
DEFENCE DÉFENSE
&

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

In-Memory Analysis of Maritime Data Sets

A Database System for Efficiently Processing Very Large
Data Sets in Maritime Domain Awareness and
Operational Research

D. E. Schaub

Technical Memorandum

DRDC Atlantic TM 2013-211

April 2014

Defence R&D Canada – Atlantic

Copy No. _____

This page intentionally left blank.

In-Memory Analysis of Maritime Data Sets
A Database System for Efficiently Processing Very Large Data Sets in
Maritime Domain Awareness and Operational Research

D. E. Schaub

Defence Research and Development Canada – Atlantic
Technical Memorandum

DRDC Atlantic TM 2013-211

April 2014

c© Her Majesty the Queen in Right of Canada as represented by the Minister of National Defence,
2014

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense
nationale, 2014

Abstract

The present work develops an in-memory database system that enables efficient statisti-
cal calculations on extremely large sets of maritime data. The conventional approach of
interspersing calculations with queries to relational databases incurs significant latencies
when data retrieval patterns induce inefficient hard-disk operations. Mitigation through
re-ordering data access is often feasible but at the expense of significant additional de-
velopment involving practices in advanced computer programming. As random access of
computer memory is several orders of magnitude faster than secondary storage access, it is
highly desirable—when possible—to store databases exclusively in memory. Through bit-
shifting, dynamic dictionary compression, and domain-specific data reduction techniques,
the present work demonstrates a functional data storage and processing system capable
of storing the entire Global Positional Warehouse in the memory of a personal computer.
Data are made available to the user through a simple application programming interface
that allows rapid development of efficient, large-scale statistical analysis programs.

Résumé

Le travail actuel vise à élaborer un système de bases de données en mémoire qui per-
met les calculs statistiques efficaces de très grands jeux de données maritimes. L’approche
conventionnelle des calculs intercalés avec des requêtes aux bases de données relationnelles
provoque d’importants délais lorsque les modèles d’extraction de données génèrent des
opérations inefficaces sur le disque dur. L’atténuation par le réordonnancement de l’accès
aux données est souvent possible, mais au détriment d’importants développements plus
poussés, y compris des pratiques avancées liées à la programmation informatique. Étant
donné que l’accès à la mémoire vive d’un ordinateur est infiniment plus rapide que l’accès
au stockage secondaire, il est fortement recommandé, autant que possible, de stocker les
bases de données dans la mémoire. Grâce au repositionnement des bits, à la compres-
sion dynamique de dictionnaires et aux techniques de réduction de données spécifiques
au domaine, le travail actuel démontre un système fonctionnel de traitement et de sto-
ckage de données capable de stocker l’Entrepôt de données de localisation mondiale en
entier dans la mémoire d’un ordinateur personnel. Les données sont rendues disponibles à
l’utilisateur à l’aide d’une interface simple de programmation d’applications qui permet le
développement rapide de programmes d’analyses statistiques efficaces à grande échelle.

DRDC Atlantic TM 2013-211 i

This page intentionally left blank.

ii DRDC Atlantic TM 2013-211

Executive summary

In-Memory Analysis of Maritime Data Sets
D. E. Schaub; DRDC Atlantic TM 2013-211; Defence Research and Development

Canada – Atlantic; April 2014.

Background: Over the past decade, maritime domain awareness has been revolutionized
by vast increases in data volumes brought forth by sweeping collection of self-reported ves-
sel contact reports. While these new data sources have been applied—with great benefit—
to the recognized maritime picture, recent efforts towards information utilization have
broadened to include deeper analysis with the aim of better understanding information
sources and designing new tools for maritime domain awareness. Historically, such analy-
sis would entail the use of relational database systems that often lack the speed necessary
for large-scale data analysis. The present work addresses this issue through the design and
implementation of a geospatially-aware, in-memory data storage and retrieval system that
both accelerates complex analyses of very large maritime data sets and obviates the need
for familiarity with advanced programming techniques.

This work supports the DRDC Applied Research Project 06eo Situational Information for
Enabling Development of Northern Awareness (SEDNA). The following research was con-
ducted by DRDC, Atlantic Research Centre over a 3 month period.

Results: This work demonstrates an algorithm capable of storing and rapidly processing
very large sets of maritime data (including the entire Global Positional Warehouse) on a
personal computer. It is expected that the software will scale favourably with the data
volumes anticipated by the proposed revisions to the Global Positional Warehouse.

Significance: This work will improve the recognized maritime picture by simplifying
challenging analysis on information sources used in operations centres. The software’s
straightforward interface enables a variety of users to perform fast statistical analysis and
data mining on the complete set of Global Positional Warehouse data using existing per-
sonal computer systems. The software is of particular value in maritime domain awareness
research and development, operational research and analysis, and real-time calculations in
operational settings.

Future Plans: The software will be deployed in the course of performing a comprehen-
sive assessment of information presently stored in the Global Positional Warehouse, with
attention given to quality, consistency, and sensor coverage. Further analysis will en-
compass several areas of maritime domain awareness research, including the extraction of
empirically-derived vessel motion models for the improvement of the recognized maritime
picture and pattern analysis in support of anomaly detection.

DRDC Atlantic TM 2013-211 iii

Sommaire

In-Memory Analysis of Maritime Data Sets
D. E. Schaub ; DRDC Atlantic TM 2013-211 ; Recherche et développement pour la

défense Canada – Atlantique ; avril 2014.

