I * I Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE mv '])EFENSE

-

Exploration of collaborative environment
technologies for maritime analysis

Etienne Vachon
Valérie Lavigne
DRDC Valcartier

Defence Research and Development Canada — Valcartier

Technical Memorandum
DRDC Valcartier TM 2011-233
April 2012

Canadi

Exploration of collaborative environment
technologies for maritime analysis

Etienne Vachon
Valérie Lavigne
DRDC Valcartier

Defence Research and Development Canada — Valcartier

Technical Memorandum
DRDC Valcartier TM 2011-233
April 2012

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012

Abstract

The identification and tracking of Vessels of Interest (VOIs) require the collaboration of various
analysts from the federal departments forming the Maritime Security Operations Centers, to collect
and analyze information about this vessel, to understand its intentions and assess if it may represent
a threat. In order to support collaborative work, the Intelligence Laboratory (ILAB) of the
Intelligence and Information (I2) section was equipped with new advanced displays and
interactions devices. For a period of eight months, a team worked to explore how these technologies
could enhance collaborative analysis and shared situation awareness among analysts.

Existing multi-touch frameworks were explored and a multi-touch version of Google Earth was
implemented. It can be used on a multi-touch table and with a wall display using gestures that are
being captured by a Microsoft Kinect sensor. A maritime situation awareness portal including
various VOI analysis tools mock-ups was developed and displayed on the knowledge wall. A
simple application was also developed to display vessel information windows with various
orientations. This exploration of advanced Human-Computer Interaction technologies produced
insights on how to take advantage of these innovations in a maritime surveillance context as well
as in other intelligence domain activities.

Résumé

L’identification et le suivi de navires d’intérét demande la collaboration d’analystes variés
provenant des départements fédéraux formant les Centre des opérations de la stireté maritime afin
de rassembler, interpréter, et présenter autant d’information que possible au sujet du navire, de
comprendre ses intentions et d’évaluer s’il représente une menace. Afin de permettre le travail en
collaboration, le laboratoire du renseignement (ILAB) de la section Renseignement et information
(RI) a fait ’acquisition de nouveaux équipements d’affichage et d’interaction avancés. Pendant une
période de huit mois, une équipe a exploré comment ces technologies pourraient améliorer le travail
d’analyse collaboratif et le partage de la connaissance de la situation entre les analystes.

Les architectures logicielles existantes pour les applications multi-tactiles ont été explorées et une
version multi-tactile de Google Earth a ét¢ implémentée. Elle peut étre utilisée aussi bien sur une
table multi-tactile qu’avec un affichage mural a ’aide de gestes captés par le senseur Kinect de
Microsoft. Un portail d’éveil situationnel maritime incluant différentes maquettes d’outils
d’analyse de navire d’intérét a ét€¢ développé afin d’&tre affiché sur le mur d’écrans. Une application
simple a également été développée pour permettre ’affichage de fenétres d’information sur les
navires qui peuvent étre orientées de différentes manicres. Cette exploration des technologies
avancées d’interaction humain-machine a permis d’acquérir des connaissances sur la fagon
d’utiliser avantageusement ces innovations dans un contexte de surveillance maritime ainsi que
pour d’autres activités dans le domaine du renseignement.

DRDC Valcartier TM 2011-233 i

ii

This page intentionally left blank.

DRDC Valcartier TM 2011-233

Executive summary

Exploration of collaborative environment technologies for
maritime analysis

Etienne Vachon; Valérie Lavigne; DRDC Valcartier TM 2011-233; Defence R&D
Canada — Valcartier; April 2012.

Introduction or background: In 2009, Defence Research and Development Canada (DRDC)
Valcartier initiated the 11hm applied research project entitled “Maritime Domain Analysis through
Collaboration and Interactive Visualization”. The identification and tracking of Vessels of Interest
(VOI) require the collaboration of various analysts from the federal departments forming the
Maritime Security Operations Centers, to collect and analyze information about this vessel, to
understand its intentions and assess if it may represent a threat.

In order to support collaborative work, the Intelligence Laboratory (ILAB) of the Intelligence and
Information (I2) section was equipped with new displays and interactions devices. For a period of
eight months, a team constituted of an intern student and a defence scientist, worked to explore
how these advanced technologies could enhance collaboration and team awareness in the maritime
domain.

Results: The technologies explored within this short-term project included:

— Two different multi-touch tables (Evoluce One and a Displax Overlay Multitouch surface
over a Liquid Crystal Display (LCD) screen);

— A large group display (knowledge wall);
— A gesture input interaction device (Microsoft Kinect sensor);

— SitScape’s web-based software for User Defined Operating Pictures (UDOP).

Multi-touch interaction is making its way into numerous every day devices and offers much more
complexity and flexibility than single touch devices. Although it is spreading and evolving rapidly,
it should be noted that there is not yet a standard way of handling multi-touch gestures. We explored
various frameworks and implemented a multi-touch version of Google Earth that can be used on a
multi-touch table as well as with a wall display using gestures that are being captured by a Microsoft
Kinect sensor. A maritime situation awareness portal including various VOI analysis tools mock-
ups was developed using the SitScape software and displayed on the knowledge wall. A simple
application was also developed to display vessel information windows with various orientations.

Significance: The expected outcome of the project was to assess a number of advanced Human-
Computer Interaction (HCI) technologies with a maritime domain application and gain insight on
how to take advantage of those innovations for maritime analysis as well as for general intelligence
domain activities. It is believed that these advanced interface and interaction devices will be helpful
for collaborative analysis and for sharing situation awareness among a team of analysts. Many
possible ways to enable teamwork were explored and the insight gained will be relevant to many
of the 12 section research projects.

DRDC Valcartier TM 2011-233 il

Future plans: The use of collaborative technologies will be developed further at DRDC Valcartier
within the 11hm applied research project. Future exploration could include tablet and smart phone
devices as well a speech interaction. For future work in multi-touch, the developments of MT4j and
GestureWorks will be monitored as they are regularly updated. Sparsh-UI, on the other hand, is a
project that is currently stalled. Use of gestures to control applications with the Microsoft Kinect
will require more efforts, especially regarding gestures definition.

iv DRDC Valcartier TM 2011-233

Sommaire

Exploration of collaborative environment technologies for
maritime analysis

Etienne Vachon; Valérie Lavigne; DRDC Valcartier TM 2011-233; R & D pour la
défense Canada — Valcartier; avril 2012.

Introduction ou contexte: En 2009, Recherche et développement pour la défense Canada (RDDC)
Valcartier a lancé le projet de recherche appliquée 11hm « Analyse du domaine maritime a 1’aide
de visualisation interactive et de technologies de collaboration ». L’identification et le suivi de
navires d’intérét demande la collaboration des nombreux analystes des différent départements
formant les Centres des opérations de la sliret¢ maritime afin de rassembler, interpréter, et présenter
autant d’information que possible au sujet du navire, de comprendre ses intentions et d’évaluer s’il
représente une menace.

Afin de permettre le travail en collaboration, le laboratoire du renseignement (ILAB) de la section
Renseignement et information (RI) a fait acquisition de nouveaux équipements d’affichage et
d’interaction. Pendant une période de huit mois, une équipe constituée d’un stagiaire et d’une
scientifique de la défense a été formé afin d’explorer comment ces technologies poussées pourraient
améliorer le travail collaboratif et la connaissance de la situation dans le domaine maritime.

Résultats: Les technologies explorées dans le cadre de ce projet a court terme incluaient:

— Deux tables multi-tactiles différentes (Evoluce One et une surface Displax Overlay
Multitouch placée au-dessus d’un écran LCD);

— Un affichage mural;
— Un équipement d’interaction gestuelle (senseur Microsoft Kinect);

— Le logiciel web SitScape’s pour la définition de vues opérationnelles par ’usager.

Les interactions multi-tactiles se multiplient sur des équipements de tous les jours et offrent
beaucoup plus de complexité et de flexibilité que les interactions impliquant un seul contact. Méme
si elles se répandent et évoluent rapidement, il est important de noter qu’une maniére standard de
gérer les interactions multi-tactiles n’est pas encore définic. Nous avons exploré différentes
architecture et implémenté une version multi-tactile de Google Earth qui peut étre utilisée aussi
bien sur une table multi-tactile qu’avec un affichage mural a I’aide de gestes captés par le senseur
Kinect de Microsoft. Un portail d’éveil situationnel maritime incluant différentes maquettes
d’outils d’analyse de navire d’intérét a été développé a I’aide du logiciel SitScape pour étre affiché
sur le mur d’écrans. Une application simple a également été développée pour permettre 1’affichage
de fenétres d’information au sujet des navires qui peuvent étre orientées de différentes manicres.

Importance: Le résultat attendu du projet consistait en I’évaluation de plusieurs technologies
avancées d’interaction humain-machine avec une application maritime afin d’acquérir des
connaissances sur la fagon d’utiliser avantageusement ces innovations pour 1’analyse maritime ainsi
que pour des activités dans le domaine du renseignement en général. Nous croyons que ces
interfaces et moyens d’interaction avancés seront utiles a 1’analyse collaborative en équipe et au

DRDC Valcartier TM 2011-233 v

partage de 1’état de la situation parmi une équipe d’analystes. Plusieurs moyens de permettre le
travail collaboratif en équipe ont ¢été explorés et les connaissances acquises seront pertinentes pour
plusieurs projets de recherche de la section RI.

