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FOREWORD 

It is Mines Branch policy to promote research, 
support universities and to disseminate information on subjects 
of importance to the mineral industry. With the traditional strength, 
among other subjects, of McGill University in applied mechanics, 
it has been natural for its Department of Mining Engineering and 

Applied Geophysics to display a leading interest in the development 
of the new subject of rock mechanics and in the training of post-
graduate students in this subject. The cooperative effort of our 
two organizations has produced in a doctoral thesis, on which t,his 
report is based, what seems to be a significant contribution to the 

. science of mining. 

Dean D. L. Mordell and Professor R. G. K. 
Morrison, Chairman of the Department of Mining Engineering and 
Applied Geophysics, are to be commended for promoting this work. 
Mines Branch is glad to publish this work so that it can receive 
wide distribution amongst those interested in a basic study of an 
important element of mine structures -- the pillar. 

hn Convey, 
Director, 
Mines Branch. 
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ABSTRACT 

This research work on pillar loading is in what might be 
described as the area of engineering theory. As such, it is concerned 
largely with the combining of existing scientific theories into a rational 
hypothesis for predicting the loading of pillars. Hitherto, this has been 
possible only in a very crude way and only for horizontal workings using 
the tributary area theory. 

In previous work on this subject, some workers have recog-
nized that rock is not a fluid material applying a dead weight to pillars but, 
rather there will be a structural reaction of the wall rock on the excavation 
of the vein rock. However, no complete analysis of the mechanics of the 
system in producing pillar loading had been established. 

The first step in this research work, therefore, has been to 
analyse the structural aspects of the problem by solving the statically 
indeterminate net deflection of the walls. This net deflection at the pillars 
will be a measure of the increase in pillar stress resulting from mining. 
The resultin.g equations show that not only is the extraction ratio important 
in determining pillar loading but that the hitherto ignored parameters of the 
ratio of field stress components normal and transverse to the mining zone, 

the height of the pillar, the location of the pillar within the mining zone, 

the ratio of compressibility of pillar rock to wall rock, the number of 
pillars across a typical section of the mining zone, the breadth of the pillar, 
and the ratio of the depth from the ground surface to the span of the mining 
zone are all of some significance. 

x
Head, Mining Research Laboratories, Fuels and Mining Practice Division, 

Mines Branch, Department of Mines and Technical Surveys, Ottawa, 
Canada. 



Additional analytical work has been done in examining the 
various alternatives to the hypothesis that is based on elastic ground. In 
this work it is shown that for compatible strain the loading of pillars will 
almost always be a phenomenon associated with elastic, or at least pre-
failure, deformation in the walls. .Consequently, any mechanisms based 
on post-failure rock properties will not be applicable to this problem, 
although they may be for other types of support. In this supplementary 
work, an elliptical arching theory has been developed that may be more 
valid than the various other theories hitherto available for this case of 
loading of yielding support. 



MilliefflffleleCIUM 

- iv - 

Direction des mines 

Rapport de recherches R 168 

LA CHARGE DES PILIERS. PARTIE I: DOCUMENTATION ET 
NOUVELLE HYPOTHÈSE 
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D. F. Coates* 

RÉSUMÉ 

Le présent travail de recherche sur la charge des piliers se range 
dans ce que l'on pourrait appeler le domaine du génie théorique. Essenti-
ellement, il cherche à combiner les théories scientifiques existantes pour 
en arriver à une hypothèse rationnelle sur la prédiction de la charge des 
piliers. Jusqu'ici, cela n'a été possible que d'une façon très  rudimentaire 
et seulement dans le cas o'ù l'extraction se faisait à l'horizontale en utilisant 
la théorie de la zone tributaire. 

Dans des travaux précédents sur le sujet, quelques chercheurs ont 
reconnu que la roche n'est pas une matière fluide qui applique un poids mort 
aux piliers, mais qu'il se produit une réaction structurale de la roche 
encaissante lors de l'extraction de la roche du filon. Cependant, on n'a pas 
fait d'analyse complète de la mécanique du système à mesure que l'on charge 
les piliers. 

Par conséquent, la première étape dans le travail de recherche a 
été d'analyser les aspects structuraux du problème en déterminant statique-
ment la déflexion nette des parois. Cette déflexion nette aux piliers servira 
à mesurer l'augmentation de la charge que supportent les piliers à la suite 
de l'extraction. Les équations qui en résultent indiquent que non seulement 
le taux d'extraction est important pour calculer la charge des piliers, mais 
que les paramétres nagUére inconnus du rapport des composantes des con-
traintes de terrain normales et transversales à la zone d'extraction, la 
hauteur du pilier, l'emplacement du pilier dans la zone d'extraction, le rap-
port de compressibilité de la roche du pilier à la roche encaissante, le nom-
bre de piliers à travers une coupe typique de la zone en exploitation, la lar-
geur du pilier et le rapport entre la profondeur et l'étendue de la zone en ex-
ploitation ont une certaine importance. 

'.`Chef, Laboratoires de recherches sur les mines, Division des combustibles 
et du génie minier, ministère des Mines et des Relevés techniques, 
Ottawa, Canada. 
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L'auteur s'est livr6 'à un travail analytique supplémentaire en 
soumettant à diverses conditions cette hypothése qui est fondée sur 
l'élasticité du terrain. Il en ressort que pour une fatigue compatible, la 
charge des piliers sera presque toujours associée à une déformation 
élastique ou, du moins, une déformation précédant la rupture de la roche 
encaissante. En conséquence, nul mécanisme fondé sur les propriétés 
de la roche aprés la rupture ne peut s'appliquer à ce probléme, bien qu'on 

puisse utiliser de tels mécanismes pour d'autres genres de support. Dans 
ce travail supplémentaire, une théorie de cintre elliptique a été mise au 
point qui pourrait etre plus valable que toutes les autres connues jusqu'à 
aujourd'hui au sujet du chargement du support fléchissant. 
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STATEMENT OF THE PROBLEM 

As related to mining, pillars can be defined as the in situ 

rock between two or more underground openings. The terms height, 

thickness  and width should be restricted to the dimension normal to the 
plane of the workings or openings. The length of the pillar is the greatest 

dimension in this plane, and the breadth can be used for the lesser dimen-
sion in this plane (1) 3c . 

In examining the mechanics of pillars there are two aspects 
to be considered. First, the load that is applied to the pillar must be 

determined. Then, secondly, the strength of the pillar, taking into account 
the various modes of failure, should be appraised. The safety factor can 

then be determined and judgment exercised on whether it is adequate or 
flot,  

Throughout the various fields of structural mechanics, 

experience has shown that design can be based either on detailed theoretical 

stress analysis, with elaborate and refined testing techniques on the material 
(i.e., taking into account stress concentrations, repetitions of loading, and 
some non-linear aspects of the materials), or on analogue testing together 
with a simple, somewhat superficial, analysis of stress. 

In rock mechanics for designing pillars the use of the first 
alternative would require, among other things, proof that theoretical, 
elastic stress concentrations actually occur in the rock. For this proof 
a large amount of basic field work, using measuring techniques that are 
flot  yet fully developed, would be necessary. Considering the rheological 
and structural nature of rock, it is probable that the theoretically calcu-
lated stress concentrations in many, or possibly in most, cases do not 
actually occur. The often observed evidence of surface relaxation and 
incipient slabbing in the zone where the maximum tangential stress should 

be occurring supports this view. Also, some field measurements indicate 
that the theoretical stress concentrations are not obtained (2) and that a 
Plastic-type stress distribution often occurs (3). 

The first design alternative, of ideal stress analysis and 

testing, would also require the perfection of current testing techniques to 

obtain absolute strength values, which we are far from obtaining as the 

first requirement of producing homogeneous compressive stresses in 

)(

These numbers refer to the sources of information listed in the 
BIBLIOGRAPHY at the end of this report. 
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laboratory specimens has not yet been achieved. It also would require 
Icnowledge of how to relate this absolute strength of the rock substance to 
that of the rock mass. Some evidence exists that rock masses may only 
have strengths equal to about 2% of the nominal (from conventional labora-
tory tests) strength of the rock substance (4), and the cases that have been 
analy.  sed by the author indicate that it might be less than 1%, Moreover, 
these comparisons are for situations where no gross structural weaknesses 
were kn.own to exist to cause obvious reductions in the strength of the rock 
masses. 

Finally, with respect to the first alternative it can be said 
• that this procedure has not been followed in developing the subjects of 
structural engineering or soil mechanics, which possibly have enough 
similarity to rock mechanics for this experience to have some pertinence .  
The procedure in structural mechanics over the past 100 years and in soil 
mechanics over the past 40 years has been to gradually replace decisions 
based on pure judgment with those guided by mathematical analyses, These 
analyses have generally been in terms of simple theories of stress distri-
bution (ignoring such factors as stress concentrations) together with, in 
effect, relatively crude analogue testing supported and modified by experi-
ence and research, 

In the case of pillars, the second design alternative, that 
followed in the above related subjects, would be based on the determination 
of the total load rather than on the detailed stress distribution. Certainly 
total load is a more significant parameter for the total energy content of 
the pillar; or, alternatively, average stress is more significant for the 
average energy content per cubic foot of ground than is the maximum stress 
concentration which exists over a small part of the rock surface and for 
an infinitesimal depth. Consequently, it is possible that total load, or 
average stress, is a more significant parameter for rockburst-type failures. 

Furthermore, for typical mining openings of rectangular 
cross-sections the stress concentrations in the pillars occur near the 
walls  (j. e,, hangingwall and footwall) where failure is least likely. On 
the other hand, near the central part of the pillar, where failure is most 
probable, the variation of longitudinal stress (i . e,, normal to the walls) 
across the pillar is slight (60). It has been observed that at this central 
section the confinement resulting from the restraint of the walls is at a 
minimum and hence the central section is potentially less stable than the 
section near the walls (60) . 

Also, intuitively one feels that weight or total load is more 
significant in producing instability than is a local stress concentration .  
For example, the stress concentration in an infinitesimal depth of ground 
at a sharp corner might be theoretically as much as 10, which might produce 
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a tangential stress of 20,000 psi; however, this stress would be much less 

significant than an average stress in the pillar of 20,000 psi or 10,000 psi, 

or possibly even 5,000 psi. Furthermore, two cases could be obtained 

where the maximum stresses from stress concentrations might be equal, 

but in the first case the average pillar stress could be twice the average 

pillar stress in the second case. Other things being equal, there would 

be no doubt that the first pillar would not be as safe as the second. 

Another aspect of the importance of load is that the deflection 

or compression of a pillar should be a function of load or average stress to 
a larger extent than of stress concentrations n.ear the surface. This total 

deflection should be closely related to the stability of the pillar; conse. 

quently, stability is a function of load. However, our knowledge of how 

pillars actually fail is still sufficiently sparse that these statements cannot 
be made with certainty. 

In using the second design alternative there is an advantage 
in that the simple uniaxial compression test provides a good analogue of 

normal pillars. In other words, the restraint that the walls provide at 
the ends of the pillars is reproduced by the restraint of the platens on the 

ends of the laboratory specimens.  For this reason the specimens can have 
a stress distribution similar to the stress distribution in pillars. 

It is also conceivable that, by testing a series of specimens 
to determine the effect of size on average strength, a relationship could be 
obtained that could be extrapolated to the size of the actual pillars. To 

• provide some support for such a long extrapolation, studies have shown 
that there can be a strong similarity between the microscopic or petrofabric 
pattern of cracks and those of the macroscopic or joint patterns of the rock 
mass (5), and Such a connection with respect to strength has been indicated 
empirically (4). 

From the above reasoning it follows that one problem that 
must be solved in the field of rock mechanics in connection with pillars is 
the analysis of pillar loads. This is the problem to which this research 
work contributes„ A review of existing knowledge on the subject provides 
a starting point. 
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LITERATURE SURVEY OF PREVIOUS WORK 

The main  contribution  to the analysis of pillar loads was 
made some time ago (6). By assuming that the entire weight of the groun.d 

overlying the tributary area in horizontal workin.gs is supported by the 
pillar, a simple equation was obtain.ed: 0-  = S

0
/(1 -R), where 0* is the 

average pillar stress, S o  is the vertical field stress acting at the level of 
the mining zone, and R is the extraction ratio in the mining area (the area 
mined divided by the total area). It follows frorn this equation tha.t for 50% 
recovery the average pillar stress would be twice the original stress in the 
pillars, S o , before mining; for 75% recovery, the average pillar stress 
would be 4S0 ; and as 100% recovery is approached, the average pillar 
stress would approach infinity. 

This simple concept, which is labelled here the "tributary 
area theory", ignores, among other factors, the effect of the resistance to 
deformation of the roof or overlying ground. At the sarne time, even ignoring 
the possibilities of differential pillar loading due to geological structural 
features, this equation, as will be shown later, does not provide an upper 
limit for the average pillar stress. Nevertheless, a recent review of the 
subject showed that no other analytical expression was available for the 
calculation of pillar loads (7). 

Shortly after the establishment of this theory, some experi-
ments showed the importance to pillar loading of the deformation propertie', 
of the ground (8). Photoelastic models were used to determine the stress 
distribution around rooms and pillars and to show how this stress distri-
bution changed with the stiffness of the pillar. It was demonstrated that 
with a pillar of lower stiffness  than  the model material (see Figure 1) most 
of the field stress was deflected aroun.d the two rooms and pillar into the 
outside abutments. However, no analysis of the data was made to provide 
a quantitative method for the determination of the obviously reduced loads, 
or stresses, in the pillars. 

Some intuitive rules have been forn-iulated that, in effect, 
take into account to some extent the deflectio n  aspect of the problem (9). 
It was postulated that the maximum pillar load would occur when the radius 
of the stoping area was equal to the depth of the mining zone divided by the 
extraction ratio. (The definition of extraction ratio in this reference is 
equal to the total area of the mining zone divided by the area of the pillars.) 
It was further stated that the maximum pillar load would be found at the 
centre of the mining zone and would be equal to the overburden load of the 
tributary area. The average stress for the other pillars would decrease 
towards the abutments becoming equal to the overburden  stress at the 
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Figure 1. Variation of Pillar Load with Pillar Stiffness (Ref. 8) 
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abutments, which, of course, ignored the stress concentrations in the 

abutments. Neither theoretical analyses nor measurements were given to 
justify these statements. 

In a paper based on the results of photoelastic experiments 

on the stress distribution in pillars, it was stated that when the breadth of 

the mining zone, L, was equal to the depth below the surface, z, the central 

pillars in the mining zone would carry the full overburden load of the tribu-

tary area (10). Unfortunately, no experimental results were presented. 

An attempt has been made by other workers to explain  the 

 collapse of roofs  in mines that are being worked by the room and pillar 

method (11). The theory that was formulated took into account the weight 

of the overburden, the bearing reactions of the abutment, and the reactions 

of the pillars,. However, the emphasis in this work was on calculating 

bending stresses in the overlying ground rather than on determining pillar 
loads and predicting their stability, and no general theory was provided. 

This type of analysis does not take into account, among other factors, the 

contribution to closure of the deflection of the floor. 

