## Canada Centre

 for Mineral and Energy TechnologyCentre canadien de la technologie de minéraux et de l'énergie

# LEAD CONCENTRATE CPB-1 - A CERTIFIED REFERENCE MATERIAL 

G.H. FAYE, WIS. BOWMAN AND R. SUTARNO

MINERALS RESEARCH PROGRAM


MINERAL SCIENCES LABORATORIES
© Minister of Supply and Services Canada 1979
Available in Canada through
Authorized Bookstore Agents and other bookstores
or by mail from
Canadian Government Publishing Centre
Supply and Services Canada
Hull, Quebec, Canada K1A 0S9
CANMET
Energy, Mines and Resources Canada, 555 Booth St., Ottawa, Canada K1A 0G1
or through your bookseller.
Catalogue No. M38-13/79-15 ISBN 0-660-10287-0

En vente au Canada par l'entremise de nos agents libraires agréés et autres librairies
ou par la poste au:
Centre d'édition du gouvernement du Canada Approvisionnements et Services Canada Hull, Québec, Canada K1A 0S9

CANMET
Énergic, Mines et Resources Canada, 555, rue Booth Ottawa, Canada K1A 0G1
ou chez votre libraire.
Canada: $\$ 2.00 \quad$ No de catalogue M38-13/79-15
ISBN 0-660-10287-0

Canada: $\$ 2.00$
Hors Canada: \$2.40

Price subject to change without notice. Prix sujet à changement sans avis préalable.
by

G.H. Faye*, W.S. Bowman** and R. Sutarno**

SYNOPSIS

A 250-kg sample of a lead (flotation) concentrate, CPB-1, from Kimberley, British Columbia, has been prepared as a compositional reference material. $C P B-1$ was ground to minus $74 \mu \mathrm{~m}$, mixed in one lot, tested for homogeneity by $X$-ray and chemical methods and bottled in 200-g unjits.

In a "free-choice" analytical program, 25 laboratories contributed results for one or more of 21 elements in each of two bottles of $C P B-1$. Based on a statistical analysis of the data, recommended values have been assigned for: $A g, A I_{2} O_{3}, A s, B i, C d, C u, F e, H g, P b$, $\mathrm{S}, \mathrm{Sb}, \mathrm{SiO}_{2}$ and Zn . Also, non-certified values have been determined for: $\mathrm{Au}, \mathrm{CaO}, \mathrm{In}, \mathrm{Mgo}, \mathrm{Mn}, \mathrm{Se}, \mathrm{Sn}$ and Te .

[^0]Note: Major contributions were also made by other staff members of the Mineral Sciences Laboratories as well as of laboratories in other organizations.

# CONCENTRE DE PLOMB CPB-1 - UN MATERIAU DE REFERENCE CERTIFIE 

par

G.H. Faye*, W.S. Bowman** et R. Sutarno**

SOMMAIRE

Un échantillon de 250 kg de concentré de plomb (flottation), CPB-1, provenant de Kimberley en Colombie-Britannique, a étē préparé en tant que matériau de réfêrence de composition. Le CPB-l a été broyé jusqu'à -74 $\mu \mathrm{m}$ et mélangé ensemble; l'homogénéité a été vérifiée par les méthodes chimiques et radiographiques et ce materiau a ensuite été embouteillē en contenants de 200 g .

Vingt-cinq laboratoires out fourni des résultats pour un ou plusieurs des 21 Eléments dans chacune des deux bouteilles de CPB-l' selon un programme analytique de "libre choix". L'analyse statistique des données a donné lieu à des valeurs recommandées pour $l^{\prime} \mathrm{Ag}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{As}, \mathrm{Bi}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Hg}, \mathrm{Pb}, \mathrm{S}, \mathrm{Sb}, \mathrm{SiO}_{2}$ et Zn . Aussi des valeurs non-homologuées ont été déterminées pour 1'Au, CaO, In, MgO, Mn, Se, Sn et Te.
*Chercheur scientifique, **Technologue et ***Chercheur scientifique, Laboratoires des sciences minérales, CANMET, Energie, Mines et Ressources Canada, Ottawa.

Note: Avec la collaboration de d'autres membres du personnel des Laboratoires des sciences minerales ainsi que le personnel de laboratoire d'autres organismes.

## INTRODUCTION

This report describes the preparation, characterization and certification of a lead concentrate, CPB-1, for use as certified reference material. The work is one facet of the Canadian Certified Reference Materials Project (CCRMP) to certify materials that have potential value in conventional analytical or earth science laboratories. Certified reference materials issued previously by CCRMP are described in a catalogue availallle from CANMET, Energy, Mines and Resources Canada, Ottawa (1).

CPB-1 was chosen as a reference material because of its mineralogical complexity, and its relatively large number of minor and trace elements at useful levels of concentration. It was donated to CCRMP in late 1975 by Cominco Ltd. and was a flotation concentrate of ore from the Sullivan Mine at Kimberley, British Columbia. Its approximate mineralogical composition and particle size analysis are given in Tables 1 and 2 respectively. At the request of CCRMP, this material was analyzed for one or more of 21 elements by 25 laboratories which used methods of their choice. Recommended values for the 13 certified elements are given in Table 3; methodological, statistical and other analytical information is presented in Tables 4 to 8.

## PREPARATION OF CPB-1

In early 1976, CPB-1, which had been dried at $\sim 100^{\circ} \mathrm{C}$, was ground to pass a 74- $\mu \mathrm{m}$ screen. The powdered concentrate, weighing approximately 250 kg , was tumbled in a $570-\mathrm{L}$ conical blender for approximately nine hours. Upon opening the blender, the bulk material was sampled systematically and analyzed by x-ray fluorescence and chemical methods. It was found sufficiently homogeneous to qualify for the interlaboratory program and was bottled in $200-\mathrm{g}$ units. In early 1978, the bottles in storage at CANMET were each sealed under nitrogen in laminated foil pouches to provide longterm protection against oxidation.

TABLE 1
Approximate mineralogical composition of CPB-1*

| Mineral | $\underline{w t ~ \%}$ |
| :--- | :---: |
| Galena | 72.5 |
| Pyrrhotite | 12 |
| Sphalerite | 7 |
| Pyrite | 3 |
| Iron Oxides | 1 |
| Aluminosilicates | 1 |
| Carbonates | 1 |
| Chalcopyrite | 0.5 |
| Boulangerite | 0.5 |

*From J.F. Harris, Exploration Research Laboratory, Cominco Ltd., Vancouver, B.C.

TABLE 2
Particle size analysis of CPB-l (wet screen)

| Size of fraction $(\mu \mathrm{m})$ | wt \% |
| :---: | ---: |
| $-74+55$ | 0.6 |
| $-55+46$ | 3.2 |
| $-45+37$ | 1.4 |
| -37 | 94.8 |

## INTERLABORATORY PROGRAM FOR CERTIFICATION OF CPB-1

The laboratories that participated in the certification program for CPB-1 are listed alphabetically in Appendix A. Each was arbitrarily assigned a code number so that analytical results could be recorded while preserving anonymity (Table 8). The numbers bear no relation to the alphabetical order of the laboratory names.

Each laboratory was requested to submit five replicate results for each element in each of two bottles by a method of their choice and to report results on subsamples that had been dried for two hours at $105^{\circ} \mathrm{C}$. Although results reported in Table 8 are on a dry basis, some laboratories deviated from the request for 10 results for each constituent. Where a laboratory submitted results for a constituent determined by more than one method, each set was considered statistically independent.

In keeping with mining industry practice, most laboratories reported aluminum, calcium, magnesium and silicon as oxides, and this form is retained in this report. When required, results for the four elements were converted to oxide equivalents. In a few cases results were not reported on a dry basis and these were subsequently corrected for the 0.14\% moisture content of CPB-1.

It was arbitrarily decided not to assign a recommended value for those constituents for which fewer than 10 sets of results were submitted. This accounts for the different treatments accorded the constituents listed in Tables 3 and 4.

## STATISTICAL TREATMENT OF <br> ANALYTICAL RESULTS

## Detection of outliers

Sets of results whose means differed by more than twice the overall standard deviation from the initial mean value for that constituent were not used for subsequent computations to avoid possible biasing of the statistics. Sets with unusually high variance were examined for individual outlying results and such results were deleted if they caused the mean of the set to be further from the overall mean. In extreme cases, entire sets with high variance were rejected. Other sets were rejected for methodological reasons and are discussed below. All results that were not used are identified in Table 8.

Confirmation of homogeneity using interlaboratory results

Table 7 gives the means and coefficients of variation for each set of results for constituents assigned recommended values. Also given are the results of the t-tests of differences between bottles at the 5\% significance level. Rejection of the null hypothesis of no difference between bottle means is. signified by the code REJECT. For the 13 constituents certified, the rejection rate was 15\%. This is somewhat higher than is usualiy encountered in CCRMP certification programs. However the between-bottle components of variance for the certified elements, estimated by a two-way analysis of variance, are small and considered unimportant for most applications of CPB-1 (Table 7). For certain critical applications, it may be necessary to take the between bottles variation into account. The degree of homogeneity of CPB-l is also illustrated in Fig. 1, in which, for each set, the difference between the means of the results for the two bottles is plotted against the corresponding mean of the results for both bottles. The vertical bar represents the $95 \%$ confidence interval
of the former. If a bar does not intersect the abscissa, the null hypothesis is rejected.

Estimation of consensus values and 95\% confidence limits

A one-way analysis of variance technique was used to calculate the consensus values (means) and their variance. The analytical data were assumed to fit the following model (2):

$$
x_{i j}=\mu+y_{i}+e_{i j}
$$

where:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{ij}}= & \text { the } j^{\text {th }} \text { result reported in set } i ; \\
\mathrm{p}= & \text { the true consensus value that is } \\
& \text { estimated by the overall mean } \mathrm{x} . . ;
\end{aligned}
$$

It is assumed in this analysis that both $Y_{i}$ and eij are normally distributed with means of zero and variances of $\omega^{2}$ and $\sigma^{2}$, respectively. The significance of $\omega^{2}$ can be detected by comparing the ratio of between-set mean squares to within-set mean squares with the $F$ statistic at the 95\% confidence level and with the appropriate degrees of freedom. The magnitude of $\omega^{2}$ and $\sigma^{2}$ can be estimated from the ANOVA table.

The consensus value in the above model can be estimated by the overall mean $\bar{x} .$. , thus:

$$
\bar{x} \ldots=\frac{\sum_{i}^{k} \sum_{j}^{n_{i}} x_{i j}}{\sum_{i}^{k} n_{i}}
$$

with the variance of the overall mean being given by:

$$
\mathrm{V}[\bar{x} \ldots]=\frac{\sum_{i}^{k} n_{i}^{2}}{\left(\sum_{i}^{k} n_{i}\right)^{2}} \omega^{2}+\frac{\sigma^{2}}{\sum_{i}^{k} n_{i}}
$$

The 95\% confidence limits for the overall mean are then given by:

$$
\overline{\mathrm{x}} \ldots \pm\left[\mathrm{t}_{0.975,(\mathrm{k}-1)} \cdot \sqrt{[\mathrm{V} \overline{\mathrm{x}} \cdot]}\right]
$$

where:
$n_{i .}=\begin{aligned} & \text { the number of results reported in } \\ & \text { set } i ;\end{aligned}$
$\mathrm{k}=$ the number of sets.

Analysis of variance and expected mean squares for the one-way classification

| Source of variance | Sums of squares | Degrees of freedom | Mean squares | E [Mean squares] |
| :---: | :---: | :---: | :---: | :---: |
| Betweensets | $\sum_{i}^{k} n_{i}\left(\bar{x}_{i \cdot}-\bar{x} \ldots\right)^{2}$ | k-1 | $S_{2}^{2}$ | $\sigma^{2}+\frac{1}{k-1}\left(\sum_{i}^{k} n_{i}-\frac{\sum_{i}^{k} n_{i}^{2}}{\sum_{i}^{k} n_{i}}\right) \omega^{2}$ |
| $\begin{gathered} \text { Within- } \\ \text { sets } \end{gathered}$ | $\sum_{i}^{k} \sum_{j}^{n_{j}}\left(x_{i j}-\bar{x}_{i .}\right)^{2}$ | $\sum_{i}^{k} n_{i}-k$ | $s_{1}{ }^{2}$ | $\sigma^{2}$ |
| Total | $\sum_{i}^{k} \sum_{j}^{n_{i}}\left(x_{i j}-\vec{x} \ldots\right)^{2}$ | $\sum_{i}^{k} n_{i}-1$ |  |  |

The above values and other statistics computed from the one-way ANOVA are presented in Tables 3 and 4 .

## Certification factor

The certification factor (CF) is a measure for evaluating the quality of reference materials issued by CCRMP (3). It is computed from the following expression:

$$
C F=200\left[t_{0.975,(k-1)} \cdot \sqrt{V[\bar{x} \ldots]}\right] / \bar{x} . . / \overline{\mathrm{CV}}
$$

where $\overline{C V}$ is the average of the within-set coefficients of variation and is given by:

$$
\overline{C V}=\sum_{i}^{k} \mathrm{Cv}_{i} / \mathrm{k}
$$

The critical value of $C F$ is 4 . If a selected constituent has a CF greater than 4, the reference material is considered unacceptable with respect to that constituent.

