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tes 	 Am. ■•11 

line 3 from bottom Z = 0.31 " Z = 0.33 I 

ERRATA 

p. 16 line 8, coefficient 0,0186 should read: 	0.1086 

The same correction to be made on Fig. 5. 

p.27 Table 6, Column 4, 	A = p(1-p) (a 1  - a 2 ) 2  d1  d2  /Dm 

should read 	A = p(1-p) (a l  - a2  ) 2  d i  d 2  /D2m 

p, 31, par. 4, lines 6, 7 	A = 0.00288 should read A = 0.00180 

and 	 B = 0.004186 " 	" B = 0.002616 

p.31,  par. 5, lines 2, 3 N = 183 	 " 	" N = 115 

and 915 pounds 	 tt 	" 575 pounds. 

equation Sz = A/W + B/N operates independently of the shape of the 
parent distribution of the variate. It applies generally for first-
order estimates of the upper limit of the sampling variance (82). The 
degree of segregation (z) is described by z2  = B/A. 

A "sampling board" for snall-scale experiments is introduced 
to demonstrate the above relationships for binominal distributions of 
the variate. Tests on this sampling board confirm that the above 
equations apple to gystematic as well as random sampling conditions 
and can be used for assessing and predicting sampling precision for a 
large variety of materials. 

* Head, Western Regional Laboratory (Edmonton), Fuels and Mining 
Practice Division, Mines Branch, Department of Mines and Technical 
Surveys,  Ottawa, Canada. 
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TOWARDS A COMMON BASIS FOR 'rHE SAMPLING OF MATERIALS 

by 

Jo Visrnan* 

SYNOPSIS 

There is a need in many fields of investigation for a general 
method of estimating in advance the .precision of samples dra~in . 
systematically from material consignments that are not random mixtures. 

. Materials and variates may vary over wide ranges and the 
circumstances under which the samples are collected can vary wide~, 
but the causes of variation ih sample value are limited. Two ·factors 
are inherent in the nature of . the consignment, namely, random variation 
and "segregation". These can be determined as variance components from. 
a ,··Qpeciall.y de·signed.' tes:t or estimated from previous information, if 
the m·aterial is kndw by composition and distrfbu·hion • 

The other factors influencing the precision of the sample are 
the number (N) . of increment.a collected f:r.om all parts of the lot and 
the ·:size (W) of the resultant ~oss sample, operating variablei;i t~_t. 
ean 'within certain limits be regulated at will by the sampl~r. The 
equation s2 ::: A/W + B/N operates independently of the shape of the 
parent distribution of the variate. It applies generally for first- · 
order estimates of the upper limit of the sampling variance (s2). The 
degree of segregation (z) is described by z2 = B/A. · · 

\ 

A "sampling board" for small-sea.le experiments is introduced 
to demonstrate the above r elationships for binominal distributions of · 

. the variate. 'I'ests on this sampling board confirm that the above 
equations apply to systematic as well as random sampling conditio~s · :~ 
and can 'be used for a.ssessing and predicting sampling precision-."ior a . 
~rge variety of mnteriuls. . 

* Head, We~tern Regional Laboratory (Edmonton), Fuels and Mining 
Practice Dj,.vision, Mines Branch, Department of Mines and Technical 
Surveys, Ottawa, Cana.da. 
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VERS UNE BASE COMMUNE FOUR L'ÉCHANTILLONNAGE DES MATÉitIAUX 

par 

J. Visman* 

RF:SUld 

Dans de nombreux domaines de recherches, on a besoin d'une 
méthode générale poux évaluer à l'avance la précision d'échantillons 
tirés  systématiquement de lots de matériaux qui ne sont pas des mélanges 
au hasard. 

Les matériaux et les variates peuvent varier considérablement 
et los circonstances dans lesquelles les échantillons sont pris peuvent 
varier beaucoup, mais les causes de variation de la valeur de 
l'échantillon sont limitées. Deux facteurs ne dépendent que de la 
nature du lot: la variation aléatoire et la nedgrégation% On peut 
les ealuer comme variances partielles, d'après une expérience spéciale 
ou bien d'après des connaissances antérieures si l'on connaît la 
composition et la distribution du matériau. 

Les autres facteurs de la précision de l'échantillon sont: 
le nombre (N) des prélèvements obtenus de toutes les parties du lot, 
et la grandeur (lei ) de l'échantillon total; ces variables opdratoires 
peuvent dans une certaine mesure ttre modifiées à volonté par 
l'échantillonneur. L'équation s2  = A/W 4. B/N est valable quelle que 
soit la forme de la distribution de la variate. Elle s'applique en 
gdhéral pour des estimations de premier ordre de la limite sup4rieure 
de la variance d'échantillonnage (s2) • Le degré de ségrégation est 
exprimé.  par z2  B/A. 

L'auteur propose un "tableau d'échantillonnage" expérimental 
pour démontrer les rapports ci-dessus, dans le cas de distributions 
biromiales de la variate. Dos expériences avec ce tableau confirment 
que ces equations  s'appliquent aux conditions d'échantillonnage 
systéMatique aussi bien qu'a l'échantillonnage au hasard, et qu'on 
peut les utiliser pour évaluer et ,préàire la précision d'échantillon-
race, pour un grand nombre de mDteriaux. 

* Chargé de recherches principal, Laboratoire de la Rdgion de l'Ouest 
de la Division des combustibles et du génie minier, Direction des 
mines, ministère des Mines et des Relevés techniques, Ottawa, Canada. 
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INTRODUCTION 

Theru is today no unified theory for the systematic sampling 
of materials that are non-randomly distributed in space or in time 
(8). The existing theory deals essentially with random sampling. 
The methods derived from this theory vary with the type of material 
and the circumstances under which the sample is collected.' 
Consequently, the literature on sampling is large and diversified, 
the methods having been adapted to the specific) needs of each 
particular field. 

There are,however;certain underlying principles common to 
all sampling experiments. To formulate these principles in terms of 
quantities easy to measure is the objective of this report. More 
specifically, the overall precision of sampling is expressed as a 
function of operating variables and constants for the purpose of 
estimating in advance the precision of samples collected from 
materials that are known by composition and distribution, or whose 
characteristic° have been determined from a test. 

mfflin  Derinimenl 

Every sampling operation coneists essentially of either 
extracting ono single sample from a given quantity of material or 
extracting,from different parts of the lot,a sorbe of small portions 
or "increments" that are combined into one "gross sample". The 
latter method is known as "sampling by increments" and will be 
considered here. The former method can be regarded as a special case 
of incremental sampling in which the number of increments equals» one. 

Tho existing theory for sampling materials that are non-
randomly distributed in known as "stratified sampling" or 
itrepresentative (random) eampling (of stratified populations)". In 
this theory the precision of sampling is expressed as the sum of the 
variance "within-strata" and the  variance "between-strata", the 
strata indicating parts of the material consignment whose mean values 
differ significantly from ths overall mean value of the consignment. 
Sometimes, as in incremental sampling, these "strata" are imaginary, 
as they become identical to the portions represented by each 
individual increment. The "within" and "between" variance estimates 
are thon  a function of the size and the number of increments. It is 
common usage to identify the "between-strata" variance with the 
"trend variance" and the "within-atrata" variance with the "random 
variance". It 13 clear, however, that with different size and number 
of increments the eatimates of the between-strata variance and the 
within-strata variance will change. Therefore, these variance 
estimatea cannot be regarded as constants and cannot be used, without 
certain corrections, for calculating the number and size of 
increments that would be required to evaluate in advance, a projected 
overall precision of sampling. 
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The meaning of "random sampling error" as used in this 

report goes back to a classical experiment where a number of black and 

white balle are mixed at random in a vase and a sample is withdrawn 
that consists of one or more balls. The random error is caused when 

the hand collecting the sample selects by chance a white ball instead 

of a black ball, or vice versa. The resulting variance is the 
"random variance", of which the "within-strata variance" used in 

representative sampling gives a biased estimate (depending on the 

size of the samples used) when dealing with materials that are non - 
randomly distributed. This random variance is determined by the 

average composition of the material (in this case the relative amount 
of black or white balls) and by the size of the sample only. The 
same definition of the random variance is adopted for variates with 
parent distributions that are not of the binomial type. 

In this  report, the  term "random variance" is maintained in 
its original meaning;  "trend  variance" has been deleted because of 
its confusing nature. Instead, a new term "segregation variance" is 
introduced, denoting the variance caused solely by deviations 
resulting from the non-random distribution of a consignment. Its 
physical meaning is simple to explain. The deviation of any sample 
value from the true mean of the lot or consignment is the algebraic 
SUM of its random error and a remaining error resulting from the fact 
that the variate is non-randomly distributed over the lot. The 
latter is called the segregation error and its variance the 
segregation variance. It will be shown that the segregation variance 
component of single samples is independent of sample eize; it depends 
on the degree of segregation of the consignment only. It will 
further be shown that the maximum degree of segregation, as expressed 
by the variance of segregation, is directly related to the random 
variance. This  relationship is utilized to estimate sampling 
precision. 

