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Mines Branch Research Report R202 

FUNCTIONAL GRAPHS OF INTERCONNECTED SYSTEMS 

by 

R. Jakubowski* and M. Krieger** 

ABSTRACT 

This research report presents the functional graph representation 

of a complex system whose elements are dynamic systems. The properties 

of these complex systems are discussed in detail. Finally, a method for 

obtaining a supervisory program based on the interconnections of the 

dynamic systems is developed. 

RÉSUMÉ 

Cette étude donne une représentation de graphes fonctionnels d'un 

système complexe dont les éléments constituants sont des systèmes dyna-

miques. Les auteurs traitent de façon détaillée des particularités de ces 

systèmes complexes. Finalement, ils proposent une méthode d'élaboration 

d'un programme de surveillance fondé sur les interconnexions des systèmes 

dynamiques. 
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1. INTRODUCTION 

In a previous paper [ 1], we considered the functional graph repre-

sentation of a dynamic system, together with its digital computer simulation. 

In this paper, we are presenting a method for deriving the functional graph 

representation of a complex system, G, whose elements are dyn.amic 

systems as defined previously [1], and we shall refer to them as sub-

systems or subgraphs. 

List of Symbols: 

fa
1' 

a
2' " ' a) 	: a set of elements a l' a2' " ' an n 

: is an element of 

fl 	 : intersection 

: union 

: is contained in 

: set-theoretic difference 

re 	 : empty set 

la
1 

a
2'  ... , an>  : an ordered n-tuple 

: implies 

3 	: existential quantifier 

: universal quantifier 

: disjunction 

A : conjunction. 
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Our basic purpose is to present a second hierarchy of computations, 

which will give an ordering by which each subsystem has to be considered. 

In line with this, we shall define some types of terms as in [1], using 

subgraphs instead of functional relations as basic elements. 

Z.  CONNECTION OF SUBGRAPHS 

The intercon.nection of subgraphs is achieved by introducing a 

special interpretation of zero-argument functional branches and by provid-

ing a partitioning of the nodes of the subgraphs. We now consider a specific 

subgraph Goe) defin.ed as follows: 

Definition 2- 1  

A functional subgraph Ge is a system of relations of the following 

form: 

where 

Z(e) 	are the elements of theith system of relations; 
e 

is the set of functional relations of thex
th 
 

subsystem; and 

R ce) 	is the set of non-functional relations of the 
hth 

subsystem. 

F (t)  this definition, 	• ( ) and R. (t) 
1, 6 are, respectively, functional and 

non-fu.nctional relations as defin.ed in the previous paper [11 Furthermore, 

the set of indices of subgraph G we denote by I (d) 

To connect two subgraphs requires the inclusion of addition.al inputs 

in each subgraph. These additional inputs are represented by special types 

of source nodes which we associate with zero-argument functional branches. 

Considering the set of indices of these zero-argument fun.ctional branches, 
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we define a partition of the set of indices 1 ()  of subgraph G (t)  as follows: 

Definition 2-2 

The set of indices I (i) of G (1) is partitioned into two subsets of 

jq.(1) 	%(/) mutu.ally exclusive indices 	and 	defined as follows: 

A t(1)  = fiei (1) :a. 	= o ; 	01 
1,1 

(2-2) 

î(1,) = i (t) x,/q. ()  U  [o)  (2-3) 

where a
i, 

(
le

) is the first element of the characteristic A.(e) of the fu.nctional 

relation F.(t) and denotes the number of its arguments. 

ar (se In other words, 	) denotes the set of indices of G (t) which is 

associated with non-zero-argument functional  branches.  A.. ( e)  u [0 I denotes 

the set of indices associated with all the zero-argument functional branches 

in G (1) . Thus, each subgraph G (1)  can include two types of zero-argument 

functional branches, namely Type-1, a single zero-argument functional 
(1) 

branch Fo  representing the constant source node as introduced in [1], and 

Type-2, the zero-argument fu.nctional branches associated with the addition-

al source nodes that are the inputs of G (e)
. The set of indices of the Type 2 

zero-argument functional branches is given byA, (1) , which may be empty. 

