I * I Defence Research and Recherche et développement
Development Canada pour la défense Canada

DEFENCE m\? '])EFENSE
L

Redundancy with diversity-based software
architectures for the detection and tolerance
of cyber-attacks

State-of-the-Art

Abdelouahed Gherbi
Robert Charpentier
Mario Couture
DRDC Valcartier

Defence Research and Development Canada — Valcartier

Technical Memorandum
DRDC Valcartier TM 2010-287
February 2012

Canadi

Redundancy with diversity-based software
architectures for the detection and tolerance
of cyber-attacks

State-of-the-Art

Abdelouahed Gherbi
Robert Charpentier
Mario Couture
DRDC Valcartier

Defence Research and Development Canada - Valcartier

Technical Memorandum
DRDC Valcartier TM 2010-287
February 2012

IMPORTANT INFORMATIVE STATEMENTS

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012

Abstract

Software systems security remains a critical issue. This is evidenced by the ever in-
creasing number and sophistication of cyber-attacks. This situation is the result of the
combination of several factors. The software-based functionality of these systems is in-
creasingly complex. The systems are often connected through open networks such as the
Internet, which is increasingly accessible to potentially malicious users. Finally, these
systems run software which is substantially similar. This is called /7" monoculture. The
mitigation against this issue requires implementation of the principle of diversity. The
principle of diversity aims to reduce the common vulnerability in software and, in turn,
increase the difficulty of violating the security of the systems that use diversity. The
objective of this document is to present the state of the art in terms of approaches which
use diversity for security purposes. Three different approaches can be distinguished:
automated diversity, diversity-based behavior monitoring and diversity-based intrusion
tolerance.

Résume

La sécurité¢ des systémes informatique demeure une problématique ardue. Ceci est
confirmé avec la croissance continue de cyber-attaques en nombre et en sophistication.
Cette situation est le résultat de la combinaison de plusieurs facteurs. La fonctionnalité de
ces systémes basée sur les logiciels est de plus en plus complexe. Les systémes sont
souvent reliés par des réseaux ouverts comme Internet qui est de plus en plus accessibles
aux utilisateurs potentiellement malveillants. Enfin, ces systémes exécutent des logiciels
qui sont substantiellement similaires. Ceci est communément appelé IT monoculture. La
solution de ce probléme est basée sur le principe de la diversité. Cette derniere vise a
réduire les vulnérabilités communes dans un ensemble redondant et divers de logiciels.
Ceci augmente la difficulté de violer la sécurité des systéemes qui utilisent la diversité.
L’objectif de ce document est de présenter 1’état de 1’art en termes d’approches qui
utilisent la diversité a des fins de sécurité. Trois approches différentes peuvent étre
distinguées : la diversité automatisée, la surveillance de comportement basée sur la
diversité et la tolérance d’intrusion basée sur la diversité.

DRDC Valcartier TM 2010-287 1

ii

This page intentionally left blank.

DRDC Valcartier TM 2010-287

Executive summary

Redundancy with Diversity Based Software
Architectures for the Detection and Tolerance of
Cyber-Attacks

Abdelouahed Gherbi, Robert Charpentier, Mario Couture; DRDC Valcartier
TM 2010-287; Defence R&D Canada — Valcartier; February 2012.

Background: Mission-critical software systems used to support military operations are
increasingly complex. Such complexity makes it very difficult to design, deploy, configure
and manage these systems without faults. Despite the quality controls used at different
steps of the software development process several faults remain hidden and represent la-
tent vulnerabilities. Moreover, the systems are often interconnected through open networks
such as the Internet. It is highly likely that, in such hostile environments, determined at-
tacker will end up discovering the system vulnerabilities and be able to mount sophisticated
cyber-attacks.

Redundancy has long been used with efficacy as a means to achieve system reliability
because hardware failures are typically independent. Therefore, the replication of compo-
nents provides added assurance. When it comes to software, however, failures are due to
design, implementation and/or configuration faults. These faults are embedded within the
software and the manifestation of these faults (i.e errors) is systematic. That is, every copy
of a faulty software will have an identical behavior when provided with the same (mali-
cious) input. Therefore, redundancy alone is not effective against software faults.

Design diversity is therefore used to achieve software failure independence. This approach
is implemented by the N-version programming where different implementations of the
same functional specification are developed by independent teams. The rational behind
this technique is that the diversification of the software development would yield function-
ally equivalent programs which do not share the same faults.

From the security standpoint, a fault embedded in a software is a vulnerability. This may
end up being successfully exploited by an external interactive malicious fault (i.e. attack)
and ultimately enable the violation of the system security property (i.e. a security failure).
Consequently diversity has caught the interest of the software security research
community. The main idea is that diversity reduces significantly common vulnerabilities
which makes it more difficult for an attacker to break into a software system with the same
attack.

DRDC Valcartier TM 2010-287 1ii

The main objective of this document is to report on the state of the art in terms of concepts,
techniques and technologies based on the deployment of redundancy with diversity as a
mechanisms to achieve the security of software systems. This state of the art study re-
vealed that the principle of diversity can complement the principle of redundancy to build
software systems that are able to resist, detect and tolerate cyber-attacks. More specifically,
this study showed that diversity can be deployed in three different ways:

e Automated Diversity: These techniques consist in applying automated procedures to
randomize either the code (Instruction Set Randomization), the address space layout
(Address Space Randomization and Data Space Randomization) or both to provide a
probabilistic defense against unknown threats.

e Diversity-based behavior monitoring and intrusion detection: Several techniques have
been devised to use diversity enable efficient monitoring of the system behavior in order
to detect suspicious activities or intrusions.

e Diversity based architectures for intrusion tolerance

v DRDC Valcartier TM 2010-287

Sommaire

Redundancy with Diversity Based Software
Architectures for the Detection and Tolerance of
Cyber-Attacks

Abdelouahed Gherbi, Robert Charpentier, Mario Couture ; DRDC Valcartier
TM 2010-287 ; R & D pour la défense Canada — Valcartier ; février 2012.

Les systemes informatiques critiques qui sont utilisés pour supporter les opérations mi-
litaires sont de plus en plus complexes. Cette complexité rend tres difficile la concep-
tion, déploiement, la configuration et la gestion de ces systemes sans I’introduction de
fautes. Malgré les contrles de qualité qui sont intégrés aux différentes étapes du processus
de développement de logiciels, plusieurs fautes sont introduites et demeurent cachées et
représentent ainsi des vulnérabilités latentes. En outre, les systemes informatiques ne sont
plus isolés. Ils sont interconnectés par des réseaux ouverts tels que 1’ Internet. Il est trs pro-
bable que, dans de tels environnements hostiles, des individus or organisations malicieux et
dterminés vont finir par dcouvrir les vulnérabilités du systme et €tre en mesure de monter
cyber-attaques sophistiqués.

La redondance a été efficacement utilisée comme moyen pour réaliser la fiabilité des systémes
parce que les pannes matérielles sont généralement indépendantes. Par conséquent, la
réplication des composants fournit une assurance supplémentaire. Ceci n’est cependant
pas le cas des systemes logiciels car les défaillances sont dues a des défauts de conception,
de mise en uvre et / ou de configuration. Ces défauts sont par conséquent embarqués avec
les logiciels et leurs manifestations (erreurs) sont systématiques. Ceci signifie que toutes
les copies d’un logiciel présentant un défaut auront un comportement identique vis a vis
les mémes données d’entrée (malveillantes). Par conséquent, la redondance seule n’est pas
efficace contre les défauts logiciels.

La diversité de conception a été donc utilisée pour réaliser I’'indépendance de pannes logi-
cielles. Cette approche est mise en ceuvre par la N-version programmation ou différentes
implémentations de la méme spécification fonctionnelle sont développées par des équipes
indépendantes. L’idée de base sous-jacente de cette technique est que la diversification du
développement du logiciel produirait des programmes fonctionnellement équivalents mais
qui ne partagent pas les mémes défauts.

Du point de vue de scurité, un défaut dans un logiciel est une vulnérabilité. Celle ci peut
finir par étre exploité avec succes via une faute externe malveillante interactive (une at-
taque). Une attaque peut causer la violation d’une propriété de sécurité du systeme. Par

DRDC Valcartier TM 2010-287 v

conséquent, la diversité a suscité I'intérét de la communauté de la recherche en sécurité
des logiciels. L’idée principale de I’approche de sécurité basée sur la diversité est que la
réduction des vulnérabilités communes a pour conséquence d’accroitre la difficulté pour
qu’un individu ou une organisation malicieux réussisse a violer la scurité d’un systeme lo-
giciel dont I’architecture est fondée sur la diversité avec la méme attaque.

L’objectif principal de ce rapport est de documenter 1’état de 1’art en termes de concepts,

des techniques et des technologies basées sur le déploiement de la redondance avec la

diversité pour supporter la sécurité des systémes logiciels. Cette étude de 1’état de I’art a

révélé que le principe de la diversité est necessaire pour complémenter la redondance pour

étre a la base de systemes logiciels qui sont capables de résister, détecter et tolérer des
cyber-attaques. En particulier, cette étude a montré que la diversité peut étre déployée en
trois manieres différentes :

e Diversité automatisée : Ces techniques consistent a appliquer des procédures automa-
tiques de randomisation soit du code (Instruction Set randomisation), de 1’organization
de I’espace d’adressage (Address Space Randomization and Data Space Randomization)
ou des deux. Ces techniques fournissent un moyen de € probabiliste contre les menaces
inconnues.

e Surveillance du comportement et de détection d’intrusion fondées sur la diversité : Plu-
sieurs techniques utilisant la diversité ont été mis de I’avant pour permettre un sur-
veillance éfficace du comportement des systemes afin de détecter les activités suspectes
ou les intrusions.

e Architectures tolerantes aux intrusions basées sur la diversité.

vi DRDC Valcartier TM 2010-287

Table of contents

Abstract e 1
Résumé e 1
Executive summary L e e iii
Sommaire v
Table of contents L vii
Listof figures e xi
]l TfEOUWCEION o o : & @ : & @ : @ 8 8 @ 8 8 « « = « « @ = <t e e aaea . 1
lal ThHEODJEEIVES : 5 o s 5 55 5 55 « « = ¢ o ¢ o v o v 0 v v o v o v o o o o 3
1.2 Organization of the Document 3
2 Background 4
21 System Dependability and Security 4
2.2 Threats to Dependability: Fault, Error and Failure 4

2.3 Threats to Security: Vulnerability, Attack, Intrusion and Security Failure . 6

2.4 How to Achieve Dependability? 7
2.5 Intrusion Tolerance and Survivability 7
3 Diversity as a Defense Mechanism 9
3.1 Redundancy Limitation for Software Fault Tolerance 9
3.2 DesignDiversity 9
3.3 Diversity for Security Purposes oo 9
4 Automated Diversity Techniques L. 11
4.1 Instruction Set Randomization. 11
4.2 Address Space Randomization 11
4.3 Data Space Randomization 12

DRDC Valcartier TM 2010-287 vil

4.4 System Call Randomization 12
5 Diversity-based Intrusion Detection 15
5.1 Intrusion Detection using Output Voting 15
5.2 Behavior monitoring in N-Variant Systems 15
5.2.1 Multi Variant Execution Environment 16
53 DBelavioralIDiSHENCE : c a : c s s a:wan:om:ca: cascansanss 16
5.4 Intrusion Tolerance for Intrusion Detection Systems 18
6 Diversity-based for Intrusion Tolerance 20
6.1 System Integration Architectures 20
6.1.1 Dependable Intrusion Tolerance Architecture 21
6.1.2 Salable Intrusion-tolerant Architecture 22
6.1.3 Hierarchical Adaptive Control of Quality of service for

Intrusion Tolerance 23
6.2 Middleware-based Software Architectures 25
6.2.1 Intrusion Tolerance by Unpredictable Adaptation 25
6.2.2 Malicious and Accidental Fault Tolerance for Internet Applications 26

6.2.3 Designing Protection and Adaptation into a Survivability
Architecture L L 30
6.2.4 Fault/intrusiOn REmoVal through Evolution and Recovery . . . 30
6.2.5 Intrusion Tolerant Distributed Object System 52

6.2.6 Secure System Architecture Based on Dynamic Resource
Reallocation 32
6.3 Other Architectures and Frameworks 33
6.3.1 Willow Architecture oo 33
6.4 Protocols used in Intrusion Tolerance 36
6.4.1 Agreementand Consensus 36

viii

DRDC Valcartier TM 2010-287

6.4.2 Byzantine Group Communication 36

6.4.3 Replication with Byzantine faults 37

7 Diversity Modelmgand ANAlYSIS : = « : = : s s s s m: 2 9 s 8 9 : 86 6@ s 68 s 39
7.1 Probabilistic Modeling of Diversity-based Security 39
7.1.1 Eckhardtand Lee (EL) model 39

7.1.2 Littlewood and Miller (LM) Model 40

7.2 Intrusion Tolerance Dynamic Behavior Model 41
7.3 Effectiveness of Diversity for Security 43

7.4 Methodologies and Techniques for Security Evaluation of

Diversity-based Software Systems 43

7.4.1 Qualitative Evaluation Approaches 43

7.4.2 Quantitative Evaluation Approaches 43

8 Related Work on Diversity 4
8.1 Dependable Diverse SQL Server Architecture 44

8.2 Experimental Study of Diversity with Off-The-Shelve Anti-Virus Engines 44

8.3 CloudAV: Diversity-based Anti-virus Platform 45

8.4 TCP Protocol Parameter Diversity for Communication Security 45

85 RelatedPatents 46
8.5.1 Intrusion Tolerant Communication Networks and Associated

Methods 46

8.5.2 Diversity-based Security System and Method 46

9 Conclusions and Future Work Lo 47

References L 49

Listof Acronyms e 58

Annex A: Related Research Projects 59

DRDC Valcartier TM 2010-287 X

DRDC Valcartier TM 2010-287

List of figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Figure 22:

Growth of Malicious Code (Source: Symantec) 1
Internet Growth Lo 2
Dependability and Security Attributes 4
Dependability and Security Attributes, Threats and Means 5
Faults, Error, Failure Chain 5
Faults Classification 6
AVIModel 7
HaultsTolerance TCehfiQuesS « : « s s 0 s c 85 s 95 s 05 6 @ 66 @ 608 8
Intrusion Tolerance Conceptual Model 8
Multi Variant Execution Environment Architecture 17
General Pattern of Intrusion Tolerance Architecture 20
DIT Architecture e 21
SITAR Architecture e 23
HACQIT Architecture 24
ITUA Architecture 26
ITUAMiddleware 27
The MAFTIA Architecture 28
The MAPTIAMIdJIEWare : =« : a : c a: s a:ca:ca:caneasnsa 29
DPASA Architecture Lo 31
FOREVER AFChWEEITE : : s s st st v m:ca:cascancassa 32
ITDOS-based Client Server Architecture 33
The Willow Architecture, 34

DRDC Valcartier TM 2010-287 X1

Figure 23: The Willow Architecture Components

Figure 24: State Transition Model of an Intrusion Tolerant System

Figure 25: Architectural Approach of CloudAV

X1l

DRDC Valcartier TM 2010-287

1 Introduction

The security of software systems remains an extremely critical issue. This is evidenced
by the continuous growth of cyber threats. For instance, Figure 1 which is taken from
(Symantec 2009), shows the tremendous increase in terms of new malicious code. In ad-
dition, cyber-attacks are not only increasing in number but also in sophistication and scale.
Indeed, some attacks are now nation/state class such as the one which targeted Estonia in
2007 (emerging risks team 2009). This observation can be explained by a combination of
a multitude of contributing factors which we consider in this section of the document.

The system functionality, which is implemented by software, is increasingly complex. This
makes it very difficult to produce fault free software in spite of the quality control that
should be part of the software development process. These residual faults constitute often
dormant vulnerabilities. These would eventually end up being discovered by determined
malicious opponents and exploited to carry out cyber-attacks. In (PITAC 2005) the
problem of software security was summed up as follows:”Software development is not yet
a science or a rigorous discipline, and the development process by and large is not
controlled to minimize the vulnerabilities that attackers exploit. Today, as with cancer,
vulnerable soft-ware can be invaded and modified to cause damage to previously healthy
software, and infected software can replicate itself and be carried across networks to
cause damage in other systems. Like cancer, these damaging processes may be invisible to
the lay person even though experts recognize that their threat is growing.”

