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p. 27 Table 6, Column 4, A

p. 31, par. 4, lines 6, 7 A

ERRATA

p. 16 line 8, coefficient 0,0186 should read: 0.1086

line 3 from bottom Z = 0.31 " " Z=0,33

The same correction to be made on Fig, 5.

2
p(l-p) (2, - 2,) d;d,/Dm

should read A

2 2
1- - d d /Dm
p(l-p) (a1 az) 1 2/

0.00288 should read A = 0,00180

and B = 0.004186 " " B =0.002616
p. 31, par. 5, lines 2, 3 N = 183 " " N =115
and 915 pounds " " 575 pounds.

equation s< = A/W + B/N operates independently of the shape of the
parent distribution of the varliate. It applies generally for f:irs’o—-
order estimates of the upper limit of the sampling variance (s2). The
degree of segregation (z) is described by z2 = B/A,

A "sampling board" for small-scale experiments is introduced
to demonstrate the above relationships for binominal distributions of
the variate. Tests on this sampling board confim that the above
equations apply to systematic as well as random sampling conditions
and can be used for assessing and predicting ssmpling precision for a
large variety of materials. '

* Head, Western Regional Laboratory (Edmonton), Fuels and Mining
Practice Division, Mines Branch, Department of Mines and Technical
Surveys, Ottawa, Canada.
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TOWARDS A COMMON BASIS FOR THE SAMPLING OF MATERIALS
by

J» Visman*

SYNOPSIS

There is o need in meny fields of investigation for a general
method of estimating in advance the precision of samples drawn
systematically from material consignments that are not random mixtures.

v Materials and variates may vary over wide ranges and the
circumgtances under which the samples are collected can vary widely,
but the causes of variation in sample value are limited. Two factors
are inherent in the nature of the consignment, namely, random variation
and "segregation". These can be determined as variance components from
a specially designed test or estimated from previous information, if
the material is known by composition and distribution.

The other factors influencing the precision of the sample are
the number (N) of increments collected from all parts of the lot and
the ‘slze (W) of the resultent gross sample, operating variables that
can within certain limits be regulated at will by the sampler. The
equation s2 = A/W + B/N operates independently of the shape of the
parent distribution of the variaste. It applies generally for first—
order estimates of the upper limit of the sampling variance (82). The
degree of segregation (z) is described by z< = B/A,

A "sampling board" for small-scale experiments is introduced
to demonstrate the above relationships for binominal distributions of
the variate. Tests on this sampling board confirm that the above
equations apply to gystematic as well as random sampling conditions -

and can be used for assessing and predicting sampling precision. for a-
large variety of materisls.

* Head, Western Regilonal Laboratory (Edmonton), Fuels and Mining
Practice Division, Mines Brench, Department of Mines and Technical
Surveys, Ottawa, Canada.,
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VERS UNE BASE COMMUNE POUR L'ECHANTILLONNAGE DES MATERIAUX

par

J. Visman#

Dans de nombreux domaines de recherches, on & besoin d'une
méthode générale pour évaluer & 1l'avance la précision d'échantillons
tirés systématiquement de lots de matériaux qui ne sont pas des mélanges
au hasard.

Les matérieux et les veriates peuvent varier considérablement
et les circonstances dans lesquelles les échantillons sont pris peuvent
varier beaucoup, mais les causes de variation de la valeur de
1'échantillon sont limitées. Deux facteurs ne dépendent que de la
nature du lot: 1la variation aléatoire et la "ségrégation®., On peut
les &valuer comme variances partielles, d'aprds une expérience speclale
ou bien d'aprés des connaissances antérieures si l'cn connalt la
composition et la distribution du matériau.

Les autres facteurs de la précision de 1'échantillon sont:
le nombre (N) des préldvements obtenus de toutes les parties du lot,
et la grandeur (W) de 1'¢chantillon total; ces variebles opératoires
peuvent dans une certaine mesure 2tre modifides & volonté par
1'échantillonneur. L'équation s = A/W + B/N est valable quelle que
solt la forme de la distribution de la variate. Elle s'epplique en
géneérel pour des estimations de premier ordre de la limite supérieure
de le variance d'eéchantillonnage (s). Le dogré de ségrégation est
exprime par z4 = B/A,

_ L'auteur propose un "tablcau d'cchantillonnage" expérimeontal
pour demontrer les rapports ci-dessus, dans le cas de distributions
biromiales de la variate, Des expériences avec ce tableau confirment
que ces equations s'appliquent aux conditions d'échantillonnage
systematique aussi bien qu'a 1'éhhanti110nnage au hasard, ct qu'on
peut les utiliser pour évaluer et prédire la précision d'échantillone
nage, pour un grand nombre de matériaux,

#* Chargd qe rgcherches principal, laboratoire de la Répion de 1'Cuest
d? la Dlyi31on des combustibles et du génie minier, Direction des
mines, ministdre des Mines et des Relevés techniques, Ottawa, Canada.
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INTRODUCTION

There 1s today no unified theory for the systematic sampling
of materials that are non-randomly distributed in space or in time
(8). The existing theory deals essentlally with random sampling.

The mothods derived from this theory vary with the type of material
and the circumstances under which the sample is collected.’
Consequently, the literature on sampling is large and diversified,
the methods having been adapted to the specific needs of each
particular field.

There are, however, certain underlying principles common to ‘
all sampling experiments. To formulate these principles in terms of !
quantities easy to measure is the objective of this report. More
specifically, the overall precision of sampling is expressed as a
function of operating variables and constants for the purpose of
estimating in advance the precision of samples collected from
materials that are known by composition and distribution, or whose
characteristics have boen determined from a test.

Main Definitions

Every sampling operation consists essentially of either
extracting one single sample from a given quantity of material or
extracting, from different parts of the lot,a series of small portions
or "incromeonts" that are combined into one "gross sample". The
latter mothod 1s known as "sampling by incremonts" and will be
considered here. The former method can be regarded as a special case
of incremental sampling in which the number of increments equals one.

The existing theory for sampling materials that are non-
randonly distributed is known as "stratified sampling" or
"representative (random) sampling (of stratified populations)®. In
this theory the precision of sampling is expressed as the sum of the
variance "within-strata" and tho variance "betwsen-strata", the
strata indicating parts of the material consignment whose mean values
differ significantly from the overall mean value of the consignment.
Sonetimes, as in incremental sampling, these "strata" are Iimaginary,
as they become identical to the portions represented by each
individual incroment. The "within" and "between" variance estimates :
are then a function of the size and the number of increments., It 1s ;
common usage to identify the "between-strata™ varlance with the : ;
"trend variance” and the "within-strata" variance with the "random
variance®, It is clear, however, that with different size and number
of increments the estimates of the between-strata variance and the
within-strata variance will change. Therefore, these variance
estimates cannot be regarded as constants and cannot be used, without
certain corrections, for calculating the number and size of
incremonts that would be required to evaluate in advance, a projected
overall procision of sampling. :




The meaning of "random sampling error" as used in this
report goes back to a classical experiment where a number of black and
white balls are mixed at random in & vase end a sample is withdrawn
that consists of one or more balls. The random error is caused when
the hand collecting the sample selects by chance a white ball instead
of a black ball, or vice versa. The resulting variance is the
"random variance”, of which the "within-strata verlance” used in
representative sampling gives a biased estimate (depending on the
gize of the samples used) when dealing with materials that are non-
randonly distributed, This random variance is determined by the
average composition of the material (in this case the relative amount
of black or white balls) and by the size of the sample only. The
same definition of the random variance is adopted for variates with
parent distributions that are not of the binomial type.

