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Preface 

This review was completed under a project funded by the Office of Energy Research and 

Development of Natural Resources Canada (NRCan). The project entitled “Advancing River 

Hydrokinetic Energy R&D” is led by the Ottawa Research Centre of NRCan’s 

CanmetENERGY laboratory and has the participation of NRCan’s Canada Centre for Mapping 

and Earth Observation (CCMEO), the National Research Council of Canada, the Canadian 

Hydrokinetic Turbine Testing Centre (CHTTC) of the University of Manitoba, the Laboratoire 

de Mécanique des Fluides Numérique (LMFN) of Laval University, New Energy Corporation 

Inc. and Mavi Innovations. Its overall goal is to assess and develop Canada’s river 

hydrokinetic potential as a national renewable and clean energy source. Hydrokinetic 

installations may also enhance the resilience of remote northern communities to climate 

change by reducing their dependence on winter roads to bring in diesel for electricity 

generation. Specifically, this literature review is meant to provide a starting point for the 

development of an automated approach to identify candidate hydrokinetic turbine sites in SAR 

satellite images. 
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1 Introduction 

This text reviews studies published after 2007, that address the separation of open water from 

other surface cover types—mainly freshwater ice—by means of Synthetic Aperture Radar 

(SAR) imagery. The information gained supports a study that aims to evaluate and develop 

the use of SAR imagery for the selection of river sections suitable for river hydrokinetic turbine 

installation. In countries, such as Canada, which are marked by large geographic extent, low 

population density and limited accessibility, the use of any ground-based approach to 

hydrokinetic site selection would be impractical at best. The usefulness of Earth Observation 

(EO) satellites towards hydrokinetic site selection is anticipated to derive from a capacity to 

detect areas of persistent open water in otherwise ice covered rivers. Such open water areas 

are hypothesized to correspond to high flow rate river reaches, and so EO satellites could be 

used to identify suitable locations for electricity generation by means of hydrokinetic turbines. 

Results published by d'Auteuil et al. (2015) corroborate this hypothesis to a certain extent and 

demonstrate the potential of oblique aerial photographs and optical EO satellite images for 

the detection of open water in ice covered rivers. Relative to these data sources, SAR satellite 

images offer an advantage because their information content is not adversely affected by 

haze, clouds or nighttime darkness. The ability of SAR satellites to capture surface cover 

information in the absence of solar illumination is a distinct benefit given the darkness of winter 

in the Canadian North. Indeed, this circumstance has motivated Canadian organizations to 

assume a leading role in the research and development of radar EO satellite technology and 

applications. This has led to successful single SAR satellite missions such as RADARSAT-1 

(1995-2013) and RADARSAT-2 (2007-to date). The RADARSAT Constellation Mission—a 

configuration comprised of three SAR satellites—is presently scheduled for launch in the fall 

of 2018. Readers interested in its specifications are referred Thompson (2015). Studies 

dealing with optical EO sensors are not reviewed because these sensors cannot be relied 

upon to image the areas of interest during the winter season. If available, however, high to 

medium resolution optical EO images typically offer excellent utility for ice-water 

discrimination. 

Publications that specifically address the use of SAR images for the detection of open water 

on ice covered rivers during the winter season are relatively rare. Therefore, we choose to 

review how radar data have been used in a variety of comparable applications. Such uses 

include the delineation of sea ice from water, water from land, water from lake ice, and ground-

fast ice from floating ice in individual SAR images, as well as the mapping of water extent 

through the detection of changes in multi-temporal SAR image data sets. It should be noted 

that, due to variations in radar observations resulting from differences in, for example, surface 

cover type and environmental conditions, the findings published in somewhat off topic 

references may not directly transfer to the targeted application. As an example, radar data 

types and analysis methods suitable to differentiate sea ice from water may not be optimal for 

discriminating river ice from water as a difference in salinity causes the radar measurements 

of sea ice and river ice to vary considerably. Successful application of SAR remote sensing 

to hydrokinetic site selection will require a robust ability to distinguish between river ice cover 

and open water as well as adequate spatial resolution to resolve the two cover types over the 
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typically narrow width of rivers. The latter requirement precludes the use of data collected by 

radar altimeters, scatterometers and microwave radiometers—sensors operating with spatial 

resolutions starting at about 25 x 25 km. Accordingly, papers that discuss the utility of these 

sensor types for the observation of water and/or ice are not reviewed. Given Canada’s large 

geographic extent, the development of a mostly automated approach to operationally identify 

candidate turbine sites by means of SAR imagery is highly desirable. The literature review 

summarized in this text was initiated to guide the future research and development required 

to establish this approach. 

Readers unfamiliar with radar EO technology and its application to the mapping of (partially) 

ice covered rivers are introduced to selected basics in Section 2 of this report. Next, the 

Sections 3 to 6 describe our literature search and review results partitioned according to the 

primary SAR image analysis method used. Section 7 summarizes the findings of the literature 

review by listing the “Lessons Learned”. 

 

2 RADAR Earth Observation Basics 

“RADAR” is an acronym for RAdio Detection And Ranging. The basic operating principle of 

radar systems is as follows: a beam of electromagnetic (EM) waves is transmitted, objects in 

its path reflect the incident waves in many directions, and waves reflected towards the system 

are received and recorded. In free-space, the approximate sensor to object, or range, distance 

follows from the EM signal’s velocity, equal to the speed of light, and the delay in time between 

its transmission and reception. The signal recorded is referred to as the radar backscatter and 

expressed by means of a complex number that captures both its intensity and phase. The 

intensity is governed by structural and dielectric properties of the object observed while the 

phase complements the measured time delay, providing more precise information about the 

range distance. Radar systems used for the purpose of earth observation (EO) operate with 

microwaves which are EM waves that are about 1 cm to 1 m in length. They can be either 

imaging or non-imaging. The imaging radar systems usually found onboard EO satellites are 

Synthetic Aperture Radar (SAR) systems. These systems exploit the forward motion of the 

platform and incorporate advanced signal recording and processing technology to create a 

continuous, high resolution and wide swath image from successive side-looking 

measurements. In contrast, non-imaging systems are limited by their narrow swath, low 

resolution and, typically, take discontinuous, nadir-looking (aimed directly below the satellite) 

measurements. Examples of non-imaging radar systems include altimeters and 

scatterometers. Mounted on satellites, altimeters are primarily used for surface height 

observations over open oceans, large seas and the ice sheets of Greenland and Antarctica. 

Similarly, space-borne scatterometers serve mainly to collect wind information over vast 

bodies of open water. More details regarding the operating principles of radar EO systems 

can be found in the literature (e.g. Woodhouse, 2006) and on-line such as in the tutorials 

available at the NRCan Website (Natural Resources Canada, 2017). 
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Figure 1 (a-b) Interaction of microwaves with freshwater ice cover and water. The green and black 

arrows represent incident and transmitted or reflected radar waves respectively; their thicknesses 

signify the microwaves’ intensity. (a) surface scattering by (from left to right): open water, water on top 

of ice and melting ice cover (i.e. ice that includes free water) (b) different types of interaction with 

competent ice cover (from left to right): surface scattering at the ice-water boundary, volume scattering   

at dielectric discontinuities (e.g. air bubbles), double bounce scattering at—in this case—tubular air 

bubbles and ice-water boundary. 
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Generally speaking, the amount of radar backscatter is a function of the scattering properties 

of the feature observed, sensor characteristics, and viewing geometry. As illustrated in Figure 

1, the interaction of microwaves with freshwater ice cover is strongly influenced by the quantity 

of free water within the ice and any overlying snow. Large amounts of free water promote the 

reflection of incident waves at the boundary between free-space and the ice cover, i.e. at the 

snow or ice upper surface (see Figure 1a). In contrast, the absence of free water encourages 

the penetration of the incident signal into the combined snow/ice volume and subsequent 

reflection at the ice-water boundary and/or at electrical discontinuities contained within the ice 

(e.g. air bubbles, cracks, liquid water) (see Figure 1b). It follows, that the backscatter behavior 

of ice is strongly affected by diurnal and seasonal temperature changes. The dielectric 

properties of water e.g. open water, water on top of ice or water under ice, prevent microwave 

penetration and cause incident waves to reflect at its surface. 

Reflection of microwaves at boundaries such as those between air and wet ice cover, air and 

water, or dry ice and water is known as surface scattering. Reflection of the radar signal at 

multiple discontinuities within the snow and/or ice volume is referred to as volume scattering. 