Contexte : Au cours des dix dernières années, la connaissance de la situation mari-
time a été révolutionnée en raison d’augmentations importantes de volumes de données
générées par une collecte très étendue d’informations autosignalées sur la position des na-
vires dans les comptes rendus de contact. Bien que de nouvelles sources de données aient
été appliquées (avec d’excellents avantages) à la situation maritime reconnue, les efforts
récemment déployés sur l’utilisation de l’information ont été élargis afin d’inclure des ana-
lyses plus poussées visant à mieux comprendre les sources d’information et à concevoir
de nouveaux outils pour la connaissance de la situation. Par le passé, ces analyses deman-
daient l’utilisation de systèmes de bases de données relationnels qui, souvent, n’étaient pas
assez rapides pour effectuer l’analyse de données à grande échelle. Le travail actuel traite
de cette situation grâce à la conception et à la mise en place d’un système de stockage
de données en mémoire sensible à la localisation géospatiale et d’un système d’extraction
qui permettent d’accélérer les analyses complexes de grands jeux de données maritimes et
d’éviter le besoin de familiarisation aux techniques avancées de programmation.

Le travail appuie le projet de recherches appliquées 06eo de RDDC, intitulé Situational
Information for Enabling Development of Northern Awareness (SEDNA) [informations sur
la situation pour permettre le développement des connaissances dans le Nord]. La recherche
suivante a été menée par le Centre de recherches de l’Atlantique de RDDC pendant une
période supérieure à trois mois.

Résultats principaux : Le travail démontre un algorithme capable de stocker et de traiter
rapidement de très grands jeux de données maritimes (y compris l’ensemble de l’Entrepôt
de données de localisation mondiale) à l’aide d’un ordinateur personnel. Il faut s’attendre
à ce que le logiciel s’ajuste adéquatement aux volumes de données anticipées à la suite des
révisions proposées à l’Entrepôt de données de localisation mondiale.

Portée des résultats : Le travail améliorera la situation maritime reconnue en simplifiant
l’analyse difficile des sources d’informations utilisées dans les centres d’opérations. L’in-
terface directe du logiciel permet à une variété d’utilisateurs d’effectuer rapidement des
analyses statistiques et d’explorer les données de jeux complets de données de l’Entrepôt
de données de localisation mondiale à l’aide d’ordinateurs personnels en place. Le logiciel
représente une certaine valeur pour la recherche et le développement concernant la situa-
tion maritime reconnue, l’analyse et la recherche opérationnelles et les calculs en temps
réel en contexte opérationnel.

iv DRDC Atlantic TM 2013-211

Recherches futures : Le logiciel sera déployé pendant l’évaluation en profondeur de
l’information qui est actuellement stockée dans l’Entrepôt de données de localisation mon-
diale, une attention particulière sera donnée à la qualité, l’uniformité et à la couverture des
capteurs. Une autre analyse plus poussée comprendra plusieurs secteurs de recherche de la
connaissance de la situation maritime, y compris l’extraction de modèles de mouvement de
navire établis de faon empirique en vue de l’amélioration de la situation maritime reconnue
et de l’analyse des tendances à l’appui de la détection d’anomalie.

DRDC Atlantic TM 2013-211 v

Acknowledgements

The author would like to thank A.W. Isenor (DRDC, Atlantic Research Centre) for con-
structive conversations during the preparation of this manuscript and Scott Syms (MAR-
LANT N6) for providing the datasets used in this report.

vi DRDC Atlantic TM 2013-211

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Acknowledgements . vi

Table of contents . vii

List of figures . viii

1 Introduction . 1

2 Storage and Retrieval of Digital Data in Scientific Computing 3

3 Software Design . 5

3.1 Compression and Decompression . 6

3.2 Database Initialization . 7

3.3 Database Access . 8

3.4 Sort Operations . 9

3.5 Geographical Extensions . 13

4 Application of Software to Data from Global Position Warehouse 18

5 Conclusion . 21

References . 23

DRDC Atlantic TM 2013-211 vii

List of figures

Figure 1: Average data retrieval speeds as measured on a Dell Precision M4600
personal computer . 4

Figure 2: Software architecture . 5

Figure 3: Memory data map . 7

Figure 4: Reduction of data size by reclaiming unused memory 8

Figure 5: Maintenance of lexicographic order . 10

Figure 6: Manipulation of data prior to sort . 13

Figure 7: Definition of geographical unit vector 14

Figure 8: Definition of Surface Arc . 15

Figure 9: Contacts originating from each of the world’s oceans 19

viii DRDC Atlantic TM 2013-211

1 Introduction

Like many areas in defence and security, maritime domain awareness (MDA) has been
witness to enormous increases in information volumes. Over the last several years, new
data sources—particularly self-reports in the form of AIS messages—have significantly
reshaped the operational environment, necessitating not only fundamental changes to in-
formation systems, but adjustments to agency structures and operator work patterns as
well. The ensuing challenges have inspired a wealth of MDA and operational research,
with much effort directed towards reducing operator workload and developing systems that
quickly bring relevant information to the operator’s attention. As a result of these changes,
operations centres are able to monitor and respond to global maritime activities to a degree
that is without precedent.

The collection and archival of vast sets of maritime data also provides opportunity for re-
search in pursuit of objectives beyond immediate operational concerns. In the context of
operational research (OR), such analysis might include evaluating measures of effective-
ness based on sensor and fusion performance, recognized maritime picture quality, and In-
telligence Surveillance Reconnaissance (ISR) metrics [1]. The results of these evaluations
may then be used to effectively direct resources to improve the performance of existing
infrastructure (or operations) and/or evaluate prospective sensing platforms and fusion ca-
pability. In the case of basic MDA research, a large corpus of vessel tracks may be used to
extract statistical models for vessel motion, which may in turn be used to improve vessel
tracking and target identification. The large datasets may also be used for pattern analysis
in support of developing methods of anomaly detection and establishing vessel patterns of
life, topics that may lead to systems that provide early warning to maritime emergencies or
security-related issues.