In this report, the term "random variance" is maintained in
its original meaning; "trend variance" has been deleted because of
its confusing nature. Instead, a new term "segregation variance" 1is
introduced, denoting the variance caused solely by deviations
resulting from the non-random distribution of a consignment. Its
physical meaning is simple to explain. The deviation of any sample
value from the true mean of the lot or consignment is the algebralec
sum of its random error and a remaining error resulting from the fact
that the variate is non-randomly distributed over the lot. The
latter is called the segregation error and its variance the
gegregation variance. It will be shown that the segregation variance
component of single samples is independent of sample size; it depends
on the degree of segregation of the consignment only. It will
further be shown that the maximum degree of segregation, as expressed
by the variance of segregation, is directly related to the random
variance., This relationship is utilized to estimate sampling

precision.

Previous Work and Commantary

The method suggested here follows earlier work on the
sampling of coal (2,3,4,17,18,19) and subsequent commentary, notably
by R.C. Tomlinson, whose criticism 1s, briefly, that sampling theory
applies only when the condition of randomness is fulfilled and that,
even 80, sample variances may be biased when samples are collected
for determining a ratio (14,15).

A more practical course was followed by ASTM D5 subcommittee
XXIII over the period 1954-58 when a comprehensive test program was
carried out for testing an experimental method of forecasting
sampling precision for coal (5,19,20). The results of this program
showed that the theoretical objections against systematic sampling of
segregated coals have been overrated.

] As it is the objective of sampling theory to forecast the
variance of a variate X (not X itself), less mathematical rigour 1is
demanded than in a related fisld of statistics that deals with the
prediction of certain events (e.g., the expected rainfall per annum,
the fatality rate of air travel), in other words, with (X) itself.




It would appear from recent work, notably that of I.5.0./
TC27 WG7-Sampling, that there is now a tendency towards a more
quantitative evaluation of certain assumptions of sampling theory.
For instance, one difficulty affecting the practical application of
all sampling theory is how to deal with over-estimates of the sample
variance. WUnhen a gsample of glven size is dravn from an infinite
population, its thooretical variance is alwnys largsr than when a
sample of the same size is drawn from a finlte population with
otherwise identical characteristics. In this report the above
problem is dealt with as follows,

The fact that in practice all populations are finite does
not necessarily invalidate the theoretical estimate of the variance,
provided it is stipulated that it is an estimate of the maximum
value that this variance will attain for an infinite populatione. ,
The same problem is encountered when samples are druwn systematically
or at random from a stratified population. Samples that straddle
the boundaries betwien two strata contribute less to the sampling
variance estimate than those that are drawn wholly from individual
strata. Consequontly, the latter variance estimate is always
larger than the former.

It is suggested, firstly, that tho above theoretical
variance estimates are accopted with the qualification that they are
estimates of the upper limit that the variance will attain under
theoretical conditions (infinite population and stratified distribution
of the variate).

Secondly, it is suggested that the meaning of the term
"biansed sample" is restricted to those sampling errors and deviations
that are caused by the inclusion of components that are foreign to
the population (contamination) and by the systomatic exclusion of
true components of the population (ceg., the exclusion of large
particles by a faulty sampling device?. A binsed sample value could
only be caused by such errors or deviations. All other samples are
then to be regarded as representative of the population, regardless
of the magnitude of their deviation from the true mean of the
population.

It is held that, if the above qualifications and
definitions are gccepted, sampling theory can bo of practical
benefit in almost any field of human endeavour, especinlly in
industry, without violating the basic mathematical concepts of
statistical theory. The value of such a theory of sampling in
regard to expertise, guarantee, and litigation can hardly be over-
ostimated.

Scoze of Fopovy

Tho objoctive of this repord iz to provids first-order
estimates of the uprer limit of the sampling variance in a general
case vhere oomples are collected from rmaterials whose component parts
are distributed throu-ticub the population in a non-random pattern.




It is also the objective of this report to show that the overall .
accuracy of a given sampling procedure can be estimated in advance by
this theory, for binomial as well as for non-binomial distributions

of the wvariate.

It is claimed that costly and time-consuming experiments
can be avoided. A versatile model population for small-scale
exporiments is introduced. It is of the binomial type. Several
important questions can be answered with this model that apply to
non-binomial population types as well, e.ge: Is there a difference
between systematic sampling and random sampling? What is the effect
of warious degrees of segregation and patterns of distribution on the
sample variance? What is the relationship between segregation and
random variance? The results of this inductive study confirm the
practical feasibility of applying statistical theory to the systematic
sampling of segregated materials under conditions that can as a rule
be fulfilled by a well-instructed, experienced sampler.

A duplicate sampling method with small and large samples
(20) 1s also described. It is used for estimating the upper limit of
the random variance component and segregation varliance component
("sampling constants"), by first-order approximation,for materials
whose composition and distribution are not known in advence. It will
be shown that this method applies in principle for all materials and
variates, including non-binomlal parent distributions. In this
duplicate sampling test, samples are drawn systematically from -
segregated consignments, one series of small samples and one serles
of relatively large samples. From it the two sampling constants (A,
B) are found that can be used later on when either the same lot of
material, or material consignments that are known to be similar to it,
are to be sampled with a certain pre-assigned accuracy. The sampling’
constants are then used in an equation that provides estimates of the
minimum number and size of increments required to attain the projected
accuracy, Essentiel mathematical derivations are glven in an Appendix,

ANALYSIS OF VARIABILITY

In this section the theory of sampling segregated binomial
populations, originally developed for coal in 1947 17,18), 1s shown
to apply to other materials and to variates with parent distributions
of any type. A model population is introduced to demonstrate the
essential relationship and its general applicability., Variance values
found from tests on this model are maximum estimates only, because
the model represents the conditions that cause the largest possible
variations. Sampling varisnces derived from the tests are accurate
by first-order approximation only. Conditions other than those
governing test results from the model will lead to variance estirates
that are smaller, as for instence when the samples are very large or
when the population is relatively small, Other conditions are -
discussed in the text. The above limitations do not seriously




interfere with the requirements of industry regarding the testing and
safeguarding of quality. It is believed that by limiting the sampling
theory in this manner the broad objective of establishing a common
basis for the sampling of materials is served as well as is
practically possible.

Model) Population

The model population of "black" and "non-black™ items, as
exemplified by a "sampling board" (Figure 1), is used for analyzing
variability of samples drawn from segregated consignments.

This sampling board consists of a piece of 10" x 10" wire
screen with 10 openings per linear inch and a supply of 5,000 lead
pellets. The lead pellets can be used entirely, or in part, for
making model populations that are segregated in different ways. The
pellets can be distributed in any conceivable manner ranging from
complete segregation to near-perfect random mixtures. The samples
collected from this population are not removed but merely counted.
A sample is taken by placing a square frame with its centre over the
selected station and counting the number of pellets enclosed by it,
The size of the samples can thus be varied and the number can be
chosen at will., The samples can be collected either systematically
at fixed stations marked off on the screen, or at random. In the
latter case, a random sampling table is used for determining the
co~ordinates. '

The method of analysis consists essentially in collecting
samples of different size from a given-population and determining
the relationship between sample variance and sample size.

I} will be shown (Eq 3, p. 12) that the total variance of
sampling (s<) consists of a random variance component (ep?/u') that
depends on thg size (w) of the sample, and a segregation variance
component (Sg~) that is independent of sample size.

The results of experiments done with the sampling board are
presented in the form of graphs showing the relationship between the
variance of single samples and the sample size, the latter being
determined by the number of screen openings in a square frame. In the
tests reported here, three different sample sizes are used, namelys

"1= 1’
wy = 9 (located in the square of 3 x 3 openings),
and wj = 81 (9 x 9 openings),

The numbers of pellets (x) found within the square frames are marked
down and the series thus obtained is used for calculating variance
estimates. For the reader who is unfamiliar with statistics, it is
noted that the variance is the square of the standard deviation (s),
the "root mean square" of deviations. A simple formula for calculating
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this measure of dispersion for a serles of observations is presented
in Table 5 (p. 24) of this report, whero p = _§_ .