1,800,000 —
1,656,227
1,600,000 [—
1,400,000 |—
1,200,000 |—

1,000,000 [—

800,000 [—
624,267

Number of new threats

600,000 [—
400,000 —
200,000 — 113,025 140,690
20,547 18,827 Ry . .
0 e — - 1

2002 2003 2004 2005 2006 2007 2008

Period

Figure 1: Growth of Malicious Code (Source: Symantec)

DRDC Valcartier TM 2010-287 1

Software systems are distributed and interconnected through open networks such as the
Internet in order to communicate and to transport data. The Internet user population is
growing at a dazzling pace (as is shown in Figure 2). This in turn increases tremendously

the risk of attacks as a fraction of this population is likely to have malicious motiva-
tions.

Internet Domain Survey Host Count

600,000,000 1

700,000,000 +

600,000,000 +
500,000,000 +
400,000,000 +
300,000,000 +
200,000,000 +

100,000,000 +

0

ol TR R SN SN SN SN TR SN T N SN SN S S S 1 PR
T T

T
(L] -
o o

I i i T T T T T T } I
T w0 o m O 92— & M0 T W W@ M~ o @
T T 9 T T YT T T T TTORTROTOTOT T
= = = = = = = = = = = = = = = =
[is} [is} [is} [is} [is} ix] ix] [is} [ix]] [is}] [is} [is}] [is}
= = = = = = = = = 4= 4, 43 4, 4, 4 4

Source: Internet Systems Consortium [www.isc.org)

Figure 2: Internet Growth

In general, information systems are are running significant similar software. This is called
IT monoculture (Lala and Schneider 2009), (Lala 2003). On one hand, IT monoculture
present several advantages, including easier management, fewer configuration errors and
support for interoperability. On the other hand, IT monoculture has serious disadvan-tages.
Indeed, systems share common vulnerabilities and consequently facilitate the spread of
viruses and malware. In (Symantec 2009), one can read the following: ”In order to
compromise the largest possible number of web sites with a single mechanism, attackers
will attempt to compromise an entire class of vulnerability by searching for commonalities
within them and generically automating their discovery and exploitation. This allows at-
tackers to compromise web sites with the efficiency commonly found in network worms.”
This means that the success of attacks depends, to a large extent, on the presence of

common vulnerabilities in the IT infrastructure (Operating systems, middleware, Web
servers, etc).

One emerging approach which aims at mitigating the effects of I'T monoculture in order to

achieve software security is based on the principle of diversity. The latter has already been
used to complement redundancy in order to achieve software systems reliability and fault

2 DRDC Valcartier TM 2010-287

tolerance. In the context of software security, the approach based on diversity seeks specif-
ically to reduce the common vulnerabilities between redundant components composing a
system. In consequence, it becomes very difficult for a malicious opponent to design one
attack that is able to exploit different vulnerabilities in the system components simultane-
ously. Therefore the resistance of the system to cyber attacks is increased. Moreover, the
ability to build a system out of redundant and diverse components provides an opportunity
to monitor the system by comparing the behavior of the diverse components when
presented with the same input. This enables the system to be endowed with efficient
intrusion detection capability. Finally, diversity is not only limited to space by deploying a
set of redundant and diverse but functionally equivalent components. It can also be time
based which means that the system is designed through diversity with the ability to adapt
its behavior or structure over time. This adaptation can be reactive after the detection of an
intrusion or proactive.

1.1 The objectives

In this report, we document a state of the art study of the different approaches to software
systems security using the diversity principle. In this study we have put the focus on the
concepts, techniques and technologies based on the deployment of redundancy with
diversity as a mechanism to achieve the security of software systems. Therefore, this doc-
ument consists mainly of: (i) a comprehensive review of the most important previous and
current research initiatives and the available literature devoted to the usage of the redun-
dancy with the diversity principle for the design and deployment of secure, attack tolerant
and survivable software systems, and (ii) identification of important research issues that
require further effort in a future project. Ultimately, this state of the art study aims to set the
stage for an extensive investigation of a framework which enables the construction of
attack-tolerant and survivable command and control software system.

1.2 Organization of the Document

The present document is organized as follows: In order to make this report as self contained
as possible, we introduce in Section 2, the main concepts and definitions from the domain
of dependability and fault tolerance. The idea of using diversity as a defense mechanism
and the original research work devoted to it are introduced in Section 3. Sections 4, 5 and 6
are respectively devoted to presenting the three main approaches of using diversity for
security purposes, namely, the automated diversity, the diversity-based behavior
monitoring and the intrusion tolerance approach. We devote Section 7 to the main
research work which focuses on the analysis and evaluation of the extent of security
provided by diversity. Other research work related to diversity is presented in Section 8.
We conclude this report and present some issues which provide opportunity for future
research work in Section 9.

DRDC Valcartier TM 2010-287 3

2 Background

In order to make this document as self-contained as possible, we introduce the fundamental
concepts and definitions from the domain of dependable computing and fault tolerance.

2.1 System Dependability and Security

Dependability and security are two important system properties. The concept of depend-
ability is defined in (Avizienis et al. 2004) as the ability to deliver service that can be
justifiably trusted. Dependability is an integrating concept which encompasses several
attributes: availability, reliability, safety, integrity and maintainability. Security is also an
integrating concept, which encompasses the attributes of confidentiality, integrity and
avail-ability. Therefore, dependability and Security are closely related and their
relationship is defined in terms of their main attributes as shown in Figure 3.

— Availability -

| Reliability

—— Safety
Dependability Security

Confidentiality

—— Integrity —

L Maintainability

Figure 3: Dependability and Security Attributes

A conceptual framework has been established in (Avizienis et al. 2004) to present the
different aspects related to the concept of dependability. This framework considers the
concept of dependability from three different perspectives: Attributes, Threats and Means
as it in Figure 4.

In the following sections, we focus on the threats to and means to achieve dependability.

2.2 Threats to Dependability: Fault, Error and Failure

In this section, we introduce the definitions of the concepts of Fault, Error and Failure.
These definitions are the most widely accepted in the system dependability and fault-
tolerance community considering a variety of publications (Avizienis et al. 2004), (Kienzle
2003), (Laprie 1995).

4 DRDC Valcartier TM 2010-287

__Availability
| Reliability

| Safety

_ Attributes __| Confidentiality

L Integrity

L Maintainability

Dependability __ Faults

Security Threats __| Errors

L Failures

__ Fault Prevention

| Fault Tolerance

Means ___| Fault Removal

L Fault Forecasting

Figure 4: Dependability and Security Attributes, Threats and Means

y fault activation y errir propagation causation

S failure—) fault —_

Figure 5: Faults, Error, Failure Chain

The service delivered by a system is its behavior as perceived by the user at the system
user interface. The user is another system (physical, human) which interacts with the
system. It is then a sequence of the system external states.

The service is said to be correct when it implements the function of the system as it is spec-
ified in the functional specification. Therefore, a service failure is an event which occurs
when the delivered service deviates from the correct service. The deviation is called an
error and is the part of the total state of the system that may lead to its subsequent service
failure. The error has an adjudged or hypnotized cause of an error is called a fault. There is
a recurrent causation relationship between fault, error and failures as it is shown in Figure 5.

A comprehensive classification of faults according to six major criteria has been introduced
in (Avizienis et al. 2004) and it is shown in Figure 6.

DRDC Valcartier TM 2010-287 5

Faults

N

r B
Phase of Creation/Occurrence .
Development Operational
System boundaries Internal
_____ A Internal External
Human (\
Phenomenal cause
made Natural Human-made
_____ A | Natural Natural
Dimension Softw HardW HardW | W H |dW
ar ar HardwW
————— f_H (_H | | | Softw
Objective NM (_H
al Mal Mal NMal NMal
_____ NMal NMal ~ NMal Mal Mal
ﬁ (_H | NMal
Intent NDel Del Del Del NDel Del | | (/\ (_H
el e e el e el
_____ NDel Del NDel Del g NDel Del
™A A M RN T
rom L ™
5873 r 333 > | ol
2 3 5 3 o 8 2 ¢ § > > £33 88 - » 3
Capability 338 3% § 283 g 8 g 88 g3 g3 88
L8 g zF 2 58& 3 & g o5 29 25 § 3
3 > » T L@ 5 3 e 36 8 g @ £33
g 3 3 2 B g § &g 3 28 B g
_____ 8 ® = 2 2 8 o § -
| SR IR I I g °
| | | | M °
v 4
323 pr ey gy 33 2% ,ppiisz! () M
Persistence] 33 5§ 5§35 3 3 3 3 3 z 3 g, g 33 3 28 3 22338 5
3 =1 1 [5 3 [CR7I S0 o3
————— 88353 ; :: ss2 3 32 323332338233 33333
X 22 2 22 3 = 2 3@333"5’.“:}3@'5'3;\;
22 g 8223 7

Figure 6: Faults Classification

2.3 Threats to Security: Vulnerability, Attack, Intrusion

and Security Failure

According to the fault classification presented in the previous section, it emerges that vul-
nerability, attack and intrusion are special classes of faults. These are defined as follows:

Vulnerability: It is a fault created during the development or operation of of the system
(e.g. design, configuration faults) that could be exploited to create an intrusion. For
example, during a multi-stage attack, an attacker might try to introduce vulnerabilities
in the system in the form of malware.

Attack: A malicious interaction fault that attempts to exploit existing vulnerabilities in
the system, through which an attacker aims to deliberately violate one or more security
properties.

Intrusion: It is a malicious, externally-induced fault resulting from an attack that has
been successful in exploiting a vulnerability. An intrusion is characterized by an erro-
neous system state. For example, a system file with an unjustifiable access privileges for
the attacker.

Security Failure: There is a security failure whenever any of the security properties or
the security policy goals in place is violated. Security failures caused by the errors,
which are in turn caused by intrusions, are not properly handled.

DRDC Valcartier TM 2010-287

Attack fault
""" >C) Intrusion
fault
Eror Failure
ﬁulnerability

fault

Intruder/
Designer/
Operator

Figure 7: AVI Model

Figure 7 depicts the Attack Vulnerability Intrusion (AVI) fault model 7. This model is one
of the results of the MAFTIA project (see 6.2.2) on intrusion tolerant systems and it
captures the relationship between the threats to security mentioned above.

2.4 How to Achieve Dependability?

The followings are the major methods that are often used in combination to achieve the
dependability requirements:

Fault prevention means to prevent the occurrence or introduction of faults.

Fault tolerance means to avoid service failures in the presence of faults.

Fault removal means to reduce the number and severity of faults.

Fault forecasting means to estimate the present number, the future incidence, and the
likely consequences of faults

The objective of fault tolerance is to avoid system failures. To this end, errors should be
prevented from causing failures and therefore they should be detected and properly han-
dled. In the case where errors have caused failures, the system service should be recovered.
In both cases the faults which originated the errors should be handled also. The different
techniques involved in fault tolerance are shown in Figure 8.

2.5 Intrusion Tolerance and Survivability

A system is said to be survivable when it is designed with the capability of providing its
services in a timely manner even if significant portions are incapacitated by attacks or ac-
cidents (Barbacci 1996), (Hiltunen et al. 2003). System survivability is a more general
concept than intrusion tolerance. Indeed, an intrusion tolerant system has the capability of
providing a secure service in spite of intrusions in some of its components (Verissimo et al.
2003). This definition implies that the functionality may be degraded but its secu-rity (i.e.
availability, integrity and confidentiality) is preserved.

The underlying idea of intrusion tolerance is to apply the fault tolerance paradigm to ad-
dress the issue of software system security. Intrusion tolerance is not a new concept nor

DRDC Valcartier TM 2010-287 7

Concurrent Detection
—— Error Detection 4‘:
Preemptive Detection
— Rollback
Fault Tolerance _| | Rollforward
L Compensation

___ Diagnosis

L Recovery

Isolation

L Reconfiguration

L Reinitialization

Figure 8: Faults Tolerance Techniques

is the application of a fault tolerance approach to security a new idea. As a matter of fact,
the first proposal of intrusion tolerant systems goes back the seminal work of (Fray et al.
1986) and (Joseph and Avizienis 1988). The intrusion tolerance approach is based on an
important assumption, which is failure independence. In order to achieve failure
independence, redundancy with diversity is used. In the following section, we focus
particularly on the principle of diversity for security. Later, we consider software
architectures which used diversity to achieve security. Figure 9 shows a conceptual model,
which is put forward in the MAFTIA project, of the intrusion tolerance approach and
how it complements the traditional approach to dealing with the different security threats
(vulnerability, attack).

e Attack Attack Removal
Prevention >
Attack fault
Intrusion Failure
fault Error
L~
e 4

Intrusion
Tolerance

Intrusion
Prevention

L Vulnerability —>

Prevention Vulnerability Removal

Intruder/
Designer/
Operator

Figure 9: Intrusion Tolerance Conceptual Model

8 DRDC Valcartier TM 2010-287

3 Diversity as a Defense Mechanism

In this section, we focus on the origin of the diversity-based software security approach.
We present the first research initiatives that were devoted to this concept.

3.1 Redundancy Limitation for Software Fault
Tolerance

Redundancy has long been used by the fault tolerance community as a fundamental means
to achieve higher system reliability. This has proven to be valid mainly for hardware be-
cause of the failure independence assumption as hardware failures are typically due to ran-
dom faults. Therefore, the replication of components provides added assurance. When it
comes to software, however, failures are due to design and/or implementation faults which
escape the quality controls in place during the development processes. As a result, such
faults are embedded within the software and the manifestation of these faults (i.e errors)
is systematic. That is, every copy of a faulty software will have an identical behavior
when provided with the same input. Therefore, redundancy alone is not effective against
software faults.

3.2 Design Diversity

Design diversity is therefore used to achieve software failure independence. This approach
is implemented by the N-version programming where different versions of the same pro-
gram (i.e. different implementation of the same functional specification) are developed by
independent teams. The rational behind this technique is that the diversification of the soft-
ware development would yield functionally equivalent programs which do not share the
same faults.

3.3 Diversity for Security Purposes

From the security standpoint, a fault embedded in a software is a vulnerability. This may
end up being successfully exploited by an external interactive malicious fault (i.e. attack)
and ultimately enable the violation of the system security property. It is therefore a logical
consequence that diversity has caught the interest of security research community. The
main idea is that by the means of diversity common vulnerabilities are decreased if not
eliminated. As a result, it is very difficult for a malicious opponent to be able to break into
a system composed of a set of diverse yet functionally equivalent components with the
very same attack.

In the following, we succinctly review the main research initiatives into the use of
diversity as a defense mechanism:

DRDC Valcartier TM 2010-287 9

The seminal work presented by Forrest et al. (Forrest et al. 1997) promotes the general
philosophy of system security using diversity. The authors argue uniformity contains, as
a side effect, a potential weakness, because any flaw or vulnerability in an application is
replicated throughout many machines. Therefore, the security and the robustness of a
system can be enhanced through the deliberate introduction of diversity. The paper out-
lines how to introduce diversity using randomized compilation. In particular, this work
discusses a specific extension to the GNU GCC Compiler which, basically, pads each
stack frame by a random amount to defeat stack-based buffer overflow attacks.

Deswarte et al. review (Deswarte et al. 1998) how the different levels of diversity of
software and hardware systems (user and operator level, human-computer interface,
application software level, execution level, and hardware or operating system level)
have made those systems more reliable and secure. More recently, the work presented
in (Obelheiro et al. 2006) distinguishes different dimensions and different degrees of
diversity.

Bain et al. (Bain et al. 2001) presented a study of a set of widespread computer attacks.
This set of attacks includes the Morris worm, which spread by exploiting vulnerabil-
ities in TCP/IP capabilities; the Melissa virus, which used the macro capabilities of a
Microsoft Word attachment to e-mail; and the LoveLetter worm, which used a Visual
Basic script attached to e-mail. The objective of this study was to understand the effect
of diversity on the survivability of attacked systems.

Last but not least, panels of renowned researchers have held intense discussions to ad-
dress the use of diversity as a strategy for computer security and to identify the main
remaining related open issues requiring further research (Taylor and Alves-Foss 2005).
The main outcome of such discussions is that diversity is a different security paradigm
which is in need of further definition. In particular, the discussions highlighted the lack
of quantitative information on the cost associated with diversity based solutions and the
lack of knowledge about the extent of protection provided by diversity.

We can distinguish three categories of approaches which use diversity for security pur-
poses:

Automated Diversity Techniques
Diversity-based Intrusion Detection

Diversity-based for Intrusion Tolerance

The research work pertaining to these different approaches is reviewed and analyzed in
the following chapters.