Perspectives: L’utilisation de technologies collaboratives continuera d’étre étudiée a RDDC
Valcartier dans le cadre du projet de recherche appliquée 11hm. Des travaux d’exploration futurs
pourraient inclure des tablettes et des téléphones intelligents ainsi que de la reconnaissance vocale.
Pour de futurs travaux sur des appareils multi-tactiles, le développement de MT4j et de
GestureWorks sera suivi car ces logiciels sont fréquemment mis a jour. Par contre, Sparsh-UI est
un projet actuellement arrété. L’utilisation de gestes pour le controle d’applications logicielles a
I’aide de la Kinect de Microsoft nécessitera du travail supplémentaire, surtout en ce qui a trait a la
définition de gestes.

vi DRDC Valcartier TM 2011-233

Table of contents

ADSITACE ... oo ettt ettt ettt ettt ae e e e st et se st et e e eas et e teenbees e neanneeeeens i
RESUIME ..o ettt s et eae et et ess e s e e eeae e i
EXECULIVE SUMIMATY ..ot ettt eee e ene e e e e e e e eens iii
SOTMITIAITE ...ttt ettt ettt te et et e e eeaees e et aasees e s e e essees e e e anseessensanseesseesanneanne e v
Table OF COMLEIIES ...ttt ettt ettt ee e ae e s e eeenae s eeneaneas vii
LASE OF fIGUIES ..o et nn X
ACKNOWICAGEIMENLSooiiiiieiieieeeeeee et X
L, IO AU C IO s s e s e e es et 2 en e e anaanesn e asan e snasanassaarsean et aransat st assssassasansassasans 1
LT COMEEXKE ittt ettt ettt ettt e et e et e e e e es e neeese st et anse s s et e e eese e e neanne e 1

1.2 Scope and ODJECLIVESoooveeieieeeie ettt et 1

2 Multi-touch applications developmentccoooiiiiiiiiie e 3
2.1 Maturity of multi-touch gestures, frameworks and protocolscccccoeeeeiennn. 3

2.2 Multi-touch hardware and protoCols.............ccoooviiiiioiioe e 3

2.3 Choosing a multi-touch frameworkccocooiiiiiiii 4
2.3.1 MT4j — Multi-touch for Java™ ... 4

232 GeStUTEWOTKS. ...ttt et 4

2.33 Sparsh-Ul ... e 4

234 Tests and diSCUSSION......c..oouiiuiiiiiiii ettt eee e eea e 4

2.3.5 CONCIUSION -..eiiiiii ittt ettt ee et ees s e 5

2.4 Using Sparsh-Ult 5
2.4.1 Sparsh-ULarchiteCturecc.oooviiiiie e 5

242 DeVICE AAPLET ...ooeeeieeeieeeeeeeee et 6

2421 Evoluce One — TUIOocooiiiiiii e 6

2422 Displax Overlay Multitouch — Window 7 Touch 6

2.43 Sparsh-Ul and Java SWIng/AWT ... 7

2.5 Embedding Swing/AWT applications into JavaFx for rotation windows..................... 9

2.6 Multi-touch Google Earth...........coccooiiiiiiiii e 10
2.6.1 Using Google Earth APT with Javaccocooooiiioiiiee 11

2.6.2 Embedding Google Earth in a Swing/AWT GUL................ccooooiiiieeinn. 12

3 Communication between appliCationsccoooiioiieiieeieieeee et 15
31 ANALYSIS oot eae e ea 15

3.2 DESIGN CROICES......cueieeieeeee ettt e e et e e eae e eneea 15
32.1 Firstproposal - Facade..........c.oooooiiiiioi e 15

322 Second proposal — Mediator..............ccoooiioiiieeieeieeeeeeeceee e 16

323 CONCIUSION ..ottt ettt ee et eeseeen 16

3.3 Solution dESCIIPLION.eoviieieceie ettt et e e ee e eeaeeas 16

DRDC Valcartier TM 2011-233 vii

33,1 Applicability CONEXL........c.ooiiiiiieie e 16

332 Solving the problemcc.oooiiiiiie e 16

4 Extracting vessel iINfOrmationccoooiioiiiiioiicieeeeeeeeeee e 21
4.1 Extracting information from Lloyds and ShipSpottingcccooeieiiieiiieenn. 21

4.2 Display of vessel iInformation...............c..ocooevieiiiiiiiie e 22

5 Use of a large display for situation aWareness..............ccoevveeeveeereeerieeeie e 25
5.1 Mock-up With STESCAPEcvveieiieeeee e 25

5.2 MS Kinect gesture interface with Google Earth on the large display 28

6 Dicussion and recOMMENAALIONScueeuieriiiireeieeiiee ettt ee et eee e e e aeae s aneas 29
T COMCIUSION ...ttt ettt ettt ee e ee et ee e es et e e s e e e seeese s e e e anse s seneannas 31
REICTCICES: zes suemsomesr e i oo rams s et e a2 22 an e et e aaea e et e R 28 e ane e 2R R e st e arnnsa e n e saenasans 33
Annex A ..Implementation eXampleocoooiiiiiiiii e 35
A.1 Code extract from TouchSender.java............cccooooeeeiiiiiiiiececeee e, 35
A.2 Example of implementations of a multi-touch component................ccccoooiiviininnnn.n 35
A3 Example of method implementation using JACOBccoooiiiioiii e 37
A.3.1 Starting Google Earth and getting the IApplicationGE interface.................. 37

A32 Getting another INtErface............oovieiiiiieieeeeeceeee e 37

A.33 Calling a simple “get” methodcoooiiiiiiiii e 38

A4 USIE TNA ettt ettt ettt e st ae st eesees e enne e 38
List of symbols/abbreviations/acronyms/initialiSmsc.ooovveeieeieeieee e 41

viii DRDC Valcartier TM 2011-233

List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Sparsh-UL ATChItECTUTE [4].....cveeeeeeeee e 5
AWT and Swing class hierarchy................c.coooiiiii e 7
AWT and Swing class hierarchy with the addition of a multi-touch overlay. 8

Sequence diagram which shows the process to determine the target component of a
gesture and how the multi-touch event is communicated from the server to this

(o70) 101010) 1<) | AU 9
Multi-touch Google Earth application and gestures...............cccooevveeveeieeicceee e 11
Class diagram of the interface “IApplicationGE”, extract of the earth.idl file. 12
UML representation — Mediator design pattern.c.oooueeeeiioiieeieeeeeeeeeeeeeeeeeee 17
UML representation — Chain of responsibility design pattern.ccooevveeeeennnnn. 18

UML representation — Communication between applications; implemented solution. . 19

Figure 10: Context diagram for the collaborative analysis of a VOI, implying the use of

linked geographical, temporal and abstract visual information, collected and

interpreted by multiple analysts [7]........ocooiiiiiioi e 21
Figure 11: A vessel card in our Lloyds application, showing retrieved information about a

vessel and a photo from the ShipSpotting website.cccoooveiiieiice i 22
Figure 12: Another picture of our Lloyds application, showing the results of a vessel search. 22
Figure 13: Lloyds application embedded in JavaFx as explained in Section 2.5. 23
Figure 14: A picture of the large display and its immediate surroundings in the ILAB. 25
Figure 15: This figure show the Sitscape “Add Content” poOpup.ccveeveevreeeeeee e 26
Figure 16: Example of a maritime portal mock-up built with SitScape involving many

maritime application MOCK-UPS.c..coiiioiieeieeieeeieeeeeeee e 26
Figure 16: Another example of a maritime portal mock-up built with SitScape involving

many maritime application mock-Ups.c.coooiiiiiiiic e 27
Figure 17: Maritime portal on the knowledge wall. ... 27

DRDC Valcartier TM 2011-233 ix

Acknowledgements

The authors wish to thank Denis Gouin from DRDC Valcartier for his invaluable help in
characterizing the collaborative aspect of Vessel of Interest (VOI) analysis. We also are grateful to
Vincent Bergeron for his participation to the brainstorming sessions, his technical help during the
project and his work on the Microsoft Kinect integration. We also want to acknowledge the work
performed by Roger Fortin in setting up the iLab infrastructure. Finally, we thank Frédéric Coté
for his dedicated technical assistance.

X DRDC Valcartier TM 2011-233

1 Introduction

1.1 Context

In 2009, DRDC Valcartier initiated the 11hm applied research project entitled “Maritime Domain
Analysis through Collaboration and Interactive Visualization”. This research project aimed at
exploring and demonstrating how visual analytics and collaborative technologies can enable a client
to:

e rapidly grasp and identify the key information elements;

e gain insight into the information / situation;

e improve the visualization of the recognized maritime picture;
e Dbetter comprehend a situation and how it could develop;

o identify what is not known (data gaps and uncertainty);

e support anomaly detection, alerting and visualization;

e support teamwork.

The identification and tracking of Vessels of Interest (VOIs) is a key activity of the Regional Joint
Operations Centres (RJOCs) and of the Maritime Security Operations Centers (MSOCs). VOIs are
designated by the Department of National Defence (DND), MSOC partners or international
partners such as the US Department of Defense. In Canada, the analysis and management of a VOI
require the collaboration of various analysts from federal departments forming the MSOCs, to
collect and analyze information about this vessel, to understand its intentions and assess if it may
represent a threat. In order to support collaborative work, a collaboration infrastructure has also
been defined and is being implemented.