The computational challenges in MDA research are substantially different from those en-
countered in operational settings. In the latter case, information systems are tailored to-
wards real-time picture compilation and presentation that heavily emphasize the recency
of information. As the utilization of archived data is limited, processing requirements
are quite modest (by contemporary standards). In contrast, data sets in MDA research
may be significantly larger and processing considerably more complex. Moreover, severe
performance degradation may result when executing complicated calculations on data sets
exceeding system memory. In this case, certain analyses may become infeasible when com-
putations induce disk-access patterns that are highly inefficient. Re-ordering calculations
may yield (more efficient) sequential disk access but usually incurs considerably greater
development effort that shifts emphasis from the analysis problem itself to optimization
techniques in computer programming. These issues, which frustrate efforts to expediently
carry out analysis, may be avoided by ensuring adequate system memory, employing data
compression, or both.

This work describes the development of a high-compression in-memory database system

DRDC Atlantic TM 2013-211 1

that facilitates rapid statistical analysis of large maritime data sets and obviates the need
for advanced programming techniques. The remainder of this report begins with theoretical
considerations of data storage and retrieval in relation to different forms of computer mem-
ory. Information sources particular to MDA are then studied in the process of deriving in-
memory data compression that supports efficient random-access. A fast sorting algorithm
and geographical extensions are then derived. The report concludes with the demonstra-
tion of a user-defined analysis tool that employs the database system to very rapidly classify
hundreds of millions of contact reports according to the ocean of origin. It is expected that
the software’s simple application programming interface and geographical extensions will
enable the development and execution of a variety of additional complex analyses, partic-
ularly in maritime domain awareness research and development, operational research and
analysis, and real-time calculations in operational settings.

2 DRDC Atlantic TM 2013-211

2 Storage and Retrieval of Digital Data in
Scientific Computing

This section provides a brief overview of computer memory theory in relation to data stor-
age in digital systems. As these subjects are enormous in scope and depth, only aspects
germane to the processing of large-scale data sets are covered. Readers desiring a compre-
hensive background are referred to [2].

Computer memory may be classified as either primary or secondary storage. The former
(hereafter referenced simply as ‘memory’) is nearly always semiconductor-based, expen-
sive (per unit of capacity), volatile (data are lost when powered-down), and extremely fast.
The latter, which includes magnetic media such as hard drives, is relatively inexpensive
and non-volatile, but exhibits considerably greater access latency and reduced bandwidth.
The architecture of a typical computer system includes both forms of storage, wherein
semiconductor-based memory—mostly random-access memory (RAM)—is tightly inte-
grated and partially embedded with processing units, while secondary storage—usually in
the form of hard disks—is connected to the central processing logic through peripheral
buses and special controller hardware. While the instructions and data used in program
execution normally reside in memory (an absolute requirement for imminently-executed
instructions), operating systems may recruit certain portions of a system’s hard-disk to
serve as virtual memory in the event that primary storage becomes exhausted. In this case,
the operating system transparently transfers data between memory and disk in a process
known as paging.

Performance considerations in scientific computing often concern the tradeoff between
memory speed and size (i.e. choosing between slower hard-disk storage and lower-capacity
RAM) and latencies characteristic to different data access patterns. In particular, sequential
reads or writes to consecutive physical locations are faster than their random counterparts.
This phenomenon especially affects rotating media, where non-consecutive operations ex-
perience delays of several milliseconds that result from the physical repositioning of inter-
nal read/write assemblies. While the latencies incurred by isolated random accesses are of
little significance, they can severely impact virtual-memory operations. These differences
in speed are illustrated in Fig. 1, which shows the various times required to initiate the
retrieval of a single byte of data on a typical personal computer.

A simplified workflow in scientific computing includes loading a file from disk into mem-
ory, processing data by performing numerical and/or logical calculations, and saving the re-
sults to disk upon completion. In this model of computation, disk access is seldom regarded
as a significant performance inhibitor, as it occurs only during load and save operations that
are completed quickly by way of sequential disk access. When data-set size exceeds a sys-
tem’s memory, this workflow must be adjusted to reflect that calculations can no longer
be performed in memory alone; program execution necessarily effects hard-disk access, ei-

DRDC Atlantic TM 2013-211 3

Figure 1: Average single-byte retrieval speeds (in seconds) as measured on a Dell Precision
M4600 personal computer. Note the ∼6 order-of-magnitude difference between random
(magnetic) disk and (dynamic) memory access speeds.

ther through paging mediated by the operating system, or by direct disk operations initiated
by the software, and the execution speed becomes strongly influenced by the pattern and
volume of hard-drive reads/writes. In the worst case, excessive paging (known as thrash-
ing) will bring execution to a near halt and render infeasible normal program completion.
Thrashing may be avoided through software that uses a minimum of carefully-designed
sequential disk-memory transfers to reduce memory footprint and thereby eliminate re-
liance on virtual memory.1 However, such optimizations part with conventional memory
usage paradigms, requiring both proficiency in advanced concepts of computer science and
a deeper insight into the computational nature of a given problem.

The foregoing arguments strongly advocate—whenever possible—memory-exclusive data
processing. While other performance obstacles (such as those related to computational
complexity) remain, in-memory processing allows for the simplest implementations of
complex analyses and eliminates the potential for time-intensive optimizations, allowing
attention to remain directed toward the domain-specific (as opposed to computational) as-
pects of analysis.

1Finite-element solvers such as Ansoft HFSS commonly employ this strategy.