Definition 2-3 

Subgraph G (k) is said to be connected to subgraph G (t) if, and only if, 

1I> 
 (k) 	(t) 

Y • 	Yi 

e  ((k) ; 	A(t) 

In other words, y
(
i
k) 

are the source nodes of subgraph G 
(k) 

 that supply 

the additional inputs to subgraph G (b . For bookkeeping purposes, the para-

meters of the zero-argument functional branches Fi(t) associated with the 
)nodes (t of Equation 2-4 are denoted as follows: 

(2-4) 
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/ (2- 6) 

(E) 
1 

(1) 
1.1., 2 

e) 
Pi, 3 

= 0, as it is a source node; 

k, the index of the subgraph connected to  

j, the index of the source node in the subgraph  G.  

For further clarification, the following notation is introduced: 

	

= fi Ee(k)• 	
(k) 

	

• 	j 	A(1) Yi 	y (.1)  
1 

... 	(2 - 5) 

Thus, the set é  C 	is the set of indices associated with the source 
k, 

n.odes of G
(k) that are inputs of G.  

Using this notation, Definition 2-3 can be restated as follows: 

"Subgraph G
(k) 

is said to be connected to subgraph G
e) 

if, and only if, 

0 '
n  

Definition 2-4 

	

) 	(i) 

	

A sequence of subgraphs G (4),  G 2 	G p is said to form a 

circuit, denoted by the character 

Clek, 	+ 1 
k, k=1,2,..., p-1 

= 	12 , 	, 	1, if, and only if, 

.In other words, in this sequence of subgraphs every G (e9k) 

ed to G (4+2) for k = 1,2, 	, p- 1. 

is connect- 

Definition 2-5 

( 	 (/ ) A sequence of subgraphs G 41  ) 1 , G (12 ) 	P , is said to form  a 

closed circuit if, and only if, they form a circuit and gifp,,, / 0. 

Definition 2-6 

The set of all characters associated with the closed circuits in the 

complex system9is called the composition N of.  

N = C/: fis the character of a closed 
circuit in S} 	 • • • 	(2-7) 
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3.  COMPLEX FUNCTIONAL GRAPHS 

In this section, we shall consider a complex system 5 as repre-

sented by interconnected subgraphs  G. Here, a subgraph G (e) ,..çe  J, 

is as defined in the previous section, and J is the set of indices of all the 

subgraphs in the complex system. To manipulate such a complex system, 

we define a bin.ary relation, W, representing a connection and a hierarchical 

graph, H, corresponding to the interconnected system. 

Definition 3- 1 

The binary relation kWe , k, e j, is said to hold if, and only if, 

C 	0. Thus, the set of ordered pairs W is given by: 

W = (<k, L> : kW0 	 . • 	(3-1) 

Definition 3-2 

The hierarchical graph, H, of a complex system is given by the 

system  of relations: 

H = < J, W> 	 (3-2) 

where 
J, the set of indices of the subgraph$, represents 

the elements of this system of relations; and 

W is the binary relation defined by Equation 3-1. 

To obtain a graphical representation of H, the elements of J are 

represented by nodes, and relation W by a directed line. This is shown 

schematically in Figure 3-1. 

• 
0 	 0 

Figure 3-1. Graphical representation of kW.e. 
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Definition 3-3 

r-„ 
By the environment of G(t) , we mean the set of indices ne  such that 

k- 	eJ: kWel 	 (3-3) . . . 

or, by definition 2-3, 

_ 	(t) . ejé* 3. - pi, 2 • 
... 	(3-4) 

In other words, eft  is the set of indices associated with the subgraphs 

connected to Ge . Note that this is an extension of the term enclosure of a 

sink node defined in Reference [1]. 

Definition 3-4 

A cut of zero order of a hierarchical graph H = <J, W> is a set of 

n.odes 74 °)  such that: 

( 0 ) 1.  

2. HAI)   

3. N 	> V -fni (° ) 	tie 

	

fe N 	 , 

A cut of zo,ro order 14( 0) of a hierarchical graph H = ('J, W>  is an 

er 

	

extension of the cut of zero order s(0)  -e 	of a functional graph G =  
(0) 

as defined in Reference [ 11 A set X' inclu.des all source nodes and at 

least one node from each closed circuit. Note that a source node tof H 

represents a subgraph Ge  that has no additional inputs, and a closed 

circuit in S corresponds to a closed circuit in H. 