Relationsbin Belimen the Dosrae of Segregation
and the Parent Frequency Distribytion

Example 1

An example of complete segregation will be studied first by
placing 2,500 beads in one corner of the sampling board (the lower-
left corner as shown by the inset on Figure 2), This corresponds to
a binomial population designated by p = 0.25. Samples collected from
this mixturs will be either 1007 black or 1003 white, except those
that straddle the boundary bstwcen the black area and the white area,
This lattor restriction is of little consequence so long as the
samples are small compared with the "patch™ of 2,500 beads, as is shown
on Table 1 (p. 9) where three series of systematic samples and three
series of random samples are represented that have sizes 1, 9 and 81
respectively. Figure 2 i1llustrates that the six variance estimates
found from these series do not deviate significantly from a straight
horizontal line corresponding with tho binomial variance 82 = p(1-p) =
0.1875. The fiducial 1limits of the variance estimates correspond
to variance ratios Fgs = 1.52 (24 and eo deg. fr.) for variance

estimates larger than 0.1875 and Fgs = 173 ( o= and 24 deg. fr.) for

variance estimates smaller than 0,1875. The result of this sampling
experiment shows there is no significant difference between the
samples drawn at random and the samples collected systematicallye.
The same conclusion follows when the Chi-square test is used.

The experiments also show that, while the size-variance
curve of a completely random mixture would be defined by a straight
line sloping down at an angle of 45° on a double-log scale, the
sample variance never excecds the theorstical value of 0.1875 in the
case of complete segregation and remains substantially constant over
the entire interval.

Patterns showing partial segregation may take many forms
that are impossible to deal with in every detall. The gradual
transition of complete segregation into complete randomness can,
however, be 1illustrated in an orderly fashion and the conclusions
that can be drawn from it apply generally to any pattern of
distribution.

To study the characteristics of partial segregation it will
be assumed that mixing tnkes place in five equal stsps, reducing the
degree of segrogation first from 1.9 to 0.8,then to 0.5, to 0.4, to
0.2, and finally to 0. Vhen segregation is zero, the number of
pellets within the black square should be 255 of the original number.
The total reduction from 1007 pellets to 25%, divided into five equal
steps, is a reduction of 155 or 375 pcllets for each step.
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TABLE 1

Complete Segregation (Fipure 2): p = 0.25

Systematic Samples i Random Samples
Size : 1 f 9 g 81
t coordinates coordinates | ! coordinates
; 5 ' ; 2 | 2
S;i{)le Xy xi x2 722 r X3 x§ %, %, :% X5 1% %5 g X X X
1 1 {17 07 |1 |1 68 55 & L, o4, |81 | 6,561
2 1 ; {76 1, 34 7 4 ) 33 |81 | 6,561
3 i ’ 37 21 |1 |1 30 3049 (8L i 78 L6 |
4 f 13 19 {1 |1 13 77 :; t 84 09
5 : 04 30 {1 1 70 40 1 26 52 27 729
6 | ] 70 97 %, 5 & o 13
7 q 33 77 57 29 4 91 58
8 ] 2/, L6 |1 |1 25 97 i 38 18 |81 | 6,561
9 3 { 03 4, {1 11 ¢ 65 6 1 | 67 2/,
10 A i 54 80 76 60 | | T 76 o
11 1 41 6 136 545 | 2,02580, 9, ) 27 48 w9 f8L i 96 96
12 1 {1 |1 6136145 | 2025¢43 | 77 | 42 | 55 157 | 46
13 1 1 L 116 4 25 6251 18 2, (1 41 W 37 90 & f 69 92
1 : {66 | 21 i 86 | 65 t 1 36 |2 [ |65
15 1 ¥ 79 90 i 53 72 t i 10 45 81 6,561
16 1 |1 9 |81 781 | 6561412 99 I 00 66 77 10
17 1 11 9 (81481 | 6,561p 72 27 39 3749 (81 8, | 45
18 1 {1 6 |36 ¢ 45 z,ost 07 72 63 32 57 65
19 ' 34 95 29 2049 |81 03 o, | 8 | 6,561
20 ! t 45 1 11 |1 61 30 il 29 26 | 81 | 6,561
21 1|1 9 |81 81 6,561§ 52 38 29 68 53 3 | 18 324,
22 . 1)1 9 {81 fs1 | 6,561k 85 68 b9, |49 75 23
23 1|1 6 |36 445 | 2,025% 66 88 98 69 91 20
22, Feo | 1 9%, 10 93 57
25 1 £ 44 80 2/ g2 | 30 27 | 81 | 6,561
Sum 9| 9 |l &4 484 1529 34,9695 g8 |8 36 {324 693 | 53,541
s? 0.2400 || 0.1647 i 0.1510 | 0.2267 | 0.1400 0.2180
4 |
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The following mentel experiment can now be conducted:

Three hundred and seventy-five (375) pellets are selected at random
from the black square of 2,500 (Figure 2), and are redistributed
randomly over the remaining threc-quarters of the sampling board (the
degree of segregation is reduced from 1 to 0.3).

A sample drawn from the black quarter of the sampling board
will have an expascted value '

E(X) 1y a0 = (2500 - 375)/2500 = 0.85

Similarly, for samples drawn from the other three-quarters, we find
expected sample values

B(X) y 50, = 375/7500 = 0,05
for each individual quarter.

The expected variance as calculated from these figures 1is,
for a degree of segregation 0.3,

E(variance) = E [ [ x -E(X)] 2} = 0.1200.

The total variance for a degree of segregation of 0.8 is
0.64 times the total variance for the entirely segregated mixture.

By continuing the experiment for lower degreos of segregation
the results presented in Table 2 are found, when collecting four

samples (one from each quarter of the sampling board) for each
individual test.

TABLE 2
Effect of Segregation on Total Variancg

Degree of - Deviation from Maan Grade Total Expected
Segreﬁation p = 0.25 variance
z for Each Quarter E (s2) | Fractional
1.0 0.75; 04253 0.25; 0425 0.1875 1.00
0.8 0.60; 0.20; 0,203 0.20 0.1200 0.6/
0.6 0.45; 0.15; 0.15; 0.15 0.0675 0.36
0.4 0.30; 0.10; 0,103 0,10 0.0300 0.16
0.2 0.15; 0405; 0.05; 0.05 0.0075 0.04
0.0 0.00; 0.003 0.00; 0.00 0,000 |  0.00




This table shows that the degree of segregation (z) and
the expected variance are related:

E(variance) = 0,1875 22

A similar relationship holds for all ratios of "black™ and "white™
mixtures other than 2,500 out of 10,000.

The practical meaning of the expected variance 1s that it
is the limit of the total varlance as sample size increases,
Therefore, the expected variance is identical with the segregation
variance: E(variance) = 32

Furthernmore, the varlance for complete segregation appears
to be identical with the parent variance, that 1is, the variance of )
8ingle items which in this case follows from the blnomial equation

2: -
8p p(1 - p).
From the foregoing equations it follows that:

SB=Zspooco.-ooooooo-c--ooo(qu)

Summarizing the conclusions from the above experiment, we
have:

1. The segregation variance has a maximum value equal to that
of the parent variance of the population.

2. The segregation variance is within the range of
actual sampling practice, substantially independent
of sample size. It never exceeds the parent
variance.

3. The ratio between the segregation variance and the
parent variance depends solely on the degree of
segregation (z).

L. The total variance of samples consis%ing of one unit
only, equals the parent variance (s ) regardless of
the degree of segregation.

We have conjectured,on the basis of experimental evidence,
that the expected variance of sampling satisfies the following
relationship:

B (s2) = a2/t + E (55%) (1=2/") o s o v o o(Eq 2)
where spzs- parent variance; varianco of single units;

E (332) expected value of the segrogation variance;

w'! = sanmple size, expressed in number of units.




For samples consisting of two units the total variance
becomes, by first approximation,

2 _ 2 2
g~ = 1/2 sy * 1/2 8%,

For samples consisting of ten or mors units, Equation 2 can be
written by first approximation as: :

82=3p2/W'+8820ooooooooooooooo.(EqB)

It is noted that the parcent variance (sz) is a constant

which, according to the binomial equation, depends on the composition
of the material only. It is designated as "sampling constant" A'.