In order to explore collaborative and advanced human-computer interactions, the Intelligence
Laboratory (ILAB) of the Intelligence and Information (I2) section was equipped with new displays
and interactions devices. For a period of eight months (from January 2011 to August 2011), a team
constituted of an intern student from Ecole des Technologies Supérieures (ETS) and a defence
scientist, worked to explore how these advanced technologies could enhance collaboration and
team awareness in the maritime domain. Another defence scientist and a computer scientist also
contributed to brainstorming sessions.

1.2 Scope and objectives

The scope of the project was defined in such way that it could be achieved by the team within the
period allowed (8 months). The expected outcome of the project was to assess a number of
advanced Human-Computer Interaction (HCI) technologies with a maritime domain application

DRDC Valcartier TM 2011-233 1

and gain insight on how to best take advantage of these innovations for maritime analysis as well
as for general intelligence domain activities.

The technologies explored included:

Two different multi-touch tables;
A large group display (knowledge wall);
A gesture input interaction device (Microsoft Kinect sensor);

SitScape’s web-based User Defined Operating Picture (UDOP).

This document presents the challenges encountered while exploring new display and interaction
technologies as well as the insights gained by experimenting with them. Software considerations
for integrating these devices are explained in this document. Recommendations relative to their use
in the 11hm project and possibly other projects within the I2 Section are also provided.

DRDC Valcartier TM 2011-233

2 Multi-touch applications development

“The use of a multi-touch table environment has much potential for use with visual analytics. The
most exciting prospect is the ability for multiple analysts to simultaneously explore the same
data/information space” [1]. A unique advantage of multi-touch tables is that at all times, all
collaborators have equal opportunity to participate in the analysis — control is neither centralized
nor passed from person to person. Users can gather around the display surface; eye-to-eye
interaction is provided; information is at the users’ fingertips; multi-touch interaction can improve
user efficiency for several tasks; and globally, this can lead to improved shared awareness.

2.1 Maturity of multi-touch gestures, frameworks and
protocols

Multi-touch interaction is fascinating and making its way into numerous every day devices. Single
touch selection has been there for a while and is easy to work with. On the other hand, multi-touch
gestures offer much more complexity and flexibility. Although they are spreading and evolving
rapidly, it should be noted that there is not yet a standard way of handling multi-touch gestures.

Moreover, there is no recognized standard for the gestures themselves. Some gestures such as those
for selection, zooming and rotation have become well accepted, although some variants exist and
other less recognized gestures are emerging. Even when dealing with common gestures, there are
many proposed ways to handle them and different protocols are supported by different devices
making their integration complex.

As technology is moving fast in this domain, it is reasonable to expect that standard Application
Programming Interfaces (APIs) and frameworks will emerge in the next few years, as formalization
efforts are already underway [2]. In the meantime, creating multi-touch applications requires
dealing with various protocols and the best strategy is to try as much as possible to isolate the
applications code from the gesture detection and recognition APIs.

2.2 Multi-touch hardware and protocols

During this project, two multi-touch tables were used. First, we used the Evoluce One table
manufactured by a German company (Evoluce) that can detect more than 20 touches
simultaneously. The Evoluce One table can handle various touch protocol such as TUIO (Tangible
User Interface Objects) and Window 7 Touch. The second device is not directly a multi-touch table,
but a surface that is place over an LCD to give it multi-touch capabilities. This surface is a Displax
Overlay Multitouch and can handle up to four touches simultaneously. This surface works using
the Window 7 Touch protocol. In addition, an experiment was done using the Microsoft Kinect as
detailed in Section 5.2.

The TUIO and Windows 7 Touch protocols. These two protocols are among the most used so far
by multi-touch developers. TUIO is an open framework that defines a common protocol and an
API for tangible surfaces. The TUIO protocol allows the transmission of an abstract description of
interactive surfaces, including touch events and tangible object states [3]. Windows 7 Touch shares

DRDC Valcartier TM 2011-233 3

the same goal as TUIO, however, it is a proprietary protocol and is an integral part of the Windows
environment.

2.3 Choosing a multi-touch framework

The multi-touch framework sought must be highly customizable and easy to use. It should allow
defining custom gestures. It should also be possible, for each component or group of components,
to receive information when gestures are performed and thus, enable them to react accordingly. In
addition, the multi-touch framework must be light and not restrictive. Being multi-platform and
supporting multiple multi-touch protocols (e.g. TUIO, Windows7 Touch) is a plus.

231 MT4j — Multi-touch for Java™

MT4;j is an open source, cross platform Java framework for developing visually rich multi-touch
applications. This framework supports among others, the TUIO protocol and the new Window 7
Touch features. MT4j is built on top of the Processing framework which allows the use of its
features and libraries. The most common multi-touch gestures are already included and can be
registered modularly with any component. MT4; offers software or hardware accelerated graphics
rendering and uses the OpenGL graphics standard and a component-based scene graph, which
allows MT4;j to achieve very good performance on supported platforms.

2.3.2 GestureWorks

GestureWorks is a multi-touch framework developed by Ideum, an Adobe Solution Partner. This
framework can be used with either Adobe Flash™ or Adobe Flex™., Gesture Works uses an open
source gesture library which offers over 200 predefined gestures and allows customization. As the
framework is based on Flash technology, it makes it possible to integrate an application into a web
browser; some demos are available online to demonstrate the concepts.

233 Sparsh-Ul

Sparsh-Ul is an open source multi-touch framework developed by the Iowa State University’s
Virtual Reality Applications Center. This framework, available in Java and C++, has the distinction
of having a client-server architecture where the server is responsible for receiving and processing
touch points and subsequently turning them into gestures and sending them to the client application.
The modular nature of Sparsh-UI architecture allows it to be used with almost any type of device.
It supports all the basic gestures and allows easy implementations of new gestures.

234 Tests and discussion

Each of these frameworks allows the construction of multi-touch applications. However, they all
have their own characteristics, which make them more or less suited to our requirements. Although
GestureWorks seems to be an interesting framework, it has been quickly dismissed because the
trial version entitles only one hour of testing, which is too brief to give a good idea of its abilities.
In fact, one hour barely provided the time to run the demos. This leaves two potential frameworks,
which are open-source and thus have no limitations for testing.

4 DRDC Valcartier TM 2011-233

MT4j comes with a dozen small applications both for demonstrations and examples. It is quite easy
to make some minor changes to these examples. The processing of gestures is consistent with what
is typically found in Java for event handling; that is to say, we register a component so that it
receives one or many gesture type events when they occur, which it processes accordingly. As
previously stated, MT4j is built using the Processing framework and OpenGL. This characteristic
makes it possible to create complex and rich interfaces. However, although this feature is essential
for creating games and interactive applications, it is not necessary for managing applications. The
difficulty created by this architecture greatly increases the complexity of creating an application: it
requires knowledge not only of MT4j, but also about Processing and OpenGL. Furthermore, MT4;j
currently does not have any pre-built graphical components. That means it would require the
programming of all the basic interface components of our interface, and therefore require a
considerable amount of effort and time, even for a simple application.

Sparsh-UI was very easy to learn. It differs from other proposed solutions by offering only the
management of the multi-touch and nothing else which gives us the freedom to choose any GUI
framework. The first step to run Sparsh-UI is to build a bridge, an adapter between the multi-touch
device and the “GestureServer”. By doing so, it is possible to support many, if not all devices with
a fairly minimal effort. Subsequently, the “GestureServer” transforms the received touch-points
into gestures and communicated them to the appropriate graphical components previously
registered as multi-touch listeners. Because of its lighter nature, Sparsh-UI is easy to modify. Its
source code is simple to understand and can be adjusted according to ours needs.

2.3.5 Conclusion

We focused our evaluation on open source multi-touch frameworks. MT4j framework is the most
powerful and complete but because of its architecture complexity, it was set aside. Sparsh-UI is
therefore, the selected framework. The main justification behind this choice is the freedom that this
framework provides for the conception of the user interface since it only deals with multi-touch
points and their transformation into gestures.

2.4 Using Sparsh-Ul

241 Sparsh-Ul architecture
This section is a summary of the “Sparsh Developer’s Guide™ available in one of the Google code

wiki’s page of the project: http://code.google.com/p/sparsh-ui/wiki/SparshUI_Developer_Guide.
See Annex A.1 for a code extract of TouchSender.

P

Architecture Input Device Gesture Server Gesture Adapter Application

Sends the touch point Extracts Gesture Data from Traraforms Gesture Data to Process the events from
co-ordinates to Gesture Server. Point Data and sends to Ges framewark specific Ul Events. Gesture Adapter

ture Adapter

Figure 1: Sparsh-UI Architecture [4].

DRDC Valcartier TM 2011-233 5

1. Input Device represents any touch device used to obtain input from the user. Sparsh-UI is
compatible with all devices through the implementation of an adapter that transforms the
devices touch data to Sparsh-UI personal touch protocol. Device adapter is discussed in section
24.2.

2. Gesture Server extracts the touch data received from the input device and makes this
information available to the Gesture adapter.