A third interaction mechanism known as double bounce scattering involves the reflection of 

waves at exactly two locations e.g. at an air bubble and the underside of the ice cover. The 

level of backscatter resulting from surface scattering is governed by the roughness of the 

surface relative to the wavelength of the incident radar signal. Effectively smooth surfaces will 

reflect most of the incoming microwaves in the forward direction, that is, away from the radar 

sensor and therefore create little backscatter (e.g. the water surfaces in Figure 1a). 

Conversely, effectively rough surfaces will reflect a considerable portion of the incident energy 

towards the radar and thus generate a substantial amount of backscatter (e.g. ice surface in 

Figure 1a and ice-water boundary in Figure 1b). Similarly, volume scattering and, especially, 

double bounce scattering often produce considerable levels of backscatter (see Figure 1b). 

The scattering behavior of freshwater ice and water can be expected to be most disparate 

during freezing conditions, making winter the season of choice for the acquisition of radar 

images in support of hydrokinetic site selection. From an engineering perspective, images 

collected during late winter, i.e. when the ice cover is fully developed, are preferred because 

remaining open water areas are likely to have higher than average flows. At all times, low 

wind conditions are preferred because wind introduces water surface roughness in the form 

of waves which enhance the water’s return signal and heighten the probability of confusion 

with ice cover. 

Sensor characteristics that dominate the radar return signal of features including ice and water 

are: frequency (or wavelength), polarization, and incidence angle. The wavelength of the radar 

waves used is important because it (a) affects the depth of penetration in dry ice, (b) defines 

whether a surface of a given physical roughness is perceived as being ‘smooth’ or ‘rough’ by 

the radar, and (c) defines whether existing discontinuities (e.g. air bubbles) are sufficiently 

large to contribute to volume or double bounce scattering. Akin to wavelength, incidence angle 

has an effect on the backscatter level because it influences the penetration depth and 

sensitivity to physical roughness. Generally speaking, backscatter resulting from surface and 

double bounce scattering varies more as a function of the incidence angle than backscatter 

resulting from volume scattering. Polarization affects the backscatter of observed objects 
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because it defines the plane in which the microwave interaction can occur. For example, 

microwaves with a horizontal or vertical polarization will only interact with object features in 

the horizontal or vertical plane respectively. This makes the backscatter behavior of non-

spherical scatterers—provided their dimensions are of a scale similar to the incident 

wavelength—dependent on the incident polarization. As such, polarization diversity provides 

sensitivity to differences in the structure of the features observed and hence supports their 

identification. Conventional SAR systems usually acquire backscatter intensity measurements 

in one or two linear transmit – receive polarization combinations. For example, horizontal – 

horizontal (HH) and/or horizontal – vertical (HV) or vertical – vertical (VV) and/or vertical – 

horizontal (VH). In contrast, so-called polarimetric radar systems typically measure the 

backscatter level in all four mentioned polarization combinations and, in addition, measure the 

phase difference between the H- and V-polarized receive signals. The received phase 

information can be used to characterize the observed features’ scattering properties in all 

possible, linear and non-linear, polarization combinations. As such, polarimetric radar images, 

relative to conventional radar images, often provide more information for target detection and 

classification. The introduction of radar systems with a capacity to operate in a so-called 

compact polarimetric mode is a relatively new development. Canada’s upcoming RADARSAT 

Constellation Mission is an example. These systems offer a polarization diversity that falls 

somewhere between that of conventional and polarimetric radar systems. As such, the 

information content of images acquired by compact polarimetric systems can also be expected 

to differ from the information contained in images from either predecessor. The appeal of 

compact polarimetry, relative to polarimetry, lies in the fact that a single acquisition can 

provide considerably more coverage. This facilitates the operational application of the data 

over extended areas. 

Finally, the viewing geometry of radar observations, specifically of imaging ones, is important 

because it defines the orientation of the objects observed relative to the look direction of the 

radar system. Variations in viewing geometry affect the appearance of features with a 

directional structure. For example, ice ridges that run in a direction perpendicular to the 

incident microwaves will show much more clearly than ridges running in other directions. Also, 

depending on their relative orientation topography and features like river banks, dams, and 

bridges can induce local image distortions and matching increased or reduced radar return 

signals. The incidence angle also affects the induction of such distortions. Additional details 

on the interaction of microwaves with ice cover and water can be found in e.g. Hall (1998), 

Unterschultz et al. (2009), van der Sanden and Drouin (2011), Duguay et al. (2015) and van 

der Sanden and Short (2017).  

Techniques and methods aimed at discriminating open water from other surface cover types 

in radar EO images can be labelled image classification approaches. While the information 

exploited may vary (see sections 3 to 6), two fundamental approaches can be identified. A 

first group of approaches are ones that involve supervised classification. This type of 

classification includes the definition of training data units—by means of validation 

information—that represent classes of interest. These units are then used to extract statistics 

that quantify the response of each class in the available image channels. Next, the remaining 

units (e.g. pixels) are assigned to the class with the most similar response. The classification 
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of one, non-training, unit in no way affects the classification of another. Supervised 

classification requires the overhead of defining the classes but are robust to outliers and can 

directly incorporate human understanding. The identification of data for use in training always 

requires an analyst but the actual training can be done through human intervention or by a 

variety of pseudo-machine learning techniques such as neural networks, Support Vector 

Machines (SVMs), and automatic decision tree construction. Besides the aforementioned 

pseudo-machine learning techniques, decision trees and thresholds—either one- or multi-

dimensional—defined by humans represent the most prominent supervised classification 

methods. A second group of approaches involves the use of unsupervised classification 

techniques. These techniques have in common that they organize the entire set of data at 

once by dividing the data into clusters. Algorithms that perform such clustering do not 

incorporate any pre-existing knowledge about the classes and as a matter of fact do not assign 

a class to groups identified. The assignment of classes to the clusters is done by an analyst 

or by what is essentially a supervised classification, for example, the darkest class always 

being assigned the label of water. So-called K-Means algorithms are by far the most 

commonly used. For further detail on clustering methods Xu and Wunsch (2005) may be 

consulted. For detail about supervised methods Kotsiantis (2007) is recommended. 

 

3 Radiometric Analysis 

For the purpose of this text, radiometric analysis refers to methods which differentiate surface 

covers in radar imagery by examining the strength of the radar return signal or “backscatter”. 

These methods can work well provided the backscatter of the cover of interest is stable over 

both space and time. Covers that generate high levels of backscatter show in bright tones in 

SAR images. Features that generate little backscatter show dark. In the case of water and 

ice, water is often considerably darker than most ice types. However, high wind conditions will 

increase the backscatter of water and thus complicate ice-water discrimination. Similarly, 

thermally grown ice cover that is devoid of dielectric discontinuities—black ice or pure 

columnar ice for short—can be expected to generate little backscatter. Consequently, this 

type of ice cover is easily misclassified as open water. Ice cover types referred to as snow ice 

and frazil ice typically produce backscatter levels that exceed those of (calm) water due to the 

presence of many air bubbles. Readers interested in the definition of ice types and additional 

ice cover terminology are referred to IAHR (1980). Because water often represents the darkest 

population of pixels in a given image it is commonly classified using a simple thresholding 

technique where pixels with values above the maximum value for water are attributed to 

alternate cover types. This is best done after the application of a filter to remove speckle. 

Speckle is a multiplicative noise that results from the constructive and destructive interference 

of the backscattered microwaves. This is a consequence of SAR methods using coherent 

waves. There are a wide variety of filters in common use. For an overview it is recommended 

to consult Gagnon and Jouan (1997). 
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River ice related studies 

Van der Sanden et al. (2009) report results of a preliminary study into the information content 

of C-band, HH-, HV- and VV-polarized images—from RADARSAT-2—relating to river ice 

freeze-up. The images applied were acquired over the Middle Channel of the Mackenzie River 

near Inuvik in the period from October 2008 to April 2009. Analysis of the available data shows 

that the information comprised in HH and VV images is very similar and that the information 

content of HV images is complementary. Three-polarization color composite products are 

shown to facilitate the visual detection of initial and complete freeze-up by an image analyst. 

Relative to the HH and VV images, images acquired in the HV-polarization are shown to offer 

more utility for differentiating black ice from snow ice and frazil ice. Quantitative analysis of 

HH, HV and VV backscatter levels reveals a potential for confusion between snow ice and 

frazil ice and between black ice and bottomfast ice. The latter is relevant for hydrokinetic site 

selection because of the earlier noted resemblance in the radar return of black ice and open 

water. 