10

DRDC Valcartier TM 2010-287

4 Automated Diversity Techniques

The Diversity-based approach to addressing software system security, which consists in
developing and deploying multiple versions of the program, is in general associated with
higher cost. In order to cope with this issue, automated (also called artificial) diversity
techniques (Just and Cornwell 2004) are used. These techniques consist in applying
automated procedures to create diverse versions of the software. However, it is not
straightforward to create diversity automatically at the level of functional behavior of
programs such as design and algorithms. Therefore, the diversity-based security
approach is weak in dealing with vulnerabilities that involve design or logical faults
including, for example, input validation faults. Automated diversity is introduced by
applying automatic program transformations that preserve functional behavior and the
programming language semantics. This consists essentially in a randomization of either
the code, the address space layout or both to provide a probabilistic defense against
unknown threats. On the other hand, automatic introduction of diversity presents some
shortcomings. In particular, it is not straightforward to create diversity automatically at
the level of functional behavior of programs such as design and algorithms. Therefore,
diversity-based security approach is weak in dealing with vulnerabilities that involve
design or logical faults including, for example, input validation faults.

4.1 Instruction Set Randomization

The Instruction Set Randomization (ISR) technique (Kc et al. 2003) (Barrantes et al.
2003)(Keromytis 2009) changes the instruction set of the processor so that unauthorized
code will not run successfully. The main idea underlying ISR is to decrease the
knowledge of the attackers about the language used by the runtime environment on which
an application runs. These techniques aim at defending against code injection attacks,
which consist in introducing executable code within the address space of a target process,
and then passing the control to the injected code. Code injection attacks can succeed when
the injected code is compatible with the execution environment. For example, the
injection of x86 machine code to a process running on a SPARC system would crash the
process rather than causing a security failure.

The usage of ISR ggenerates a diversification of the runtime environment such that a suc-
cessful attack against one process or host will not succeed against another. This is
particularly useful in the context of self-propagating malware such as virus and worms,
which exploit the common vulnerability across different systems, and therefore are able to
compromise several systems.

4.2 Address Space Randomization

Address Space Randomization (ASR) (Shacham et al. 2004) is a technique used to increase
software resistance to memory corruption attacks. These are designed to exploit mem-

DRDC Valcartier TM 2010-287 11

ory manipulation vulnerabilities such as stack and heap overflows and underflows, format
string vulnerabilities, array index overflows, and uninitialized variables. The ASR tech-
nique consist basically in randomizing the different regions of the process address space
such as the stack and the heap. The ASR technique has been integrated into the default
configuration of Windows Vista operating system (Whitehouse 2007). Two subcategories
of ASR can be distinguished. The first one is Absolute Address Randomization AAR
include [][]Transparent Runtime Randomization (TRR) (Xu et al. 2003), which
randomizes the absolute memory address of various code and data objects but not the
relative distances between objects. These techniques are effective against pointer
corruption attacks because the objects referenced by a corrupted pointer value is no longer
predictable. As an example, the stack-smashing attack which overwrites functions return
address with a value pointing to a buffer variable holding injected code or data, is
defeated using the AAR technique. This is because the location of the buffer becomes
unpredictable. The second category of ASR technique is called Relative Address
Randomization (RAR), which also randomizes the inter-object distances and therefore is
able to defeat non-pointer attacks.

4.3 Data Space Randomization

Data Space Randomization (DSR) is a different randomization-based approach which also
aims at defending against memory error exploits (Bhatkar and Sekar 2008). In particular,
DSR consists randomizing the representation of data objects. This is often implemented by
applying a modification of the data representation such as applying an XOR operation to
each data object in the memory using a random value (i.e. a mask). The data is unmasked
right before its use. Therefore, this makes the usage of the corrupted data highly unpre-
dictable. This is because even if a malicious opponent succeeds in corrupting a data (e.g
overwrites a variable X with a value v), using a buffer overflow for example, this data is
interpreted with a random value (the value of X is interpreted as v (@) myx where my is the
mask corresponding to X). Consequently, because of this random incorrect value v@) my,
the software may behave unpredictably (in general it crashes) preventing the security from
being compromised. The DSR technique seems to have advantages over ASR. In
particular, DSR provides a larger range of randomization such that on 32-bit

architectures, integers and pointers are randomized over a range of 232 values. In
addition, DSR is able randomize relative distance between two data objects which
addresses the weakness of the ASR technique.

4.4 System Call Randomization

One way to achieve a code injection attack is based on making direct system calls in order
to interact with the operating system. Chew and Song (Chew and Song 2002) proposed
a technique to defend against such attacks based on randomizing the mapping of system
calls. This defense forces the attackers to guess the system call numbers and
consequently any wrong number used will lead to an incorrect correct system call. This

12 DRDC Valcartier TM 2010-287

technique requires a recompilation of the kernel with the randomized system call mapping.
In addition, it requires rewriting of existing binaries such that the old system call numbers
are replaced to reflect the new mapping. Even though this work is widely referenced by the
different authors of the other automated diversity techniques, it is not clear whether this
work has been evaluated.

DRDC Valcartier TM 2010-287 13

Artificial Diversity Techniques

Objective e Defense against code injection attacks
e Defense against memory-related vulnerability exploits
Principle Disadvantage Reference
Instruction Set Ran- | diversification of the runtime en- C .
Jomization vironment (processor language) ° wmoﬂooco: limited to code injec- | @ (Kc et al. 2003)
tion attack e (Barrantes et al.
e Requires run-time support 2003)
o (Keromytis 2009)
%%MMMMMOM@ ace Ran- MN%%MMMMMMMMM@%M:MWM@. M HmoHMMm e Ineffective against attacks that | ¢ (Shacham et al.
heap) corrupt non-control data 2004)
e Low entropy enabling brute force | ¢ (Whitehouse 2007)

attacks

(Xu et al. 2003)

Data Randomization

Randomization of the represen-
tation of data objects through the
application of XOR operations
to each data object using a ran-
dom value

runtime overheads due to:

need for masking/unmasking af-
ter every memory access
additional memory overheads for
accessing mask data

(Bhatkar
2008)

and Sekar

System Call Random-
ization

Randomization of the mapping
of system calls in order to de-
crease the attacker correct sys-
tem call number knowledge

Recompilation of the OS kernel
Rewriting existing binaries

(Chew and Song 2002)

DRDC Valcartier TM 2010-287

14

5 Diversity-based Intrusion Detection

Intrusion Detection Systems (IDSs) are an established component of the security solution.
The objective of IDSs is essentially to generically detect attacks/intrusions. In general,
IDSs can be classified according to the approach used which can be knowledge-based and
behavior-based. The IDSs which implement the former approach use a signature database
that describes known attacks and intrusions, using that information to perform the de-
tection. The IDSs based on the latter approach have or build data about what is normal or
expected behavior, and detect deviations from it. Moreover, IDSs can also be host-based
(i.e. detect intrusions in the host) or network-based (i.e detect malicious activity in a net-
work). A difficult issue with IDSs is the problem of false negatives and false positives.
The former is the omission of the detection of a real intrusion and it is due to the lack of
knowledge (signature) about the IDSs database. The latter are alarms which turn out to
not to be a real attack/intrusion. This is a problem of reference model accuracy. A typical
and conservative strategy used by the IDSs consists in generating large quantities of these
alarms in order to minimize missing a real malicious activity. The obvious drawback of
such a strategy is the system management is tedious.

In this section, we put the focus on intrusion detection systems for two reasons. First,
IDS are a part of an intrusion tolerance architecture as they are the trigger of the
recovery processes or the adaptive responses. In addition, intrusion detection can take
advantage of the same principle of diversity as systems that are based on output voting.
Second, intrusion detection systems can themselves be made intrusion tolerant. In the
following section we consider the research work which addresses this aspect.

5.1 Intrusion Detection using Output Voting

Several systems used output voting for the sake of detecting some types of server compro-
mises. As an example, the HACQIT system (Reynolds et al. 2002), which will be
described further in this report, uses the status codes of the server replicas responses. If the
status codes are different, the system detects a failure. Totel et al. (Totel et al. 2006)
extended this work to make a more detailed comparison of the replica responses. They
realized that web server responses may be slightly different even when there is no attack,
and proposed a detection algorithm to detect intrusions with a higher accuracy. These
projects specifically target web servers and analyze only server responses. Consequently,
they cannot detect a compromised replica that responds to client requests consistently,
while attacking the system in other ways.

5.2 Behavior monitoring in N-Variant Systems

N-variant systems (Cox et al. 20006) is a framework which enables execution of a set of

automatically diversified variants using the same inputs. The framework monitors the

DRDC Valcartier TM 2010-287 15

behavior of the variants in order to detect divergence. The variants are built so that an
anticipated type of exploit can succeed on only one variant. Therefore, such an exploit can
be rendered detectable. The building of the variants requires a special compiler or a binary
rewriter. Moreover, this framework detects only anticipated types of exploits, against
which the replicas are diversified.

5.2.1 Multi Variant Execution Environment

The multi variant code execution (Salamat et al. 2009) (Weatherwax et al. 2009) is a run-
time monitoring technique, which prevents malicious code execution. This technique uses
diversity to protect against malicious code injection attack. This is achieved by running
several slightly different variants of the same program in lockstep (Salamat et al. 2009).
The behavior of the variants is compared at some synchronization points, which are in
general system calls. The divergence in the behavior is suggestive of anomaly and raises
an alarm.

The architecture of Multi Variant Execution Environment (MVEE) proposed in (Salamat

et al. 2009) is shown in Figure 10. It allows conventional applications to run along

with ones which are protected through diversity. MVEE is an unprivileged user-space
application which does not need kernel privileges to monitor application. The main
features of this architecture are:

e The monitor: This is the main component of the MVEE. The monitor creates child pro-
cesses for the variants. System call made by the variants are intercepted by the monitor
in order to synchronize the variants. These should make the same system call with
equivalent arguments within a short time window.

e Reverse Stack Execution: This is a compiler driven technique used to generate program
variants. In (Salamat et al. 2009), the two generated variants which write the stack in
opposite directions (i.e conventional downward direction and the reverse -upward direc-
tion). This enables a variant to be obtained that is resilient against code injection attacks
exploiting stack based buffer overflow such as activation record overwrites, return-to-
lib(c) and function pointers overwrites. Indeed, the two variants will execute two
different sets of instructions causing a divergence that will be detected by the monitor.

5.3 Behavioral Distance

Diversity can be leveraged to support and enhance the effectiveness of intrusion detection
systems. Traditional anomaly-based intrusion detection proved to be of limited
effectiveness against mimicry attacks (Giffin et al. 2006). These attacks managed to
emulate the original system behavior including returning the correct service response.
These limitations were strong motivations for using "behavioral distance”, which
measures the extent to which two processes behave differently when provided the same
inputs. Therefore, behavioral distance enables the detection of sophisticated attacks
through the comparison of the behaviors of two diverse processes running the same
1mput.

16 DRDC Valcartier TM 2010-287

Diverisfied
Application
4)
Conventional Diversified Library
Application 9)
_ Multi-Variant
Library Execution
L) Environment
[Operating System j

Figure 10: Multi Variant Execution Environment Architecture

Gao et al. proposed two approaches (Gao et al. 2006a) (Gao et al. 2006b) for the
measurement of behavioral distance. The first approach (Gao et al. 2006a) is based on
Evolutionary Distance (ED) (Sellers 1974), which is studied in the molecular biology and
evolution field of research. ED-based behavioral distance of two sequences of system calls
is a two step process. The first step is a pre-processing, which handles the misalignment
between system call sequence due to the diverse implementations or diverse platforms.
The second step computes the distance as a sum of the distances of corresponding pairs of
system calls using a universal distance table. This table is established in a learning phase
in a secure operational context. The ED-based behavioral distance approach suffers from
an important limitation, however, which stems from the fact that it does not take into
consideration the order of system calls. For instance, reversing the two sequences yields
the same distance.

The second approach (Gao et al. 2006b) is based on Hidden Markov Models (HMM) and
it addresses the aforementioned limitation of ED-based behavioral distance. Intuitively,
HMM models are double stochastic processes. A first non observable stochastic process
influences a second which generates a sequence of observable symbols. These symbols
represent process behavior, such as the system calls, while the non observable states
model the by-product tasks performed by the processes such as opening a network socket
or writ-ing a file.

The important observation put forward by the author is that these hidden states should be
the same or similar, which corresponds to the same program executed on different
platforms or two programs implementing the same functionality such as two different web
servers. The observable behaviors of the two processes can then be correlated in the case
of no attack otherwise the behavioral distance is increased. Gao et al. use a single HMM
to model both processes where a pair of system calls is an observable symbol of the
HMM. Each observable symbol 1is generated by hidden states with some
finite probability. With the HMM-based approach, the behavioral distance is the
probability with which the HMM generates the pair of system call sequences of interest.

DRDC Valcartier TM 2010-287 17

One general drawback of the behavioral distance approach is that it is control flow based;
it uses only the system call number and not the system call arguments. Therefore, the
attacks which do not change the system call behavior but exploit the system call
arguments would not change the distance and therefore would not be detected. Gao et al.
presented (Gao et al. 2009) a very interesting proof of concept in order to demonstrate
how behavioral distance can be used in practice and to evaluate its performance. This
proof of concept consists in a software architecture based on virtualization, which enables
monitoring of the system call behavior of two diverse platforms. This architecture is used
to implement via two applications namely a web server and a game server. This
implementation shows the feasibility of the concept but also reveals the challenges which
face the use of behavioral distance. In particular, it is necessary to account for the
semantics of the service to be monitored in order to correctly capture the system call
sequences. Indeed, the web server application, which uses the traditional request-
response-transactional model, was relatively easy to adapt in contrast to the game server
application where the authors had to use the player ID (semantic level information) in
order to differentiate the system calls instead of the process/thread ID in the case of the
web server application.

Finally, the diversity dimension considered in the software architecture presented in
(Gao et al. 2009) is limited to two operating systems both running the same application
in parallel. This suggests that the scalability of this approach to higher levels of diversity
involving complex configurations, including the usage of more operating systems and/or
different implementations of the same application needs further investigation.

5.4 Intrusion Tolerance for Intrusion Detection
Systems

IDS is basically a software system, which may have security weaknesses and vulnerabil-
ities of its own that result from flawed design assumptions. Therefore, the security of
the IDS is also an issue which need to be addressed. In addition, IDS are an important
component of the security solution, which makes them targets for attackers, who attempt to
crash an IDS through exploiting these vulnerabilities. Attackers tend to first disable the
IDS in order to conceal their subsequent behaviors. Therefore, it is necessary to ensure
continuity of IDS service. However, as a newly emerging field, IDS dependability has not
been addressed adequately. Some research proposals (Shen et al. 2000) (Yu and Frincke
2004)(Siqueira and Abdelouahab 2006) discuss the issue of establishing mechanisms to
respond to attacks. However, the mechanisms proposed are isolated from the IDS in-
frastructure. Furthermore, the effectiveness and performance of the mechanisms are not
rigorously evaluated across IDSs.

18 DRDC Valcartier TM 2010-287

(pa19919p 2q
Jjou pnom syudwW
-n3Ie [[B0 WISAS
Ay} Auo opdxd

SuLI0)TUOTA JOTABYQY PI[qRU-AIISIAAL(

yormygm syoe)e
(600C | 9UL) syuowngre
B 12 O0BD) e | [[BO WAISAS oY) sindut owes
(99002 Jou pue Ioquinu JOTABYQQ Q) Jojiuowr | oyl papraoid udaym
[1 oeD) e |[Eo wasks o g ndino oy} uo | AQUAIPIP ABYIQ
(29007 A[uo sosn 11 se SNd0J AJUO Jou S0P | $9ss201d (ISIAAIP)
® 1 oen) e | poseqmop ﬁob:oo o | 2 sEsoene A | om) yodmgm 0} jud}
jsuregde QATIOOPH | -X0 QU) SAINSBIJN | Q0UBISI(] [BIOIARYDY
syodxa pojedt d
-onue AUo 109Jo(] e naut owes
IomImar ATeuiq JUBLIBA QUO A[UO UO | 9UY) [JIM SJUBLIBA
(9002 o 5? dwos :N.S Pa2oons ued S)O[dXd | POyISISAIp A[[eIoyn
°® 1 x0)D) e | -ads . mobswo.m ° o e 0s 3qing | ~Ig JO UORNOIXS ot
: e sjueLieA QU | SUI[qRUD YIOMIWERL] SWIISAS JUBLIBA -N
(ATIUQ)SISUOD
T 10 MHWONV . sysanbar juarp O ndur dwes Ay uaAI3
I ﬁ. L spuodsar jey) eordax SIOAIdS JO)9S Pay
(00T 1B 19 g
SPIOUATY) o pastwordwod SIOAIAS | -ISIQAIP ® Jo indino
Pl jsurede QATOQJAUI | qoM IO} JudyJy | oy Jo uosuredwo)) 3unop mdinQ
QOUQIRJY suoneIuI| J3rueApY ordroung

19

DRDC Valcartier TM 2010-287

6 Diversity-based for Intrusion Tolerance

This section is devoted to the presentation of the most important software architecture. We
distinguish two categories of such architectures. The first category encompasses those that
use and integrate COTS applications, without almost any modification to the applications,
within a system to provide intrusion tolerance. The second category provides intrusion
tolerance through a middleware. The applications are then aware of the middleware in
order to take advantages of its services.