The segregation variance'(sg) for one and the same material

depends on the degree of segregation (z) only, in accordance with
Equation 1. It 1s known from experience that, while (z) may range
from zero to 1, the stability of the segregation variance under
othervise normal conditions of handling, storage and transportation
1s comparable to that of the parent variance. To illustrate this
with figures, it 1s knoun that noticeable blending can be observed
when a mixing device reduces the segregation variance of a product
by a factor of 3 or more. Conversely, an increase of the segregation
variance by a factor of 3 to 4 or more is equivalent to a distinct
separating action. Therefors, while (sg) may change, its value for a
given material consignment will be constant within limits normal for
variance estimate (F-ratio), unless the consigument is noticeably
mixed or segregated. Segregation variance sy is designated

"sampling constant" B.

The practical value of the "sampling constants™ can be
demonstrated by the following Examples 2 and 3:

Examgle 2

General Equation 2 was tested by distributing 2,500 lead
pellets non-randomly over the sampling board. The samples of
different sizes were collected systematically and at random as was
done in the first example. The results are presented in Table 3 and

Figure 3.

2 2

Two variance estimates, s and 55 obtained from the

systematic samples were used to evaluate the sampling constants by
using Equation 2, which can now be written as:

52=A'/w'+B(l-l/w')........ e o+ oo (Eq4a)

The following values wore found for the sampling constants, using
Equations 8 and 9 on page 23:

At = 0.1824
B 0.00761
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From these values the size-variance curve representing Equation 4 is
found; it is 1llustrated in Fiyure 3. This size-variance curve is
approximately the algebralc sum of a strpight linos A'/ut, sloping

down at 45 degrees from point (w! = 1; 8 = 0.1824) and a straight
horizontal line, B = 0.00761; ths former represcnts the random
variance component, the latber the segregation variance component.
The degree of segregation is found from the equivalent of Equation 1:

z = VB/AT = 0.20

Here, the Chi-square test provides spot—checks for the goodnesg of
fit o% Equation 4, using experimental variance estimates 85 s%, s§
and s§.

The size~variance curve calculated from s% and sg falls N

within the confidence interval defined by o=l ____
Chi-square
one of the above four variance estimates for probability levels
P = 0.025 and 0.975;, For example, the confidence interval of the
variance estimate 85, which was found from 25 (systematic) samples,
is 0,026 - 0.088 at the 95 per cent loevel. The calculated variance
(Equation 4) falls within this range at 0.027. As s% shows the
largest difference of all, the Chi-oquare test confirms the
statistical 1dentity of the calculated variance (Equation 4) and all
four experimental variance estimates at the 95¢ level. On Figure 3,
the confidence interval is shoun for experimental variance s5 only.
It 1s noted that simllar results were found when using the F-test,
The Chi~square test was preferred, it being the more rigorous one of
the two tests. Frequency distributions ‘of samples with size larger
than 1 unit (w! = 1) will generally show deviations from the binomial
distribution whon the material is segregated. When the samples
contain only a small number of units, as they necessarlly do in the
experiments performed with the sampling board, these departures from
the theoretical binomial frequency distribution cannot always be
proved significant. When, howover, the number of units contained
in the sample becomes very large, such as in molecular binomial
mixtures (fluids, pulps, etc.), the difference betwven the frequency
curve of sample values as found from a test and the frequency curve
of the sample values observed in the same material consignment when
randomly mixed, will be generally significant, the more so when the
degree of segregation is high., In fact, the frequency distribution
of large samples from segregated mixtures can take on any shape, in-
dependently of the shape of the paront distribution, but the variance
of such large samples is directly related to tho varlance of the
frequency distribution of the single units. The theory presented
here utilizes this relationship and is demonstrated for variates that
can be expressed by parameters having a bincmial parent distribution.
It will be shown later on in the report that the same concept applies
to parent distributions of different type, including normal, poissonian,
and irregular parent distributions (see under "Non-binomial variates",

P 32)0
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Example 3

A tost similar to the ones above was done with 1,000 lead
pellets that were distributed as evenly as possible over the sampling
board. The gurve representing Equation 4 was based on variance
estimates 87 and s4 (see Figure 4). All tho other values which
were determined independontly appear to check,within the limits of
chance variation,with the curve

s? = 0.0186/ut + 0,00137 (1 - 1/u').

%
|
1
|
!
|

The degree of segregation found from z =/B/A' = o0.11.

The three examples discussed here confirm the correctness
of the general Equation /4 for a range of conditions varying between
complete segregation and near-random dispersion of the variate.

In sampling practice the use of samples consisting of only
a few units 1s common in such fields as microscopic analysis of
particle mixturcs and sempling for defectives. In many cases,
howvever, the samples collected consist,of necessity, of a very large
number of units that cannot be counted. Consequently, sample size
is expressed in some unit of measurement (1 grem, 1 pound, etec.);
each unit of measurement may contain thousands or millions of
elementary units of the biromial, As a result, the size-varisnce
curve of such ssmples will be generally determined by the segregation
varience component only. In other words, the actual range of sample
sizes lies somewvhere within the less steep section of the size~
variance curve.

For this type of material it would be impractical to use
the parent variance for sampling constant A', becouse the number (w!')
of binomial units is too large to be counted. Instead, sampling
constant A' can be determined for one unit of measurement. It is
then necessary to indicate to what unit of measurement this sampling
congtent does refer.

Practica) Units and Proximate Fauation

To illustrate the use of practical units and their
relationship to the general equation, the results of another test are
presented in Figure 5. One thousand lead pellets were distributed
with a high degree of segregation (see inset Figure 5) and the
sampling constants calculated from varience estimates s< and s%5 as
before: 1 3

8 = 0.09923/u% + 0.01078 (1 - 1 /")

degree of segregation z = 0.31.

The other variance estimates (obtained from random sarples
as well as systematic samples) correspond within the 95% fiducial
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limite with this curve as before. It will be assumed for the sake of
convenience that the size of samples 18 expressed in a practical unit
of measurement equal to ten elementary units. The general Equation
4 now changes to:

82 = A/ + B (L =T1/100) o o o o o o o o s o« o o (Eq 42)

where A = varlance of samples of 1 unit of measurement,

w = sample Size expressed in same unit of meaeuremenﬁ, and

A/w = rendom variance component.

It 18 noted that the numerical value of the random variance
component does not change by this transformation, as shown in
" Figure 5. The only difference is that A = 1/10 At,

- -

It 1s also noted that the segregation variance B is
independent of the unit of measurement.

In those cases where samples have to be expressed 1n some
unit of measurement that 1s many times the size of an elsmental
binomial unit, the upper part of the size variance curve as shown in
Figure 5 is not used. Consequently, the general Equation 4 can be
repleced by: :

52 = Al/wl + B

or, when using practical units of measurement,

2
BzA-/w“'B.oooooooooooooooooQ(EQS)

The curve corresponding to this equation is also shown in
Figure 5. The discrepancy between the general curve and the
practical curve turns out to be negligible for a first approximation .
of the total variance estimate. The same conclusion holds for higher
degrees of segregation. Equation 5 will be used from here on, unless
otherwise indicated.

Equation 1 for the degree of segregation (z) 1lixewiee
changes, when practical units of measurement are used, to:

2= VB/AM ¢ ¢ e e 0t e 0 o e e ee eeeeo (Eq6)

where m = number of elemental units per unit of measurement.

Equation 6 will appear to be useful as (z) can often be
estimated from available data on the average composition and
distribution of a material consignment. Examples 4 and 5 (pp. 24.and 25)
illustrate the application of Equaticn 6.

It 18 noted that the product (Am) is dimensionless and can
be estimated from any other unit for which the value of (A) is known.
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In view of the above tests, it can be concluded that the
variance of single samples drawn systematically or at random from

segregated materials consignments can be expressed as a function of
two constants determined by the composition of the material and the

degree of segregation of the consignment, and by the size of the
sample.

