I * I Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE mv 'DEFENSE
L/

Towards a reasoning framework using
diversity for security

R. Khoury
DRDC Valcartier

Defence Research and Development Canada — Valcartier

Technical Memorandum
DRDC Valcartier TM 2013-220
April 2012

Canadi

Towards a reasoning framework using
diversity for security

R. Khoury
DRDC Valcartier

Defence Research and Development Canada — Valcartier

Technical Memorandum
DRDC Valcartier TM 2013-220
April 2012

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012

Abstract

N-version programming has been shown to be an effective way to increase
the reliability of systems. In this technical report, we examine the possibil-
ity of extending this approach to address security, rather than reliability
concerns. We focus specifically on how to evaluate the efficiency of the use
of diversity for security. We show that while several key elements must
be taken into account when N-version programming is used for security
rather than reliability, it is nonetheless possible to devise a reasoning
framework to evaluate the efficiency of this development paradigm in a
security context. Furthermore, we present preliminary empirical results
indicating that an effective diversity-based intrusion detection scheme is
feasible.

Résumeé

Des études ont démontré que la programmation en n versions est une
méthode efficace pour assurer la fiabilité des systémes. Dans ce rapport
technique, nous examinons la possibilité d’étendre cette approche pour as-
surer la sécurité des systémes, plutot que leur fiabilité. Nous nous concen-
trons particuliérement sur I’évaluation de l'usage de la diversité a des fins
de sécurité. Nous concluons que plusieurs éléments doivent étre pris en
compte quand la diversité est utilisée dans 'optique de la sécurisation
des systémes, plutdét que dans celle d’en assurer la fiabilité. Néanmoins,
il demeure possible de développer un cadre de raisonnement permettant
d’évaluer l'efficacité de ce paradigme dans un contexte de sécurisation
des logiciels. De plus, les résultats initiaux de nos études empiriques in-
diquent qu’il est possible d’utiliser la diversité a des fins de sécurité d’une
maniéere efficace.

DRDC Valcartier TM 2013-220 i

This page intentionally left blank.

DRDC Valcartier TM 2013-220

Executive summary

Towards a reasoning framework using diversity for security

R. Khoury; DRDC Valcartier TM 2013-220; Defence Research and Development
Canada — Valcartier; April 2012.

Background: N-version programming is a software development paradigm
that draws upon the concept of diversity to increase the reliability of soft-
ware. In this technical report, we investigate the possibility of extending
this approach to address security, rather than reliability concerns. We fo-
cus specifically on the way to evaluate the efficiency of using diversity for
security. Furthermore, we conduct an empirical experiment to determine
it diversity is an effective tool for intrusion detection.

Principal results: We find that while several key differences must be
taken into account when N-version programming is used for security
rather than reliability, it is nonetheless possible to devise a reasoning
framework to evaluate the efficiency of this development paradigm in a
security context. Furthermore, we present preliminary empirical results
indicating that an effective diversity-based intrusion detection scheme is
feasible.

Significance of results: Our empirical results argue strongly in favour
of the use of diversity towards the goal of securing software against in-
trusions. Furthermore, our proposed reasoning framework enables system
developers to evaluate the effectiveness of different system architectures
containing diversity, and select the most effective solution for their spe-
cific situation.

DRDC Valcartier TM 2013-220 iii

Future work: The results of the experiment presented in section 4
should be contrasted with those of a similar experiment that uses in-
valid or simulated attack traces rather than normal traces. This will al-
low us to use the reasoning framework exposed in the previous sections
in order to evaluate objectively the efficiency of the approach. Perform-
ing other experiments will allow us to answer more specific questions
about the most effective manner to introduce diversity in software. For
instance, by replicating the experiment in a system in which diversity is
introduced at the operating system layer or at the hardware layer, we
can gain knowledge about the relative benefits of introducing diversity in
different components of a system. Likewise, while we experimented with
execution traces abstracted into system call traces, experimenting with
other abstractions will allow us to determine which abstraction provides
the highest intrusion detection rate while maintaining a low false positive
rate.

iv DRDC Valcartier TM 2013-220

Sommaire

Towards a reasoning framework using diversity for security

R. Khoury ; DRDC Valcartier TM 2013-220 ; Recherche et développement pour
la défense Canada — Valcartier; avril 2012.

Introduction ou contexte : La programmation en N-versions (N-version
programming) est un paradigme de programmation qui s’appuie sur le
concept de diversité pour assurer la fiabilité des logiciels. Dans ce rap-
port technique, nous examinons la possibilité d’étendre cette approche
pour adresser le probléme connexe de la sécurisation des logiciels. Nous
nous concentrons particulierement sur la question d’évaluer l'efficacité
de l'utilisation de la diversité a des fins de sécurité. De plus, nous effec-
tuons une étude empirique afin de déterminer la tfaisabilité de 1'usage de
la diversité comme outil de sécurisation des logiciels.

Résultats : Nous concluons que bien que plusieurs éléments doivent étre
pris en compte quand la diversité est utilisée dans un contexte de sécurité
plutot que dans un contexte de fiabilité, il demeure possible d’élaborer
un cadre de raisonnement permettant d’évaluer l'efficacité d’'une telle
approche. De plus, les résultats de notre étude empirique démontrent la
faisabilité d’une telle approche.

Importance : Nos résultats empiriques militent en faveur de l'usage
de la diversité comme outil pour assurer la sécurisation des logiciels. De
plus, le cadre de raisonnement que nous proposons permet a des dévelop-
peurs d’évaluer l'efficacité de différentes architectures qui incorporent la
diversité et de sélectionner la plus appropriée a chaque situation.