The CF for the 13 certified constituents of CPB-l are given in Table 3 along with the consensus values which are boxed in for easy identification.

Similar statistics for eight non-certified constituents are given in Table 4.

## Discussion of analytical results

An outline of the principal titrimetric methods used for lead in CPB-l is given in Appendix B.

Table 5 gives a methodological classification of results (outliers excluded) where there is a clear-cut distinction between types of method, particularly in decomposition, separations and determinative steps. In some cases however, a single method, with minor variations was used for one or more elements by all participants. The differences in the sub-sample decomposition and in the conditioning of solutions do not warrant a detailed listing in Table 5. However, some general comments on the determination of these elements are given below.

## Alumina, lime and magnesia

Multi-element analysis of a single subsample solution was used by most participants for determining $\mathrm{Al}_{2} \mathrm{O}_{3}$, CaO and MgO . In some cases the solution was also used for determining other elements. Approximately one half of the participants used a mixed-acid decomposition involving hydrofluoric acid to decompose siliceous gangue constituents. The other half used an alkali fusion after a preliminary acid treatment of the subsample. Similarly, about half the results were obtained on solutions to which La or Sr had been added as a buffer or releasing agent. The variations in decomposition or conditioning of the sample solution did not lead to significant differences in results.

It should be noted that several sets of results for each of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{CaO}$ and MgO were rejected prior to computations because it was either known or suspected that they were obtained by methods that did not involve a hydrofluoric acid. treatment or an alkaline fusion of gangue minerals. In most of these cases the deleted results were lower than the corresponding consensus values.

Although the concentrations of $\mathrm{Al}_{2} \mathrm{O}_{3}$, CaO and Mgo are similar, Tables 3 and 4 show that only $\mathrm{Al}_{2} \mathrm{O}_{3}$ has a certification factor less than the acceptable value of 4. The factors for CaO and MgO exceed this limit mainly because of the large spread in the results. It is noteworthy, however, that, based on the experience of a large number of previous CCRMP interlaboratory studies, the $\overline{\mathrm{Cv}}$ for both $\mathrm{Al}_{2} \mathrm{O}_{3}$ and CaO are higher than expected for elements at their level of concentration. For $\mathrm{Al}_{2} \mathrm{O}_{3}$ it is the large $\overline{\mathrm{Cv}}$ together with the high spread that gives an acceptable certification factor.

## Copper and cadmium

With few exceptions $C u$ and $C d$ were determined by atomic absorption spectrophotometry on the same subsample solution which, in some cases, was also used for other determinations. Nearly all participants used an oxidizing acid mixture for decomposition. Results were not dependent on the use of hydrofluoric acid to decompose gangue minerals, and this agrees with the two elements occurring in free particles of sulphide minerals.

## Mercury

The cold-vapour atomic absorption method was used by 12 of 14 laboratories to obtain results for mercury (4). Most analysts used a low-temperature decomposition involving a mixture of nitric and hydrochloric acids; some also used a second oxidizing agent such as $\mathrm{KMnO}_{4}$, $\mathrm{KClO}_{3}$ or $\mathrm{Br}_{2}$. Stannous chloride was the most common reagent for reducing mercury in the cold-vapour generator. It should be noted that, with the exception of Lab 5, all participants analyzed subsamples that had been previously dried at $105^{\circ} \mathrm{C}$ for 2 h .

Sulphur
Thirteen of the 16 sets of results for sulphur were obtained by the classical gravimetric method involving the weighing of $\mathrm{BaSO}_{4}$. Ten laboratories used acid decomposition involving nitric acid and bromine, and three used peroxide or carbonate fusion. Lead was separated as the carbonate by most analysts. No relationship is evident between the results and the variations in decomposition or in the treatment of the sample solution prior to the precipitation of $\mathrm{BaSO}_{4}$.

## Stability of CPB-1

Figure 2 shows the laboratory means for lead in CPB-1 plotted against the date on which the analyses were reported. Clearly, there is no trend over the 21month reporting period that suggests decreasing values due to oxidation of the sulphides (mainly to sulphates) comprising CPB-1. It is known, however, that unprotected samples of many sulphide ores and concentrates are susceptible to oxidation under ambient conditions of use and storage in a laboratory atmosphere (5). To protect the stock of CPB-1 stored at CANMET, all bottles were sealed under nitrogen in individual laminated foil pouches in April 1978. This procedure should ensure indefinitely the validity of the recommended values for CPB-l given in Table 3. This conclusion is supported by the data plotted in Fig. 3 which show that there was no change in weight of protected test bottles from June 1, 1978 to March 15, 1979. Monitoring will be continued throughout the life of the stock of $\mathrm{CPB}-1$.

Figure 3 also shows that unprotected test bottles of CPB-1 deliberately opened and exposed to the atmosphere in the storage room at CANMET, gained approximately $0.2 \%$ in weight during the above monitoring period. It is strongly recommended, therefore, that users store opened bottles of CPB-l under a dry inert gas in a desiccator jar or in a new heat-sealed foil pouch. Also, when taking subsamples, the contents of the bottle should be exposed to air for the shortest time possible.

1. Faye, G.H. "Certified and provisional reference materials available from the Canada Centre for Mineral and Energy Technology, 1978"; CANMET Report 78-3; CANMET, Energy, Mines and Resources Canada; 1978.
2. Brownlee, K.A. "Statistical theory and methodology in science and engineering"; John Wiley and Sons, Inc. New York; 1960.
3. Sutarno, R. and Faye, G.H. "A measure for assessing certified reference ores and related materials"; Talanta; 22:676-681; 1975.
4. Hatch, W.R. and Ott, W.L. "Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry"; Anal Chem; 40:2085-2087; 1968.
5. Faye, G.H. and Steger, H.F. "A case study of the ambient oxidation of two zinc-lead (sulphide) reference ores"; Talanta; In press; 1979.

TABLE 3
Recommended values and associated statistical parameters (outliers excluded)

| Element (oxide) | N | n | $\overline{\mathrm{x}}$ | 95\% CL |  | Spread \% | $\begin{aligned} & \overline{\mathrm{CV}} \\ & \mathrm{o} \end{aligned}$ | CF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | low | high |  |  |  |
|  |  |  | (wt \%) | (wt \%) | (wt o) |  |  |  |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 10 | 108 | 0.28 | 0.27 | 0.30 | 10.4 | 3.2 | 3.3 |
| As | 17 | 167 | 0.056 | 0.052 | 0.059 | 13.7 | 6.0 | 2.3 |
| Bi | 15 | 151 | 0.023 | 0.021 | 0.024 | 10.5 | 3.8 | 2.8 |
| cd | 13 | 140 | 0.0143 | 0.0138 | 0.0148 | 7.0 | 2.6 | 2.7 |
| Cu | 22 | 231 | 0.254 | 0.250 | 0.258 | 3.0 | 1.5 | 2.1 |
| Fe | 19 | 188 | 8.43 | 8.37 | 8.49 | 1.5 | 0.4 | 3.4 |
| Pb | 27 | 278 | 64.74 | 64.62 | 64.86 | 0.4 | 0.2 | 2.0 |
| S | 15 | 136 | 17.8 | 17.7 | 18.0 | 1.3 | 0.5 | 2.7 |
| Sb | 13 | 119 | 0.36 | 0.34 | 0.37 | 7.8 | 2.2 | 3.5 |
| $\mathrm{SiO}_{2}$ | 13 | 128 | 0.74 | 0.70 | 0.77 | 9.1 | 3.8 | 2.4 |
| Zn | 27 | 249 | 4.42 | 4.38 | 4.46 | 1.8 | 1.0 | 1.7 |
|  |  |  | ( $\mu \mathrm{g} / \mathrm{g}$ ) | ( $\mu \mathrm{g} / \mathrm{g}$ ) | $(\underline{\mu / g})$ |  |  |  |
| Ag | 22 | 203 | 626 | 620 | 632 | 1.9 | 1.0 | 2.0 |
| Hg | 14 | 127 | 5.5 | 5.0 | 5.9 | 17.6 | 9.2 | 1.9 |

$\mathrm{N}=$ number of sets; $\mathrm{n}=$ number of results; $\mathrm{x}=$ overall mean (recommended value); $C L=$ confidence limits; Spread $=95 \%$ confidence interval as percentage of mean; $\overline{\mathrm{cv}}=$ average withinlab coefficient of variation; $\mathrm{CF}=$ certification factor (see page 3).

| Element <br> (oxide) | N | n | X | 95\% CL |  | Spread\% | $\begin{aligned} & \text { CV } \\ & \% \\ & \hline \end{aligned}$ | CF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | low | high |  |  |  |
|  |  |  | (wt \%) | (wt \%) | (wt \%) |  |  |  |
| cao | 9 | 99 | 0.88 | 0.84 | 0.91 | 9 | 2 | 4 |
| Mgo | 11 | 118 | 0.15 | 0.145 | 0.164 | 12 | 2 | 6 |
| Mn | 13 | 142 | 0.039 | 0.037 | 0.041 | 11 | 3 | 4 |
| Sn | 6 | 59 | 0.022 | 0.016 | 0.029 | 59 | 6 | 10 |
|  |  |  | ( $\mu \mathrm{g} / \mathrm{g}$ ) | $(\underline{\mu g / g})$ | ( $\mu \mathrm{g} / \mathrm{g}$ ) |  |  |  |
| Au | 4 | 53 | 0.17 | 0 | 0.35 | 200 | 7 | 29 |
| In | 6 | 53 | 14 | 11 | 17 | 42 | 12 | 4 * |
| Se | 7 | 66 | 31 | 28 | 34 | 21 | 4 | 5 |
| Te | 3 | 24 | 0.7 | 0.0 | 1.7 | 310 | 6 | 54 |

$\mathrm{N}=$ number of sets; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean; Spread $=95$ \% confidence interval as percentage of mean; $\overline{\mathrm{CV}}=$ average within-lab coefficient of variation; $\mathrm{CF}=$ certification factor (see page 3).
*CF actually slightly less than 4; however, In not certified because of insufficient data.

Summary of analytical methods for Ag in CPB-l (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | X ( $\mu \mathrm{g} / \mathrm{g}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Fire assay | Classical fire assay with gravimetric finish | 7 | $\begin{aligned} & 5,6,14,18,21, \\ & 34,37 \end{aligned}$ | 68 | 627 |
| Fire assay-atomic abs. | P.b button scorified to 22 g ; dissolved in $\mathrm{HNO}_{3}$ for a.a. | 1 | 1 | 10 | 620 |
|  | Pb button cupelled to bead; dissolved in $\mathrm{HNO}_{3}$ for a.a. Sample leached in $\mathrm{HNO}_{3}$; soln analyzed by a.a.; residue | 1 | 9 | 6 | 599 |
|  | assayed to give Pb button; dissolved in $\mathrm{HNO}_{3}$ for a.a. Pb button partially cupelled; dissolved in $\mathrm{HNO}_{3}$ for a.a.; | 1 | 12 | 10 | 641 |
|  | Ag loss det'd with Ag-llo ${ }^{\text {a }}$ | 1 | 12 | 10 | 633 |
|  | Pb button partially cupelled; dissolved in $\mathrm{HNO}_{3}$ for a.a. | 1 | 16 | 10 | 602 |
| Atomic absorption | $\mathrm{HNO}_{3}+\mathrm{HCl}\left(\right.$ some with $\mathrm{Br}_{2}$ ); final soln $10-40 \% \mathrm{~V} / \mathrm{v} \mathrm{HCl}$ | 5 | $\begin{aligned} & 24,30,31,33, \\ & 40 \end{aligned}$ | 50 | 625 |
|  | $\mathrm{HNO}_{3}$ (one with HF ) ; final soln dilute $\mathrm{HNO}_{3}$ | 2 | 26,38 | 20 | 621 |
|  | Details not given . | 1 | 19 | 10 | 643 |
|  | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}$; Ag complexed with Hg | 1 | 35 | 4 | 636 |
| Emission spectrographic |  | 1 | 39 | 5 | 635 |

$\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean.

TABLE 5 (b)
Summary of analytical methods for As in CPB-1 (outliexs excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Atomic absorption | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; final soln $4 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$; generation |  |  |  |  |
|  | of $\mathrm{AsH}_{3}{ }^{3}{ }^{\text {a }}$ | 1 | 38 | 10 | 0.060 |
|  | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}$; final soln dilute $\mathrm{HNO}_{3}$; graphite furnace | 1 | 16 | 10 | 0.050 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}$; final soln dilute $\mathrm{HNO}_{3}+\mathrm{HCl}$ | 1 | 30 | 10 | 0.065 |
| Colorimetric (spectrophotometric) |  |  |  |  |  |
| Arseno-molybdate | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; As coppt'd with Fe , ext'd as xanthate | 1 | 3 | 10 | 0.061 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{KClO}_{3}$; As sep'd by distillation | 1 | 23 | 22 | 0.058 |
|  | $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$; As sep'd by distillation | 2 | 18,34 | 18 | 0.051 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; As ext'd with benzene from 9 M HCl | 1 | 24 | 10 | 0.059 |
| Dithiocarbamate | $\mathrm{KHSO}_{4}$ fusion; As sep'd by distillation | 1 | 9 | 10 | 0.062 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; As sep'd by distillation | 1 | 5 | 10 | 0.042 |
| Iodide | $\mathrm{HNO}_{3}+\mathrm{HClO}_{4}$; As ext'd with cyclohexane from HCliodide soln | 1 | 40 | 10 | 0.058 |
| Titrimetric |  |  |  |  |  |
| Iodometric | $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \text {; As sep'd by distillation }$ | 2 | 33,35 | 1.4 | 0.054 |
|  | distillation | 1 | 21 | 1.0 | 0.050 |
| Emission spectrographic |  | 1 | 39 | 5 | 0.065 |
| Neutron activation |  | 1 | 24 | 10 | 0.049 |
| iNot specified |  | 1 | 14 | 10 | 0.059 |

$\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean.