The initial work of the author in this field took into account, 

to some extent, the stress distribution created by mining in a horizontal 

seam (12). Recognition was given to the transfer of load through shear 

stresses into the abutments. The effect of excavating the rooms or stopes 

was postulated as being equivalent to applying at the roof level a vertical 

stress acting downwards equal to the vertical stress that had been acting 

upwards from the excavated ground on the roof, 

The effect of this additional vertical stress acting downwards 

at the depth of the workings and over the finite area of the workings must 

produce a deflection downwards of the overlying ground. If the overlying 
ground extended vertically to infinity, the deflection of any point in the over-
lying ground could be calculated following the integration over the roof/pillar 

interface of Boussinesces equation for the stress distribution resulting from 

a point load acting on the surface of a semi-infinite solid. It was then 

reasoned that, because the overlying ground did not extend to infinity but 

had a free surface at  the  ground level, the deflection at the ground level 

resulting from the additional downward stress applied at the level of the 

workings would be twice the deflection that would exist at the ground surface 

elevation if the overburden did extend to infinity. 

This work was the first analysis to show quantitatively that 

when the ratio of the span of the workings, L, to the depth of the workings, 

z, is low the average pillar stress in the central pillar should be less than 

the overburden load arising from the area tributary to the pillar (12). For 

example, it was shown that when L/z := 0.5 the central pillar would have an 

average stress equal to, for an extraction ratio of 75%, 2.5, rather than 4, 
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times the original field stress, which would be about 60% of the overburden 

load of the tributary area. 

There were several limitations in this theory. The principal 

deficiencies were that the average pillar stress could only be calculated for 
the central  pillar and that the integration of the equivalent stress caused by 

excavation had to be done using a graphical method rather than having the 
convenience of an analytical expression (12). It did, however, provide a 

general basis for departing from the simple theory that was available up 
to that time. 

This work also provided an analysis of pillar loads in hori-
zontal workings when the overburden yielded under the shear stresses 

produced by stoping (12). The stress distribution in the overburden and 

the loads in the pillars in this case are dependent on the shear resistance 

of the ground as well as on Lizx. As the deflection of the roof does not 

enter into this analysis, the calculated average pillar stresses are all equal. 

A.ctually there would be a variation from a maximum at the centreline to a 

minimum at the abutments similar to the elastic case. 

In a review of room and pillar mining in eastern Europe, the 

effects of using barrier pillars was discussed by one research worker (14). 
It was claimed that at a certain magnitude of Liz and a suitable width of the 
barrier pillars, deformation produced a natural vault above the rooms and 
intervening pillars. In other words, it was postulated that arching occurred 
between the barrier pillars which thus sustained some of the load that would 
otherwise have to be taken by the normal pillars .  Consequently, these 
normal pillars could be reduced in size and the extraction ratio of the area 
between the barrier pillars increased. It was also pointed out that the 
reduction in stress would be greatest on the pillars adjacent to the barrier 
pillars and be less pronounced in the centre of the mining zone, This paper 
definitely indicated an awareness of the effects of Liz but not of the other 
factors that can be significant. 

Over the years the investigation of the stability of workings 
in potash and salt had led some investigators to the observation that when 
a certain size of mining zone was exceeded, the hangingwall would bend so 

that pillars that seemed to be quite stable and apparently oversize during 
the initial operations would be destroyed (13). This was a useful qualitative 

deduction., 

x
Symbols are defined when they first appear in the text; in subsequent 

sections the reader can obtain the definition by consulting the Appendix. 
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In attempting to establish a rational design procedure for 
mining horizontal beds of potash, it was assumed by one worker that the 
overlying ground would behave like a clamped plate up until the tensile 
strength of the roof rock was exceeded (15) .  Using the tensile strength 
obtained on laboratory samples, calculations were then made to determine 
the span that would produce these tensile stresses by pure-bending. The 
concept being used was that when the tensile stresses were exceeded the 
strain energy in the overlying roof rock would then be released, producing 
the rockbursts that were observed from time to time .  It was mentioned 
that the properties of the rock mass would be different than those of a 
sample; however, no recognition was given to the difficulty of testing for 
tensile strength, nor to the questionable procedure of attributing any 
tensile strength to a rock mass. 

Following previous mathematical work (11), the effects on 

pillar loads of the deflection characteristics of the overlying ground in 
horizontal workings were calculated (16); however, the significant factors, 
such as floor deflection, omitted in the previous work were also omitted 
in this analytical work. It was claimed that the relative effects were 
qualitatively substantiated by observations in potash mines, However, no 
measurements were presented in the paper. One concept introduced, but 
not proven, looks interesting; it is that the modulus of deformation of a 
pillar varies with its breadth. It is conceivable that some such relation 
might exist, and if substantiated important deductions could be made. 

Several laboratory photoelastic studies have been made on 
the distribution of stress in pillars (6, 8, 10, 14, 17, 18, 19), which both 
confirmed the theoretical stress distributions for multiple circular openings 
(20,21, 22) and added additional information on geometries not covered by 
theory. However, few measurements underground have been made to 
appraise the theoretical or laboratory work; the little evidence that exists 
indicates the presence commonly of near-surface zones of reduced stress 
rather than of increased stress (23,24,25,26). 

In some of this photoelastic work the results were analysed to 
give pillar loadings as well as the stress distribution (17, 19), The results 
of these experiments 'showed clearly that the pillar loadings were invariably 
less than prediced by the tributary area theory. No explanations were 
offered for this finding .  

Other experiments where pillar loadings were measured 
involved the use of mortar models (17,78). Again these experiments showed 
the measured loads to be less than predicted by the tributary area theory .  

In addition to the above work, an extensive series of labora-
tory experiments was conducted on the stress distribution occurring in model 

pillars where the dip of the seam varied from 0 0  to 90 0  (27), The models 
were constructed of gelatin, and the stresses were determined by photoelastice 
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As a result of this work it was found that the average normal 

and tangential stressés could be calculated using simple approximations (27). 
For dips between 0 0  and 30 0 , it seems possible to obtain a close approxi-

mation to the average pillar stresses by assuming the dip as 0°. For dip 

angles between 600  and 90 0 , the dip angle can be assumed to be 900. For 
dip angles between 30 0  and 60 0 , the average stresses can be then be 

determined by the equations based on a simple resolution of forces: 

yz (cos a 	k sina  i) A
t
/A

p 
and 

T =4-yzsin2i(1.-k)A
t
/A

p' 

where os is the average normal stress, y is the density of the overlying 

ground, z is the depth to the pillar, i is the dip angle, A t  is the area tri-

butary to the pillar, A is the cross-sectional area of the pillar in the plane 

of the seam assuming that the sides of the pillar are normal to the walls, 

k ShiSv  fi. e., horizontal to vertical field stress ratio), and T is the 
average shear stress across the pillar. These model tests provide a basis 
for determining the effect of dip angle on pillar stresses; however, their 
design  was not suitable for the obtaining of the actual magnitudes of pillar 
stresses. 

Besides the above theoretical and laboratory work, some 
underground measurements have been made. One of the first attempts to 
measure pillar stress was done indirectly by measuring the velocity of 
sound through the pillar (28). Previous work in the laboratory indicated 
that the velocity varied with the magnitude of the stress in rock samples (29), 
although the variation of velocity with stress was rather small. 

The phenomenon was used in one particular mine (28). By 
comparing the velocities obtained in the pillars with the velocities obtained 
on small samples of the rock from the pillars, it was found that the differ-
ences between the velocity readings obtained from any two pairs of holes 
in the pillars and the difference between these velocities and the average 
velocity obtained on the test specimen.s at zero stress were all, within 
the experimental erro. r, equal. The results thus indicated that the pillars 

were not subjected to sufficient stress to be measurable by this technique. 

It was suggested that the load of the overlying ground was being transmitted 
by arch action into the abutments of the stopes. However, no attempt was 

made to analyse this action. 

In this same work a test pillar was reduced by excavation 
to one-half of its original cross-sectional area (28) . The velocity in it, 
and the adjacent pillars, showed no significant change, suggesting no change 
in stress from the initial test in the full size pillar. 
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The test pillar was then cut free from the roof, so that it 
could be guaranteed that the average stress in the pillar was substantially 
zero (28). The velocity through the pillar then fell from the previous value 
of 4755 metres per second to about 300 metres per second, whereas the 
velocity in the adjacent pillars remained approximately the same. The low 
velocities in the test pillar were attributed to the pillar's being shattered 
to such an extent that the acoustical path between the test holes was altered 
substantially, hence making it impossible to deduce stress magnitudes from 
a physical interpretation of the readings. 

In another paper a brief description is given of some measure-
ments of stress in the pillars of a potash mine (25) .  Two unidirectional 
electrical wire strain gauges were cemented at the end of a borehole at 
right angles to each other. The stress in the end of the borehole was then 
relieved by extending the hole with a coring bit. It was assumed that the 
change in strain resulting from this overcoring was a measure of the normal 
stress in the pillar at that point. 

In pillars at a depth below the ground surface of 429 metres, 
one set of measurements produced, as an average of several readings, a 
vertical stress of 142 ksc and a horizontal stress of 102 ksc with a second 
set of readings producing a vertical stress of 96 ksc and a horizontal stress 
of 59 ksc (25). A third set of readings in a pillar at a depth of 498 metres 
produced a vertical stress of 96 ksc and a horizontal stress of 45 ksc. 

Although the dimensions of the pillars and the mining zone 
were not given, in the case of the first pillar calculations based on the 
overburden load of the tributary area showed that the maximum average 
stress should be 219 ksc (i.e., greater than the measured 142 ksc)(25). 
Similar figures were not given for the other two pillars .  However, it can 
be calculated that the overburden stress alone for the second pillar must 
have been 103 ksc and for the third pillar 120 ksc, both greater than the 
measured stresses. 

Aside from the pillar measurements, an important observa-
tion made in this work was that by using the carrying capacity of the pillars 
for mine design the assumption is made that the roof can subside without 
breaking to the extent corresponding to the pillar loads (25) . The implication 
is that there would be a sudden and probably drastic change in pillar loadings 
if the roof structure did break down. 

The pillar measurements themselves in this work obviously 
are of questionable value (25). At the time that this research was done the 
state of the art was such that satisfactory bonding of the strain gauges to 
rock, and in particular to potash, was very difficult. Secondly, the effects 
of stress concentrations around the end of the borehole were ignored; the 
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calculated results would be changed considerably if this factor had been 

taken into account. Thirdly, as it is necessary in this technique to use the 
modulus of deformation of the ground, all the difficulties associated with 
determining the effective modulus of deformation of the rock mass would 
diminish the accuracy of the calculations. Moreover, potash is a rock 

whose *modulus of deformation is particularly sensitive to strain rate, stress 
level, probably temperature, and probably the presence or absence of a 

confining pressure. 

Other field work used the technique of prestressing a 

magneto-strictive pressure cell and then overcoring or relieving the cell. 
Measurements of the stresses in several pillars were made in a lead mine 

where the seam was lying horizontally (30). The depth of the workings was 
about 100 metres. The pillars were generally 8 to 9 metres in height and 

spaced 20 to 25 metres between centres. The extraction ratio was 90%. 

The measured stresses were compared with the stresses 

calculated assuming that the entire overburden load resulting from the 

tributary area would be carried by the pillar (30). In one cluster of measure-

ments the results indicated that the pillar nearest the abutment of the mining 

area was only carrying 16% of this maximum load whereas the pillar nearest 
the centreline of the mining area produced figures indicating stresses 125% 
of the maximum. 

In another cluster of pillars it was again found that the lowest 
absolute stress occurred in the pillar nearest the abutment. The pillar closest 
to the centreline did not have the maximum measured stresses, but the stresses 
were not much below the maximum stresses occurring in an adjacent pillar 
somewhat farther from the centreline (31). 

In this work the penetration of the pillars into the walls was 
considered; however, no use was made of this concept in attempting to provide 
a theoretical framework for the work (30). 

Measurements in the abutments of the mining area indicated 
that the vertical stresses were roughly twice the magnitude of the overburden 

stress (30). This would be qualitatively consistent with a stress concentration 

effect modified by some plastic action associated with the semi-fractured 
ground close to the blasted faces. 

However, stress measurements in the roof of the mining zone 

showed high compressive stresses and no tensile stresses (30). This by itself 

would indicate that the horizontal stresses would have to be greater than about 

1/3 of the vertical stresses. The measurements within 2 metres of the 

roof line showed the horizontal major principal stress to be 4 to 12 times 

the vertical gravitational stress, with the intermediate principal stress being 

about f of the major principal stress. It is probable that, within this distance, 
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stress concentration effects would produce principal stresses, and hence the 
measured quantities, ireater than the field stresses. 

Stress measurements were also made in a shaft pillar that 
was about 50 metres thick, 50 metres in breadth, and 170 metres long (30). 
The ore deposit was a magnetite dipping 60° to 750 , and the wall rocks were 
leptite and granite. 

The measurements indicated that the horizontal field stress 
'perpendicular to strike was of the order of 110 to 240 ksc, with the hori-
zontal field stress parallel to strike being of the order of 280 to 360 ksc at 

 a depth of 290 metres (30). At a depth of 185 metres, approximately in the 
centre of the pillar, the horizontal stress measurements in the pillar normal 
to the walls were of the order of 450 ksc. 

These measurements will be examined later in the light of the 
proposed hypothesis of pillar loadings .  The actual numbers have to be accepted 
with caution owing to the technical difficulties inherent in measuring the stresses, 
owing to the difficulty of determinin.g from a few spot measurements the average 
stress in a pillar without knowing accurately the stress distribution, and owing 
to the inevitable influence of the varying lithological and structural features 
that provide the context for each individual set of measurements. These 
factors, of course, will apply to most field work of this nature. 

In other work, an attempt was made to measure the changes 
in stress in pillars resulting from additional stoping (31). Glass s'tress-
meters were used without overcoring; consequently, only relative measure-
ments were obtained. The only useful conclusion from this work is that it 
showed that the direction of the major principal stress in pillars, as well as 
in undisturbed ground, could be influenced by the existence of a sloping ground 
surface such as would occur at the sides of a mountain. In other words, the 
major principal stress can be greater than the immediate overburden stress 
and can be in.clined to the vertical, 

Stress measurements were also made through several coal 
pillars with a borehole ,  deformation metre using linear variable differential 
transformers as the transducers for measuring the changes in the borehole 
diameter (26). The instrument was used in a borehole approximately if inches 
in diameter which was overcored with a 10-inch diameter bit. The mining zone 
was approximately 480 feet below the surface, and it was stated that the pillars 
were in the centre of a large mined-out area„ The measurements showed 
that the average pillar stresses were greater than the average stresses that 
would be calculated assuming the pillars were supporting the overburden load 
of the tributary area. 

Some recent work on measuring changes in pillar strain 
during pillar recovery produced some unexpected results (76). The pillar 
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recovery operation was accompanied by caving in the old stopes. It was 
found that as the cave-line in these horizontal workings approached the 

instrumented pillars, the compressive vertical strain and the horiiontal 
dilation or strain decreased. The reverse effect was expected. Then, in 
the light of th,ese measurements, which were repeated for several measuring 

stations, a roof relaxation-arching-abutment mechanism was visualized .  
For this mechanism, the evidence of an abutment zone farther in from the 

cave-line was sought but was not found. 