PrevJels Work  are  Comunntarz  

The method suggested here followe earlier work on the 
sampling of coal (2,3,4,17,18,19) and subsequent commentary, notably 
by R.0. Tomlinson, whose criticism  in,  briefly, that sampling theory 
applies only when the condition of randomness is fulfilled and that, 
even so, sample variances may be biased when samples are collected 
for determining a ratio (14,15). 

A more practical course was followed by ASTVE 05 subcommittee 
XXIII over the period 1954-58 when a comprehensive test program was 
carried out for testing an experimental method of forecasting 
sampling precision for coal (5,19,20). The results of this program 
showed that the theoretical objections against systematic sampling of 
segregated coals have been overrated. 

As it is the objective of sampling theory to forecast the 
variance of a variate X (not X itself), less mathematical rigour is 
demanded than in a related field of statistics that deals with the 
prediction of certain events (e.g., the expected rainfall per annum, 
the fatality rate of air travel), in other words, with (X) itself. 
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It would appear from recent work, notably that of I.S.0./ 
TC27 WG7-Sampling, that there is now a tendency towards a more 
quantitative evaluation of certain assumptions of sampling theory. 
For instance, one difficulty affecting the practical application of 
all sampling theory in how .to deal with over-estimates of the sample 
variance. Uhen a sample of given size is drawn from an infinite 
population, its theoretical variance is always larger than when a 
sample of the same size ie drawn from a finite population with 
otherwise identical characteristics. In this report the above 
problem is dealt with as follows. 

The fact that in practice ail populations are finite does 
not necessarily invalidate the theoretical estimate of the variance, 
provided it is stipulated that it is an estimate of the maximum 
value that this variance will attain for an infinite population. 
The same problem is encountered when camples are drawn systematically 
or at random from a stratified population. Samples that straddle 
the boundaries betynon twu strata contribute less to the sampling 
variance estimate than those that are drawn wholly from individual 
strata. 	Consequently, the latter variance estimate is always 
larger than the former. 

It is suggested, firstly, that the above theoretical 
variance estimates are accepted with the qualification that they are 
estimates of the upper limit that the variance will attain under 
theoretical conditions (infinite population and stratified distribution 
of the variate). 

Secondly, it is suggested that the meaning of the term 
"biased sample" in restricted to those sampling errors and deviations 
that are caused by the inclusion of components that are foreign to 
the population (contamination) and by the systematic exclusion of 
true components of the population (e.g., the exclusion of large 
particles by a faulty sampling device). A biased sample value could 
only be caused by such errors or deviations. All other samples are 
then to be regarded as representative of the population, regardless 
of the magnitude of their deviation from the true mean of the 
population. 

It is held that, if the above qualifications and 
definitions are accepted, sampling theory can be of practical 
benefit in almost any field of human endeavour, especially in 
induntry, without violating the basic mathematical concepts of 
statistical theory. The value of such a theory of sampling in 
regard to expertise, guarantee, and litigation can hardly be over-
estimated. 

Sco :Je of repevt 

The objective of this rcporl. io  to provide first-order 
estimatee or the upper limit of the sampling variance in a general 
case whore snples are collected from rnterials uhoee component parts 
are distributed throu:facut the population in a non-random pattern. 
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It is also the objective of this report to show that the overall 
accuracy of a given sampling procedure can be estimated in advance by 
this theory, for binomial as well as for non-binomial distributions 
of the variate. 

It is claimed that costly and time-consuming experiments 
can be avoided. A versatile model population for small-scale 
experiments is introduced. It is of the binomial type. Several 
important questions can be answered with this model that apply to 
non-binomial population types as well, e.g.: Is there a difference 
between systematic sampling and random sampling? What is the effect 
of various degrees of segregation and patterns of distribution on the 
sample variance? What is the relationship between segregation and 
random variance? The results of this inductive stUdy confirm the 
practical feasibility of applying statistical theory to the systematic 
sampling of segregated materials under conditions that can as a rule 
be fülfilled by a well-instructed, experienced sampler. 

A duplicate sampling method with small and large samples 
(20) is also described. It'is used for estimating the upper limit of 
the random variance component and segregation variance component 
("sampling constants"),by first-order  approximation, for  materials 
whose composition and distribution are not known in advance. It will 
be shown that this method applies in principle for all materials and 
variates, including non-binomial parent distributions. In this 
duplicate sampling  test,  samples are drawn systematically from 
segregated consignments, one series of small samples and one series 
of relatively large samples. From it the two sampling constants (A, 
B) are found that can be used later on when either the same lot of 
material, or material consignments that are known to be similar to it, 
are to be sampled with a certain pre-assigned accuracy. The sampling' 
constants are then used in an equation that provides estimates of the 
minimum number and size of increments required to attain the projected 
accuracy. Essential mathematical derivations are given in an Appendix. 

ANALYSIS OF VARIABILITY 

In this section the theory of sampling segregated binomial 
populations, originally developed for coal in 1947 (17,18), is shown 
to apply to other materials and to variates with parent distributions 
of any type. A model population is introduced to demonstrate the 
essential relationship and its general applicability. Variance values 
found from tests on this model are maximum estimates only, because 
the model represents the conditions that cause the largest possible 
variations. Sampling variances derived from the tests are accurate 
by first-order approximation only. Conditions other than those 
govorning test results from the model will lead to variance estimates 
that are smaller, as for instance when the samples are very large or when the population is relatively small. Other conditions are • discussed in the text. The above limitations do not seriously 
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interfere with the requirements of industry regarding the testing and 
safeguarding of quality. It is believed that by limiting the sampling 
theory in this manner the broad objective of establishing a common 
basic for the sampling of materials is served as well as is 
practically possible. 

Model Population 

The model population of "black" and "non-black" items, as 
exemplified by a "sampling board" (Figure 1), is used for analyzing 
variability of samples drawn from segregated consignments. 

This sampling board consists of a piece of 10" x 10" wire 
screen with 10 openings per linear inch and a supply of 5,000 lead 
pellets. The lead pellets can be used entirely, or in part, for 
making model populations that are segregated in different ways. The 
pellets can be distributed in any conceivable manner ranging from 
complete segregation to near-perfect random mixtures. The samples 
collected from this population are not removed but merely counted. 
A sample is taken by placing a square frame with its centre over the 
eelected station and counting the number of pellets enclosed by it. 
The size of the samples can thus be varied and the number can be 
chosen at will. The samples can be collected either systematically 
at fixed stations marked off on the screen, or at random. In the 
latter case, a random sampling table is used for determining the 
co-ordinates. 

The method of analysis consists essentially in collecting 
samples of different size from a given-population and determining 
the relationship between sample variance and sample size. 

4 will be shown (Eq 3, p. 12) that the total variance of 
sampling (e) consists of a random variance component (8p2/W 1 ) that 
depends on th g size (w) of the sample, and a segregation variance 
component (S s') that is independent of sample size. 

The results of experiments done with the sampling board are 
presented in the form of graphs showing the relationship between the 
variance of single samples and the sample size, the latter being 
determined by the number of screen openings in a square frame. In the 
tests reported here, three different sample sizes are used, namely: 

= 1' 

1/2  = 9 (located in the square of 3 x 3 openings), 

and 	w3  = 81 (9 x 9 openings). 

The numbers of pellets (x) found within the square frames are marked 
down and the series thus obtained is used for calculating variance 
estimates. For the reader who is unfamiliar with statistics, it is 
noted that the variance is the square of the standard deviation . (s), 
the "root mean square" of deviations. A simple formula for calculating 
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FIGURE I  

SAMPLING BOARD 
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this measure of dispersion for a series of observations is presented 
in Table 5 (p.24) of this reper4where p = 	. 

1121LetWhie PnMPelà 	Thgne e_kGrol7alAsfel 
and ttr 	Frea=12.7._Piqtebei2U 

Example 1  

An example of complete segregation will be studied first by 
placing 2,500 beads in one corner of the sampling board (the lower-
left corner as shown by the inset on Figure 2). This corresponds to 
a binomial population designated by p = 0.25. Samples collected from 
this mixture will be either 100% black or 100% white, exuept those 
that straddle the boundary between the black area and the white area. 
This latter restriction is of little consequence so long as the 
samples are small compared with the "patch" of 2,500 beads, as is shown 
on Table 1 (p. 9) where three series of systematic samples and three 
series of random samples are represented that have sizes 1, 9 and 81 
respectively. Figure 2 illustrates that the six variance estimates 
found from these series do not deviate significantly from a straight 
horizontal line corresponding with the binomial variance 82  = p(1-p)= 
0.1875. The fiducial limits of the variance estimates correspond 
to variance ratios F95  = 1.52 (24 andcnodeg. fr.) for variance 
estimates larger than 0.1875, and F95 = 1.73( e>e° and 24 deg. fr.) for 
variance estimates smaller than 0.1875. The result of this sampling 
experiment shows there is no significant difference between the 
samples drawn at random and the samples collected syetematically. 
The same conclusion follows when the Chi-square test is used. 