When single samples are combined, as is done in incremental
sampling, the total variance of a gross sample consisting of (N)
increments hes a maximum value equal to 1/N times the total variance
of the single samples. Theoretically, this maximum value will be
attained only when the "patches" caused by segregation of the
consignment are themselves distributed at random. In actual practice
this condition may not prevail and the total variance as formulated
for gross samples consisting of (N) increments,

82 = A/Nu +B/N,

is, in fact, an estimate of the upper limit of the gross sample
variance. The estimate of the total variance obtained from this
equation is therefore a safe estimate; the same equation can be

written as follows:

82=A/W+B/N. L] L ] L ] L ] * L ] . L] L] L ] ® . L 3 L ] L ] [ ] [ ] (Eq?)
where W = Nw = the gross sample size.

This equation, originally introduced for the sampling of broken cdal
(17,18), is suggested as a general expression of variability, for
gross samples drawn from material consignments that are not perfect

mixtures.

Comparison With Existing Theory

The theory of sampling that is presently being applied
when assessing the precision of incremental sampling of segregated
material consignments is a modified random sampling method known as
"representative sampling", as has already been mentioned in the -
Introduction. When applying this method it is necessary to determine
the number of increments and their distribution over individual
"strata" in such a manner that all strata are represented in the
gross sample in direct proportion to the individual size and
variability of the strata as expressed by the within-stratum standard
deviation (16), The increments are drawn in a random manner.

The advantage that can be claimed for the representative
sampling method is that the precision of the gross sample is not
affected by any "trend", that is, by variations between strata.

The requirements of "proportional representation” may, on
the one hand, cause some complications when the strata differ in
s8ize and in variability, as is often the case in census surveyinge.
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It 1s then necessary to evaluate the size and the standard deviation
for each individual stratum. On the other hand, the theory of
representative sampling can be simplified in many instances.such as
in bulk sampling, by choosing imaginary "strata" of equal size and
finding an average estimate for the within-stratum standard deviation
or from previous knowledge regarding those same varlations in a
similar material.

This simplified method of representative sampling is
generally applied to the systematlc sampling of bulk materials as
well as to "dlscrete populations", under which can be classifled a
great varlety of mass-produced articles, Manufactured goods generally
show considerably less variability than do raw materials, and quality
control systems for such goods can be handled by representative
sampling theory without much trouble.

- e

For those categories of materials where the variability 1s
very pronounced, speclal techniques have been developed based upon
the theory of representative sampling.

Hansen, Hurwitz and Madow, in a recent publication on census
sampling (9), 1ist no less than ten different sampling techniques,
including simple random sampling, cluster sampling, systematic
sampling, stratified simple random sampling, simple one-and two-stage
cluster sampling, stratified single and multi-stage cluster sampling,
multi-stage sampling with large primary sampling units, double
sampling, sampling for time series, and purposive sampling. This
book, which deals exclusively with finite populations, 1s indicative
of the complexity of present sampling theory, even in limited fields
such as census surveying. )

Binomial Sampling Thoory

Application of the binomial theory to segregated materlals
has been studied by W.M, Bertholf for broken coal (2,3,4,5) and by
HeJe de Wijs for ores in place (21).

In the "trend variance" theory suggested by Bertholf a
formula identical to Equation 7 is used. The true nature of the
"unit increment variance" (random variance) is left in doubt,
because two different methods are used to determine this variance.
In the publication first mentioned (2), Bertholf defines the "unit
increment variance"” as the variance "within sets", as distinct from
the variance "between sets", Thus, like the "intra-class™ and
"{nter-~class™ components used in representative sampling, the "unit
increment variance" and the "trend" variance proposed by Bertholf are
not independent of the size and number of samples from which they
are derived. In a contemporanecous paper (3), however, the same
author defines the "unit increment variance" (random component)
correctly as si = é pq@. This is an approximation of the binomial
variance for singlé, average coal particles. The two definitions

are not identical,
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The method introduced by de Wijs (21) is a very significant
application of the binomial theory to the sampling of solld ores.
Briefly, this theory deals with the analysis of a serles of samples
representing equal masses of the ore body. The variance of the
sample mean is determined from the mean value of the samples and
from the differences between adjacent samples. A coefficient (d) 1s
introduced for expressing the "dispersion of grade" (page 367 of the
article), which, like (z?, varies from O to 1 and is identical with
the latter, except for the manner in which it is determined. The
author quotes the following values for (d)e

TABIE 4

Segregation of Ores in Place (after HoJ. de Wifs)

i
!
|
i
H

Dispersion of grade expressed by (d)

TYPE OF ORE conspicuously{ "no fairly extremely
regular comment" | irregular | irregular
Hydrothermal fissure '
o C 015 | 0.15-0.25 | 0.25-0.35 | > 0.35

Cu, Pb, Zn, Sn

Hydrothermal deposits
of Au, Pt, Ag 0.35-0.45

Ta, Nb or Be in

pegmatites more irregular than gold, etc.

Stratified deposits '
of Fe, Mn :> 0.20

A more recent publication on a graphical approximation of
he mean grade of ores, based on the binomial distribution by M. Bruté
de Rémur (7), is of interest to note, as well as the work of RJMe.
Becl;er and Scott W. Hazen (1) on the binomial distribution of ore
grade.

While the emphasis in the report presented here is on the
design of sampling experiments for the purpose of predicting sample
precision, it is of interest to mention a simple and effective method
for checking the precision actually obtained after the sampling
experiment has been completed. This is the duplicate sampling method,
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introduced by R.,L. Brown (6) and R.C. Tomlinson (14), that has been
incorporated in the new British specification BS-1017 - Sampling of Coal
and Coke. In this method, slternate increments are collected in one bin,
the other ones in a second bin; the precision obtained is estimated from
the difference between the mean values of the two samples. Other materials
may require different methods for the a posteriori determination of
sampling accuracy; the discussion of such techniques falls outside the
scope of this report, the main objective being the evaluation of the
precision of a sampling experiment in advance. This can be done by
determining the sampling constants (A,B) from a test, if the material

is unknown, or from available data if the material is known by
composition and distribution.

MATERIALS OF UNKNOWN COMPOSITION

)

Sampling constants (A,B) and the degree of segregation (z)
for materials of unknown compoaition can be determined with the
duplicate sampling method, using small and large samples (20). This
test requires the collection of two series_of single samples from
which an estimate of the total variance (s<) is found. For the first
series relatively small samples (wl) are chosen, to ensure that the
first term, A/w, in Equation 5 contributes more to the total variance
than the second term. The estimate (s%) therefore largely reflects

random sampling component (A/w). The second series of samples- ore of
relatively large size (w,); consequently the variance found from this
series is caused mainly %y the scgregation component (B). The
following equations 8 and 9 provide maximun estimates, by first-order
approximation, of sampling constants A and B (sec also p. 4).

A

"1 W2 (8% - 8%)/("2 - wl) OOOOQOOOOOOQOOOOOOOQO(Eq 8)

B 5% - A/Wz ooooooo...o.....oooooocoocooooocooooo(Eq 9)

The error of reduction and analysis of individual samples has been
ignored in these equations; the inflation caused in the estimates of
(a, B) is generally of no consequence. The sample sizes (“1’ wé)

should generally be the smallest and largest sizes practically
possible,

The degree of segregation (z) is expressed by Equation 6.
In many materials that are mass-produced the degree of segregation (z)
does not change very much, although the pattern of distribution may
vary;end it is thus possible to estimate B without a test when (A)
and (z) are known.

A condensed schedule of the calculations required for-
determining sampling constants (A, B) and the degree of segregation
(z) is presented in Table 5.