This phenomenon provides a good example of the usefulness 

of the new concept of pillar loading contained in this hypothesis. The mine 

plan shows that the span of the workings decreased towards the measuring 

stations (76). Consequently, it can be visualized that the deflection of the 
roof over the workings could be greater at the measuring stations when the 

cave-line was far away, owing to the greater span farther from the instru-

mented pillars inducing greater roof deflection at these pillars than when the 

cave-line approached the pillars and the roof deflection became less. With 

this decrease in roof deflection, of course, the pillar loadings would be 
decreased, producing the changes in vertical and horizontal strain that were 

actually measured .  

Because the proposed hypothesis, which is established below, 
is based on deflection analyses, the theoretical and the empirical work on 
deflections that has been done by others can be examined. In some mathe-
matical research, stress functions were established for various cases of 
bearing pressures to determine stress distributions (32). One of these cases 
was that of an internal elliptical crack. Based on this solution for the stresses 
around a crack in an infinite medium, the stresses, strains and displacements 
around a mining excavation, considered as a crack, were calculated and a 
general picture of the relative distributions obtained (33). The solutions 
were modified to take into account the presence of a horizontal free surface, 
the ground surface, at some distance above the crack and to include the 

compression of the abutments of the crack. The results were qualitatively 
similar to observed deflections .  

It was considered in this work that the solutions were only 

valid for cases where Liz is less than about 0.7 (33). Also, they were 

lirnited to locations where hydrostatic field stresses occur. 

The solutions also showed, apropos subsidence, that the 

point of maximum tension that occurs on the ground surface is not located 
at a constant angle from the abutment of the mining opening (33). In other 

words, a constant draw angle seems to be an invalid concept. 

Again on deflections, but with the interest on subsidence, 

studies were conducted on gelatin models with Liz varying between 0,2 and 

1.7 (34). Measurements of surface subsidence showed in all cases that the 
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subsidence vertically over the abutment line was approximately 50% of that 
obtained at the centre bf the panel. This resulted from the strain distribution 
caused by the ground over the mining opening alone, as the abutments at 
the mining level being of steel were relatively incompressible. 

Another theoretical solution for the subsidence of the ground 
surface due to underground mining deals with the case of isotropic ground (35) .  
This solution is only applicable for the case where complete closure of the 
mining zone has occurred. When the theoretically predicted subsidence is 

• compared with actual measurements, it is found that the actual subsidence is 
in excess of the theoretical prediction and that the effects of closure do not 
actually extend as far out horizontally as would be indicated by this theory .  

This solution was later modified for a long excavation in 
transversely isotropic ground (36). In this case the predicted subsidence 
curve is in good relative agreement with some actual measurements .  The 
solution was then further modified to take into account the third dimension 
of the mining geometry (37) . This solution indicated that if the length of 
the mining panel was twice the breadth, the subsidence would be about 80% 
of that applicable to a long excavation for the case of plane strain .  Conse- 
quently, it was concluded that the plane strain solution would be satisfactory 
for geometries where the length is more than twice the breadth of the mining 
opening. 

An analysis by another worker of the measurements of 
surface subsidence at the centre of mining zones on several properties 
showed a variation with the ratio L/z (38). The maximum subsidence of 
about 84% of the thickness of the excavated seam was obtained when L/z 
was equal to or greater than 1,4 .  

In another review of subsidence measurements over hori-
zontal coal workings, it was found that the settlement of the surface commonly 
showed the contribution of abutment compression (41). It was claimed that 
typical subsidence curves show downward movements over the edge of the 
panel varying between 15% and 2.5% of the maximum subsidence. 

Underground  measurements have been made in South Africa 
of closure in a hard rock stope as the span of the stope was increased (39) .  
In addition, measurements were made in from the surface of the hanging-
wall to provide information on the source of closure .  A pattern emerged 
that showed that the hangingwall expanded normal to the vein .up to heights 
varying from 0.47 L to 0.91L, with the coefficient of L increasing with span. 
It should be recognized that this expansion could result from tangential 
compression. Also from observations of the bulging of the face, it was 
judged that closure between the walls, or abutment compression, occurs 
even ahead of the face. 
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In addition, beyond a span of about 300 feet a contraction 
zone was detected in the immediate hangingwall (39). This was manifest by 
the distance between measuring points increasing initially with span and then 

contracting as the stoping span increased beyond 300 feet, This might be 
evidence of a decrease in tangential compression. 

Another interesting investigation in hard rock was made at 
a depth below ground surface of 200 feet to 500 feet in a stope 10 feet to 
12 feet high (40). The consequences of recovering pillars were measured. 
In one area, adjacent to a side abutment, the roof was bolted.  Four pillars 
in the line adjacent to the abutment were removed, and a maximum conver-
gence  at this stage in the centre of the area of 0.142 inch was m.easured. 
These measurements will be analysed in a later section .  

During the few hours after blasting these pillars the micro-

seismic count increased to 20 to 30 cprn but within 24 hours the rate had 

returned to the normal background level of 1 to 5 cpm (40) . The load on the 

bolts increased an average amount of 410 pounds during the week after 
blasting and then an average of 720 pounds during the seven weeks after 
blasting. 

In a similar area, 125 feet x 125 feet, adjacent to a side 
abutment, by the time ail the pillars were removed the maximum conver-
gence was about 0.35 inch (40). Extensometer stations about 35 feet beyond 
the barrier pillars showed convergences .of an average of 0.015 inch. This 
can be considered similar to abutment compression .  

This abutment compression then increased to 0,046 inch, 
approximately 13% of the average convergence measured in the adjacent 
areas of pillar recovery when additional pillars were removed increasing 
the area of the zone to 125 feet x 200 feet. Most of the convergence occurred 
immediately on pillar removed, with an additional 10% occurring during the 
following week. 

Again in a hard rock mine, closure between the hangingwall 
and footwall was measured as the face advanced in workings at a depth of 
about 4000 feet (42). The face w.as about 600 feet long on dip and was 
advancing on strike. It was found that by the tixne the face had advanced 
about 400 feet on strike the closure was about 1.7 feet. 

Stimulated by these investigations a theoretical analysis of 

a long, horizontal slit in an infinite elastic medium was then produced (43). 
More recently this theory was extended to cover the general case of an 

inclined slit (44). The results of this general theory were then reduced for 

convenience to a graphical form (45). In this latter work the theoretical 
results were compared to underground displacement measurements with 
good agreement. As will be seen below, this deflection analysis is a 
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special case and in agreement with more general equations used below to 
develop the loading hipothesis. 

Besides the above work pertinent to deep workings, the 
deflection of roof rock over horizontal workings with high values of Liz, 
or shallow depths, requires special examination. Some experimental 
work done to provide guidance for the design of deep concrete beams is of 
value in this connection (46). When Liz is greater than about 2.5 the 
straight-line distribution of bending stresses calculated in the conventional 
manner has been shown to be a valid representation of the actual distribution, 

When Liz is smaller than about 2,5, it was found that the 
distance from the bottom edge of the beam to the centre of gravity of the 
tensile stress is constant and equal to about 0.06 L with a stress distribution 
similar to an opening in an infinite medium (46). In addition, the lever arm 
between the compressive and tensile bending forces was also found to become 
constant and equal to about 0,67L, varying somewhat with the type of support 
and loading. 

When Liz is less than about 1.4 in deep beams, it was found 
that the tensile force is constant and the extreme fibre tensile stress is equal 
to the uniformly distributed load on the beam. (These figures are all appli-
cable to beams continuous over several supports (46), ) 

When Liz is less than 1, it was found that the neutral axis, 
or the point where the tensile stress changes to compressive stress, is fixed 
at an elevation equal to 0.20L (46). 

This information is useful as it provides guidance for deter-
mining where a beam analogy or hole analogy is more appropriate. For 
example, a hole in an infinite medium subjected to a vertical uniaxial stress 
field has a tangential tensile stress at the boundary of the hole at the top and 
bottom, and the magnitude of the tension varies little with the shape of the 
hole. This tangential tensile stress then decreases to zero at a distance 
into the material equal to about 0.2L  where L is the dimension of the hole 
in the direction normal to the direction of this field stress, similar to the 
findings for beams where Liz is less than 1. 

Work based on theoretical studies of uniform loads applied 
to the tops of the beams with Liz of 0.5, 1 and 2, showed the neutral axes 
to be at 0.20, 0.25, 0.  22 L respectively (47). For uniform loads applied 
at the bottom of the beam, the neutral axes were found to be at 0.23, 
0.23 and 0.25L. 

Later photoelastic experiments showed that, for a centrally 
loaded beam when the depth was as great as the span, the deviation of the 
normal stresses from those calculated using the simple theory was not 
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great except close to the point of application of the load, where stress 

concentrations gave higher values, and along the top fibres where the normal 
stresses were essentially zero (48). 

Photoelastic models loaded in a centrifuge gave experi-
Mental information on the stress distributions in beams with ratios of z/L 
up to 2,23 .  It was observed that for deep beams, the stresses are roughly 

equal to those of a beam with a depth (z') equal to span (L), the top part 

(z - z') merely providing additional load (49), These tests showed the neutral 

axis to lie 0.26 to 0.34L above the bottom of the beam, The maximum ten-

sile stresses seemed to vary from 0,75 to 1.23 of the loading pressure On 

the beam. 

Some other experimental work with beams on elastic 

supports showed the importance of abutment compression in contributing to 
the deflection of the beam (50). This work also showed that the distribution 
of deflection was very close to that predicted from a beam analysis where 
the span was more than twice the depth of the beam. 

Several theories have been conceived to provide an analytical 
basis for predicting the contribution to beam deflections of elastic abutments . 

 These theories are based on the effect of the rotation of a cantilever at its 

support when the support consists of an infinite plate of the same material 
as the beam. Some experimental work was conducted to select the theory that 
best predicted the results (51). The experiments showed that at a distance 
from the support equal to 0,5z, where z is the depth of the beam, the addi-
tional deflection was equal to about 100% of the calculated deflection assuming 
a rigid support . This obviously is a factor not to be ignored in any consider-
ations based on deflections. 

Other experiments that have some pertinence to rock masses 
with their joints and faults, were conducted to determine the effect of slots 
on the stress distribution in beams (52) .  Two slots of thickness 0.111z, of 
depth 0.333 z and spaced 1.333 z apart, where z is the depth of the beam, 
were cut normal to the extreme fibre in a beam subjected to pure bending .  

As was to be expected, there were high stress concentrations 
at the bottom of the slots (52). However, perhaps contrary to expectations, 
the measurements showed the existence of fairly high stresses tangential to 
the exterior surface in the material between the slots, These stresses 

varied from zero at the slots and approached a magnitude at the mid-point 

Close to the value that would exist without the slots. In other words, this 

work suggests that the deflection of a beam with slots would be less than 
that of a beam where the material had been completely cut out between the 

slots. To support this view a complementary experin-ient, where the material 

between the slots was cut out, showed that the neutral axis was displaced up-
Wards more than with slots alone and that the magnitude of the stresses 

resulting from bending were higher. 
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In examining the failure characteristics of masonry walls, 
some interesting data were also obtained on their deflection characteristics 
(53), It was found that masonry beams, which included a reinforced con-
crete sill beam, with Liz down to 1.25, produced deflections that were 
consistent with those computed using the theory of elasticity and taking into 
account the composite action of the  different materials. It is useful as a 
rock mass analogue to have this confirmation that the deflections did vary 
for these deep beams with the moment of inertia of the cross-section . 

 However, the difference between such a system and a rock roof is that the 
reinforced concrete sill beam provided a tension-resisting element, whereas 

• in the case of a rock mass such tensile capacity might not exist .  

As the proposed hypothesis of pillar loading will take into 
account the local penetration of the pillars into the walls, any substantiation 
of the theoretical prediction of the surface deflection resulting from a bearing 
load is of interest .  Some information has been provided by measurements 
under large flexible steel tanks containing fluids (54) . The substantiation 
of theory is only through the similarity of the shape of the surface deflection 
curve, rather than the magnitudes, as no independent measure of the modulus 
of deformation was obtained, 

In other work, plate load tests were conducted to obtain 
information on prospective dam foundation rocks (55). The moduli of 

deformation obtained from the load tests varied from a low of 0.08 to a 

high of 0.6 of the moduli obtained from sonic velocity measurements on 

drill core obtained from holes at the same sites. In addition, measurements 
adjacent to these plates in the loading tests showed that the surface deflection 
was less than that predicted by elastic theory for a rigid die. Both results 
have some pertinence to the pillar problem .  

On another project, five plate bearing tests with uniformly 
distributed pressure were conducted on rock faces (56). The deformation 
moduli for the five faces varied between 0.13 and 2.3 x 10 6  psi and were 
deduced from the equation E = K P (1- p)i(R s), where P is the applied 

load, R is the radius of the bearing surface, p. is Poisson's ratio (taken 
as 0.24), s is the deformation, and K is taken as 0.54 for a uniformly 
distributed load and 0.50 if the loading plate is rigid .  No independently 
obtained moduli were available for appraising the accuracy of this technique. 

However, this type of test has been found to give valid results on concrete (57). 

The variation with distance from the plate was also 
measured in this work and found to be different from that predicted by theory 
(56). At a certain distance from the centreline of the plate where theory 
would predict a deformation of about 20% of that measured on the cent  reline  
of the plate, the measurements showed this deformation to be about 4%. The 
jointing associated with the rock mass was considered to produce this devia-
tion from the predicted deformation for a homogeneous elastic body, 
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Similar plate load tests were conducted in other work on 
three rocks: massive sandstone, basalt, and massive greywacke (58). 
Using the theoretical equation for the deflection of a flexible plate, the 
moduli of deformation were calculated as 24,700 psi, 36,900 psi and 
74,000 psi. These figures all seem very low for the rocks involved. How- 
ever. , no information was given on the structural aspects; the rock may have 
contained many joints, possibly mud filled, as is common with near-surface 
bedrock. 

Finally on the subject of pillar penetration into walls, 

from the results of a large number of plate 1 ,-)ad tests, from foundation 

strain measurements under dam loads, and from laboratory testing, it 
was concluded that the deformability during loading of a rock mass would 

be much higher if it had been subjected to adjacent blasting and had been 

permitted to decompress rather than if it wàs in its natural state (59). 
Comparison between moduli determined from in situ seismic velocities and 
plate load testing using the slope of the unloading curve were shown to agree 
very well, particularly on rocks that were not highly altered. 
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METHOD OF APPROACH 

From the above review, it can be seen that no satisfactory 
theory exists for the calculation of pillar loads in horizontal workings nor 
in workings at other dip angles. Some measurements have been made which 
suggest that the tributary area theory often produces loads that are greater 
than actually occur. A start has been made, which can be continued, to 
take into account the structural aspects of the problem. These aspects 
are being increasingly recognized as important. Some work has been done 
on the stress distribution in pillars, on the deformation of mining areas, 
and on the local penetration of a loaded area into a rock surface, all of 
which can be of use in solving the loading problem. 

The solution of the problem of how pillar loads can be 
predicted can be divided into two parts. The first part consists of solving 
the problem for elastic material. The second part consists of determining 
the significance of the deviation of the properties of rock masses from 
ideal elasticity. 

The first problem must be solved by establishing a gênerai 
analytical hypothesis that can be used for predicting pillar loads, or average 
stresses, for typical cases of room and pillar geometry. This hypothesis 
must then be tested using ideally elastic materials to either confirm or 
modify the hypothesis to develop a working theory. This procedure has 
been followed and will be described below. 