The experiments also show that, while the size-variance 
curve of a completely random mixture would be defined by a straight 
line sloping down at an angle of 45° on a double-log scale, the 
sample variance never exceeds the theoretical value of 0.1875 in the 
case of complete segregation and remains substantially constant over 
the entire interval. 

Patterns showing partial segregation may take many forms 
that are impossible to deal with in every detail. The gradual 
transition of complete segregation into complete randomness can, 
however, be illustrated in an orderly fashion and the conclusions 
that can be drawn from it apply generally to any pattern of 
distribution. 

To study the characteristics of partial segregation it will 
be assumed that mixing takes place in five equal steps, reducing the 
degree of segregation first from 1.0 to 0.8, thon to 0.6, to 0.4, to 
0.2, and finally to 0. When segregation  in zero, tha number of 
pellets within the black square should bo 25% of the original number. 
The total reduction from 100% pellets to 25%, divided into five .equal 
steps, is a reduction of l5% or 375 pellets for each step. 	. 
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TABLE 1 

Complete Seezrezati o,..25 

Systematic Samples 
[ 	

- 	

r-- 	

Random Samples 	 . 

Sample 
1 	il 	9 	-i 	81 Sie 	 i 	 9 	 81 

	

4 	 . 
-, 	  

	

1 	
coordinates 	coordinates 

	

2 	
coordinates 

	

Sample 	xl 	xî 	x2 	ri 	x3 	 X4 	
x4 	

x5 	 x5 	 2 

	

No. 	 X6 	6 	x6 
	1 	 I  

	

1 	 17 	07 	1 	1 	68 	55 	 44 	04 	81 	6,561 

	

2 	 76 	74 	 34 	74 	 22 	33 	81 	6,561 

	

3 	 37 	21 	1 	1 	30 	30 	9 	81 	, 	78 	46 	. 

	

4 1 	
13 	19 	1 	1 	13 	77 	 84 	09 

	

5 	 04 	30 	1 	1 	70 	40  t 	 26 	52 	27 	729 

	

6 	 70 	97 	 74 	' 	59 	 71 	13 

	

7 33 	77 	 57 	29 	 91 	58 

	

8 	 i 	 24 	46 	1 	1 	25 	97  1 	 38 	18 	81 	6,561 
ï 

	

9 	 03 	441 	1 	65 	68i 	 67 	24 

	

10 	 i 	 54 	80 	 76 	60 	 54 	76 

	

11 	1 	J. 	6 	36 	45 	2,0251 04 	94 	 27 	48 	9 	81 	96 	96 

	

12 	1 	1 	6 	36 : 45 	2,025 1  43 	77 	 42 	55 	 57 	46 

	

13 	1 	1 	4 	16 ''' 25 	625.j 18 	24 	1 	1 	37 	90 	 69 	92 
14 

	

1 	
66 	21 	 86 	65 	 36 	42 	81 	6,561 

	

15 	 79 	90 	 53 	72 	 10 	45 	81 	6,561 

	

16 	1 	1 	9 	81 It 81 	6,5613 12 	99 	 00 	66 	 77 	10 

	

17 	1 	1 	9 	81 1  81 	6,561 72 	27 	 39 	37 	9 	.81 	84 	45 

	

J. 18 	1 	 6 	36 	45 	2,025 	07 	72 	 68 	32 	 57 	65 

	

19 	 i 34 	95 	 29 	20 	9 	81 	03 	04 	81 	6,561 
h 

	

20 	 g 	 C 45 	14 	3. 	1 	61 	30 	 29 	26 	81 	6,561 

	

21 	1 	1 	9 	81 D 81 	6,561t 52 	38 	 29 	68 	 53 	34 	18 	324 

22. 	1 	1 	9 	81 	81 	6,561! 85 	68 	 94 	49 	 75 	23 

	

23 	. 	1 	1 	6 	36 •11 45 	2,025e 66 	88 	 98 	69 	 91 	20 	. 

	

24 	
1 	

60 	11 	 93 	57 

	

25 	 44 	80 	 1 	9212 	185' 	 30 	27 	81 	6,561 

	

Sum 	9 j 	9 	64 	484H 529 	34,969 	 8 	8 	 36 	324 	 693 	53,541 
L.._ 	s2 	0.2400 	0.1647 , 	0.1510 	 0.2267 	 0.1400 	 0.2180 

 iL  
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Tho following mental experiment can now be conducted: 
Throe hundred and seventy-five (375) pellets are selected at random 
from the black square of 2,500 (Figure 2), and are redistributed 
randomly over the remaining threequarters of the sampling board (the 
degree of segregation is reduced from 1 to 0.8). 

A sample drawn from the black quarter of the sampling board 
will have an expected value 

E(X) 
black 

= (2500 - 375)12500 = 0.85 

Similarly, for samples drawn from the other throe-quarters, we find 
expected sample values 

E(X)white  = 375/7500 = 0.05 

for each individual quarter. 

The expected variance as calculated from these figures is, 
for a degree of segregation-0.8, 

[ 

E(variance) = E [ X - E(X) 
2

I 	= 0.1200. 

The total variance for a degree of segregation of 0.8 is 
0.64 times the total variance for the entirely segregated mixture. 

By continuing the experiment for lower degrees of segregation 
the results presented in Table 2 are found, when collecting four 
samples (one from each quarter of the sampling board) for each 
individual test. 

TABLE 2 

Effectof Sgrogein_Qn. Totl Variaugg 

Degree of 	Deviation from Mean Grade 	Total Expected 
Segregation 	 p = 0.25 	 Var a ce 

(z) 	 for Each Quarter 	E ( 	) 	Fractional 

1.0 	 0.75; 0.25; 0.25; 0.25 	0.1875 	1.00 

0.8 	 0.60; 0.20; 0.20; 0.20 	0.1200 	0.64 

0.6 	 0.45; 0.15; 0.15; 0.15 	0.0675 	0.36 

0.4 	 0.30; 0.10; 0.10; 0.10 	0.0300 	0.16 

0.2 	 0.15; 0.05; 0.05; 0.05 	0.0075 	0..04 

0.0 	 0.00; 0.00; 0.00; 0.00 	0.0000 	0.00 
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This table shows that the degree of segregation (z) and 
the expected variance are related: 

E(variance) = 0.1875 z2  

A similar relationship holds for all ratios of "black" and "white" 
mixtures other than 2,500 out of 10,000. 

The practical meaning of the expected variance is that it 
is the limit of the total variance as sample size increases. 
Therefore, the expected variance in identical with the segregation 
variance: E(variance) = s fî. 

Furthermore, the variance for complete segregation appears 
to be identical with the parent variance, that is, the variance of 
single items which in this case follows from the binomial equation 
2 - s - p(1 - p). 

- - 
From the foregoing equations it follows that: 

Summarizing the conclusions from the above experiment,we 
have: 

1. The segregation variance has a maximum value equal to that 
of the parent variance of the population. 

2. The segregation variance is within the range of 
actual sampling practice, substantially independent 

. of sample size. It  nover  exceeds the parent 
variance. 

3. The ratio between the segregation variance and the 
parent variance depends solely on the degree of 
segregation (z). 

4. The total variance of samples consising of one unit 
only, equals the parent variance (sp') regardless of 
the degree of segregation. 

We have conjectured,on the basis of experimental evidence, 
that the expected variance of sampling satisfies the following 
relationship: 

E (s
2
) = s 2/w' + E (ss2) (1 - 1/0) 

where s - parent variance; variance of single units; 

E (ss2 ) = expected value of the segregation variance; 

= sample size, expressed in number of unit.  

	(Eq 2) 
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For samples consisting of two units the total variance 
becomes, by first approximation, 

02 . 1//2 0  2 4. ip 0  2 

For samples consisting of ten or more units, Equation 2 can be 
written by first approximation as: 

2/ 32 = 
 3 2/I  +  

It is noted that the parent variance ( 5p2 )  is a constant 
which, according to the binomial equation, depends on the composition 
of the material only. It is designated as "sampling constant" A'. 

The segregation variance (s) for one and the same material 
depends on the degree of segregation (z) only, in accordance with 
Equation 1. It is known from experience that, while (z) may range 
from zero to 1,  the  stability of the segregation variance under 
otherwise normal conditions of handling, storage and transportation 
is comparable to that of the parent variance. To illustrate this 
with figures, it is known that noticeable blending can be observed 
when a mixing device reduces the segregation variance of a product 
by a factor of 3 or more. Conversely, an increase of the segregation 
variance by a factor of 3 to 4 or more is equivalent to a distinct 
separating action. Therefore, while (s) may change, its value for a 
given material consignment will be constant within  limita normal for 
variance estimate (F -ratio), unless the cons;tgnment is noticeably 
mixed or segregated. Segregation variance sit  is designated 
lesampling constant" B. 