3. Gesture Adapter transforms the touch points into gestures events and sends them to the
application.

4. The application receives the gesture events from Gesture Adapter and processes them.

24.2 Device Adapter

The implementation of a device adapter is not a difficult task. The creator of Sparsh-UI provides
an casy to follow tutorial with an example written in C++ (http://code.google.com/p/sparsh-
ui/wiki/SparshUI_Device_Adapter). The following subsection will briefly describe the
particularity of the implementation, in the Java programming language, of two adapters for different
multi-touch devices, one using TUIO and the other using Window7 touch.

24.21 Evoluce One - TUIO

The Evoluce One multi-touch table sends on port 3333 several packets per second compliant to the
TUIO protocol for each contact with the table surface. We can capture those packets using the
libraries “libTUIO” easily found on the Internet. Once a packet is captured, it only remains to
transform it to the Sparsh-UI format and send it to the Gesture Server on port 5945. See annexe A.1
for an example of code sending a touch point.

2422 Displax Overlay Multitouch — Window 7 Touch

The Displax Overlay Multitouch meanwhile offers a bit more of a challenge. Compared to the
TUIO protocol, Window7 Touch requires registering each frame individually with the operating
system. After the application has registered its window, touch messages are forwarded to the
application when an input occurs on the window.

The window registration and messages listening are not yet directly possible in Java. Since the
technology is new, there is nothing in the Java standard library to handle those actions. So, we need
to use native code. However, MT4j, studied previously, has a library that is able to perform those
operations. As the project is open source, it is thus possible to use the library and associated source
code to get the touch points. Unlike TUIO, the coordinates of the touch point are not the coordinates
of the touch on the screen, but the coordinates of the touch within the window. At this stage, it is
necessary that all the protocols provide the same data. The coordinates of the window on the screen
are added, which gives the global position of the touch point. Once done, we can send them to the
server the same way we did with the Evoluce One and the TUIO protocol.

6 DRDC Valcartier TM 2011-233

243 Sparsh-Ul and Java Swing/AWT

The Abstract Window Toolkit (AWT) is Java's original platform-independent GUI toolkit. Swing
is based on AWT and was developed to answer some issues encountered with its predecessor. In
order to facilitate the integration of multi-touch and to mimic as much as possible the behaviour of
AWT and Swing, an overlay was built on Swing and AWT.

Figure 2 provides an overview of the Swing and AWT architectures. Figure 3 also represents an
overview of this architecture, but with the addition of a multi-touch overlay. These two figures
allow us to see that the multi-touch layer is inserted into what already exists without messing up
the existing structure.

[ava.lang.]
Object
AWT fiava.awt] SWING
Component
Y
I
[ieva.awt.]
[AWT Companents]
[lawa.awt
Caontainer
f
[1
[iava.awt.] [[awax.swing.]
[AWT Containers] JComponent
r T
[javax.swing.]
[Swing components)
[lavaawt] | [[avax.swing)
Window JWindow

Figure 2: AWT and Swing class hierarchy.

DRDC Valcartier TM 2011-233 7

<<interface=>
MTComponent

+addMultitouchListener (|: MultitouchListener)
+removeMultitouchLister(]: MultitouchLister)

+getGroupId(): int
+getallowedGestures(): List<Integer =
+getlocationOnScreen(): Point
+getComponentWidth(): int
+getComponentHeight(): int

+getMultitouchLister(): MultitouchLister[] "<]‘ b

MTClient

+getInstance(): MTClient

+setCreator(creator: MTClientCreator)
+addComponent{component: MTComponent)
+removeComponent(component: MTComponent)
+getID(): int

+getAllowedGestures{grouplD: int): List<Integer =
+getGroupID{ocation: Location): int
+processEvent(groupID: int, event: Event)

AWT Components Component
; OR
:___ MT Components Container
bt e ! OR

Swing components JComponent

Figure 3: AWT and Swing class hierarchy with the addition of a multi-touch overlay.

The creation of a Swing/AWT multi-touch interface is almost the same as the creation of a regular
interface. For each component needing multi-touch functionality, we need to create a class which
implements the MTComponent interface and inherits the class that would normally be used to
achieve the same interface in a normal situation without multi-touch. Once this is done, the
component is usable in the same way as a regular Swing/AWT component with the exception that

1t can receive multi-touch events.

Some “MT Components” were made during this project and should be reusable independently of
the context (see Annex A.2 for an example). In the future, if all the AWT and Swing components
were made through different projects, we could have a great collection of easy-to-use multi-touch

components.

DRDC Valcartier TM 2011-233

sd Determine the target of a gesture and communication of this envent)

Gesture Server/Adapter MTClient MTComponent

loop) |

1

!

. T
1: Perform a gesture kf each mtComponent] i“,) |
s 1

2: getGrouplD{location: Location liflocation is an mtCompanent]
The processing for | - ..J- 3: getGrouplD() Jl_
detecting whether >
a gesture is made 4: grouplD
is something e ———————————
complex and is not 5: grouplD
presented in this] | jerse
diagram. All the
processing that &: grouplD = 0
takes place in the s——————————————] -
server, adapter... is
represented by
hoolean assertion.

alt

[if grouplD 1= 0]

7: getAllowedGestures(groupl D)

8: getAllowedGestures()

& allowed Gestures

10: allowedGestures

alt

if the mtCompaonent is allowing the gesture detected by the server]

11: processEvent{grouplD, event)

12: processEvent(event)

O m =
| | |
L I | |
Figure 4. Sequence diagram which shows the process to determine the target component of a
gesture and how the multi-touch event is communicated from the server to this component.

2.5 Embedding Swing/AWT applications into JavaFx for
rotation windows

On a tabletop display, orienting display components “upwards” has no meaning and being able to
display a window with an arbitrary orientation is a desirable feature since users will interact with
the display from all around the table. Unfortunately, one of the problems faced with the
development of our tabletop application is that no current Ul toolkit provides adequate
directionality support. Although arbitrary orientation would be ideal, we have found that cardinal

points orientations were sufficient for our needs as users will necessarily be positioned on one of
the four sides of the multi-touch table.

An application built with Swing and AWT is an easy way to start working with multi-touch
applications. However, this graphics environment was not originally made to handle some of the

DRDC Valcartier TM 2011-233 9

basic functions that one expects to find in a touch application, like the rotation of a window. To
meet these needs, a solution based on JavaFx was explored.

The solution begins with a simple idea; we have an application, written using Swing/AWT and we
would like this application to use some JavaFx functions. It is possible in JavaFx to use
Swing/AWT components; however, they are not fully supported and can generate compatibility
problems. Nevertheless, it should be doable to encapsulate an entire application made with these
components.

The integration of the Swing/AWT interface was pretty straightforward, although, as expected,
there were issues. Especially, several “freezes” occur because of the different ways to manage the
event dispatching thread (EDT) which is responsible of the interface display. There was also a
problem with the graphic theme which was not working properly with JavaFx. However, there were
more important problems with the integration of multi-touch functionalities. The problems stem
from the fact that the positioning methods (getLocationOnScreen(), getLocation()) do not work in
JavaFx and that these methods are absolutely necessary for the multi-touch layer.

Work was performed to find a way to make these methods work and consequently enable the multi-
touch. Using the position and the dimension of the window, it is possible to know the position of
the top level component and enable some multi-touch gestures in our application. This solution is
not perfect because we are still unable to know the position of each individual component, and
therefore enable multi-touch gestures on each component. Further work is required; however, a
new version of JavaFx is about to be released and according to the roadmap, the future Swing
interoperability should be much better than the current version.

2.6 Multi-touch Google Earth

Some applications, such as Google Earth, could benefit greatly from being multi-touch capable.
Fortunately, in this case, Google provides access to some basic functions through programming. It
was therefore attempted to add a multi-touch functionality to Google Earth, as illustrated in Figure
5.

10 DRDC Valcartier TM 2011-233

s
\Z‘ Google

Figure 5: Multi-touch Google Earth application and gestures.

As described in the API documentation: “The Google Earth COM (Component Object Model) API
allows third party applications to query information from and send commands to Google Earth”
[5]. In fact, the API allows to:

— Know Google Earth state (is open, is initialized);

— Get Google Earth render window;

— Open KML (Keyhole Markup Language) files;

— Load KML from a string;

— Manage the camera view (position, tilt, rotate...);

— Partially manage map layers (weather, borders, streets...);

— Partially manage map features (loaded from KML).

2.6.1 Using Google Earth API with Java

As mentioned before, it is possible to interact with Google Earth through programming using the
COM APIL The earth.idl file provided by Google (http://services.google.com/earth/earth.idl)
contains the description of the interfaces necessary to query and control Google Earth. Google also
provides an easy to follow HTML (Hypertext Markup Language) summary of the earth.idl file:
http://earth.google.com/comapi/index.html.

The main interface that represents the instance of Google Earth is [ApplicationGE (Figure 6). This
interface is the bridge between Google Earth and third party applications. In Java we can’t call the

DRDC Valcartier TM 2011-233 11

interface directly; we need a COM library to instantiate a Java object. There are several open source
COM API libraries such as:

— COM4;j : http://com4]j.java.net/

— Jawin : http://jawinproject.sourceforge.net/

— JACOB : http://sourceforge.net/projects/jacob-project/

These three libraries appear to provide the desired functionality; however, JACOB is the latest of
the three and the only active project. So, JACOB was chosen. Using this library, it is possible to
implement all Google Earth COM API interfaces into concrete Java classes and thus, use their
features (see Annex A.3 for examples).