DRDC Valcartier TM 2013-220 v

Perspectives : Les résultats de 'expérience rapportée a la section 4 de-
vraient étre contrastés avec ceux d’une expérience similaire qui utilise des
traces invalides ou des traces d’attaque. Ceci nous permettra d’utiliser le
cadre de raisonnement proposé dans les sections précédentes afin d’évaluer
'efficacité de I'approche. Nous pourrons ensuite répondre a des questions
plus spécifiques sur 'usage de la diversité pour la sécurisation des logiciels
par I'entremise d’autres expériences. Par exemple, en répliquant 'expé-
rience dans un contexte ou la diversité est introduite a un autre niveau du
systéme d’exploitation ou au niveau des composantes physiques, il serait
possible de déterminer a quel niveau il est plus bénéfique d’introduire la
diversité. De la méme maniére, nous avons abstrait les traces d’exécutions
en traces d’appels systémes, mais des expériences subséquentes pourraient
nous indiquer si d’autres abstractions permettent une détection plus fine
des intrusions, avec un plus faible taux de faux positifs.

vi DRDC Valcartier TM 2013-220

Table of contents

Abstract i
Résumé i
Executive summary 11l
SOMMAIre A
Table of contentso vii
List of figures viii
Acknowledgement ix
1 Introduction 1
2 Diversity for security vs Diversity for Reliability 3

2.1 General Framework 3

2.2 Multiple Instances L. 10

2.3 System Health and Self Monitoring Execution 11
3 Related Works 13
4 Experimental Results 15
5 Conclusions and Perspectives for Future Work 19
References 21

DRDC Valcartier TM 2013-220 Vi

List of figures

Figure 1: Experimental results 16

Figure 2: Experimental results 17

viii DRDC Valcartier TM 2013-220

Acknowledgement

The author wishes to extend thanks to Mario Couture, Dr. Abdelwahab
Hamou-Lhadj, Robert Charpentier and Dr. Richard Khoury.

DRDC Valcartier TM 2013-220 iX

This page intentionally left blank.

DRDC Valcartier TM 2013-220

1 Introduction

The fields of software reliability and security are closely related and sev-
eral methods simultaneously address both concerns without distinguish-
ing between a malicious and an inadvertent failure. It is thus normal to
ask if the N-version programming paradigm, which was developed to ad-
dress reliability concerns, can likewise be deployed in a security context.
We believe this is possible, but that several key elements must be taken
into account when diversity is introduced in an architecture for security
purposes rather than to increase reliability.

N-version programming |1] is a software development paradigm that draws
upon the concept of diversity to increase the reliability of software. The
guiding principle of this approach is to produce several distinct versions
of a given software, and execute them in parallel with the same inputs. A
discrepancy between the outputs of the various instances is an indication
that at least one instance has malfunctioned. In that case, a single output
value is chosen from the outputs of each program instance by majority
voting. The intuition behind this programming paradigm is that while it
may be impossible to produce a single flawless instance of any complex
system, multiple instances of this system would normally exhibit different
faults.

A key concept in the design of N-version architectures is failure indepen-
dence. Informally, this property describes the behavior of a system for
which the occurrence of a failure in one instance for a given input value
does not provide any information in regard to the probability of failure
of another instance for the same input value. It is from the assumption of
failure independence that we derive the hypothesis that the probability
of coincident failure (i.e. two instances failing on the same input) is very
small and that gains in reliability can be obtained through the use of
N-version programming.

Researchers in security have also shown a great deal of interest in di-
versity, though not in the context of an N-version architecture. Instead,

DRDC Valcartier TM 2013-220 1

research in computer security proceeds from the assumption that if the
program instance of each user differed from that of every other user, an
attack cannot easily be carried over from one system to the next. The at-
tacker will thus be forced to tailor each attack to the system he wishes to
compromise. Furthermore, the added uncertainty about the target system
increases the cost of the attack [2].

In this study, we propose to join together those two strands of research,
and elaborate a N-version architecture for security. The main intuition
underlying such an architecture is that, since attacks must be tailored
to each program instance, if several program instances are executed in
parallel as part of an N-version architecture and an input contains an
attack vector, it is likely that the attack will succeed only on some of the
several program instances. This in turn will cause the executions of the
affected and unaffected instances to diverge observably from one another.
Such a divergence can then serve as the basis for intrusion detection and
reaction.

In this technical report, we show that such an approach can be used effec-
tively to increase the security of systems and develop a general framework
to study its effectiveness. Furthermore, we contrast the use of diversity
for security purposes to that of diversity for reliability and highlight a
number of key differences that must be taken into consideration in the
former case.

The remainder of this report is organized as follows. In Section 2 we
contrast the proposed use of N-version programming for security with
its more common use for reliability and highlight the relevant differences
between the two approaches. Section 3 reviews the literature on both top-
ics while section 4 presents the empirical tests conducted with diversity
and approach the results. Concluding remarks and perspectives for future
work are presented in Section 5.

2 DRDC Valcartier TM 2013-220

2 Diversity for security vs Diversity for

Reliability

2.1 General Framework

We propose the following framework to study and reflect about the use
of diversity for security. We start with a population P of programs, that
represents a hypothetical set of all possible programs able to solve a given
problem. We let m range over possible programs.

P = {7T1,7T2,7T3...}

These programs take their input from a set of possible input values X.
Each input represents the entire interaction a user has with a given pro-
gram during a session. We let & range over the possible input values.