6.1 System Integration Architectures

The software architectures described in this section implement the architectural pattern
depicted in Figure 11. This approach is ideal for a system integration of Out-Of-The-
Shelf (OTS) components or legacy and closed applications in order to deliver the
services. The servers are shielded from the user side through proxies. A monitoring mech-
anism and a voting mechanism are used to check the health of the system, validate the
results and detect abnormal behavior.

4 N

COTS Server 1
N\ J
s N
- - .
firewall Service Proxy COTS
- ~ (Service 2

COTS Server 2/

Service
IDS

COTS Server 3
\ J

Figure 11: General Pattern of Intrusion Tolerance Architecture

20 DRDC Valcartier TM 2010-287

Application
Servers

HP/UX Openview
Server
Proxies

Solaris/Enterprise
Server

7

1

1 -

Windows NT/
IIS Server

Linux/Apache

Figure 12: DIT Architecture

6.1.1 Dependable Intrusion Tolerance Architecture

The Dependable Intrusion Tolerance (DIT) architecture was developed in cooperation be-
tween LAAS-CNRS and SRI International (Deswarte and Powell 2004), (Valdes et al.
2003). This architecture is used to build Web servers that continue to provide correct
service in the presence of attacks. The architecture design, which is shown in Figure 12,
is based on a diversification approach. Indeed, the architecture used a diversified set of
Web servers (Apache, Microsoft IIS, Enterprise Server, Openview Server etc.) running
on top of a diversified set of hardware including Spare, Pentium, PowerPC which in turn
run a diversity of operating systems (Solaris, Microsoft Windows, Linux, MacOS etc.). In
this architecture, the servers are isolated from the Internet through proxies. The latter are
purpose-built software running on a diversified hardware. In addition, the requests coming
from the Internet are filtered by a firewall. This architecture shows the complementarity of
diversity based intrusion tolerant and prevention security mechanism. The filtered requests
are handled by the proxy leader, which then distributes them to the Web servers and checks
the responses before forwarding them to the client. The remaining set of proxies monitor
the behavior of the leader by observing the traffic firewall/proxy and proxy/servers. A new
leader is elected in case of the leader failure. In addition, the proxies process alarms issued
by intrusion detection sensors placed on the Web servers and the networks.

In this architecture, different redundancy levels (the number of actual different servers
used to handle the same request) are used namely simplex mode (one server), duplex mode
(two servers), triplex mode (three servers) or all available servers. The servers deliver back
to the leader a response and an MD35 checksum of the response. These are compared by
the leader in order to decide which response to send back to the user. This comparison is a
majority vote in case of triplex or all-available modes.

The alert level is set based on the alarms triggered by the intrusion detection mechanisms, the

errors detection mechanisms (result comparison) and external information sources (CERTSs).
The redundancy level is dynamic and is set to the alert level and it represents the adaptation

DRDC Valcartier TM 2010-287 21

in this architecture.

The DIT architecture has been enhanced and extended recently in (Saidane et al. 2009) to
propose a generic intrusion tolerant architecture for Web servers. Indeed, the proposed ar-
chitecture, in contrast with the original DIT architecture which supports only servers with
static content, has provision to address dynamic content and online updating issues.

6.1.2 Salable Intrusion-tolerant Architecture

Scalable Intrusion Tolerant Architecture (SITAR) for distributed services is an intrusion
tolerant architecture (Wang et al. 2003b). The general structure of SITAR architecture is
shown in Figure 13. The architecture is therefore composed of the following components:
e Proxy Servers: The proxy servers are the only machines of the architecture that are
visible to the end users. Therefore, the COTS servers are not directly accessible. In
SITAR, the proxy servers share a pool of virtual IP addresses which support address
migration and thus enable the load balancing and dynamic reconfiguration. Since the
proxy servers are directly accessible by the users, they are exposed to the risk of attacks.
In order to detect such attacks or compromised proxy servers Intrusion Detection System
(IDS) are deployed on each proxy server. The IDS software on each proxy server monitor
the network traffic as well as the behavior of the other proxy servers. The IDS notify the
reconfiguration module upon detection of an attack or a compromised proxy server.

e Acceptance Monitors: The acceptance monitors receive the responses from the COTS
servers and perform acceptance verification checks. They forward the responses and
the verification results to the Ballot Monitors. In addition, the acceptance monitors are
in charge of detecting intrusions in the COTS servers and notifying the reconfiguration
modules. The verification checks are highly application dependent and are in general
checks on the reasonableness of the results.

e Ballot Monitors: The ballot monitors carry out the decision making process to determine
the final response. This is achieved through a majority voting or Byzantine agreement
process.

e Audit Control: Each of the above described components of the SITAR architecture main-
tains a record of its activity. The audit control component verifies the audit records and
identifies abnormal behavior in the components by conducting periodic diagnostic tests.
It also maintains test suites for the components with the required responses to the tests. It
generates requests to the components and detects abnormal behavior by verifying the
responses to the requests. The audit control forward the responses to the dynamic recon-
figuration module for further actions.

e Dynamic Reconfiguration Module: SITAR is a reconfigurable architecture by supporting
various configuration options in support for different security levels. The main aspects
of reconfiguration in SITAR are: the COTS services offered via the proxy servers can be
distributed among the servers based on the service itself (e.g. if the service is only
provided by a subset of the servers), the current load on each proxy or the desired redun-
dancy. The Ballot Monitor might use more robust checksum (e.g. keyed-MDS5) to meet

22 DRDC Valcartier TM 2010-287

COTS Servers

request

response
-

Adaptive
Reconfiguration

Figure 13: SITAR Architecture

increased security requirements. A shift from single ballot voting to distributed voting.
The active redundancy configuration varies from zero to full servers. The ARM evaluates
the notifications and the security relevant information from other modules and decides on
whether a reconfiguration is necessary. Reconfiguration for the Proxy Servers includes
changing the level of access control imposed on clients, degrees of redundancy used to
fulfill a client request and increased auditing.

6.1.3 Hierarchical Adaptive Control of Quality of service for
Intrusion Tolerance

Hierarchical Adaptive Control for QoS Intrusion Tolerance (HACQIT) (Reynolds et al.
2002) is a project that aims at providing intrusion tolerance for web servers. The
architecture is made up of two COTS web servers: an IIS server running on Windows
and an Apache server running on Linux. One of the servers is declared as the primary
and the other one as the backup server. Only the primary server is connected to users.
Another computer, the Out-Of-Band (OOB) computer, is in charge of forwarding the
request of each client from the primary server to the backup one, and of receiving the
responses from each server. Then, they compare the responses given by each server.
The comparison is based on the status code of the HTTP response. In addition to this
detection mechanism, host monitors, application monitors, a network intrusion detection
system (Snort) and an integrity tool (Tripwire) are also used to detect intrusions.

DRDC Valcartier TM 2010-287 23

24

Attacker Workstation

Enclave
Firewall

Authorized User

Ethernet

Corporate LAN

Cluster
Firewall

e Switch 1

N ,
\ ,
e Switch 2
I

“““““““““ OOB Machine

Figure 14: HACQIT Architecture

DRDC Valcartier TM 2010-287

6.2 Middleware-based Software Architectures

The different software architectures reviewed in this section adopt a middleware-based ap-
proach to provide intrusion tolerance. Middleware provides an ideal platform for intrusion
tolerance extensions because it allows for a variety of applications to be built that can trans-
parently take advantage of the intrusion tolerance properties of the middleware, eliminating
the need for custom solutions for each application (Sames et al. 2002).

6.2.1 Intrusion Tolerance by Unpredictable Adaptation

The Intrusion Tolerance by Unpredictable Adaptation (ITUA) architecture is a
distributed objects framework which integrates several mechanisms to enable the
defense of critical applications (Pal et al. 2006). These mechanisms are based
on Byzantine fault tolerance, redundancy, diversity and adaptive responses. The
objective of this architecture is to enable the tolerance of sophisticated attacks aiming at
corrupting a system.

A typical system made intrusion tolerant using ITUA is composed of a set of nodes which
are partitioned into a set of disjointed security domains. A security domain may be
composed of a single node or be composed of several nodes and it provides some
boundary which is difficult to be circumvented by an attackers. An example of a typical
security domain is a LAN protected with a firewall. Diversity is used to ensure that
different domains do not share security vulnerabilities through, for example, the usage of
different operating systems. The overall system architecture of ITUA is given in Figure
16. The middleware allows the transparent replication of application objects. It controls
the number of replicas, their placement within security domains, and maintains the state
consistency of replicas. The ITUA architecture supports adaptation, which may involve
the reconfiguration of system resources and management of certain infrastructure
mechanisms, such as firewalls. In order to manage such adaptation, the architecture uses a
decentralized management system.

In ITUA-based systems, a manager process runs on every host in the ITUA system. All
the managers in the system form the the manager group. Configuration decisions are
made by the managers on the basis of the domain-specific information available to them
and information received from other managers about their own configuration changes.
Each manager carries out two main functions: security advising and replication
management. The behavior of the managers is local as it impacts only the resources
associated with the security domain in which the manager runs. However, some decisions
made by the man-agers can have an effect on replicas running outside the security
domain. Therefore, the managers need to cooperate in order to effect these changes. As a
security advisor, the manager uses several local sensor-actuator loops to monitor the
system for intrusions and perform quick knee-jerk reactions to some specific events when
they are observed, and to provide other managers with information regarding what is
being observed within their domain.

DRDC Valcartier TM 2010-287 25

A representation of the ITUA architecture is shown in Figure 15. This representation shows
also elements (e.g. fuselet, guardian) of a particular application deployed and integrated

Security Replication

Manager | Manager L
Application
Sensor

Actuator GCS

Mgr Mgr

_,

|

|

|

|

|

|

|

|

|
E——— <

Mgr / Mgr]

I~ ~ Répiication | Il Connectior| |
(=Y s

______________\

Security Domain Security Domain

firewall firewall

Figure 15: ITUA Architecture

with ITUA. This application Insertion Embedded Infosphere Support Technologies (IEIST)
(D. Corman and Satterthwaite 2001), which is an advanced avionics systems integrated
with the Joint Battlespace Infosphere (JBI) (USAF 1999).

ITUA relies on redundancy and diversity to enable the intrusion tolerance. Indeed, appli-
cation objects (e.g. fuselets) and the architecture infrastructure elements (e.g. managers)
are replicated. In addition, different forms of diversity are employed where different OS
platforms and diverse application objects implementation. Moreover, ITUA injects uncer-
tainty by adopting adaptive responses.

6.2.2 Malicious and Accidental Fault Tolerance for Internet
Applications

Malicious and Accidental Fault Tolerance for Internet Applications (MAFTIA) (Verissimo
et al. 2000) is a research project supported by EU IST project. This project targeted the
objective of systematically investigating the tolerance paradigm in order to build large-
scale dependable distributed applications. The project had a comprehensive approach that
included both accidental and malicious faults. The research work in the MAFTIA project

26 DRDC Valcartier TM 2010-287

LAYERS

Application {
—

Middleware <

_

Infrastructure {

ITUA

Quo
Managers Contracts

Gateway

Group
Comm.

Application

Gateway

Group
Comm.

Application

ITUA Host

Figure 16: ITUA Middleware

DRDC Valcartier TM 2010-287

27

Payload channel
(internet)

Untrusted Hardware

Control

Trusted
channel

Software

Hardware Local support Distributed software

Figure 17: The MAFTIA Architecture

has focused in particular on the development of a coherent set of concepts that can be used
to build an architecture able to tolerate malicious faults. This has been achieved through
a definition and a mapping of the main intrusion tolerance concepts using the classical
dependability concepts. This mapping led to the definition of the AVI composite fault
model which was presented previously.

The most important contributions of the research work in MAFTIA consists in the design
of intrusion-tolerant mechanisms and protocols including the the MAFTIA middleware. In
particular, the intrusion detection was considered in MAFTIA as a mechanism enabling
the intrusion tolerance as well as a service which needs to be made intrusion-tolerant.
Therefore, MAFTIA developed a distributed intrusion-tolerant intrusion detection system
and investigated the issue of handling high rates of false alarms and the correlation of the
alarms generated by several IDSs. Moreover, MAFTIA generated Trusted Third Parties
(TTPs) such as the design of a distributed intrusion tolerant certification authority based on
threshold cryptography and intrusion-tolerant protocols as well as a distributed optimistic
fair exchange service. Finally, MAFTIA research allowed definition of a distributed
authorization service based on fine grained protection (i.e. at the object method call level).

The MAFTIA middleware is group-oriented. It is designed to support the communica-
tion between groups of application level software components called participants. Two
levels are distinguished in the architecture of the middleware, which is shown. The partic-
ipant level carry out the communication among participants and the the site level handles
inter-host communication. A participant-group is multiplexed into a site-group, which is
composed of all hosts where there are participants of the former group. This division in
participant and site levels is the implementation of a form of clustering where a site is a
cluster of participants and it aims at improving the scalability of the middleware.

28 DRDC Valcartier TM 2010-287

Middleware

Recipient Recipient Recipient
m n p

«—| Activity support services (AS)

Failure detection
and -
memebership

Communication support
services (CS)

<«—— Multipoint network (MN)

Figure 18: The MAFTIA Middleware

At the site level, the Site Failure Detector module, SF, assesses the connectivity and cor-
rectness of sites. The Site Membership module, SM, depends on information given by
the SF module. It creates and modifies the membership of site-groups. The Commu-
nication Support Services module, CS, implements basic cryptographic primitives, group
communication with several reliability and ordering guarantees (reliable multicasts, atomic
multicast), and other core services. The CS module depends on information given by the
SM module about the composition of the groups, and on the MN module to access the
network. At the participant level, the Participant Failure Detector module, PE, assesses
the liveness and the correctness of local participants. The Participant Membership module
PM function is similar to the SM, but uses the membership of participant groups. The
PM uses the information generated by SM and PF modules to monitor all groups with lo-
cal members.It also cooperates with the corresponding modules in the concerned remote
sites. The Activity Support Services module, AS, implements building blocks that assist
participant activity, such as replication and transactional management. The lowest layer of
the architecture is the Multipoint Network module, MN, created over the physical network
infrastructure. The objective is to provide some degree of abstraction of the specific under-
lying network(s) below. Its main properties are the provision of multipoint addressing and
a moderate best-effort error recovery ability, both depending on topology and site liveness
information.

DRDC Valcartier TM 2010-287 29

6.2.3 Designing Protection and Adaptation into a Survivability
Architecture

The Designing Protection and Adaptation into a Survivability Architecture (DPASA)
(Atighetchi et al. 2005), (Chong et al. 2005) is a survivability architecture providing a
diverse set of defense mechanisms. This architecture relies on a robust network
infrastructure which supports redundancy and provides security services such as packet
filtering, source authentication, link-level encryption and network anomaly sensors. The
detection of violations triggers defensive responses provided by middleware components
in the architecture. These responses effect configuration changes as well as the usage of
the network fabric. In the following, we present an overview of the main elements of the
DPASA architecture, which is outlined in Figure 19.

e DPASA uses redundancy in the form of four core quadrants called Quads. Each quad
runs on a dedicated Local Area Network (LAN) implemented as a Virtual Local Area
Network (VLAN). The LANs are connected through a layer 3 switch emulating the
public IP networking infrastructure. Each LAN is protected by a VPN firewalls. The
VPN hide the internal network addresses and payload content.

e The nodes in the four quads use different operating systems (SELinux, Windows and
Solaris) and the clients hosts run SELinux or Solaris.

e Each node has an Autonomic Distributed Firewall Network Interface Card (ADFNIC)
which performs packet filtering and encryption.

e The quads are organized into the following three zones:

— The Executive zone which contains the management and control functions of the sys-
tem. The hosts in this zone are called System Managers (denoted gXSM in Figure
19). The system managers collect system information and control the other
components using adaptive algorithms

— The operations zone which contains the nodes that carries out the main functional op-
erations. In the example of the JBI application, these nodes implement the Publish-
Subscribe-Query (PSQ) service and the supporting repository. This zone includes
intrusion detection systems (qXNIDS) and a Corelator (gXCOR).