<<IApplicationGE>>

+GetCamera(boolean considerTerrain): ICameraInfoGE
+SetCamera(ICameralnfoGE camera, double speed)
+SetCameraParams(double latitude, double longitude, double altitude, AltitudeModeGE altMode, double range, double tilt, double azimuth, double speed)
+SaveScreenShot(String fileName, long quality)
+OpenKmiFile(String fileName, boolean supressMessages)
+LoadKmiDate(String kmiData)
+GetFeatureByName(String name): IFeatureGE
+GetFeatureByHref(String href): IFeatureGE
+SetFeatureView(IFeatureGe feature, double speed)
+GetPointOnTerrainFromScreenCoords(double screen_x, double screen_y): IPointOnTerrainGE
+IsInitialized(): boolean

+IsOnline(): boolean

+Login()

+Logout()

+ShowDescriptionBalloon(IFeatureGE feature)
+HideDescriptionBallons()

+GetMyPlaces(): IFeatureGE

+GetHighlightedFeature(): IFeatureGE
+GetTemporarePlace(): IFeatureGE
+GEtLayersDataBases(): IFeatureCollectionGE
+GetMainHwnd(): long

+GetRenderHwnd(): long

Figure 6: Class diagram of the interface “IApplicationGE”, extract of the earth.idl file.

2.6.2 Embedding Google Earth in a Swing/AWT GUI

The Google Earth COM API allows to get the window handle of the render view of Google Earth
(the panel containing the globe). With this handle, it is possible to move this view to another
application.

To be able to perform this move, it is important to be familiar with the structure and the way
Swing/AWT work and their differences. As mentioned in Section 2.4.3, Swing is built on AWT
but, if we dig a little more, we find that AWT use native libraries specific to each operating system
to build its components. This type of component is said to be heavyweight, as they are dependent
on the underlying operating system (e.g. Window, Linux, OS X) to provide Graphical User
Interface (GUI) controls like painting. On the other hand, Swing components are 100% pure Java
code (except for the top-level ones: JWindow, JFrame, JDialog and JApplet) and do not have any
native library dependencies, so are said to be lightweight [6]. This difference plays a fundamental
role to the operation we seek to accomplish because a lightweight component does not have the
capability to receive the window handle of Google Earth as opposed to a heavyweight component.

12 DRDC Valcartier TM 2011-233

In addition, Java does not directly support the operation of re-parenting a window as we would like.
To do this, we will have to uses the JNA (Java Native Access) libraries to establish a link to some
Window specific functions that allow these operations. (See Annex A.4 for an example).

DRDC Valcartier TM 2011-233 13

14

This page intentionally left blank.

DRDC Valcartier TM 2011-233

3 Communication between applications

The workflow of VOI analysis will require easy movement between different interconnected
“views” of the domain. In accordance with many “portal” models that use linked displays, the
various views presenting vessel information and analysis tools may be stacked on a single screen,
distributed across multiple screens, or distributed between devices.

In order to keep the same information selected on multiple views and to send relevant information
from one tool to another, applications will be required to communicate with each other. To keep
our solutions scalable across the multiple devices and screens, we also wish to develop applications
or “widgets” that can operate independently of each other. This section proposes a design for
enabling widgets to exchange information among them in order to present some information in
different but linked displays and improve situational awareness according to the context.

3.1 Analysis

We have several independent applications. These applications may, however, need to exchange
information. Each application has a defined role and can transmit and receive information from
other widgets. These messages should be of any shape, such as text messages or complex structures
containing more information.

All applications should remain fully independent from each other. In all cases, applications should
avoid coupling and not be in direct relationship. The chosen solution does not have to support
network communication (communication among widgets running on different computers) nor
communication among applications programmed using different programming languages.
However, the solution must be flexible enough to allow an easy evolution that might support these
options.

3.2 Design choices

This section briefly describes two possible design choices that are each based on a design pattern.
The two proposals briefly describe these patterns and the advantages and disadvantages of using
them in the context of the problem presented. Then, these proposals are compared and a selection
is made. The selected solution is fully described in Section 3.3.

3.21 First proposal - Facade

The first proposal is the use of the Facade design pattern. The intent of this pattern is to provide a
unified interface to access a subsystem (in our case another widget). This would allow defining an
interface, a facade, which other applications could use. This design offers the benefits of reducing
the coupling between an application and its clients. However, this solution requires that a client
calls the facade of all the applications that may need to receive information about an event or an
action. This also implies that an application must know precisely which method of the facade should
be used for each action. With few applications, this is not really a problem, but if the system evolves
to contain a large number of applications, this could become more problematic.

DRDC Valcartier TM 2011-233 15

3.2.2 Second proposal — Mediator

The second proposal is the use of the Mediator design pattern. The intent of this pattern is to avoid
direct coupling by keeping objects from referring to each other explicitly. This pattern allows this
by making the communication, or the mediation, an independent concept; it lets us focus on how
objects interact apart from their individual behaviour. For the implementation of this pattern, each
application must define an object which implements the Colleague interface; this colleague acts as
a spokesman to the Mediator, who can communicate a message to other colleagues. Nevertheless,
centralizing communication in this way can lead to a great complexity in the mediator because it
usually encapsulates protocols, and it can become complex and make a class hard to maintain.

3.2.3 Conclusion

In a one to one communication Facade may be a good solution, but in this situation Mediator
appears to be a better choice. Facade differs from Mediator in that it abstracts a subsystem of objects
to provide a more convenient way to communicate. In the Facade design pattern, each application
is aware of each other and communicates directly. However, in the Mediator design pattern,
applications are only aware of the Mediator, which is aware of all the applications. In addition,
Facade is unidirectional; Facade objects make requests to a subsystem classes but not vice versa,
unlike Mediator which enables cooperative behaviour. In conclusion, even if the Facade is less
complex and easier to implement, the Mediator seems a better choice because of its capability to
evolve, to handle many applications and to provide bidirectional communication.

3.3 Solution description

3.31 Applicability context

The solution presented in the following sub-sections was originally designed for use with the Java
programming language. However, this solution should be usable with any object-oriented language.
Also, as mentioned previously in the analysis, this solution does not support network
communication. For the applications to be able to communicate, they have to run in the same Java
Virtual Machine (JVM). To do so, applications must be bundled together and started by a “parent
application” or by any application already running in the JVM. However, if needed, this restriction
can be bypassed by redefining the Mediator class to handle a different way of doing.

3.3.2 Solving the problem

To solve the problem of communication between applications, it was decided to establish a
communication interface dedicated only to this problem. To do so, a solution using the Mediator
design pattern (Figure 7) was developed. This pattern is a predefined solution to the problem we
face. Concretely, to implement this design pattern, each application must define its own
implementation of the Colleague interface. Then, when a colleague wants to send a message, it
gives it to the mediator who sends it to the others colleagues who do whatever they want with it.
This solution meets the requirements set out earlier by not creating any direct coupling between
applications and provides sufficient flexibility to respond to other requests.

16 DRDC Valcartier TM 2011-233

< <interface == < <interface ==
Mediator Colleague

A A

ConcreteMediator ConcreteColleaguel ConcreteColleague2

Figure 7: UML representation — Mediator design pattern.

One of the specific needs is the ability to send messages of any kind. To do this, an interface
“Message” has been created. To send a complex structure a colleague only needs to create an object
which implements the Message interface. This will hide the complexity of the message to the
mediator and to all the colleagues who do not need to read the message. It also provides a first way
for a colleague to dispose of messages that do not concern it: if the colleague does not recognize
the type of the message, it simply ignores it. If a message type is used by several colleagues and
for various operations, the implementation of the Message interface should provide a way for a
colleague to identify whether the message is intended for it. This identification could be done, for
example, using an id specific to an operation; however, in this case, all involved colleagues must
know the relevant identifiers.

The handling of incoming messages can become problematic at the conceptual level if a colleague
receives a large number of different messages. In fact, a potential problem could arise if the
operations are highly variable and if those operations need to access many parts of the application.
This would result in a non-cohesive class with a lot of code only related to a specific operation. To
resolve this problem, the default implementation uses the design pattern Chain of Responsibility
(Figure 8). This pattern can prevent the implementation of a colleague from containing all the
algorithms. These algorithms are rather encapsulated in the MessageHandler subclasses. The
colleague gives the message to the first handler who tries to deal with it if he cannot, the message
is passed to the next handler in the chain and so on until the message is read or the end of the chain
is reached, which means that the message is not for this colleague.

DRDC Valcartier TM 2011-233 17

Client < <interface ==
. Handler

ConcreteHandlerl ConcrteHandler2

Figure 8: UML representation — Chain of responsibility design pattern.

Figure 9 presents an overview of the implemented solution. Here are the descriptions of the classes
from the UML diagram:

18

Client: sends commands to the first object in the chain that may handle the command. In our
situation, the client is a Colleague.

Colleague: defines the interface of a colleague. This is a family of objects, which are unaware
of each other but who must exchange information. A colleague has access to application
resources it represents.

ConcreteColleague: implementation of the Colleague interface. This class represents an
application, a widget. The “ConcreateColleague” may send messages through the Mediator
and is responsible for processing incoming messages.

ConcreteMediator: implementation of the Mediator interface. This class maintains a
reference to the colleague objects and implements the communication between them.

ConcreteHandler: handles the request it is responsible for; if it can handle the request it does
so, otherwise it sends the request to its successor.

