

Mines Branch Research Report R202

FUNCTIONAL GRAPHS OF INTERCONNECTED SYSTEMS

by

R. Jakubowski* and M. Kriegeri

ABSTRACT

This research report presents the functional graph representation
of a complex system whose elements are dynamic systems. The properties
of these complex systems are discussed in detail. Finally, a method for
obtaining a supervisory program based on the interconnections of the

dynamic systems is developed.

RESUME

Cette étude donne une représentation de graphes fonctionnels d'un
systeme complexe dont les éléments constituants sont des systémes dyna-
miques. Les auteurs traitent de fagon détaillée des particularités de ces
systemes complexes. Finalement, ils proposent une méthode d'élaboration
d'un programme de surveillance fondé sur les interconnexions des systemes

dynamiques.

*National Research Council of Canada Postdoctorate Fellowship (Academy
of Mining and Metallurgy, Krakdow, Poland), seconded 1968-69 to Mineral
Sciences Division, Mines Branch, Department of Energy, Mines and
Resources, Ottawa, Canada,.

**Associate Professor, Department of Electrical Englneering, University
of Ottawa, Ottawa, Canada.

- ii -

CONTENTS

Abstract
Résumé

1. Introduction

(Includes a list of symbols)

2. Connection of Subgraphs
(Definitions 2-1 to 2-6)

3. Complex Functional Graphs

(Definitions 3-1 to 3-5)
(Example 3-1)
(Definitions 3-6 to 3-9)

4, Digital Model and Computational Procedure

(Theorem 4-1 and Proof)
(Corollary 4-1 and Proof)

References

Appendix A - Computation of Higher-Qrder Cuts

(Theorem 1 and Proof)

FIGURES

3-1 Graphical representation of kWL,
3E-1 The hierarchical graph of Example 3-1
A-1 Algorithm for finding hi'gher—or:der cuts

11

12-13

13

1. INTRODUCTION

In a previous paper [1], we considered the functional graph repre-
sentation of a dynamic system, together with its digital computer simulation,
In this paper, we are presenting a method for deriving the functional graph
representation of a complex system, §, whose elements are dynamic
systems as defined previously [1], and we shall refer to them as sub-

systems or subgraphs,

List of Symbols:

{al, az, c e an} : a set of elements a a

17722 7 "n

€ is an element of
N intersection
U union
CcC ¢ is contained in
\\ set-theoretic difference
¢ empty set
<a1, Bys v an> : an ordered n-tuple
implieé
existential quantifier

disjunction

>

\V/ : universal quantifier
v

N

conjunction

Our basic purpose is to present a second hierarchy of computations'.
which will give an ordering by which each subsystem has to be considered.
In line with this, we shall define some types of terms as in- [1], using

subgraphs instead of functional relations as Bg.sic elements.

2. CONNECTION OF SUBGRAPHS

The interconnection of subgraphs is achieved by introducing a
special interpretation of zero-argument functional branches and by provid-
ing a partitioning of the nodes of the subgraphs. We now consider a specific

subgraph G defined as follows:

Definition 2-1

A functional subgraph G&) is a system of relations of the following
form: :
G -0 g0 gl -
where
Z(Z) are the elements of the Zth system of relations;
Fw) is the set of functional relations of theﬂth
subsystem; and
R('e) is the set of non-functional relations of the
ﬂth subsystem,
In this definition, Fiw) and Ri,(%) are, respectively, functional and

non-functional relations as defined in the previous paper (11 Furthermore,

(&) ()

the set of indices of subgraph G we denote by I

To connect two subgraphs requires the inclusion of additional inputs
in each subgraph. These additional inputs are represented by special types
of source nodes which we associate with zero-argument functional branches,

Considering the set of'indices of these zero-argument functional branches,

) (£)

we define a partition of the set of indices I' ' of subgraph G' as follows:

Definition 2-2

) ()

The set of indices I of G is partitioned into two subsets of

l
mutually exclusive indices A((’) and %() defined as follows:

A {iel(ﬂ):ai 1(0 =0; i 0]} (2-2)
BW - 1O A9 (o) L (2-3)
where a._1 (1[') is the first element of the characteristic Ai(e) of the functional

“
1

relation ¥ and denotes the number of its arguments.