TABIE 5

Calculation of (A,B) and (z) for Materials of Unknown Composition

Sample ' ‘
No. Small Samples Large Samples Calculations
1 a P Ps
Py P1 2 Determine the veriepce
. . : : * for each series, (s])
X : : . : and (s3), with the
. R . . . equation:
* ¢ ¢ ‘ . g = 8um 2 _ (s 2
n-1
. . . . . Determine (A,B) from
o . y * ° equations 8 and 9 .
n . . g . Find (z) from equation
(see note) 6 .
sum p; | sum pi sum p, | sun pg NOTE: It is recommended
to collect a
minimum of 25 to -
Average 30 samples for
size of Wy v, each series.
samples

Examg;e 4

An untreated stove coal (]%l x 23 in.) was sampled by

collecting 35 increments with an average weight of 185 grems, and a
second series of 35 samples with an average weight of 6,539 grams

each, These samples were analyzed for ash content. The variance 2for
the small samples (calculated from fractional ash content) was 8] =

0,023/; the variance for the large samples was sg = 0,00219.
Sampling constants found from Equations 8 and 9 are:

A = 4,04 for samples of 1 gram
B = 0,00157.

The weight of the gross sample and the number of increments can be found,
for any pre-assigned accuracy, from Equation 7 :

8% = 4.04/M + 0.00157/N




For instance, a sampling precision of 1% ash would be obtained 19
times out of 20 when collecting 128 increments with a total weight
of 320 kilograms. The average particle weight of the coal was found
to be 29.6 grams. Consequently, the number of particles per gram of
sample is m = 1/29.6. The degree.of segregation, as calculated frem
Equation 6, is found to be " z = 0.11.

Exaggle 5

The results of a general election were used in the following
duplicate sampling test: the variance s% of the individual political
adherence to a certain party (X) was compared with the variance of
the average political adherence to the same party in the ridingse.

The average number of votes per riding was W, = 15,430, while w. = 1.

The variance s% was found to be 0.27; variance s% appeared to be
0.0045. The resulting variance formula is:

32 = 0.27TM + 0,0045/M

The number of investigators required for probing the
political opinion of the same population at some future date,and the
number of interviews to be made by each investigator, can be estimated
in advance with this equation. For instance, public opinion regarding
the same party (X) could be determined to the nearest 1.5% by about
320 pollsters who would each interview 20 persons. The degree of
segregation (z) for this population, with regard to its political
adherence to party (X), follows from Equation 6 for m = 1; it follows
that z = 0.13.

The following example demonstrates the application of
Equations 5, 6 and 7 for materials that are characterized by a
variate (X) but that do not consist of mixtures of identical units.,

Examgle 6

Mixtures of particles of unequal size that are sampled for
size analysis con be regarded as binomial mixtures by defining
variate (X) as a particle size interval within two given size limits.
The material consignment cen then be regarded as to consist of two
frections (X) and (non-X), as before. The precision of the weight
percentage of particles (X) found from a sample is determined by
Equations 5 and 6. Estimates of the sampling constants A and B can be
found from a duplicate sampling test as demonstrated above by
collecting two series of samples, one series consisting of relatively
small samples and the second series of relatively large samples.

The substance to be sampled may occur in the form of broken
aggregate, solids in suspension, or droplets in an emulsion. When a
material occurring in one of these forms is sampled, the chance error as
expressed by the binomial variance is now caused by the accidental
interchange of units of differing size and depends therefore on the
size and relative abundance of the units, :

(v )




When the particles are small and the number of particles
per unit of weight is large, the value of the sampling constant A
for samples of unit weight will generally be small in comparison with

that of sampling constant B, The effect of segre%ation’prevails over
random variation; the frequency distribution of (X) will generally

show an irregular form, depending on the pattern of segregation and
the number of particles contained in each sample used for the

determination of (X).

Solid Aggregates

When the material consignment consists of a solid aggregate,
rendom errors caused by the accidental interchange of units (X) and
(non-X) are automatically precluded beceuse no movement of these units
relative to one another is possible. While this does not exclude all
random variation, most of the variations are caused by segregation
when the elemental units that are the carriers of the variate are
very small in comparison with the sample.

In materials of this type the variability of (X) is often
of the binomial kind, as, for instance,when sampling ore in place for
its metal content. The ore consists of a mixture of molecular units
(X) and other constituents (non-X). A1l variability originates from
this binomial mixture, but substantially in the form of segregation.
The sampling constant (B) for molecular units can be calculated with

the binomial equation or measured directly.

The practical value of the binomial theory lies in its
application to materials of known composition and distribution, as
will be demonstrated in the next section.

MATERIALS OF KNOWN COMPOSITION AND DISTRIBUTION

When the main characteristics and distribution of a material
consignment are known, its sampling constants can often be determined .
without a test, Sampling precision as expressed by the total variance
of sampling can be determined from Equations 5, 6 and 7 for binomial
variates when the average value of the variate and the degree of
segregation (z) of the consignment are known.

Binomial Varlstes

The sampling constant (A) is calculated from the binomial
equation, which takes different forms depending on the type of
material and variate. The sampling constant (B) is calculated from
(A), the degree of segregation (z), and the ratio (m) denoting
the number of units of the material contained in the unit of
measurement used for expressing variate (X).

The "materials" are subdivided into three main classes
(see Table 6). The first class deals with materials consisting of
distinct units, each one of which is the bearer of a characteristic




TABLE 6
Calculation of Samplins Constants for Materiasls of Known Co

sition and Distribution

(Binomial Variates Only)

Class of
Material

I

II

III

ilaterial consisting of separate itens characterized by (X) and
(non-X) in gaseous, liquid or solid form, or in mixtures of

same (suspensions, emulsions,

ps or pestes), Items (X) can

be separated from items (non-X) by physical or cherical

methods.

Itens are countable,

The nunber of items in the sanple is too

large to be counted,

Material consisting of separate
aggregates of (X) and (non-X).
The aggregates are characterized
by "high-X" and "low-X" and are
separables.

Other materials.,

1. Variate (i) is dispersed
without being accumilated
in seperate physicel units.
2. (%) occurs in units that
cannot be identified or
geparated,

Yaterial- Group Ho.

1

2

3

4

5

Method of
Svaluating
average grade
of consignment

The average grade is
determined by count-
ing the number of
itens (X) and (non-X)
in the sanple, either
directly or after
separating items (X)
fron (non-X).

The average grade is determined by separat-
ing the sample by suitable physical or/and
chexzicsl methods into two fractions, (X)
and (non-X)., Fractions are measured by a
parameter, expressed in a suitable unit of

reasurerent,

The average grsde is determined directly, by suitable
chemical or/and physical anslytical methods.

Iters (X) have same
specific gravity as
items (non-X).

Itens (x) differ
significantly in
specific gravity from
items (non-X).

Units may have different size
and/or specific gravity.

Standard specimen of the
material mey be required
for specific tests.

Parameter used

A dizension of the
items-length (width,
height, depth, die-

Weight of fractions

‘ielght of fractions "high-X"

A length (diameter, depth,
expansion, etc.), time;

for measuring Variate (X) ter. thickness X) and (nonX) s and " low-X". load (force) or other
average grade EZc.r; sﬁrgace u;eu; (x) ( ) i:ﬁ:?eters used in the

volune.

ggizmzr ;:ig:;’ A unit of weight, force,

. 1 ’ h r
Unit of Nunber araa; surface area A unit of weight, A unit of weight, time, length, surface ares,

[‘easurement suitable for measuring

per unit of weight; the parameter.

etc,

1. Sampling for l. Size analyses. 1. Light-weight pieces | 1, Ash content {X) of a consign- 1, Sampling of ores in

public opinions. in aggregate. nent of broken coal. place.

2. Proportion of 2. The fineness of 2, Float-sink analysis | 2. Sampling of sends for heavy 2. The abrasion of crushed

defectives (X) in hydrsulic cement, of coal. minerals. gravel, by weight loss.

Examples the manufacturing by surface area

of mass-produced (turbidimeter).

goods. 3. Sampling of 3. Ductility of bitumen,
textiles for by elongation.
wool content.