The second part of the problem, that of determining the 
significance of the deviation of the properties of rock masses from those 
of elastic masses, can be examined to some extent with laboratory studies, 
but eventually this work must be supplemented with extensive field measure-
ments of the stresses in pillars and in the surrounding ground. 

It is often envisaged that roof rock is subjected to tensile 
stress and that this rock cannot sustain these stresses indefinitely as a 
result of the rock joints opening. The effect of this jointing in the roof rock 
on average pillar stresses can be examined in the laboratory in otherwise 
elastic material. 

Also, it is probable that the result of removing the side 
constraint on pillar rock is to decrease its effective modulus of deformation. 
The effect of the pillar modulus of deformation being less than that of the 
walls can be examined in the laboratory. 
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Field stress measurements in pillars to compare with the 
predictions from the 'hypothesis must be made where the geometry is fairly 
regular and where the modulus of deformation can be determined without 
the difficulties of viscous or other reactions. Some measurements have 
been made by the Mines Branch, which, together with those made by others, 
are 'examined for their confirmation of or deviation from the equations 
established in the presently proposed hypothesis. 

In defence of this approach it seems obvious that even 
though the geology of a site may compromise a theoretical solution, when 
no solution is available for even the ideal caoe the subject needs developing. 

• Furthermore, a solution for the ideal problem could provide the practical 
man with a tool to obtain some guidance on such problems as the effects of 
changing the breadth of pillars, increasing the extraction ratio, going to 
greater depths, or working in different stress fields with otherwise similar 
ground and geometry. 
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HYPOTHESIS OF PILLAR LOADING 

Long, Deep Mining Zone 

Introduction. The previously established tributary area 
theory relating pillar stress only to the extraction ratio (6) has been, owing 
to the lack of any other theory, very useful. However, this theory is 
unsatisfactory in that the geometrical properties, such as the span or 
breadth of the mining zone with respect to its depth for horizontal workings, 
the height of the pillar, the breadth of the pillar and the pillar location 
within the mining zone, were all ignored., Also, such geological properties 
as the nature of the actual field stress, in particular the magnitude of the 
component parallel to the breadth of the mining zone, and the modulus of 
deformation of the pillar rock relative to that of the wall rocks, were not 
included .  

In more recent work, attempts have been made to relate 
pillar loads to certain geometrical factors and rock parameters (11, 12, 15,16). 
However, none of these attempts has produced comprehensive solutions to 
the problem, in that only some of the significant properties were included 
in each case. 

Therefore, a general, comprehensive theory for the pre-
diction of pillar loads is required. The following proposed hypothesis for 
the solution of this problem is based on solving the statically indeterminate 
net deflections of the walls. This net deflection at the pillars will be a 
measure of the increase in pillar stress resulting from mining. Although not 
all the complex factors have been included in this hypothesis, it does appear 
to contain most of the significant ones. 

The deflection problem is solved by first establishing the 
equation for the deflection of a long, broad opening in an infinite medium. 
This is done by starting with the only case in which there is presently a 
comprehensive solution in plane stress or strain for the deflection of the 
boundary of an opening in an infinite mass - that of the circle .  This solution 
contains the variables of location (i. e., the x-coordinate), normal and 
tangential field stresses (e.g., vertical and horizontal field stress for a 
horizontal seam), and the deformation properties of the material. 

A solution is then derived for the deflection of the boundary 
of a hole in an infinite mass subjected only to a unidirectional pressure 
inside the hole. This deflection equation is compared with solutions of 
special cases for an ellipse. From this work more general deflection 
equations are postulated for the ellipse. These equation.s are compared - 
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with special solutions obtained by other workers for crack or slit geometry 
and found to agree, providing some basis for assuming that the postulated 
general equation can be used for the geometry of mine workings in solving 

the problem of pillar loading. 

It is then possible to calculate the inward wall deflection 
from relieving the constraint on the walls adjacent to the stopes or rooms 
by mining. The reverse deflection resulting from the average wall pressure 
from the pillar reactions can also be calculated. The net deflection result-
ing from these two actions should be the deflection of the pillars .  

However, two additional mechanisms must be included. 
Excavation of the stopes eliminates the side pressure on the pillars, which 
will cause additional deflection along the length of the pillar .  Also, the 
local penetration resulting from the concentration of the average wall 
pressure at the pillars will decrease the net deflection. 

After the general solution has been established for deep 
workings, the special case of horizontal workings close to the ground 
surface is examined. In this case the deflection equations must take into 
account the finite distance to the ground surface or boundary. This is done 
by adapting existing theories and current experimental data for the deflection 
of structural elements similar in shape to the roof rock. 

As a result of establishing this hypothesis, all the generally 
significant factors are functionally and quantitatively related to the increase 
in pillar loading produced by mining. Whereas in most cases this increase 
in loading will be less than that indicated by the tributary area theory, there 
can be cases whére the loading would be greater than predicted by this theory. 
This arises from the deflection curve of the walls having a maximum at the 
centreline Of the mining span which, of course, is greater than the average 
and may thus be greater than the loading that would be supplied by the 
immediate tributary area. 

Tributary  Area Theory. The tributary area (TA) theory 

assumes that each pillar will be loaded by the stress acting over the area 
of wall tributary to that pillar (6). For a long mining zone, or for the 
two-dimensional case, this can be expressed as: 

S (B 	B)/B, 
p 	o o 

where CT is the average pillar stress, S o  is the field stress normal to the 

vein, B o  is the average breadth of the adjacent openings, and B is the breadth 

of the pillar. 
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For a series of rooms and pillars of equal dimensions the 
extraction ratio can be expressed as: 

R = A
o

/A
T 

=  (N+  1) B
o

/( (N+ 1) B
o 

+ NB), 

where A o  is the total wall area adjacent to the openings, A T  is the total 
wall area adjacent to the mining zone, and N is the number of pillars., 
Therefore 

R=1  
(N+ 1) B

o 
+ NB 

= 1 - r  
(N 1)/NTBorli+ 1' 

But from above 

/S =- B /B + 1 
p o 	o 

1-R/(1+N)  —  
1 -R N + 1

+ 
	 1-R 

when N--■ co 	 /S 	1/(1-R). 
p o 

This is the equation normally used in the TA theory; however, when N is 
small it gives an answer that is seriously in error with respect to the theory, 
e. g.  , for N 	1: 

/ 	
R 	 2-R  

cr S 
p o 1 - R z 

+ 
, 

Therefore, the tributary area formula should be expressed as derived above 

NB 

1 

Eq. 1(a) 

Eq. 1(b) 

 P 0 	13  0 	
= 	

1-R 

or A cr /S =— = 	  
p  0 	1-R N + 1  (1-R)(1+ 1/N)  
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Deflection of a Circular Hole due to Applied Uniaxial Plane 
Stress. The deflection of the material around a circular hole in an infinite 
plate due to applied uniaxial stress in plane stress has been solved (61): 

v
r 

= radial displacement 

S
o

r 
(1 + a

2
/r

2
) + (1 + 4a

2
/r

2
- a4/r4

) cos 20 E 

- 	( 1 a
2 
 /r  ) - ( 1 - a 4/r4 ) cos  

where S
o 

= field stress, 

r = radial distance to a point around the hole, 
0 = angle from vertical to the radius vector passing 

through the point, and 
E  z  modulus of elasticity of medium. 

When r = a, the radius of the hole, 
Sa 

v
r = - (1 + 2 cos 20). 

Similarly, 

v
0 
 = tangential displacement 

sin 2 0. 	 Figure 2. Deflection of 
a Circular Hole 

It follows that the vertical 
displacement, 6, of a point on the circum-
ference is 

v
r 

cos 0 + v sin 0 
0 

Sa  
= - (cos 0 + 2 cos 20 cos 0 + 2 sin 20 sin 0) 

= 3  S a cos 0/E. 

Deflection of a Circular Hole due to Excavation in Uniaxial, 
Plane Stress. The solution of this case does not seem to have been established 
before  now  Here it is assumed that the deflections are small with respect 
to the size of the hole. Then 

= original vertical deflection with respect to 0 of a point in the 
medium on the circumference of a circular hole of radius a 
before the hole is excavated. 

6
1 

=  Sa cos 0/E. 



6
2 

= total vertical deflection of a. point on the circumference of 
the hole of radius a; 

6 	3S a. cos 0/E. 
2 

2S 0  
• — 

3 S o  

ot  = Eq. 3 
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From above, 

Hence, 6 = vertical deflection due to excavation of the hole 

-- 6 z  - 6 i  
= 2S

°
a cos 0/E. Eq. 2(a) 

Deflection of a Circular Hole due to an Internal Uniaxial 
Traction. This case also does not seem to have been solved. However, it 

now follows from the previous derivation. From Figure 3 it can be seen 

that the effect of excavation is equivalent to applying a stress around the 

circumference of the hole to produce a zero boundary stress. The incre-

ment of deflection resulting from excavation is thus the same as the deflec-
tion that would be caused by applying an internal traction on the boundary 

of a hole in an unstressed medium. Thus Equation 2 represents this case 

as well, i.e., 

= 2 S.a cos 0/E, 	 Eq. Z(b) 

iwhere S. = nternal uniaxial traction in a circular hole. 

I 	I 	1 	so 	 1 	1 	1 

/t 	so t 
f 

Figure 3. Stress Concentration from Internal Uniaxial Traction in a 

Circular Hole 

Figure 3 also shows that the stress concentration in the wall 
of the hole, being 3S 0 , is macle up of the original. field stress, S o , plus the 

effect of the excavation, 2S 0 . Hence it can be seen that the stress "concen-
tration due to an internal pressure produces a tangential btress,

t ' the  in 

walls at 0  
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Deflection of a Circular Hole due to Applied Biaxial, Plane 

Stress. This case has been previously solved (61). 

When r = a, the deflection of a point on the circumference is: 

Figure 4. Deflection of a Circular Hole in Biaxial Plane Stress 

v r 
	

j(S +S )(1+a
2
/r

2
)+ (S

o 
- S

t
)(1+  4a

2 
/r

2 
 - a

4
/r

4
)cos 

ZE 	o t 

!J./. 
- (S +S )(1 a

2
/r

2
)- (S  -S  )(1 a

4
/r

4
) cos 2 () 2E 	o r 	 o r 

v o  = 	(S - S r )(1 2a
2 	4 
/r

2 
 +a /r

4 
o 	

) sin. 2 fl 

- (S o  - St )( 1 - 2a
2
/r

2 
+ a

4
/r

4
) sin 2 0 

The vertical deflection of a point on the circumference, following the same 
procedure as above for the uniaxial case, is: 

v
r cos 0 + v sin 0 0 

a 
o = 	(S +S 

t
) cos 0 + 2(S

o 
-S

t
) cos 20 cos 0 E o  

+ 2(S0  -St ) sin 20 sin 0 

= a(3S0  -St ) cos 0/E. 	 Eq. 4 

2 O ! 



- 28 - 

Deflection of a Circular Hole due to Excavation in Biaxial, 
Plane Stress. This case has not previously been solved but follows from 
the above cases. 

15
1 

= original vertical deflection with reFpect to 0 of a point 

6
1 

= a(S
o 

- i.J.S
t

) cos 0/E 

6 2 
= total vertical deflection of a point around a hole, from 

Equation 4 

a(3S
o 

- S
t

) cos OIE 

= deflection due to excavation of the hole 

= 6
2 

- 6
1 

= a(3S0  - St ) cos 0/E a(S 0  !1S)  cos 0/E 

o  = a(2S
o 

- S
t 
(1-)) cos 01E 	 Eq. 5(a) 

Also, from Figure 5, 

cos 0 = 	L a  - xa )/t a  = /1- (xt/t) 2  . 

- 	- in the medium before excavation 

Hence t(zs o - St (1 -0) 	- (xi /i)2 	 Eq. 5(b) 

ior the vertical deflection due to an internal traction, S., s 

( 2S. - S
t
(1 - p.)) 	- (x'it) a /E. 	 Eq. 5(c) 

Figure 5. Geometrical Relations in a Circular Hole 
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Deflection Around an Elliptical  Fiole  at x' 	0 due to 

•Excavation  in Hydrostatic Stress, .Plane Strain with p. = 0.5, This special 

case has been solved (0 ) .. As it is closer to the geometry of a mining 

opening, it is useful for comparison with the above solution for a circular 
hole. For S

t 
= S

o 
the solution is • 

v 	6 
2Gf(Y 2  a 2  -b a ) 

G = modulus of rigidity 

=
t 	

E/3. 
2(  

When y  = b 
35 a 

S a a  
o  

1y  

FigUre 6. An Elliptical Hole in a Biaxial Stress Field 

• The comparable deflection of a circular hole in a hydrostatic 
stress field in plane strain, 0 = 0 and  t  = O. 5, can be obtained from Equation 
5(a): 

a(2S 0  St  (1 p)) cos 0/E. 

To convert to plane strain, let E .--*E/1 ( I -11, 2 ) and /( I  - }1)  (6 3).  Then 

(I-112 ) cos 0 o  = a  ZS 	S ( 1 - 
o 	t 

	

For S 	S , 0 = 0 and 	= 0 . 11 , 

	

t 	o 

= 1 •  5 S a/E. 
0 



1 

G 
S

o 

G 6 b 
= 	( P.- 1)  

Eq. 6(a) 

Eq. 6(b) 
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This shows that the vertical deflection of a circular hole 
due to excavation, where S t  = S o , 0 = 0 and t = 0,5, is the same as for 
an elliptical hole with its major semi-axis equal to the radius of the circular 
hole. This comparison, although for a special case, indicates that without 
a rigorous solution for the stope and pillar geometry, the circular opening 
might provide an expression that includes all the significant parameters. 
These parameters may thus function in a way that is a fair approximation 
to a stope and may give quantitative answers that are accurate for critical 
points, e.g., at the centre of the stope. 

Deflection of an Elliptical Hole  at x' 0 due  to Applied  
Uniaxial Stress, Plane Strain. Refrryingt-, Figure 6, the solutions for 
the two cases when S t  = 0 and when S o  = 0 have been given in the following 
form (62): 

8G6 	2(d - 1) 
Ern + 1 ) {(-1T--) 2  + ITIP + --Y—] 

S
o

R 	m 	 2R 	 2R 

1 m (m+ 1) 3  [ 
+ m a 141  + l a  + 2 (rn Z  - 1)0 ri + e + 2(ma  + 1)-1-r -- i 	 2R 	 2R . 

8G0 	2 {(LY 
FT' 	(d - 1 ) cm+ 1)  

2R) 
i f 	Y 

- 2 R 

.-m 2 )(1  -m)  

K b a  
2R.) e 2R 2R 

where G is the modulus of rigidity, 6 is the vertical deflection of points in 
the medium around the hole at x = 0, R = (a+b)/2, d = 3 -411, p.  is Poisson's 
ratio, m = (a -b)/(a+b) for the case S

t 
= 0, and s rn = (b -a)(a+b) for the case 

S
o 
 =0.  