The practical value of the "sampling constants" can be 
demonstrated by the following Examples 2 and 3: 

Example 2  

General Equation 2 was tested by distributing 2,500 lead 
pellets non-randomly over the sampling board. The samples of 
different sizes were collected systematically and at random as was 
done in the first example. The results are presented in Table 3 and 
Figure 3. 

Two variance estimates, sî and a,  obtained from the • 

systematic samples were used to evaluate the sampling constants by 
using Equation 2, which can now be written as: 

82  = A tM B(1 - 1Al t ) 	  (Eq 4) 

Tho following values were found for the sampling con5tants, using 
Equations 8 and 9 on page 23: 

At = 0.1824 

B = 0.00761 

(Eq 3) 



Sample 
No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Sun  
S
2 

1 81 

.1 2 
di' 	2 

2 
1 2 

2 

e 

3  

î 4 

t 2 
11  1 
I 1 

Î 5  
4 
6 

: 1 
3 

2 
2 
8 

-•••••• 

16 	17 	289 

	

22.18 	324 

	

77 t 20 	400 
94 	7 	49 
39 	28 	784 
84 	26 	676 
42 	23 	529 
17 	35 	1,225 
53 	20 	400 
31 	20 	400 
63 	20 	400 
01 	40 	36 
63 	27 	729 
78 	20 	400, 
59 	8 	64 	' 
33 	16 	256 
21 	22 	585 
12 	23 	529 
34 	11 	121 
29 	29 	841 
57 	21 	441 
60 	21 	44A 
86 	45 	36 

	

32 -22 	484 
44 	17 	289 

	

, 483 	10,6271 

0.00823 

4•44-4.4••••■••••- 

TABLE 3 

Partial Segregation (Figure 3): p =  0.25 

Systematic Samples 	 Random Samples 

Sam7p-Ii; 
Size 

Xl  

1 	1 

1 	1 
1 	J.  
1 	1 

1 	1 

J. 

6 	6 	57  215  565  

2 ! 
Xi Z X2 

4 

2r---  x2  xj 

4 	21 

4 dc. 16 
4 g 15 
1 15 
1 ; 30 
9 1 35 

25 
16 19 
1 4 19 
4 21 
J. ; 20 
1 1 22 
?5 1 28 
16 ; 26 
36 ; 27 
1 	21 
9 1 22 

0 15 
1 ! 11 
1 1 20 
4 	19 
4 	38 
64 46 

0.19GO 1 0.0438 	0.00986 86 

	

I. 9 	I  
,

coordinatea 	1 .2  li coordinates 	, 	coordinates 

	

X4 
	: x4 ! '4  1 	

x
5 	

x5  x; 	x6 	x6 	ze3o 

	

1 	 4 	• 

	

441 03 1 	
7 

36 	 : 46 	33 	 ? 	60  

	

400 47 	96 1 	1 ; 98 	26 	 ! 	11 

	

196 43 	,47 	J. 	1 i 63 	16 2 	4 I 	14 

	

256 73 	36 1 	1 ; 71 	80 1 	1 i 	10 

	

225 86 	61 	 i 62 	45 4 16 j 	95 

	

225 97 	42 	 1 42 	27 6  36._ 	24 

	

900 74 	81 	 , 	53 	07 ' J. 	1 ! 	51 

	

1,225 24 	14 	 ! 32 	36 1 	1 i 	79 

	

625 67 	57 1 	1 1 37 	07 	5 I 25 ! 	89 

	

361 62 	20. 	1 32 	51 2 	4 	73 

	

361 16 	56 	 ; 32 	13 	 1 	88 

	

A44].76 	50 1 	1 I 90 	55 , 	 97 

	

400 62 	26 	 Il ii  79 	38 	1 	1 	54 

	

484 27 	71  J. 	1 a 78 	58 2 	4 	14 

	

784 66 	07 	 't, 53 	59 4 	16 	10 

	

676 12 	96 	 !; 05 	57 	 88 

	

729 56 	96 	
I 

	

. 1  03 	12 	 26 

	

441 85 	68 	 i! 72 	10 5 25 	49 

	

484 99 	27 	 i 93 	14 4 16 	81 

	

225 26 	31 	 15 	21 3 	9 	76 

	

121 55 	38 	 'ti 31 	06 1 	1 	23 

	

400 59 	54 	
II 

62 	18 2 	4 	83 

	

361 56 	82 	 ;, 43 	44 1 	1 	01 

	

1,444 35 	46 1 	1 1 09 	32 4 16 	30 
22 	 1 90 	53 

A  3 
	9 	30 

	 II  
if 

	

7 1  7 1 	 52  190 

	

0.2100 Ill 	 0.04210 

2,116 64 

_ _ 
1 
	4 9  

81 

14,321  1 	 
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From these values the size-variance curve representing Equation 4 is 
found; it is illuetrated in Figure 3.  This  size-variance curve is 
approximately the algebraic sum of a straight  lino,  WWI, sloping 
down at 45 degrees from point (wl = 1; 	= 0.1824) and a straight 
horizontal line, B = 0.00761; the former represents the random 
variance component, the latter the segregation variance component. 
The degree of segregation is found from the equivalent of Equation 1: 

z = %/HAI = 0.20 

Here, the Chi-equare test provides spot-checks for the goolnel of 
fit of Equation 4, using experimental variance estimates s, 
and go  

within the confidence interval defined by n-1  • el  of each 
Chi-square 

one of the above four variance estimatee for probability levels 
P = 0.025 and 0.975x  For example, the confidence interval of the 
variance estimate s, which was found from 25 (systematic) samples, 
is 0.026 - 0.088 eI the 95 per cent level. Tho calRulated variance 
(Equation 4) falls within this range at 0.027. As s5 shows the 
largest difference of all, the Chi-oquare test confirms the 
statistical identity of the calculated variance (Equation 4) and all 
four experimental variance estimates at the 95% level. On Felre 39  
the confidence interval is shown for experimental variance 	only. 
It is noted that similar results were found when using the F-test. 
The Chi-square test was preferred, it being the more rigorous one of 
the two tests. Frequency  distributions of  samples with size larger 
than 1 unit (wl = 1) will generally show deviations from the binomial 
distribution when the material i3 segregated. When the samples 
contain only a small number of units, as they neceasarily do in the 
experiments performed with the sampling board, these departures from 
the theoretical binomial frequency distribution cannot always be 
proved significant. When, however, the number of units contained 
in the sample becomes very large, such as in molecular binomial 
mixtures (fluids, pulps, etc.), the difference between the frequency 
curve of sample values as found from a test and the frequency curve 
of the sample values observed in the same material consignment when 
randomly mixed, will be generally significant, the more so when the 
degree of segregation in high. In fact, the frequency distribution 
of large samples from segregated mixtures can take on any shape, in-
dependently of the shape of the parent distribution, but the variance 
of such large samples is directly related to  the variance of the 
frequency distribution of the single units. The theory presented 
here utilizer; this relationship and is demonstrated for variates that 
can be expressed by parametern having a binemial parent distribution. 
It will be shown later on in the report that the same concept applies 
to parent distributions of different type, including normal, poissonian, 
and irregular parent distributions (see under "Non-binomial variates", 

The size-variance curve calculated from s 2  and 23  falls 1 	2  
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Example 3  

A test similar to the ones above was done with 1,000 lead 
pellets that worn distributed as evenly an possible over the sampling 
board. The prve representing Equation 4 was based on variance 
estimates el and s? (see Figure 4). All the other values which 

were determined independently appear to  check,  within the limits of 
chance variation,with the curve 

2 
s - 0.0186/W' + 0.00137 (1 - 110). 

The degree of segregation found from z =,/5717 = 0.11. 

The three examples discussed here confirm the correctness 
of the general Equation 4 for a range of conditions varying between 
complete segregation and near-random dispersion of the variate. 

In sampling practice the U30 of samples consisting of onle 
a few units is common in such fields as microscopic analysis of 
particle mixtures and sampling for defectives. In many cases, 
however, the semples collected consist,of necessitàaof a very large 
number of units that cannot be counted. Consequently, sample size 
is expressed in some unit of measurement (1 gram, 1 pound, etc.); 
each unit of measurement may contain- thousands or millions of 
elementary units of the binomial. As a result, the size-variance 
curve of such  semples  will be generally determined by the segregation 
variance component only. In other words, the actual range of sample 
sizes lies somewhere within the less steep section of the size-
variance curve. 

For this type of material it would be impractical to use 
the parent variance for sampling constant At, because the number (0) 
of binomial units is too large to be counted. Instead, sampling 
constant At can be determined for one unit of measurement. It is 
then necessary to indicate to what unit of measurement this sampling 
constant does refer. 

Pme_tical Units  end  Proximate rwation 

To illustrate the use of practical units and their 
relationship to the general ovation, the results of another test are 
presented in Figure 5. One thousand lead pellets were distributed 
with a high degree of segregation (see inset Figure 5) and the2 sampling constants calculated from variance estimates s2  and 03  as .  
before: 

s2 = 0.09923/W' + 0.01078 (1 - 1/W') 

degree of segregation z = 0.31. 