— The crumple zone is composed of proxies hosts called Access Proxies (qXAP in Fig-
ure) which proxies the operations zone function for the clients.

e The zoning has an impact on connectivity and communication.

6.2.4 Fault/intrusiOn REmoVal through Evolution and Recovery

Fault/instrusiOn REmoVal through Evolution and Recovery (FOREVER) (Bessani et al.
2008) (Bessani et al. 2009) is a service which is used to enhance the resilience of intrusion
tolerant replicated systems. FOREVER achieves this goal through the combination of re-
covery and evolution. FOREVER allows a system to recover from experienced malicious
attacks or faults using time-triggered periodic recoveries. FOREVER service follows the
hybrid system model and architecture where a system is composed of two parts (payload
and wormhole). This is shown in Figure 20.

30 DRDC Valcartier TM 2010-287

Core Quad 1 Core Quad 2 Core Quad 3 Core Quad 4

_______________________________________ .
I
I
, I
Executive I
Zone I
I
I
I
—————— -
_______________ -
' |
' |
' |
' |
| QICOR |
' |
|
| Operations |
| Zone [
| atPsQ azrsa [l asesa B |
I
' |
' |
' |
| Q1DC Q4DC |- |
' |
I QINIDS Q2NIDS Q2NIDS I
L™ ___ e e B _ _ __ _ a
] —=== ———d=s==dr——Od===d-—————=—=— =
I
I
| Crumple
| Zone
I
I

Layer 3 Swich

Client LANX

Client LAN1

CNIDS1

Hub 4 CNIDS1
Client1

Figure 19: DPASA Architecture

Client1 Client1

DRDC Valcartier TM 2010-287 31

IntrGsion Toﬂeran‘t/Applice tigh
| @ET Repllicaii%h Librany | ™ |

- . FOREMER - |
~ ~ AN

Figure 20: FOREVER Architecture

The intrusion-tolerant application along with the replication redundancy runs in the
payload model while FOREVER service runs in the wormhole part which is guaranteed to
be secure and timely.

6.2.5 Intrusion Tolerant Distributed Object System

The Intrusion Tolerant Distributed Object Systems (ITDOS) provides an architecture for a
heterogeneous intrusion tolerant distributed object system (Sames et al. 2002). ITDOS in-
tegrates a Byzantine Fault Tolerant multicast protocol into an open-source Common Object
Request Broker Architecture (CORBA) Object Request Broker (ORB) to provide Intrusion
Tolerant middleware. Figure 21 depicts a client server architecture using ITDOS.This
foun-dation allows up to f'simultaneous Byzantine failures of replicated servers in a system
of at least 3 f 41 replicas. Voting on unmarshalled CORBA messages allows
heterogeneous ap-plication implementations for a given service, allowing for greater
diversity in implementa-tion and greater survivability. Symmetric encryption session keys
generated by distributed pseudo-random function techniques provide confidential client-
server communications.

6.2.6 Secure System Architecture Based on Dynamic Resource
Reallocation

This system architecture is based on a two-level approach (Min et al. 2004) (Min and Choi
2004). At the node level, dynamic resource reallocation within a computing node is used
to enable preselected critical services to survive even after the occurrence of an attack.
In the case that the node level adaptive actions are no more sufficient to guarantee the
required resources for the services within the node, system level mechanisms for survival
and intrusion tolerance are used. The system level mechanism is to deliver the intended
services transparently to the clients even when a node fails by means of inter-node resource

32 DRDC Valcartier TM 2010-287

Replication
Domain Replication
Domain
Element
N
Client Application oo mm———— -
Code Server-Side : Server :
Client-Side Firewall | Application |
i [Code !
IT ORB (TAO) Firewall I Pt |
(\e—'s| ITORB Mgr
. « > |
________________) Firewall AT\)
> IT-CORBA 4 N |
Voter Proxy | Server |
_________________ \) : Application |
i ! Code !
Marshalling Firewall T ! ! (Group
IT-CORBA , || —
Firewall I Mgr
————————————————— Proxy le—1»{iT-CoRBA [*—> TORB J
s Reliabl (Secure, Proxy e <
ecquSI,ticaeslta e Reliable — ! Server :
Multicast) — : Application :
Firewall | Code | (Group
Ly IT-CORBA ! :
P < l» IT ORB [
IP Multicast >) P ia)
o % Tttt TTTTT T

Figure 21: ITDOS-based Client Server Architecture

reallocation. At this level, the architecture is based on a set of diverse redundant computing
nodes. This architecture is shown in Figure 21.

6.3 Other Architectures and Frameworks

In this section, we present some architectures and frameworks that do not exactly fit into
the two categories presented previously. T

6.3.1 Willow Architecture

The Willow architecture provides a comprehensive architectural approach to survivabil-
ity in distributed applications used in nation critical infrastructure such as transportation,
power distribution, financial services as well as defense critical systems such as the De-
fence Department Global Command and Control Systems (GCCS)(Knight et al. 2001).
This architecture deals with faults with an approach which includes fault avoidance, fault
elimination and fault tolerance. In order to do so, this architecture integrates mechanisms
to avoid faults when the system is deployed and enhanced (i.e. upgraded), mechanisms
to eliminate faults when detected or suspected to prevent them from causing failure and

DRDC Valcartier TM 2010-287 33

Environmental
Information

Trust Information

Analyze

P Respond

Monitor -

Critical Infrastructure
Application

Figure 22: The Willow Architecture

mechanisms to tolerate the effects of faults during operation. The core of this architecture
is the notion of reconfiguration at the system and application level and a framework
which implements a monitor/analyze/respond approach.

The Willow is based on a system architecture called the survivability architecture or
infor-mation survivability control system (Sullivan et al. 1999) which is depicted in
Figure 22. The main characteristic of this architecture is that it has a basic structure of
control loop which is used during system operation to monitor the system, analyze it and
trigger appropriate responses when the analysis reveals any problem. The Willow
architecture extends the control concept by including multiple inter-operating loops.

The main components of the Willow architecture are shown in Figure 23. These are
described briefly as follows:

. Control loops: The Willow architecture is based on a structure composed of a set of
control loops. These use a set of components to achieve sensing, diagnosis, synthesis,
coordination and actuation. The control loops start with a shared sensing capability
within the application nodes (example of sensors can include reports from applications,
application heartbeat monitors, intrusion detection alarms, etc.) The sensing events are
used by the diagnosis and synthesis components to build a model of the application state
and to determine the required state changes. In the current Willow architecture, there are
two of these components: the Administrators Workbench for proactive reconfiguration
and RAPTOR for reactive reconfiguration. Synthesis components issue their intended
application changes as workflow requests, which are coordinated by the workflow and

34 DRDC Valcartier TM 2010-287

I Willow Specific Communications I

metgence X | e [~ A\ w12 A
5 and other input _+ —ee _+
[
. OO -0
: v
Trust Mediator
A A
v Willow Nodes (order of tens)
Willow Communication Substrate -- Siena
_____ L S N S N ——

£ Y Y >

B ” : : 5 Application Nodes (order | : : 5

o S | Application | § |hundredgofthousands) | ‘g | Appiication | & Software Depots

o S : Software : - S : Software : -

® N] (720]

%— | | l [

<% Applicaiton Specific <« | Trust Mediator

Communications

Figure 23: The Willow Architecture Components

the resource managers to ensure their consistency. Workflow events are received by the
Field Docks located within the application nodes and result in local system state changes.
The Field Dock infrastructure provides a single standard interface for universal actuation
at application nodes. Actuation completes the control loop cycle.

e Proactive Control: The proactive controller component in the Willow architecture is
called the Administrative Workbench. It is an interactive application allowing system
administrators to monitor system conditions remotely and initiate the proactive recon-
figurations. The Software Depot shown in Figure 23 is an external source of information
used by Willow in order to complete its reconfigurations. In general, there will likely be
many such depots. This information may include models of new applications, compo-
nents needed in a new configuration, and components that provide additional actuators
allowing to access built-in reconfiguration capabilities, etc.

e Reactive Control: The reactive controller in the Willow architecture is called RAPTOR.
It is a fully automatic structure composed of a set of finite state machines. These carry
out error detection. The faults which cause errors trigger changes in the application
states. Such state changes are input events to the state machine which cause a state
transition. If errors are detected the new state machine state is designated as erroneous.

e Communication: The communication approach used by Willow is based on a highly
efficient event notification service. This service constitutes a communication substrate.
To this end, Willow relies on Siena (Carzaniga et al. 2001).

Since the Willow architecture is based on a control structure, its protection is therefore very
important as an adversary might take control of the Willow infrastructure to breakdown the

DRDC Valcartier TM 2010-287 35

application based on Willow. There are two security concerns in the Willow architecture:
the first is to secure the mechanisms of the architecture and the second is to ensure that
the information used by the system is current, accurate and integral. The first is achieved
by securing the Willow servers, the sensors and actuators in the applications nodes and the
communication mechanisms used by Willow architecture. Several techniques are used
to do so including classical security mechanisms (passwords, biometrics etc), trusted
components for the sensors and actuators. In addition, temporal diversity and
randomization techniques are used. One important note of the author here is the fact that
the Willow architecture is not a diversity based architecture but it uses diversity to a certain
extent to protect its fundamental architecture.

6.4 Protocols used in Intrusion Tolerance

The different intrusion tolerant architecture reviewed in this report uses as
infrastructure some important communication protocols to enable intrusion tolerance. In
this section, we summarize the most important ones.

6.4.1 Agreement and Consensus

The agreement or consensus problem is fundamental to several replication protocols (Fis-
cher 1983). The strongest fault model that researchers consider, such as in the case of
MAFTIA, is the Byzantine model. In this model some participants behave in an
arbitrary manner. If communication is not authenticated and nodes are directly
connected, 3 f + 1 participants are required in order to tolerate f Byzantine faults. If
authentication is available, the number of participants can be reduced to f + 2 [10].

6.4.2 Byzantine Group Communication

An important research area which is fundamental for intrusion tolerance research is group
communication system research. There are several systems that based on the concept of
process groups, including Totem (Moser et al. 1996) and SecureRing (Kihlstrom et al.
1998), Horus (van Renesse et al. 1996), and Transis (Dolev and Malki 1996). There are
also some commercial projects, such as Phoenix at IBM and NT Clusters at Microsoft, that
are based on the concept of process groups. Projects like AQuA (Cukier et al. 1998) and
Eternal (Moser et al. 1999) at UCSB have used group communication to develop higher-
level abstractions to support reliable distributed computing. The ITUA and ITDOS archi-
tecture reviewed in this report use replication on top of group communication systems to
achieve survivability.

36 DRDC Valcartier TM 2010-287

6.4.3 Replication with Byzantine faults

Paxos (Lamport 1998)(Lamport 2001) is a fault-tolerant protocol. It is used to allow a set
of distributed servers, which are exchanging asynchronous messages, to establish a total
order of the client requests in the benign-fault crash-recovery model. Paxos uses an elected
leader to coordinate the agreement protocol. In the case where the leader crashes or be-
comes unreachable, a new leader is elected by the other servers. Paxos requires at least
2f 4+ 1 servers to tolerate f faulty servers. Since servers are not Byzantine, only a single
reply needs to be delivered to the client. Paxos uses two asynchronous communication
rounds to globally order client updates. In the first round, the leader assigns a sequence
number to a client update and sends a Proposal message containing this assignment to the
rest of the servers. In the second round, any server receiving the Proposal sends an Accept
message, acknowledging the Proposal, to the rest of the servers. When a server receives a
majority of matching Accept messages indicating that a majority of servers have
accepted the Proposalit it orders the corresponding update.

Castro and Liskov (Castro and Liskov 1999) (Castro and Liskov 2002) presented a prac-
tical Byzantine fault-tolerant replication protocol called BFT. This protocol addresses the
problem of replication in the Byzantine model where a number of servers can exhibit ar-
bitrary behavior. BFT also uses an elected leader to coordinate the protocol. BFT extends
Paxos into the Byzantine environment by using an additional communication round in en-
sure consistency both in and across views and by constructing strong majorities in each
round of the protocol. In particuler, BFT uses a flat architecture and requires acknowl-
edgments from 2f + 1 out of 3 f 4 1 servers to mask the behavior of f Byzantine servers.
A client must wait for f + 1 identical responses to be guaranteed that at least one correct
server assented to the returned value.

BFT uses three communication rounds. In the first round, the leader assigns a sequence
number to a client update and proposes this assignment to the rest of the servers by broad-
casting a Pre-Prepare message. In the second round, a server accepts the proposed as-
signment by broadcasting an acknowledgment, Prepare. When a server collects a Prepare
Certificate (i.e., it receives the Pre-Prepare and 2f Prepare messages with the same view
number and sequence number as the Pre-Prepare), it begins the third round by broadcast-
ing a Commit message.A server commits the corresponding update when it receives 2 f +1
matching commit messages.

Yin et al. (Yin et al. 2003) propose to separate the agreement component which carry out
the requests ordering from the execution component which processes the requests. This
separation allows the same agreement component to be used for many different replication
tasks and reduces the number of execution replicas to 2 f + 1. Martin and Alvisi
(Martin and Alvisi 2006) introduced a two-round Byzantine consensus algorithm, which
uses 5f + 1 servers in order to overcome f faults. This approach trades lower availability

DRDC Valcartier TM 2010-287 37

(4 f+ 1 out of 5 f + 1 connected servers are required, instead of 2 f+ 1 out of 3 f+ 1 as in
BFT), for increased performance. The solution is appealing for local area networks with
high connectivity. The ShowByz system of Rodrigues et al. (Rodrigues et al. 2007) seeks
to support a large-scale deployment consisting of multiple replicated objects. ShowByz
modifies BFT quorums to tolerate a larger fraction of faulty replicas, reducing the
likelihood of any group being compromised at the expense of protocol liveness. Zyzzyva
(Kotla et al. 2007) uses speculative execution to reduce the cost of Byzantine fault-tolerant
replication when there are no faulty replicas.

38 DRDC Valcartier TM 2010-287

7 Diversity Modeling and Analysis

In this section, we consider research work which has proposed models and analysis
techniques to enable the evaluation of the security of software systems built using the
principle of redundancy with diversity. In our study, we included not only research
related to security but also reliability. This is because models and techniques proposed
to evaluate the security have built upon models and techniques devoted initially to
reliability. In all the studies, the probabilistic approach dominates, because of the high
level of uncertainty. From the reliability perspective, we deal with the uncertainty of the
faults hidden in the system and with the uncertainty of the manifestation of those faults
as errors and eventually as failures. Similarly, from a security perspective, we deal with
uncertainty due to vulnerability and residual design faults which might be exploited and
lead to intrusion. Uncertainty is also related to malicious behavior. For these reasons the
probabilistic approach dominates as the general approach used to model and analyze
software systems.

7.1 Probabilistic Modeling of Diversity-based Security

Littlewood and Strigini discuss in (Littlewood and Strigini 2004) the relevance of redun-
dancy and diversity not only for reliability but also for security. In this paper, the authors
shows that probability is the appropriate formalism for modeling diversity based security
approaches because of the uncertainty involved. This uncertainty from the attacker stand-
point lies in his uncertain knowledge about the system. From the system owner/protector,
on the other hand, the uncertainty stems from the attacker behavior. He doesn’t know when
and how the attack is going to occur. Therefore, the process of novel intrusion into a system
is a stochastic process.

7.1.1 Eckhardt and Lee (EL) model

The EL model (Eckhardt and Lee 1985) captures two sources of uncertainty. On one hand,
the random selection of demands (input) from the demand space. This selection can be
represented by a probability distribution over the demand space. On the other hand, the
randomness is associated with the program development (creation). This is captured
as a selection from the population of all programs that could be written to solve the
problem at hand. This random selection follows a probability distribution.