Summary of analytical methods for Bi in $\mathrm{CPB}-1$ (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Atomic absorption | $\mathrm{HNO}_{3}+\mathrm{HCl}$ and/or $\mathrm{HClO}_{4}+\mathrm{HF} ;$ final scln dilute |  |  |  |  |
|  | $\mathrm{HCl} \mathrm{HNO}_{3}$ or $\mathrm{HClO}_{4}$ | 3 | 5,19,34 | 30 | 0.021 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}$ and/or $\mathrm{HClO}_{4}$; final soln dilute HCl or $\mathrm{HNO}_{3}$ | 5 | 6,14,21,30,35 | 48 | 0.023 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}$; Bi sep'd as sulphide; final soln dilute HCl | 1 | 23 | 20 | 0.024 |
|  | $\mathrm{HClO}_{4}+\mathrm{HF}$; insol fused with $\mathrm{Na}_{2} \mathrm{CO}_{3}$; solns combined, dilute HCI | 1 | 34 | 10 | 0.021 |
| Colorimetric (spectrophotometric) |  |  |  |  |  |
| Iodide | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; Bi ext'd as dithiocarbamate | 1 | 3 | 10 | 0.022 |
| Bromide | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Bi ext'd with tri-noctylamine (benzene) | 1 | 24 | 10 | 0.027 |
| Emission spectrographic |  | 2 | 39,40 | 15 | 0.023 |
|  | Fire assay collection of Bi in Pb | 1 | 18 | 8 | 0.019 |

$N=$ number of laboratories; $n=$ number of results; $\bar{x}=$ overall mean.

Summary of methods for Fe in $\mathrm{CPB}-1$ (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Titrimetric }}{\text { Dichromate }}$ |  |  |  |  |  |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Fe}$ ppt'd with $\mathrm{NH}_{3}$, reduced with $\mathrm{SnCl}_{2}$ <br> $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (or $\mathrm{HClO}_{4}$ ); Fe ppt'd with $\mathrm{NH}_{3}$, reduced | 4 | 24,29,31,34 | 40 | 8.48 |
|  | with $\mathrm{SnCl}_{2}$ | 2 | 1,21 | 20 | 8.39 |
|  | reduced with $\mathrm{SnCl}_{2}$ | 3 | 5,6,23 | 30 | 8.47 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; other details not given | 1 | 35 | 4 | 8.33 |
|  | Decomposition not given, Fe reduced with $\mathrm{H}_{2} \mathrm{~S}$ | 1 | 18 | 12 | 8.52 |
|  | Details not given | 2 | $13,14$ | 20 | 8.44 |
| Permanganate | Sample roasted, treated with $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Fe}$ reduced with $\mathrm{SnCl}_{2}$ | 1 | 26 | 10 | 8.59 |
| Ceric amm. sulphate | $\mathrm{Na}_{2} \mathrm{O}_{2}+\mathrm{NaOH}$ fusion; cake dissolved in dilute HCl; Fe ppt'd with $\mathrm{NH}_{3}^{2}$, Fe reduced with Pb 。 | 1 | 9 | 10 | 8.59 |
| Atomic absorption |  |  |  |  |  |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{HClO}_{4} ; \mathrm{Fe}+\mathrm{Pb}$ ppt'd with $\mathrm{NH}_{3}-\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}{ }^{\prime}$ dissolved in $\mathrm{HNO}_{3}$; insol. fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ combined with above | 1 | 1 | 10 | 8.33 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF} ;$ final soln $1 \% \mathrm{~V} / \mathrm{V} \mathrm{HNO}_{3}$ containing EDTA | 1 | 40 | 12 | 8.21 |
|  | $\mathrm{HNO}_{3}$ (fuming); dilution with $\mathrm{H}_{2} \mathrm{O}$ | 1 | 38 | 10 | 8.32 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; cake dissolved in dilute HCl | 1 | 2 | 10 | 8.24 |

$\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean.

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Titrimetric |  |  |  |  |  |
| EDTA | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Pb}$ isolated as $\mathrm{PbSO}_{4}$, dissolved in acetate or chloride medium and titrated either at room temp or near boiling point (see Appendix B) | 5 | $\begin{aligned} & 1,1 \mathrm{a}, 5,18, \\ & 37 \end{aligned}$ | 52 | 64.83 |
|  | $\mathrm{HBr}+\mathrm{Br}$; as above | 1 | 35 | 12 | 64.79 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Pb isolated by extn as diethyldithiocarbamate | 1 | 4.5 | 10 | 64.65 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{Br}_{2} ;$ no other details given | 1 | 32 | 10 | 64.59 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Pb isolated as $\mathrm{PbSO}_{4}$, after dissolution in acetate titrated potentiometrically | 1 | 16 | 10 | 64.63 |
| Molybdate | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (two also with HF ); Pb isolated as $\mathrm{PbSO}_{4}$ dissolved in acetate and titrated using tannic acid as external indicator (see Appendix B) | 7 | $\begin{aligned} & 6,9,13,21, \\ & 23,34,40 \end{aligned}$ | 79 | 64.81 |
|  | $\mathrm{HNO}_{3}+\mathrm{KClO}_{4}+\mathrm{HBr} ; \mathrm{Pb}$ isolated as PbS which, after dissolution, titrated as above | 1 | 30 | 10 | 64.91 |
|  | Details not give | 1 | 14 | 10 | 65.17 |
| Chromate-Iodometric | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Pb}$ isolated as $\mathrm{PbSO}_{4}$, converted to $\mathrm{PbCrO}_{4}$ and dissolved in HCl medium containing iodide; dên completed by titration with thiosulphate (see Appendix B) | 1 | 26 | 10 | 64.09 |
| Atomic absorption |  |  |  |  |  |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; cake dissolved in HCl ; a.a. by slanted burner technique | 1 | 2 | 10 | 64.92 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HClO}_{4}$; no other details given | 2 | 19.,26 | 20 | 64.66 |
| Gravimetric |  |  |  |  |  |
| - | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Pb}$ isolated as $\mathrm{PbSO}_{4}$, dissolved in amm. acetate; ppt'd as $\mathrm{PbCrO}_{4}$ and weighed | 3 | 24,29,39 | 25 | 64.70 |
|  | difference | 1 | 33 | 10 | 64.53 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl} ; \mathrm{Pb}$ ppt'd as $\mathrm{PbSO}_{4}$, no other details given | 1 | 38 | 10 | 64.35 |

[^1]TABLE 5(f)
Summary of analytical methods for Sb in $\mathrm{CPB}-1$ (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Atomic absorption |  |  |  |  |  |
|  | $\mathrm{HNO}_{3}$; final soln $2 \% \mathrm{w} / \mathrm{v}$ tartaric $+12 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$ | 1 | 9 | 10 | 0.33 |
|  | $\mathrm{HNO}_{3}$; final soln dilute tartaric | 1 | 21 | 10 | 0.35 |
|  | $\mathrm{HCl}+\mathrm{KClO}_{3}$; final soln dilute tartaric + HCl | 1 | 6 | 10 | 0.40 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}^{3}+\mathrm{HClO}_{4} ; \text { final soln } 10 \% \mathrm{~V} / \mathrm{V} \mathrm{HCl}$ | 1 | 14 | 10 | 0.37 |
|  | $\mathrm{HNO}_{3}+\mathrm{HF}$; final soln $10 \% \mathrm{v} / \mathrm{v} \mathrm{HNO}_{3}$ | 1 | 5 | 10 | 0.37 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl} ;$ no other details given | 2 | 30,35 | 14 | 0.37 |
|  | $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Sb}$ sep'd by distillation; final soln dilute $\mathrm{HCl}+\mathrm{HB} . \mathrm{r}$ | 1 | 34 | 10 | 0.33 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; final soln dilute HCl | 1 | 24 | 10 | 0.37 |
| Colorimetric (spectrophotometric) |  |  |  |  |  |
| Iodide | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Sb}$ coppt'd with Fe , ext'd as xanthate | 1 | 3 | 10 | 0.37 |
| Rhodamine B | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; Sb ext'd as xanthate | 1 | 23 | 10 | 0.35 |
| Emission spectroscopic |  | 2 | 39,40 | 15 | 0.33 |

$N=$ number of laboratories; $n=$ number of results; $\bar{x}=$ overall mean.

Summary of analytical methods for $\mathrm{SiO}_{2}$ in $\mathrm{CPB}-1$ (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\overline{\mathrm{x}}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gravimetric | $\mathrm{HCl}\left(+\mathrm{HNO}_{3}\right)+\mathrm{HClO}$; residue fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$; cake dissolved |  |  |  |  |
|  | in $\mathrm{HCl} ; \mathrm{SiO}_{2}$ dehydrated with $\mathrm{HClO}_{4}$; volatilized with HF | 3 | 1,4,34 | 30 | 0.73 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}$ (or HBr ) $+\mathrm{H}_{2} \mathrm{SO}_{4}$; insol $+\mathrm{PbSO}_{4}$ treated with acetate, volatilized with HF | 3 | 24,29,35 | 28 | 0.70 |
|  | Leach with HCl or dilute $\mathrm{HNO}_{3}$; residue fused with $\mathrm{Na}_{2} \mathrm{O}_{2}$ or $\mathrm{Na}_{2} \mathrm{CO}_{3}$; cake |  |  |  |  |
|  | dissolved in $\mathrm{HCl} ; \mathrm{SiO}_{2}$ dehydrated with $\mathrm{HClO}_{4}$ or HCl ; volatilized with HF Na fusion cake dissolved in HCl ; SiO dehydrated with HClO and | 2 | 5,19 | 20 | 0.70 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion, cake dissolved in $\mathrm{HCl} ; \mathrm{SiO}_{2}$ dehydrated with $\mathrm{HClO}_{4}$ and weighed directly; no HF | 2 | 14,23 | 20 | 0.82 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; no other details given | 1 | 13 | 10 | 0.78 |
| Atomic absorption | $\mathrm{Na}_{2} \mathrm{O}_{2}$ sinter; cake dissolved in $5 \% \mathrm{~V} / \mathrm{v} \mathrm{HCl}$ | 1 | 2 | 10 | 0.73 |
|  | Li metaborate fusion; cake dissolved in $\mathrm{HF}+\mathrm{H}_{3} \mathrm{BO}_{3}$ | 1 | 26 | 10 | 0.76 |

$\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean.

Summary of analytical methods for Zn in CPB-l (outliers excluded)

| Method | Decomposition, separations, etc. | N | Lab no. | n | $\bar{x}$ (wt \%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Titrimetric |  |  |  |  |  |
| EDTA | $\mathrm{HNO}_{3}+\mathrm{HCl}+$ one or more of: $\mathrm{Br}_{2}, \mathrm{HF}, \mathrm{HCl}, \mathrm{HClO}_{4}$; zinc sep'd by extn with MIBK | 4 | 4,18,24,33 | 35 | 4.56 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Fe removed by pptn with $\mathrm{NH}_{3}$ or NaOH | 2 | 5,39 | 14 | 4.33 |
|  | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Zn sep'd by anion exchange | 1 | 45 | 10 | 4.42 |
| Ferrocyanide | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} ; \mathrm{Fe}$ removed with $\mathrm{NH}_{3} ; \mathrm{Zn}$ sep'd as sulphide | 1 | 33 | 6 | 4.36 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCI}+\mathrm{KClO}_{3}$; Fe removed with $\mathrm{NH}_{3}$; Cu removed with $\mathrm{Pb}^{\circ}$ | 1 | 30 | 10 | 4.41 |
|  | Details not given | 2 | 13,14 | 20 | 4.50 |
| Ferrocyanide-amperometric <br> Atomic absorption | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$; Fe removed with $\mathrm{NH}_{3}$ | 1 | 45 | 10 | 4.45 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}$ and/or $\mathrm{HF}+\mathrm{HClO}_{4}$; final soln dilute $\mathrm{HClO}_{4}$ | 7 | $\begin{aligned} & 1,6,9,16,19, \\ & 21,34 \end{aligned}$ | 69 | 4.39 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{HF}$; final soln dilute $\mathrm{HNO}_{3}$ | 2 | 26,40 | 22 | 4.37 |
|  | $\mathrm{HNO}_{3}+\mathrm{Br}_{2}+\mathrm{HCl} ;$ final soln dilute $\mathrm{HNO}_{3}$ | 1 | 31 | 10 | 4.34 |
|  | $\mathrm{Na}_{2} \mathrm{O}_{2}$ fusion; cake dissolved in dilute HCl or $\mathrm{HNO}_{3}$ | 2 | 2,24 | 20 | 4.51 |
|  | $\mathrm{HNO}_{3}$ (fuming) | 1 | 38 | 10 | 4.31 |
|  | $\mathrm{HNO}_{3}+\mathrm{HCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$ | 1 | 39 | 5 | 4.26 |
|  | $\mathrm{HBr}+\mathrm{Br}_{2} ; \mathrm{Pb}$ sep${ }^{\text {id }}$ as $\mathrm{PbSO}_{4}$ | 1 | 35 | 8 | 4.37 |