Van der Sanden et al. (2012) introduce a method to classify river ice conditions during spring 

breakup with the help of C-band, HH-polarized images (e.g. from RADARSAT-1 or 

RADARSAT-2). Two incidence angle dependent thresholds—starting at 29°—are applied to 

differentiate between sheet ice, rubble ice and open water. Each ice class is divided in three 

sub-classes that reflect differences in the ice cover’s surface roughness. Thresholding is 

preceded by two consecutive speckle filtering operations and followed by mode and sieve 

filtering to reduce heterogeneity in the classified product. Image areas that do not correspond 

to rivers are masked out by means of ancillary information, i.e. hydrographic vector data. 

Incidence angles below 36° are found to complicate discrimination between open water—

under calm to light breeze wind conditions (≤ 11 km/h)—and sheet ice. Textural analysis is 

applied with some success to alleviate this problem. Output products have been validated in 

a qualitative sense by means of oblique aerial photographs. The classes showing in products 

derived from images that are acquired during freezing conditions, i.e. the winter season, 

should not be considered accurate because the backscatter behaviors of competent and 

melting ice differ. In the years following its inception the method has been applied to monitor 

ice breakup in a series of Canadian rivers. Beaton et al. (2017) discuss the utility and 

limitations of the approach based on an evaluation of a series of information products as 

generated for selected rivers in Ontario’s Far North during the 2015, 2016 and 2017 breakup 

seasons. 

Łoś et al. (2016) compare the utility of dual polarization (HH, VV) RADARSAT-2 (C-band) and 

TerraSAR-X (X-band) data for the classification of river ice. The data were acquired over the 

Peace River, Alberta, Canada at the time of freeze-up (December 2013). Associated 

incidence angles ranged from 33° to 40° and 23° to 29° for RADARSAT-2 and TerraSAR-X, 

respectively. Six classes are identified: open water, skim ice (open water mixed with thin 

columnar ice sheets), juxtaposed skim ice (compilation of thin columnar ice sheets forming a 

complete cover), agglomerated skim ice (compilation of thin columnar ice sheets overriding 

each other forming a complete cover), frazil runs (open water mixed with frazil ice rafts and 

pans), consolidated ice (deformed or ridged ice). All four radar return signals for each class 

were observed to be very similar, barring some effects hypothesized to result from incidence 
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angle variability. A supervised maximum-likelihood classifier based on the complex Wishart 

distribution, preceded by speckle filtering, was used. This classifier makes use of the so-called 

Covariance Matrix or Coherency Matrix—derivatives of the Sinclair Scattering Matrix—and is 

typically used for the classification of polarimetric images (Lee et al., 1995). Overall 

classification accuracies ranged from 81% to 88% and 84% to 99% in the case of TerraSAR-

X and RADARSAT-2, respectively. Accurate discrimination between skim ice and open water, 

juxtaposed skim ice and agglomerated skim ice, and (juxtaposed) skim ice and frazil runs was 

found to be problematic. 

Lake ice related studies 

Geldsetzer et al. (2010) present a thresholding approach for discriminating between melting 

lake ice and open water by means of RADARSAT-2 dual-polarization products, i.e. C-band 

HH and HV images. The threshold established for each polarization is fixed across the 

available range of relatively shallow incidence angles (about 34° to 49°). Thresholding is 

preceded by speckle filtering. The utility of HH-polarized data is observed to be compromised 

by high wind conditions—causing open water to be misclassified as ice. On the other hand, 

low return signals from melting ice—causing ice to be misinterpreted as open water—are 

found to limit the utility of HV-polarized data. Accordingly, HH and HV data are recommended 

for use during the earlier and later stages of breakup, respectively. By using the HV data at 

the time that more open water is present the likelihood of misclassifying water as ice is 

reduced. The decision when to stop using HH and start using HV is left to an image analyst. 

The backscatter levels of lake ice, in both polarizations, are observed to vary substantially in 

both space and time. Overall classification accuracies over 81% and ranging from 66% to 

97% are reported for the earlier and later breakup stages, respectively. 

Sobiech and Dierking (2013) evaluated the utility of K-Means clustering for the classification 

of melting lake and river ice as well as open water in the Lena River Delta. Classification was 

always preceded by speckle filtering. A low-pass filter and/or closing filter—designed to 

remove morphological noise—were applied selectively before and after classification, 

respectively. In the case of lake ice, the unsupervised clustering results were compared to 

results achieved by means of a supervised thresholding method. The available radar data set 

comprised HH-polarized, X-band TerraSAR-X as well as HH-, HV- and VV-polarized, C-band 

RADARSAT-2 images. Associated incidence angles ranged from about 32° to 40°. Spatial 

and temporal offsets between the images from the two data sources prevented the direct 

comparison of the associated results. Ice on/off maps resulting from visual image 

interpretation were used to assess the accuracy of the automated classification results. With 

respect to RADARSAT-2, for both lake and river ice, the classification results were found to 

vary with polarization, i.e. diminishing from HH to HV to VV. Relative to visually produced 

maps, lake ice classifications achieved by means of automated analysis of TerraSAR-X data 

yielded average errors in the fraction of ice ranging from 10% to 17%. Similar accuracies were 

not reported for RADARSAT-2 because the sample was considered too small. Classification 

using RADARSAT-2 data acquired in more than one polarization was not attempted. In most 

cases K-Means clustering and thresholding was found to produce comparable results. Easier 

implementation—because a priori knowledge about the scattering behavior of classes (e.g. 

as a function of incidence angle) is not needed—is mentioned as an advantage of 
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unsupervised K-Means classification. On the other hand, this clustering approach requires the 

presence of both ice and water in the image while a supervised thresholding method does 

not. Selective application of low-pass and/or closing filters yielded mixed results that, 

surprisingly, differed for lake and river ice. 

Sea ice related studies 

Geldsetzer and Yackel (2009) present a decision tree approach for the classification of sea 

ice and open water by means of HH- and VV-polarized, C-band Envisat ASAR data. Images 

used in the development of the classifier were acquired during the winter season at incidence 

angles ranging from 26° to 45°. Conventional statistical analysis—as opposed to machine 

learning—was used to establish a series of thresholds. Thresholds used in the classification 

of sea ice types (i.e. thin, first-year and multi-year ice) are based on either HH or VV 

backscatter levels. Thresholds developed to differentiate sea ice from open water make use 

of VV/HH co-polarization ratios. Application of the classifier reveals limitations in 

discriminating open water from thin ice at incidence angles below 40° in particular. Results 

obtained with an image acquired at about 37°, show that open water can be discriminated 

from thicker ice types with >99% accuracy. However, with the inclusion of thin ice the 

classification accuracy for water drops to 50%. 

Shokr (2009) used daily sea ice charts to determine the C-band HH backscatter of sea ice 

types and water observed by RADARSAT-1. The charts, produced by the Canadian Ice 

Service, show polygons that identify areas of a given cover composition (e.g. 2/10 Nilas ice, 

2/10 Grey ice, 3/10 first year ice and 3/10 water). This information is used to decompose the 

mean total backscatter for a given polygon into a linear combination of the mean backscatters 

for each cover type present. An initial value for the backscatter of component cover types is 

determined from homogeneous training sites and unequal backscatter contributions—relative 

to coverage—of cover types of varying brightness are accounted for. The study produced 

reliable backscatter values for sea ice types as well as open water and facilitated an analysis 

of the effects of incidence angle and wind speed. An observed increase in the backscatter of 

seawater with a decrease in incidence angle and under intensifying winds agrees with findings 

reported in many preceding publications. While not viable as a classification technique, the 

approach described could theoretically be used to analyze any radar image data where 

extracting surface cover signatures is complicated by a high degree of heterogeneity. 