The key variable in this model is the difficulty function 8(x), which is the probability that
a program selected randomly, via the probability distribution over all the programs, will
fail on a particular input x. In other words, among a big number of programs selected
independently, 8(x) is the proportion of those which fail over the input x. This difficulty
varies over the input space. Therefore, for a randomly selected input, the difficulty is also

DRDC Valcartier TM 2010-287 39

a random variable. The unreliability of a randomly selected program is therefore:
P(randomlyselected program failsonrandomlyselectedinput) = Ex (6(X)) (1)

Considering the independent development of two programs 7; and 7. In EL model this is
the random selection of 7| and 7;. It is shown in [] that for a particular input x:

P(miandmybothfail |inputx) = P(m fails|inputisx).P(fails|inputisx) = [0(x)]* (2)

Or equivalently:
P(my failsonx|m; failsonx) = P(n2failsonx) = 6(x) 3)

Therefore, there is a conditional independence in the failure behavior of the programs: they
are independent for any given (known) input x. The most important result of the EL. model
is that even if the versions are developed independently to achieve this unconditional inde-
pendence, the versions will, however, fail dependently in the case where the input is
selected randomly (unknown). The probability that a randomly selected pair of programs
both fail on a randomly selected input X is:

Y.P(X = x).P(ry,mobothfail|inputisx) = Ex([8(X)?) = Varx (8(X)) + [Ex(8(X)]* (4)

This probability represents then the unreliability of a system composed of two randomly
selected programs (i.e. an 1-out-of-2 system). This result shows that independently devel-
oped programs do not fail independently when executing random inputs. Indeed, the first
term of the above equation is based on the incorrect assumption of independence which
would underestimate the probability of simultaneous failures by the amount of Vary (6(X))

7.1.2 Littlewood and Miller (LM) Model

The EL model implies natural diversity as the independent program development is repre-
sented by a random selection of programs from a population. An alternative approach is
based on "enforcing” diversity in the development of the different versions through the use
of different programming languages, testing techniques, etc.

The LM model (Littlewood and Miller 1989) is a generalization of the EL by taking into
consideration forced diversity. This is achieved using different distributions over the pop-
ulation of all the programs. As a consequence of these different distributions over the
programs, there are different difficulty functions induced over the input space.

The probability of a program randomly selected using a methodology A to fail on an input
x is denoted 64 (x) and the probability of a randomly selected A program failing on a ran-
domly selected input is E, (64 (X))

40 DRDC Valcartier TM 2010-287

The EL is a special case of the LM model when 64(x) = 85(x) V x

Difficulty functions may differ according to the methodology (i.e., for x such that 0,(x) is
large, Op(x) is small). This is the case where the difficulty functions are negatively
correlated.

It is shown that for any particular input x, two programs mA and nB, independently devel-
oped using respectively a methodology A and B, fail independently:

P(ma,mpfailonx) = 04(x).0p(x) (5)
or equivalently,
P(mpfailsonx|ma failsonx) = P(ng failsonx) = 0p(x) (6)

The unconditional probability of a randomly selected pair of programs using the method-
ologies A and B both failing on a randomly selected input X is:

Ex(64(X)05(X)) = Ex(84(X)]Ex [05(X)] +Cov(84(X)05(X)))

The first term of the right hand side part of the above equation is similar to the EL. model
and it represents the result one gets when the independence failure is assumed. The second
term,Cov(04(X)0p(X)), is the covariance of the random variables A and B. This is where
the difference between the EL and LM models lies. Indeed, the covariance term might
be negative or positive. Therefore, the probability of failure of both randomly
selected versions might even be lower that in the independence case.

The intuitive idea underlying the LM model is that the difficulty functions differ from one
development process to another. The correlation between the difficulty functions might
then be negative. Therefore a diversified system (1-out-of-2 system) might have a
reliability even greater than one that could be reached under the assumption of
independence (Littlewood et al. 2001). Although this might be difficult to achieve in
practice, the LM model is still in favor of the diversity as a way to achieve reliability.

7.2 Intrusion Tolerance Dynamic Behavior Model

Geoseva et al. present (Goseva-Popstojanova et al. 2001) a State Transition Model (STM)
to describe the dynamic behavior of intrusion tolerant systems.This model is shown in
Figure 24. The aim of this model is is to provide a framework which can be used to define
the set of vulnerabilities and threats that should be dealt with by the system. In this work,
several known vulnerabilities are mapped to this model. It is not, however, a description of
the behavior of a specific intrusion tolerant model. See State transition diagrams in Figure
24, below . (Wang et al. 2003a)

DRDC Valcartier TM 2010-287 41

system free of
vulnerability

(by accident of %

¥ #
J . pre-attack actions) \
: '!’ “ ll
v restopation/ |
i reconfiguration/
vy evolution restaration’
T i reconfiguration/
v Wi evolifion
i dl: 1
[L]
i i
(N]
1y 1
i "
] ‘1]
(BN intrusion K
_— tolerance riggered ;
restdration/ P
reconfiguration/ -~
evolution i
\ - ‘
]
L
L]
!
1
G good state TR triage state
¥V wvulnerable state FS fail-secure state
A active antack state GDr graceful degradation state
MC masked compromised state F failed state

UC undetected compromised state

Figure 24: State Transition Model of an Intrusion Tolerant System

DRDC Valcartier TM 2010-287

7.3 Effectiveness of Diversity for Security

There is very limited previous research focused on evaluating the actual effectiveness of
implementing diversity in order to achieve software system security. We have identified
two recent studies which contributed to address this question. In this section, we describe
this work.

7.4 Methodologies and Techniques for Security

Evaluation of Diversity-based Software Systems
7.4.1 Qualitative Evaluation Approaches

Stroud et al. present (Stroud et al. 2004) a qualitative analysis technique applied to the
MAFTIA architecture. In this work, the author used a case study of an Internet
application using MAFTIA. The authors have shown how the services of the MAFTIA
middleware make the system survivable under typical attack scenarios. These malicious
attacks are systematically dissected using fault-tree analysis.

7.4.2 AQuantitative Evaluation Approaches

In (Madan et al. 2004), the authors address the issue of quantifying the security attributes
of an intrusion tolerant system. Basically, the approach proposed is to consider a security
intrusion and the response of an intrusion tolerant system as a random process. Therefore
taking advantage of stochastic modeling techniques to capture the behavior of the
attacker and the system response. In this work, a metric called the Mean Time To
Security Failure is computed.

The Mean Time To Security Failure (MTTSF) metric was first proposed (Ortalo et al.
1999) for the quantification of software system security. The approach used to compute
this value is based on the transformation of a privilege graph into a Markov chain whose
states denote the enhanced privileges that an attacker gains, which is also the progressive
deterioration towards the security failed states, through a series of atomic attacks on a
system. The arcs on the other hand, represent the effort e spent by an attacker to cause state
transitions in this Markov chain. This effort in injecting an atomic attack is modeled as a
random variable with exponential distribution function P(e) = 1 — exp(—Ae), where 1/A
is the mean effort to succeed in a given elementary attack. This model is then used to
evaluate the Ae proposed measure of operational security mean effort to security failure,
analogous to mean time to failure.

Fujimoto et al. recently presented (Fujimoto et al. 2009) a technique to evaluate
quantitative security measures using Makov Regenerative Stochastic Petri Nets
(MRSPNS).

DRDC Valcartier TM 2010-287 43

8 Related Work on Diversity

We devote this section to a brief review of the patents and/or patent applications which
touch on the subject of intrusion tolerance and system survivability in general.

8.1 Dependable Diverse SQL Server Architecture

Gashi et al. (Gashi et al. 2007) report the findings of two studies meant to assess the
potential dependability gains from using a diverse set of off-the-shelf database servers. The
studies are based on bug reports for four popular database products. The first study (Gashi
et al. 2004a) was based on four DBMS products: two commercial (Oracle 8.0.5 and
Microsoft SQL Server 7, without any service packs applied) and two open source ones
(PostgreSQL Version 7.0.0 and Interbase Version 6.0). The diversity was also at the level
of the operating system as Interbase, Oracle, and MSSQL were all run on the Windows
2000 Professional operating system, whereas PostgreSQL 7.0.0 (not available for
Windows) was run on RedHat Linux 6.0. The second study (Gashi et al. 2004b)
considered the later releases of the open source DBMS products.

The authors state that for most bugs, a simple configuration of a system composed of two
diverse DBMS products would detect the failures. In addition, the second study, which is
based on later releases of the same products confirmed the general conclusions of the first
study.

8.2 Experimental Study of Diversity with
Off-The-Shelve Anti-Virus Engines

The empirical study reported in (Gashi et al. 2009) provides an analysis of potential gains
in terms of detection capability using diverse anti-virus products for the detection of self-
propagating malware. This study is based on a real-world dataset of 1599 malware
samples gathered by using SGNET, which is a distributed honeypot (Leita and Dacier
2008). Only the signature-based detection engine, which is the common type of
component in most anti-virus products, is used and any alarm message issued by this
component is assumed to be a successful detection regardless of the correctness of the
alarm message. The evolution of the detection capability as well as the impact of
diversity on this capability are studied using an engine of 32 different anti-virus products.

The main findings of the analysis can be summarized as follows: the experiments with

1-out-of-2 pairs of engines showed that the detection capability resulting from the usage of
diversity is improved significantly. Almost a third of the resulting pairs achieved a better
detection rate compared with the best single engine. One particular pair build using free
detection engines showed a perfect detection rate for the malware collected in the study

44 DRDC Valcartier TM 2010-287

and four other pairs of free detection engines had higher detection capability than the
best single engine.

According to the authors of the present study, one of the remaining areas in need of
further research is the study of malicious executable files only. Other malware vectors also
need to be considered, such as media files. Moreover, the present study was limited to an
analysis of diversity using 1-out-2 systems of anti-virus engines. This leaves a room for
the analysis of other configurations such as 2-out-3 or more complex combinations of
diverse AV products.

8.3 CloudAV: Diversity-based Anti-virus Platform

Jon Oberheide et al. (Oberheide et al. 2008) proposed a new model for the detection of
mal-ware by providing an in-cloud network antivirus service. This work presents a
technique called N-version protection, leveraging the power of diverse detection engines
working in parallel to perform the identification of malicious and unwanted software. It is
claimed that this approach presents several advantages, including better detection of
malicious software, enhanced forensics capabilities, retrospective detection, and improved
deployability and management.

The authors implemented this technique in the form of an in-cloud antivirus system called
CloudAV. The latter is composed of a lightweight cross-platform host agent and a
network service with ten antivirus engines and two behavioral detection engines. Figure
25 shows the architecture of CloudAV approach. The authors evaluated the performance,
scalability, and efficacy of the system using data from a real-world deployment lasting
more than six months and a database of 7220 malware samples covering a one year
period. The findings of this evaluation seem to show that the detection coverage of
CloudAYV is 35% higher than what one would get with a single antivirus engine and that
the overall detection rate over the dataset is 98%.

The authors also present two case studies to demonstrate how the forensics capabilities
of CloudAV were used by operators during the deployment.

8.4 TCP Protocol Parameter Diversity for
Communication Security

Barrantes and Forrest present (Barrantes and Forrest 2006) a diversity based technique to
defeat denial of service attacks. This technique is based on randomizing congestion
control parameters of the Transmission Control Protocol (TCP) (Allman et al. 1999) to
increase the unpredictability of the timing properties of the protocol. This enables mitigat-
ing certain attacks, such as the shrew attack (Kuzmanovic and Knightly 2003), which is

DRDC Valcartier TM 2010-287 45

Suspecious
Files

Network
HTTP Service

End Host /-i-‘
Email fle |

Media
—>

Threat
Report

Host Analysis Engines

|
|
|
l
|
! Agent :
AN - | -
! Safe |
l l
| |

Figure 25: Architectural Approach of CloudAV

Forensics
Archive

based on slowing down TCP to achieve a denial of service attack. The technique is to
diversify the protocol parameters instead of generating diverse implementations of the
protocol.

8.5 Related Patents

In this section, we describe succinctly the patent or patent applications related to intrusion
tolerance or diversity as defense mechanisms. We provide the reader with the correspond-
ing references for further detail.

8.5.1 Intrusion Tolerant Communication Networks and
Associated Methods

This patent (Goseva-Pospstojanova et al. June. 11, 2002) describes an intrusion tolerant
communication method and a set of associated methods. This patent aims at a continuity of
operation and the survival of communication network to attacks. The intrusion tolerance is
defined using various state transitions.

8.5.2 Diversity-based Security System and Method

In this US patent application (Li and Just Jul. 12, 2007) a method based on artificially
introduced diversity is defined to provide a suitable defense against the threat posed by the
identical vulnerabilities across software mono-culture which fosters large scale attacks
against systems. The method described in this patent application supports address-space
randomization of the Windows OS.

46 DRDC Valcartier TM 2010-287

9 Conclusions and Future Work

Software systems security is a critical issue because of the increasing complexity of these
systems, their connectivity and the significant similarity in the software used in such
systems. This is called IT mono-culture.

The mitigation of this issue consists in using diversity which aims at reducing the common
vulnerabilities and consequently increasing the difficulty of breaking systems built with
diversity in mind.

The state of the art reported in this document shows that for security purposes the principle
of diversity can be applied using three main approaches:

e An automated diversity approach, which consists in applying automated procedures to
randomize either the code, the address space layout, or both, to provide a
probabilistic defense against unknown threats.

e Diversity-based behavior monitoring and intrusion detection

e Diversity-based architectures for intrusion tolerance

Several issues related to the usage of diversity for security purposes are still in need of
further investigation. In the following, we discuss some of these options:

e Software architecture based on diversity for intrusion detection or tolerance needs to be
expressed using standard software modeling language. UML is the de facto standard in
this regard. However, UML does not specifically support diversity modeling. UML is
fortunately designed with built-in extensibility mechanisms. Therefore, it is interesting
to investigate the possibility of extending UML to enable the modeling of diversity in
soft-ware system architecture. This can be achieved, for instance, through the definition
of a specific UML profile for diversity modeling. This can alternatively be achieved
through the extension of an existing well-established UML profile. In general, the
process of defining the profile will require the definition of a metamodel capturing the
main concepts relevant for diversity modeling. In addition, the main constraints on the
meta-model will need to be expressed formally using a language such as OCL. Finally,
the main concepts of the metamodel would be mapped to the UML metamodel to define
the new stereotypes that will be used by the designer.

e [t is important to support the control and management of a software system which uses

diversity to detect and tolerate cyber-attacks. This control and management can
potentially be achieved through the definition of different configurations. The modeling

DRDC Valcartier TM 2010-287 47

48

and analysis of such configurations is therefore crucial. An important aspect of such
configurations is a model of diversity that would permit a choice among different
diversity settings. As far we know, this concept of a model of diversity does not yet exist
in the state of the art. It might be similar to the redundancy models defined in the high
availability purposes. This thread of research might result in the definition of an
information model for the configuration of redundant and diverse software architecture.

Linux kernel comprehensive monitoring is challenging. It yields massive traces, which
are very difficult to deal with (e.g., difficult to abstract correctly to arrive at
systematically meaningful information). The principle of diversity can potentially help
with this issue. The idea is to deploy a set of redundant Linux nodes running in parallel
including a subset of the replicas that might be deliberately vulnerable. All the replicas
are monitored differently (i.e. using diversity). Indeed, the focus of each Linux kernel
replica is turned towards different (predetermined) perspectives. These include the main
kernel services such as memory management, file system management, networking
sockets, interrupts, etc. This monitoring configuration would yield a diverse set of much
more lightweight traces. Several research questions need to be studied with regard to the
monitoring setting, including the correlation of different lightweight traces in a healthy
system, the correlation of the traces of a healthy system with a compromised one and
the identification of patterns.

DRDC Valcartier TM 2010-287

References

Allman, M., Paxson, V., and Stevens, W. (1999), TCP Congestion Control. RFC #2581.

Atighetchi, Michael, Rubel, Paul, Pal, Partha Pratim, Chong, Jennifer, and Sudin, Lyle
(2005), Networking Aspects in the DPASA Survivability Architecture: An Experience

Report, In Fourth IEEE International Symposium on Network Computing and
Applications (NCA 2005), pp. 219-222, IEEE Computer Society.

Avizienis, Algirdas, Laprie, Jean-Claude, Randell, Brian, and Landwehr, Carl E. (2004),
Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE Trans.
Dependable Sec. Comput., 1(1), 11-33.

Bain, Charles, Faatz, Donald B., Fayad, Amgad, and Williams, Douglas E. (2001),
Diversity as a defense strategy in information systems. Does evidence from previous
events support such an approach?, In Gertz, Michael, Guldentops, Erik, and Strous, Leon,
(Eds.), Fourth Working Conference on Integrity, Internal Control and Security in
Information Systems, IICIS’01, Vol. 211 of IFIP Conference Proceedings, pp. 77-94,
Kluwer.

Barbacci, Mario (1996), Survivability in the age of vulnerable systems, Computer, 29(11),
8.

Barrantes, Elena G. and Forrest, Stephanie (2006), Increasing Communications Security
through Protocol Parameter Diversity, In the XXXII Latin-American Conference on
Informatics (CLEI 2006), Santiago, Chile.