Definition 3-5 

A cut of order n of the hierarchical graph H = <J, W>, for a 
^u( 0 )  given cut of zero order 	i , s the set of indices (n) 

such that: 

(n) /1 -. 1  
= k:ke J 	1  •x(j) A  Irk 	 (i) 

3= 0 	 3 .= 0  
In other words,  • a cut of order n corresponds to the set of nodes of 

the hierarchical graph which is the image of the union of all lower-order 

cuts under the relation W. 



all the environments 

err1 	0 	 rrr-2  
[2 

1-5 = [4 fir6 

= f 1, 61 

= f 3, 51 

= f 2, 31 

Thus, (1) 
= [31 (3-8) 
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Example 3-1  - 

Find the higher-order cuts of the hierarchical graph given in 

Figure 3E-1. 

Figure 3E-1. The hierarchical graph of Example 3-1. 

As a first step, we need to choose a cut of zero order for this graph. 

The composition N of this graph is: 

N 4[2,6], [2,3,6), [4,51} 	 . 	(3-6) 

Thus, a possible )(..(°) is 

= [1,2,5] 	 •.. 	(3-7) 

To define the higher-order cuts for this X.(0) , we first determine 

For deriving .14(1) , the following two conditions need to be satisfied 

simultaneously: 

(a) kEJ\le) 	k 	3, 4, 6] 

(b) 11iF J.é 	k [ 1, 3 } 

For derivinW 2) , the following two conditions need to be satisfied 

simultaneously: 

(a) k G \X! °)UX,( 1)    k e 	61 
(b)TrcX,(°)UX1 1) 	>  k e {1, 3, 4, 6] 
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Thus, 

=  k, 63 . 	 (3-9) 
Since X.

(0)
1..,11‹,

•(1 '34(2) 
= J, there are no higher-order cuts. 

Note that in this example we derived the higher-order cuts from 

basic definitions. In Appendix A a general algorithm to derive this by a 

computer is given. 

At this point, we shall introduce additional definitions to character-

ize the subgraphs G (e) of a complex system S The purpose of these defini-

tions is to simplify the description of the computational procedure as 

described in the next section. 

Definition  3- 6  

A subgraph G (/) is said to be proper if, and only if, ft(t)  
■ In other words, G U) is a subgraph that has no additional inputs, 

corresponding to a source node in the hierarchical graph H. Note that a 

proper subgraph G(t)  has a single zero-argument functional branch  

and it is the type of functional graph presented in [ 1].  

Definition 3-7  

	

A subgraph G (t)  is said to be complete if, and only if, Ac) 	and 

çkCrk(e)) 	 . . . 	(3-10)  
k elf 

wheree is the cut of zero order of subgraph  G.  

In other words, t he indices which correspond to the additional -inputs 

of G (I)  are included in zero-order cuts of the subgraphs connected to it. 

That is, the inputs of G (t)  correspond to variables, in the other subgraphs, 

that are computed first. 

Definition 3-8 

A subgraph G (e  is said to belong to class te( P )  if, and only if,  

By this definition, the subgraphs of a complex system are partitioned 

into disjoint classes according to the higher-order cuts of its hierarchical 
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graph. Furthermore, on the basis of these classes, one can obtain an 

ordering of the subgraphs. 

Definition  3- 9  

A class -e (ci)  is said to precede class `e (P)  if, and only if,q<p. 

Note that, to have a meaningful ordering, the corresponding cuts 

J (q) and x(p) are computed with respect to the same zero-order cut e)  

4. DIGITAL MODEL AND COMPUTATIONAL PROCEDURE 

The digital model 	of a complex system is the system obtained 

from G by transforming each subgraph G (t)e 	into its corresponding 

digital model G . The digital model of a subgraph is as defined in 

Reference [ 

To derive the required sequence of computations for simulating a 

complex system S , we extend the approach previously n.eeded to derive 

the sequence of computations of the digital model G. Here, we need to 

define an ordering by which the different subgraphs G (1)  are simulated. 