[^2]TABLE 6
Methodological classification for elements not certified (outliers excluded)

| Element <br> (oxide) | Method | N | n | $\overline{\mathrm{x}}$ | spread \% | $\overline{\mathrm{CV}}$, \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (wt \%) |  |  |
| CaO |  |  |  |  |  |  |
|  | AA | 9 | 99 | 0.88 | 8.7 | 2.1 |
| Mgo | A | 11 | 118 | 0.15 | 12.0 | 2.0 |
|  | AA | 11 | 118 | 0.15 | 12.0 | 2.0 |
| Mn | AA | 12 | 132 | 0.039 | 11.5 | 2.6 |
|  | COLOR | 1 | 10 | 0.040 | 1. | 0.9 |
| Sn |  | 2 | 30 |  | -- |  |
|  | COLOR | 1 | 10 | 0.02 | -- | 7 |
|  | ES | 3 | 19 | 0.03 | 112 | 4 |
|  |  |  |  | $(\underline{\mu g / g})$ |  |  |
| Au |  |  |  |  |  |  |
|  | FA-AA | 3 | 43 | 0.2 | 310 | 9 |
|  | FA | 1 | 10 | 0.1 | -- | -- |
| In | AA | 3 | 28 | 14 | 110 | 11 |
|  | COLOR | 1 | 10 | 12 | 11 | 13 |
|  | ES | 2 | 15 | 13 | -- | 13 |
| Se |  |  |  |  |  |  |
|  | AA | 3 | 26 | 31 | 34 | 5 |
|  | COLOR | 4 | 40 | 31 | 45 | 3 |
| Te |  |  |  |  |  |  |
|  | COLOR | $\frac{1}{2}$ | 14 | 0.5 0.8 | - | 12 3 |

$A A=$ atomic absorption; $P A-A A=$ fire assay-atomic absorption; COLOR $=$ colorimetric (spectrophotometric); ES = emission spectrographic.
$\mathrm{N}=$ number of sets; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean of sets; Spread $=95 \%$ confidence interval as percentage of mean; $\overline{\mathrm{CV}}=$ average within-lab coefficient of variation.

TABLE 7
Laboratory means, coefficients of variatıon and summary of $t$-test on between bottle results for certified constituents
Ag ( $\mu \mathrm{g} / \mathrm{g}$ )

|  |  | BOTTLE 1 |  |  | BOTTLE 2 |  |  | NULL HYPOTH. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST.DEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST.DEV. | C.V. (x) |
| LAB- 1 | ( $F A-A A$ ) | 5 | 611.8000 | 8.6718 | 5 | 628.2000 | 3.8341 | REJECT | 10 | 620.0000 | 10.7083 | 1.73 |
| LAB- 5 | (FA) | 5 | 610.3000 | 2.8627 | 5 | 609.4800 | 2.9474 | A | 10 | 609.8900 | 2.7731 | . 45 |
| LAB- 6 | (FA) | 5 | 627.4000 | 2.8810 | 5 | 621.2000 | 5.8907 | A | 10 | 624.3000 | 5.4579 | .87 |
| LAB- 9 | (FA-AA) | 3 | 602.3000 | 3.7403 | 3 | 595.9000 | 1.4000 | A | 6 | 599.1000 | 4.3206 | . 72 |
| LAB-12 | ( $F A-A A$ ) | 5 | 642.4000 | 2.8810 | 5 | 640.4000 | 1.8166 | A | 10 | 641.4000 | 2.5033 | . 39 |
| LAB-12 | ( $F A-A A$ ) | 5 | 632.8000 | 4.2071 | 5 | 634.0000 | 7.3144 | A | 10 | 633.4000 | 5.6608 | . 89 |
| $L A B-14$ | (FA) | 5 | 624.0000 | 6.1644 | 5 | 620.2000 | 3.0332 | A | 10 | 622.1000 | 4.9989 | . 80 |
| $L A B-16$ | (FA-AA) | 5 | 603.0000 | 2.4495 | 5 | 600.0000 | 7.0356 | A | 10 | 601.5000 | 5.2122 | . 87 |
| LAB-18 | (FA) | 4 | 645.0000 | 10.0000 | 4 | 650.0000 | 11.5470 | A | 8 | 647.5000 | 10.3510 | 1.60 |
| LAB-19 | (AA) | 5 | 641.8000 | 6.2209 | 5 | 643.8000 | 1.7889 | A | 10 | 642.8000 | 4.4422 | . 69 |
| $L A B-21$ | (FA) | 5 | 637.4000 | 3.5777 | 5 | 626.4000 | 2.5100 | REJEC ${ }^{\text {d }}$ | 10 | 631.9000 | 6.4885 | 1.03 |
| LAB-24 | (AA) | 5 | 614.2000 | 1.0954 | 5 | 613.6000 | 3.7815 | A | 10 | 613.9000 | 2.6437 | . 43 |
| $L A B-26$ | (AA) | 5 | 628.8000 | 4.1473 | 5 | 628.4000 | 4.3359 | A | 10 | 628.6000 | 4.0056 | . 64 |
| $L A B-30$ | (AA) | 5 | 611.2000 | 9.0111 | 5 | 620.8000 | 3.9623 | A | 10 | 616.0000 | 8. 2865 | 1.35 |
| LAB-31 | (AA) | 5 | 618.0000 | 8.3666 | 5 | 622.0000 | 4.4721 | A | 10 | 620.0000 | 6.6667 | 1.08 |
| LAB-33 | (AA) | 5 | 626.6000 | 2.7928 | 5 | 626.6000 | 2.5100 | A | 10 | 626.6000 | 2.5033 | . 40 |
| LAB-34 | (FA) | 5 | 627.9000 | 5.5915 | 5 | 629.9200 | 6.0586 | A | 10 | 628.9100 | 5.5985 | . 89 |
| LAB-35 | (AA) | 2 | 635.0000 | 1.4142 | 2 | 637.5000 | . 7071 | A | 4 | 636.2500 | 1.7078 | .27 |
| LAB-37 | (FA) | 5 | 630.1200 | 2.7298 | 5 | 629.4000 | 2.2045 | A | 10 | 629:7600 | 2.3698 | . 38 |
| LAB-38 | (AA) | 5 | 620.0000 | 10.0000 | 5 | 606.0000 | 5.4772 | REJECT | 10 | 613.0000 | 10.5935 | 1.73 |
| LAB-39 | (ES) |  | ERE IS ONL | Y 1 Bot Tle |  |  |  |  | 5 | 635.0000 | 15.8114 | 2.49 |
| $L A B-40$ | (AA) | 5 | 648.0000 | 16.8077 | 5 | 652.0000 | 5.7009 | A | 10 | 650.0000 | 12.0185 | 1.85 |

variance between sets, between bottles and within bottles $=1,40 \times 10^{2}, 1.53 \times 10^{1}$ and $3.26 \mathrm{x} 10^{1}$, respectively.

$$
\mathrm{A1}_{2} \mathrm{O}_{3}(\mathrm{wt} 8)
$$

|  |  | BOTTLE 1 |  |  | bottle 2 |  |  | NULL HYPOTH. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST.DEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST.DEV. | C.V.(\%) |
| LAB- 1 | (AA) | 5 | . 3400 | . 0141 | 5 | .3160 | . 0219 | A | 10 | .3280 | . 0215 | 6.55 |
| LAB- 4 | (AA) | 5 | . 2868 | . 0053 | 5 | . 2866 | . 0030 | A | 10 | . 2867 | . 0041 | 1.41 |
| LAB- 5 | (AA) | 5 | . 2800 | . 0000 | 5 | .2780 | . 0045 | A | 10 | . 2790 | . 0032 | 1.13 |
| LAB- 6 | (AA) | 5 | . 2840 | . 0055 | 5 | . 2940 | . 0055 | REJECT | 10 | . 2890 | . 0074 | 2.55 |
| LAB- 9 | (AA) | 5 | - 2960 | . 0089 | 5 | .2720 | . 0110 | REJECT | 10 | . 2840 | .015日 | 5.56 |
| LAB-14 | (AA) | 5 | . 2812 | . 0018 | 5 | . 2802 | . 0023 | A | 10 | . 2807 | .0020 | . 71 |
| LAB-18 | (AA) | 4 | .3050 | . 0129 | 4 | . 3025 | . 0126 | A | 8 | .3038 | . 0119 | 3.91 |
| LAB-19 | (AA) | 5 | . 1880 | . 0045 | 5 | . 1960 | . 0055 | REJECT | 10 | .1920 | . 0063 | 3.29 |
| $L A B-21$ | (AA) | 5 | . 3520 | . 0084 | 5 | .3420 | . 0148 | A | 10 | . 3470 | . 0125 | 3.61 |
| LAB-26 | ( $A A$ ) | 5 | . 2660 | . 0134 | 5 | .2700 | . 0141 | A | 10 | . 2680 | .0132 | 4.91 |
| LAB-23 | (AA) | 10 | . 2580 | . 0079 | 10 | .2610 | . 0088 | A | 20 | . 2595 | .0083 | 3.18 |
| $L A B-34$ | (AA) | 5 | . 2850 | . 0068 | 5 | .2892 | . 0022 | A | 10 | .2871 | .0053 | 1.83 |
| LAB-35 | (AA) | 2 | . 1750 | .0071 | 2 | .1700 | .0141 | A | 4 | . 1725 | . 0096 | 5.55 |

Variance between sets, between bottles and within bottles $=2.96 \times 10^{-4}, 5.51 \times 10^{-5}$ and $8.31 \times 10^{-5}$, respectively.

|  |  | BOTTLE 1 |  |  |  | BOTILE 2 |  |  | NULL HYPOTR. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | $N$ | MEAN | ST.DEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST. OEV. | C.V. (\%) |
| LAB- 3 | (COLOR) | 5 | 5 | . 0613 | . 0004 | 5 | .0615 | . 0004 | A | 10 | . 0614 | .0003 | .57 |
| LAB- 5 | (COLOR) | 5 | 5 | . 0440 | . 0055 | 5 | . 0400 | 0.0000 | A | 10 | . 0420 | . 0042 | 10.04 |
| LAB-6 | (COLOR) | 5 | 5 | . 0883 | . 0022 | 5 | .0884 | . 0046 | A | 10 | . 0883 | . 0034 | 3.87 |
| LAB-9 | (COLOR) | 5 | 5 | . 0604 | . 0057 | 5 | . 0638 | . 0037 | A | 10 | . 0621 | . 0049 | 7.83 |
| LAB-13 | (TITR) | 5 | 5 | . 1815 | . 0018 | 5 | . 1823 | . 0025 | A | 10 | .1819 | . 0021 | 1.16 |
| $L A B=14$ |  | 3 | 3 | . 0593 | . 0006 | 3 | . 0593 | . 0006 | A | 6 | . 0593 | .0005 | . 87 |
| LAB-16 | (AA) | 5 | 5 | . 0497 | . 0012 | 5 | . 0499 | . 0010 | A | 10 | . 0498 | . 0011 | 2.13 |
| LAB-18 | (COLOR) | 4 | 4 | . 0585 | . 0031 | 4 | . 0583 | . 0021 | A | 8 | . 0584 | . 0024 | 4.19 |
| LAB-21 | (TITR) | 5 | 5 | .0482 | . 0047 | 5 | . 0508 | . 0019 | A | 10 | . 0495 | . 0036 | 7.33 |
| LAB-23 | (COLOR) | 11 |  | . 0622 | . 0046 | 11 | . 0533 | . 0105 | REJECT | 22 | . 0577 | . 0092 | 15.87 |
| LAB-24 | (COLOR) | 5 | 5 | . 0585 | . 0047 | 5 | .0587 | . 0067 | A | 10 | . 0586 | .0055 | 9.31 |
| LAB-24 | (NAA) | 6 | 6 | . 0491 | . 0021 | 6 | . 0481 | . 0028 | A | 12 | . 0486 | . 0025 | 5.05 |
| LAB-30 | (AA) | 5 | 5 | . 0650 | . 0014 | 5 | . 0658 | . 0004 | A | 10 | . 0654 | . 0011 | 1.64 |
| $L A B-33$ | (TITR) | 5 | 5 | . 0556 | . 0044 | 5 | .0596 | . 0026 | A | 10 | . 0576 | . 0040 | 7.00 |
| LAB-34 | (COLOR) | 5 | 5 | . 0466 | . 0029 | 5 | . 0429 | . 0019 | REJECT | 10 | . 0448 | . 0030 | 6.77 |
| LAB-35 | (TITR) | 2 | 2 | . 0500 | 0.0000 | 2 | . 0400 | 0.0000 | ***R** | 4 | . 0450 | . 0058 | 12.83 |
| LAB-38 | (AA) | 5 | 5 | . 0586 | . 0019 | 5 | .0606 | . 0019 | A | 10 | . 0596 | . 0021 | 3.48 |
| LAB-39 | (ES) |  | THERE | IS ONLY | 180 TILE |  |  |  |  | 5 | . 0650 | . 0035 | 5.44 |
| LAB-40 | (COLOR) | 5 | 5 | . 0582 | .0013 | 5 | . 0586 | . 0016 | A | 10 | . 0584 | .0014 | 2.38 |

Variance between sets, between bottles and within bottles $=5.13 \times 10^{-5}$, $1.00 \times 10^{-6}$ and $1.72 \mathrm{x} 10^{-5}$, respectively.