_ - 2 "] 1. (X) is chemically
A= p(1-p) [+ = p(2-p)/m | [+ = p(1-p)a/on | [2 = p(1-p) (s1-22)* 402/ n | B e
= average fraction~ | p = average pro- p= as in (2). p= as in (2).

? al nuﬁber of portional d = specific vity 8)y2 = X-values of fractions (1,2), 8 = p(1-p)dz?/D
items (X) known amount of (X) of items (X) or dy, = specific gravity of p = average proportional
by approximations fraction, (non=X)e fractions (1,2). amount, of chemical

Sampling . D = average specific D = specific gravity of material. constituent.
Constants B = Az? m = average number gravity of 4,D = asin (3).
of items per material, m=as in (2). z=as in (1),
2z = degree of segre- unit of meas- m= as in (2). " . 2. (X) is not seperable
gation (known). urenent. B = Amz chemicallys
= (=]
B = Anmz’ - B = g2
z = as in (1) z = as in (1), 3
2= as in (1), s = stenderd deviation of

(X) from availables data

ws —
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quality (X) or (non-X). Variability in the values of samples drawn
from a consignment of such a material is caused by the fact that
these elementary units can move relative to each other; they can be
either randomly mixed or can cause a certain degree of segregation in
the consignment. It is generally ‘easy to separate the units (x)

from units (non-X) in these substances by physical or chemical methods.
Most gases, fluids, and mixtures of these with solids (amalgams,
suspensions, pastes) belong to this class. Applications of the
method can be found in the fields of microchemistry and assayling.
Likewise, the sampling of mass-produced items and similar "discrete
populations" also belongs in this first class.

The second class of substances comprises materials in which
variability is caused as above by the free movement of elemental
unite, but the variate (X) is not, localized to certain units; it is
spread over all the elemental units in varying degrees. Granular
solids such as broken coal and ore, wheat, and many other materials
fall into this class. The units can be separated into two fractions
characterized by "high-X" and "low-X"; the variability caused by the
relative movement of the units of these two fractions is reflected
in the variations of the sample drawm from such material.

A third class of materials is distinguished in which
variability is caused by an uneven dispersion of the variate "X"
throughout the consignment. Essentially, these materials differ
from the above ones only in that the elemental units "X" and "non-X",
vhich may be real or imaginary, cannot move relative to one another;
this reduces random variation. Many physical properties such as the
tensile strength of wax or the abradability of gravel fall under
this category. Distribution of such a variate over the consignment
can be attributed to segregation of elementary units, characterized
by either "X" or "non-X", that cannot be separated and often not even

identified.

A1l three classes are seen as binomial populations; samples
collected from material consignments belonging to the third class
have a variance that is substantially determined by segregation.

Five categories of materials are recognized under this main
classification; these will now be described in some more detail.

Group No. 1 (seo Table 6) deals with substances that occur
in the form of separate units, each characterized by either (X) or
(non-X). Another feature of this group of materials is that the
samples ars analyzed by counting the individual units (X) and (non-X).

Groups Nos. 2 and 3 include materials consisting of separate
units too numerous to be counted individually and are consequently
measured by some dimension of the items (length, surface area, volume
or weight) expressed in a suitable unit of measursment (inch, square
foot, gallon, pound, etc.).
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: Group No, 2 includes materials for which the items
characterized by variate (X) have the same specific gravity as items
(non-X); for instance, granular materials sampled for size analysis,

Group No. 3 deals with materials consisting of items (X) that
differ significantly in specific gravity from items %nonéx). These
are the materials that are sampled for specific gravity analysis (e.g.,
by float-sink analysis). .

GroupsNos. 4 and 5 deal with materials in which the varlate
(X) is dispersed without being necessarily accumulated in separate
physical units of the material.

Group No. 4 includes all materlals consisting of separate {
aggregates that are characterized by either a high percentage of
variate (X) or a low percentage of variate (X), the two components
being separable.

A\ &)

Group No. 5 includes other materials. Variate (X) is
dispersed without being accumulated in separate physical units or it
occurs in units that cannot be identified or separated.

The following examples 7 to 12 may serve to illustrate the
use of Table 6: _

Group_ 1 (Table 6)

Examgle 7

A mass-produced item is known to contain about 4% defectives.
Therefore, p = 0.04 and sampling constant (A) = 0.0384 or approximately
0.04. It follows from Equation 4 that the effect of any segregation
can be eliminated by collecting sample items one by one (w! = 1). The
number (N) of items required for determining the percentage of
defectives to the nearest 1% ninoteen times out of twenty now follows
from

N = A/s?, where 82 = 26 x 1076.

Consequently, N = 1,500.

Examgle 8

The results of a general election are used to determine the
mmber of investigators to be employed in a poll to survey the changes
in political popularity,and the number of persons to be interviewed
by each investigator. The party whose election returns were closest
to 50% was party (X), its vote amounting to 61% of the total returns;
this figure is subject to the greatest variations and is used as a
yardstick for evaluating sampling precision of ths poll. Consequently
p = 0,61 and the sampling constent (A) = 0.24. The degree of
segregation for (X) is known to be z = 0,13; it follows that the
sampling constant (B) is 0.0041. From the many possible combinations
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of (w) ard (N), a value w = 20 is chosen as a reasonable figure for
the number of persons that can be interviewed by one investigator in

one daye.

- It follows from Equation 7 that, by employing 155
investigators, the results of the poll will indicate political
popularities with a precision of 2%, nineteen out of twenty times.
The total number of persons interviewsd would thus be: wN = 3,100,

Group 2 (Table 6)

Examgle 9

It is required, for the operational control in an ore
beneficiation plant, that a daily sample of minus 1) mesh sand be collected
for sieve analysise The precision of the sieve curve is important,
especially with regard to the silt fraction,which should be

The

determined with a precision of 1% nineteen out of twenty times.
sand 1s segregated (z = 0.20); the average amount of silt (minus 200

mesh material) is 3%.

The accidental interchange of silt particles with sand
particles during sampling is determined by the size of the particle.
Errors thus caused depend primarily on the size and relative
abundance of the coarse particles; that is, on the sand fraction.
The weighted average particle weight of the sand fraction (14 x 200
mesh) of this ore is known to be 0.010 gram. Therefore, m = 100,
when expressing the sample weight in grams. It follows that:

p(1-p)/m = 0,0003
Anz? = 0.0012.

A

i

B

Samples in this plant are collected automatically by increments
welghing 30 grams each. The minimum number of increments required

now follows from “quation 7:
N = 47.
Group 3 _(Table 6)

Exaggle 10

A non-uniform lightweight aggregate is tested by a float-
sink analysis for determining the percentage of lightweight pieces.
The material is known to contain approximately 107 by weight of
lightweight pileces floating on bromotrichloromethane (sp. gr. 2.00);
the average specific gravity is @ = 1.6. The average specific
gravity of the entire aggregate is D = 2,3, The degree of segregation
is known to be z = 0.3. The size of the lightweight aggregate is
minus 1% inch; the rated average particle weight is 15 grams; hence
m=1/15 = 0,067, The sampling constants A = 0.934 and B = 0.0056 are
found from the equations given in Table 6 under Group No. 3.
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Increments are collected by an automatic sample cutter, each cut
weighing approximately 400 grams. The minimum nurmber of increments
required to attain a sample precision of 1% follows from Equation 7:

N = 303..

The weighted average particle weight can be determined from a sieve
analysis, using the following equation (11, 17, 18):

V= Zq13kq
where V = weighted average particle volume, in cu cm.,
q = weight of individual size fraction, and ’
1 = central value of individual size fraction, in cm. >
Group 4 (Table 6)
Example 11

A minus-1¥-inch mine-run slack coal with an average ash
content of about 30% is sampled for ash by an automatic sampler
collecting increments of 5 lb. This coal is known to contain
approximately 64% (p = 0.064) floats at 1,60 sp. gr. with 5% ash
(ay = 0.05), and 36% sinks with approximately 305 ash (ay = 0.80). The
specific gravity of these two fractions arec known to be dy = 1.30;
dy = 2.35; the overall specific gravity D = 1.60.