4 DRDC Atlantic TM 2013-211

3 Software Design

The software may be functionally decomposed into low-level compression/storage and
decompression/retrieval operations, database initialization, high-level data access by the
user-defined application, and ancillary functions that include sorting and geographical ex-
tensions. The underlying software architecture (Fig. 2) conforms the client-server design
pattern; the server process reads data into a region of memory that is then shared with one
or more user-defined client programs. The choice of shared memory in lieu of a standard
interface (such as a sockets connection) minimizes data access latency but also exposes the
database to inadvertent corruption by ill-defined user programs. This risk, however, may
be avoided by using only the client functions defined by the software.

In the present work, the software (which is of a general nature) has been adapted to data
sets exported from the Global Positional Warehouse (GPW), an information system main-
tained by MARLANT N6. This system, which archives millions of current and historical
vessel tracks and contact reports from around the world, is central to the compilation of the
recognized maritime picture used by the Regional Joint Operations Centres (RJOCs) and
Marine Security Operations Centres (MSOCs). In addition to contact location, GPW also
stores attributes such as a vessel’s International Maritime Organization (IMO) Number,
Maritime Mobile Service Identity (MMSI), name, call sign, flag, etc. Data was transferred
from GPW to the software through sets of comma-separated-variable (CSV) files.

Figure 2: Software architecture, where arrow orientation indicates direction of data flow,
and boxes with dashed outlines represent physical storage. Note that data operations are
always initiated by either the client or server programs.

DRDC Atlantic TM 2013-211 5

3.1 Compression and Decompression
The compression techniques employed are threefold: First, the absolute minimum space
for a given field is derived in relation to domain-specific requirements. For example, lati-
tude granularity better than 1 meter is practically unnecessary in view of the considerably
larger positional error accompanying most contact reports. As the earth’s circumference
is ∼40,000 km, the latitude field need resolve only ∼40,000,000 discrete values, which
may be stored in log2(4x107) = 25.25 bits. This process is repeated for similar fields such
as depth, altitude, length, bearing, etc., and the resultant data sizes are rounded up to the
nearest integer bit.

The second form of compression targets repetition in fields such as vessel name, flag, and
MMSI and IMO identifiers. The resultant redundancy may be eliminated by substituting
each repeated value for a unique index of considerably shorter length and defining a dic-
tionary that associates indexes to field values. The logarithm of the resulting maximum
index yields the space required to store the index in the record, which may be substantially
less than that of the original data. This technique is known as dictionary compression and
forms the basis of many compression algorithms such as LZW [3]. In most cases, further
economies in data storage size—particularly for memory intensive-fields such as vessel
name—may be realized by constructing minimum dictionaries that span only the range of
observed data. Such an approach entails dynamically defining dictionaries during database
initialization, a process that is described in the following section.

In most cases, compression is maximized by way of variable-length coding; data occurring
with high frequency are represented by dictionary indices of shorter length and vice versa.
While suited to applications that carry out linear passes on compressed data, variable-length
coding impedes random access, as finding a given datum’s memory address involves pro-
cessing all preceding data. Variable length codes also preclude in-place sorting and sorting
algorithms based on monotone-mapping dictionaries (§3.4). Strategies for circumventing
these problems may be found, though at the cost of additional memory, complexity, and
random-access latency. In contrast, fixed-length coding places no restrictions on sorting
and allows memory addresses to be expressed as simple arithmetic functions of a datum’s
index (Fig. 3). For these reasons, variable-length dictionary encoding was not pursued.

The third element of compression involves eliminating compiler-generated memory gaps
between adjacent fields and records. This unused space, which clearly results when native
data types store fields of fewer bits, also occurs when compilers align variables to permis-
sible memory addresses, required by conventional microprocessor design to be divisible by
variable size. For example, an IEEE-754 double floating point variable (8 bytes) may be
stored at addresses 16, 24 or 32, but not 6 or 7). Should the preceding variable definition
be a single character (one byte), up to three bytes become unusable. The software com-
pletely eliminates such unused space by foregoing compiler-generated variable definitions
and storing both individual fields and records in immediate succession (Fig. 4). In this con-

6 DRDC Atlantic TM 2013-211

figuration, the memory address of a particular record (or field) must be expressed in bits.

Reading fields in the bit-mapped database (Fig. 4) requires an interface function Expand-
OneArrayElement() that restores data to original—albeit still dictionary-compressed—
data types. This operation involves copying the bytes containing the field into a temporary
variable, zeroing the leading and trailing bits that were collaterally copied (belonging to
adjacent fields in the database), and finally bit-shifting the temporary variable to recover
the original data alignment. The contents of the temporary variable are then copied to the
destination variable that is of the original data type. Storage of data to the database is using
CompressOneArrayElement() occurs by way of the reverse process.

The reading/writing procedures make use of data-specific record layout sequences that
contain the length (in bits) of each field in the order in which it appears in a record. For
example, the sequence for a three-field record (26-bit latitude, 26-bit longitude, 5-bit iden-
tification number) would be the array [26, 26, 5].

3.2 Database Initialization
The in-memory database is constructed by the server program in two phases from a group
of CSV files stored on disk (in the present work these files contain track and contact infor-
mation from GPW). The first step consists of sequentially reading the entire set of files to
compute the required memory and compile the sets of unique values to be defined in the
field-specific dictionaries. If memory requirements are found to exceed the system mem-
ory, the program immediately terminates with error. The dictionary entries are tabulated
using the std::set data type from the C++ standard template library [4]. By design, this data
type maintains a sorted list of unique values, guaranteeing logarithmic (fast) insertion com-
plexity and transparently handling duplicate insertions. Owing to the data structure’s inter-

Figure 3: Memory data map showing that records (indexed by n) are of uniform width
and stored linearly in memory. The memory address of any given record can therefore be
computed arithmetically. Note that records are not word (or even byte)-aligned.