X = {331, o, 5133}

Some inputs may be malicious, meaning that they hide exploits that
bring the system in a state that violates the security policy. For instance,
an input field may contain data triggering a buffer overflow and allowing
code injection to occur. Such input values are said to be invalid. Normal
input values that do not contain an attack, are said to be valid. We write
X, for the set of valid inputs and A&; for that of invalid inputs. Note that
X = &, U A&, and that X, and &} are disjoint.

Let Q() stand for the usage distribution of the values of X'. This distri-
bution naturally affects only valid executions, since an attacker can alter
the distribution of inputs by repeatedly inputting the values he or she
needs in order to alter the system.

In the context of their study of diversity for security, Littlewood et al.|3|
propose a score function v : (P x X) — {1,0}, that indicates whether
or not the execution of a given program for a given value fails. The oc-
currence of such a failure could be immediately observed by inspecting

DRDC Valcartier TM 2013-220 3

the program’s output (for example if the program failed to produce a re-
turn value), or discovered by contrasting this output with that of another
instance. The score function v thus serves as basis for evaluating how re-
liable a given program is and a given diverse architecture containing this
program.

However, when the focus is on security, the program’s output alone does
not provide sufficient information for a meaningful evaluation of the valid-
ity of the input. It is entirely possible for an intruder to alter the execution
in such a way as to violate the security policy while keeping the output
unchanged. Indeed, an attacker who wishes to remain undetected would
favor such a course of action. It follows that a diversity-based framework
whose focus is security rather than reliability, will necessarily rely on a
complete trace of the program’s execution, rather than simply on the
output, as the basis for its evaluation of the input. This is the first main
difference between using diversity for reliability and using it for security.

Difference 1: Diwversity for reliability is implemented by comparing the
outputs of multiple instances. When diversity is used for security pur-
poses however, it 1s necessary to examine execution traces.

An execution trace is a sequence of atomic actions, performed by the
target program during its execution and recorded by a reference monitor.
It can hypothetically contain every instruction performed by the target
program, or be focused on a subset of security-relevant actions tailored to
the security policy of interest or to a specific resource whose security we
seek to optimize. Let X stand for the set of all possible execution traces
and let o range over traces.

The trace function v : (P x X') — X thus replaces the score function of
Littlewood et al. This function is given as :

v(m, x) = o where o represents the trace of program 7 on input z. (1)

Once the system is executed on multiple instances, it is necessary to

4 DRDC Valcartier TM 2013-220

contrast the execution traces in order to detect a possible intrusion. Let
o1 = v(m,x) and 09 = v(ma,) be the execution traces of programs 7y
and 7y respectively over the same input value z. Let the correlation func-
tion corr(oy, oy) stand for the degree of similarity observed between these
two executions. This correlation is expressed by way of a value between
0 and 1, where 1 indicates identical sequences, and 0 identifies sequences
that seem completely unrelated. Several metrics could be used to compute
this value. A natural choice is the Levenshtein distance [4], a measure of
the number of insertions, deletions and replacements needed to turn one
sequence into the other. However, other metrics specifically designed for
the problem of detecting divergence between program executions could
also be considered.

corr(o1,09) = The degree of similarity between executions o1 and o.
(2)

The central idea that underlies the use of diversity as a defence mecha-
nism is that a given attack may succeed on one system but fail on another.
This in turn will lead to an observable divergence in the execution traces,
allowing the attack to be detected. As discussed above, diversity can be
introduced at various levels, such as memory layout |5], instruction set |6]
or by using two distinct implementations of the same software or operat-
ing system. The success of the approach rests on the capacity to develop
systems that are sufficiently different so that most attacks cannot suc-
ceed on multiple instances. It follows that while developers building a
N-version architecture with the goal of increasing reliability must focus
on minimizing the occurrence of coincident failure, those building such
architectures for security purposes should seek to maximize the dissimi-
larity of internal behavior.

Difference 2: In the context of dwversity for reliability, the design of
an N-version architecture must minimize the occurrence of coincident
failure. Howewver, if the object is security, the design should promote dis-
similarity of behavior.

DRDC Valcartier TM 2013-220 5

This second difference raises several interesting questions related to the
way to maximize the divergence between systems while maintaining com-
mon functionalities between instances, as well as the way to simultane-
ously update both instances so as to preserve their behavioral equivalence.

Pairs of systems naturally differ as to how much similarity they exhibit
while executing normally (i.e. over valid inputs). However, a baseline can
be established by examining a sufficiently large and representative sample
of executions. This yields a distribution 6 as follows:

O(m1,m) = > corr(v(m, x;),v(m, 7;))Q(;) (3)

1

In effect, this distribution expresses the likelihood that when executing a
given input, two executions will differ by a given amount. Note that this
distribution is only computed for valid executions. We expect that an
invalid execution for which the attack succeeds on one instance only, will
contrast with a corresponding valid execution by a higher than average
amount, but at the present time this can only be a conjecture.

Let corr(o1,02) be the level of similarity existing between two trace exe-
cutions o1 and 9. Our goal is to contrast the observed corr(oy, 02) with
the known value of (7, m2) of the program that produced o1 and o9, as
to attempt to determine if the input value z hides an attack. Were we in
possession of statistical data about the relative distribution of valid and
invalid inputs, as well as of data relating to the expected level of corre-
lation between executions of the target programs over invalid inputs, a
statistical analysis could be performed. Such an analysis could return a
probability ¢ indicating that x is malicious with a certain degree of con-
fidence. However, as discussed above, it is not meaningful to compute a
distribution of invalid inputs when reasoning about the possible behavior
of a malicious attacker capable of altering the systems’s inputs. Further-
more, while statistical data could be gathered about systems behavior on
malicious inputs by simulating their execution using test cases of known
attacks, such data may not necessarily be generalized to new or unknown

6 DRDC Valcartier TM 2013-220

attacks. Of particular interest are zero-day exploits that use unknown
vulnerabilities of software.