The other variance estimates (obtained from random saMples 
as well as systematic samples) correspond within the 95% fiduCial 
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limits with this curve as before. It will be assumed for the sake of 
convenience that the size of samples is expressed in a practical unit 
of measurement equal to ten elementary units. The general Eqnation 
4 now changes to: 

02 = A/W + B (1 — .1/10 ) 	  (Eq e) 

where A = variance of samples of 1 unit of measurement, 

w = sample size expressed in same unit of measurement, and 

A/W = random variance component. 

It is noted that the numerical value of the random variance 
component does not change by this transformation, as shown in 
Figure  5. The only difference is that A = 140 At. 

It is also noted that the segregation variance B is 
independent of the unit of measurement. 

In those cases where samples have to be expressed in some 
unit of measurement that is many times the size of an elemental 
binomial unit, the upper part of the size variance curve as shown in 
Figure 5 is not used. Consequently, the general Equation 4 can be 
replaced by: 

s
2 
= WW1  + B 

or  when using practical units of measurement, 

0
2 
= A/W + B 	  (Eq 5) 

The curve corresponding to this equation is also shown in 
Figure 5. The discrepancy between the general curve and the 
practical curve turns out to be negligible for a first approximation . 
of the total variance estimate. The same conclusion holds for higher 
degrees of segregation. Equation 5 will be used from here on, unless' 
otherwise indicated. 

Emation 1 for the degree of segregation (z) likewise 
changes,  when practical units of measurement are used,to: 

z = v/eleletm 	  (Eq 6) 

where m = - number of elemental units per unit of measurement. 

Equation 6 will appear to be userill as (z) can often be 
estimated from available data on the average composition and 
distribution of a material consignment. Examples 4 and 5 (pp.  24 and  25) 
illustrate the application of Equation 6. 

It is noted that the product (Amr) is dimensionless and can 
be estimated from any other unit for which the value of (A) is known. 
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In view of the above tests, it can be concluded that the 
variance of single samples drawn systematically or at random from 
segregated materials consignments can be expreseed as a function of 
two constants determined by the composition of the material and the 
degree of segregation of the consignment, and by the size of the 
sample. 

When single samples are combined, as is done in incremental 
sampling, the total variance of a gross sample consisting of (N) 
increments has a maximum value equal to 1/N times the total variance 
of the single sample's. Theoretically, this maximum value will be 
attained only when the "patches" caused by segregation of the 
consignment are themselves distributed at random. In actual practice 
this condition may not prevail and the total variance as formulated 
for gross samples consisting of (N) increments, 

02 = 

is, in fact, an estimate of the upper limit of the gross sample 
variance. The estimate of the total variance obtained from this 
equation is therefore a safe estimate; the same equation can be 
written as follows: 

8 2  = A/W + B/N 	  (Eq 7) 

where W = Nw = the gross sample size. 

This equation, originally introduced for the sampling of broken coal 
(17,18),is suggested as a general expression of variability, for 
gross samples drawn from material consignments that are not perfect 
mixtures. 

Comparison With Existing Theory  

The theory of sampling that is presently being applied 
when assessing the precision of incremental sampling of segregated 
material consignments is a modified random sampling method known as 
"representative sampling",as has already been mentioned in the - 
Introduction. When applying this method it is necessary to determine 
the number of increments and their distribution over individual 
"strata" in such a manner that all strata are represented in the 
gross sample in direct proportion to the individual size and 
variability of the strata as expressed by the within-stratum standard 
deviation (16). The increments are drawn in a random manner. 

The advantage that can be claimed for the representative 
sampling method is that the precision of the gross sample is not 
affected by  any  "trend", that is, by variations between strata. 

The requirements of "proportional representation" may, on 
the one hand, cause some complications when the strata differ in 
size and in variability, as is often the case in census surveying. 
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It is then necessary to evaluate the size and the standard deviation 
for each individual stratum. On the other hand, the theory of 
representative sampling can be simplified in many instances:such as 
in bulk sampling,by choosing imaginary "strata" of equal size and 
finding an average estimate for the within-stratum standard deviation 
or from previous knowledge regarding those same variations in a 
similar material. 

This simplified method of representative sampling is 
generally applied to the systematic sampling of buik materials as 
well as to "discrete populations", under which can be classified a 
great variety of mass-produced articles. Manufactured goods generally 
show considerably less variability than do raw materials, and quality 
control systems for such goods can be handled by representative 
sampling theory without much trouble. 

For those categories of materials where the variability is 
very pronounced, special techniques have been developed based upon 
the theory of representative sampling. 

Hansen, Hurwitz and Madow,in a recent publication on census 
sampling (9),list no less than ten different sampling techniques, 
including simple random sampling, cluster sampling, systematic 
sampling, stratified simple random sampling, simple one-and two -atage 
cluster sampling, stratified single and multi-stage cluster sampling, 
multi-stage sampling with large primary sampling units, doubl e. 

 sampling, sampling for time series, and purposive sampling. This 
book, which deals exclusively with finite populations, is indicative 
of the complexity of present sampling theory, even in limited fields 
such as census surveying. 

Binomial  Sampling...Thu= 

Application of the binomial theory to seeregated materials 
has been studied by W.M. Bertholf for broken coal (2,3,4,5) and by 
H.J. de Wijs for ores in place (21). 

In the "trend variance" theory suggestod by Bertholf a 
formula identical to Equation 7 is used. Tho true nature of the 
"unit increment variance" (random variance) is left in doubt, 
because two different methods are used to determine this variance. 
In the publication first mentioned (2), Bertholf defines the "unit 
increment variance" as the variance "within sets", as distinct from 
the variance "between sets". Thus, like the "intra -class" and 
"inter-class" components used in representative sampling, the "unit 
increment variance" and the "trend" variance  proposed by Bertholf are 
not independent of the size and number of samples from which they 
are derived. In a contemporaneous paper (3), however, the same 
author defines the "unit increment variance" (random component) 
correctly as sî = pqU. This is an approximation of the binomial 
variance for single, average coal particles. The two definitions 
are not identical. 



The method introduced by de Wijs (21) is a very significant 
application of the binomial theory to the sampling of solid ores. 
Briefly, this theory deals with the analysis of a series of samples 
representing equal masses of the ore body. The variance of the 
sample mean is determined from thé mean value of the samples and 
from the differences between adjacent samples. A coefficient (d) 18 
introduced for expressing the "dispersion of grade" (page 367 of the 
article), which, like (z), varies from 0 to 1 and is identical with 
the latter, except for the manner in which it is determined. The 
author quotes the following values for (d): 

TABLE 4 

SeRregation of Ores in Place (after H.J. de ',fuel 

Dispersion of grade expressed by (d) 

TYPE OF ORE 	conspicuously 	"no 	fairly 	extremely 
regular 	comment" 	irregular 	irregular 

Hydrothermal fissure 	< 
0.15 	0.15-0.25 	0.25-0.35 	> 0.35 veins 

Cu,  Pb, Zn, Sn 

Hydrothermal deposits 
of Au, Pt, Ag 	 0.35-0.45 

Ta, Nb or Be in more irregular than gold, etc. pegmatites 

Stratified deposits 
of Fe, Mn 	 > 0.20 

A more recent publication on a graphical approximation of 
the mean grade of ores, based on the binomial distribution by M. Bruté . 
de Rémur (7), is of interest to note, as well as the work of R.M. 
Becker and Scott W.  Hazen (1) on the binomial distribution of ore 
grade. 

While the emphasis in the report presented here is on the 
design of sampling experiments for the purpose of predicting sample 
precision, it is of interest to mention a simple and effective method 
for checking the precision actually obtained after the sampling. 

 experiment has been completed. This is the duplicate sampling method, 
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introduced by R.L. Brown (6) and R.C. Tomlinson (14),that has been 
incorporated in the new British specification BS-1017 - Sampling of Goal  
and Coke. In this method, alternate increments are collected in one bin, 
the other ones in a second bin; the precision obtained is estimated from 
the difference between the mean values of the two samples. Other materials 
may require different methods for the a posteriori determination of 
sampling accuracy; the discussion of such techniques falls outside the 
scope of this report, the main objective being the evaluation of the 
precision of a sampling experiment in advance. This can be done by 
determining the sampling constants (A,B) from a test, if thé material 
is unknown, or from available data if the material is known by 
composition and distribution. 

MATERIALS OF UNKNOWN COMPOSITION 

Sampling constants (A,B) and the degree of segregation (z) 
for materials of unknown composition can be determined with the 
duplicate sampling method, using small and large samples (20). This 
test requires the collection of two series,of single samples from 
which an estimate of the total variance (s') is found. For the first 
series relatively small samples (w1) are chosen, to ensure that the 
first term, A/w, in Equation 5 contributes more to the total variance 
than the second term. The estimate (sî) therefore largely reflects 
random sampling component (A/w). The second series of samples are of 
relatively large size (w9 ); consequently the variance found from this 
series is caused mainly ty the segregation component (B). The 
following equations 8 and 9 provide maximum estimates, by first-order 
approximation, of sampling constants A and B (see also p. 4). 