For the vertical deflection of the boundary,  i. e., y = a at 
x' = 0, these equations can be reduced to the following form: 



and 

Go  

- —z ( 1  - ZI-L) Eq. 7(b) 
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The deflection of the boundary  of an elliptical hole, b e , 
due to excavation can now be determined by subtracting from the deflections 

in Equations 6(a) and 6(b) the deflection that occurred before the excavation: 

G
e 

- (a  + b/2)(1 - p.) - 	(1 - p,) 
2 

a(1 - p.) 	 Eq„ 7(a) 

S
t 	

- 1)  (2) 
e b 

S
o 

As only elastic deflections are involved in this problem, 
the biaxial case in plane strain  for the deflection of the boundary of an 

elliptical hole at x' = 0 can be obtained by adding the above two cases: 

G
4
6

e 
= Sa (1 - p,) 	S

t
b( 1 - 2)/2. 

Then as E 2G(1 + p,), the equation can be changed to 

=t2S
o

a(1-11 2 )-S
t
b(1-p,-Zp. 2 )}/E., 

Eq. 7(c) 

Eq. 7(d) 

These equations can be compared to those for circular 
openings., From Equation 5(b) for St  = 0 and plane stress 

= ZS
o 

1/E at x' O. 

Converting to plane strain by changing E to E/(1-p, z ): 

O  = 2S
o 

1(1- p, a )/E 

Thus it can be seen that the magnitudes of the deflections 
for both cases - excavating a narrow ellipse and a circle - are equal at 

X 1  = 0 if the radius of the circle, 1, is equal to the major semi-axis of 
the ellipse, a. 

For the case of S o = 0 the deflection of the circular hole 

= 0 and in plane stress is, from Equation 5(b), 

o 	S
t 

(1 - 

Converting to plane strain, 

o - S
t 

( I - 	Zp.a  WE. 

at x' 



Eq. 8(a) 

Eq. 8(b) 
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From this equation it can be seen that the magnitudes of the deflections 
in both cases of a narrow ellipse and a circle being excavated are equal 
at x' = 0 if the radius of the circle, 1, is equal to the minor semi-axis 
of the ellipse, b. 

As there is no solution yet available for the elliptical hole 
for x' 0, it is possible that the solution for the circle may not be too 
different, particularly in view of the above comparisons, and could be 
used in the hypothesis and, if necessary, modified empirically .  

Therefore, the equation for the deflection of the walls of 
a mining zone, as shown in Figure 8, following Equation 5(b), can be 
postulated from the equations for the circle and ellipse in plane stress 
using the semi-breadth in place of the semi-major axis of an ellipse or 
radius of a circle and h' in place of the semi-minor axis of an ellipse: 

O = [2S
o

1 S
t
h'(1 . -1)} 11-(x 1 /1) a /E 

or O = [ 2S.1 	S h' (1- i-i)) 	(x'/1) 21E 
1 	t 

Comparison with Two Special Solutions. A solution based 
on previously established stress functions has been published, without 
derivation, for the deflection of a crack due to excavation in a hydrostatic 
stress field with F.J. = 0 (32,33). The vertical deflection of the boundary of 
the crack is given as follows: 

S 
= 	o 	

(x'/ I) 
K G 

which can be converted to 

6
K 

= 2S
o

t 	 -(x 1 /1) 2 ., 

These equations apply to a condition of plane strain, and 
for the case F.,. = 0: 

2S 
o 	Iwo.  

K E 

The comparable deflection using Equation 8(a) would be 

O = [2S
o 

1- S
t
h' (1 -ii)) 	- (x1/1)2/E. 
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For !J. = 0 and S = S t 	o , 

6 = tas 1-S h' (1- 0)1 1- (x 1 /1)VE 
o 	o 

converting to plane strain E-1E/(1- 

Ô = t2S0  Soh l  ) 1 1 - (X i / g a e. 
Then, if the definition of a crack is that h 1 /1-4, 

2S 
=  

which is the same as that shown above for 15 . 

Another solution has been published for the deflectio n  of a 
slit due to excavation in a uniaxial stress field in plane strain which is 
obtained from the following (43,44,45): 

_ 

 

S t 
o (1+K), cos 2a+ 1- K -2 a  

	

- 4G 	 p It■ 

	

s  o 	(1 - K) sin 2a  

	

4G 	vlD 

ve  

where D = p
4 

- 2,2  cos 2a, K = 3 -4p. 

p 	1 1 	1  1 
Also, x - 

p a + 	 a  - cos a, and z = -2- — ,-- -,- - - 2 P 
coordinates. 	. 

sin a ,  p and a are curvilin.ear 

For x'/1 = 0 and t=  0.16 the solution of the equations for 
the vertical deflection at the boundary of the slit gives (45): 

3. 36 S
o

l 
= 

Figure 7. Deflection of a Slit in a Uniaxial Stress Field 
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This solution can be cornpa.red to that for a circular hole 
due to excavation in .a uniaxia.1 stress field, for plane strain, p, = 0,16 and 
xit 0, by using Equation 8(a): 

--, (2S 0  - S th 1 (1 14) 1 1 - (x11) 21E. 

Converting to plane strain and changing E to 2 G(14 p), 

2S I. (1  /12) 	2  SO 1 (1 -112)  

o 	E — ZG (1 + 

S t (1 - 

G 

For p 0.16 
0.84S

o
t 	3. 36 S

o
1,  

G 	 4G 

This derivation for the special conditions applied to a 
slit also agrees with Equation 8(a). Furthermore, although no analytical 
expression was given for the distribution of the vertical deflection, 
numerical solutions given in graphs showed the same distribution with 
respect to x' as included in Equation 8(a). 

The theory for the distribution of vertical deflection of a 
crack, slit or "infinitely thin crevice" has been previously established (75). 
It was shown that with a uniform internal pressure acting on the walls, the 
deformed shape was elliptical. It therefore follows that the vertical 
deflection, 6x, at x' is related to that at the centre, b c , for a parallel 
walled slit: 

G6
x 

)a 
---= 1. 

Therefore, 6 /6 = (1 x )a  where x = x 1 /1„ Curiously, this is the 
distribution, xas 5hown above, to be expected for a circular hole. 

Pillar Load and Average Stress from Deflections. The net 
pillar deflection, bp, will equal the algebraic sum of all the effects pro-
duced by the geology of the site and by mining. These are: the deflection 
of the potential pillar rock resulting from the field stresses, the deflection 
of the wall due to the rel.ease of stress, the deflection of the pillar due to 
release of side restraint, the reverse deflection of the wall due to the 
increased load applied by the pillar, and the local penetration of the pillar 
into the wall. 

= 

X 1 )2  



t 
Sp 

t Fr- t 	t 
ft I 416P 
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(a) 	is caused by the internal traction, 	(b)  0r is caused by the traction, 
So , over the walls adjacent to the 
individual rooms or by the average 
traction over the full breadth, 1.1., of 
the mining zone, S i , plus the similar 
action of St' 

St , on the sides of the pillar. 

.•••••••"' 

(c) t5' is caused by the increase in 
pillar stress, which produces the 
average pressure, Sp, over the 
area tributary to the pillar. 

(d) ô' is the local penetration 
caused by the actual concen-
tration of S into Au . 

Figure 8. Deflection of a Pillar 
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The effects of mining only can be analysed to give the 
increase in the average stress in the pillar, with the total stress then being 
equal to the increase plus the original field stress. Thus the increment of 
pillar deflection, A6 	is related to the increase in pillar stress, 

h' 
AP h' 

Eq. 9 
p A E 	E 

P P 

where AS is the increase in pillar deflection due to mining, AP is the 
increase in pillar load, h' is half the total height of the pillar, Ap  is the 
horizontal cross-sectional area of the pillar, E p  is the rnodulus of deform-
ation of the pillar rock, and A 0.  is the increase in the average pillar stress. 

Also, AS 	ô  - S
r 	

- S' , 

where A6 is the deflection of the wall, assuming no pillar reaction due to 
the release of stress on the wall bY excavating the openings; 6 r  is the increase 
in deflection of the pillar under the original field stress resulting from the 
release of the side constraint; 6' is the reverse deflection of the wall 
resulting from 	• and St is the local penetration of the pillar into the want 
(1\16te: The above equation should include A's on the right side, but these 
are omitted for simplification. The à in A ô is used to distinguish between 
the increase in pillar deflection due to excavation and the total deflection, 
ô which includes the deflection in the ground before excavation.) P' 

The deflection of the walls in a long mining zone can be 
calculated, consistent with material properties, using the special equations 
developed for either an ellipse (62), a crack (33), a slit (45), or the more 
cornprehensive Equation 8(b) as established above: 

6 := [2S.1 -S h' (1-1)}11- (x'/1.) 2 /E 
1 	t 

Eq. 8(b) 

a 	Snd S• = 0A0 /A T  = RS 07 
where A o  is the wall area exposed by mining, A T  is the total wall area 
adjacent to the mining zone, and R is the extraction ratio. Thus Equation 
8(b) can be written: 

O= S
o 

I [2R - (S
t
/S

o
)(11't)(1 - i.1)1 1 1 - (x1t) a  /E. Eq. 8(c) 

Equation 8(c) is for plane stress; however, the modifications for plane strain 

can be included in the final formulae. To fulfil the requirements of the above 
two-dimensional analysis, the length of the mining zone should be greater 
than twice the breadth and any section should be at least a distance from the 
ends of the mining zone equal to the breadth. 

Equation 8(c) indicates that at x 1 /1 = - 1, 0 =  O. This 
means there would be no compression of the abutments, which cannot be 



- 
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true, To include abutment compression, the point A in Figure 9 can be 
assumed to deflect an" amount equal to that of A', which is on the circum-
ference of an imaginary circle with its centre at 0 and a radius of t. This 
would give the same deflection as shown by Equation 5(c). 

ô = —
E
- (2S

i 
 -S (1-0) cos 60. A 	t 

Eq. 10(a) 

A !Al  

Figure 9. Approximation for Abutment Compression 

The converting from a circle to a slot in the same way as was done to 
obtain Equation. 8(a) is as follows: 

s5
A 

= tS
o

(2R - (S
t
/S

o
)(hit)(1 -p.)) (h'i1)/E. 	Eq. 10(b) 

(0) 	 (b) 

Figure 10, Deflection. Curves With and Without Abutment Compression 

Figure 10(a) shows the distribution ô(x) according to Equation 8(c). Figure 
10(b) shows the abutment compression SA and is included in the hypothesis 
by adding Equations 8(c) and 10(b) to produce 

S
o

l 
 

ô 2--  — (2R -- 	(1 -p.)) Vi- (x'/1) a  11 1 /1). 	Eq. 11 
S

o 
The distribution ô(x) according to Equation 11 resembles empirical curves 
more closely than Equation 8(c), as abutment compression always occurs (33). 
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However, Equation 11 has not been established rigorously, although not 
illogically, and its value will depend entirely on ez-npirical substantiation. 

Reverse Deflection of Wall  due to  Average Pillar Pressure , 
 From Equation 2(b), which may represent the deflection of a mining zone, 

in view of the similarities reviewed above between the solutions for a 
circle and a slit in an externally stressed medium, we have 

= 2S L cos OIE 

or ■5' = 2S L 11 -(x 1 /9a /E, 

where S = the sum of the pillar loads divided by the sum of the individual 
tributary areas  (j. e,, the wall area occupied by the pillar plus 
that of the average adjacent opening). 

The average increment in pillar stress, La  n, is the sum of the pillar loads 
(or the pillar pressure, S p , multiplied by  te  sum of the tributary areas) 
divided by the sum of the pillar areas (parallel to the walls). Therefore, 
similar to Equation 1(b), it follows that 

= E  A  IVEA = S /(1 - R)(1 1/N) 

...St = ztAFT (1-R)(1+1M) 11-(x 1 /1) 2 /E. 

Then to include the abutment decompression as was done for abutment 
compression in Equation 11: 

451 = 2 à5. (1 -R)(1+1/1\1)(/1- (xi/0 e + h)/E. 	Eq. 12 

Distribution of Pillar Loads.  Equation 12 is derived by 
starting with a uniform pressure. It is considered to give a good represen-
tation of the actual reverse deflection; however, an independent analysis 
can be made to establish the distribution of pillar loads without making the 
above assumption. The deflection of a circular inclusion welded to the 
medium has been solved for the uniaxial case shown in Figure 11 in the 
following form (43): 

Figure 11. Circular Inclusion in a Uniaxial Stress Field 
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i
_

o
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= 	0. (d. - 1)+ 	(d. 3)r a /a a  + 2Di) co s 0 
r 	8G, 1 1 

S r  
v  

8 G. 
(y. (c1.+ 3)r a /aa 	2D.) sin  2 0  

0  

where (3, -y and D are constants; d 3 - 413.. for plane strain; symbols with 
subscript i refer to the inclusion, and those with no subscript refer to the 
medium. From the boundary conditions of the inclusion, it follows that 

G d. ( + 1) 	 G d, ( + 1) 

Because pillars provide a reaction normal to the walls only, 
we can use pi = 0. Then at the boundary of the inclusion, the displacements 
will be: 

S a 
v o

r
=

G  (
. (d

i
- 1) + 2D. c s 0) 

d  = 3 - 4p, 

d.  = 3 - 0 = 3 

G.  (3 - 411+ 1) 	2 	1G.( - FL) 
1. 

I. 	2G. + G(3 - 1) 	G.+  G 

Gi (3 - 4p,+ 1) 	4G.(1-p,) 
i. 

D. - 	  = 	 ; I. 	G + Gi(3 - 4 4 	G + G.d 
I. 

S a 	2G.( 1 - O a 	2Gi( I - p.) cos 2 0 

	

.. v = - 	 + 	  r 	8G. 	G. 4- G 	 G + G.d 

	

1 	1 	 I. 

S ( 1 - ) a 	
1 	2 cos 2 0  

2GG. 	G+Gd  

	

1 	 1 

S
O

a 	4G.(1-L) (1 - p.) 

O = 8G. 

	

Z  G c.ci 	sin 2  

( 1  - p.) s in  2 0 
= S

o
a 

G G.d 	• 
1 

Sr  

G(d, 1)' 	°' D i 	G + G
i
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For an applied stress perpendicular to S
o

: 

S
t
(1- p.)a [ 

	

1 	2 cos (-2(r/2- 0))] V
r  2 	G G. + 	 G + G.d 

S
t
(1- p.)a [ 

S
t 

a( 1 - 

0 	G + G d 
= 	 sin (-2(r/2 - 0)) .  

	

1 	2 cos 21 

	

[

1 	2 cos 26 

S
t 

a( 1 - 

G + G.d 
sin 20. 

Hence, for a biaxial case: 

a 
(S

o 
 + S

t
)(1 	

o 	t  
2(S 	S )0..0 

G2 	G.+ 	 G + G
i
d 	

cos 20 

S
o 
 -S

t
a(1-p,) 

v
e 

= 	
G + G.d 	

sin 20. 