DefaultColleague: Default implementation of a colleague. This implementation uses the
Chain of Responsibility pattern to handle messages.

DefaultMediator: Default implementation of a Mediator.
Handler: defines the interface for handling requests.

Mediator: defines an interface of a Mediator. A mediator is an object which allows
communication between Colleague objects.

Message: defines the interface of a Message. A Message is the representation of information
exchanged between applications.

MessageHandler: is a type of a handler appropriate to the situation.

DRDC Valcartier TM 2011-233

<<interface=>
Message
R e L LR 9 R '
<<interface=> <<interface=>
Colleague 1’?\ Mediator
+sendMessage(message: Message) E 2| +addColleague(colleague: Colleague)
+receiveMessage(message: Message) ! +removeColleague(colleague: Colleague)
& ! +sendMessage(message: Message, sender: Colleague)
MessageHandler

-sucessor: MessageHandler

+HMessageHandler(sucessor: MessageHandler)
+setiext({sucessor: MessageHandler)

+handleRequest{message: Message): boolean
#operationSpec(message: Message): boolean

ConcreteHandler

#operationSpece(message: Mesage): boolean

DefaultColleague

firstMH: MessageHandler "
-mediator: Mediator DefaultMediator

+DefaultColleague(mediator: Mediator)

[= +colleagues: List<Colleagues >

+DefaultColleauge(mediator: Mediator, firstMH: MessageHandler) +DefaultMediator()
+setFirstMessageHandler (firstMH: MessageHandler) +removeColleague(colleague: Colleague)
+sendMessage(message: Message) +sendMessage(message: Message, sender: Colleague)

+receiveMEssage(message: Message)

Figure 9. UML representation — Communication between applications, implemented solution.

DRDC Valcartier TM 2011-233

20

This page intentionally left blank.

DRDC Valcartier TM 2011-233

4 Extracting vessel information

VOI information is a mixture of geospatial and temporal shapes, commercial facts, photographs,
schedules, self-reported information, and intelligence information, as sketched in Figure 10.
Lloyd’s Ship Register is one the available sources for vessel information. Photos of a large number
of ships can also be obtained from http://shipspotting.com/.

Lloyds Contact Reports
facts \ / (with uncertainties)
Collaborative Visual Analytics Tracks of

Voluntary of aVOI (CVAV) e—— Nearby Ships
Reports '
Geographic e Port Websites

t
N / Cargo &

Timeline and Passengers
Periodicity Display o

Linked Facts
tracks / and Photos Display
destination

/

manauvers
/!
0ppuﬂunMes

uncertainty / Vi
¥

events

Drawings

organizational
links

possible
motive

Multiple
Analysts

Figure 10: Context diagram for the collaborative analysis of a VOI, implying the use of linked
geographical, temporal and abstract visual information, collected and interpreted by multiple
analysts [7].

41 Extracting information from Lloyd’s and ShipSpotting

Using an application written in Java, it is possible to perform queries on the Lloyd’s website. In
summary, the application performs an http query which returns a web page. Then, using the library
HTMLParser (http://htmlparser.sourceforge.net/), it is possible to parse this page, gather the
information it contains, format it and show it in our application. The same process was used to
extract vessels pictures from http://shipspotting.com/.

DRDC Valcartier TM 2011-233 21

4.2 Display of vessel information

Our small Lloyd’s application allows us to retrieve vessel information along with a vessel photo
and display it as a small vessel card as shown in Figure 11. This application also support queries to
find specific vessels (Figure 12). As explained in Section 2.5, working on a surface device may

require displaying windows along different orientations as in Figure 13.

& Lloyds

Search a vessel

Vessel informations

Vessel Name :
Flag :

Official No
MMSINo :

Shiptype

IMO Company No (DOC)
IMO Registered Owner No
LRAMO Ship No

Port of Registry

I Sign

Status

Group Beneficial Owmer
Shipmanager

Operator
DOC Company :

Registered Owner

ALGOEAST

ALGOMA CENTRAL CORP " ALGOMA TANKERS LTD

ALGOEAST

Canada

371941

316002100
Products Tanker
1771113

1771113

7526924

Toronto, ON

VGLD

In Service / Commission
Algoma Central Corp
Algoma Tankers Ltd
Algoma Tankers Ltd
Algoma Tankers Ltd
Aigoma Tankers Ltd

Tonnages Dimensions

Deadweight: 9,657
Gi 7,886
2,500

New System (International 1969)

Compensated Gross :

Panama Canal Net :
Net Registered Suez Canal Net :
System: Light Displacement :

Type: One tonnage, unspecified

Figure 11: A vessel card in our Lloyd’s application, showing retrieved information about a vessel
and a photo from the ShipSpotting website.

& Lioyds

Search avessel ALGOEAST

Vessel Name algo

LRAMO Ship number
Search

MMSINO
601045000
538090166

Vessel Name
ALGOA
ALGOA BAY
ALGOBAY
ALGOCANADA
ALGOCAPE
ALGOEAST
ALGOISLE
ALGOL
ALGOL
ALGOL
ALGOL
ALGOLAKE
ALGOMA DARTMOUTH
ALGOMA DISCOVERY
ALGOMA GUARDIAN
ALGOMA HANSA
ALGOMA SPIRIT
ALGOMA TRITON
ALGOMARINE
ALGONORTH
ALGONOVA
ALGONTARIO
ALGORAIL
AIGOSAIRI 27

Status
In Service /Com... (A

LRAMO Ship No
7410369
7701641
7711725
9378591
6703214
7526924
5417820
7303205
9339612
7606671
8974336
7423093
9327516
8505848
8505850
9127186
8504882
9485174
6816607
7028104
9378589
5301980
6805531
2400015

Shiptype
Fishery Research ..
Bulk Carrier

Bulk Carrier, S
ChemicallProducts

Operator
Smit Marine South ...
MACS Maritime Car..
Seaway Marine Tra...

. Aigoma Tankers Ltd
Seaway Marine Tra...
Algoma Tankers Ltd
Seaway Marine Tra...
United States Govt ..
US Lines Inc

1975
1978
1978
2008
1967
1977
1963
1973
2006
1978
1981
1977
2007
1987
1987
1998
1986
2012
1968
1971
2008
1960
1968
1085

In Service / Com.
in Service / Com.
In Service / Com.
316001695
316002100
316003624
368992000
565216000
247221400

Bulk Carrier, Lak... in Service / Com...
Products Tanker
Bulk Carrier, Lak...
Logistics Vessel
Container Ship (F..
Passenger Ship
Fishing Vessel
Bulk Carrier,

in Service / Com..
To Be Broken Up
U.S. Reserve Fleet
in Service / Com..
Diesel Power, Soluti... In Service / Com.
Trade & Service
Seaway Marine Tra.
. Aigoma Tankers Ltd
Aigoma Central Corp
Algoma Central Corp
Schulte Shipmanag...
Aigoma Central Corp
Schulte Shipmanag...
Seaway Marine Tra...
Seaway Marine Tra.

in Service / Com.
316001795
316013960
309874000
316018031
311010700
311035000

In Service / Com...
In Service / Com...

Chemical/Products...

Bulk Carrier in Service / Com...

Bulk Carrier in Service / Com.
Chemical Tanker in Service / Com.
Bulk Carrier in Service / Com
On Order/Not C

In Service / Com..
Laid-Up

in Service / Com...
Laid-Up

In Service / Com...

ChemicallProducts...
Bulk Carrier, S

Bulk Carrier, Lak..
ChemicallProducts... Algoma Tankers Ltd
Bulk Carrier, Lak.. Seaway Marine Tra...
Bulk Carrier, S Seaway Marine T
Platform Sunnlv Shin Alaosaibi Divina &

316001807
316001804
316013209
316004888
316001805

408303000 Li

in Servica /Com.

Figure 12: Another picture of our Lloyd’s application, showing the results of a vessel search.

22 DRDC Valcartier TM 2011-233

wewaseidsiq B

| :1eN jeuen zeng

0] :1eN feued eweueq

0 :ss0i0 pajesuadwod

passisibay 18N

ss0ig

‘suoisuswiq sabeuuol

epeues)
15v300W

wojampeag

18UMQ PaIEISIBEY
Auedwod 20a
1oiesado

sebeurwiug

18UMO [e12y3uBE dNoIO
sneis

uBis lled

Ansibax Jo Wog

ON diuS ORI

ON 18umO paJalsIBexy ONI
(200) 0N Aueduiod oI
sdigdiys

ON ISHN

oNePWO
oely
suwen (essen

Figure 13: Lloyd’s application embedded in JavaFx as explained in Section 2.5.

23

DRDC Valcartier TM 2011-233

24

This page intentionally left blank.

DRDC Valcartier TM 2011-233

5 Use of a large display for situation awareness

Perhaps the simplest model of collaboration is through the use of a large group display, also called
a knowledge wall. Control of the displayed information related to various tasks can be shared
among an assembled team of analysts, each of whom can view contributions from the others in real
time. Knowledge walls are already common in operation centers.

In a maritime context, a large display can be used to maintain situation awareness among the
agencies working together. For collaborative analysis, we believe that this type of display should
be as interactive as possible. It could be used to analyse the situation in real time as well as present
results to a larger audience.

This section explores the use of SitScape’s software, a knowledge wall and a gesture interaction
device in the context of a maritime portal.