, 2 	2 % , 
A  = wl 142 ‘ 31 82

,
// w2 wl ) 	  

B = s22  -A/ 	  

(Eq 8) 

(Eq 9) 

The error of reduction and analysis of individual samples has been 
ignored in these equations; the inflation caused in the estimates of 
(A, B) is generally of no consequence. The sample sizes (wl, w2) 

should generally be the smallest and largest sizes practicallY 
possible. 

The degree of segregation (z) is expressed by Equation 6. 
In many materials that are mass-produced the degree of segregation (z) 
does not change very much, although the pattern of distribution may 
vary;and it is thus possible to estimate B without a test when CO 
and (z) are known. 

A condensed schedule of the calculations required for-
determining sampling constants (At  B) and the degree of segregation 
(z) is presented in Table 5. 



24 

TABLE 5 

Calculation of (A,B) and (z) for Materials of Unknown Composition 

Sample 	 . 
Nb. 	Small Samples 	Large Samples 	Calculations 

1P2 2 P1 P1 2 P2 Determine the variance 
• . 	. 	. 	4 

•
for.each series, (si) 

• • 	 • 	• 	 2 
• . 

	

	 .. 	. 	and (82 ), with the . 
• . 	. 	. 	• 	equation: 

• . 	. 	. 	. 	 , 
8
2 = eum 132  — (slim D ‘

J
2  /II  . 

n - 1 
• . 	• 	. 	.  

. 	. • . 	• 	. 	 Determine (A,B) from 
. 	 . 	. 	. 	. 

•n 	 . 	. 	. 	
equations 	8 	and 	9 . 

(se note) 	
. 	 Find (z) from equation

6-.  
. 	 . 

	

2 	 2 
sum pl 	sum pl 	sum p2 	sum p2 	NOTE: 	It is recommended 

to collect a 
minimum of 25 to 

Average 	 30 samples for 
size of 	w1 	

w
2 	 each series. 

samples 

Example  4 

1 
An untreated stove coal (12 ,  x 2î in.) was sampled by 

Collecting 35 increments with an average weight of 185 grams, and a 
second aeries of 35 samples with.an average weight of 6,539 grams 
each. These samples were analyzed for ash content. The variance for 
the small samples (calculated from fractional ash content) was Eq.  = 

2 0.0234; the variance for the large samples was B2  = 0.00219. 
Sampling constants found from Equations 8 and 9 are: 

A = 4.04 for samples of 1 gram 

B = 0.00157. 

The weight of the gross sample and the nuMber of increments can be found, 
for any pre-as signed accuracy,from Equation 7:.  

2 _ s - 4.04/W+ 0.00157/N 
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For instance, a sampling precision of 1% ash would be obtained 19 
times out of 20 when collecting 128 increments with a total weight 
of 320 kilograms. The average particle weight of the coal was found 
to be 29.6 grams. Consequently, the number of particles per gram of 
sample is m =  1it9.6. The degree:of segregation, as calculated from 
Equation 6, is found to be'z = 0.11. 

Exam1.2.5 

The results of a general election were used in the following 
duplicate sampling test: the variance sî of the individual political 
adherence to a certain party (X) was compared with the variance of 
the average political adherence to the same party in the ridings. 
The average number of votes per riding was v2 = 15,430, while w1 

= 1. 
2 The variance sI was found to be 0.27; variance s apPeared to be 

0.0045. The resulting variance férmula is: 

8
2 
= 0.27e + 0.0045e 

The number of investigators required for probing the 
political opinion of the same population at some future date, and the 
number of interviews to be made by each investigator,can be estimated 
in advance with this equation. For instance, public opinion regarding 
the same party (X) could be determined to the nearest 1.5% by about 
320 pollsters who would each interview 20 persons. The degree of 
segregation (z) for this population, with regard to its political 
adherence to party (X),follows from Equation 6 for m = 1; it follows 
that z = 0.13. 

The following example demonstrates the application of 
Equations 5, 6 and 7 for materials that are characterized by a 
variate (X) but that do not consist of mixtures of identical units. 

Example 6  

Mixtures of particles of unequal size that are sampled for 
size analysis can be regarded as binomial mixtures by defining 
variate (X) as a particle size interval within two given size limits. 
The material consignment  con  then be regarded as to consist of two 
fractions (X) and (non -X), as before. The precision of the weight 
percentage of particles (X) found from a sample is determined by 
Equations 5 and 6. Estimates of the sampling constants A and B can be 
found from a duplicate sampling test as demonstrated above by 
collecting two series of samples, one series consisting of relatively 
small samples and the second series of relatively large samples. 

The substance to be sampled may occur in the form of broken 
aggregate, solids in suspension, or droplets in an emulsion. When a 
material occurring in one of these forms is sampled, the chance error as 
expressed by the binomial variance is now caused by the accidental 
interchange of units of differing size and depends therefore on the 
size and relative abundance of the units. 
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When the particles are small and the number of particles 
per unit of weight is large, the value of the sampling constant A 
for samples of unit weight will generally be small in comparison with 

that of sampling constant B. The effect of segregation prevails over 
random variation; the frequency distribution of (X) will generally 
show an irregular form, depending on the pattern of segregation and 
the number of particles contained in each sample used for the 
determination of (X). 

Solid Aggreeates  

When the material consignment consists of a solid aggregate, 
random errors caused by the accidental interchange of units (X) and 
(non-X) are automatically precluded because no movement of these units 
relative to one another is possible. While this does not exclude all 
random variation, most of the variations are caused by segregation 
when the elemental units that are the carriers of the variate are 
very small in comparison with the sample. 

In materials of this type the variability of (X) is often 
of the binomial kind,  as, for instance„when sampling ore in place for 
its metal content. The ore consists of a mixture of molecular units 
CO and other constituents (non-X). All variability originates from 
this binomial mixture, but substantially in the form of segregation. 
The sampling constant (B) for molecular units can be calculated with 
the binomial equation or measured directly. 

The practical value of the binomial theory lies in its 
application to materials of known composition and distribution, as 
will be demonstrated in the next section. 

MATERIALS OF KNOWN COMPOSITION AND DISTRIBUTION 

When the main characteristics and distribution of a material 
consignment are known, its sampling constants can often be determined. 
without a test. Sampling precision as expressed by the total variance 
of sampling can be determined from Equations 5, 6 and 7 for binomial 
variates when the average value of the variate and the degree of 
segregation (z) of the consignment are known. 

Binomial Variates  

The sampling constant (A) is calculated from the binomial 
equation, which takes different forms depending on the type of 
material and variate. The sampling constant (B) is calculated from 
(A), the degree of segregation (z), and the ratio (m) denoting 
the number of units of the material contained in the unit of 
measurement used for expressing variate (X). 

The "materials° are subdivided into three main classes 
(see Table 6). The first class deals with materials consistindof 
distinct units, each one of which is the bearer of a characteristic 
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I A = p(1-p)/m 1 
average pro-
portional 
amount of (X) 
fraction. 

p = 

average number 
of items per 
unit of meas-
urement. 

B m Amz2  I 
z = as in (1). 

= 

TABLE 6 
Calculation of Sampling Constants  fo r Materials of Known Composition and Distribution 

(Binomial  Variates Only)  

Class of 
Material 

1:aterial consisting of separate items characterized by (X) and 
(non-X) in gaseous, liquid or solid form, or in mixtures of 
same (suspensions, emulsions, pulps or pastes). Items (X) can 
be separated from items (non,X) by physical or chemical 
methods. 

Other materials. 
1. Variate (X) is dispersed 
without being accumulated 
in separate physical units. 
2. (X) occurs in units that 
cannot be identified or 
separated. 	 

Material consisting of separate 
aggregates of (X) and (non.X). 
The aggregates are characterized 
by "high-X" and "low-X" and are 
separable. Items are countable. 

The number of items in the sample is too 
leree to be counted.  

1 Material- Group No. 4 

Method of 
Evaluating 
average grade 

of consignment 

The average grade is 
determined by count-
ing the number of 
items (X) and (non,X) 
in the sample, either 
directly or after 
separating items (X) 
from (non-X). 

The average grade is determined by separat-
ing the sample by suitable physical or/and 
chemical methods into two  fractions, (X) 
and (non-X). Fractions are measured by a 
parameter, expressed in a suitable unit of 
measurement. 

Items  (X) differ 
significantly in 
specific gravity from 
items_inon,X). 

Items (X) have same 
specific gravity as 
items (non-X). 

The average grade is determined directly, by suitable 
chemical or/and_physical analytical methods.  

Units may have different size 
and/or specific gravity. 

Standard specimen of the 
material may be required 
for specific tests. 