Thus the vertical deflection for the biaxial case is: 

611 . v
r 

cos 0 + vo  sin 0 

r

(S o  - S
t
) cos 20 cos 0 , (S o  + S

t
) cos 0 

= 	 Ga(1  - Il i 	2 (G. + ) 	
+ 	

G + G.d i 1 

(S - S
t
) sin 20 sin 0 o  

• G + G.d 

s o  + St  
[ 	 S- Si o 	t  ] 
VG. +G)  4-  G+ Gd 1  i 	/ 	1 

= a(1- p) cos 0 

From this equation it can be seen that 

o" oc cos 0 

oc 	- (xt/ t) a  

Hence as the increment in pillar stress varies with the deflection 

ocil -(x1/1.)a 
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It is then possible to relate à Crp  tO iICYp, in view of the maximum value, 

bop-max, occurring  at x' = 0: 

	

= ri 	_ (xima d(xt/i) 6.6p 	à œp-max Jo 

1 

= 	up-max [2 1, 
11 - (xt/1) 2  + sin-1 x 1 /1. x' 

IT  = 4 p-rnax 

Tr Au 

411  - (30/1) e  

Substituting in Equation 12 

2u  LCT (1 - R)(1+ 1/1\1) 	- (xtit) a  + h) 
- 	 

4E11- (3e/t) a  

IT Au (1-R(1+1/1\1)(1+h/11-(xfith 
Eq. 13 2E 

Local Penetration  of Pillars into the Walls.  Instead of 
having an average pressure, S,  applied to the walls by the pillars, there 
is a concentration of pressure or stress, tS.Cr , at the pillars which causes 
local penetration in excess of the general reverse deflection 6'. A solution 
exists for the relative pen.etration, 45, due to a uniform pressure on the 
edge of a semi-infinite plate (64): 

• • • • • 	sid 

I 1 1 

Figure 12, Deflection of the Edge of a Semi-Infinite 
Plate 

0 

fo 

1 i 
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B

2 x
2 

2x

B 	 2x2  - B

1  

zŒ = 	(B+2x
1 
 )1n. 	 + (2x2

-B) tn. 	 
TrE 	 B 2x 1  

where 	a  = uniform pressure on the edge of the plate, 

B = width of the loaded zone, 

x 1 = distance from t of load, within the loaded zone, to 
the point where ô occurs, and 

x2 = distance from t of load, beyond the loaded zone to the 
point to which 15 is related .  

As will be shown later, theoretically the local penetration 
will affect the calculated pillar stress by an amount varying from nil to 
slight. Furthermore, it is probable that empirically the importance of B 
owing to other mechanisms may require an alteration of its coefficient 
based on experimental data. (E.g., with varying sizes of pillars the pillar 
loads are likely to vary  with x somewhat differently than àcr does, hence 
Ell is likely to be greater than calculated at large pillars; also the effective 
modulus of deformation may vary with B.) Therefore, an arbitrary but 
simple case is used to obtain a coefficient for Equation 14(a): x i  = 0 and 
x2  = B. This coefficient may be altered. empirically. Hence, the maximum 
local penetration with respect to a point at a distance from the side of the 
pillar equal to B/2 due to the excess of LW the concentrated stress, over 
the average pressure, S

2 
 is: 

13  
- S 

15' 	= 	 B (1 	F.L) 
TT E 

( 1  - p.) =  ta (1 - ( 1- R))7É-13  

BR 
o' 	- 	 " 11 ). Tr E 

Eq. 14(b) 

The use of Equation 14(a) for this mechanism, rather than 
one giving an absolute measure of penetration, has an additional advantage 
in that, by restricting the relative penetration to that for the area within 
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a distance B/2 on either side of the pillar, the pattern is consistent with 

experimental results .  These results show that the settlement crater is 

restricted to a much smaller area surrounding the loaded area in rock than 

would theoretically apply to a continuous elastic mass (55, 56). 

Pillar Formula Resulting from Deflection Hypothesis. The 
pillar load can be obtained by substituting Equations 11, 13, 14(b) and the 
appropriate expression for 15 r  into Equation 9: 

APh'  s
o

t 	 p.p  st' 
2R -k - à--- 	(1 	(1 1-(xltf hit) 	

St h' 
 

A
p
E

p 

1TIXŒI 	 Acr RB 
	 (1 - R)(1 + 1/N)(1+h/1  1 -(xt/ 	) 	IrPE 	 (1 - 1.L)

2E  

(2R- (St/S0 )(1-1 1 /1)(1-F.1.)) (i1-(x'/1) 2 + h 1 /1)-p.p (St
/S

o 
 )(hi/ t)(E/E p) 

•. à173 -= S oAp  
(hi/ t)(E/E )+ Tr(1-R)(1+ 1/N)(1 +h/ 	 +R(B/ t)(1-p,)/n.  

)(h 1 / 9(1-0) (1 1-(xi/ t) a  +11'M - p.
p

(S
t
/S

o
)(ht/t)(E/E ) p _ 	t o Ur 	(2R-(S /S  

	 P 	t, Eq. 15(a) 
1 

T.o convert Equation 15(a) to plane strain from plane stress, 
change all E's to E/(1 - ph and all F.1.'s to ii./(1-4. Then, to simplify, let 

M = E/(1 	) 	 b = B/L 

w = 	- 	 x = x 1 /I 

k = S
t
/S

o 	
h = hlt 

n = M/M 

so  

(2R - kh(1 - w)) (11- xa  +h)- w khn 

hn + Tr( 1 R)( 1 + 1/N)(1+ h/1- 1 - x2 )/2 + 2 Rb( 1 - w)/Tr 

/S 	/S  +1.  
p o 	p o 

Equations 15 and 15(c) will reduce to equations that are 
similar to the tributary area theory when k = 0, x 0, h-->0, and 
The only remaining difference arises from the different coefficients in the 
numerator (2R) and denominator (1 -R)Tr/2, neglecting the inclusion in 
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Equations 15 and 15(c) of the variation of cr with x. The difference in 
coefficients arises from recognizing the shape of the wall deflection curve, 
which results in greater than average pillar loads at the centre of the span 

and less than average towards the abutments., 

Long, Shallow  Mining  Zone 

Introduction. 	When the mining zone of horizontal 
workings is close to the surface in relation to its breadth, or z/I, becomes 
small, then the equations formulated for an infinite medium can no longer 
be used for determining the deflection of the walls. The analysis of the 
deflection of the roof is then more accurately done using a deep beam 
analogue. An equation must be established to give the deflection of the 
under surface of a deep beam restrained by elastic supports. 

Below, an equation is obtained for this case, which is 
then used to determine the deflections due to removing the constraint pro-
vided by the excavated ground .  The reverse deflection due to the average 
wall pressure resulting from the increase in pillar stress can also be 
calculated using this equation. The ultimate deflection again includes the 
rêsults of removing the side constraint from the pillar and the local 
penetration of the pillar into the waifs. 

For the long, shallow mining zone, although the stress 
distribution in the roof rock is affected by the nearness of the surface, 
that of the floor rock is only slightly altered from the infinite medium 
case. Consequently, the net closure of the mining zone, being the sum 
of the net deflection of the roof and of the floor, must be determined by 
considering separately the mechanics of the floor and roof. This net 
closure is a measure of the increase in pillar stress. 

Deflection of a  Restrained Beam. A special case arises 
when the mining zone is either close to the ground surface or very broad 
compared to its depth, in other words when L/z becomes large. In this 
case, when the mining zone is horizontal, the roof can no longer act in a 
manner equivalent to that over an opening in an infinite medium. The 
proxirnity of a boundary, the ground surface, significantly alters the 
strain distribution in the overlying ground. It has been found that when 
L/z is greater than 2 the variation of the horizontal stress, cr x  in beams 
is subst antially straight-line as in simple beam theory, depending to 
some extent on types of loading and support (46). Furthermore, when 
L/z is greater than 1.25, experiments show that deflections can be cal-
culated using normal beam theory (53). 
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Figure 13. A Long, Shallow Mining Zone 

When Liz becomes less than 1 the variation of crx 
 approaches that of an opening in an infinite medium, The neutral axis 

is located at a constant distance from the bottom surface of about 0,2L, 
and the maximum crx  becomes constant and approximately equal to the 
average external loading plus the weight of the beam (47,48). In addition, 
photoelastic studies have shown that  as z is increased with a constant L 
for Liz less th.an 1, the only change in stress is that which would result 
from adding a load equal to the weight of the additional depth of the beam 
(49) .  

Therefore, where Liz is less than 1 Equa.tion 11 should 
Predict ‘5,  1, e.,  by assuming the opening is in an infinite medium, whereas 
for Liz greater than 1 a beam analysis should be more accurate for the 
deflection of the roof. However, for the floor it has been shown by experi-
Ment that the stress distribution around the side of a hole away from the 
plan.ar boundary changes very little as the hole approaches the boundary (65). 

Therefore, Equation 15 should represent the deflection of the floor for all 
cases. 

1 /./.-11 

'› 

k
**".■ 	 M  

Assuming, in Figure 13(a), that the roof rock ABCD has the 
stress distribution and deformation similar to those of a beam, the deflection 
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resulting ïrom 'excavating the mining zone will be that of a restrained beam 
with the dieributed load per unit width of Si,  i, e.,  excavating is equivalent 
to adding the stress S o  at the roof line, which cancels out the initial stress 
and leaves a boundary free of constraint over the rooms (note: as before 
S. = R S

o
). 

Assuming the ends AC and BD are restrained from rotating, 
the beam will be equivalent to that shown in Figure 13(b), with a moment 
diagram as shown in Figure 13(c), and a shear diagram as shown in Figure 
13(d). 

The deflection of the neutral axis due to pure bending, 6b , 
of the beam shown in Figure 13 is found from the usual equation: 

- 

S. X 2  =  
24E 1 (L X) 2  b  

S,X
2 

61D = 2E 	(1- x ) 3  (L/z) 3  

where x = x'/L. 

Eq. 16 

The deflection of the beam shown in Figure 13 due solely 
to shear stresses can be derived using the following expression (64): 

Vvdx ô 	,
s = 	f 	, 

AG  

where V is the shear force in the beam, v is the shear force due to a unit 
load acting at the section where the deflection is being determined, A is 
the area of the vertical section, and G is the modulus of rigidity .  The 
integration must extend over the full length of the beam, L, with f3L 
defining an intermediate point and equal to X as shown in Figure 14. 

I3L 1.2 

	

= — 	(S.L 2 - S .X)( 1 - P)dX + 	(S.L/2 S.X)(-13)dX s 	zG 	• 

	

0 	1. 

0.6S. 
ô s = 	 

G 
1 

 

0.6S. 



2 2 
3p, 

V 

J
z/2 

o 

 
(az e p x) dz' 

1 o 
e 

- 47 - 

s y  
I I  en_ 	I 

X I  I 

Figure 14, Coordinates for Deflection Calculation 

Equations 16 and 17 both provide the deflections of the 
neutral axis of the beam. However, we are concerned with the deflections 
of the underside. The deflection of the roof of the excavation shown in 
rigUre 13(a) will be greater than that of the neutral axis, owing to the expan-
sion of the ground resulting from the actual release of stress by the excavation .  
The changes in stresses caused by the load shown in Figures 13(a) and 13(b) 
are as follows (66): 

3 	'S,z 	 S 1.z 
1 	 3(z/2) a 	S iz  L a 	3 

Cr   (la  x' 2 ) + 
x - 4(z/2) 3 • 	 2(z/2)3 	5 	777à-Thz/2) a  

Si 
 zt 	 s. 

Crz  = 4(z/2)3  (31 z/2)a zi a ) 4. 21 

Therefore, the deflection of the lower surface of the beam 
shown in Figure 15 with respect to the neutral axis is: 

32

S.z  
{13 - 211(12( t a  -x' a )/z a  +1-8 t a iz a  +MI 

 E 

S.z 
-

3 	- 4020 - 2)(1/4 2  + - 8 (t/z) a  +34, 	Eq. 18 
2E 
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Figure 15. Free Body Diagram of Roof Rock 

If the beam material is continuous with that of the support, 
the support itself will be elastic and,not rigid as assumed in deriving normal 
beam equations. The elasticity of the support requires that the stresses 
and deformations or strains be compatible, which is not fulfiled by assuming 
a straight-line variation of strain. It has been found experimentally that the 
rotation at an elastic support due to the moment, M, is for a plane stress 
condition (51): 

For a fixed beam this is equivalent to applying an added moment, Me , at the 
supports of opposite sign to the calculated fixing moment, Me  From the 
area-moment theorem, the relations between Me  and Mf  can be established. 
The actual bending moment at the supports is: 

BM = M
f 

- M
e 

16.67 (Mf  - Me ) 

TrE z a  

But by superposition, the rotation of the supports by Me  could occur first. 
Thus, as shown in Figure 16(e), 

M
e 

t 
0 
AB E 

0 = 



(b) 
M f  

(c) 

(d) 

12Tr 	t irE za 	
16.67 z + 1 

16. 67 M 	 1 
0 = 	 1 

1 
Eq. 20 
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Figure 16, Deflection of Beam with Elastic Supports 

Combining the two equations for 0 gives 

Me 

A C B 
(f) 

or 
16. 671\4

f 
0 = 	 . F 

E z a  

where F = 	 1 
1 

127r 	I 
16.67 z + 1 

The additional deflection of the beam due to the rotation of 

the supports, S c , can be determined also using area-moment theorems. 
From Figures 16(e) and 16(f) it can be seen that 

c 
= t

AB 
 - t

CB' 

where t is the intercept between the tangents at two points that have deflected 
due to Me . It is known that 
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t
AB

E I = j .  M
e 

X dx 
0 

= m
e

t a /2 

and M
e 

= 0AB E I/ t 

16.67 MF 
E I 

TrE 

16.67F  S i 
3 

El  
TrE 

Similarly, referring to Figure 16(f) and with the origin at 
the ct of the opening, it follows that: 

t
CB

E I = M
e 
 x12/2 

or .= M
e 

t a  x2 /2. 

S. t 3  
16.67F 

t 	 xa  
CB 	6 TrE 	z  2  

S t 3  
16.67F  i 
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	  (1 - x2 ). 

E z a  
Eq. 21 
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Sb + S s + S e + 
 oc 

S ( 	 0,6 
i 	 S i. 

I 3C) 2  
2E 	z 	

(1-x2) 

	

G 	z 
 

S.z 
1.— (13 -2p,(12(1 -x 2 )(1/z) 2 + 1 -8 (l/z) 2  + 30) 

32E 

0.884FS.I. 	a 
1 	I, ) 

(1- xa ) 

St 

E (C /z' 3 + C s /z' C
e
z'+ C c/z' a ) 

 b 

where C
b 	(1 - x) a /2, 

C
s 	

= 0.6 (1 -x 2 )E/G = 1„2(1 -x 2 )(1+p), 

C
e 	

= (13 -2412(1- x2 )/z' a  + 1 -8/zi a  +30)/32, 

F 	= 1 - (1/(2.26/z' + 1)), and 

= z/1», 

Eq. 22 

Reverse Deflection  of Roof due to Average Pillar Pressure,  
Following the procedure used for the ho'le in an infinite medium, the 
reverse deflection due to the average pillar pressure, S, can  be deter-
mined using Equation 22: 

S 
• 6'= 1-± (Cb/z' 3  Cs/z' C

e
z' C c/z 12 ) 

I( 	R)(1+ 1/N) (f(x) 	h) 
or 6' - 	P 	 Kb 

where K
b = C

b
iz'

3 
+ C s iz' C

e
z' C

c
/z' 2 , and 

f (x) = 1 -x 2  as will be deternxined below, 

Distribution of Pillar  Loads. The variation of pillar loads 
with position will be, as for the previous case, the same as the variation 
of the roof and floor deflection, 6. To establish an expression for the 
variation of the roof deflection similar to Equation 5(b), the individual 
components of Equation 22 must be examined. 