DRDC Atlantic TM 2013-211 7

Figure 4: Reduction of data size by reclaiming unused memory.

nal order, the final set may be transferred directly to the respective monotone dictionary.
Upon completion of the first step, the required memory is requested from the operating sys-
tem as a single, contiguous block. The entire data set is then read from disk, compressed,
and stored to memory, which is shared with client programs using the Boost.Interprocess
library [5]. The shared memory segment remains available to client process for the duration
of the server program’s lifetime.

3.3 Database Access
Data may be retrieved and set through a collection of objects (instantiated C++ classes).
The shared memory segment is accessed by user-defined programs through a pointer of
type GPWData defined in the header file Interface.hpp. In turn, this data structure con-
tains the set of pointers defined in Table 1. In each case, relative pointer arithmetic is
used (Boost.Interprocess library) owing to distinct address spaces of the server and client
programs.

Each of the contact and track pointers may be dereferenced to an object accessible
by way of a C-style array operator [·]. This (C++ overloaded) operator serves as
a function that transparently reads (writes) and decompresses (compresses) single el-
ements from the database, concealing complex bit-shifting operations (§3.1) from the
user. Individual fields may be accessed through get and set-style member functions,
which are defined in lieu of a second index to improve software legibility. For exam-
ple, reading the MMSI of the 589th record in the contacts database may be done as
data->(*ContactsPtr)[589].getMMSI().

Finally, each of the database fields is associated with a unique C++ class that is used

8 DRDC Atlantic TM 2013-211

Table 1: Data Pointers stored in the GPWData class.

Pointer Name Description
ContactsPtr Pointer to the set of contacts
TracksPtr Pointer to the set of tracks
MMSITable Dictionary of MMSI values
IMOTable Dictionary of IMO values
NameTable Dictionary of vessel names
RadioTable Dictionary of radio call signs
ClassTable Dictionary of vessel class
SourceTable Dictionary of source
SensorTable Dictionary of sensor type
TypeOfTrackTable Dictionary of track type

in place of native data types. This is done to facilitate error checking and ensure that
only permissible values are stored to database fields. An illegal operation (such as
data->(*ContactsPtr)[589].setLatitude() = 700◦) results in a software
exception being thrown. The server program catches exceptions during construction of the
database, and in each case, displays an error message notifying the user to the invalid value
that was encountered in the source data. Uncaught exceptions in user-defined programs
will result in program termination, as it was deemed that invalid values could undermine
the results of analysis.

3.4 Sort Operations
Although the software facilitates efficient random access, performance may further im-
prove with cache optimization techniques. In the case of a single-threaded user-defined
program, this amounts to accessing records in sequence. Fortunately, data analysis can
often be derived in terms of sequential access by first using a sorting algorithm to reorder
records in the database. Sorting is also required for using fast O(logn)-complexity binary
search algorithms.

Analysis of computer sorting may be profitably divided into a study of the underlying sort
algorithm (which may be defined abstractly in terms of comparison operators that induce a
partial order on a set of generalized records), and analysis of the realized comparison and
memory operations used in a given implementation. In most applications, a fast algorithm
such as heapsort, mergesort, or quicksort is used. These algorithms exhibit a common (ex-
pected) time complexity of O(n logn) but otherwise possess distinct performance profiles,
particularly in regard to temporary-memory requirements and suitability for parallelization.
Mergesort is often preferred for its speed, robustness (deterministic runtime), and ease with
which cache-optimized and parallel variants may be implemented. However, as mergesort

DRDC Atlantic TM 2013-211 9

requires (by design) significant additional memory, the software’s sorting functions were
instead based on an in-place—albeit slower2—heapsort algorithm.

A straightforward sorting implementation carries out comparisons between decompressed
fields values, a process that is conceptually simple but incurs the modest overhead of re-
peatedly calling ExpandOneArrayElement() and carrying out dictionary lookups. In most
cases, the mapping between dictionary index and respective definition is readily made
monotonic, i.e. order preserving (Fig. 5). By shifting the compressed sort field (also
known as the key) to a byte boundary, comparisons may be then be performed on the
indices themselves by way of fast, machine-native integer operations. This process can be
further optimized by padding record length to 8 bits and reinstating bit shifting as pre- and
post-sorting operations. In this approach, the internal record layout is modified by moving
the key to the beginning or end of each record, depending on processor endianness.3 Upon
completion of the main sort algorithm, this process is reversed in a manner that restores the
original field order.

Figure 5: Monotone mapping between dictionary and index for (a) vessel name and (b)
vessel length (shown in reverse order). Such mappings preserve lexicographic order that is
required by sorting operations.

The foregoing optimization readily accommodates multi-column sorting4 by suitable rear-
rangement of internal record structure that places sort fields in descending order of signif-

2This implementation is not cache optimized and cannot be parallelized.
3The SPARC and x86-64 architectures are big and little endian, respectively.
4E.g. a personnel database sorted first by surname and then by given name.

10 DRDC Atlantic TM 2013-211

icance. As the resultant integer comparisons may span multiple fields, the sort direction
(ascending or descending) must be uniform across keys, a requirement that may be satis-
fied by replacing fields to be sorted in the (arbitrarily chosen) contrary direction by their
two’s complements. This process is illustrated in Fig. 6 and summarized in pseudocode in
Algorithm 1.