Touch screen

MS Kinect

Copy of the table display Additional displays

Multi-touch table Knowledge wall

Individual work stations

Figure 14: A picture of the large display and its immediate surroundings in the ILAB.

5.1 Mock-up with SitScape

In accordance with UDOP concepts, team members can assemble the operational picture using a
variety of apps, running on many portlets, on multiple displays, and if necessary in different
locations. SitScape’s web-based software [8] allows users to easily aggregate and visualize
disparate applications and information sources into a collaborative UDOP for live monitoring,
situational awareness, information sharing, and visual contextual collaboration.

SitScape makes it possible to embed various elements in a web page, such as: desktop applications,
PDF documents, PowerPoint presentations, web pages or parts of them, etc. This can be easily
configured using the “Add Content” function which guides us in the process of adding almost
anything (shown in Figure 15). SitScape allows sharing views with other users. It is even possible
to annotate a view to facilitate the collaboration. It also includes many functions to help the users
manage their content and provides many ways to display it.

DRDC Valcartier TM 2011-233 25

Add item to this page X

File: [Parcourir. | (support doc xls pdt ppt swv)

Title (optional):
Tags (optional) such as election, NBA or IT
Advanced Option

© Upload iie now,

Figure 15: This figure show the Sitscape “Add Content” popup.

In order to explore SitScape’s capabilities, we developed a small portal with various tabs related to
maritime situation awareness and analysis topics such as surveillance, VOI analysis, search and
rescue operations and anomaly detection (see Figures 16 and 17). The UDOP can be customized
into a number of tab folders and it is accessed through a simple browser. Adding content to the
SitScape portal was quite simple and really fast. This tool has good potential for rapid portal
creation, although it may not support all types of applications and displaying applications running
on a remote computer can lag noticeably.

The result on the knowledge wall is shown in Figure 18. This infrastructure has been built using a
3 x 2 configuration of 60 Inch LCD panels. It provides a seamless display of 1366 x 768 pixels.
The total size of the configuration is 13” x 5°. A touch screen and MS Kinect interactions are
enabled.

—-—— e T =

Figure 16: Example of a maritime portal mock-up built with SitScape involving many maritime
application mock-ups.

26 DRDC Valcartier TM 2011-233

<« Sow - & hitpy/10.2.2.149/dashboard/DemoVA/RMP
o

Bl S fevsma Rocharc ot coveogpement

Deveicoment Canada pour la défense Canada

e — e

£3 Add Content

7 5
= - U

Layout UJ

| @ CloseEncounters

Figure 17: Another example of a maritime portal mock-up built with SitScape involving many
maritime application mock-ups.

BREAKING NEWS

Bulk Carrier Oliva breaks up

at Nightingale Istand xovdia sy
{ A -

SITUATION ROOM

Figure 18: Maritime portal on the knowledge wall.

DRDC Valcartier TM 2011-233 27

5.2 MS Kinect gesture interface with Google Earth on the
large display

The knowledge wall of the ILAB can be controlled by standard keyboards and mice, as well as with
a touch screen device that was installed on it. However, as the display is indeed quite large, users
may want to interact with it from a few steps away in order to have a full view of the information
presented. In that case, gesture interaction may prove handy. In this section we report on the use of
a Microsoft Kinect sensor to interact with our multi-touch version of Google Earth (presented in
Section 2.6).

Microsoft recently released a Software Development Kit (SDK) to ease software development with
the Kinect. This SDK allows among other things to build wireframes of people in front on the
Kinect and thus determine the position of certain body parts like hands. This feature allowed our
computer scientist Vincent Bergeron to create, using hand position, a feed of TUIO events that are
sent directly to our multi-touch Google Earth application without requiring modifications to it. All
available gestures can theoretically be done. However, because the gestures are done with hands in
the air, some are hard to do, like a click. A “touch” is detected when a hand is at a certain distance
of the body. This means that to do a click, it is necessary to cross this invisible line and comeback
rapidly and while doing this the cursor needs to stay at the same place which is not easy because
even a little movement can change its position. Rotate and zoom gestures, on the other hand, are
quite easy to perform.

This experience with the Kinect shows that it is possible to create a functional interface with this

technology but, it will require a little more effort (especially related to gesture definitions) to make
it usable in everyday life situations.

28 DRDC Valcartier TM 2011-233

6 Dicussion and recommendations

For future work in multi-touch applications, it would be interesting to watch the developments of
MT4j and GestureWorks. MT4j is a project regularly updated with a potentially bright future. The
same goes for GestureWorks which, although it has not been tested enough in this project, could
be an interesting framework to work with in the future. Sparsh-UI on the other hand, is a project
that is currently stalled; it can be used for proofs of concept or small applications, but its future is
uncertain. Windows already has its own multi-touch protocol and it is possible to develop
applications in this environment with many Microsoft technologies like Silverlight. However even
if no work was done on these technologies in this project, the limited information available on this
subject on internet suggests that improvements are needed and we can assume that this should come
out soon.

Java Swing/AWT are nice technologies, but are not build to handle multi-touch operations like the
rotation of an entire window. They can be used to do simple applications, but this technology should
not be used for the GUI of a major application. An all new version of JavaFx is about to be released
with a lot of new features which can be very interesting. This could be a great solution for a Java
multi-touch GUI but a native way of handling touch is not announced yet and would be required.

Multi-touch interaction is also beginning to make its way into web pages, partly because of smart

phones, which often offer a multi-touch capability. The HTMLS standard is not yet fully defined,
but it will certainly contribute to advance this technology [9].

DRDC Valcartier TM 2011-233 29

30

This page intentionally left blank.

DRDC Valcartier TM 2011-233

7 Conclusion

This document presented the outcome of a short-term project which aimed at exploring new HCI
technologies applied to maritime situation awareness and analysis. More specifically, we
experimented with two different multi-touch tables, a large display wall, a gesture interaction
device and a rapid portal designing software. Maritime applications and mock-ups were built to
showcase the capabilities of these new technologies for their use in a maritime surveillance context.

We implemented a multi-touch version of Google Earth that can be used on a multi-touch table as
well as with the wall display using gestures that are being captured by a Microsoft Kinect sensor.
A maritime situation awareness portal including various VOI analysis tool mock-ups was
developed using the SitScape software and displayed on the knowledge wall. A simple application
was also developed to display vessel information windows with various orientations.

It is believed that these advanced interface and interaction devices will be helpful for collaborative
analysis and for sharing situation awareness among a team of analysts. Many possible ways to
enable collaborative teamwork were explored and the insight gained will be relevant to many of
the 12 section research projects. They will be developed further at DRDC Valcartier within the
11hm applied research project “Maritime Domain Analysis through Collaboration and Interactive
Visualization”. Future exploration could include tablet and smart phone devices as well a speech
interaction.

DRDC Valcartier TM 2011-233 31

32

This page intentionally left blank.

DRDC Valcartier TM 2011-233

References

[1] T. Butkiewicz, D.H. Jeong, W. Ribarsky and R. Chang (2009), Hierarchical multi-touch
selection techniques for collaborative geospatial analysis. In Proc SPIE Defense, Security and
Sensing 2009.

[2] D. Kammer, J. Wojdziak, M. Keck, R. Groh and S. Taranko (2010), Towards a Formalization
of Multi-touch Gestures, ACM International Conference on Interactive Tabletops and
Surfaces 2010, 7-10 November, 2010, Germany,
http://www.dfki.de/its2010/papers/pdf/fp198.pdf, retrieved August 2011.

[3] TUIO (2011), http://www.tuio.org/, retrieved August 2011.

[4] S. Gilbert (2011), Sparsh-UI: Project Goal, http://code.google.com/p/sparsh-ui/, retrieved
August 2011.

[5] Google (2011), Google Earth COM API Documentation, http://earth. google.com/comapi/,
retrieved August 2011.

[6] Deepun (2007), What are lightweight and heavyweight components?,
http://www.interviewjava.com/2007/05/what-are-lightweight-and-heavyweight.html, May
2007, retrieved August 2011.

[7] M. Davenport (2009), Opportunities for Applying Visual Analytics for Maritime Awareness,
MacDonald Dettwiler and Associates Ltd. & Salience Analytics, DRDC Scientific Authority:
Valérie Lavigne, DRDC Valcartier CR 2009-227, October 2009.

[8] SitScape (2011), http://www.sitscape.com, retrieved August 2011.

[9] B. Smus (2011), Developing for Multi-Touch Web Browsers,
http://www.htmlSrocks.com/en/mobile/touch.html , April 2008, retrieved August 2011.

DRDC Valcartier TM 2011-233 33

34

This page intentionally left blank.

DRDC Valcartier TM 2011-233

Annex A Implementation example

A1 Code extract from TouchSender.java

ca.rddc.va.mt.sparshui.TouchSender.java — sendPoint(...)