Barrantes, Elena Gabriela, Ackley, David H., Palmer, Trek S., Stefanovic, Darko, and
Zovi, Dino Dai (2003), Randomized instruction set emulation to disrupt binary code
injection attacks, In Jajodia, Sushil, Atluri, Vijayalakshmi, and Jaeger, Trent, (Eds.),
Proceedings of the 10th ACM Conference on Computer and Communications Security,
pp- 281-289, ACM.

Bessani, A., Daidone, A., Gashi, 1., Obelheiro, R., Sousa, P., and Stankovic, V. (2009),
Enhancing Fault / Intrusion Tolerance through Design and Configuration Diversity, In 3rd
Workshop on Recent Advances on Intrusion-Tolerant Systems WRAITS 2009, Estoril,
Lisbon, Portugal.

Bessani, Alysson Neves, Reiser, Hans P., Sousa, Paulo, Gashi, Ilir, Stankovic, Vladimir,
Distler, Tobias, Kapitza, Riidiger, Daidone, Alessandro, and Obelheiro, Rafael R. (2008),
FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery, In Douglis, Fred,
(Ed.), ACM/IFIP/USENIX 9th International Middleware Conference, pp. 99-101, ACM.

Bhatkar, Sandeep and Sekar, R. (2008), Data Space Randomization, In Zamboni, Diego,
(Ed.), Detection of Intrusions and Malware, and Vulnerability Assessment, 5th

DRDC Valcartier TM 2010-287 49

International Conference, DIMVA 2008, Vol. 5137 of Lecture Notes in Computer Science,
pp- 1-22, Springer.

Carzaniga, Antonio, Rosenblum, David S., and Wolf, Alexander L. (2001), Design and
evaluation of a wide-area event notification service, ACM Trans. Comput. Syst., 19(3),
332-383.

Castro, Miguel and Liskov, Barbara (1999), Practical Byzantine fault tolerance, In OSDI

'99: Proceedings of the third symposium on Operating systems design and
implementation, pp. 173—186, Berkeley, CA, USA: USENIX Association.

Castro, Miguel and Liskov, Barbara (2002), Practical byzantine fault tolerance and
proactive recovery, ACM Trans. Comput. Syst., 20(4), 398—461.

Chew, M. and Song, D. (2002), Mitigating Buffer Overflows by Operating System
Randomization, (Technical Report CMU-CS-02-197) Carnegie Mellon University.

Chong, Jennifer, Pal, Partha Pratim, Atighetchi, Michael, Rubel, Paul, and Webber,
Franklin (2005), Survivability Architecture of a Mission Critical System: The DPASA
Example, In 21st Annual Computer Security Applications Conference (ACSAC 2005),
pp- 495-504, IEEE Computer Society.

Cox, Benjamin, Evans, David, Filipi, Adrian, Rowanhill, Jonathan, Hu, Wei, Davidson,
Jack, Knight, John, Nguyen-Tuong, Anh, and Hiser, Jason (2006), N-variant systems: a
secretless framework for security through diversity, In USENIX-SS’06: Proceedings of the
15th conference on USENIX Security Symposium, Berkeley, CA, USA: USENIX
Association.

Cukier, Michel, Ren, Jennifer, Sabnis, Chetan, Henke, David, Pistole, Jessica, Sanders,
William H., Bakken, David E., Berman, Mark E., Karr, David A., and Schantz, Richard E.
(1998), AQuA: An Adaptive Architecture that Provides Dependable Distributed Objects,
In SRDS ’98: Proceedings of the The 17th IEEE Symposium on Reliable Distributed
Systems, p. 245, Washington, DC, USA: IEEE Computer Society.

D. Corman, T. Herm and Satterthwaite, C. (2001), Transforming legacy systems to obtain
information superiority, In Proceedings of the Sixth International Command and Control
Research and Technology Symposium (6th ICCRTS), Department of Defense CCRP.

Deswarte, Y., Kanoun, K., and Laprie, J.-C. (1998), Diversity against accidental and
deliberate faults, In Ammann, P., Barnes, B. H., Jajodia, S., , and Sibley, E. H., (Eds.),
Computer Security, Dependability, and Assurance: From Needs to Solutions, p. 171181,
Williamsburg, VA, USA: IEEE Computer Press.

Deswarte, Yves and Powell, David (2004), Intrusion tolerance for Internet applications, In
Building the Information Society, IFIP 18th World Computer Congress,, pp. 241-256.

50 DRDC Valcartier TM 2010-287

Dolev, Danny and Malki, Dalia (1996), The Transis approach to high availability cluster
communication, Commun. ACM, 39(4), 64-70.

Eckhardt, D. E. and Lee, L. D. (1985), A Theoretical Basis for the Analysis of
Multiversion Software Subject to Coincident Errors, IEEE Trans. Softw. Eng., 11(12),
1511-1517.

emerging risks team, Lloyds (2009), Digital Risks: Views of a Changing Risk Landscape,
(Technical Report Volume XIV) Lloyd’s.

Fischer, Michael J. (1983), The Consensus Problem in Unreliable Distributed Systems (A
Brief Survey), In Proceedings of the 1983 International FCT-Conference on
Fundamentals of Computation Theory, pp. 127-140, London, UK: Springer-Verlag.

Forrest, Stephanie, Somayaji, Anil, and Ackley, David H. (1997), Building Diverse
Computer Systems, In Workshop on Hot Topics in Operating Systems, pp. 67-72.

Fray, J.-M., Deswarte, Yves, and Powell, David (1986), Intrusion-Tolerance Using
Fine-Grain Fragmentation-Scattering, In IEEE Symposium on Security and Privacy,
pp- 194-203.

Fujimoto, Ryutaro, Okamura, Hiroyuki, and Dohi, Tadashi (2009), Security Evaluation of
an Intrusion Tolerant System with MRSPNSs, In Proceedings of the The Forth
International Conference on Availability, Reliability and Security (ARES 2009),

pp- 427-432, IEEE Computer Society.

Gao, Debin, Reiter, Michael K., and Song, Dawn Xiaodong (2006), Behavioral Distance
for Intrusion Detection, In Valdes, Alfonso and Zamboni, Diego, (Eds.), Recent Advances
in Intrusion Detection, Sth International Symposium, RAID’2005, Vol. 3858 of Lecture
Notes in Computer Science, pp. 63—-81, Springer.

Gao, Debin, Reiter, Michael K., and Song, Dawn Xiaodong (2006), Behavioral Distance
Measurement Using Hidden Markov Models, In Zamboni, Diego and Kriigel, Christopher,
(Eds.), Recent Advances in Intrusion Detection, 9th International Symposium, RAID 06,
Vol. 4219 of Lecture Notes in Computer Science, pp. 19—40, Springer.

Gao, Debin, Reiter, Michael K., and Song, Dawn Xiaodong (2009), Beyond Output
Voting: Detecting Compromised Replicas Using HMM-Based Behavioral Distance, IEEE
Trans. Dependable Sec. Comput., 6(2), 96—110.

Gashi, Ilir, Popov, Peter T., Stankovic, Vladimir, and Strigini, Lorenzo (2004), On
Designing Dependable Services with Diverse Off-the-Shelf SQL Servers, In de Lemos,
Rogério, Gacek, Cristina, and Romanovsky, Alexander B., (Eds.), Architecting
Dependable Systems Il - ICSE 2003 Workshop on Software Architectures for Dependable
Systems, Vol. 3069 of Lecture Notes in Computer Science, pp. 191-214, Springer.

DRDC Valcartier TM 2010-287 51

Gashi, Ilir, Popov, Peter T., and Strigini, Lorenzo (2004), Fault Diversity among
Off-The-Shelf SQL Database Servers, In International Conference on Dependable
Systems and Networks (DSN 2004), pp. 389-398, IEEE Computer Society.

Gashi, Ilir, Popov, Peter T., and Strigini, Lorenzo (2007), Fault Tolerance via Diversity for
Off-the-Shelf Products: A Study with SQL Database Servers, IEEE Trans. Dependable
Sec. Comput., 4(4), 280-294.

Gashi, Ilir, Stankovic, Vladimir, Leita, Corrado, and Thonnard, Olivier (2009), An
Experimental Study of Diversity with Off-the-Shelf AntiVirus Engines, In NCA 09:
Proceedings of the 2009 Eighth IEEE International Symposium on Network Computing
and Applications, pp. 4—11, Washington, DC, USA: IEEE Computer Society.

Giffin, Jonathon T., Jha, Somesh, and Miller, Barton P. (2006), Automated Discovery of
Mimicry Attacks, In Zamboni, Diego and Kriigel, Christopher, (Eds.), Recent Advances in
Intrusion Detection, 9th International Symposium, RAID 2006, Vol. 4219 of Lecture
Notes in Computer Science, pp. 41-60, Springer.

Goseva-Popstojanova, K., Wang, Feiyi, Wang, Rong, Gong, Fengmin, Vaidyanathan, K.,
Trivedi, K., and Muthusamy, B. (2001), Characterizing intrusion tolerant systems using a
state transition model, In DARPA Information Survivability Conference & Exposition II,
2001. DISCEX ’01. Proceedings, Vol. 2, pp. 211-221.

Goseva-Pospstojanova, Katerina, Wang, Feiyi, Wang, Rong, Gong, Fengmin,
Vaidyanathan, Kalyanaraman, Trivedi, Kishor, and Muthusamy, Balamurugan (June. 11,
2002), Intrusion Tolrant Communication Networks and Associated Methods. U.S. Patent
#7,350,234 B2 issued Mar.25, 2008.

Hiltunen, Matti A., Schlichting, Richard D., and Ugarte, Carlos A. (2003), Building
Survivable Services Using Redundancy and Adaptation, IEEE Trans. Computers, 52(2),
181-194.

Joseph, M.K. and Avizienis, A. (1988), A fault tolerance approach to computer viruses, In
Security and Privacy, 1988. Proceedings., 1988 IEEE Symposium on, pp. 52-58.

Just, James E. and Cornwell, Mark R. (2004), Review and analysis of synthetic diversity
for breaking monocultures, In Paxson, Vern, (Ed.), Proceedings of the 2004 ACM
Workshop on Rapid Malcode, WORM’2004, pp. 23-32, ACM Press.

Kc, Gaurav S., Keromytis, Angelos D., and Prevelakis, Vassilis (2003), Countering
code-injection attacks with instruction-set randomization, In Jajodia, Sushil, Atluri,
Vijayalakshmi, and Jaeger, Trent, (Eds.), Proceedings of the 10th ACM Conference on
Computer and Communications Security, pp. 272-280, ACM.

Keromytis, Angelos D. (2009), Randomized Instruction Sets and Runtime Environments
Past Research and Future Directions, IEEE Security and Privacy, 7(1), 18-25.

52 DRDC Valcartier TM 2010-287

Kienzle, Jorg (2003), Software Fault Tolerance: An Overview, In Rosen, Jean-Pierre and
Strohmeier, Alfred, (Eds.), Reliable Software Technologies - Ada-Europe 2003, Sth
Ada-Europe International Conference on Reliable Software Technologies, Vol. 2655 of
Lecture Notes in Computer Science, pp. 45—67, Springer.

Kihlstrom, Kim Potter, Moser, L. E., and Melliar-Smith, P. M. (1998), The SecureRing
Protocols for Securing Group Communication, In HICSS ’98: Proceedings of the

Thirty-First Annual Hawaii International Conference on System Sciences, p. 317,
Washington, DC, USA: IEEE Computer Society.

Knight, John, Heimbigner, Dennis, Wolf, Alexander L., Carzaniga, Antonio, Hill,
Jonathan, Devanbu, Premkumar, and Gertz, Michael (2001), The Willow Architecture:
Comprehensive Survivability for Large-Scale Distributed Applications, (Technical
Report CU-CS-926-01) University of Colorado — Department of Computer Science.

Kotla, Ramakrishna, Alvisi, Lorenzo, Dahlin, Mike, Clement, Allen, and Wong, Edmund
(2007), Zyzzyva: speculative byzantine fault tolerance, In SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pp. 45-58, New
York, NY, USA: ACM.

Kuzmanovic, Aleksandar and Knightly, Edward W. (2003), Low-rate TCP-targeted denial
of service attacks: the shrew vs. the mice and elephants, In SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies, architectures, and protocols for
computer communications, pp. 75-86, New York, NY, USA: ACM.

Lala, Jaynarayan H. and Schneider, Fred B. (2009), IT Monoculture Security Risks and
Defenses, IEEE Security & Privacy, 7(1), 12—13.

Lala, J.H. (2003), Introduction, In Foundations of Intrusion Tolerant Systems, 2003
[Organically Assured and Survivable Information Systems], pp. x—xix, IEEE Computer
Society.

Lamport, L. (2001), Paxos Made Simple,, ACM SIGACT News, 32(4), 51-58.

Lamport, Leslie (1998), The part-time parliament, ACM Trans. Comput. Syst., 16(2),
133-169.

Laprie, J-C. (1995), DEPENDABLE COMPUTING AND FAULT TOLERANCE :
CONCEPTS AND TERMINOLOGY, In Fault-Tolerant Computing, 1995, ° Highlights
from Twenty-Five Years’., Twenty-Fifth International Symposium on, pp. 2—11.

Leita, Corrado and Dacier, Marc (2008), SGNET: A Worldwide Deployable Framework
to Support the Analysis of Malware Threat Models, In Seventh European Dependable
Computing Conference, EDCC-7, pp. 99—109, IEEE Computer Society.

DRDC Valcartier TM 2010-287 53

Li, Lixin and Just, James Edward (Jul. 12, 2007), Diversity-based Security System and
Methods. U.S. Patent Application Publication #2008/0016314 A1 issued Jan.17, 2008.

Littlewood, Bev and Miller, Douglas R. (1989), Conceptual Modeling of Coincident
Failures in Multiversion Software, IEEE Trans. Software Eng., 15(12), 1596-1614.

Littlewood, Bev, Popov, Peter T., and Strigini, Lorenzo (2001), Modeling software design
diversity, ACM Comput. Surv., 33(2), 177-208.

Littlewood, Bev and Strigini, Lorenzo (2004), Redundancy and Diversity in Security, In
Samarati, Pierangela, Ryan, Peter Y. A., Gollmann, Dieter, and Molva, Refik, (Eds.),
ESORICS 2004: Proceedings of 9th European Symposium on Research Computer
Security, Vol. 3193 of Lecture Notes in Computer Science, pp. 423—438, Springer.

Madan, Bharat B., Goseva-Popstojanova, Katerina, Vaidyanathan, Kalyanaraman, and
Trivedi, Kishor S. (2004), A method for modeling and quantifying the security attributes
of intrusion tolerant systems, Perform. Eval., 56(1-4), 167—186.

Martin, Jean-Philippe and Alvisi, Lorenzo (2006), Fast Byzantine Consensus, /IEEE
Trans. Dependable Secur. Comput., 3(3), 202-215.

Min, Byoung-Joon and Choi, Joong-Sup (2004), An approach to intrusion tolerance for
mission-critical services using adaptability and diverse replication, Future Generation
Comp. Syst., 20(2), 303-313.

Min, Byoung-Joon, Kim, Sung Ki, and Choi, Joong-Sup (2004), Secure System
Architecture Based on Dynamic Resource Reallocation, In Chae, Kijoon and Yung, Moti,
(Eds.), Information Security Applications, 4th International Workshop, (WISA 2003),
Vol. 2908 of Lecture Notes in Computer Science, pp. 174—187, Springer.

Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., Budhia, R. K., and
Lingley-Papadopoulos, C. A. (1996), Totem: a fault-tolerant multicast group
communication system, Commun. ACM, 39(4), 54-63.

Moser, L. E., Melliar-Smith, P. M., and Narasimhan, P. (1999), A Fault Tolerance
Framework for CORBA, In FTCS ’99: Proceedings of the Twenty-Ninth Annual
International Symposium on Fault-Tolerant Computing, p. 150, Washington, DC, USA:
IEEE Computer Society.

Obelheiro, Rafael R., Bessani, Alysson N., Lung, Lau C., and Correia, Miguel (2006),
How Practical are Intrusion-Tolerant Distributed Systems?, (Technical Report TR0615)
Departamento de Informatica Faculdade de Ciencias da Universidade de Lisboa.

Oberheide, Jon, Cooke, Evan, and Jahanian, Farnam (2008), CloudAV: N-Version
Antivirus in the Network Cloud, In S§°08: Proceedings of the 17th USENIX Security
Symposium, pp. 91-106, Berkeley, CA, USA: USENIX Association.