Flores et al. (2014) combined a novel speckle filtering method with Markov Random Field 

(MRF) based segmentation to delineate the Antarctic Terra Nova Bay Polynya in a pair of X-

band HH COSMO-SkyMed ScanSAR Wide images. MRF segmentation was found to yield a 

better outline of the polynya than two conventional pixel-based classification approaches—

one being unsupervised, the other supervised. Indeed, the approach produced results on par 

with visual interpretation by an experienced ice analyst. Speckle filtering is highlighted as an 

essential processing step. A reduction in spatial resolution from 15 x 15 m to 50 x 50 m was 

found to drastically reduce the efficacy of the MRF approach. Its robustness to backscatter 

variability introduced by e.g. changing environmental conditions was not tested. 
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Other studies 

Santoro and Wegmüller (2014) use HH- and VV-polarized Envisat ASAR Wide Swath 

images—acquired in the period from January to December 2015—to map permanent water 

bodies by means of multi-temporal backscatter intensity metrics, i.e. backscatter minimum 

and standard deviation. Relative to water pixels, pixels corresponding to land surface types 

are expected to have a higher minimum backscatter and lower standard deviation. The applied 

ASAR images are calibrated to sigma naught (in dB), multi-looked to 300 x 300 m pixel size, 

geocoded to latitude/longitude coordinates and speckle filtered to about 150 equivalent 

number of looks (ENL). Furthermore, backscatter measurements over sloped terrain were 

corrected for pixel area and incidence angle deviations. A series of diverse study sites—

covering more than 13 million km2—is used to develop a simple yet robust threshold-based 

mapping algorithm. Validation of results by means of CORINE land cover data, SRTM Water 

Bodies data and Google Earth imagery yields overall classification accuracies above 90%—

for pure land and water pixels. The accuracy decreased linearly with water fraction when 

mixed pixels were taken into account. Pixels with less than 10 ASAR observations were not 

included in the classification and pixels corresponding to slopes ≥10° were automatically 

classified as land. Defining the ‘backscatter minimum’ as the backscatter 5th rank or 10th 

percentile—as opposed to lowest backscatter measured—was found to limit the 

misclassification of land as water due to the presence of e.g. wet snow or floodwater. Single- 

and multi-track data sets were found to yield similar classification accuracies but the authors 

note that differences in observation geometry could have greater impact on classification 

accuracies obtained for environments with more volume scattering surfaces (e.g. snow, ice, 

dry sand) or topography. The effect of polarization could not be assessed because the 

available data were largely acquired in VV. 

Cutler et al. (2015) describe a histogram based thresholding approach to distinguish water 

from other cover types. The authors use two frequencies and a variety of polarizations; single 

and dual polarized X-band data from COSMO-SkyMed and TerraSAR-X as well as single, 

dual and quad-polarized C-band RADARSAT-2 data. The reported method has the advantage 

of being completely automated. Cases where an algorithm has failed to find a reasonable 

answer are rejected without user intervention. It achieves this by selecting one of four possible 

thresholds for each image by means of a disparity metric. The thresholds are computed from 

two distinct histograms using two different methods. Validation against the USGS national 

hydrography dataset demonstrates that the method works well only when the fraction of pixels 

covered by water is between 3/10 and 8/10. This is likely because minimizing population 

disparity assumes a water fraction around 5/10. The HV polarization is concluded to be best 

for their purposes as it is least affected by bright nearby features like cities. The data set 

studied did not include images acquired over surface cover types with backscatter levels that 

approach the return signal of water nor images corresponding to freshwater ice. 
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4 Polarimetric Analysis 

In brief, polarimetric analysis differs from radiometric analysis because it uses information 

about the phase of two received radar signals with orthogonal—typically H and V—

polarizations. Logically, the acquisition of polarimetric SAR data is a prerequisite for the 

application of polarimetric analysis techniques. The general idea behind polarimetry is that 

the features observed are more easily identified by means of information that describes their 

scattering behavior in all possible combinations of transmit and receive polarizations. This 

information is captured in the so-called Sinclair Scattering Matrix. However, in practice the 

acquisition of data in more polarizations rarely causes a proportional increase in available 

information because of dependencies between certain data. As an example, HV and VH 

polarized data typically contain identical information. Polarimetric data are typically dealt with 

in their “linear” basis—as a combination of complex HH, HV and VV data. At times, however, 

they are transformed to the so-called “Pauli” basis—often referred to as Pauli decomposition—

which comprises the complex sum of HH and VV, the complex difference of HH and VV, and 

two times the complex HV. Relative to the linear terms, the Pauli terms offer more insight into 

scattering behavior. The Pauli terms one to three are dominated by surface, double bounce 

and volume scattering, respectively (Lee and Pottier, 2009). 

Two widely used techniques to analyze polarimetric images acquired over natural features 

are the Freeman-Durden and Cloude-Pottier decompositions. The Freeman-Durden (FD) 

decomposition (Freeman and Durden, 1998) assumes that the Sinclair Scattering Matrix of a 

given pixel can be meaningfully decomposed into the linear sum of three matrices which 

represent different basic forms of scattering: volume scattering, surface or “Bragg” scattering 

and double bounce scattering. The results of this decomposition are meant to reveal the 

dominant form of scattering of the observed surface cover. A similar model based approach 

to the analysis of scattering behavior is the Yamaguchi decomposition (Yamaguchi et al., 

2005). 

The Cloude-Pottier (CP) decomposition (Cloude and Pottier, 1997) is based on the Coherency 

Matrix—a derivative of the Sinclair Scattering Matrix. The eigenvectors and values of this 

matrix are used to compute three parameters: entropy (H), Anisotropy (A) and Alpha angle 

(α). These parameters reflect the randomness of the scatter, the relative power of the 2nd and 

3rd eigenvector and the dominant form of scattering (volume, surface or double bounce), 

respectively. Nine partitions of the plane made up by H and α have been determined to 

associate with certain types of scatterers and are often used in unsupervised classification 

approaches. The Touzi decomposition (Touzi, 2007) is another example of an eigenvalue-

based decomposition. 

River ice related studies 

Mermoz et al. (2009) compare the usefulness of two supervised and one unsupervised river 

ice classification approaches: a rule-based hierarchical—or decision tree—classification, a 

maximum-likelihood Wishart classification and a Fuzzy K-Means classification. The data used 

were acquired during the winter of 2003 over Saint François River, Quebec, Canada by an 
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airborne polarimetric radar system operating in C-band. Four classes of interest are identified: 

open water, thermal (columnar or black) ice, consolidated ice (deformed or ridged ice), and 

frazil ice. However, in certain classifications the number of classes was reduced to three by 

combining thermal ice and frazil ice in one class. The hierarchical classifier was based on the 

co-polarization ratio (VV/HH), the depolarization ratio (HV/(HH+VV)) and the modulus of the 

complex correlation between HH and VV. Specifically, the co-polarization ratio is used to 

identify open water, the depolarization ratio to discriminate consolidated ice from thermal ice 

and frazil ice and the complex correlation to distinguish between thermal ice and frazil ice. 

Conventional statistical analysis of training data is used to determine an appropriate threshold 

for each variable used. The Wishart classification is based on the Covariance Matrix or 

Coherency Matrix—derivatives of the Sinclair Scattering Matrix (Lee et al., 1995). The 

unsupervised Fuzzy K-Means classification, a non-polarimetric approach, is driven by HH 

backscatter and Grey Level Co-occurrence textural information (see Section 4). This 

approach was first presented by Gauthier et al. (2006). Both polarimetric classifications are 

found to yield better results than the non-polarimetric K-Means approach. As an example, the 

K-Means classifier failed to identify open water at the location of a rapid. Quantitative 

evaluation of results obtained with the hierarchical and Wishart classifier—recognizing four 

classes—shows overall accuracies of 72% and 66% and accuracies specific to open water of 

81% and 69%, respectively. In the hierarchical classification open water was confused with 

frazil ice only, while in the Wishart classification there was confusion with all three ice classes. 

Van der Sanden et al. (2011) evaluate the utility of RADARSAT-2 (C-band) polarimetric 

images for the monitoring of freeze-up in the Mackenzie River at Inuvik, Northwest Territories, 

Canada. The images were acquired in the period from October 2008 to April 2009 and covered 

incidence angles ranging from about 21° to 41°. The analysis is based on data extracted for 

image regions identified with the help of field observations—training areas in essence. The 

co-polarization ratio (VV/HH) is observed to facilitate discrimination of open water from newly 

formed ice cover. However, the utility of the ratio decreases once the ice becomes established 

and exhibits ratios similar to open water. Also, at any given time, the co-polarization ratio for 

snow covered river bed is much like the ratio for open water, creating a definite possibility for 

misclassification. Formation of bottom-fast ice over the course of winter is noted to further 

complicate the classification of open water. A preliminary analysis of the utility of a series of 

non-polarimetric and polarimetric variables was limited to the classification of ice types, i.e. 

columnar ice, frazil or snow ice and consolidated ice. Plots showing the backscatter of 

columnar, frazil and snow ice cover as a function of time suggest a sensitivity of radar to ice 

thickness growth. However, differences in structure rather than thickness are observed to 

control the strength of an ice cover’s backscatter on any given date. Logically, this complicates 

the estimation of ice thickness from backscatter.  