In other words, %(() denotes the set of indices of Gw)

which is
associated with non-zero-argument functional branches. JQ(K) U {o} denotes
the set of indices associated with all the zero-argument functional branches

in G(L). Thus, each subgraph G(l)

can include two types of zero-argument
functi’onal branches, namely Type-1, a single zero-argument functional
branch Fj representing the constant source node as introduced in [1], and
Type-2, the zero-argument functional branches associated with the addition-

®

al source nodes that are the inputs of G The set of indices of the Type 2

zero-argument functional branches is given by,q,(z), which may be empty.

Definition 2-3

()

Subgraph Cr(k) is said to be connected to subgraph G* if, and only if,

— ., - V.(E) (2-4)

G !
1@, ;e AW
(k)

In other words, y.

are the source nodes of subgraph G

the additional inputs to subgraph G(e). For bookkeeping purposes, the para-

!
(k) that supply

meters of the zero-argument functional branches Fi(e) associated with the

(€)

nodes V3 of Equation 2-4 are denoted as follows:

pi(z)l = 0, as it is a source node;
@ _ . (@),
P, = Lk, the index of the subgraph connected to G™;
O~ 5, thes f th de in the subgraph G
P, 3 = j, the index of the source node in the subgrap .

For further clarification, the following notation is introduced:

P~ S T A R (S S 7/
Cry © {j ep®. \JV/IG—A([)Vﬁ =y}

(2-5)

Thus, the set Ck / is the set of indices associated with the source
nodes of G(k) that are inputs of Gw).
Using this notation, Definition 2-3 can be restated as follows:

"Subgraph G(k) &
Cre? B

is said to be connected to subgraph G ° if, and only if,

Definition 2-4

A sequence of subgraphs G('gl), G(lz), ceey G(é) is said to form a

circuit, denoted by the character j’: {/1, 4%, ce e 'Zp}’ if, and only if,
/k C/k, [k_l_ 1 % ¢) v (2_0)

H k=1:2’---;,p'41

‘In other Woi’ds, in this sequence of subgraphs every G(!k) is connect-

edto G ®*t2 fork = 1,2,..., p-1.

Definition 2-5

A sequence of subgraphs G(ll), G(lz,.) coe G(/P), is said to form a

closed circuit if, and only if, they form a circuit and C - Q.
y y nd ¢, 4 &

Definition 2-6

The set of all characters associated with the closed circuits in the
complex systemgis called the composition N of G.

N = {-S’:fis the character of a closed
circuit in 9} . e (2-7)

3. COMPLEX FUNCTIONAL GRAPHS

In this section, we shall consider a complex system § as repre-
sented by interconnected subgraphs Gw. Here, a subgraph G@,ZeJ ,
is as defined in the previous section, and J is the set of indices of all the
subgraphs in the complex system. To manipulate such a complex system,
we define a binary relation, W, representing a connection and a hierarchical

graph, H, corresponding to the interconnected system.

Definition 3-1

The binary relation kW{, k,£ € J, is said to hold if, and only if,
Cr) /A @. Thus, the set of ordered pairs W is given by:

w o= Kk, 0> :kwf_} (3-1)

Definition 3-2

The hierarchical graph, H, of a complex system is given by the

system of relations:

H= 1,W) (3-2)

J, the set of indices of the subgraphs, represents

where

the elements of this system of relations; and
W is the binary relation defined by Equation 3-1.
To obtain a graphical representation of H, the elements of J are
represented by nodes, and relation W by a directed line, This is shown

schematically in Figure 3-1,

K L

Oo— > -Q

Figure 3-1. Graphical representation of kW¥,

Definition 3-3

(£

P
By the environment of G, we mean the set of indices ”@ such that

'n;f {keT: kWL} | (3-3)
or, by definition 2-3, '
Ty= 1 (5,2) c1e A, e (3-4)

In other words, % is the set of indices assoc1a.’ced with the subgraphs
0

connected to G Note that this is an extension of the term enclosure of a

sink node defined in Reference [11.

