE that offers an API for plug-in addition can execute KARMA
models.

STRIVE® is an HLA-compliant software package in which simulation entities can interact with
cach other and the system operator, and in which entities can be distributed among federates. The
STRIVE Studio® offers the possibility to users to create their scenarios in a graphical way and to
see their simulations in a 2D and a 3D viewers. STRIVE® is also responsible for time
management and for collisions between entities.

The KARMA team has created a small tool that allows the conversion of a scenario that has been
created inside KARMA Studio to a scenario that STRIVE® recognizes. So, a scenario that has
been created inside KARMA Studio can run inside STRIVE®.

The role of STRIVE® in a KARMA simulation is to call the KARMA adapter at the right time
during the simulation. Figure 47 shows the relation between KARMA and STRIVE® into a
simulation. The adapter takes care of calling the entity inside KARMA. In fact, the adapter is
responsible for many tasks during a simulation using STRIVE®. The adapter class is responsible
for instantiating all the entities in the simulation, scheduling the entities and calling them at the
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right time, calling the services that belong to STRIVE®, checking if new entities have to be
created in STRIVE®.

STRIVEScheduler : | KARMABaseEntityAdapterForStrive : vaeTenamMo KarmaBaseEntity : |  [KarmaTheatre - KARMA Scheduler :
EntryPoint Sfx::EntityModel, Sfx::IEntryPoint BaseEntit Theatre SequentialScheduler
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Figure 47: Simulation using STRIVE® UML" sequence diagram.

STRIVE® begins by calling the method processAction of the adapter for each entity in the
simulation. This method indicates to the adapter which entities exist in the simulation. Inside this
method, the adapter instantiates the right base entities. Next, the adapter schedules each base
entity at its time step and the STRIVE® scheduler calls the adapter when the time step of a base
entity is reached. When the adapter is called by the STRIVE® scheduler because the time step of a
base entity is reached, the adapter calls this base entity and schedules the next time that this base
entity must be called. The STRIVE® scheduler continues to call the adapter and the adapter
continues to call the entities until the end of the simulation.

Refer to the document STRIVE .pdf for more details.
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4.7 Adapting KARMA to HWIL

Sometimes, detailed engagement analyzes are required and the LOD of KARMA simulations is
increased by using a HWIL component in a scenario. It thus allows the most realistic
representation for a component instead of modelling the behaviour of that component.

A HWIL component is used in KARMA using a virtual entity, meaning that the processing is
performed outside KARMA. Depending on the nature of the component, a BaseEntity or a Part
model can be used to adapt it to a KARMA simulation. The virtual entities are used almost
transparently in KARMA, having inputs, outputs and parameters as every other model. Indeed,
these entities are only distinguished from other entities at the level of the Theatre class. A
BaseEntity is gathered into the m_baseEntityList or the m_virtualBaseEntitiesList. The following
subsections present how the SEMAC facility is used as BaseEntity and how the MAWS hardware
is used as a Part.

4,71 SEMAC

SEMAC is a HWIL facility that generates an IR scene that is used to test a flare CM against IR-
guided missiles. SEMAC is an open-loop system, but it has been demonstrated that with the help
of KARMA, which simulates the flight dynamics of the missile and of the aircraft, the loop can
be closed to increase the possibilities of SEMAC. SEMAC was developed in a distinct project
and the reader should refer to the SEMAC system overview document for further details Error!
Reference source not found..

KARMA communicates with SEMAC via a virtual BaseEntity named VirtualSceneGenerator.
The role of this BaseEntity is to supply all the information that is needed by the SEMAC
controller. This information is:

e position of the aircraft;
¢ velocity of the aircraft;
e position of the flare;

¢ velocity of the flare;

e size of the aircraft;

e intensity of the aircraf;

e size of the flare; and

intensity of the flare.

Thus, this BaseFEntity is a kind of sensor that looks at the scene and then extracts some
information. In fact, the VirtualSceneGenerator does not communicate directly with the SEMAC
controller. The virtual BaseEntity communicates with an intermediate module (SEMACLink) that
communicates with the SEMAC controller.

Refer to the document SEMACClosedLoop.pdf for more details.
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4.7.2 MAWS

The AN/AAR-47 MAWS is a small lightweight passive EO threat warning device used to detect
surface-to-air missiles fired at helicopters and low-flying fixed wing aircraft. It provides audio
and visual-sector warning messages to the aircrew and automatically allocates CMs. This project
consists of using the real hardware into the KARMA simulation environment but without its
sensors. The real sensors are replaced by KARMA numerical sensors that provide the detected
irradiance to the hardware. Like SEMAC, the project was developed in a distinct project and the
reader should refer to the MAWS system overview document for further details Error!
Reference source not found..