Lake ice related studies 

Geldsetzer and van der Sanden (2013) evaluate the potential of twenty C-band, polarimetric 

and non-polarimetric variables to distinguish between open water and floating lake ice—less 

than two months old. The RADARSAT-2 data studied were acquired over the Old Crow Flats, 

Yukon, Canada during the 2008-2011 freeze-up seasons and cover incidence angles ranging 

from 18° to 50°. The non-parametric two-sample Kolmogorov-Smirnov statistic is used to 
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assess the classification utility of each variable in three incidence angle ranges: 18°-29.9°, 

30°-39.9° and 40°-50°. Next, regression analysis is carried out to model the effect of the 

incidence angle on the most useful variables. The results are used to develop a decision tree 

type classification approach. As a first step, a fixed threshold for a polarimetric variable known 

as Conformity is implemented to exclude low-quality backscatter measurements, i.e. open 

water pixels corresponding to low-wind slicks, from the classification. This is followed by 

classification of a series of representative data sets by means of six—individually applied—

variables: HH or VV backscatter, VV/HH or HV/HH or VH/VV backscatter ratio, or Anisotropy. 

The best performing variables are found to be: either VV backscatter or Anisotropy (at 

incidence angles less than about 30°) and the VV/HH backscatter ratio (at incidence angles 

about 30° and over). These recommended variables are shown to yield classification 

accuracies ranging from 86% to 99% and 80% to 99% for open water and lake ice, 

respectively. The utility of Anisotropy, unlike that of VV backscatter, is not limited by wind 

speeds below about 2 m/s. 

Van der Sanden and Geldsetzer (2015) present a comparative analysis of the utility of, C-

band, fully polarimetric and compact polarimetric data for the classification of melting lake ice 

and open water. As mentioned in Section 2, the forthcoming RADARSAT Constellation 

Mission (RCM) will have the capacity to acquire compact polarimetric data in all imaging 

modes. This includes modes that operate over wide swaths, i.e. modes that provide the large 

scale coverage preferred by operational users that deal with extensive areas of interest. For 

this category of users, RADARSAT-2 polarimetric data are of little interest simply because the 

associated swath is too narrow (≤ 50 km). The study area is the Old Crow Flats, Yukon, 

Canada. Results achieved with respect to the compact polarimetric data are used to design a 

decision tree type classifier that accounts for incidence angle effects. Discrimination between 

breaking ice and open water is based on incidence angle driven thresholds for the following 

variables: RR/RL at angles ≤ 25°, RR at angles > 25° and < 34° and either RH or RV/RH at 

angles ≥ 34° (pending a fixed threshold for Conformity). Classification is found to be most 

difficult in the > 25° and < 34° incidence angle range. Application of the classifier to a series 

of representative images—including ones acquired during challenging wet snow and high 

wind conditions—yielded accuracies ranging from about 73% to 99% and 61% to 95% for 

breaking ice and open water, respectively. These results were found to be comparable to 

accuracies achieved by means of classifiers that utilize full polarimetric variables.  

Sea ice related studies 

Gill and Yackel (2012) examine the usefulness of various polarimetric variables for classifying 

wind-roughened open water and smooth/rough/deformed first year sea ice in the Amundsen 

Gulf, Northwest Territories, Canada. The RADARSAT-2 images used were acquired in May 

2008 under  -5° to -2° C temperatures and 9 to 16 m/s winds, at incidence angles ranging 

from 22° to 37°. All images were filtered to reduce speckle. Field observations were used to 

create two independent sets of observations for the training of classifiers and the validation of 

classification results, respectively. The following variables were included in the analysis: CP, 

FD and Touzi decompositions, polarization phase differences and polarization ratios. Their 

relative utilities were assessed using the means, standard deviations, and probability density 
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functions for training areas. Next, variables which provided good separation were used in 

supervised classifications. Individual variables were entered in K-Means classifications [sic] 

and groups of two/three uncorrelated variables in maximum likelihood classifications. Overall 

accuracies achieved in classifications with one, two and three variables range from 30% to 

74%, 72% to 89%, and 75% to 91%, respectively. The associated classification accuracies 

for open water range from 17% to 93%, 46% to 96%, and 72% and 98%. CP Entropy and 

Touzi’s dominant eigenvalue are shown to be the best choice for single variable 

classifications, yielding accuracies for water of about 90% and for sea ice between 36% and 

65%. CP Entropy and either VV backscatter or FD volume scattering are among the best 

performing two variable combinations; water accuracies are about 95% and ice accuracies 

between 64% and 98%. Not surprisingly, the same variables also contribute to several 

successful three-band classifications. While the statistical significance of observed differences 

in classification accuracies was not tested, the differences between two and three variable 

classifications appear minimal as do those between several well performing combinations in 

each group. 

Other studies 

Qi et al. (2012) use RADARSAT-2 (C-band) polarimetric data to classify urban surface covers 

in Guangzhou City, China. Their analysis approach is object-oriented rather than pixel-based. 

The data are speckle filtered, transformed to the Pauli basis and segmented—using a bottom-

up region-merging technique—to obtain objects. Subsequently, an extremely wide range of 

variables (>1000) is computed for each object. These include but are not limited to the minima, 

maxima, means, and standard deviations of: 64 parameters produced by 16 different 

polarimetric decompositions, backscatter intensities, coherency matrix elements, GLCM-

based texture measures (see section 5), interferometric parameters and segment shape 

indicators. Except for the interferometric parameters, all variables were derived from one 

single RADARSAT-2 image. About 2000 segments were manually assigned to one of seven 

classes—water, lawn, forest, barren/sparse vegetation, cropland/natural vegetation, banana 

or urban/built-up—and used to generate a decision tree classifier by means of a pseudo-

machine learning algorithm. Application of this classifier yielded an overall accuracy of 87% 

but water was identified perfectly. Discrimination between water and lawn—comparable to 

black ice in terms of backscatter level—is based on variables that capture spatial variability. 

Given that the classifier was developed and tested by means of one single image, the 

achieved accuracies are likely biased and certainly wind induced variability in the backscatter 

of water is not accounted for. A Support Vector Machine (SVM) classification algorithm yielded 

a near-identical overall classification accuracy but on the order of 6% of water objects was 

misidentified as either lawn or urban area. A supervised Wishart classification—which only 

uses the coherency matrix elements—produced an overall accuracy of 70%; about 30% of 

the water objects was misclassified as lawn or barren/sparse vegetation. Applied to individual 

pixels, the proposed decision tree classifier yielded an overall accuracy of 77% with about 

12% of water pixels being misclassified as lawn or barren/sparse vegetation. 

Banks et al. (2014) evaluate the utility of RADARSAT-2 (C-band) polarimetric data for the 

mapping of Arctic shore and near-shore surface cover types including water, substrates and 

vegetation types. Specifically, the surface cover information comprised in FD and CP 
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decomposition results is assessed and applied in three unsupervised, Wishart distance-

based, maximum-likelihood classifications. In addition, the effect of the SAR incidence angle 

is evaluated. Polarimetric decomposition and classification are preceded by speckle reduction 

through application of the Enhanced Lee filter. Relative to other cover types, the scattering 

behavior of water is observed to vary more as a function of the incidence angle. This agrees 

with findings published by other researchers. CP-based classifications are shown to yield 

better results for water than FD-based classifications. The former reveal limitations in 

discriminating water from, primarily, sandy areas or smooth mudflats whereas the latter 

confuse water with all other covers studied. Images acquired at medium to shallow incidence 

angles are found to comprise more useful information and thus offer better classification 

potential than images acquired at steep incidence angles. 