The weighted average particle weight (Example 10) of this
coal is 5.26 grams. As the woight of sample is expressed in pounds
(1 1b = 454 grams), the ratio m = 454/5.26 = 856, The degree of
segregation of the mine-run slack is known to be z = 0.13. From
this it follows that the sampling constants (see Table 6, Group 4) are:

A = 0.00288

B =0.004186 .

The minimum number of increments required to determine the ash content
with a precision of 1% ash, ninetsen out of twenty times, is N =183,
The gross sample weight is therefore 915 pounds.

Group 5 (Table 6)

Materials in this group occur as a solid or fluid mess in
which the variate (X) is dispersed without being accumulated in
separate physical units; or, the variate occurs in units that cannot
be identified or separated and is measured in some indirect manner.

Under these circumstances there can be no ascidental inter-
change of units (X) and (non-X) during sample collsction, except at
the molecular level, as in the sampling of fluids. Therefore wliile
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sempling constant (A) may have a distinct value for molecular units or
similar, very small aggregates, its value for any practical unit of

neasurement becomes negligibly small as the ratio (m) approaches
infinity. While the binomial distribution is inoperative with regard

to chance variations occurring during sample collection, it is still
the prime cause of all segregaticn.

In materials under this group where variate (X) is a
constituent that can be extracted by chemical means, (A) can generally
be calculated for molecular units and sampling constant (B) can then
be estimated as before, from the average composition of the material

and its degree of segregation (z).

In other materials under this group, where (X) does not
refer directly to units that can be determined or separated by
chemical extraction (such as the compressive strength of briquets,
the ductility of bitumen, etc.), sampling constant (B) can only be
found from available variance data.

Example 12

The sampling of ore in place will be used as an example to
illustrate the use of the equations mentioned in Teble 6 under Group

56

Channel samples are collect=d from a zinc vein containing
107 metallic zinc in the form of smithsonite (ZnCOB); the degree of
segregation of the metal is known to be z = 0.20. "As the zinc occurs
in the form of the carbonate, it follows that the proportional amount
of this constituent is p = 0.20; the specific gravity of smithsonite
is d = 4.4; the average specific gravity of the ore is D = 2.8. It
follows, for sampling constant(B), that

B = p(1 - p) dz2/D =0.010.
The total sample variance:
a2 = 0.010/N.

This variance is independent of sample weight. The number of
increments required to attain a sampling precision of 1% zine is
found to be

N = 384,

Non-Binoninl Variates

In actual sampling practice many instances are found where
the variate has a non-binomial porent distribution. For instance, in
the sampling for the number of defectives the variate has a parent
distribution of the Poisson type. In many othsr cases the parent
distribution is a normal curve, but frequently curves of irregular
shape are ‘encountered as well.



33

While the parent frequency curves of variates may differ,
they have one common property: the difference between the true value
of any sample and the true mean of the material lot from which such a
sample originates can be expressed as the algebraic sum of two devia-
tions, one caused by random variation, the other by segregation. The
efficiency of this distinction lies in the fact that it applies to
any variate and any material.

The law of propagation of errors applies (see derivation in
the Appendix), provided these two individual deviations are independent
of each other for any sample or increment., It is impossible to prove,
by mathematical analysis, the correctness of this assumption for all
materials and all variates. From tests on the sampling board and
results of field trials (5) it can, however, be understood intuitively
that here the law of propagation of errors has a general application,
which means that Equations 8 and 9 apply, independent of the type of
frequency distribution of the variate (X). It may be noted here that
in cases where the mean value and the standard deviation of a variate
are related it is often possible to transform the variate by substitu-
tion with a variate whose mean (M) and standard deviation (s) are
approximately independent of each other,

Generally, if (s) is a function f(M) of the mean (M), the
appropriate transformation to stabilize the variance of (X) is:

I=/T%-f)—-dx

Exampless

Relationship Transformation

(s) proportional to M | Take reciprocals of
observations

(s) proportional to M Take logarithms of

observations
(s) proportional to Take square roots of
V' M observations

Such transformation variates can be used in extreme cases
where the above conclusions would not applye.

\V ]




SAMPLING TO A PRE-ASSIGNED ACCURACY

The main motive for this report has been to formulate a
common basis for evaluating the precision of the average grade of a
material in simple terms, regardless of the type of material or
variate and of the state of segregation of the consignment,

The guiding principle has been to determine the causes of
variability in any material and to find general equations rather than
to adapt a statistical technique to a given class of materials and/or

a certain type of variate.

The conclusion from this study is that in any sampling
experiment the difference between the true sample value and the true
mean of the lot can be expressed as the sum of the random deviation
and a remaining deviation which is caused by the fact that the
material is not randomly mixed. Consequently, two variance components
can be distinguished that are common to incremental sampling
experiments with all types of materials and varlates, and these can be
expressed in an equation that relates sampling variance to the number
of increments and the size of the gross sample. Tests with a model
population confirm that the variance estimates found from this
equation hold for the systematic sampling of sogregated populations,.

In the method presented here, use has been made of early
work done by Mika (12), followed by Kassel and Guy (10), Landry (11),
Deming (8) and, more recently, de Wijs (21). The sampling variance
can be forecast for materials of known composition and distribution
when the variate has a binomial parent distribution. In cases other
than this the variance components are found from a duplicate test

with small and large samples.

Great value has been attached to clarity, because the
statistics of sampling standsin nced of simplification lest it remain
a specialist!s domain. The work of Moroney (14) has been very
stimulating in presenting statistics in ordinary language. It is
recognized that existing methods such as representative sampling have
their place in certain fields as far as they are useful in calculating
"intra-class" and "inter-class" variances. In other respects the
practical limitations of these methods are obstructing a broader
application of sampling statistics that ought to cover the forecasting
of the precision of sampling, including systematic sampling; the
latter is an accepted practice that has thus far remained a
controversial subject amongst statisticians.

The proper collection of samples is a matter of training
and strict adherence to good specifications, rather than of theory.
The sampler should know how to avoid bias (systematic errors) during
sample collection and how to avoid having his increments get "in
step" with the periodicity of the variate. Equations 6, 7, 8 and 9
can be used effectively only if these conditions are met. A
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The sampling board is recommended to experimenters as an
effective and inexpensive device for testing the quantitative aspects
of sampling theory. It has already proved to be useful in testing

the quantitative importance of some theoretical objections voiced by
statisticiens. The main objective is, and should be, to estimate the
precision of an average value by first-order approximation, rather than
to argue the precision of that precision.

The 1iterature cited indicstes that, by carefully sorting out
what is significant from what is trivial, the obstacles to a unified
method of evaluating sampling precision can be removed. The present
report is intended as a contribution to that end.
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APPENDIX

IAW OF PROPAGATION OF ERRORS

Application to Random and Segregation Variations

The true value (x) of a sample (1) collected from a
segregated population with true average value (y) can be written as

follows:

Xy =y ittty

where til = random deviation, and
tiz = deviation caused by segregation.
The total deviation for any sample (i) is, therefore:
XTI EH S22 b
From this it follows, for a large number of samples, that:

82= 42 17 Pt
2
t, =ty + tp?+ 21t
LN ] [ X J *0 [ X N J
2 ., 2 2 2% .t
6=t %t % Pt
4 2 . 2 L, 2 .
Average: _‘\‘_E_i_-__ - 2%y .+ b5 + 22(‘tilti2)
n n n n

From this it follows, by first-order approximation, that:

82 = 812“‘ 82

random variance, and
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The mean value of the double products is of a lower order of
magnitude owing to opposite signs, provided there is no correlation
between tjy and ty2.

The derivation applies for any type of parent distribution
and supports the general validity of Equation 5.
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