Figure 48 shows the HWIL MAWS UML® sequence diagram. When the HWIL MAWS is used
into a KARMA simulation, an instance of the class MAWSAAR 47HWIL, which is a virtual Part,
is created to communicate with the hardware. During the simulation, the MAWSAAR 47HWIL
sends the irradiance received from each simulated sensor to the HWIL MAWS. When the HWIL
MAWS declares a threat, the information is sent to the MAWSAAR 47HWIL which calls the
CMDS to trigger countermeasure sequence.
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Figure 48: Sequence diagram of the HWIL MAWS.
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5 Conclusion

The KARMA system overview summarized the KARMA facility and its capabilities with
references to existing technical documentation. This document, along with the VRAPP simulation
framework technical specifications VO, will be the starting point for the design of the VRAPP
simulation framework V0. The simulation framework technical specifications will evolve jointly
with the other VRAPP technical specifications throughout the spiral development phases to
produce the technical specifications V1 and V2. The KARMA system will be updated and
integrated into the VRAPP system of systems that will be documented in a final VRAPP system
overview.
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Annex A Aircraft XML composition file example

<fileType>BaseEntity</fileType>
<composite name="Structure aircraft">

<component>Structure</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Characteristic\Struc
tureAircraftWaypoint.xml</parameters>

<composition>none</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
<composite name="Manoeuvre">

<component>Manoeuvre</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Part\Manoeuvre.xml</
parameters>

<composition>$ (KARMA_ROOT) \ModelRepository\xml\Compositions\ManoeuvreComposit
ion.xml</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
<composite name="Signature">

<component>Signature</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Characteristic\Signa
ture.xml</parameters>

<composition>$ (KARMA_ROOT) \ModelRepository\xml\Compositions\SignatureAircraft
.xml</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
<composite name="KARMA missile">

<component>Munition</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\BaseEntity\Missile.x
ml</parameters>

<composition>$ (KARMA_ROOT) \ModelRepository\xml\Compositions\MissileCompositio
n.xml</composition>

<quantity>1l</quantity>

<documentation> </documentation>
</composite>
<composite name="Entity dispensor'">

<component>EntityDispensor</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Part\EntityDispensor
.xml</parameters>

<composition>none</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
<composite name="Threat system">

<component>EntityDispensor</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Part\EntityDispensor
Missile.xml</parameters>

<composition>none</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
<composite name="KARMA flare">

<component>Flare</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\BaseEntity\Flare.xml
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</parameters>

<composition>$ (KARMA_ ROOT) \ModelRepository\xml\Compositions\FlareComposition.
xml</composition>

<quantity>2</quantity>

<documentation> </documentation>
</composite>
<composite name="Expendable dispensor">

<component>EntityDispensor</component>

<parameters>$ (KARMA_ROOT) \ModelRepository\xml\Parameters\Part\EntityDispensor
Flare.xml</parameters>

<composition>none</composition>

<priority>0</priority>

<documentation> </documentation>
</composite>
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List of acronyms

2D

3D

API

CF

CM
CMDS
COl
COTS
CSv
DIRCM
DLL
DND
DOF
DRDC
DRDKIM

EO
EOW
FEDEP
FOM
FOV
GUI
HLA
HTML
HWIL
ID

IR
LOD
LOS
M&S

Two Dimensional

Three Dimensional

Application Programming Interface
Canadian Forces

Countermeasure

Countermeasure Dispenser System
Communities of Interest
Commercial-Off-The-Shelf
Comma Separated Values

Directed IR Countermeasure
Dynamic Link Library

Department of National Defence
Degree of Freedom

Defence Research & Development Canada

Director Research and Development Knowledge and Information
Management

Electro-Optical
Electro-Optical Warfare
Federation Development and Execution Process
Federation Object Model
Field Of View

Graphical User Interface
High-Level Architecture
HyperText Mark-up Language
HardWare-In-the-Loop
Identification

Infrared

Level Of Detail

Line Of Sight

Modelling and Simulation
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MANPADS
MAWS
MDA
MIST
MODTRAN
NED
ODE

0]0)

0OSG
R&D

RF

RPR FOM
RTI
RTW

SE
SEMAC
SMART
SMARTI
SMAT
SOR

SoS

STL
SVN
TDP
TLC
TXT
UDP
UML
uv
V&V
VRAPP
XML
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Man Portable Air Defence System

Missile Approach Warning System

Model-Driven Architecture

Munition Interface Specification for the TTCP
MODerate resolution atmospheric TRANsmission
North East Down

OpenDynamicsEngine

Object-Oriented

OpenSceneGraph

Research & Development

Radio-Frequency

Real-time Platform Reference Federation Object Model
Run Time Infrastructure

Real-Time Workshop

Synthetic Environment

Simulator of Engagement for Missiles, Aircraft and Countermeasures
Suite for Multi-resolution Atmospheric Radiative Transmission
SMART Interface

Signature Modelling and Analysis Tool

Statement Of Requirements

System of Systems

Standard Template Library

Subversion

Technology Demonstration Project

Target Language Compiler

Text

User Datagram Protocol

Unified Modeling Language

Ultraviolet

Verification and Validation

Virtual Range for Advanced Platform Protection
eXtensible Markup Language
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