We propose instead a possibilistic approach. Possibility theory [7], is an
alternative to probability theory to reason about uncertainty. Informally,
a possibility is a value between 0 and 1 that describes the ease with which
an event will occur, or will belong to a set, as opposed to the likelihood
that it will occur, which is expressed as a probability.

A possibilistic analysis would thus indicate how “normal" the level of
observed correlation is and how unusual it would be for a valid input
to result in pair of executions exhibiting this level of correlation. This
information is captured by a possibility function pos whose domain is
the range of possible correlation values and whose image is a possibility
value in the interval [0, 1]. Dubois et al. [8] show how a possibility func-
tion reflecting this value can be computed directly from the probability
density function. The technique they propose can thus be used to derive
a possibility distribution for correlation values. Formally, the possibility
of a correlation u occurring is

pos(u) = / "oy + /f by (4)

where f : [a,ug] — [ug, b] is a function defined s.t. f(u) = mazx{y|0(y) <
0(u)} with the interval [a, b] being the support of 8 (possibility [0, 1]) and
ug being its modal value!.

Once a possibilistic value has been assigned to the correlation between
two sequences, action can be taken based on the environment-specific
tradeoft between security and functionality.

One way to control this tradeoff is to state a threshold «, a level of
divergence below which any pair of executions is deemed suspect.

1. This solution is thus only applicable to the cases where 6 is continuous and monomodal, but
it is reasonable to think that this will usually be the case of any correlation probability density

function.

DRDC Valcartier TM 2013-220 7

(5)

0, otherwise.

19:{1, it o > «;

The choice of the threshold value oo will determine the sensitivity of the
detection. However, in the absence of data about the level of divergence
observable in invalid execution it is not possible to give a numerical value
to our confidence in this judgement.

Once the attack is detected, the system administrator can react, usually
by terminating the execution. In this distinction lies another consequen-
tial difference between using diversity for reliability and using diversity
for security: in the first case, the goal is to maximize the number of input
values for which a correct service is provided, whereas in the latter, the
goal is to weed out and deny service if the input value betrays a malicious
intent on the part of its originator. While information from the unaffected
instance may be used to recover from the attack, it is undesirable to pro-
vide service to a malicious user since doing so betrays information about
the system.

Difference 3: When diversity is implemented with the goal of increasing
reliability, the object is to maximize the number of inputs for which a
service 1s provided. In the case of diversity for security, we seek to weed
out 1nvalid inputs.

This is more than a simple difference in the reaction to the discovery
of a vulnerability and translates into profound changes as to how an
architecture must be evaluated. In particular, it poses a new risk which
does not exist when diversity is implemented for reliability: that of the
occurrence of false positives when two valid executions diverge to the
point that the monitor wrongly marks one of them as being invalid.

Difference 4: The fact that some inputs will not be answered, coupled
with the imperfection present in any security architecture, leads to the
occurrence of false positives.

8 DRDC Valcartier TM 2013-220

The likelihood that a pair of executions will be mistakenly marked as
malicious is a factor of the decision threshold o used to rule out execu-
tions and of the distribution . We write fp(a,8) for the probability of
false positives occurring if the threshold is a set of & and the similarity
distribution between valid executions is 6.

This risk is expressed by the following equation:

fpla,0) = / " B(u)du (6)

where y is the maximal value for which pos(y) < a.

The occurrence of false positives can at first sight be thought of as anal-
ogous to the occurrence of coincident failures in the diversity for reli-
ability context and could thus presumably be studied using the same
analytical tools that have already been developed for the latter case.
This analogy does however obscure two critical differences. First, coinci-
dent failures are the result of unwanted commonalties between different
instances, and various strategies are employed to minimize and eliminate
these commonalities (see for e.g. |9, 10]). False-positives, however, result
from the desired divergence between instances and we believe that, in
general, the approach grows stronger as these differences increase. Future
research should determine if there exists an optimal amount of divergence
that provides the best ratio of attack detection to false-positives for a
given threshold. In the meantime, abstraction and correlation algorithms
should be developed to discern the divergence between executions associ-
ated with successtul intrusion from those which occur naturally because
of differences in the underlying programs.

Secondly, the modeling of false positives also differs from that of coinci-
dent failures in that the latter relies upon a distribution over all inputs to
assess the rate of coincident failures and contrasts it against that of faults
which are successfully tolerated by the N-version architecture. However,

DRDC Valcartier TM 2013-220 9

while a distribution of walid inputs can be constructed and the rate of
false positives estimated from it, we can never hope to compute a distri-
bution that includes invalid inputs, since the occurrence of invalid inputs
implies the presence of an attacker capable of querying the system with
inputs of his choice calibrated for the purpose of his attack. The best
we can do in this case is thus to estimate the rate of occurrence of false
positives of the system when it is not under attack.