DRDC Atlantic TM 2013-211 11

Data: DataArray,
SortFields = {First Column, Second Column, ...},
SortFieldsDirection = {ASC/DESC, ASC/DESC, ...}

Result: DataArray (sorted)
Initialization;
/* Step 1: Process data to allow native comparison */
for i ← 1 to length(DataArray) do

tmp[]← ExpandOneArrayElement(DataArray[i]);
for j ← 1 to numColumns do

tmp2[j]← tmp[SortFields[j]];
if SortFieldsDirection[j] = DESC then

tmp2[j]← Invert(tmp2[j])
end

end

DataArray[i]← CompressOneArrayElement(tmp2[]);
end

/* Step 2: Build heap with in-place swaps */
/* Smallest element on top */
BuildHeap;
for i ← length(DataArray) to 2 step -1 do

/* Swap top of heap with element at bottom of list */
Swap(DataArray[0], DataArray[i]);
RepairHeap;

end

/* Step 3: Restore data to original state */
/* (undo step 2) */
for i ← 1 to length(DataArray) do

tmp[]← ExpandOneArrayElement(DataArray[i]);
for j ← 1 to numColumns do

tmp2[SortFields[j]]← tmp[j];
if SortFieldsDirection[SortFields[j]] = DESC then

tmp2[SortFields[j]]← Invert(tmp2[SortFields[j]])
end

end

DataArray[i]← CompressOneArrayElement(tmp2[]);
end

Algorithm 1: In-place heapsort for compressed data

12 DRDC Atlantic TM 2013-211

Figure 6: Manipulation of data prior sort, where MSB and LSB denote most and least
significant bits, respectively. In this case, data will be sorted in the order of B, C (in reverse),
and then A. Note that (C ≡ 26 −C) is the two’s complement of C. Upon completion of the
sort, data is restored to its original form.

3.5 Geographical Extensions
A frequent task in MDA involves categorizing a set of geographic locations, such as those
attributed to contacts, based on whether they fall within a predefined area of interest. In
this context, geographical regions may be specified in terms of a circumscribing path de-
fined by a series of waypoints (latitude-longitude pairs). For small regions on the earth’s
surface, this problem may be approximated by way of a bounding polygon defined in a two-
dimensional Cartesian coordinate system. However, for larger regions and/or those near the
Earth’s poles, this approximation can become grossly inaccurate. In this case, it is preferred
to use spherical polygons defined on the surface of a sphere (the Earth). The curvilinear
segments connecting way points are thus segments of great-circle arcs (geodesics). While
contributing to the algorithmic complexity, this approach ensures accuracy for problems
defined by any spherical polygon at minimal cost in execution time. As in the case with
their two-dimensional counterparts, spherical polygons may be decomposed into a set of
non-overlapping triangles. Determining whether a geographic location falls within an n-
point spherical polygon thus simplifies to testing for inclusion in n spherical triangles. The
steps involved in triangle decomposition and inclusion testing are briefly described here.

In what follows, analysis can be simplified by expressing a given geographical coordinate

DRDC Atlantic TM 2013-211 13

as the unit vector
âx = cosθsinφ

ây = cosθcosφ

âz = sinθ

(1)

where φ and θ are the point’s latitude and longitude, respectively (Fig. 7). In turn, two such
vectors may be used to define a geodesic arc (Fig. 8), where α < π is assumed hereafter. A
pair of arcs given by the unit vector pairs (â1, â2) and (b̂1, b̂2) may be tested for intersection
by solving the linear system

βâ1 + γ â2 +δb̂1 + εb̂2 (2)

for β, γ, δ, and ε. As this system is underdetermined, ε may be set to one, and the remaining
unknowns may be recovered as

⎡
⎢⎢⎢⎣

β

γ

δ

⎤
⎥⎥⎥⎦=

[
â1 â2 b̂1

]−1
b̂2 . (3)

Figure 7: Definition of geographical unit vector.

When the solution of (3) lies in octant I of R3 (all entries are positive), the two great-circle
arcs intersect at the point given by

âintersection = δb̂1 + b̂2 (4)

The following theorem states the conditions under which a spherical polygon allows a
decomposition into spherical triangles.

14 DRDC Atlantic TM 2013-211

Figure 8: An arc on the surface of the earth defined by two unit vectors, â1 and â2.

Theorem 3.1. Let P be a spherical polygon on a unit sphere S each of whose edges have
length strictly less than π. If a side of P does not contain a great circle, then that side has
a spherical triangulation [6].

Proof. See [7].

The foregoing theorem ensures that a triangulation may always be found but does not
prescribe the means for doing so. Nonetheless a procedure (Algorithm 2) may be derived
by way of ‘ear clipping’, a process that iteratively cleaves a single triangle from the polygon
until triangulation is complete.

Each member of the resulting set of spherical triangles is defined by its vertices, which may
be expressed as the triplet of unit vectors (̂t1, t̂2, t̂3). In a manner similar to testing for the
intersection of two arcs, inclusion of a geographic coordinate (p̂) in a spherical triangle T
may be tested by solving

v =
[
t̂1 t̂2 t̂3

]−1
p̂ . (5)

Elementary geometry may be used to show that p̂ falls within T when the solution lies in
the first octant of R3.

The software’s geographical extension allows coordinates, arcs, spherical triangles, and
spherical polygons to be defined, and arbitrary coordinates to be tested for inclusion in
polygon-defined regions. As the matrix inversion is the most computationally expensive
calculation in solving (5), this step is performed at the time of triangle definition, and the
result is stored within the triangle object.