Ullmann et al. (2017) assess the utility of polarimetric RADARSAT-2 (C-band) and ALOS-2 

(L-band) data as well as of complex, dual-polarization TerraSAR-X (X-band) and ALOS-1 (L-

band) data for the mapping of arctic surface covers including water and different types of 

tundra vegetation, bare ground and wetland. All data are converted to the Kennaugh Matrix 

format—a derivative of the Sinclair Scattering Matrix. Image speckle is reduced by means of 

a moving window averaging filter. The authors do not classify the available images but rather 

evaluate the classification potential of derived variables by means of—pairwise—class 

separability measures, i.e. Transformed Divergence and Jeffereys Matusita Distance [sic] 

(Richards, 1993). There is no indication in the paper that the authors checked if their data are 

normally distributed—a precondition for using these separability measures. The evaluation of 

class separability is preceded by a statistical analysis of the scattering properties of the 

classes of interest. The variables considered include: backscatter intensities, Kennaugh 

Matrix elements and CP, FD and Yamaguchi decomposition parameters. This analysis 

included an assessment of correlation which, as expected, shows that many of the variables 

considered are moderately to highly correlated. Generally speaking, the correlations are 

higher in L-band than in C-band. The correlation between variables related to water was not 

assessed. A series of box- and scatterplots signify a risk of confusion in both C- and L-band, 

between water and sand, in particular. Relative to the decomposition parameters, the 

Kennaugh Matrix elements relating to backscatter intensities and the HH-VV phase difference 

are concluded to offer better overall class separability. Regardless the wavelength, the CP 

parameters offered the lowest class separability both for water and overall. Compared to other 

classes, water is more easily identified but scattering variability introduced by changes in wind 

speed and direction is not taken into account. Similarly, the effects of differences in incidence 

angle are not considered. 
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5 Texture Analysis 

In this review, texture is understood to be image texture and is defined as the pattern of spatial 

distributions of grey tone (Haralick and Bryant, 1976). This type of texture, while not unrelated, 

should not be confused with the texture or roughness of the observed surface cover. In 

addition to the spatial and structural properties of the observed feature, the textural information 

content of a given image is a function of its spatial resolution, radiometric resolution, operating 

frequency and, in the case of SAR imagery, the operating polarization. Texture analysis is 

often done by computing various statistical properties from what is known as the Grey Level 

Co-occurrence Matrix (GLCM). For a good overview of what kinds of statistics may be 

calculated please refer to Baraldi and Parmiggiani (1995). The GLCM for a given area 

captures how often certain combinations of pixel grey levels occur at a given offset, i.e. 

displacement length and direction. In most cases, GLCM textural analysis is carried out by 

means of relatively small spatial window that moves across the image from pixel to pixel. The 

efficacy of GLCM textural analysis is affected by the: moving window dimensions, 

displacement length and direction, statistical property of choice and number of image grey 

levels. Alternative textural analysis techniques exist but were not used in the literature 

reviewed with the exception of a method that simply involves the computation of the local grey 

level variance. 

River ice related studies 

Gauthier et al. (2008) describe an automated system, named FRAZIL, to map river ice cover 

characteristics by means of HH-polarized RADARSAT-1 data. FRAZIL combines geospatial 

analysis and SAR image processing techniques and is designed primarily to inform hydraulic 

modelling for flood forecasting. The GIS component is used to characterize the geometry of 

the river channel, while the image processing component yields an ice cover map—with ice 

jams being the main class of interest. FRAZIL is intended for use during both freeze-up and 

breakup. The paper includes few details concerning the image processing approach, a better 

description is provided in Gauthier et al. (2010). The approach can be categorized as a pixel-

based three-step unsupervised Fuzzy K-Means classification that uses both textural and 

backscatter intensity information. The first classification step exploits a GLCM related textural 

measure—somewhat ambiguously identified as ‘Mean texture’—to generate seven clusters. 

Subsequent classifications refine the two clusters representing the finest and coarsest 

textures measured. The cluster representing the finest texture is determined to comprise two 

classes, i.e. water and a mixture of water and floating ice pans. These two classes are 

discriminated using information comprised in three GLCM textural measures, i.e. Mean, 

Homogeneity, Entropy. Details with respect to the adopted window size, displacement length, 

displacement direction and number of grey levels are lacking. The cluster representing the 

coarsest texture is determined to consist of moderately and heavily consolidated ice. The HH-

polarized backscatter intensity is used to separate these two classes. In Gauthier et al. (2010) 

certain classes are merged to produce ice maps with a simplified, six class, legend that 

includes open water. Using ground photographs, the overall accuracy of example maps is 

estimated to range from 57% to 83% to 100% during breakup, freeze-up and midwinter, 

respectively. The development of season-specific processing approaches is suggested as a 
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means to achieve improved classification accuracies during freeze-up and breakup by 

accounting for high wind and wet snow effects. 

Chu et al. (2015) apply HH- and HV-polarized RADARSAT-2 data to the mapping of ice cover 

conditions—during freeze-up—in the Slave River, Northwest Territories, Canada. The authors 

use HH and HV backscatter as well as a measure of the temporal change in the HH 

backscatter (coefficient of variation) in a two-step unsupervised Fuzzy K-Means classification 

approach. Application of six GLCM texture statistics was considered but they were found to 

be of limited use. Unfortunately, the paper is short on details regarding the attempted GLCM 

textural analysis. The initial classification step uses the HH and HV backscatter as input and 

results in ten clusters that represent four classes. i.e. water, thermal (or black) ice, juxtaposed 

ice, and consolidated ice. Ground reference information was used to determine that the cluster 

corresponding to the lowest observed backscatter values comprises a mixture of water and 

thermal ice. In the second classification step these two classes are discriminated based on 

information contained in the coefficient of variation—relative to thermal ice areas, areas 

corresponding to (flood) water display more temporal change. The classification results were 

validated, qualitatively, by means of aerial and time-lapse photographs. 

A paper by Chu and Lindenschmidt (2016) builds on the work reported in Chu et al. (2015). 

Once again, RADARSAT-2 data is used to characterize ice cover in the Slave River. However, 

the images were acquired during breakup rather than freeze-up and are mostly of a higher 

resolution (ultrafine as opposed to fine) and limited to the HH-polarization. The classification 

approach is modified accordingly. First, the HH backscatter is used to create 10 clusters that 

represent four classes, i.e. water, intact (sheet) ice, smooth rubble ice and rough rubble ice. 

Next, water is discriminated from smooth sheet ice by means of GLCM textural statistics—the 

details are missing. The overall classification accuracies achieved for four different dates 

range from 67% to 84%; misclassification of sheet ice as water is more common (14% to 42%) 

than misclassification of water as sheet ice (9% to 21%). The HH backscatter was 

normalized—to 30°—to limit the effect of incidence angle variability on classification accuracy. 

However, the authors note that the accuracies of classifications obtained with images ranging 

in incidence angles from 31° to 49° varied widely. Aside from incidence angle, other possible 

sensor and terrain related influences on classification accuracy are discussed. 

Sea ice related studies 

Multiple papers describe the ongoing development of a software package—named MAGIC, 

MAp-Guided Ice Classification system—that is designed primarily to classify sea ice by means 

of C-band RADARSAT-1/2 images (e.g. Clausi et al., 2010; Leigh et al., 2014; Ochilov and 

Clausi, 2012; Yu et al., 2012a; Yu et al., 2012b). As reflected in the name, the software makes 

use of pre-existing sea ice charts that are produced manually, from RADARSAT images, by 

analysts from the Canadian Ice Service (CIS). The role of these ice charts has changed as 

the software evolved. In the earlier versions of MAGIC, the charts are used to restrain an 

image segmentation process and to manually assign an ice type or water class to each 

segmented region. In later versions of the software, segmentation is fully automated and the 

charts are used only to train a Support Vector Machine (SVM) classifier. The 2014 version of 

MAGIC is described in detail in Leigh et al. (2014). HH- and HV-polarized RADARSAT-2 
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ScanSAR Wide images are used as input and the output is a map that shows two classes, i.e. 

sea ice and water. Image areas corresponding to land are identified and excluded from the 

processing by means of vector shoreline data. To limit the overall processing time, MAGIC 

first reduces the input data volume through 4 x 4 block averaging—resulting in pixels 200 x 

200 m in size. The software incorporates two independent and complementary classification 

processes and combines the results to produce one single sea ice extent map. The first 

process involves the segmentation of the HV backscatter intensity image and the 

unsupervised assignment of one of six preliminary classes to each segment. Compared to the 

HH image, the HV image varies less with incidence angle—ranging from 20° to 49°. The 

second process consists of a pixel-based, SVM classifier—previously trained using ice 

charts—that exploits a series of backscatter intensity and GLCM texture statistics extracted 

from either the HH- or HV-polarized image. The following GLCM statistics were used in the 

classification: Mean, Correlation, Dissimilarity, Applied Second Moment [sic], Contrast and 

Standard Deviation. Relative to the HV image, the HH image is found to contain more textural 

information. The textural statistics were calculated using window sizes ranging from 5 x 5 to 

101 x 101 pixels and displacement lengths varying from 1 to 20 pixels in four directions. The 

paper does not specify the number of grey levels utilized. In contrast to the first process, the 

SVM classifier assigns one of two final classes to each pixel, i.e. sea ice or water. The GLCM 

texture statistics are noted to proficiently differentiate between sea ice and water. Finally, the 

preliminary classes for each segment created in step one are reclassified to sea ice or water 

by means of the results of the SVM classification. Relative to the pixel-based SVM 

classification result, the final segment- or region-based result contains less noise and better 

defined ice-water boundaries. Tested on 20 images acquired over the Beaufort Sea from April 

to December 2010—thus considering all seasons—the resulting sea ice extent maps agreed 

with manually produced sea ice charts to a degree ranging from 89.95% to 99.99%—96.42% 

on average. MAGIC is shown to be robust to variability introduced by changing incidence 

angles and wind speeds. However, its utility for the mapping of thin/new/grease ice and small 

ice floes is noted to be limited. 