TABLE 7 (cont'd)
Bi (wt q )


Variance between sets, between bottles and within bottles $=3.57 \times 10^{-6}$, 0 and $8.14 \times 10^{-7}$, respectively.

|  |  | BOTTLE I |  |  | BOTTLE 2 |  |  | NULL HYPOTH. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST.OEV. | N | MEAN | ST.DEV. |  | N | MEAN | ET.DEV. | C.V.(\%) |
| LAB-1 | (AA) | 5 | . 0150 | . 0000 | 5 | . 0150 | . 0000 | A | 10 | . 0150 | . 0000 | . 00 |
| LAB- 5 | ( $A A$ ) | 5 | . 0152 | .0004 | 5 | . 0152 | . 0004 | A | 10 | . 0152 | . 0004 | 2.77 |
| LAB- 6 | (AA) | 5 | . 0143 | .0001 | 5 | .0143 | 0.0000 | A | 10 | .0143 | .0000 | . 30 |
| LAB- 9 | (AA) | 5 | . 0134 | .0005 | 5 | . 0148 | . 0004 | REJECT | 10 | .0141 | . 0009 | 6.21 |
| LAB-13 | ( $A A$ ) | 5 | . 0100 | 0.0000 | 5 | .0100 | 0.0000 |  | 10 | . 0100 | . 0000 | . 00 |
| LAB-14 | (AA) | 5 | .0146 | . 0005 | 5 | .0146 | . 0005 | A | 10 | . 0146 | . 0005 | 3.54 |
| LAB-18 | (AA) | 4 | . 0140 | 0.0000 | 2 | . 0140 | 0.0000 |  | 6 | .0140 | .0000 | . 00 |
| LAB-19 | ( $A A$ ) | 5 | . 0147 | . 0002 | 5 | .0149 | . 0001 | A | 10 | . 0148 | . 0002 | 1.33 |
| LAB-21 | (AA) | 5 | . 0144 | .0005 | 5 | .0140 | .0000 | A | 10 | . 0142 | . 0004 | 2.97 |
| LAB-23 | ( AA ) | 10 | .0131 | .0010 | 10 | . 0130 | . 0011 | A | 20 | .0131 | .0010 | 7.65 |
| LAB-30 | (AA) | 5 | .0188 | .0016 | 5 | .0184 | . 0013 | A | 10 | .0186 | . 0014 | 7.69 |
| LAB-34 | (AA) | 5 | .0145 | .0001 | 5 | .0147 | . 0002 | REJECT | 10 | . 0146 | .0002 | 1.23 |
| LAB-35 | (AA) | 6 | . 0132 | . 0003 | 6 | .0135 | . 0003 | A | 12 | .0134 | . 0003 | 2.40 |
| LAB-38 | (AA) | 5 | . 0147 | .0002 | 5 | .0148 | .0002 | A | 10 | .0148 | . 0002 | 1.42 |
| LAB-39 | (ES) |  | IS ONL | 1 bottle |  |  |  |  | 5 | . 0159 | .0022 | 13.81 |
| $L A B-40$ | (AA) | 6 | . 0156 | .0006 | 6 | . 0156 | . 0005 | A | 12 | . 0156 | . 0005 | 3.30 |

Variance between sets, between bottles and within bottles $=8.24 \times 10^{-7}, 7.58 \times 10^{-8}$ and $1.21 \mathrm{x} 10^{-7}$, respectively.

|  |  | BOTTLE 1 |  |  |  | BDTTLE 2 |  |  | NULL HYPOTH. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | N | MEAN | ST.DEV. | N | MEAN | ST. DEV. |  | N | MEAN | ST.DEV. | C.V. (\%) |
| LAB- 1 | (COLOR) | 5 | 5 | . 2564 | . 0046 | 5 | . 2578 | .0036 | A | 10 | . 2571 | . 0039 | 1.53 |
| LAB- 1 | (AA) | 5 | 5 | . 2600 | . 0000 | 5 | . 2600 | . 0000 | A | 10 | - 2600 | . 0000 | . 00 |
| LAB- 1 | ( $A A$ ) | 5 | 5 | . 2620 | . 0045 | 5 | . 2620 | . 0045 | A | 10 | . 2620 | . 0042 | 1.61 |
| LAB- 2 | (AA) | 5 | 5 | . 2504 | . 0023 | 5 | . 2540 | . 0021 | REJECT | 10 | . 2522 | . 0028 | 1.12 |
| LAB- 3 | (COLOR) |  | 5 | . 2668 | . 0034 | 5 | . 2660 | . 0014 | A | 10 | . 2664 | . 0025 | . 94 |
| LAB- 5 | (AA) | 5 | 5 | . 2400 | . 0000 | 5 | . 2400 | . 0000 | A | 10 | . 2400 | . 0000 | . 00 |
| LAB- 6 | (AA) | 5 | 5 | . 2446 | .0005 | 5 | . 2430 | . 0027 | A | 10 | . 2438 | . 0020 | . 84 |
| LAB- 9 | (AA) | 5 | 5 | . 2334 | . 0070 | 5 | . 2492 | . 0066 | REJECT | 10 | .2413 | . 0105 | 4.36 |
| LAB-14 | (AA) | 5 | 5 | . 2442 | . 0023 | 5 | . 2452 | . 0022 | A | 10 | . 2447 | . 0022 | . 88 |
| LAB-1B | (AA) | 4 | 4 | . 2600 | . 0082 | 4 | . 2625 | . 0050 | A | 8 | . 2613 | . 0064 | 2.45 |
| LAB-19 | (AA) | 5 | 5 | . 2578 | . 0013 | 5 | . 2594 | .0019 | A | 10 | . 2586 | . 0018 | . 69 |
| LAB-21 | (AA) | 5 | 5 | . 2488 | . 0013 | 5 | . 2468 | . 0008 | REJECT | 10 | . 2478 | . 0015 | .60 |
| LAB-23 | (AA) | 10 |  | . 2600 | . 0000 | 9 | . 2622 | . 0067 | A | 19 | . 2611 | . 0046 | 1.76 |
| LAB-24 | (AA) |  | 5 | . 2480 | . 0045 | 5 | . 2460 | . 0055 | A | 10 | . 2470 | . 0048 | 1.96 |
| LAB-26 | (AA) | 5 | 5 | . 2540 | . 0014 | 5 | . 2540 | .0021 | A | 10 | . 2540 | .0017 | .67 |
| LAB-30 | (AA) |  | 5 | .2526 | . 0025 | 5 | . 2480. | . 0037 | A | 10 | . 2503 | . 0039 | 1.54 |
| LAB-31 | (AA) |  | 5 | . 2620 | . 0045 | 5 | . 2620 | . 0045 | A | 10 | - 2620 | -0042 | 1.61 |
| LAB-32 | (AA) |  | 5 | . 2708 | . 0035 | 5 | . 2678 | . 0018 | A | 10 | . 2693 | . 0031 | 1.14 |
| LAB-34 | (AA) |  | 5 | .2482 | . 0027 | 5 | . 2470 | . 0007 | A | 10 | - 2476 | . 0020 | . 79 |
| LAB- 35 | (AA) |  | 6 | . 2600 | . 0110 | 6 | . 2583 | .0117 | A | 12 | - 2592 | .0108 | 4.18 |
| LAB-3B | (AA) |  | 5 | . 2474 | . 0042 | 5 | . 2422 | . 0034 | A | 10 | -2448 | . 0045 | 1.86 |
| LAB-39 | (TITR) |  | THERE | Is ONLY | 1 Bottle |  |  |  |  | 5 | - 2200 | . 0187 | 8.50 |
| LAB-39 | (TITR) |  | THERE | IS ONLY | 1 bottle |  |  |  |  | 5 | . 1320 | .0045 | 3.39 |
| LAB-40 | (AA) |  | 6 | . 2468 | .0035 | 6 | .2471 | . 0037 | A | 12 | . 2470 | .0035 | 1.40 |

Variance between sets, between bottles and within bottles $=7.04 \times 10^{-5}, 5.13 \times 10^{-6}$ and $1.51 \times 10^{-5}$, respectively.

TABLE 7 （cont＇d）
Fe（wt q）

|  |  | BOTtLE 1 |  |  | BOTTLE 2 |  |  | NULL HYPOTH． | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST．DEV． | N | MEAN | ST．DEV． |  | N | MEAN | ST．DEV． | C．V．（\％） |
| LAB－ 1 | （TITR） | 5 | 8.3760 | ．0251 | 5 | B． 3880 | ． 0342 | A | 10 | 8.3820 | ． 0290 | ． 35 |
| LAB－ 1 | （AA） | 5 | 8.3440 | ． 0134 | 5 | 8.3200 | ． 0000 | \＃＊＊が安 | 10 | 8.3320 | ． 0155 | .19 |
| LAB－ 2 | （AA） | 5 | 8.2340 | ． 0305 | 5 | 8.2480 | ． 0327 | A | 10 | 8.2410 | ． 0307 | ． 37 |
| LAB－ 5 | （TITR） | 5 | 8.5960 | ． 0251 | 5 | B． 5960 | ． 0134 | A | 10 | 8.5960 | ． 0190 | ． 22 |
| LAB－ 6 | （TITR） | 5 | 8.4020 | ． 0415 | 5 | 8.3800 | ． 0158 | A | 10 | 8.3910 | ． 0318 | ． 38 |
| LAB－ 9 | （TITR） | 5 | 8．6200 | ． 0500 | 5 | 8.5500 | ． 0274 | REJECT | 10 | 8.5850 | ． 0530 | ． 62 |
| LAB－13 | （TITR） | 5 | 8.3717 | ． 0141 | 5 | B． 3657 | ． 0089 | A | 10 | 8.3687 | ． 0116 | .14 |
| LAB－14 | （TITR） | 5 | 8.5460 | .0134 | 5 | 8.4900 | 0.0000 | ＊3＊23＊ | 10 | 8.5180 | ． 0308 | ． 36 |
| LAB－18 | （TITR） | 6 | 8.4983 | ． 0412 | 6 | 8.5350 | ． 0464 | A | 12 | 8.5167 | ． 0450 | ． 54 |
| LAB－19 | （AA） | 5 | 8.9280 | .0390 | 5 | 8.9360 | ．035B | A | 10 | 8.9320 | ． 0355 | ． 40 |
| LAB－－21 | （TITR） | 5 | 8.4040 | ． 0270 | 5 | 8.3980 | ． 0110 | A | 10 | 8.4010 | ． 0197 | ． 23 |
| LAB－23 | （TITR） | 5 | 8.4300 | ． 0224 | 5 | 8.3900 | ． 0224 | REJECT | 10 | 8.4100 | ． 0298 | ． 35 |
| LAB－23 | （TITR） | 5 | 8.3520 | ． 0045 | 5 | 8.3500 | ． 0000 | A | 10 | 8.3510 | ． 0032 | ． 04 |
| LAB－26 | （TITR） | 5 | 8.5940 | ． 0134 | 5 | 8.5820 | ． 0164 | A | 10 | 8.5880 | ． 0155 | ． 18 |
| LAB－29 | （TITR） | 5 | 8.4240 | ． 0502 | 5 | 8.4680 | ． 0920 | A | 10 | 8.4460 | ． 0769 | .91 |
| LAB－30 | （TITR） | 5 | B． 1600 | ． 0548 | 5 | 8.1200 | ． 0447 | A | 10 | 8.1400 | ． 0516 | ． 63 |
| LAB－31 | （TITR） | 5 | 8.5800 | ． 0300 | 5 | B． 6620 | ． 0268 | A | 10 | 8.6710 | ． 0285 | － 33 |
| LAB－32 | （AA） | 5 | 9.1360 | .0546 | 5 | 9.1000 | ． 0791 | A | 10 | 9.1180 | ． 0668 | ． 73 |
| LAB－34 | （TITR） | 5 | 8.4480 | .0110 | 5 | 8.4480 | ． 0110 | A | 10 | 8.4480 | ． 0103 | －12 |
| LAB－35 | （TITR） | 2 | 8.3250 | ． 0354 | 2 | B． 3250 | ． 0071 | A | 4 | 8.3250 | ． 0208 | ． 25 |
| LAB－38 | （AA） | 5 | 8.3980 | ． 0567 | 5 | 8.2480 | .1987 | A | 10 | 8.3230 | .1588 | 1.91 |
| LAB－39 | （TITR） |  | IS DNL | 1 8DTTLE |  |  |  |  | 5 | 8.1660 | ． 2007 | 2.46 |
| LAB－39 | （TITR） |  | IS ONL | 1 BDTTLE |  |  |  |  | 5 | 7.9660 | ． 0261 | ． 33 |
| $L A B=40$ | （AA） | 6 | 8.2167 | ． 0408 | 6 | 8.2083 | ． 0585 | A | 12 | 8.2125 | .0483 | ． 59 |