As seen in [ 1], to simulate a particular subgraph G (e , at each integration 

step it is required to have all of its inputs specified. Thus, in complex 

systems we need to define a computation cycle. First, we execute an 

integration step for the class of subgraphs whose inputs are known at the 

start of each cycle, and then we sequentially execute an integration step 

for the class of subgraphs whose inputs are dependent on the previous - 

classes of subgraphs. If this can be done for all the subgraphs, we say 

that the given system e is computable. In this sense, n.ot every digital 

model dà is computable, and to show this we introduce the following theorem. 

Theorem 4-1 

If in a complex system 9, there exists a zero-order cutk(0) that 

includes only indices of proper and complete subgraphs, then 9 is computable. 



10 - 

Proof  - 

If we consider the partitioning of the subgraphs according to equi-

valence classes ie(P) (Definition 3-8), the following can be seen: 

(/) .n 1. The inputs of all G 6 (0)  are known at the start of each 

computation cycle, since they are either proper or complete 

• subgraphs (see Definitions 3-6 and 3-7). 

(t) ie(P) 2. The inputs of all G e 	are determined by the subgraphs 

G ,€  u %.e 	(see Definitions 3-5 and 3-9). 
k=0 

3. The union of all equivalence classes includes all the subgraphs 

of S. 
A() Now if we choose the classes of the computation cycle to be ,0  r, 	, 

,e( i ) 	,e(  r) 
we satisfy all the requirements for 'b to be computable. 

Corollary 4-1  

If every closed circuit of the complex system S includes at least 
/.■ 

one cornplete subgraph, then 
„ 

is computable. 

•

• 
Proof 

If every closed circuit of 5 includes at least one complete subgraph, 

by Definition 3-4 it is possible to choose a 	that satisfies the require- 

ments of Theorem 4-.1. 

If, in a complex system 9, the requirements of Corollary 4-1 are 

not satisfied, then we must introduce isolating blocks [1] [2] in suitable 

subgraphs to make the required subgraph complete. 

To summarize: for a given complex system, 5, we have two 
hierarchies of computations, the first being the computational procedure 
required for each subgraph G (.1) , which is as defined in [1], and the second 
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being the order in which each subgraph is simulated. To do this we define 

a X.(0) satisfying the requirements of Theorem 4.1 (if necessary, we include 

the above-mentioned isolating blocks). Using this X(0) , we specify its 

equivalence classes as the classes of a computation cycle. This second 

hierarchy of computations corresponds to a supervisory program. 
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1=0 

s  (n) 
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APPENDIX  A 

Computation  of Higher-Order Cuts 

In this appen.dix, we present an algorithm for finding the higher-

order cuts
(n) 

of a hierarchical graph H for a given cut of zero order X.
(0)

. 

For this purpose, we introduce the following notation and theorem: 

Let S
(n) 

be a string of p binary characters of the form 
(n) 	(n) 	(n) 

S 	s 	s 
1 	2 

where p is the number of elements in J, and n = 1, 2, ... r, with r being 

the maximal-order cut of H. The characters of this string are defined as 

follows: 

(n) 	1 	if  
( 

i=0 	
1) 

 
0 otherwise 

Theorem 1 

(n) 	
0 and V 	s.

(n) 
 = 1. An index kEX

(n) 
if, and only if, s

k 	 J 
iek 

Proof - 

(n) From the definition of higher-order cuts,k€K if, and only if, the 

following two conditions are satisfied simultaneously: 

n-1 
a) ke3 \ 

(n) 
X (i ) 	s k 	= 



Yes 
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On the basis of the above notation and Theorem 1, the algorithm for 

finding all the higher-order cuts of H for a given X(0) is derived; this is 

shown in Figure A-1. 

1 

7 

Input data X(c))  
and 	for all kEJ 

1—> n 

Form S (n)  
by Equation 1 

1 1 n-->n 

< if \I s (n) 1 
ke:r  

No 

ComputeX(n)  
by Theorem 1 

Figure A-1. Algorithm for finding higher-order cuts. 
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