Zakhvatkina et al. (2013) compare the efficacy of a Bayesian and neural network (NN) 

classification algorithm for the mapping of sea ice in the Central Arctic—during the winter 

season—by means of HH-polarized Envisat ASAR Wide Swath data. The former classifier 

uses backscatter intensity, i.e. sigma naught in dB normalized to 25° to alleviate variability 

across the 17° to 42° image incidence angle range. Speckle is reduced by means of a 4 x 4 

block averaging filter. In contrast to a maximum likelihood classifier, a Bayesian classifier 

requires information concerning the a priori probability of the classes considered. On the other 

hand, the NN classifier uses a variety of GLCM textural statistics in addition to backscatter 

intensity. The following GLCM statistics were used: Energy, Correlation, Inertia, Homogeneity, 

Entropy, Cluster Prominence, 3rd Central Moment and 4th Central Moment. The textural 

statistics were calculated using a window size of 32 x 32 pixels, displacements ranging from 

2 to 16 pixels in four directions, and 16 grey levels. The classifiers were trained and evaluated 

with the help of 12 ASAR images and associated ice charts produced by expert analysts 

through visual interpretation. The optimal NN topology was selected by evaluating the 

performance of more than 50 possible NNs. Four classes of interest were identified: open 
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water/new ice mix, level first-year ice, deformed first year-ice and multiyear ice. However, 

initial NN classification results revealed substantial misinterpretation of open water/new ice as 

level first-year ice and for that reason the former class was excluded from further study. Sea 

ice analysts are noted to separate between these two classes by means of information 

contained in non-SAR image sources. Tested on 20 images—not used for training—the NN 

classifier produced average correspondences with ice charts to a degree of 85%, 83% and 

80% for level first-year ice, deformed first year-ice and multiyear ice, respectively. In two 

selected images, level first-year ice, deformed first year-ice and multiyear ice were identified 

with accuracies ranging from 62.08% to 86.18%, 73.29% to 73.49% and 64.76% to 72.15% 

by the NN classifier. The corresponding accuracies achieved with the Bayesian classifier 

were: 73.14% to 94.36%, 24.89% to 55.90% and 52.38% to 67.96%. Relative to the NN 

classifier, the Bayesian classifier can be implemented on higher resolution images thus 

enabling the detection of small-scale features but also producing a noisier result. The relatively 

good performance of the much simpler Bayesian classifier is explained from the large 

difference in the a priori probability for multiyear ice versus level first-year ice and deformed 

first year-ice, i.e. 0.9, 0.05 and 0.05, respectively. In areas with more variable sea ice 

characteristics, the Bayesian approach is not likely to work as well. Logically, the need for a 

priori knowledge about class fractions limits the utility of the approach. 

In a follow on paper, the Bayesian and NN classifiers discussed above are replaced by a 

Support Vector Machine (SVM) classifier (Zakhvatkina et al., 2017). Furthermore, HH- and 

HV-polarized RADARSAT-2 ScanSAR Wide images are applied rather than HH-polarized 

Envisat ASAR Wide Swath images. The classifier is trained using backscatter and GLCM 

textural statistics derived from 24 images acquired during the winter season over the Central 

Arctic. Operational sea ice charts are applied to identify training areas for six classes: new 

ice/first-year ice/multiyear ice, landfast ice, water/broken ice mix, water/new ice mix, water 

under high winds, and water under very high winds. However, in the final map product the first 

three are merged to form one single ‘sea ice’ class while the latter three are merged and 

labelled as ‘water’. The HH backscatter intensities are normalized to an incidence angle of 

35°—using one single linear relationship obtained for pack ice but applied uniformly across 

each image. Noise floor variations visible in the HV images are reduced through subtraction 

of Noise-Equivalent-Sigma-Zero (NESZ) values available from header files. The optimal 

GLCM computational settings and statistics are determined through visual comparison of 

textural products with ice charts and the analysis of graphs. The thus selected settings are: 

64 x 64 pixels window size, 8 pixels displacement in four directions, 32 grey levels and a 

window step size of 16 pixels. Typical GLCM implementations use a 1 pixel step size in both 

the x- and y-direction; the paper does not mention whether the adopted step size is applied in 

both directions or how GLCM statistics are computed for skipped pixels. The following textural 

statistics were used: Energy, Inertia, Cluster Prominence, Entropy and 3rd Statistical Moment 

for the HH image and Energy, Correlation, Homogeneity and Entropy for the HV image. HH 

and HV mean backscatter intensities and corresponding standard deviations were also 

computed using a 64 x 64 pixels moving window and—presumably—a 16 pixels step size. 

The performance of the classifier was tested by means of 2705 images acquired in the period 

January 2013 to October 2015, i.e. covering all seasons. Validation of all results by means of 
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ice charts revealed an average overall accuracy of 91 ± 4%. Maps derived from images 

acquired during the summer months are found to be less accurate. This is hardly surprising 

because (a) the classifier was trained by means of winter images and (b) summer melt 

reduces the ice-water backscatter and textural contrast. Irrespective the season, there is a 

high likelihood of confusion between landfast ice and water. Reliable assessment of 

classification/mapping accuracy is noted to be complicated by the coarse spatial resolution of 

operational sea ice charts. 

 

6 Coherent Change Detection 

Coherent change detection is an interferometric SAR (InSAR) analysis technique. InSAR 

involves the acquisition and processing of two compatible radar data sets to obtain information 

for mapping purposes (e.g. Rosen et al., 2000, Woodhouse, 2006, Moreira et al., 2013). Two 

forms of information are gained: coherence and phase difference. The coherence ranges from 

0 to 1 and signifies the correlation between the radar measurements and the quality of their 

phase difference. High coherence indicates strong correlations and meaningful phase 

differences, while low coherence denotes the opposite. The correlation between successive 

images varies due to changes in the SAR system and the surface observed. Typically the 

phase differences are the sought-after information because they enable the mapping of e.g. 

topography and subsidence. Nevertheless, thanks to its sensitivity to surface change, 

coherence can be used to classify and map surface cover types. Its utility to distinguish 

between certain cover types depends strongly on their rate of change and the timing of the 

image acquisitions. Previously, satellite InSAR image pairs could only be acquired with time 

offsets ranging from days to weeks. To date, much shorter repeat imaging intervals are 

available from the German TanDEM-X mission—milliseconds to seconds (Krieger et al., 

2013).  

Lake ice related studies 

Van der Sanden et al. (2018) evaluate and develop the utility of InSAR coherence computed 

from HH-polarized TanDEM-X image pairs, acquired at intervals of about 0 and 10 seconds, 

for the mapping of lake ice extent during freeze-up. Coherence computed from images 

acquired 10-seconds apart is shown to facilitate reliable classification of water and lake ice—

with the exception of ice ≤ 5 days in age. A simple, automated mapping approach is described 

and demonstrated. The approach combines basic interferometric processing, ice-water 

classification using a 0.3 coherence threshold and geospatial analysis to separate lakes from 

land. Its success primarily derives from the presence and absence of temporal change—

resulting in low and high coherence—in the case of water and ice, respectively. Relative to 

backscatter intensity, InSAR coherence is concluded to offer more utility for lake ice extent 

mapping because ice and water can be discriminated under all wind conditions and largely 

independent of the incidence angle. TanDEM-X images acquired at intervals close to zero 

seconds do not facilitate ice-water classification because water will only loose coherence after 

about 10 milliseconds (Bamler and Hartl, 1998). At present, TanDEM-X is the only civilian 
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satellite system with a capacity to acquire images with time offsets on the order of seconds, 

i.e. intervals ideally suited to ice-water discrimination. Unfortunately, this capacity is not 

routinely used and thus not available for operational lake ice extent mapping or hydrokinetic 

site selection. Canada’s RADARSAT Constellation Mission (RCM)—scheduled for launch in 

October 2018—will have the capacity to acquire InSAR image pairs with a 4-day time delay 

(Thompson, 2015). In order for RCM data to be of use for coherent change detection in the 

context of hydrokinetic site selection, the ice cover observed will have to maintain sufficient 

coherence and thus experience limited temporal change—water will naturally lose coherence 

as desired. Lake and river ice coherence products shown in van der Sanden et al. (2013)—

derived from COSMO-Skymed images (X-band, HH-polarized) acquired 4-days apart during 

mid-winter—suggest that this may be the case. However, analysis of actual RCM data will be 

required to confirm its utility.  