Variance between sets，between bottles and within bottles $=1.54 \times 10^{-2}, 5.99 \mathrm{x} 10^{-4}$ and $2.23 \mathrm{x} 10^{-3}$ ，respectively．

|  |  | B0TTLE 1 |  |  | BOTTLE 2 |  |  | NULL HYPOTH． | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST．DEV． | N | MEAN | ST．DEV． |  | N | MEAN | ST．DEV． | C．V．（\％） |
| LAB－ 2 | （ $A A$ ） | 5 | 6.1600 | ． 3782 | 5 | 6.1400 | ． 3050 | A | 10 | 6.1500 | ． 3240 | 5.27 |
| LAB－ 5 | （AA） | 5 | 5.7800 | .0837 | 5 | 5.7000 | ． 1225 | A | 10 | 5.7400 | －1075 | 1.87 |
| LAB－ 6 | （AA） | 5 | 5.1400 | ． 2510 | 5 | 5.1600 | .1517 | A | 10 | 5.1500 | ． 1958 | 3.80 |
| LAB－ 9 | （AA） | 5 | 5.8000 | ． 4472 | 5 | 6.0000 | 0.0000 | A | 10 | 5.9000 | ． 3162 | 5.36 |
| $L A B-14$ | （ $A A$ ） | 5 | 4.8200 | ． 1789 | 5 | 4.6000 | .1000 | REJECT | 10 | 4.7100 | .1792 | 3.80 |
| LAB－18 | （ $A A$ ） | 4 | 6.6000 | ． 5477 | 4 | 6.2500 | ． 4041 | A | 8 | 6.4250 | .4833 | 7.52 |
| $L A B-23$ | （AA） | 5 | 7.0000 | .1414 | 5 | 6.5600 | .1342 | REJECT | 10 | 6.7800 | ． 2658 | 3.92 |
| LAB－24 | （ $A A$ ） | 5 | 6.4000 | 1.1402 | 5 | 6.6000 | ． 5477 | A | 10 | 6.5000 | ． 8498 | 13.07 |
| LAB－30 | （AA） | 5 | 5.2000 | ． 0000 | 5 | 5.2800 | ． 1095 | A | 10 | 5.2400 | .0843 | 1.61 |
| $L A B-34$ | （COLOR） | 5 | 4.7860 | ． 1085 | 5 | 4.9660 | .1172 | REJECT | 10 | 4.8760 | ． 1426 | 2.92 |
| LAB－35 | （AA） | 2 | 5.5000 | ． 7071 | 2 | 4.0000 | 0.0000 | A | 4 | 4.7500 | ． 9574 | 20.16 |
| $L A B-38$ | （AA） | 5 | 4.4820 | ． 1105 | 5 | 4.3720 | ． 2357 | A | 10 | 4.4270 | ． 1830 | 4.13 |
| LAB－39 | （ES） |  | E IS ONL | 1 B0TTLE |  |  |  |  | 5 | 4.8000 | 2.1679 | 45.17 |
| LAB－40 | （AA） | 5 | 4.5260 | ． 5382 | 5 | 4.4100 | ． 3489 | A | 10 | 4.4680 | ． 4319 | 9.67 |

Variance between sets，between bottles and within bottles $=6.58 \times 10^{-1}$ ， 0 and $1.25 \times 10^{-1}$ ，respectively．

TABLE 7 (cont'd)
Pb (wt ${ }^{\text {f }}$ )


Variance between sets, between bottles and within bottles $=8.45 \times 10^{-2}, 3.58 \times 10^{-3}$ and $1.45 \times 10^{-2}$, respectively,

|  |  | BOTTLE 1 |  |  |  | BOTTLE 2 |  |  | NULL HYPOTH. | OVEPALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | N | MEAN | ST. DEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST.DEV. | C.V.(\%) |
| LAB- 5 | (GRAV) |  | 51 | 18.0620 | . 0522 | 5 | 17.9840 | . 0251 | REJECT | 10 | 18.0230 | . 0564 | . 31 |
| LAB- 6 | (GRAV) |  | 51 | 17.5340 | . 0422 | 5 | 17.6540 | . 0654 | REJECT | 10 | 17.5940 | .0818 | . 47 |
| LAB-9 | (GRAV) |  | 51 | 17.5620 | . 0409 | 5 | 17.5720 | . 0295 | A | 10 | 17.5670 | . 0340 | .19 |
| LAB-13 | (GRAV) |  | 51 | 17.9572 | . 0433 | 5 | 17.9211 | . 0655 | A | 10 | 17.9391 | . 0557 | .31 |
| LAB-14 | (COMB) |  | 51 | 17.6500 | . 2208 | 5 | 17.6500 | . 0612 | A | 10 | 17.6500 | . 1528 | . 87 |
| LAB-14 | (GRAV) |  | 51 | 17.9220 | . 0638 | 5 | 17.8860 | . 0999 | A | 10 | 17.9040 | .0813 | . 45 |
| LAB-18 | (COMB) | 4 | 41 | 17.8375 | . 0640 | 4 | 17.8875 | . 0250 | A | B | 17.8625 | .0523 | . 29 |
| LA8-21 | (GRAV) | 5 | 51 | 17.9740 | .1216 | 5 | 18.0380 | . 1062 | A | 10 | 18.0060 | . 1128 | .63 |
| LA8-23 | (GRAV) | 5 | 51 | 17.8120 | . 0942 | 5 | 17.6940 | . 0329 | REJECT | 10 | 17.7530 | . 0910 | .51 |
| LAB-26 | (COMB) | 5 | 51 | 18.2400 | . 1673 | 5 | 18.2600 | . 1673 | A | 10 | 18.2500 | . 1581 | . 87 |
| LAB-30 | (GRAV) | 5 | 51 | 16.9200 | . 3271 | 5 | 16.7600 | . 1817 | A | 10 | 16.8400 | . 2633 | 1.56 |
| LAB-31 | (GRAV) | 5 | 51 | 17.6080 | . 1326 | 5 | 17.7180 | . 1035 | A | 10 | 17.6630 | . 1262 | . 71 |
| LAB-34 | (GRAV) | 5 | 51 | 17.6520 | . 0363 | 5 | 17.6800 | . 0938 | A | 10 | 17.5660 | .0687 | . 39 |
| LAB-35 | (GRAV) | 2 | 21 | 17.9150 | . 2051 | 2 | 17.8150 | .0354 | A | 4 | 17.8650 | . 1333 | .75 |
| LAB-3B | (GRAV) | 5 | 51 | 18.0340 | . 0472 | 4 | 18.0425 | . 0340 | A | 9 | 18.0378 | . 0396 | .22 |
| LAB-39 | (GRAV) |  | THERE | IS ONLY | 1 BOTTLE |  |  |  |  | 5 | 18.0520 | . 0522 | .29 |
| LAB-39 | (GRAV) |  | THERE | IS ONLY | 1 Bottee |  |  |  |  | 5 | 18.8560 | . 1967 | 1.04 |


|  |  | bottle 1 |  |  | bottle 2 |  |  | NULL HYPOTH. | DVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | MEAN | ST.OEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST.DEV. | C.V.(8) |
| LAB- 3 | (COLOR) | 5 | . 3708 | . 0049 | 5 | . 3684 | . 0050 | A | 10 | . 3696 | . 0048 | 1.31 |
| LAB- 5 | ( $A A)$ | 5 | . 3660 | . 0055 | 5 | . 3660 | . 0055 | A | 10 | .3660 | . 0052 | 1.41 |
| LAB- 6 | (AA) | 5 | . 4004 | . 0056 | 5 | . 3996 | . 0042 | A | 10 | . 4000 | . 0047 | 1.17 |
| LAB- 9 | (AA) | 5 | . 3280 | . 0110 | 5 | . 3384 | . 014 B | A | 10 | . 3332 | .0135 | 4.04 |
| LAB-14 | (AA) | 5 | . 3682 | . 0059 | 5 | . 3660 | . 0030 | A | 10 | . 3671 | . 0046 | 1.24 |
| LAB-19 | (AA) | 5 | . 2974 | . 0021 | 5 | . 2988 | . 0008 | A | 10 | . 2981 | .0017 | . 56 |
| LAB-21 | (AA) | 5 | . 3424 | . 0005 | 5 | . 3478 | . 0008 | REJECT | 10 | . 3451 | . 0029 | . 85 |
| LAB-23 | (COLOR) | 5 | . 3488 | . 0166 | 5 | . 3544 | . 0171 | A | 10 | . 3516 | .0162 | 4.60 |
| LAB-24 | (AA) | 5 | . 3696 | . 0054 | 5 | . 3750 | . 0024 | A | 10 | . 3723 | . 0049 | 1.30 |
| LAB-30 | (AA) | 5 | . 3560 | . 0055 | 5 | .3600 | 0.0000 | A | 10 | . 3580 | . 0042 | 1.18 |
| LAB-34 | (AA) | 5 | - 3310 | . 0061 | 5 | . 3316 | .0030 | A | 10 | . 3313 | . 0045 | 1.37 |
| LAB-35 | (AA) | 2 | . 3850 | . 0071 | 2 | .3850 | .0071 | A | 4 | . 3850 | . 0058 | 1.50 |
| LAB-39 | (ES) | THERE | 15 ONLY | 1 B0TTLE |  |  |  |  | 5 | . 3254 | . 0102 | 3.15 |
| $L A B=40$ | (ES) | 5 | . 3300 | . 0224 | 5 | . 3240 | .0182 | A | 10 | . 3270 | . 0195 | 5.95 |

Variance between sets, between bottles and within bottles $=4.66 \times 10^{-4}$, 0 and $9.33 \times 10^{-5}$, respectively.

TABLE 7 (cont'd)
$\mathrm{SiO}_{2}$ (wt o

|  |  | BOTTLE 1 |  |  | Bottle 2 |  |  | NULL HYPOTH. | OVERALL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $N$ | NEAN | ST.DEV. | N | MEAN | ST.DEV. |  | N | MEAN | ST. DEV. | c.v. (\%) |
| LAB- 1 | (GRAV) | 5 | . 7300 | .0141 | 5 | .6800 | . 0000 | \#\#\#R** | 10 | .7050 | . 0280 | 3.97 |
| LAB- 2 | (AA) | 5 | .7268 | . 0047 | 5 | . 7260 | . 0106 | A | 10 | . 7264 | . 0077 | 1.06 |
| LAB- 4 | (GRAV) | 5 | .7188 | .0067 | 5 | . 7120 | . 0038 | A | 10 | . 7154 | . 0063 | . 88 |
| LAB- 5 | (GRAV) | 5 | . 6480 | . 0164 | 5 | .6340 | . 0114 | A | 10 | .6410 | .0152 | 2.38 |
| LAB- 9 | (GRAV) | 5 | 1.0900 | . 0548 | 5 | 1.1100 | . 0548 | A | 10 | 1.1000 | . 0527 | 4.79 |
| LAB-13 | (GRAV) | 5 | .7570 | .0336 | 5 | .8070 | . 0152 | REJECT | 10 | . 7820 | .0360 | 4.61 |
| LAB-14 | (GRAV) | 5 | . 8040 | . 0192 | 5 | . 8682 | . 0743 | A | 10 | . 8361 | . 0614 | 7.34 |
| LAB-18 | (GRAV) | 4 | . 5450 | . 0191 | 4 | . 5925 | . 0299 | REJECT | 8 | - 5688 | . 0344 | 6.05 |
| LAB-19 | (GRAV) | 5 | . 7446 | . 0364 | 5 | . 7614 | . 0331 | A | 10 | . 7530 | . 0340 | 4.51 |
| LAB-21 | (GRAV) | 5 | . 5980 | . 0045 | 5 | . 5860 | . 0114 | A | 10 | . 5920 | . 0103 | 1.74 |
| LAB-23 | (GRAV) | 5 | . 7980 | .0192 | 5 | . 8060 | . 0134 | A | 10 | . 8020 | .0162 | 2.02 |
| LAB-24 | (GRAV) | 5 | .7480 | .0482 | 5 | . 7500 | . 0235 | A | 10 | .7490 | . 0357 | 4.77 |
| LAB-26 | (AA) | 5 | . 7460 | .0513 | 5 | . 7680 | . 0554 | A | 10 | . 7570 | . 0517 | 6.82 |
| LAB-29 | (GRAV) | 5 | . 7120 | .0179 | 5 | . 6800 | . 0490 | A | 10 | . 6960 | . 0386 | 5.55 |
| LAB-34 | (GRAV) | 5 | .7600 | .0122 | 5 | . 7540 | . 0114 | A | 10 | . 7570 | . 0116 | 1.53 |
| LAB-35 | (GRAV) | 4 | .6425 | . 0222 | 4 | . 6525 | . 0287 | A | 8 | .6475 | .0243 | 3.76 |
| LAB-39 | (GRAV) |  | 15 ONLY | 1 BOTTLE |  |  |  |  | 5 | . 4380 | . 1588 | 36.26 |
| LAB-39 | (GRAV) |  | IS ONLY | 1 BOTTLE |  |  |  |  | 5 | 1.0560 | .0365 | 3.45 |

Variance between sets, between bottles and within bottles $=2.43 \times 10^{-3}, 2.81 \times 10^{-4}$ and $9.41 \times 10^{-4}$, respectively,

Zn (wt ó)


Variance between sets, between bottles and within bottles $=9.22 \times 10^{-3}$, 0 and $1.77 \times 10^{-3}$, respectively.