54 DRDC Valcartier TM 2010-287

Ortalo, Rodolphe, Deswarte, Yves, and Kaaniche, Mohamed (1999), Experimenting with
Quantitative Evaluation Tools for Monitoring Operational Security, IEEE Trans. Software
Eng., 25(5), 633-650.

Pal, Partha Pratim, Rubel, Paul, Atighetchi, Michael, Webber, Franklin, Sanders,
William H., Seri, Mouna, Ramasamy, HariGovind V., Lyons, James, Courtney, Tod,
Agbaria, Adnan, Cukier, Michel, Gossett, Jeanna M., and Keidar, 1dit (2006), An
architecture for adaptive intrusion-tolerant applications, Softw., Pract. Exper., 36(11-12),
1331-1354.

PITAC (2005), Cyber Security: A Crisis of Prioritization, Technical Report President’s
Information Technology Advisory Committee, PITAC.

Reynolds, James C., Just, James E., Lawson, Ed, Clough, Larry A., Maglich, Ryan, and
Levitt, Karl N. (2002), The Design and Implementation of an Intrusion Tolerant System,
In International Conference on Dependable Systems and Networks (DSN 2002),

pp- 285-292, IEEE Computer Society.

Rodrigues, Rodrigo, Kouznetsov, Petr, and Bhattacharjee, Bobby (2007), Large-scale
byzantine fault tolerance: safe but not always live, In HotDep’07: Proceedings of the 3rd
workshop on on Hot Topics in System Dependability, p. 17, Berkeley, CA, USA: USENIX
Association.

Saidane, Ayda, Nicomette, Vincent, and Deswarte, Yves (2009), The Design of a Generic
Intrusion-Tolerant Architecture for Web Servers, IEEE Trans. Dependable Sec. Comput.,
6(1), 45-58.

Salamat, Babak, Jackson, Todd, Gal, Andreas, and Franz, Michael (2009), Orchestra:
intrusion detection using parallel execution and monitoring of program variants in
user-space, In EuroSys ’09: Proceedings of the 4th ACM European conference on
Computer systems, pp. 33—46, New York, NY, USA: ACM.

Sames, David, Matt, Brian, Niebuhr, Brian, Tally, Gregg, Whitmore, Brent, and Bakken,
David E. (2002), Developing a Heterogeneous Intrusion Tolerant CORBA System, In
DSN °02: Proceedings of the 2002 International Conference on Dependable Systems and
Networks, pp. 239-248, Washington, DC, USA: IEEE Computer Society.

Sellers, P.H. (1974), On the Theory and Computation of Evolutionary Distances, SIAM
Journal on Applied Mathematics, 26(4), 787-793.

Shacham, Hovav, Page, Matthew, Pfaff, Ben, Goh, Eu-Jin, Modadugu, Nagendra, and
Boneh, Dan (2004), On the effectiveness of address-space randomization, In Atluri,
Vijayalakshmi, Pfitzmann, Birgit, and McDaniel, Patrick Drew, (Eds.), roceedings of the
11th ACM Conference on Computer and Communications Security, CCS 2004,

pp- 298-307, ACM.

DRDC Valcartier TM 2010-287 55

Shen, Y.P., Tsai, W.-T., Bhattacharya, S., and Liu, T. (2000), Attack tolerant enhancement
of intrusion detection systems, Vol. 1, pp. 425-429.

Siqueira, Lindonete and Abdelouahab, Zair (2006), A Fault Tolerance Mechanism for
Network Intrusion Detection System based on Intelligent Agents (NIDIA), In
SEUS-WCCIA °06: Proceedings of the The Fourth IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems, and the Second International
Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA’06),
pp- 49-54, Washington, DC, USA: IEEE Computer Society.

Stroud, Robert J., Welch, Ian S., Warne, John P., and Ryan, Peter Y. A. (2004), A
Qualitative Analysis of the Intrusion-Tolerance Capabilities of the MAFTIA Architecture,
In International Conference on Dependable Systems and Networks (DSN 2004), pp. 453—,
IEEE Computer Society.

Sullivan, Kevin J., Knight, John C., Du, Xing, and Geist, Steve (1999), Information
Survivability Control Systems, In 2175t International Conference on Software Engineering
(ICSE), pp. 184—-192.

Symantec (2009), Symantec Global Internet Security Threat Report — Trends for 2008,
(Technical Report Volume XIV) Symantec.

Taylor, Carol and Alves-Foss, Jim (2005), Diversity as a computer defense mechanism, In
NSPW ’05: Proceedings of the 2005 workshop on New security paradigms, pp. 11-14,
New York, NY, USA: ACM.

Totel, Eric, Majorczyk, Frédéric, and Mé, Ludovic (2006), COTS Diversity Based
Intrusion Detection and Application to Web Servers, In Valdes, Alfonso and Zamboni,
Diego, (Eds.), Recent Advances in Intrusion Detection, 8th International Symposium,
RAID’ 05, Vol. 3858 of Lecture Notes in Computer Science, pp. 43—62, Springer.

USAF (1999), Report on Building the Joint Battlespace Infosphere, Volume 1: Summary,
(Technical Report SAB-TR-99-02) United States Air Force Scientific Advisory Board.

Valdes, Alfonso, Almgren, Magnus, Cheung, Steven, Deswarte, Yves, Dutertre, Bruno,
Levy, Joshua, Saidi, Hassen, Stavridou, Victoria, and Uribe, Tomds E. (2003), Dependable
Intrusion Tolerance: Technology Demo, In 3rd DARPA Information Survivability
Conference and Exposition (DISCEX-III 2003), pp. 128—130, IEEE Computer Society.

van Renesse, Robbert, Birman, Kenneth P., and Maffeis, Silvano (1996), Horus: a flexible
group communication system, Commun. ACM, 39(4), 76-83.

Verissimo, Paulo, Neves, Nuno Ferreira, Cachin, Christian, Poritz, Jonathan A., Powell,
David, Deswarte, Yves, Stroud, Robert J., and Welch, Ian (2006), Intrusion-tolerant
middleware: the road to automatic security, IEEE Security & Privacy, 4(4), 54—62.

56 DRDC Valcartier TM 2010-287

Verissimo, Paulo, Neves, Nuno Ferreira, and Correia, Miguel (2003), Intrusion-Tolerant
Architectures: Concepts and Design, In de Lemos, Rogério, Gacek, Cristina, and
Romanovsky, Alexander B., (Eds.), Architecting Dependable System, Vol. 2677 of Lecture
Notes in Computer Science, pp. 3—36, Springer.

Wang, Dazhi, Madan, Bharat B., and Trivedi, Kishor S. (2003), Security analysis of
SITAR intrusion tolerance system, In SSRS ’03: Proceedings of the 2003 ACM workshop
on Survivable and self-regenerative systems, pp. 23-32, ACM.

Wang, Feiyi, Jou, Frank, Gong, Fengmin, Sargor, Chandramouli, Goseva-Popstojanova,
Katerina, and Trivedi, Kishor (2003), SITAR: A Scalable Intrusion-Tolerant Architecture
for Distributed Services, In Foundations of Intrusion Tolerant Systems, Los Alamitos, CA,
USA: IEEE Computer Society.

Weatherwax, Eric, Knight, John, and Nguyen-Tuong, Anh (2009), A Model of Secretless
Security in N-Variant Systems, In Workshop on Compiler and Architectural Techniques
for Application Reliability and Security (CATARS), In the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Network (DSN2009).

Whitehouse, Ollie (2007), An Analysis of Address Space Layout Randomization on
Windows Vista, Technical Report Symantec.

Xu, Jun, Kalbarczyk, Zbigniew, and lyer, Ravishankar K. (2003), Transparent Runtime
Randomization for Security, In 22nd Symposium on Reliable Distributed Systems (SRDS
2003), IEEE Computer Society.

Yin, Jian, Martin, Jean-Philippe, Venkataramani, Arun, Alvisi, Lorenzo, and Dahlin, Mike
(2003), Separating agreement from execution for byzantine fault tolerant services, In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pp. 253-267, New York, NY, USA: ACM.

Yu, Dong and Frincke, Deborah A. (2004), Towards Survivable Intrusion Detection
System, In 37th Annual Hawaii International Conference on System Sciences.

DRDC Valcartier TM 2010-287 57

List of Acronyms

ADFNIC Autonomic Distributed Firewall Network Interface Card

ASR Address Space Randomization

AVI Attack Vulnerability Intrusion

CORBA Common Object Request Broker Architecture

DIT Dependable Intrusion Tolerance

DPASA Designing Protection and Adaptation into a Survivability Architecture
DSR Data Space Randomization

FOREVER Fault/instrusiOn REmoVal through Evolution and Recovery
GCCS Global Command and Control Systems

HACQIT Hierarchical Adaptive Control for QoS Intrusion Tolerance
IDS Intrusion Detection System

ISR Instruction Set Randomization

ITDOS Intrusion Tolerant Distributed Object Systems

ITUA Intrusion Tolerance by Unpredictable Adaptation

JBI Joint Battlespace Infosphere

LAN Local Area Network

MAFTIA Malicious and Accidental Fault Tolerance for Internet Applications
MTTSF Mean Time To Security Failure

MVEE Multi Variant Execution Environment

ORB Object Request Broker

0OOB Out-Of-Band

OTS Out-Of-The-Shelf

PSQ Publish-Subscribe-Query

SITAR Scalable Intrusion Tolerant Architecture

STM State Transition Model

TCP Transmission Control Protocol

TRR Transparent Runtime Randomization

VLAN Virtual Local Area Network

58 DRDC Valcartier TM 2010-287

Annex A: Related Research Projects

The different aspects of the research presented in this report have been conducted in the

following list of research projects:

Project

Home Page

ponents (DOTS)

Diversity with Off-The-Shelf com-

http:// www. csr. city. ac. uk/
projects/ dots. html

ReSIST

http:// www. resist-noe. org/
index. html

Honeynet Project

http:// www. honeynet. org/

IBM Autonomic Computing

http:// www. research. ibm.
com/ autonomic/ index. html

MAFTIA http:// research. cs. ncl.
ac. uk/ cabernet/ www. laas.
research. ec. org/ maftia/
SNORT http:// www. snort. org/
HACQIT http:// seclab. cs. ucdavis.
edu/ projects/ HACQITsum. html
DIT http:// www. sdl. sri. com/

projects/ dit/

Willow Survivability Architecture

http:// dependability. cs.
virginia. edu/ research/
willow/

ITUA http:// www. perform. csl.
illinois. edu/ itua. html
SITAR http:// people. ee. duke. edu/

~kst/ sitar. html

DRDC Valcartier TM 2010-287

59

60

This page intentionally left blank.

DRDC Valcartier TM 2010-287

Annex B: Researchers and Research
Groups/Labs:

The following table include the main researchers, research labs and/or groups which con-
ducted the research presented in this report.

Researchers Home Page

Stephanie Forrest http:// www. cs. unm. edu/ ~forrest/

Partha pal http:// www. dist-systems. kbn. com/ people/ ppal/
Kishor Trivedi http:// people. ee. duke. edu/ ~kst/

I1lir Ghashi http:// www. csr. city. ac. uk/ staff/ gashi/

Bev Littlewood http:// www. csr. city. ac. uk/ staff/ littlewood/
Babak Salamt http:// www. babaks. com/

Paulo Sousa http:// paulosousa. me/

Katerina Goseva-Popstojanova http:// www. csee. wvu. edu/ ~katerina/

John C. Knight http:// www. cs. virginia. edu/ ~jck/

Dave Bakken http:// www. eecs. wsu. edu/ ~bakken/

Ayda Saidane http:// www. dit. unitn. it/ ~saidane/

Research Group Home Page

DEPENDABILITY Research Group http:// dependability. c¢s. virginia. edu
Center for Software Reliability http:// www. csr. city. ac. uk/ index. html
Computer Science Laboratory - CSL SRI | http:// www. sdl. sri. com/

DRDC Valcartier TM 2010-287 61

62

This page intentionally left blank.

DRDC Valcartier TM 2010-287

Annex C: Industries:

In this state of the art study, we have identified a few industrial companies which collabo-
rated in conducting research which has been presented in this report. In the following table
we present the list of this companies and the projects they were involved in:

Company Home Page Project

BBN Technologies http:// www. bbn. com/ ITUA and DPASA
CoSine Communications Inc. | Unavailable SITAR

IntruVert Networks Inc Unavaivable SITAR

Network Associates Inc Unavaivable ITDOS

The Boeing Company http:// www. boeing. com/ ITUA
Teknowledge http:// www. teknowledge. com/ | HACQIT

DRDC Valcartier TM 2010-287

63

64

This page intentionally left blank.

DRDC Valcartier TM 2010-287

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

ORIGINATOR (The name and address of the organization preparingthe 2. SECURITY CLASSIFICATION (Overall
document. Organizations for whom the document was prepared, e.g. Centre security classification of the document
sponsoring a contractor’s report, or tasking agency, are entered in section 8.) including special warning terms if applicable.)
Defence R&D Canada — Valcartier UNCLASSIFIED
2459 Pie-XI| Blvd. North Val-Bélair, Quebec, Canada (NON-CONTROLLED GOODS)
G3J 1X5 DMC A _

REVIEW: GCEC April 2011

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)
Redundancy with Diversity Based Software Architectures for the Detection and Tolerance
of Cyber-Attacks: State of the Art

4. AUTHORS (Last name, followed by initials — ranks, titles, etc. not to be used.)
Abdelouahed Gherbi, P.; Charpentier, R.; Couture, M.

5. DATE OF PUBLICATION (Month and year of publication of 6a. NO. OF PAGES (Total 6b. NO. OF REFS (Total
document.) containing information. cited in document.)

Include Annexes,
Appendices, etc.)

February 2012 84 94

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)
Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development —
include address.)
Defence R&D Canada — Valcartier
2459 Pie-XI Blvd. North Val-Bélair, Quebec, Canada G3J 1X5

9a. PROJECT NO. (The applicable research and development 9b. GRANT OR CONTRACT NO. (If appropriate, the applicable
project number under which the document was written. number under which the document was written.)
Please specify whether project or grant.)
15BA02

10a. ORIGINATOR'S DOCUMENT NUMBER (The official 10b. OTHER DOCUMENT NO(s). (Any other numbers which may
document number by which the document is identified by the be assigned this document either by the originator or by the
originating activity. This number must be unique to this sponsor.)
document.)
DRDC Valcartier TM 2010-287

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)
(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond

to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual.)

Software systems security remains a critical issue. This is evidenced by the
ever in-creasing number and sophistication of cyber-attacks. This situation
is the result of the combination of several factors. The software-based
functionality of these systems is in-creasingly complex. The systems are
often connected through open networks such as the Internet, which is
increasingly accessible to potentially malicious users. Finally, these
systems run software which is substantially similar. This is called IT
monoculture. The mitigation against this issue requires implementation of
the principle of diversity. The principle of diversity aims to reduce the
common vulnerability in software and, in turn, increase the difficulty of
violating the security of the systems that use diversity. The objective of this
document is to present the state of the art in terms of approaches which
use diversity for security purposes. Three different approaches can be
distinguished: automated diversity, diversity-based behavior monitoring and
diversity-based intrusion tolerance.

La sécurité des systémes informatique demeure une problématique ardue.
Ceci est confirmé avec la croissance continue de cyber-attaques en
nombre et en sophistication. Cette situation est le résultat de la
combinaison de plusieurs facteurs. La fonctionnalité de ces systémes
basée sur les logiciels est de plus en plus complexe. Les systemes sont
souvent reliés par des réseaux ouverts comme Internet qui est de plus en
plus accessibles aux utilisateurs potentiellement malveillants. Enfin, ces
systémes exécutent des logiciels qui sont substantiellement similaires. Ceci
est communément appelé IT monoculture. La solution de ce probléme est
basée sur le principe de la diversité. Cette derniére vise a réduire les
vulnérabilitts communes dans un ensemble redondant et divers de
logiciels. Ceci augmente la difficulté de violer la sécurité des systemes qui
utilisent la diversité. L'objectif de ce document est de présenter I'état de
'art en termes d’approches qui utilisent la diversité a des fins de sécurité.
Trois approches différentes peuvent étre distinguées : la diversité
automatisée, la surveillance de comportement basée sur la diversité et la
tolérance d’intrusion basée sur la diversité.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Cyber Attack, Security, Software Architecture, Redundancy, Diversity, Tolerance, Survivability,
Dependability

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence Chef de file au Canada en matiére
and National Security de science et de technologie pour
Science and Technology la défense et la sécurité nationale

52

DEFENCE ' DEFENSE

v

www.drdc-rddc.gc.ca