The relative magnitudes of 0 13 , S s ,and S c  are calculated 
for the centre of the range where Equation 22 is likeely to be more valid than 
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Equation 11. For this purpose let z' = 1, x' = 0 and p, = 0.2. From 
Equations 16, 17, 18 and 21, 

61)  = 0,500 S i/E 

O
e 

= 0.348 SVE  

O  = 1.440 S i/E 

O  = 1,660 Si./E 

and when z' = 2: 

b 	
0,062 S i/E 	S

s 
= 0,720 S i/E 

	

O
e 

= 0.748 S i./E 	S
C 

= 0.415 S i/E 

It can be seen that, over the range in which. Equation 22 is 
most likely to be of use, ô s  is the most significant followed by S c  and Se „ 

To examine the variation with x of S s , S e  and Sc , Equations 
17, 18 and 21 can be rewritten as follows: 

ô
s 

= K(1 - x2 ) 

S
e 

= K' 	4412(1- x2 )/zt 2  + 1- 8/z' a  + 34} 

O
c 

= K"(1 x2 ). 

For z' = 2 and p. = 0,2, S e  = 11.96 K' when x' = 0, The variations with x 
are shown numerically as follows: 

	

x=0 	0.1 	0.2 	0,5 	0,8  

0/K 	 1 	0.99 	0.96 	0,75 	0.36 s 
 

ô
e
/(11.96K') 	1 	1.00 	1.02 	1.025 	1.07 

ô
c
/K" 	 1 	0.99 	0.96 	0,75 	0.36 

This table shows that S e  varies little with x. Thus for a first approxi-
mation, and recognizing that the variations of Sb  and Se  will largely 
cancel each other, the variation of ô and hence b.o-  will be according to 
the function (1- xa ). Hence it follows that: 
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= M 	(1-x2 ) 
p 	p-max 

Au 
and pa 	P-max  , 

j
1  

. 0 (1 -x2 )dxf 

= 0.667 
Lap-max 

3 A& 
Au = 	P (1 -xa ) 2 

Pillar  Formula for  Shallow Workings„ The net closure 
at the pillar, 2 bo5 D, will be the algebraic sum of all the effects described 
above plus the abOrnent deflection which, as the stress concentration 
will be the same in the top and bottom of the abutment, must be effectively 
equal to SA  of Equation 10(b): 

2Ô  = (6 - S r  +6  - 6' - S') 	+ (15 - 	- 	- 6' ) 
Ft roof 	r 	p floor 
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Converting to plane strain and simplifying as for Equation 15: 

A CY 
P = 

(2R - kh( 1 w))(J1 - x 2  + 2h)+ RKb ' - 2w khn 

P o 	2hn+(ir/2(1+h/11-x 2 )+2Kb 13(1+h/(1-x 2 ))(1-.R)(1+1/N)+4bR(1-w)fir 

Eq.. 24 

where all symbols are as defined for Equation 15 except Kb ' in plane 
strain: 
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Figure 17. Variation of Kb ' with z' 
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Comparison of  Shallow  Case with Deep Case. The 

preceding analysis for shallow mining zones should be more valid for 

shallow mining zones than for deep zones. From theoretical corfsiderations 

of stress distribution, the depth of cover required for the deep analysis 

would be quite large; however, with the acceptable tolerances on such 

equations when used in practice, the appropriate ranges for each of these 

analyses may not be entirely governed by such theoretical considerations. 
Also, some evidence is provided by knowing that when the depth of a beam 

becomes greater than its span the conventional beam analyses start to 

give significant errors„ 

In Figure 18 a typical set of parameters describing a 

mining zone is used to compare the change in pillar stresses with changes 

in depth-to-span ratio as predicted by the tributary area theory with the 

corresponding changes predicted by the proposed hypothesis for deep and 

shallow mining zones. These curves suggest that in the centre of the 
mining zone the hypothesis for the shallow case should be used for values 

of z/L less than 1. 

From a practical point of view, it would probably be 
reasonable to limit the use of the rather elaborate equation for the shallow 
case to values of z/.1_, greater than 0,5, as the curves in Figure 18 suggest 
that for lower ratios the tributary area theory would provide a lower and 
possibly more valid answer., On the other hand, the reason for the hypo-
thesis predicting pillar loads greater than  those predicted by the tributary 
area theory is the fact that the shape of the deflection curve of the roof will 
increase the load on the central pillars to values greater than the average 
and hence greater than the load of the tributary area surrounding them. 

Alternatives to the Elastic Analysis 

Yielding Wall Rock with Horizontal Workings., Whenever 
elastic theory is used for a problem in rock mechanics, the question is 
raised regarding the applicability of this theory to a medium which for 
many reasons may not behave like a perfectly elastic, homogeneous, 
isotropic body, However, aside from the fact that there is no other theory 
that is as serviceable for a deformable medium, use of the elastic theory 

has some justification. Many rocks produce straight line stress-strain 
curves, particularly on the loading cycle and more particularly for incre-
ments of stress, which satisfies the principal requirement of elasticity 

for determining the effects of increased loadings. 

Furthermore, any other ground reactions to stress, e.g., 

visco-elastic, plasto-elastic, elasto-plastic, etc., can be considered as 

modifications of the answer obtained from the elastic solution . The 
solutions for these other materials, if they could be obtained, would still 
include the same equilibrium equations and boundary conditions as used 
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Figure 18. Comparison of Pillar Loading Theories 
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in the elastic analysis. Only the compatibility equation would be different. 

Hence the elastic solution can always be considered as a first approxi-

mation, 

An analysis of pillar loadings is made below, assuming 

that the roof over horizontal workings will behave like a yielding mass, 

in the sense that a granular mass will yield without a complete breakdown 

of its strength. The compatibility equations of elastic strain can be 
replaced by the stress relations at a point when yielding occurs, Then 
the implications with respect to pillar loading of the deformation require-
ments to fulfil the yielding condition are examined. 

If the ground over the workings does not act like an 

elastic mass, it is possible that some yielding could occur with the stress 

distribution being governed by the Mohr strength parameters rather than 
by compatible elastic strains (12) . If yielding occurs along vertical planes 
as shown in Figure 19, the following derivation can be used: A horizontal 

slice dz will be acted upon by ay  on the top surface, cry  and àav  on the 

bottom surface, T and Uhon the sides, and àW as a body force, hence: 

EF =àw Zta - 2 L (a + dUv
)- 2T dz = 0 

as 	 àW = 2y dz 

= 	- T/ 1.• 

With incipient yielding along the vertical planes on which 
T is acting, the maximum value of T is governed by the strength parameters 
of the ground • according to Mohr's strength theory: 

T =-• C + 
•
a

h 
tan 0 

where c is the cohesion or shear strength at zero normal stress and 0 is 
the angle of internal friction, uh  can be related to Cr v. by assuming a 
constant coefficient of lateral pressure, k, so that Gr

h
/cr

y 
k. 

d 

dz 

• do.  
y 

• dz = y - c/1 kcr
y 

tan et. 

The solution of this differential equation gives (74): 

u
y 

and for pillars u = S . p 

- C 

k tan 0 (1 e-
kz tan 0/1

) 

h. 
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 zit
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Figure 19. Stresses in Yielding Ground Over an Opening 

From Figure 20 it can be seen that there is a necessary 
relationship between ah and a

y
. Thus: 

k 
 

a
v 

- 2c tan 0 

ci(  1 + 2 tana  y9) 

From this equation it follows that fôr  Ø = 45° when c = av/2, k = 0, and 
when c—e.0, k--)-0,333. These figures indicate the possible range for k 
•which is different from the arbitrary value of 1 recommended previously 
based on an erroneous deduction from experiments (74) .  

One limiting case would be when c---)-0; the pillar loading 
according to this theory would be for k = 0.333 and 0 = 45° : 

S < 3-y1(1-e-0.333 zIt) 
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Figure 20. Mohr Circle of Stress for Abutment Zones 

Figure 21 shows the effect of the ratio zit on the loading 

pressure, S p, as included in Equation 25. As zit increases, the proportion 
of the total pressure, yz, that is applied to the pillars decreases so that 
it is less than 0.5 when zit > 5 or the depth-to-span ratio is greater than 
2.5. At the same time, the loading, Sp, as a function of the span increases 
with zit but at a decreasing rate and asymptotically to 3•y 1. Figure 21 is 
for the limiting case of c = 0, 

›/4  
.' 1.gure 21. • Variation of Average Pillar Pressure with Span of Mining Zone 
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It is difficult to compare Equa.tion 25 with the elastic 

hypothesis represented by Equations 15 and 24, as there are many para-

meters that are not common. Therefore, a typical example will be used 

for comparison„ 

Example: z = 3000 ft, 	1000 ft, h = 0.01, b = 0.04, N = 10, 

x 0, y = 170 pcf, p,= 0.2 =p,p,  E 	1 X 10
6 

psi, R = 0,5, 

For Yielding Wall Rock from Equation 25, 	u
p 

= 1.26 yz. 

For Elastic Hypothesis from Equation 15, 	a.  = 1.61 yz. 

Hence by the elastic analysis for this case, the pillar stress would be 28% 
greater than predicted by Equation 25. However, part of this difference 
results from Equation 15 including the variation of up  with x, and thus 
at x = 0 a is greater than the average; whereas Equation 25 does not 
include this variation, nor can it do so without some new theory of plasticity. 
Hence Equation 25 provides an average figure. From Figure 21 it can be 
deduced that, at a depth three times greater than in the example (or for 
1/3 of the span), Equation 25 would give u p  r.20.65 yz with the elastic 
equation 15 giving a stress 248% greater. 

However, the other serious criticism of Equation 25, 
aside from not including a function of x, is that the required strains or 
deformations to produce yielding are ignored. It is probable that such 
strains could not be produced except with very large pillar deformations. 
For example, experiments have shown that for granular material a yielding 
condition as represented by Equation 25 would require a vertical deforma-
tion at the bottom of the yielding mass of 0.035 of the span. (71). For the 
above example: 

o
v 

= 0.035 x 2 x 1000 = 70 ft, 

which would require not only pillar deformation but also considerable 
extraction. 

For solid rock, although no experiments have been 
conducted to obtain such data, it is probable that the vertical deformation 
required for yielding would be much less. If the in situ compressive 
yield stress were in the above example 1000 psi, then theoretically an 
estimate could be made by calculating the vertical deformation at this 
stress, This would be a minimum figure, as yielding would produce 
additional strain. 

Recognizing that the major principal stress along the 
yielding surface is at (45 0  + 0/2), or for 0 of 45 0  at 67,5 0 , to the hori-
zontal, it could follow that the vertical deformations at yielding would be: 



-  61  - 

> 	  
r 	f 

cos 67.5 cos 22.5 ?.e
f
t/tan 22.5, 

where el  is the compressive yield strain. For the example the yield strain 

would be at least 1000p,, hence 

> 1000 
0 	 x 1000/tan 22,5 2.4 ft. 

10°  

2.4 x 10 6  
> 120,000 psi, 

Crp 1000x0.01x2 

which would be impossible. As a result of this analysis, it seems that a 

yielding roof (in the sense described above) is not likely to occur with 
pillar support. 

Arching from Bending over  Horizontal Workings., Another 

concept that is often the subject of speculation is that a rock mass in situ 
is similar to uncemented masonry insofar as it is made up of a series of 
intimately interlocking blocks and cannot sustain tensile stresses. 
Following some previous work (7 2), the implications of the roof rock 
over a mining zone behaving like masonry are examined below. From a 
knowledge of the stress distribution around horizontal underground openings 
with the major principal field stress being vertical, it can be expected that 
there will be a tendency for tensile stresses to occur in the immediate roof 
rock near the centre of the mining zone. Also, as a result of the deflection 
of the ground surface over the workings, some tension might occur. This 
has actually been measured on many occasions at the ground surface over 
the abutment zones of the mining zone (83). 

By analysing the implications of the ground not sustaining 
tensile stresses where these dilations occur, a modified stress distribution 
in the roof rock is obtain.ed. The resultant loading on the pillar supports 
might then be considered to be either the dead weight of the detached rock 
within the dilated zone of the immediate roof or the result of the deforma-
tion of the roof resulting from the modified stress distribution. These 
two approaches, of course, should provide the same answer. 

The assumptions in this theory are that the ground over-
lying the mining zone tends to bend like a beam but that no tensile stresses 
can exist (72). This results in tensile cracking adjacent to the ground 
surface over the abutments and at the centre of the roof, The resultant 
abutment and crown stress distributions are then as shown in Figure 22, 
which is typical of a masonry arch at ultimate load. It is also assumed 
that the depths of cracking at the abutments and crown are equal (hence 
riz in Figure 22 is common to the abutrnents and crown); that the maximum 
stresses, 0-m' are equal; and that the interlocking of the blocks of roof 
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Figure 22, Arching-Bending Over Horizontal Workings 

rock holds them in place. It then 'follows that: 

E M
A 

= (W/2) (1/2) - H T = 0 

i.e., the resisting moment M HT 

...M = m 	2 nz 	a '
a

n 

3 	2 

1- 4n/3 = 0 

n = 3/4. 

and 

- 2n/3) 

This agrees with the results obtained in certain experiments on brick 
beams (72). 

This theory was formulated to explain the mechanics of 
roof deformation (72). However, provided that o-nn  is less than the com-
pressive strength of the rock, it should follow that the ultimate pillar 
loading at x = 0 would be produced by the weight of loose rock, i. é.,  

0.25 -y z 

Two serious criticisms can be made of this theory: 
bending action as postulated could not, as indicated by many experiments, 
validly represent cases where z/1 2. Secondly, the strain or deforma-
tion of the roof that would be associated with this action is likely to be 

Eq. 26 CY 
1-R • 

For the above example, Equation 26 would give up  = 0.50 ïz. Paradoxically, 
the elastic hypothesis would predict a stress 322% greater. 
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greater than can actually occur without unrealistic pillar deformations, 
as will be shown below„ 

The deforrnation of the roof in this case arises from 
two mechanisms: the bending stresses in the beam, and the axial com-
pression along the line of thrust, The bending deformation is that of a 
setni-fixed beam. The deflection for a fixed beam at the centre is known 
to be 

w L
4 

d
c
' - 

384 E I 

To change the beam as shown in Figure 23(a) with the bending moment 
diagram of Figure 23(b) to that postulated above, i,  e.,  with equal maximum 
stresses at the crown as at the abutments, it is necessary to add the 
bending moment, w14 2 /48, shown in Figure 23(c), to produce the required 
diagram shown in Figure 23(d), The additional deformation caused by this 
added moment can be determined by taking the moment of the area of the 
bending moment diagram between the abutment and the 4.  about the abut-
ment .  Thus, for the serni-fixed beam the total deflection is: 

6 ,,_w L4 
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Figure 23, Bending Moment Diagrams for Arching-Bending 
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The deformation resulting from compression along the line 
of thrust can be obtalned by assuming this line is parabolic with the length 
represented very closely by: 

8 Ta  
X =  L+  -j-L- 

where € X is the average strain along the line of thrust (72) . This average 
can be determined roughly (if it were an important quantity it would warrant 
a more rigorous analysis) by recognizing that at a point near the quarter 
span the moment in the beam will be zero, see Figure 23(d). With the 
thrust, H, being equal to that at the abutments or crown, it follows that 

1 	3 
crm  • ri z  = e i/4 z  

3 • . 
cr 	= — 
1/4 8 m 

By taking a simple arithmetical average, the average stress is: 

7H 	7 	"Y-1-'
a  

cravg =  7a /16  = 	= 24  z 

•
8T1 	.a 

- L + 	)(1.,  
3L 24 z  E - (3L a + 2z a ) 7-Y 1-4  

72 z E 

7-yLa  
àT = 	(3(L/z) a  + 

192E 

+ 

T 4 
= )(L. 	7 ... L2 

'VT./ 1 

9E z2 	192E  
z i a  + 2) 

-y 1 4  

	

yL4  127 	7z 2  

	

= 3z a E 1 9 2 	32La 	96z a E 

127 	7a  
6 + ta 
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A feasible example where this theory would be most 6 
applicable is: z = 1000 ft, t 	1000 ft, h = 0,01, y = 170 pcf and E = 5 x 10 

 

psi. Hence 

170x 1000 4  	127 
6  + 7x3 2  = 0.207 ft. 