It does seem intuitive that as instances grow more different, so does the
benefit of using diversity for security. Indeed, it is more likely that an
attack will succeed on only one of two instances if they are very different
from one another than if they are alike. However, as executions grow
more divergent it will also become more difficult to identify similarities
and correlations between valid executions. This in turn could lead to an
increase in the rate of false positives. It follows that unless the increase in
divergence between instances is matched by a corresponding increase in
the sophistication of the correlation algorithm, benefits by increasing the
divergence between instances will be offset by an increase in the number
of false positives

2.2 Multiple Instances

Research on diversity for reliability shows that the overall reliability of
the system can be improved (up to a point) by increasing the number
of instances present in a N-version architecture (i.e. by increasing the
value of V) [11]. This is a strategy designed to cope with the unavoid-
able presence of coincident failures: even if two or more instances fail on
the same input, other instances running concurrently may succeed. Such
multi-versions architectures take two forms: one-out-of-N systems, which
succeeds if at least one instance succeeds, and majority voting systems
(or m-out-of-N systems, with m = [N/2]) that succeeds if a majority of
the composing instances succeed.

The previous idea can also be carried over to the context of diversity for

10 DRDC Valcartier TM 2013-220

security. Running multiple instances will increase the odds that a malice
will be detected by making it harder on the attacker to devise an input
that can compromise every instance simultaneously. A final key difference
between diversity for reliability and diversity for security is that, in the
latter case, rather than a rigid choice between one-out-of-N or majority
voting a diverse architecture can be devised for any m < N, indicating
that this attack is deemed to have occurred if at least m instances diverge
from the others. As the number of instances deviating from the others
increases, the input can be treated as malicious with an increasing level
of confidence.

Difference 5: One-out-of-N and majority voting are no longer the only
possible voting paradigms. Instead, a threshold dictating how many in-
stances can deviate from the others before the input is treated as mali-
ctous must be chosen in such a way as to balance security concerns with
the need to minimize false-positives.

However, comparing several instances raises a number of difficulties. In
particular, the system becomes subject to a variation of the consistent
comparison problem raised in [12]|. Consider a system with three in-
stances, m,mo and g which, for a given input value x, produce three
traces o1, 09 and o3 respectively. Three pairs of comparisons are possible
between these three sequences, namely o1 with 09, 01 with o3 and o9 with
03. Let p1, p2 and p3 be the outputs of these three comparisons and let ¢
be the threshold by which we consider that an instance has diverged from
the other (and thus that the input is malicious). It may become possible
that |p1 — p2| < 1, |p2 — p3| < ¥ but that |p1 — p3| > 1.

2.3 System Health and Self Monitoring Execution

In addition to contrasting the various executions between themselves to
detect a violation, each execution can be contrasted with a model of the
system’s desired behavior to detect if the ongoing execution violates the

DRDC Valcartier TM 2013-220 11

system’s security property. This would have several benefits: first, it would
reduce the number of false positives by giving an indication as to whether
or not a deviation observed between two execution rallies does correspond
to a violation of the security policy. Secondly, it would indicate which of
two diverging instances is the one for which the attack has succeeded,
thus allowing us to isolate the compromised system and use the healthy
one for recovery.

The execution monitoring, like the correlation analysis, would return a
probability that the execution under consideration is malicious. This is
given by the function eval : 3 — [0, 1].

eval(o) = p the probability that ¢ is malicious. (7)

The evaluation given by eval is then contrasted with that of the corre-
lation analysis. We can state with greater confidence that two diverging
executions hide an attack if they not only diverge, but if they also have a
high probability of maliciousness according to eval. Once again, the deci-
sion as to whether or not a specific execution is to be treated as malicious
will be based on a tradeoft between security concerns and the desire to
minimize the rate of false positives.

In the presence of a selt-diagnostic for each execution sequence, the equa-
tions for detecting an attack and to compute the rate of false positives
can be stated in a variety of ways, depending on how much weight is
given to each type of judgement. An elegant solution is to merge the two
judgements of the eval functions into a single value that gives the prob-
ability that at least one of the two instances is malicious (according to
the self-diagnostic) and then adjust the threshold according to this value.
The detection should be more sensitive to divergence between the two in-
stances if the self-diagnostic raises alarms, and conversely more tolerant
if no abnormal behavior is detected in either instance.

12 DRDC Valcartier TM 2013-220

3 Related Works

The N-programming development paradigm [1], also called design diver-
sity, grew from the longstanding practice of using multiple redundant
components to increase the reliability of safety-critical hardware. This
practice has a rich literature dating back to the late 70s, that includes
various experiments conducted in academic settings to evaluate the feasi-
bility and efficiency of the approach as well as theoretical enquiries aimed
at modeling and reasoning about the behavior of N-version systems.

The latter studies begin with Eckhardt et al. [13], who proposed an ini-
tial model to study the impact of coincident failures on the effectiveness
of using diversity for security. The authors modeled the occurrence of
such failures by an intensity function that represents the propensity of
programmers to introduce faults in such a way that failure does not oc-
cur independently on some inputs. Building upon their work, Littlewood
et al. [3] proposed an alternative model, that includes an important di-
mension of methodology, to model the impact of different development
strategies on the distribution of coincident failures in software. Both mod-
els are contrasted and discussed in [14|. A final approach is proposed by
Partridge et al. [15] to model the distinction between the different ways
several instances may fail, even if they fail over the same inputs.

The question of using N-version programming for security, rather than for
reliability, was raised in a number of studies. Littlewood et al. examined
the question in [16]. In [17], Bessani, et al. argued in favor of using diver-
sity for security on the basis of the recorded distribution of vulnerabilities
in several operating systems. In [18], the various layers where diversity
can be inserted are examined from the perspective of maximizing secu-
rity. The use of design diversity to protect against computer viruses were
examined in [19]. The use of diversity for security, termed automated di-
versity, was first suggested by Forrest et al. in |2|, where it was observed
that the homogeneity of computer systems constitutes an important vul-
nerability. Drawing on an analogy to biological systems, Forrest et al.
argued that the robustness of systems could be improved if the program

DRDC Valcartier TM 2013-220 13

instance used by each user differed slightly from that of every other user.
As a case study, they proposed a method for stack layout randomization
and showed that it is effective at disrupting a buffer overflow attack.