DRDC Atlantic TM 2013-211 15

Data: WaypointArray
Result: SphericalTriangleArray
Initialization;
/* Step 1: Generate unit vectors from lat/long */
for i ← 1 to length(WaypointArray) do

UnitVectorArray[i]← ComputeUnitVector(WaypointArray[i]);
end

/* Step 2: Construct geodesics from unit vectors */
for i ← 1 to length(UnitVectorArray) do

len ← length(UnitVectorArray);
GeodesicArray[i]←

ConstructGeodesic(UnitVectorArray[i], UnitVectorArray[(i+1) mod len]);
end

/* Step 3: Ensure no intersection of geodesics */
/* (ensure a simple spherical polygon) */
for i ← 1 to length(GeodesicArray) do

for j ← 1 to length(GeodesicArray) do

if i �= j and Intersect(GeodesicArray[i], GeodesicArray[j]) then
TerminateWithError;

end

end

end

Algorithm 2: Triangulation of spherical polygon (part 1 of 2)

16 DRDC Atlantic TM 2013-211

/* Step 4: Triangulate polygon defined by waypoints */
tmpUVArray[]←UnitVectorArray[];
while length(tmpUVArray)> 3 do

for i ← 1 to length(tmpUVArray) do
len ← length(tmpUVArray);
tmp ← ConstructGeodesic(tmpUVArray[i], tmpUVArray[(i+2) mod len]);
f ound ← false;
for j ← 1 to length(GeodesicArray) do

if Intersect(tmp, GeodesicArray[j]) then
f ound ← true;
break;

end

end

if not f ound then
f irst ← tmpUVArray[i];
second ← tmpUVArray[(i+1) mod len];
third ← tmpUVArray[(i+2) mod len];
tmpTriangle ← ConstructTriangle(f irst,second, third);
SphericalTriangleArray[].AddNew(tmpTriangle);
tmpUVArray.Delete(second);
break;

end

end

end

Algorithm 2: Triangulation of spherical polygon (part 2 of 2)

DRDC Atlantic TM 2013-211 17

4 Application of Software to Data from
Global Position Warehouse

A preliminary evaluation of the algorithm was undertaken by analyzing 200 million con-
tact records from the unclassified Global Positional Warehouse (obtained from N6, MAR-
LANT, and spanning approximately 5 years) using a Dell Precision M4600 laptop com-
puter. Records were decimated so as to contain only contact position, time and date,
thereby reducing memory requirements to 2.8 GB. A dual-threaded client program was
written to classify contacts based on the ocean of origin (Atlantic, Pacific, Arctic, South-
ern, Indian, or none). The program employed the geographical extensions derived in §3.5
using hand-drawn spherical polygons to represent each ocean (Table 2).

The results of this analysis are shown in Fig. 9. Only half of the records originate in
one of the five polygons, likely because the conventional definitions of the world’s oceans
(used to prepare Table 2) exclude many coastal regions of high vessel traffic and mooring,
particularly in Asia and Europe. Of striking curiosity is the seemingly large proportion of
contacts originating from the Arctic and Southern oceans. One conceivable explanation (to
be confirmed with follow-on analysis) draws on the nature of satellite AIS reception, which
is broken by periods of non-access when transmitted messages are lost. These periods are at
a minimum at the poles and increase as latitudes approach the equator, a phenomenon that
results from the polar orbits of AIS satellites. In view of the fact that AIS reports constitute
the overwhelming majority of contacts in GPW, and because satellite reception serves as
the primary means by which AIS messages are received over open ocean, it is plausible
that the large number of contacts at high and low latitudes reflect the comparatively low
message-loss rate in these regions.

The complete analysis (that involved 200 million decompressions, and one billion polygon-
inclusion tests) required approximately one minute and forty seconds to complete, yielding
a processing speed of ∼1 million records per second. These results suggest that analysis on
tens of billions of records is very feasible on computers equipped with adequate memory.

18 DRDC Atlantic TM 2013-211

Figure 9: Contacts originating from each of the world’s oceans. The number of contacts
originating from the Atlantic, Arctic, Pacific, Southern, and Indian oceans are (in millions)
55.2, 4.9, 44.2, 0.4, and 14.6, respectively.

DRDC Atlantic TM 2013-211 19

Table 2: Waypoints (in degrees latitude and longitude) defining ocean boundaries. As there
exists no consensus on the extent of the Arctic ocean, a simplified definition (similar to that
of the Southern ocean) was used.

Waypoint # Atlantic Pacific Arctic Southern Indian

1 (-60.0, 25.9) (-59.5, -72.4) (65.0, 0.0) (-60.0, 0.0) (-60.0, 146.5)
2 (-33.8, 24.1) (-25.2, -65.6) (65.0, 20.0) (-60.0, 20.0) (-43.4, 146.4)
3 (-13.9, 15.0) (1.4, -73.1) (65.0, 40.0) (-60.0, 40.0) (-34.6, 116.0)
4 (5.8, -11.2) (9.1, -78.6) (65.0, 60.0) (-60.0, 60.0) (-24.9, 115.1)
5 (22.8, -13.6) (8.2, -81.1) (65.0, 80.0) (-60.0, 80.0) (-16.5, 126.7)
6 (33.7, -4.2) (14.4, -90.4) (65.0, 100.0) (-60.0, 100.0) (-10.1, 120.7)
7 (48.1, 0.4) (29.9, -115.1) (65.0, 120.0) (-60.0, 120.0) (-6.1, 103.4)
8 (53.1, -9.3) (47.0, -123.0) (65.0, 140.0) (-60.0, 140.0) (4.8, 94.7)
9 (63.3, -13.8) (59.9, -138.2) (65.0, 160.0) (-60.0, 160.0) (7.1, 82.8)
10 (64.4, -22.3) (54.2, -164.7) (65.0, 180.0) (-60.0, 180.0) (-0.8, 72.9)
11 (64.1, -40.7) (51.9, 178.9) (65.0, 200.0) (-60.0, 200.0) (11.1, 51.2)
12 (61.2, -44.0) (56.2, 164.0) (65.0, 220.0) (-60.0, 220.0) (-5.0, 38.1)
13 (60.1, -64.7) (44.1, 149.4) (65.0, 240.0) (-60.0, 240.0) (-33.8, 24.1)
14 (51.6, -63.8) (30.4, 132.2) (65.0, 260.0) (-60.0, 260.0) (-60.0, 25.9)
15 (48.9, -55.0) (21.7, 122.2) (65.0, 280.0) (-60.0, 280.0) (-60.0, 45.9)
16 (44.6, -69.6) (0.8, 132.3) (65.0, 300.0) (-60.0, 300.0) (-60.0, 65.9)
17 (32.9, -82.9) (-12.5, 152.2) (65.0, 320.0) (-60.0, 320.0) (-60.0, 85.9)
18 (27.3, -81.4) (-49.1, 145.0) (65.0, 340.0) (-60.0, 340.0) (-60.0, 105.9)
19 (24.6, -72.1) (-60.5, 147.1) – – (-60.0, 125.9)
20 (17.8, -61.4) – – – –
21 (8.8, -60.6) – – – –
22 (-9.7, -40.7) – – – –
23 (-30.2, -53.6) – – – –
24 (-60.0, -72.4) – – – –
25 (-60.0, -50.0) – – – –
26 (-60.0, -30.0) – – – –
27 (-60.0, -10.0) – – – –
28 (-60.0, 10.0) – – – –