TABLE 8
Analytical results for reference concentrate cPB-1 +

Ag ( $\mu g / g$ )

| LAB-19 | ( $A A$ ) |
| :---: | :---: |
| LAB-24 | (AA) |
| LAB-26 | (AA) |
| $L A B=30$ | (AA) |
| LAB-31 | ( $A A$ ) |
| LAB-33 | ( $A A$ |
| LAB-35 | ( $A A$ ) |
| LAB-3B | ( $A A$ ) |
| LAB-40 | (AA) |
| LAB-39 | (ES) |
| LAB- 5 | (FA) |
| LAB- 6 | (FA) |
| LAB-14 | (FA) |
| LAB-18 | (FA) |
| L.AB-21 | (FA) |
| LAB-34 | (FA) |
| LAB-37 | (FA) |
| LAB- 1 | ( $F A-A A$ ) |
| LAB- 9 | ( $F A-A A$ ) |
| LAB-12 | ( $F A-A A$ ) |
| LAB-12 | ( $F A-A A$ ) |
| LAB-16 | (FA-AA) |


| 646 | 635 | 637 | 641 |
| :--- | :--- | :--- | :--- |
| 615 | 613 | 615 | 615 |
| 628 | 626 | 634 | 632 |
| 607 | 603 | 613 | 607 |
| 630 | 620 | 620 | 610 |
| 624 | 630 | 629 | 624 |
| 634 | 636 | 638 | 637 |
| 630 | 620 | 610 | 610 |
| 625 | 655 | 650 | 670 |
|  |  |  |  |
| 640 | 610 | 645 | 630 |
|  |  |  |  |
| 614 | 610 | 607 | 609 |
| 630 | 627 | 630 | 623 |
| 628 | 618 | 624 | 618 |
| 640 | 660 | 640 | 640 |
| 640 | 641 | 632 | 638 |
| 625 | 637 | 622 | 628 |
| 633 | 629 | 628 | 633 |
|  |  |  |  |
| 604 | 604 | 617 | 624 |
| 605 | 598 | 604 | 595 |
| 645 | 644 | 644 | 641 |
| 628 | 634 | 638 | 629 |
| 600 | 606 | 605 | 602 |


| 650 | 646 |
| :--- | :--- |
| 613 | 618 |
| 624 | 632 |
| 626 | 618 |
| 610 | 620 |
| 626 | 630 |
|  |  |
| 630 | 600 |
| 640 | 650 |
| 650 |  |


| 644 | 642 | 642 | 645 |
| :--- | :--- | :--- | :--- |
| 615 | 608 | 612 | 615 |
| 626 | 632 | 630 | 622 |
| 619 | 617 | 624 | 626 |
| 630 | 620 | 620 | 620 |
| 627 | 626 | 627 | 623 |
|  |  |  |  |
| 610 | 610 | 610 | 600 |
| 655 | 650 | 660 | 645 |
|  |  |  |  |
|  |  |  |  |
| 607 | 613 | 610 | 606 |
| 614 | 617 | 628 | 621 |
| 618 | 618 | 618 | 624 |
| 660 | 640 |  |  |
| 628 | 627 | 627 | 628 |
| 633 | 630 | 636 | 630 |
| 629 | 628 | 628 | 633 |
| 624 | 624 | 631 | 631 |
| 643 | 640 |  |  |
| 629 | 630 | 631 | 638 |
| 600 | 595 | 598 | 645 |
|  |  |  | 595 |

$$
\mathrm{Al}_{2} \mathrm{O}_{3} \quad\left(\mathrm{wt} \frac{\square}{8}\right)
$$

| $\angle A B-1$ | $(A A)$ |
| ---: | :--- |
| $L A B-4$ | $(A A)$ |
| $L A B=5$ | $(A A)$ |
| $L A B-6$ | $(A A)$ |
| $L A B-9$ | $(A A)$ |
| $L A B-14$ | $(A A)$ |
| $L A B-18$ | $(A A)$ |
| $* L A B-19$ | $(A A)$ |
| $* L A B-21$ | $(A A)$ |
| $L A B-26$ | $(A A)$ |
| $L A B-23$ | $(A A)$ |
| $\angle A B-34$ | $(A A)$ |
| $* L A B-35$ | $(A A)$ |


|  VOUV |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

.34
.38
.28
.29
.30
.28
.32
.19
.35
.26
.27
.26
.28
.18
.34
.28
.28
.28
.28
.28
.31
.19
.36
.25
.26
.26
.28
.16


| .36 | .30 | .34 | .30 |
| :--- | :--- | :--- | :--- |
| .30 | .29 | .28 | .29 |
| .28 | .27 | .28 | .28 |
| .28 | .30 | .29 | .29 |
| .30 | .26 | .28 | .28 |
| .28 | .28 | .28 | .28 |
| .32 | .30 | .29 | .30 |
| .19 | .20 | .20 | .19 |
| .35 | .36 | .34 | .35 |
| .28 | .25 | .27 | .27 |
| .26 | .25 | .25 | .25 |
| .27 | .25 | .25 | .25 |
| .28 | .29 | .29 | .29 |


| .30 | .34 |
| :--- | :--- |
| .29 | .29 |
| .28 | .28 |
| .29 | .30 |
| .26 | .28 |
| .28 | .28 |
| .19 | .20 |
| .34 | .32 |
| .27 | .29 |
| .26 | .25 |
| .29 | .27 |
| .29 | .29 |

As (wt q)

| LA8-16 | (AA) | . 049 | . 051 | . 051 | . 049 | . 049 | . 050 | . 052 | . 049 | . 049 | . 050 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB-30 | ( $A A$ ) | .063 | .066 | . 066 | . 066. | . 064 | . 066 | . 065 | . 066 | . 066 | . 066 |
| LAB-38 | ( $A A$ ) | . 057 | .061 | . 058 | .060 | . 057 | .063 | .060 | . 060 | .063 | . 058 |
| * LAB-13 | (TITR) | .182 | .178 | .182 | . 182 | . 182 | .182 | . 182 | .184 | .178 | .184 |
| LAB-21 | (TITR) | . 045 | . 049 | .042 | . 052 | . 053 | .049 | .050 | . 050 | .054 | .051 |
| LAB-33 | (TITR) | .051 | . 058 | . 061 | . 057 | .051 | .061 | .061 | . 055 | .061 | . 060 |
| LAB-35 | (TITR) | .050 | .050 | . 040 | . 040 |  |  |  |  |  |  |
| LAB- 3 | (COLOR) | . 061 | . 062 | .061 | . 062 | . 061 | . 062 | . 062 | .062 | .061 | . 062 |
| LAB- 5 | (COLOR) | . 050 | . 050 | .040 | .040 | .040 | .040 | .040 | . 040 | . 040 | . 040 |
| * LAB- 6 | (COLOR) | . 090 | . 087 | . 087 | . 092 | . 087 | . 088 | . 087 | . 096 | . 084 | .087 |
| LAB- 9 | (COLOR) | . 057 | . 056 | . 068 | . 056 | . 065 | . 068 | . 066 | . 065 | . 061 | . 059 |
| LAB-18 | (COLOR) | . 062 | . 060 | . 057 | . 055 | . 060 | . 060 | . 056 | . 057 |  |  |
| LAB-23 | (COLOR) | . 057 | .062 | . 070 | . 060 | . 064 | . 068 | . 064 | . 062 | . 053 | $.064$ |
|  |  | .060 .053 | .071 .055 | .064 | . 050 | . 036 | . 058 | .05B | . 057 | .038 | . 046 |
|  | (COLOR) | . 056 | .057 | . 067 | .057 | . 055 | .051 | . 059 | . 057 | . 070 | . 057 |
| LAB-34 | (COLOR) | . 047 | . 049 | . 049 | .043 | .044 | .041 | .042 | . 045 | . 041 | .045 |
| LAB=40 | (COLOR) | .059 | . 059 | . 056 | . 059 | . 059 | . 061 | . 060 | .057 | .059 | .057 |
| LAB-39 | (ES) | . 066 | .060 | . 063 | - 069 | . 067 |  |  |  |  |  |
| L. AB-24 | (NAA) | $\begin{array}{r} .050 \\ .046 \end{array}$ | $\begin{array}{r} .047 \\ .046 \end{array}$ | . 050 | . 046 | .050 | . 052 | .052 | .049 | . 050 | . 045 |
| LAB-14 |  | . 059 | . 060 | .059 | . 059 | .059 | . 060 |  |  |  |  |

tSee legend and note at end of table on $p 28$.


TABLE 8 (cont'd)
Cu (wt z )

| LAB- 1 | (AA) | .260 | .260 | .260 | .260 | .260 | .260 | .260 | .260 | . 260 | .260 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB- 1 | ( $A A$, | .260 | - 260 | .260 | . 270 | . 260 | . 260 | . 260 | . 270 | . 260 | . 260 |
| LAB- 2 | ( $A A$, | . 249 | . 248 | . 251 | . 250 | . 254 | . 253 | . 256 | . 251 | . 256 | . 254 |
| LAB- 5 | ( $A A A$ | . 240 | . 240 | . 240 | . 240 | . 240 | . 240 | . 240 | .240 | . 240 | . 240 |
| LAB- 6 | ( $A A$ ) | .245 | . 245 | . 244 | . 245 | . 244 | . 245 | -245 | . 245 | - 240 | . 240 |
| LAB- 9 | ( $A A$ ) | . 241 | . 230 | -227 | . 241 | . 228 | . 248 | . 244 | .242 | - 257 | . 255 |
| LAB-14 | ( $A A$ ) | . 244 | . 244 | .248 | . 243 | . 242 | .249 | . 244 | . 245 | - 244 | . 244 |
| LAB-18 | ( $A$ A) | .260 | . 270 | . 260 | - 250 | . 260 | . 260 | .270 | . 260 |  |  |
| LAB-19 | ( $A A$ ) | . 258 | - 256 | .257 | . 259 | . 259 | . 256 | . 260 | . 260 | . 261 | . 260 |
| LAB-21 | ( $A A$ ) | .248 | . 249 | . 248 | . 251 | . 248 | . 248 | . 246 | . 247 | .247 | . 246 |
| LAB-23 | ( $A$ A | . 260 | . 260 | . 260 | . 260 | . 260 | . 260 | . 260 | . 260 | - 260 | . 260 |
|  |  | . 260 | . 260 | . 260 | - 260 | . 260 | - 260 | . 260 | . 280 | - 290* | . 260 |
| LAB-24 | ( $A A$ ) | . 250 | . 250 | . 250 | .240 | . 250 | . 240 | . 250 | . 250 | - 250 | . 240 |
| LAB-26 | ( $A A$ ) | . 252 | . 255 | . 253 | . 255 | . 255 | . 251 | . 256 | . 253 | - 256 | . 254 |
| LAB-30 | ( $A A$ ) | . 249 | . 253 | . 253 | . 252 | . 256 | . 253 | . 251 | . 245 | . 245 | . 246 |
| LAB-31 | ( $A A$ ) | . 260 | . 270 | . 260 | .260 | . 260 | . 270 | . 260 | . 260 | . 260 | . 260 |
| LAB-32 | (AA) | - 273 | . 273 | . 265 | . 270 | . 273 | . 265 | . 270 | . 268 | . 268 | . 268 |
| LAB-34 | ( $A A$ ) | .250 | .248 | . 244 | . 251 | . 248 | - 247 | .247 | .248 | .246 | . 247 |
| LA8-35 | ( $A A$ ) | .260 .260 | $\begin{array}{r} .280 \\ .240 \end{array}$ | .250 | - 250 | . 260 | . 260 | . 260 | . 270 | . 250 | . 270 |
| LAB-38 | (AA) | . 248 | . 252 | . 246 | . 241 | . 250 | .243 | . 238 | . 247 | .243 | . 240 |
| LAB-40 | ( $A A$ | .240 | .248 | .247 | .248 | . 249 | .250 | .240 | .248 | .247 | . 249 |
|  |  | .250 | . 250 |  |  |  |  |  |  |  |  |
| * LAB-39 | (TITR) | .240 | . 230 | .200 | . 230 | .200 |  |  |  |  |  |
| * LAB-39 | (TITR) | .130 | .130 | . 130 | . 140 | . 130 |  |  |  |  |  |
| LAB- 1 | (COLOR) | . 251 | .261 | .259 | .259 | .252 | .255 | .255 | .256 | .260 | .263 |
| LAB- 3 | (COLOR) | .263 | - 266 | . 265 | . 268 | . 272 | .266 | . 268 | . 264 | . 266 | . 266 |
| Fe (wt z) |  |  |  |  |  |  |  |  |  |  |  |
| LAB- 1 | ( $A A$ ) | 8.35 | 8.35 | 8.32 | 8.35 | 8.35 | 8. 32 | 8.32 | 8.32 | 8.32 | 8.32 |
| LAB- 2 | (AA) | 8.20 | 8.27 | 8.21 | 8.26 | 8.23 | 8.25 | 8.21 | 8.28 | 8.28 | 8.22 |
| - LAB-19 | ( $A A$ ) | 8.96 | 8. 86 | 8.94 | 8.94 | 8.94 | 8.88 | 8.96 | B. 96 | 8.96 | 8.92 |
| - LAB-32 | (AA) | 9.05 | 9.15 | 9.15 | 9.20 | 9.13 | 9.20 | 9.15 | 9.05 | 9.00 | 9.10 |
| LAB-38 | ( $A A$ ) | 8.42 | 8.43 | 8.36 | 8.32 | 8. 46 | 8.42 | 8.05 | 8.49 | 8.20 | 8.08 |
| LAB-40 | (AA) | $\begin{aligned} & 8.20 \\ & 8.25 \end{aligned}$ | $\begin{aligned} & 8.20 \\ & 8.20 \end{aligned}$ | 8.25 | 8.25 | 8.15 | 8.25 | 8.20 | 8.25 | 8.10 | 8.25 |
| LAB- 1 | (TITR) | 8. 34 | 8.40 | 8.37 | . 8.40 | 8.37 | 8.43 | 8.34 | 8.40 | 8.37 | 8.40 |
| LAB- 5 | (TITR) | 8.59 | 8.56 | 8.62 | 8.59 | 8.62 | 8.59 | 8.62 | 8.59 | 8.59 | 8.59 |
| LAB- 6 | (TITR) | 8.43 | 8.44 | 8.42 | 8.34 | 8.38 | 8.39 | 8.40 | 8.37 | 8.38 | 8.36 |
| LAB- 9 | (TITR) | 8.67 | 8.57 | B. 67 | 8.57 | 8.62 | 8. 57 | 8.52 | 8.57 | 8.52 | 8.57 |
| LAB-13 | (TITR) | 8.38 | 8.36 | 8.36 | 8.36 | 8.39 | 8.38 | 8.36 | 8.36 | 8.36 | 8.36 |
| LAB-14 | (TITR) | 8.57 | 8.54 | 8.54 | 8.54 | 8.54 | 8.49 | 8.49 | 8.49 | 8.49 | 8.49 |
| $L A B=18$ | (TITR) | 8.43 | 8.53 | 8.53 . | 8.53 | 8.47 | 8.50 | 8.53 | 8.60 | 8.48 | 8.58 |
|  |  | 8.50 | 8.52 |  |  |  |  |  |  |  |  |
| LAB-21 | (TITR) | 8.45 | B. 40 | 8.40 | 8.38 | 8.39 | 8.40 | 8.38 | 8.40 | 8.40 | 8.41 |
| LAB-23 | (TITR) | 8.42 | 8.42 | . 8.47 | B.42 | 8.42 | 8.35 | 8.40 | B. 40 | 8.40 | 8.40 |
| LAB-24 | (TITR) | 8.36 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 | 8.35 |
| LAB-26 | (TITR) | 8.60 | 8.60 | 8.60 | 8.57 | 8.60 | 8.57 | 8.57 | 8.57 | 8.60 | 8.60 |
| LAB-29 | (TITR) | 8.38 | 8.38 | 8.38 | 8.49 | 8.49 | 8. 38 | 8.38 | 8.49 | 8.49 | 8.60 |
| * LAB-30 | (TITR) | 8.10 | 8.20 | 8.20 | 8.20 | 8.10 | 8.10 | 8.10 | 8.10 | 8.10 | 8.20 |
| LAB-31 | (TITR) | B. 69 | 8.63 | 8.68 | 8.71 | 8.69 | 8.66 | 8.62 | 8.66 | 8.69 | 8.68 |
| LAB-34 | (TITR) | B. 44 | 8.44 | 8.44 | 8.46 | 8.46 | 8.46 | 8.44 | 8.44 | 8.44 | 8.46 |
| LAB-35 | (TITR) | 8.30 | 8.35 | B. 32 | 8.33 |  |  |  |  |  |  |
| + LAB-39 | (TITR) | 8.10 | 8.10 | 8.40 | 8.33 | 7.90 |  |  |  |  |  |
| * LAB-39 | (TITR) | 7.98 | 7.92 | 7.97 | 7.98 | 7.98 |  |  |  |  |  |