Following on this line of enquiry, several studies have proposed intro-
ducing diversity at different layers of software systems. These include
the instruction set |6, 20, 21|, address space |5, 22|, data space |23|, and
system calls [24]. A survey of these techniques is provided in |25].

14 DRDC Valcartier TM 2013-220

4 Experimental Results

In the preceding sections, we have shown how diversity could be used to
ensure intrusion detection. In these experiments this section, we present
the results of initial experiments to implement these ideas. In two servers
running the same OS but different COTS html servers execute the same
requests in parallel. The output of both servers is then contrasted to de-
tect a higher than usual divergence between their behaviors. The intuition
behind this approach is that it is unlikely that an attacker will compro-
mise both systems simultaneously. Furthermore, even if that were the
case, the attack would reveal itself differently in the two systems. Thus,
if an attack is present in one of the two executions, this fact will be re-
vealed by a higher than usual divergence between the observed behaviors
of the two systems.

The first objective of the experiment is to observe and quantify such di-
vergences, and then use it as basis to detect intrusions. A second objective
is to be able to “translate” between systems, in much the same way that
translation can be performed automatically between natural languages.
An intrusion or abnormal behavior would then be seen as a translation
erTor.

The experiment was conducted using two COTS HTML servers that were
executed in parallel on two identical machines, running the same OS.
This allows that diversity be introduced only at the software layer. Both
systems were simultaneously fed the same set of inputs, which consisted in
208 requests for locally hosted html pages. The execution of both systems
was monitored using the LTTNg monitoring framework.

LTTNg is able to capture a wide variety of information about the ongoing
execution. In order to make our initial investigation more tractable, we
chose to abstract the execution traces into traces of system calls. This
abstraction is in line with other similar studies on intrusion detection,
that also focused on system call traces [26]. In these studies execution
trace was on average 40 system call long.

DRDC Valcartier TM 2013-220 15

In what follows, we will refer to the two systems (hardware, OS and
server) as A and B. Since each request is executed simultaneously on
both systems, the data can naturally be aggregated into pairs (a,b) of
sequences, where a is a sequence from A, b is a sequence from B and
both a and b process the same input. It can thus be stated that a is the
corresponding trace to b, and likewise that b is the corresponding trace
to a. The data was further partitioned into a training set of 150 pairs and
a test set of 58 pairs.

For each pair (a,b) in the test set, we identify the sequence b in the
training set that exhibits the lowest edit distance to b, and compare the
corresponding sequence a with a. A high value for the difference between
the edit distance of @ and a and that of the distance between b and V',
can be taken as an indication of an attack. We say that the pair (a, b) is
a match to the pair (a',).

Initial results are shown in figure 1. These results are very encouraging.
As can be seen in the figure, for 53 out of the 58 test sequences the
difference between the edit distance of the observed executions and those
of their matches in the training set was 0. Three other pairs of sequences
exhibited a minimal value for the difference between their edit distance
and that of their match i.e., a distance of 1 or 2. Only two sequences were
outliers, exhibiting a distance of 9 and 11.

60

50

40

3C

20

Figure 1: Experimental results

16 DRDC Valcartier TM 2013-220

These results indicate that whenever the execution is valid, the proposed
intrusion detection method can successfully detect an attack (i.e., the risk
of false negatives is not prohibitively high).

To be sure, our entire data set is made up of sequences that repeat the
same operation, namely accessing an html page upon request. These se-
quences thus exhibit an high degree of similarity and the promising results
reported earlier may have simply reflected this similarity. Put differently,
it may be thought that the high correlation between the edit distances
of matched pairs of sequences reported above does not result from the
successful matching of executions but rather from the fact that all exe-
cutions were alike. To address the issue, we calculated for each pair of
sequence in the test data set, we calculated the average difference in edit
distance between the sequences forming this pair and each other pair of
sequences in the training set. The results are shown in figure 2.

45

40

35

30

25

20

15

10

5 -

0
0 2 4 6 8 10 12 14 16 18 20

Figure 2: Experimental results

This figure shows that the average distance is usually between 6 and 10,
much higher than the results given in figure 1. Indeed, in all cases, the
difference value computed after selecting a match for a test pair was lower
than the average for that pair.

The experiment presented in this section must be extended in several
directions. The next step is to test the approach with attack traces, and

DRDC Valcartier TM 2013-220 17

determine the efficiency of the approach using the reasoning framework
proposed in the previous sections. For lack of time, we were unable to
complete this phase of this experiment. Nonetheless, a survey of the rel-
evant literature indicates that in most cases, an intrusion would incur a
greater amount of disturbance in the sequence in system calls than the
level (often nil) of the difference we observed between the sequences of
each matched pair. It follows that the approach proposed in this section
will likely be able to detect intrusions effectively with a minimal false
positive rate.

In addition, the execution sequences we have used are of limited length,
averaging 40 system calls each, and every sequence captures the behavior
of the system while it is executing the same high-level operation namely
answering an html request. Generalizing the approach to the behavior of a
real system that is operating continuously and executing multiple threads
simultaneously, poses several interesting challenges particularly in regards
to the way to untangled the multiple concurrent higher-level behaviors.
Alternatively, it would also be interesting to use a finer abstraction than a
sequence of system calls. If the intrusion detection mechanism has access
to more information about the ongoing execution, it may be able to catch
more intrusion, but at the risk of a higher rate of false positives.