Sea ice related studies 

Yitayew et al. (2017) apply HH-polarized TanDEM-X image pairs, acquired with 30 millisecond 

and 10 second time separations, to the mapping of sea ice. The authors use Relative Kurtosis 

(a measure of texture), backscatter intensity and InSAR coherence as inputs for an 

unsupervised clustering algorithm. Following an evaluation of initial results, Relative Kurtosis 

is dropped because it provides insufficient separation between the classes of interest. Relative 

to backscatter intensity, InSAR coherence is found to be a more reliable source of information 

for the identification of unsteady classes, i.e. leads, open water and new ice. On the other 

hand, backscatter intensity is observed to better support the classification of steady classes 

such as landfast ice, ice ridges, first- and multi-year sea ice. Both data sets are concluded to 

have time separations suitable for the detection of water and other unsteady features. In 

contrast to 10-second repeat TanDEM-X data, 30-millisecond repeat data are available from 

an operational TanDEM-X mode, i.e. the Alternating Bistatic cooperative mode. 

Other studies 

Wendleder et al. (2013) describe an approach to generate a “Water Indication Mask” from 

HH-polarized TanDEM-X bistatic image pairs—acquired at intervals ranging from 50 

milliseconds at the equator to 0 milliseconds at the Earth’s poles. The mask is meant to be 

used in the editing of TanDEM-X digital elevation model (DEM) products, i.e. the ‘flattening’ 

of areas corresponding to water. A minimum of three image pairs—separated in time by 

months to years—is used to determine the likelihood that a given pixel corresponds to water. 

The detection of water in each of these image pairs is based on thresholds for backscatter 

intensity and InSAR coherence. In fact, two backscatter thresholds are used (-18 dB, -15 dB) 

to account for calm as well as high wind conditions. An analysis of 1700 globally distributed 

and randomly selected TanDEM-X products shows that the coherence for water ranges from 

about 0 to 0.3. To limit potential confusion between water and, in particular, forested areas 

the authors adopt a coherence threshold value of 0.23. Prior to thresholding, a 5 x 5 median 

filter is applied to reduce noise in both the amplitude and the coherence images. The window 

size used to compute coherence is not mentioned. Deserts and ice covered regions as well 

as areas corresponding to radar shadow or slopes > 20° are excluded from the processing. 

Also, detected water bodies and islands smaller than, respectively, 2 ha and 1 ha are 

discarded. “Water Body Detection Masks” (WBDs) generated from each available image pair 
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are combined to create one single “Water Indication Mask” (WAM). The pixels in the WAM 

represent water detection ‘counts’ for each threshold across all three dates. Logically, a higher 

count signifies a higher likelihood that water is present. Relative to the WBDs, the WAM is 

less sensitive erroneous detections. Validation of mapping results by means of reference data 

reveals that backscatter intensity facilitates superior detection of fine details such as narrow 

rivers while coherence provides better separation between water and other low backscatter 

features including wet or snow covered fields. The authors conclude “dependent on climate, 

land cover or application, the amplitude and/or coherence derived water body detection mask 

must be chosen in order to achieve the best classification for accurate water body detection”. 

For example, coherence thresholding was found to produce poor results when applied to data 

acquired while water bodies are covered by ice and attain landlike coherences. Excluding 

such conditions, overall water detection accuracies ranging—across latitudinal zones—from 

about 51% to 72% are achieved. The corresponding errors of omission range from about 14% 

to 30%. Close to the Earth’s poles TanDEM-X bistatic images are acquired within less than 

10 milliseconds, i.e. the minimum time needed for water to loose coherence (Bamler and Hartl, 

1998). Accordingly, the detection results achieved in these regions will be less accurate. 
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7 Lessons Learned 

This text reviews 34 publications regarding the use of Synthetic Aperture Radar (SAR) data 

in the mapping of river ice, lake ice, sea ice and/or water. Only seven apply SAR images to 

detect river ice and water in the period starting at freeze-up and extending into winter—

features and seasons of interest for hydrokinetic site selection (Chu et al., 2015; Gauthier et 

al., 2006/2008/2010, Mermoz et al., 2009; van der Sanden et al., 2009/2011). This text also 

includes supporting references, e.g. to publications outlining relevant image analysis 

techniques. 

Reflecting on the literature it is apparent that: 

 C- and X-band SAR images are most commonly used and offer similar utility in support 

of ice cover and/or water mapping. 

 Persistent freezing conditions enhance the utility of C- and X-band SAR images for the 

detection of open water in ice covered rivers. 

 HH- and VV-polarized SAR images typically comprise similar ice/water information 

while the information contained in HV-polarized images is complementary. 

 Four principal SAR image analysis approaches may be identified: radiometric analysis, 

polarimetric analysis, texture analysis and coherent change detection. 

 Preexisting geospatial information such as vector data outlining rivers, lakes and 

shorelines is often used to constrain image processing and facilitate map production. 

 Speckle filtering is essential to achieve good ice/water classification by means of 

radiometric and polarimetric analysis approaches. 

 The changing backscattering behavior of water—due to wind and/or flow—typically 

hampers and occasionally facilitates its detection. 

 Mapping approaches that exploit the variable nature of water involve the detection of 

temporal change with a minimum of two SAR images by computing backscatter 

variability or interferometric coherence—the radar return signal of the other surface 

covers imaged (e.g. ice) must be relatively stable. 

 Incidence angle induced changes in the backscatter of water and ice need to be 

accounted for to achieve consistent mapping results with SAR images acquired in 

different beams. 

 The optimum incidence angle for ice/water classification varies as a function of the 

image analysis approach. 

 Relative to conventional SAR image data, polarimetric and compact polarimetric SAR 

data offer enhanced opportunities for ice/water classification. 

 The Grey Level Co-occurrence Matrix (GLCM) technique is the most commonly used 

textural analysis approach. 

 Texture analysis is widely and successfully used in sea ice mapping approaches, its 

utility for river/lake ice mapping is less often explored but appears variable. 

 Relative to radiometric, polarimetric and textural analysis approaches, the coherent 

change detection approach is less sensitive to the complicating effects wind and 
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incidence angle on the classification of water and ice—the timing of the required 

interferometric SAR acquisitions is critical. 

 The majority of supervised classification approaches use either single measurement 

thresholds, multi-measurement thresholds (i.e. decision trees) or Support Vector 

Machines. 

 The majority of unsupervised classification approaches use (Fuzzy) K-Means 

clustering. 

 The linking of measurements to surface covers of interest resides with the developer 

and end user in the case of supervised and unsupervised classification approaches, 

respectively—the absence of certain cover types complicates the interpretation of 

unsupervised classification results. 

 Segment- or region-based approaches yield more homogeneous and better 

delineated ice/water classes than pixel-based approaches—demonstrated for sea ice 

mapping. 

 Pixel-based ice/water classification approaches dominate the literature because 

automated segmentation of SAR images showing natural surface covers is very 

challenging. 

 Radiometric analysis approaches are likely to confuse ice cover and water whenever 

their backscatter signals are: 

o Equally low—this occurs when the water is calm and the ice is well frozen and 

thin, purely columnar or bottomfast or melting and wet or overlain by wet 

snow/puddles. 

o Equally high—this occurs when the water is roughened by wind or flow and the 

ice is well frozen, thick and impure or melting and very rough. 

 Table 1 lists our expectations regarding the utility of alternate approaches—relative to 

that of radiometric analysis—to overcome the challenges identified. 

 

Table 1. Anticipated utility of image analysis approaches—relative to radiometric analysis—to 

overcome commonly encountered challenges in terms of ice/water classification. Key: ‘-‘ 

minimal, ‘-/+’ limited, ‘+’ moderate, ‘++’ strong. 

 Utility 

Challenge Polarimetry Texture CCD1) BICD2) 

The classes have equally 
low backscatters; e.g. 
calm water, black ice and 
new ice. 

-/+ -/+ -/+ + 

The classes have equally 
high backscatters; e.g. 
windy water, snow ice 
and frazil ice. 

+ + ++ + 

1) Coherent Change Detection; requires InSAR images with suitable time intervals. 

2) Backscatter Intensity Change Detection; requires the presence and absence of temporal change in the 

backscatter of water and ice, respectively. 
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