20 DRDC Atlantic TM 2013-211

5 Conclusion

The present work developed an in-memory database system that allows efficient statisti-
cal calculations on extremely large sets of maritime data. Processing large data sets typi-
cally entails querying relational databases, often requiring users to carefully design analysis
and/or apply advanced programming practices to avoid the significant latencies that result
from non-sequential disk access. Through bitmap data storage, dictionary compression,
and further measures that reduce redundancy in maritime data, the software enables maxi-
mum use of system memory, thereby allowing very large data sets to be processed without
hard-disk access. The capabilities of the system, including geospatial extensions, were
demonstrated through a user-defined program that rapidly computes the ocean of origin
for 200 million contacts in the MARLANT N6 Global Positional Warehouse. The simple
application programming interface will enable users to rapidly develop and execute a va-
riety of statistical/data analyses. The software is expected to facilitate deeper analysis in
maritime domain awareness research and development, operational research and analysis,
and real-time calculations in operational settings.

DRDC Atlantic TM 2013-211 21

This page intentionally left blank.

22 DRDC Atlantic TM 2013-211

References

[1] Y. Gauthier, S. Bourdon, LCdr S. Doré, and V. Fong (2004), Defining and Selecting
Metrics for Intelligence, Surveillance, and Reconnaissance (ISR), DOR(MLA)
Research Note RN 2004/08, Department of National Defence Canada, Operational
Research Division, Directorate of Operational Research (Maritime, Land & Air).

[2] J. Bhattacharya (2010), Rudiments of Computer Science, Academic Publishers.

[3] J. Ziv and A. Lempel (1978), Compression of Individual Sequences via Variable-Rate
Coding, IEEE Transactions on Information Theory, 24(5), 530–536.

[4] N. Josuttis (2012), The C++ Standard Library: A Tutorial and Reference, 2 ed, Upper
Saddle River, New Jersey: Addison-Wesley Professional.

[5] B. Schäling (2011), The Boost C++ Libraries, Laguna Hills, California: XML Press.

[6] J. O’Rourke (2008), Computational Geometry Column 51, ACM SIGACT News,
39(3), 58–62.

[7] U. Brehm and W. Kühnel (1982), Smooth Approximation of Polyhedral Surfaces
Regarding Curvatures, Geometriae Dedicata, 12(4), 435–461.

DRDC Atlantic TM 2013-211 23

This page intentionally left blank.

24 DRDC Atlantic TM 2013-211

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated.)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada –

Atlantic

PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

2a. SECURITY MARKING (Overall security
marking of the document, including
supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED

GOODS)

DMC A

REVIEW: GCEC APRIL 2011

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

In-Memory Analysis of Maritime Data Sets

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Schaub, D. E.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

April 2014

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

36

6b. NO. OF REFS (Total
cited in document.)

7

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence Research and Development Canada – Atlantic

PO Box 1012, Dartmouth NS B2Y 3Z7, Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable
research and development project or grant number under
which the document was written. Please specify whether
project or grant.)

06eo

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC Atlantic TM 2013-211

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U). It is
not necessary to include here abstracts in both official languages unless the text is bilingual.)

The present work develops an in-memory database system that enables efficient statistical cal-

culations on extremely large sets of maritime data. The conventional approach of interspersing

calculations with queries to relational databases incurs significant latencies when data retrieval

patterns induce inefficient hard-disk operations. Mitigation through re-ordering data access is

often feasible but at the expense of significant additional development involving practices in ad-

vanced computer programming. As random access of computer memory is several orders of

magnitude faster than secondary storage access, it is highly desirable—when possible—to store

databases exclusively in memory. Through bit-shifting, dynamic dictionary compression, and

domain-specific data reduction techniques, the present work demonstrates a functional data

storage and processing system capable of storing the entire Global Positional Warehouse in the

memory of a personal computer. Data are made available to the user through a simple appli-

cation programming interface that allows rapid development of efficient, large-scale statistical

analysis programs.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Maritime Situational Awareness (MSA), Maritime Domain Awareness (MDA), Data Analysis,

Database, Operations Centre, Operations Research (OR), Anomaly Detection, Data Mining, Pat-

tern of Life

This page intentionally left blank.