18 DRDC Valcartier TM 2013-220

5 Conclusions and Perspectives for Future

Work

This report proposes a new approach to computer security and host-based
intrusion detection, namely N-variant programming for security. In this
regard, we combine the complementary fields of design diversity, which is
traditionally used for the purposes of increasing the reliability of systems,
and automated diversity, which is focused on security.

Several questions must still be answered before N-variant programming
can be effectively used for security purposes.

— As discussed above, the central assumption that underlies the use of
diversity for security is that if two systems are sufficiently different,
attacks targeted at one system cannot be carried over to the other
by using the same input values. One of the most pressing topics for
further investigation is to test the validity of this hypothesis. In this
context, it is important to recall that researchers in the field of diversity
for security had assumed that independent development was a sufficient
condition to achieve failure independence, until research by |27| showed
this was not necessarily the case.

— A second assumption often made in this context is that the more dif-
ferent two systems are, the more likely it is that an attack will succeed
on one instance but fail on the other. If this is the case, it becomes
necessary to make a difficult compromise between risking a higher rate
of false positives by increasing the amount of diversity between the pro-
gram instances, or risking a lower detection rate by using more similar
systems. Answering this question may lead to the development of new
metrics to measure the level of divergence between two systems.

— A related problem lies in determining if there are areas of the system
for which a greater benefit is derived by introducing diversity. It may
happen that introducing diversity in a few key aspects of a system is
sufficient to produce two instances for which few attacks can simulta-

DRDC Valcartier TM 2013-220 19

20

neously succeed. Since the cost of building diverse instances may be
prohibitive, targeting the introduction of diversity to a few key subsys-
tems can allow a more cost-effective enforcement.

Another possible avenue of future research is to use multiple correla-
tions between instances. Each correlation would be based on its own
trace abstraction, and focussed on preventing a specific class of attacks
or on protecting a specific key resource. This opens up the possibility
of feedback oriented analysis, where the detection of a possible malice
in one of the sequences triggers more scrutiny for all other traces be-
fore a final decision can be made about the validity of the trace under
observation.

A final ongoing challenge for future research lies in developing trace
analysis and trace abstraction tools that are sufficiently refined to dis-
tinguish an attack occurring in a given execution but not in another,
from the normal divergence present in a pair of homologous execution
traces that are simultaneously executing on diverse systems.

DRDC Valcartier TM 2013-220

References

1]
2]

3]

[4]

5]

Avizienis, A. (1985), The N-Version Approach to Fault-Tolerant
Software, IEEE Trans. Softw. Eng., 11, 1491-1501.

Forrest, S., Somayaji, A., and Ackley, D. H. (1997), Building
Diverse Computer Systems, In Proceedings of the Sixth Workshop
on Hot Topics in Operating Systems, pp. 6772, IEEE Computer
Society Press.

Littlewood, B. and Miller, D. R. (1989), Conceptual Modeling of
Coincident Failures in Multiversion Software, IEEE Trans.
Software Eng., 15(12), 1596-1614.

Levenshtein, V. 1. (1965), Binary Codes Capable of Correcting
Deletions, Insertions and Reversals, Doklady Akademii Nauk SSSR,
163(4), 845-848. Original in Russian — translation in Soviet Physics
Doklady 10(8):707-710, 1966.

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and
Boneh, D. (2004), On the Effectiveness of Address-Space
Randomization, In Pfitzmann, Birgit and Liu, Peng, (Eds.),
Proceedings of CCS 2004, pp. 298-307, ACM Press.

Kc, G. S. (2003), Countering Code-Injection Attacks With
Instruction-Set Randomization, In In Proceedings of the ACM
Computer and Communications Security (CCS) Conference,

pp. 272-280, ACM Press.

Zadeh, L. A. (1999), Fuzzy sets as a basis for a theory of
possibility, Fuzzy Sets Syst., 100, 9-34.

Dubois, Didier, Prade, Henri, and Sandri, Sandra (1993), On
Possibility /Probability Transformations, In Proceedings of Fourth
IFSA Conference, pp. 103-112, Kluwer Academic Publ.

Avizienis, A., Lyu, M. R., and Schutz, W. (1988), In search of
effective diversity: A six-language study of fault-tolerant flight
control software, In Proceedings the IEEE Eighteenth Annual

International Symposium on Fault-Tolerant Computing
(FTCS-18), pp. 15-22.

DRDC Valcartier TM 2013-220 21

|10] Lyu, M. R. and Avizienis, A. (1991), Assuring Design Diversity in
N-Version Software: A Design Paradigm for N-Version

Programming, Dependable Computing and Fault-Tolerant Systems,
6, 197-218.

|11] Eckhardt, D. E. and Lee, L. D. (1985), A Theoretical Basis for the
Analysis of Redundant Software Subject to Coincident Errors,
(Technical Report NASA-TM-8636919850015006) National
Aeronautics and Space Administration (NASA).

|12] Brilliant, S. S.; Knight, J. C.; and Leveson, N. G. (1989), The
consistent comparison problem in N-Version software, IEEE
Transactions on Software Engineering, 15, 1481-1485.

|13] Eckhardt, D.E. and Lee, L.D. (1985), A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coincident Errors,
IEEFE Transactions on Software Engineering, 11, 1511-1517.