Definition 3-4

A cut of zero order ofa hierarchicalgraph H = <J W> is a set of
nodes 3(. such that:
3 (0)

%’JA“) L g = LEX(O)
3. NEY=> }z/N-?ﬂ}l‘O) 78

() of a hierarchical graph H = {7, W> is an

extension of the cut of zero order (}v(O) of a functional graph G = < Z, F,R>,

A cut of zero order ¥

. as defined in Reference [1]. A set JC(O) includes all source nodes and at
least one node from each closed circuit, Note that a source node ch H
represents a subgraph G(z) that has no additional inputs, and a closed

circuit in 9 corresponds to .a closed circuit in H,

Definition 3-5

A cut of order n' of the hierarchical graph H = <J, W>, for a
given cut of zero order 36(0), is the set of indices J((n) such that:

_ S
{k:keJ\;Q; WU AT cr}go 5 () .. (3-5)

In other words, -a cut of oxrder n corresponds to the set of nodes of

the hierarchical graph which is the image of the union of all lower-order

cuts under the relation W,

Example 3-1 -

Find the higher-order cuts of the hierarchical graph given in

Figure 3E-1,
2 ., 3 -, ¢4 3

N

Qe
A 4

Figure 3E-1. The hierarchical graph of Example 3-1.

As a first step, we need to choose a cut of zero order for this graph.

The composition N of this graph is:

N ={{2,6}, {2,3,6}, {4,5}} co. (3-6)
Thus, a possible }C(O) is : '

w0 - {1,2,5} (3-7)

| 0
To define the higher-order cuts for this 'J((), we first determine

all the environments 'Tri:

’lT1 = & ’ITz = {1,6}
T, = {2) T, = (3,5
T = fal 'Il'6= {2,3]}

For deriving 3(,(1), the following two conditions need to be satisfied
simultaneously:
(a) keJ\'}L(O)=> k€{3,4,6]
(b) ‘lch:K(O) =>ke{l,3]
Thus,

1
%' Y (3-8)
. ,}éZ) . . e
For deriving , the following two conditions need to be satisfied
simultaneously:

(2) keJ\"}((O)U}L(l)_—_> ke{4,6}
(b)(ITlg_'K(O)U}dl) = k&{l,3,4,6}

Thus, _ K
WP 2 (4,61, e (3-9)
Since SC(O)U}Z,(“U}C(Z) = J, there are no higher-order cuts, ,
Note that in this example we derived the higher-order cuts from
basic definitions, In Appenciix A a general algorithm to derive this by a
computer is given,
At this point, we shall introduce édditional definitions to character-

)

ize the subgraphs G of a complex system §, The purpose of these defini-
tions is to éimplify the description of the computational procedure as

described in the next section,

Definition 3-6

A éubgraph G([’) is said to be proper if, and only if, A(L) = Q’
(L)
G

In other words, is a subgraph that has no additional inputs,

corresponding to a source node in the hierarchical graph H. Note that a

) 4]

o

proper subgraph G~ has a single zero-argument functional branch F

and it is the type of functional graph presented in [1]. ' Y

Definition 3-7

A subgraph G('e) is said to be complete if, and only if,A(C) 7z ¢ and

o
\'4 ck,LC-"?'lf) .. (3-10)
ke, :
L :
' 0
Whereqik) is the cut of zero order of subgraph G(k),

In other words, t he indices which correspond to the additional inputs

(£)

of G' are included in zero-order cuts of the subgraphs connected to it.

@

That is, the inputs of G™ correspond to variables, in the other subgraphs,

that are computed first, ' | \

Definition 3-8

A subgraph G('C) is said to belong to class ‘Q(P) if, and only if, leﬁp)_
IBy this definition, the subgraphs of a complex system are partitioned

into disjoint classes according to the higher-order cuts of its hierarchical

graph, Furthermore, on the basis of these classes, one can obtain an

ordering of the subgraphs,

Definition 3-9

A class \Q(q) is said to precede class \e(p) if, and only if,q< P.
Note that, to have a meaningful ordering, the corresponding cuts

0
}(,(q) and3<.(p) are computed with respect to the same zero-order cut ¥)_

4. DIGITAL MODEL AND COMPUTATIONAL PROCEDURE

o
The digital model 9 of a complex system is the system obtained

(t)e

from 9 by transforming each subgraph G S into its corresponding

A)

digital model G The digital model of a subgraph is as defined in

Reference [1].