96 x 1000 a  x144x5x10 6  

0.207x 5x 106  
1000x0.01x2 = 52 ' 000  psi ' 

which would be impossible except for R > 98%. 

This theory also does not take into account the additional 

pillar deformation required for the detachment of the tensile zone nor 

does it include the factor k  (i, e.,  St/S 0 ). These criticisms need not be 

amplified in view of the demonstrated inadequacy to account for compatible 

elastic strains. 

In summary, the analysis shows that with pillar support, 
as opposed to yielding support, in most circumstances insufficient deforma-
tion could occur to permit the detachment and dead weight loading from the 
roof rock implied by this theory. 

Doming over Horizontal Workings. An alternate analysis 
has  been  made, based on the same concept of a rock mass behaving like 
uncemented masonry (4). In this case, it is postulated that a dome of 
detached rock develops over mine workings. Whereas the theory was not 
postulated for the determination of pillar loading, the implication must 
follow that the pillars would be loaded with the weight of the detached rock 
within the dome. 

An attempt was made to predict quantitatively the height 
of the dome that forms over a mining zone such that the rock within the 
dome separates from the dome boundary (4), As such it is an alternative 
to the Arch-Bending theory examined above,. 

It is stated that the "vertical downward load Fv  at a point 
on the dome boundary of x" is (4): 

F(x) sx  z dx = z x 

But if a dome actually exists this seerns to ignore the diffraction of gravi-
tational stress around the dome to produce a concentration of Œ

t 
in the sides. 

However, the theory produces an an.swer that seems to be not 

unreasonable. However, it will be shown below that for detachment of the 
core of the dome incompatible strains would be required. To establish this 
point the other parts of the theory  will  be explained. 
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Figure 24. Doming Over Horizontal Workings 

The assumption is then made that the shape of the dome 
develops so that the horizontal force component, Fh, nowhere exceeds a 
critical value S (4). It is implicitly assumed that, for creation of the 
dome, Fh  = S at all points. 

S=yzx dx/dz. 

Integrating: 

S ln z = yx3 /2 + K. 

For the boundary condition x = L/2 and z = Z it follows that: 

K=S  Z - yL a /8 

z = Z ey(xa  -,L a /4)/2S 

If z = Z - D, where D is the height of the dome, 

a 	8S , 	Z = — in — 
y 	Z - D 

Then the assumption is made that S cannot be greater than Q u  (Z - D) where 
Qu  is the uniaxial compressive strength of the rock mass above the dome. 
Thus 	 1 

8 Q Z 
L= 	

u 	
(D/Z- 1) tn (1 - D/Z)1 2  

From dL 	= 0, the largest span and height of dome are obtained: 
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D
rnax 

= eL Z 0,63 Z 

0.63 y Z  for x O. ap = 	R 

For the example, a = 1.26 -yz whereas the elastic hypo-

thesis gives 1.61-yz or 28% greater stress. Similarly to the Arch-Bending 

theory, the Doming theory ignores many undoubtedly significant parameters 
such as k (i.e.,  St/S),  and n (i.e.,E/E ). 

The main question for this theory, as for the two preceding 

theories, is whether the strains or deformations are compatible with the 

load calculations. The Arch-Bending theory showed that the deformation 

of the solid ground was too great to be accommodated by the pillars. In 

the Doming theory another aspect c an  be examined .  If there is detachment 
of rock from the dome, the detached rock must expand, and this expansion 

must be consistent with the load calculations. The deformation required 

for detachment at x = 0 is: 

O 	 Yz  dz = 0.432 .y Z a /E. 

As this deformation must be in addition to the deformation that exists in 
the undisturbed ground, it is a measure of the increase in stress. 

0.432 .y Z 2  
t\cr = 0.432.y Z a /É 4- h'/E 

nh' 

For the above example this gives 

Au = 0,432 x 170 x3000 2 /(2 x 10) = 230,000 psi, 

which is impossible; hence detachment cannot occur without cansidexable 
deformation equivalent to about 5 feet. 

Summarizing, it can again be seen that the deformation 
necessairly associated with the development of a detached zone, which 

might be the loading on pillars, is excessive and incompatible with the 

relatively rigid nature of pillar support. 

(1 2 7 7 0,37 Z 
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Elliptical Arching., In view of the inadequacies of the 
theories that have beén postulated to describe the consequences of a rock 
mass acting like uncemented masonry (4, 72), a more satisfactory theory 
of loading through detachment is now postulated .  The theory suggested 
below overcomes the limitations inherent in the previous theories of being 
only applicable to horizontal workings and of implicitly assuming that the 
horizontal field stress is zero. 

With the knowledge that has been established on the boundary 
stresses around elliptical openings (73), it is possible to calculate the 
minimum rise of an elliptical arch that would eliminate tension in the centre 
of the roof or wall rock for any depth and for any combination of major and 
minor principal field stresses, If any doming occurs over mine workings, 
this theory is likely to provide a more accurate prediction of the extent of 
such doming. 

The following assumptions are made in developing this new 
theory: 

1, No tension can exist in the walls„ 

Z. An elliptical arch will occur with an axial ratio 
just sufficient to eliminate tension from the arch. 

3. Pillar loads occur from the detachment of the 
rock within the elliptical arch. 

The equation for the boundary stress, an, around an ellipse 
in plane stress is (73): 

2v(1+k)+(1-k)[(1-v 2 )cos 25+(1+v 2 )cos2(5-n)J 

(1+v2. )+ (1-v 2 ) cos 2n 

where v a/b, k = St/S o , 5 = angle clockwise from the major axis to the 
x-axis, and n = elliptic coordinate clockwise from the major axis. 

S
o 

Figure 25. Elliptical Hole in Biaxial Stress Field 
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For the case where the field stresses are parallel and normal to the seam, 

then the height of arch can be obtained for no tension by letting 13 = 0, 
n = Tr/2, and a

n 
= O.  

= 2 k/(1 k) 

or  c/I = (1 - k)/2 k. 

There will be limits on this equation such that 0  <k  <1; in other words, 

if k = 0 tension cannot be eliminated at the crown and if k = 1 there can be 

no tension even in a flat back, i.e., c =  O.  

cE 	e»Ç'^■••crn. ,  

14,4_44 

Figure 26. Elliptical Arching Over Horizontal Workings 

The boundary of the ellipse can be represented by the 
equation: 

xa 	a 
Y• 

aa 

l or y = (1 -xajaa )b. 

Hence, a pillar stress equation could be set up as follows: 

= 	_yL  1 - k 
P 	1 - R - 2k 	" -xa)2  

where x = x'/L. This equation would apply to horizontal workings.. 

For a vertical seam a bin-type pressure, calculated using 
the above theory for Yielding Wall Rock, could be used for determining the 
horizontal stress, S., in the detached rock: 

S 	y. = 	c (1- e
-zi c

). 

For zic 3, S i  = y c; hence the case of the vertical seam produces the 
saine pillar stress equation as for the horizontal seam. It should be 
repeated, however, that this equation could only be valid where considerable 
deformation is possible. The actual amount required could be calculated 



- 70 - 

for any given conditions. However, these alternatives are obviously inferior 
to the elastic hypotheais formulated herein, for the reasons analysed above. 
Even for unusual wall rocks or pillars this is likely also to be true„ 

• 	 Consequently, the conclusion is reached that except in very 
unusual cases, elastic theory will be the most valid theory for the deter-
mination of stress and deformation around mining openings. 
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APPENDIX 

GLOSSARY OF ABBREVIATIONS 

(Note: After many of the terms, letters in brackets - 

indicate the fundamental dimensions of the physical 

quantity; e.g., L stands for length, M for mass, 

F for force, T for time, and D signifies that the 

quantity is dimensionless.) 



- 7 9 - 

a(L) 

Ao(L Z ) 

- radius of a circle or major serni-axis of an ellipse 

total  area of walls adjacent to the mined out rooms 
or stopes of the entire mining zone 

A (L
2

) 	 - area of a pillar parallel to the walls 

A
t
(L

2
) 	 - area of walls tributary to a pillar 

A
T

(L
2

) 	 - area of walls adjacent to the entire mining zone 

b(D) 	 - width of pillar (B/L) 

b(L) 	 - minor semi-axis of an ellipse 

b(D) 	 - width of opening (Bo /L) 

B(L) 	 - width of pillar 

B
o

(L) 	 - width of opening (stope or room) 

c c(L) 	 - centre to centre 

cc(L
3

) 	 - cubic centimetre 

cf(L
3

) 	 - cubic foot 

c(FL
-2

) 	 - cohesion 

ci(L
3

) 	 - cubic inch 

crn(L) 	 - centimetre 

cpn 	 - compression 

	

WL 3 	C
b

(D) 	 - coefficient of 
E 	

for calculating the deflection of 
I 

•a beam due to bending moment 

WL 3 

	

coefficient of - 
E 	

for calculating the deflection of 
I 

d(D) 	 - parameter of an ellipse (3 - 414 in plane strain and 
(3 -1.1)/(1+1.1) in plane stress 

dia(L) 	 - diameter 

Eq. 	 - equation 
-2 E(FL ) 	 - modulus of lineai deformation (Young's modulus) 

C
s

(D) 

a beam due to shear force 
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E (FL
-2

) 	- modulus of deformation of pillar rock 

ft(L) 	 - feet 

F(D) 	 - factor of safety 

- 
G (FL 2 ) 	- modulus of shear deformation 

11 1  (L) 	 - semi-height of a pillar 

h (D) 	 - dimensionless height of a pillar (H IL) 

H (L) 	 - height of pillar 

i (D) 	 - angle of dip to horizontal 

in. (L) 	 - inch 

I (L
4 

or ML
2

) 	- moment of inertia 

k (D) 

k
s 

(L
3
F

-1
) 

-
St/So 

or Cr
hv 

- coefficient of subgrade reaction, (5/q 

ksc 	 - kilograms per square centimetre 

1 	 - semi-span of a mining zone (L/2) 

ln a 	 - natural logarithm of a 

log a 	 - logarithm of a to base 10 

LF 	 - linear foot 

L (L) 	 - breadth of mining zone 

max 	 - maximum 

m (D) 	 - Poisson's number 

m (D) 	 - parameter of an ellipse (a-b)/(a+b) 

min 	 - minimum 

M (FL
-2

) 	- E/(1-p.
2

) 



R (L) 

sf  (L 2 )  

si (L Z ) 

S (L
-3

) 

S
h 
 (FL)  

- St  (FL)  

Sv  (FL-2 ) 
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M (FL) 	 - moment 

n (D) 	 - ratio of moduli of deformation (M/Mp or E/Ep) 

N (D) 	 - number of pillars 

p (FL
-2

) 	- contact pressure 

pcf (FL
-3

) 	- pounds per cubic foot 

psf (FL
-2

) 	- pounds per square foot 

psi (FL
-2

) 	- pounds per square inch 

P (F) 	 - a pillar load 

q (FL -2
) 	- bearing pressure 

Q  
B 

(FL
-2

) 	uniaxial compressive strength of a sample of 
width B 

Q
o 

(FL
-2

) 	- uniaxial compressive strength for a sample of 
unit width 

-2 
Q

u 
(FL ) 	- uniaxial compressive strength 

r (D) 	 - local extraction ratio, i. e„ based on tributary area 
to single pillar 

r (L) 	 - radius or radial distance 

R (D) - extraction ratio (wall area excavated/total wall 
area); parameter of an ellipse (a+b)/2 

- radius or radial distance 

- square foot 

- square inch 

- section modulus 

- field stress in the horizontal direction 

- field stress parallel to the seam or vein  and normal 
to strike 

- field stress in the vertical direction 
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S
o 

(FL
-2

) 

- 
S  (FL)  

S
x 
 (FL-2) 

- 
S (FL

2 
 ) 

Y 
- 

S
z 

(FL
2 

 ) 

tsn 

TA 

vr 
(L) 

v(L) 
0 

V (F) 

•w (D) 

wrt 

W (F or MLT
-2

) 

x (L or D) 

x' (L) 

y (L) 

z' (L) 

z (L or D) 

6 (L) 

6' (L) 

6A (L) 

- field stress normal to seam or vein 

- average pillar pressure on walls EFIZAt  

- field stress in the x-direction 

- field stress in the y-direction 

- field stress in the z-direction 

- tension 

- tributary area 

- radial displacement 

- tangential displacement 

- shear force 

- - 

- with respect to 

- load or weight 

- linear displacement or co-ordinate or dimensionless 

distance (x'/L) in direction of x-axis 

- linear displacement or co-ordinate in direction of 
x-axis 

- linear displacement or co-ordinate in direction of 
y-axis 

- dimensionless co-ordinate (z/L) in direction of 
z-axis 

- linear displacement or co-ordinate in direction 

of z-axis 

- inward displacement of wall normal to vein or 
seam; or just displacement 

- reverse displacement of wall due to average 
pillar pressure 

- abutment compression or deformation 
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6 C (L) 

6 e (L) 

O' (L) 

153c (L) 

- displacement of wall normal to vein or seam at 
centreline 

- in.ward displacement of wall normal to vein (or seam), 
resulting from excavation of stopes or rooms 

- local penetration of a pillar into the wall 

- displacement of wall normal to vein or seam at 
x from centreline 

.y(d) 	 - shear strain 

"Y(FL
-3

) 	 - unit weight (bulk density) 

e(D) 	 - lin.ear strain 

e
r

(D) 	 - linear strain in the radial direction 

E (D) 	 - linear strain in the tangential direction 

e
0 
 (D) 	 - linear strain in the tangential direction 

- Poisson's ratio 

P(L) 	 - radius of curvature 

Gr(FL
-2

) 	 - normal stress 

p
(FL 2 ) 	 - pillar stress IVA. 

p o 

CT (FL
-2

) 	 - average pillar stress EP/EA 

- 
A a (FL Z ) 	- increase in pillar stress due to mining 

AGT '(D) 	 - /10" /s 
P 

-2 
r
(FL ) 	 - radial stress 

0' (FL Z ) 	 - tangential stress 

crt(FL
-2

) 	 - tangential stress 
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Œ
1 
 (FL

-2) 

a
2 

(FL
-2) 

0'
3 

(FL
-2) 

T (FL
-2 ) 

- major principal stress 

- intermediate principal stress 

- minor principal stress 

- shear stress 