|14] Littlewood, B., L., P. Popov, and Strigini (2001), Modeling software
design diversity: a review, ACM Comput. Surv., 33, 177-208.

|15] Partridge, D. and Krzanowski, W. (1997), Distinct Failure
Diversity in Multiversion Software, Technical Report University of
Exeter, U.K.

|16] Littlewood, B. and Strigini, L. (2004), Redundancy and Diversity
in Security, In Computer Security U ESORICS 2004, 9th European
Symposium on Research Computer Security, LNCS 31983,
pp. 423-438, Springer.

|17] Bessani, A. N.; Obelheiro, R. R., Sousa, P., and Gashi, I. (2008),
On the Effects of Diversity on Intrusion Tolerance, (DI/FCUL
TR 08-30) Department of Informatics, University of Lisbon.

|18] Deswarte, Y., Kanoun, K., and Laprie, J.-C. (1998), Diversity
against Accidental and Deliberate Faults, In Computer Security,

Dependability, and Assurance: From Needs to Solutions,
pp. 171-181, IEEE Press.

|19] Joseph, M. K. and Avizienis, A. (1988), A fault tolerance approach
to computer viruses, In Proceedings of the 1988 IEEFE conference

22 DRDC Valcartier TM 2013-220

20]

21

22|

23]

24|

25]

26]

27|

on Security and privacy, SP’88, pp. 52-58, Washington, DC, USA:
IEEE Computer Society.

Barrantes, E.G. and Forrest, S. (2006), Increasing Communications

Security through Protocol Parameter Diversity, In In Proceedings
of the XXXII Latin-American Conference on Informatics (CLEI
2006).

Keromytis, A. D. (2009), Randomized Instruction Sets and
Runtime Environments Past Research and Future Directions, IEEE
Security and Privacy, 7, 18-25.

Xu, J., Kalbarczyk, Z., and Iyer, R. K. (2003), Transparent
Runtime Randomization for Security, Reliable Distributed Systems,
IEEE Symposium on, 0, 260.

Bhatkar, S. and Sekar, R. (2008), Data Space Randomization, In
Detection of Intrusions and Malware, and Vulnerability
Assessment, 5th International Conference, DIMVA 2008, Paris,
France, July 10-11, 2008. Proceedings, Vol. 5137 of Lecture Notes
in Computer Science, pp. 1-22, Springer.

Chew, M. and Song, D. (2002), Mitigating buffer overflows by
operating system randomization, (Technical
Report CMU-CS-02-197) Carnegie Mellon University.

Gherbi, A., Charpentier, R., and Couture, M. (2010), Redundancy
with Diversity Based Software Architectures for the Detection and
Tolerance of Cyber-Attacks, Technical Report DRDC Valcartier.

Gao, D., Reiter, M. K., and Song, D. Xiaodong (2006), Behavioral
Distance Measurement Using Hidden Markov Models, In Zamboni,
Diego and Kriigel, Christopher, (Eds.), RAID, Vol. 4219 of Lecture
Notes in Computer Science, pp. 19-40, Springer.

Knight, J. C. and Leveson, N. G. (1986), An Experimental
Evaluation Of The Assumption Of Independence In Multi-Version

Programming, IEEE Transactions on Software Engineering, 12,
96-1009.

DRDC Valcartier TM 2013-220 23

24

This page intentionally left blank.

DRDC Valcartier TM 2013-220

DOCUMENT CONTROL DATA

(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document. 2a. SECURITY MARKING

Organizations for whom the document was prepared, e.g. Centre sponsoring a

contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada — Valcartier

2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

Towards a reasoning framework using diversity for security

4. AUTHORS (last name, followed by initials — ranks, titles, etc. not to be used)

Khoury, R.

5. DATE OF PUBLICATION

(Month and year of publication of document.)

April 2012

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,

etc.)
42 27

6b. NO. OF REFS
(Total cited in document.)

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development — include address.)

Defence Research and Development Canada — Valcartier

2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2013-220

10b. OTHER DOCUMENT NOC(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement

audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable

that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

N-version programming has been shown to be an effective way to
increase the reliabilityof systems. In this technical report, we examine
the possibility of extending this approach to address security, rather
than reliability concerns. We focus specificallyon how to evaluate
the efficiency of the use of diversity for security. We show that while
several key elements must be taken into account when N-version
programming is used for security rather than reliability, it is
nonetheless possible to devise a reasoning framework to evaluate

the efficiency of this development paradigm in a security context.
Furthermore, we present preliminary empirical results indicating that
an effective diversity-based intrusion detection scheme is feasible.

Des études ont démontré que la programmation en n versions est une
méthode efficacepour assurer la fiabilité des systémes. Dans ce rapport
technique, nous examinons la possibilité d’étendre cette approche
pour as-surer la sécurité des systémes, plutot que leur fiabilité. Nous
nous concen-trons particulierement sur l’évaluation de l'usage de la
diversité a des fins de sécurité. Nous concluons que plusieurs éléments
doivent étre pris en compte quand la diversité est utilisée dans
l'optique de la sécurisation des systéemes, plutdt que dans celle d’en
assurer la fabilité. Néanmoins, il demeure possible de développer un
cadre de raisonnement permettant d’évaluer lefficacité de ce
paradigme dans un contexte de sécurisation des logiciels. De plus, les
résultats initiauxde nos études empiriques in-diquent qu’il est possible
d’utiliserla diversité a des fins de sécurité d’'une maniére efficace.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Computer security

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence Chef de file au Canada en matiére
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

52

DEFENCE ' DEFENSE

v

www.drdc-rddc.gc.ca