Parameter used 
for measuring 
average grade 

A dimension of the 
items-length (width, 
height, depth, dia-
meter, thickness, 
etc.); surface area; 
volune. 

A length (diameter, depth, 
expansion, etc.), time; 
load (force) or other 
parameters used in the 
test. 

Variate (X) Ueight of fractions 
(X) and (non-X). 

Ueight of fractions "high-X" 
and "low-X". 

Unit of 
Veasurement 

amples  

Sampling 
Constants 

Number 

1. Sampling for 
public opinions. 

2. Proportion of 
defectives (X) in 
the manufacturing 
of mass-produced 
goods. 

I A = p(1-p) 
p = average fraction, 

al number of 
items (X) known 
by approximation. 

B = Az2  

z = degree of segre- 
gation (known). 

Unit of weight, 
volume, length, 
area; surface area 
per unit of weight; 
etc. 
1. Size analyses. 

2. The fineness of 
hydraulic  canent, 

 by surface area 
(turbidimeterl. 

3. Sampling of 
textiles for 
	wool content.  

A unit of weight, 

1. Light-weight pieces 
in aggregate. 

2. Float-sink analysis 
of coal. 

1 A  P(1-p)d/Dm 

p = as in (2). 
d = specific gravity 

of items (X) or 
(non-X). 

D = average specific 
gravity of 
material. 

m= as in (2). 

B = ka32  I 
z = as in (1). 

A unit of weight. 

1. Ash contentif) of a consign,. 
ment of broken coal. 

2. Sampling of sands for heavy 
minerals. 

I A  = 15(1-P)(a1-412)2 d1d2/D m 
P= as in (2). 
a1,2 = X-values of fractions (1,2), 
d1,2 = specific gravity of 

fractions (1,2). 
D = specific gravity of material. 

m = as in (2). 

I B = Am32  

z = as in (1). 

A unit of weight, force, 
time, length, surface area, 
suitable for measuring 
the parameter. 

1. Sampling of ores in 
place. 

2. The abrasion  of crushed 
gravel,by weight loss. 

3. Ductility of bitumen, 
by elongation. 

1. (X) is chemically 
separable. 

LB = p(1-p)dz2/D1 
p = average proportional 

amaunt of chemical 
constituent. 

d,D = as-in (3). 
z = as in (1) . 

2. (X) is not separable 
chemically. 

B = 32  

s = standard deviation ot 
(X) from available data 
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quality (X) or (non-X). Variability in the values of samples drawn 
from a consignment of such a material is caused by the fact that 
these elementary units can move relative to each other; they can be 
either randomly mixed or can cause a certain degree of segregation in 
the consignment. It is generally easy to separate the units (X) 
from units (non-X) in these substances by physical or chemical methods. 
Most gases, fluids, and mixtures of these with solids (amalgams, 
suspensions, pastes) belong to this class. Applications of the 
method can be found in the fields of microchemistry and assaying. 
Likewise, the sampling of mass-produced items and similar "discrete 
populations" also belongs in this first class. 

The second class of substances comprises materials in which 
variability is caused as above by the free movement of elemental 
units, but the variate (X) is not localized to certain units; it is 
spread over all the elemental uni.ts in varying degrees. Granular 
solids such as broken coal and ore, wheat, and many other materlals 
fall into this class. The units can be separated into two fractions 
characterized by "high-X" and "low-X"; the variability caused by the 
relative movement of the units of these two fractions is reflected 
in the variations of the sample drawn from such material. 

A third class of materials is distinguished in which 
variability is caused by an uneven dispersion of the variate "X" 
throughout the consignment. Essentially, these materials differ 
from the above ones only in that the elemental units "X" and "non-X", 
which may be real or imaginary, cannot move relative to one another; 
this reduces random variation. Many physical properties such as the 
tensile strength of wax or the abradability of gravel fall under 
this category. Distribution of such a variate over the consignment 
can be attributed to segregation of elementary units,characterized 
by either "X" or "non-X", that cannot be separated and often not even 
identified. 

All three classes are seen as binomial populations; sample s . 
 collected from material consignments belonging to the third class 

have a variance that is substantially determined by segregation. 

Five categories of materials are recognized under this main 
classification; these will now be described in some more detail. 

Group No. I (see Table 6) deals with substances that occur 
in the form of separate units, each characterized by either (X) or 
(non-X). Another feature of this group of materials is that the 
samples are analyzed by counting the individual units (X) and (non-X). 

Groups Nos.2 and 3 include materials consisting of separate 
units too numerous to be counted individually and are consequently 
measured by some dimension of the items (length, surface area, volume 
or weight) expressed in a suitable unit of measurement (inch, square 
foot, gallon, pound, etc.). 
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Group No. 2 includes materials for which the items 
characterized by variate (X) have the same specific gravity as items 
(non-X); for instance, granular materials sampled for size analysis. 

Group No. 3 deals with materials consisting of items (X) that 
differ significantly in specific gravity from items (non4I). Thesé 
are the materiale that are sampled for specific gravity analyeis (e.g., 
by float-sink analysis). 

GroupsNos. 4 and 5 deal with materials in which the variate 
(X) is dispersed without being necessarily accumulated in separate 
physical units of the material. 

Group No. 4 includes all materials consisting of separate 
aggregates that are characterized by either a high percentage of 
variate (X) or a low percentage of variate (X), the two components 
being separable. 

Group No. 5 includes other materials. Variate (X) is 
dispersed without being accumulated in separate physical units or it 
occurs in units that cannot be identified or separated. 

The following examples 7 to 12 may serve to illustrate the 
use of Table 6: 

Croup ). (Table 61 

Example 7,  

A mass-produced item is know/ft.° contain about 4% defectives. 
Therefore, p = 0.04 and sampling constant (A) = 0.0384 or approximately 
0.04. It follows from Equation 4 that the effect of any segregation 
can be eliminated by collecting sample items one by one (wt = 1). The 
number (N) of items required for determining the percentage of 
defectives to the nearest 1% nineteen times out of twenty now follows 
from 

N = A/S2 where s2 = 26 x  10_6 . 

Consequently, N = 1,500. 

Example 8, 

The results of a general election are used to determine the 
number of investigators to be employed in a poll to survey the changes 
in political  popularity,  and the number of persons to be interviewed 
by each investigator. The party whose election returns were closest 
to 50% was party (X), its vote amounting to 61% of the total returns; 
this figure is subject to the greatest variations and is used as a 
yardstick for evaluating sampling precision of the poll. Consequently 
p = 0.61 and the sampling constant (A) = 0.24. The degree of 
segregation for (() is known to be z = 0.13; it follows that the 
sampling constant (B) is 0.0041. From the many possible combinations 
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of (w) and (N), a value w = 20 is chosen as a reasonable figure for 
the number of persons that can be interviewed by one investigator in 
one day. 

It follows from Equation 7 that, by employing 155 
investigators, the results of the poli  will indicate political 
popularities with a precision of 2%, nineteen out of twenty times. 
The total number of persons interviewed would thus be: wN = 3,100. 

gimet_11Yeliee 

Example 9 

It is required,  for the operational control in an ore 
beneficiation plant, that a daily sample of minus 14 mesh sand be collected 
for sieve analysis. The precision of the sieve curve is important, 
especially with regard to the silt fraction,which should be 
determined with a precision of 1% nineteen out of twenty times. The 
sand is segregated (z = 0.20); the average amount of silt (minus 200 
mesh material) is 5. 

The accidental interchange of silt particles with sand 
particles during sampling is determined by the size of the particle. 
Errors thus caused depend primarily_on the size and relative 
abundance of the coarse particles; that is, on the sand fraction. 
The weighted average particle weight of the sand fraction (14 x 200 
mesh) of this ore is known to be 0.010 gram. Therefore, m = 100, 
when expressing the sample weight in grams. It follows that: 

A = p(1-p)/M = 0.0003 

B = Amz2 = 0.0012. 

Samples in this plant are collected automatically by increments 
weighing 30 grams each. The minimum number of increments required 
now follows from 7quation 7: 

N = 47. 

Cr0112.2-ile19-11 

Example 10 

A non-uniform lightweight aggregate is tested by a float-
sink analysis for determining the percentage of lightweight pieces. 
The material is known to contain approximately le by weight of 
lightweight pieces floating on bromotrichloromethane (sp. gr. 2.00); 
the average specific gravity is d = 1.6. The average specific 
gravity of the entire aggregate is D = 2.3. The degree of segregation 
is known to be z = 0.3. The size of the lightweight aggregate is 
minus 	inch; the rated average particle weight is 15 grams; hence 
m = 145 = 0.067. The sampling constants A = 0.934 and B = 0.0056 are 
found from the equations given in Table 6 under Group No. 3. 
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Increments are collected by an automatic sample cutter, each cut 
weighing approximately 400 grams. The minimum number of increments 
required to attain a sample precision of I% follows from Eqpation 7: 

= 303.. 