1 public void sendPoint(int sessionld, int state, float xCoord, float yCoord) {
2 if (connected) {

3 try {

4 //' We send only one touch point by buffer

5 dos.writeInt(new Integer(1));

6 dos.writelnt(sessionld);

7 dos.writeFloat(xCoord);

8 dos.writeFloat(yCoord);

9 dos.writeByte(state);

10 dos.flush();

11 } catch (IOException ioe) {

12 System.err.println("[TouchSender] - Touch event
13 has not been sent.");

14 }

15 }

16 |}

A.2 Example of implementations of a multi-touch component

ca.rddc.va.mt.component. MTCanvas

1 package ca.rddc.va.mt.component;

2

3 import java.awt.Canvas;

4 import java.util. ArrayList;

5 import java.util. List;

6 import ca.rddc.va.mt. MTClient;

7 import ca.rddc.va.mt.MultitouchListener;

8

9 public abstract class MTCanvas extends Canvas implements MTComponent {
10 private final int groupld;

11 public transient List<MultitouchListener> multitouchListeners;
12

13 public MTCanvas() {

14 super();

15 groupld = MTClient.getInstance().getID();

16 multitouchListeners = new ArrayList<MultitouchListener>();
17 }

DRDC Valcartier TM 2011-233 35

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

public int getGroupld() {

}

return groupld;
H

(@Override
public void addMultitouchListener(MultitouchListener 1) {
if (1 '=null) {
multitouchListeners.add(l);
H
H

(@Override
public void removeMultitouchListener(MultitouchListener 1) {
if (1 '=null) {
multitouchListeners.remove(l);
H
H

(@Override

public MultitouchListener|] getMultitouchListener() {
MultitouchListener[| mts = new MultitouchListener| multitouchListeners.size()];
multitouchListeners.toArray(mts);
return mts;

}

(@Override
public abstract List<Integer> getAllowedGestures();

(@Override
public void setVisible(boolean b) {
if (b) {
MTClient.getInstance().addComponent(this);
} else {
MTClient.getInstance().removeComponent(this);
¥
super.setVisible(b);
¥

(@Override
public int getComponentWidth() {
return super.getWidth();

}

(@Override
public int getComponentHeight() {
return super.getHeight();

}

36

DRDC Valcartier TM 2011-233

A.3 Example of method implementation using JACOB

A.3.1 Starting Google Earth and getting the |ApplicationGE interface

This is an example demonstrating how to start Google FEarth. The string
“GoogleEarth. ApplicationGE” specifies to Window which interface we want to interact with so
that it loads it into memory.

Starting Google Earth — startGE()

1 private ActiveXComponent applicationGE = null;
2

3 public boolean startGE() {

4 try {

5 applicationGE = new ActiveXComponent("GoogleEarth. ApplicationGE");
6 } catch (final ComException ¢) {

7 e.printStackTrace();

8 return false;

9 ¥

10

11 //' We block the execution other action while Google Earth is opening
12 while (lisInitialized() && !isOnline()) {

13 try {

14 synchronized (this) {

15 wait(100);

16 }

17 } catch (final InterruptedException e) {

18 e.printStackTrace();

19 return false;

20 }

21 }

22 return true;

23 |}

A.3.2 Getting another interface
Unlike the IApplication interface, all the other interfaces can’t be obtained directly from the

operating system. They must be returned by an already existing interface, in this example,
[ApplicationGE.

DRDC Valcartier TM 2011-233 37

Getting another interface — getTemporaryPlaces()

public IFeatureGE getTemporaryPlaces() {
final ActiveXComponent axc;
try {
axc = applicationGE .invokeGetComponent("GetTemporaryPlaces");
} catch (final ComException ¢) {
e.printStackTrace();
return null;

}

return new [FeatureGE(axc);

—\O 0 IS\ N A W -

0 |}

A.3.3 Calling a simple “get” method

Calling a simple “get” method — isInitialized()

1
2
3
4
5
6
7
8
9
1

public boolean islnitialized() {

int initialized = 0;

try {
initialized = (Integer)
applicationGE.invoke("IsInitialized").getInt();
return (initialized != 0);

} catch (final ComException ¢) {
return false;

}

0 |}

A.4 Using JNA

Creating a link with User32 functions

public interface MyUser32 extends User32 {
public static MyUser32 INSTANCE = (User32) Native.loadLibrary("user32",
User32.class);
public boolean EndTask(int hWnd);
public boolean ShowWindow(int hWnd, int nCmdShow);
public int SetParent(int hWndChild, int hWndNewParent);
public boolean MoveWindow(int hWnd, int X, int Y, int nWidth, int nHeight, boolean
bRepaint);

O 0 I NN AW -

}

38 DRDC Valcartier TM 2011-233

Using a Window function

// attach GE render window to the canvas
try {

MyUser32 INSTANCE . SetParent(iage.getRenderHwnd(), (int) getGUIHwnd());
} catch (ComException ¢) {

e.printStackTrace();

A N A W -

}

DRDC Valcartier TM 2011-233

39

40

This page intentionally left blank.

DRDC Valcartier TM 2011-233

List of symbols/abbreviations/acronyms/initialisms

API
AWT
COM
DND
DRDC
EDT
ETS
GUI
HCI
HTML
IDL
2
ILAB
JVM
JNA
KML
LCD
MSOC
MT4;
PDF
R&D
RDDC
RI
RJOC
SDK
TUIO
UDOP
UI
UML
VOI

Application Programming Interface
Abstract Window Toolkit
Component Object Model
Department of National Defence
Defence Research and Development Canada
Event Dispatching Thread

Ecole des Technologies Supérieures
Graphical User Interface
Human-Computer Interaction
Hypertext Markup Language
Interface Description Language
Intelligence and Information
Intelligence Laboratory

Java Virtual Machine

Java Native Access

Keyhole Markup Language

Liquid Crystal Display

Maritime Security Operations Center
Multi-touch 4 Java

Portable Document Format

Research & Development

Recherche et développement pour la défense Canada
Renseignement et information
Regional Joint Operations Centre
Software Development Kit

Tangible User Interface Objects
User Defined Operating Picture
User Interface

Unified Modeling Language

Vessel of Interest

DRDC Valcartier TM 2011-233

41

42

This page intentionally left blank.

DRDC Valcartier TM 2011-233

DOCUMENT CONTROL DATA

(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document. 2a. SECURITY MARKING

Organizations for whom the document was prepared, e.g. Centre sponsoring a

contractor's report, or tasking agency, are entered in section 8.)

Defence Research and Development Canada — Valcartier

2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)

in parentheses after the title.)

Exploration of collaborative environment technologies for maritime analysis

4. AUTHORS (last name, followed by initials — ranks, titles, etc. not to be used)

Vachon. E.; Lavigne, V.

5. DATE OF PUBLICATION

(Month and year of publication of document.)

April 2012

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,

etc.)
60 9

6b. NO. OF REFS
(Total cited in document.)

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development — include address.)

Defence Research and Development Canada — Valcartier

2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

11hm

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2011-233

10b. OTHER DOCUMENT NOC(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement

audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable

that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The identification and tracking of Vessels of Interest (VOIs) require the collaboration of various
analysts from the federal departments forming the Maritime Security Operations Centers, to
collect and analyze information about this vessel, to understand its intentions and assess if it
may represent a threat. In order to support collaborative work, the Intelligence Laboratory
(ILAB) of the Intelligence and Information (12) section was equipped with new advanced
displays and interactions devices. For a period of eight months, a team worked to explore how
these technologies could enhance collaborative analysis and shared situation awareness
among analysts.

Existing multi-touch frameworks were explored and a multi-touch version of Google Earth was
implemented. It can be used on a multi-touch table and with a wall display using gestures that
are being captured by a Microsoft Kinect sensor. A maritime situation awareness portal
including various VOI analysis tools mock-ups was developed and displayed on the knowledge
wall. A simple application was also developed to display vessel information windows with
various orientations. This exploration of advanced Human-Computer Interaction technologies
produced insights on how to take advantage of these innovations in a maritime surveillance
context as well as in other intelligence domain activities.

L’identification et le suivi de navires d’intérét demande la collaboration d’analystes variés
provenant des départements fédéraux formant les Centre des opérations de la sdreté maritime
afin de rassembler, interpréter, et présenter autant d’information que possible au sujet du
navire, de comprendre ses intentions et d’évaluer s’il représente une menace. Afin de
permettre le travail en collaboration, le laboratoire du renseignement (ILAB) de la section
Renseignement et information (RI) a fait 'acquisition de nouveaux équipements d’affichage et
d’interaction avancés. Pendant une période de huit mois, une équipe a exploré comment ces
technologies pourraient améliorer le travail d’analyse collaboratif et le partage de la
connaissance de la situation entre les analystes.

Les architectures logicielles existantes pour les applications multi-tactiles ont été explorées et
une version multi-tactile de Google Earth a été implémentée. Elle peut étre utilisée aussi bien
sur une table multi-tactile qu’avec un affichage mural a 'aide de gestes captés par le senseur
Kinect de Microsoft. Un portail d’éveil situationnel maritime incluant différentes maquettes
d’outils d’analyse de navire d’intérét a été développé afin d’étre affiché sur le mur d’écrans. Une
application simple a également été développée pour permetire I'affichage de fenétres
d’'information sur les navires qui peuvent étre orientées de différentes maniéres. Cette
exploration des technologies avancées d’interaction humain-machine a permis d’acquérir des
connaissances sur la fagon d’utiliser avantageusement ces innovations dans un contexte de
surveillance maritime ainsi que pour d’autres activités dans le domaine du renseignement.

14.

KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

advanced technologies; human-computer interaction; large group display; knowledge
wall; gesture interaction; multi-touch; surface computing; vessel of interest; maritime
analysis; collaboration; maritime domain awareness; situation analysis

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence Chef de file au Canada en matiére
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

52

DEFENCE ' DEFENSE

v

www.drdc-rddc.gc.ca