' ’To derive the required sequence of computations for simulating a
complex system 9, we extend the approach previously needed to derive
the sequence of computations of the digital model 8 Here, we need to

@)

define an ordering by which the different subgraphs G are simulated,

As seenin [1], to simulate a particular subgraph G(L), at each integration
step it is required to have all of its inputs specified. Thus, in complex
systems we need to define a computation cycle.' First, we execute an
integration step for the class of subgraphs whose inputs are known at the
start of each cycle, and then we sequentially execute an integration step
for the class of subgraphs whose inputs are dependent on the previous
classes of subgraphs. If this can be done for all the subgraphs, we say

that the given system g is computable. In this sense, not every digital

A
model § is computable, and to show this we introduce the following theorem.

Theorem 4-1

)

If in a complex system 9, there exists a zero-order cut}((o that

- . . A
includes only indices of proper and complete subgraphs, then G is computable.

Proof -

- 10 -

If we consider the partitioning of the subgraphs according to equi-

valence classes \e(p) (Definition 3-8), the following can be seen:

1. The inputs of all G(L)

€ "ew) are known at the start of each

computation cycle, since they are either proper or complete

subgraphs (see Definitions 3-6 and 3-7).

2. The inputs ‘of all G(L) ‘é(p) are determined by the subgraphs

(L)

\e(k) (see Definitions 3-5 and 3-9).

3. The umon of all equivalence classes includes all the subgraphs

of 8;,

' 0
Now if we choose the classes of the computation cycle to be ﬂ(),

e(l)’ ceen ,\e(r)’ we satisfy all the requirements for ‘G to be computable,

Corollary 4-1

If every clos ed circuit of the complex system ®) 1nc1udes at least

one complete subgraph, then

.‘Proof -

If every closed circuit of 9 includes at least one complete subgraph,

Q is computable,

by Definition 3-4 it is possible to choose a Z}C() that satisfies the require-

ments of Theorem 4-1.

If, in 2 complex system G, the requirements of Corollary 4-1 are

not satisfied, then we must introduce isolating blocks [1] [2] in suitable

subgraphs to make the required subgraph complete,

To summarize: for a
hierarchies of computations,

required for each subgraph G

given complex system, Y, we have two

the first being the computational procedure

@

, which is as defined in [1], and the second

- 11 -

being the order in which each subgraph is simulated., To do this we define
a}(.(o) satisfying the requirements of Theorem 4~1 (if necessary, we include
the above-mentioned isolating blocks). Using this 36(0), we specify its
equivalence classes as the classes of a computation cycle, This second

hierarchy of computations corresponds to a supervisory program,

5. REFERENCES

1. Jakubowski, R, and Krieger, M., ''Functional graphs and their use
in digital computer simulation of dynamic systems', Technical
Report No., 68-16, Department of Electrical Engineering, The
University of Ottawa, Ottawa, Canada, October 1968.

2. Steel, G.H., "Programming of digital computers for transient studies
in control systems'', Internat. J. of Electrical Engineering
|Education, Vol. 3, 1965, pp. 261-278.

- 12 -

APPENDIX A

Computation of Higher-Order Cuts

In this appendix, we present an algorithm for finding the higher-
0
order cuts %(n) of a hierarchical graph H for a given cut of zero order 36().

For this purpose, we introduce the following notation and theorem:

(n)

Let S be a string of p binary characters of the form
@ @ (@ , @
, 1 ERERREE b
where p is the number of elements in J, andn = 1,2,...r, with r being

the maximal-order cut of H. The characters of this string are defined as

follows:

(n) 1 ifkeUl:IC(i) '

> = \ « e (]-)
k i=0
0 otherwise
Theorem 1
An index ke}((n) if, and only if, s (n) = 0 and \7/ = 1.
k f"’ _]
j €
Proof -

From the definition of higher-order cuts,ke}{(n) if, and only if, the

following two conditions are satisfied simultaneously:
n-1 . (1’1)
a) keJ\iL_JO }{(1) — Sk =0

b)(T C:U }C“’@v s(m):l

el

- 13 -

On the basis of the above notation and Theorem 1, the algorithm for

finding all the higher-order cuts of H for a given 'JC(O) is derived; this is

shown in Figure A-1,

Input data '}C(O)
and T for all k&J
¢
l=->n

Y

Form S(n)
by Equation 1

Yes
. (n) _ \ »

No

l+n~->n

Compute }(.(n)
by Theorem 1

»

Figure A-1, Algorithm for finding higher-order cuts,

RI:MK:vim