The weighted average particle weight can be determined from a sieve 
analysis,using the following equation (11, 17, 18): 

V = ql3b;q 

where 	V = weighted average particle volume, in cu cm., 

q = weight of individual size fraction, and 

1 = central value of individual size fraction, in cm. 

Group  4   (Table

Example 11 

A minus-1--inch  mine-run slack coal with an average ash 
content of about 30% is sampled for ash by an automatic sampler 
collecting increments of 5 lb. This coal is known to contain 
approximately 64% (p = 0.64) floats at 1.60 sp. gr. with 5% ash 
(a2 = 0.05), and  36% sinks with approximately 80% ash (al  = 0.80). The 
specific gravity of these two fractions are known to be d2 = 1.30; 
d  - 2.35; the overall specific gravity D = 1.60. 1 - 

The weighted average particle weight (Example 10) of this 
coal is 5.26 grams. As the weight of sample is expressed in pounds 
(1 lb = 454 grams), the ratio m = 454/5.26 = 86. The degree of 
segregation of the mine-run slack is known to be z = 0.13. From 
this it follows that the sampling constants(see Table 6, Group 4) are: 

A = 0.00288 

B = 0.004186 • 

The minimum number of increments required to determine the ash content 
with a precision of 1% ash, nineteen out of twenty times, is N = 183. 
The gross sample weight is therefore 915 pounds. 

Group 5 (Table_61 

Materials in this group occur as a solid or fluid mass in 
which the variate (X) is dispersed without being accumulated in 
separate physical units; or, the variate occurs in units that cannot 
be identified or separated and is measured in some indirect manner. 

Under these circumstances there can be no accidental inter-
change of units (X) and (non-X) during sample collection, except at 
the molecular level, as in the sampling of fluids. Therefore while 
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sampling constant (A) may have a distinct value for molecular units or 
similar, very small aggregates, its value for any practical unit of 
measurement becomes negligibly small as the ratio (m) approaches 
infinity. While the binomial distribution is inoperative with regard 
to chance variations occurring during sample collection, it is still 
the prime cause of all segregation. 

In materials under this group where variate (X) is a 
constituent that can be extracted by chemical means, (A) can generally 
be calculated for molecular units and sampling constant (B) can then 
be estimated as before, from the average composition of the material 
and its degree of segregation (z). 

In other materials under this group, where (X) does not 
refer directly to units thnt can be determined or separated by 
chemical extraction (such as the compressive strength of briquets, 
the ductility of bitumen, etc.), sampling constant (B) can only be 
found from available variance data. 

tir.223222112 

The sampling of ore in place will be used as an example to 
illustrate the use of the equations mentioned in Table 6 under Group 
5 . 

Channel samples are collected from a zinc vein containing 
10% metallic zinc in the form of smithsonite (Zn003); the degree of 
segregation of the metal is known to be z = 0.20. As the zinc occurs 
in the form of the carbonate, it follows that the proportional amount 
of this constituent is p = 0.20; the specific gravity of smithsonite 
is d = 4.4; the average specific gravity of the ore is D = 2.8. It 
follows,  for  sampling constant(B), that 

B = p(1 - p) dz2/b = 0.010. 

The total sample variance: 

s2 =o.010,'. 

This variance is independent of sample weight. The number of 
increments required to attain a sampling precision of 1% zinc is 
found to be 

N = 384, 

Non-Binomial Variates 

In actual sampling practice many instances are found where 
the variate has a non-binomial parent distribution. For instance, in 
the sampling for the number of defectives the varinte has a parent 
distribution of the Poisson type. In many other cases the parent 
distribution is a normal curve, but frequently curves of irregular 
shape are encountered as well. 
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While the parent frequency curves of variates may differ, 
they have one common property: the difference between the true value 
of any sample and the true mean of the material lot from which such a 
sample originates can be expressed as the algebraic sum of two devia-
tions, one caused by random variation, the other by segregation. The 
efficiency of this distinction lies in the fact that it applies to 
any variate and any material. 

The law of propagation of errors applies (see derivation in 
the Appendix), provided these two individual deviations are independent 
of each other for apy sample or increment. It is impossible to prove, 
by mathematical analysis, the correctness of this assumption for all 
materials and all variates. From tests on the sampling board and 
results of field trials (5) it can, however, be understood intuitively 
that here the law of propagation of errors has a general application, 
which means that Equations 8 and 9 apply, independent of the type of 
frequency distribution of the variate (X). It may be noted here that 
in cases where the mean value and the standard deviation of a variate 
are related it is often possible to transform the variate by substitu-
tion with a variate whose mean (M) and standard deviation (s) are 
approximately independent of each other. 

Generally, if (s) is a function f(M) of the mean (M), the 
appropriate transformation to stabilize the variance of (X) is: 

= 	f 	cu 

Examples: 

,- 
1 Relationship 	 Transformation 

(s) proportional to le 	Take reciprocals of 
observations 

(s) proportional to M 	Take logarithms of 
observations 

(s) proportional to 	Take square roots of 
-V M 	 observations 

Such transformation variates can be used in extreme cases 
where the above conclusions would not apply. 
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SAMPLING TO . A. -PRE-ASSIGNED ACCURACY 

The main motive for this report has been to formulate a 
common basis for evaluating the precision of the average grade of a 
material in simple terms„regardless of the type of material or 
variate and of the state of segregation of the consignment. 

The guiding principle has been to determine the causes of 
variability in any material and to find general equations rather than 
to adapt a statistical technique to a given class of materials and/Or 
a certain type of variate. 

The conclusion from this study is that in any sampling 
experiment the difference between the true sample value and the true 
mean of the lot can be expressed as the sum of the random deviation 
and a remaining deviation which is caused by the fact that the 
material is not randomly mixed. Consequently, two variance components 
can be distinguished that are common to incremental sampling 
experiments with all types of materials and variates, and these can be 
expressed in an equation that relates sampling variance to the number 
of increments and the size of the gross sample. Tests with a model 
population confirm that the variance estimates found from this 
equation hold for the systematic sampling of segregated populations. 

In the method presented here, use has been made of early 
work done by Mika (12), followed by Kassel and Guy (10), Landry (11), 
Deming (8) and, more recently, de Wijs (21). The sampling variance 
can be forecast for materials of known composition and distribution 
when the variate has a binomial parent distribution. In cases other 
than this the variance components are found from a duplicate test 
with small and large samples. 

Great value has been attached to clarity; because the 
statistics of sampling  stands in  need of simplification lest it remain • 
a specialistIs domain. The work of Moroney (14) has been very 
stimulating in presenting statistics in ordinary language. It in 
recognized that existing methods such as representative sampling have 
their place in certain fields as far as they are useful in calculating 
"intra -class" and "inter-class" variances. In other respects the 
practical limitations of these methods are obstructing a broader 
application of sampling statistics that ought to cover the forecasting 
of the precision of sampling, including systematic sampling; the 
latter is an accepted practice that has thus far remained a 
controversial subject amongst statisticians. 

The proper collection of samples is a matter of training 
and strict adherence to good specifications, rather than of theory. 
The sampler should know how to avoid bias (systematic errors) during 
sample collection and how to avoid having his increments get "in 
step" with the periodicity of the variate. Equations 6, 7, 8 and 9 
can be used effectively only  if these conditions are mot. 
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The sampling board is recommended to experimenters as an 
effective and inexpensive device for testing the quantitative aspects 
of sampling theory. It has already proved to be useful in testing 
the quantitative importance of some theoretical objections voiced by 
statisticians. The main objective is, and should be, to estimate thé 
precision of an average value by first—order approximation, rather than 
to argue the precision of that precision. 

The literature cited indicates that, by carefully sorting out 
what is significant from what is trivial, the obstacles to a Unified 
method of evaluating sampling precision can be removed. The present 
report is intended as a contribution to that end. 
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APPENDIX 

LAW OF PROPAGATION OF ERRORS 

,Application  to Randomend  Seereeation Variation -a 	. 

The true value (x) of a sample (i) collected froM a 
segregated population with true average value (y) can be written as 
follows: 

xi  =  y til  t  t12 

where 	til  = random deviation, and 

- deviation caused by segregation. ti2  -  

The total deviation for any sample (i) is, therefore: 

x -y=t = +t + t 12 

From this.it follows, for a large number of samples, that: 

2 	2 	2 2t t t - t 	+ t 	+ 11 12 
1 	11 	12 - 

t22  =  t212 
 4. 	+ 21t22 

• • 	• • • 

2 	2 	2 2t t t = t 	+ t 	+ nl n2 n 	nl 	n2 - 

2 	
It 

2 	 , 
Average: - 	= Itii + 	

i22+ 	  

From this it follows, by first-order approximation, that: 

s2 = s
1
2 + s

2
2 

where  $12  = random variance, and 

s2
2 = segregation variance, 



39 

The mean value of the double products is of a lower order of 
magnitude owing to opposite signs, provided there is no correlation 
between t11 and t12. 

The derivation af)plies for any type of parent distribution 
and supports the general validity of Equation 5. 