Hg ( $\mu \mathrm{g} / \mathrm{g}$ )

| LAB- 2 ( $A A$, | 5.9 | 6.8 | 6.2 | 6.0 | 5.9 | 6.2 | 6.5 | 6.3 | 6.0 | 5.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB- 5 (AA) | 5.7 | 5.8 | 5.8 | 5.9 | 5.7 | 5.9 | 5.7 | 5.6 | 5.7 | 5.6 |
| LAB- 6 (AA) | 5.4 | 4.9 | 4.9 | 5.4 | 5.1 | 5.1 | 5.2 | 5.0 | 5.4 | 5.1 |
| LAB- 9 (AA) | 6.0 | 5.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
| LAB-14 (AA) | 5.0 | 5.0 | 4.8 | 4.7 | 4.6 | 4.7 | 4.7 | 4.6 | 4.5 | 4.5 |
| LAB-18 (AA) | 6.7 | 6.9 | 5.8 | 7.0 | 6.0 | 6.8 | 5.9 | 6.3 |  |  |
| LAB-23 (AA) | 6.8 | 6.9 | 7.1 | 7.1 | 7.1 | 6.5 | 6.7 | 6.7 | 6.5 | 6.4 |
| LAB-24 (AA) | 6.0 | 6.0 | 5.0 | 7.0 | 8.0 | 6.0 | 7.0 | 7.0 | 6.0 | 7.0 |
| $L A B-30$ (AA) | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.4 | 5.2 | 5.2 | 5.2 | 5.4 |
| LAB-35 (AA) | 5.0 | 6.0 | 4.0 | 4.0 |  |  |  |  | 5.2 |  |
| LAB-38 (AA) | 4.5 | 4.5 | 4.3 | 4.6 | 4.6 | 4.7 | 4.4 | 4.0 | 4.3 | 4.5 |
| LAB-40 (AA) | 5.4 | 4.4 | 4.0 | 4.6 | 4.3 | 4.8 | 4.3 | 4.0 | 4.8 | 4.3 |
| LAB-34 (COLOR) | 4.9 | 4.8 | 4.8 | 4.6 | 4.8 | 5.0 | 5.0 | 5.0 | 4.8 | 5.1 |
| LAB-39 (ES) | 7.0 | 7.0 | 2.0 | 4.0 | 4.0 |  |  |  |  |  |

TABLE 8 (cont'd)
In $(\mu \mathrm{g} / \mathrm{g})$

| LAB- 6 | (AA) | 17 | 17 | 20 | 17 | 20 | 17 | 17 | 17 | 17 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * LAB-18 | ( $A A$ ) | 22 | 22 | 22 | 24 |  |  |  |  |  |  |
| LAB-34 | (AA) | 13 | 16 | 12 | 14 | 13 | 12 | 14 | 12 | 12 | 11 |
| LAB-35 | (AA) | 12 | 12 | 13 | 14 | 14 | 11 | 10 | 11 |  |  |
| LAB-23 | ( COLOR) | 14 | 10 | 12 | 12 | 15 | 11 | 12 | 11 | 12 | 14 |
| LAB-39 | (ES) | 15 | 20 | 20 | 15 | 15 |  |  |  |  |  |
| LAB-40 | (ES) | 14 | 11 | 11 | 12 | 12 | 13 | 11 | 11 | 10 | 12 |


| LAB- 1 | (AA) |
| :---: | :---: |
| LAB- 4 | (AA) |
| LAB- 5 | (AA) |
| LAB- 6 | ( $A A$ ) |
| LAB-9 | ( $A A$ ) |
| * $2 A B-13$ | ( $A A$ ) |
| LAB-14 | ( $A A$ ) |
| LAB-18 | ( $A A$ ) |
| *LAB-19 | (AA) |
| LAB-21 | ( $A A$ ) |
| LAB-23 | (AA) |
| LAB-26 | ( $A A$ ) |
| * LAB-30 | ( $A A$ ) |
| LAB-34 | ( $A A$ ) |
| * LAB-35 | (AA) |
| * LAB-38 | ( $A A$ ) |


| .16 | .16 | .16 | .16 | .17 | .18 | .17 | .17 | .17 | .17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| .17 | .16 | .15 | .16 | .16 | .16 | .16 | .16 | .16 |  |
| .16 | .16 | .16 | .16 | .16 | .16 | .16 | .16 | .16 |  |
| .14 | .14 | .15 | .14 | .14 | .14 | .14 | .14 | .15 |  |
| .17 | .17 | .17 | .18 | .17 | .17 | .17 | .17 | .17 | .16 |
| .10 | .11 | .11 | .11 | .10 | .10 | .11 | .11 | .11 | .17 |
| .15 | .15 | .16 | .16 | .15 | .15 | .16 | .16 | .16 |  |
| .16 | .16 | .17 | .16 | .16 | .16 | .16 | .16 | .16 |  |
| .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 |
| .17 | .17 | .17 | .17 | .18 | .17 | .17 | .17 | .17 | .17 |
| .14 | .15 | .13 | .16 | .13 | .13 | .13 | .13 | .14 |  |
| .16 | .14 | .13 | .13 | .13 | .13 | .14 | .13 | .13 | .14 |
| .14 | .14 | .14 | .14 | .14 | .14 | .14 | .14 | .14 |  |
| .11 | .10 | .10 | .10 | .11 | .10 | .10 | .10 | .10 | .14 |
| .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .15 | .11 |
| .15 | .14 | .15 | .14 | .15 | .14 | .16 | .14 | .15 |  |
| .11 | .11 | .10 | .10 | .10 | .09 | .10 | .11 | .10 | $.14 *$ |


| LAB- 5 | (AA) | . 036 | . 036 | . 036 | . 037 | .037 | . 035 | . 037 | . 037 | . 037 | . 037 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB- 6 | (AA) | . 040 | . 042 | . 042 | . 042 | . 040 | . 040 | . 040 | . 040 | .042 | . 040 |
| LAB- 9 | ( $A A)$ | . 039 | . 040 | . 041 | . 039 | . 040 | . 041 | . 041 | . 041 | . 040 | . 041 |
| L.A8-14 | ( $A A$ ) | . 038 | . 038 | . 037 | . 037 | . 037 | .037 | . 037 | . 037 | .037 | .038 |
| LAB-18 | ( $A A)$ | . 042 | . 042 | . 042 | . 042 | . 042 | . 042 | . 042 | . 042 |  |  |
| LAB-19 | ( $A A$ ) | . 038 | . 037 | . 037 | .037 | .037 | . 037 | .037 | . 038 | . 038 | .037 |
| LAB-21 | ( $A A A$ | . 043 | . 044 | .043 | .043 | . 043 | . 044 | . 043 | .043 | . 043 | . 042 |
| LAB-23 | ( AA ) | . 042 | . 042 | . 039 | . 042 | . 040 | . 040 | . 040 | . 040 | . 040 | . 040 |
|  |  | . 042 | . 040 | . 040 | . 040 | . 042 | . 040 | . 040 | . 040 | . 042 | . 040 |
| LAB-34 | (AA) | . 040 | . 040 | . 041 | . 040 | .039 | . 040 | .040 | . 039 | . 040 | . 039 |
| LAE-35 | (AA) | .029 | . 029 | . 037 | . 037 | .035 | .036 | . 029 | . 030 | . 034 | .037 |
|  |  | . 035 | . 036 |  |  |  |  |  |  |  |  |
| LA8-38 | ( $A A$ ) | . 032 | . 032 | . 032 | . 033 | . 032 | .032 | . 032 | . 032 | . 032 | . 032 |
| $L A B-40$ | ( $A A$ ) | . 045 | . 040 | . 040 | . 045 | .040 | .040 | . 045 | . 043 | . 040 | . 044 |
|  |  | .041 | . 040 |  |  |  |  |  |  |  |  |
| LAB- 3 | (COLOR) | . 039 | . 040 | . 040 | .039 | . 040 | .039 | . 040 | . 039 | . 039 | . 040 |
| * LAB-39 | (ES) | . 047 | . 050 | . 044 | . 048 | .055 |  |  |  |  |  |

TABLE 8 (cont'd)
Pb (wt z)

| LAB- 2 | (AA) | 64.85 | 65.07 | 64.72 | 64.74 | 64.92 | 64.74 | 65.18 | 64.98 | 64.95 | 65.07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB-19 | (AA) | 64.90 | 64.60 | 64.40 | 64.80 | 65.00 | 64.40 | 64.85 | 64.80 | 64.50 | 64.90 |
| LAB-26 | (AA) | 64.40 | 64.60 | 64.80 | 64.60 | 64.60 | 64.60 | 64.80 | 64.40 | 64.60 | 64.60 |
| LAB- 1 | (TITR) | 65.18 | 65.14 | 65.20 | 65.16 | 65.16 | 64.88 | 64.84 | 65.07 | 64.82 | 64.89 |
| LAB- 1 | (TITR) | 64.68 | 64.67 | 64.57 | 64.58 | 64.32 | 64.37 | 64.52 | 64.58 | 64.58 | 64.55 |
| LAB- 5 | (TITR) | 65.19 | 65.12 | 65.18 | 65.18 | 65.12 | 64.82 | 64.86 | 64.90 | 64.80 | 64.93 |
| LAB- 6 | (TITR) | 64.82 | 64.42 | 64.27 | 64.37 | 64.45 | 64.21 | 64.56 | 64.16 | 64.49 | 64.63 |
| LAB- 9 | (TITR) | 65.00 | 65.00 | 65.20 | 65.00 | 65.20 | 65.00 | 64.60 | 65.00 | 65.20 | 65.20 |
| LAB-13 | (TITR) | 65.07 | 65.07 | 64.97 | 64.97 | 64.97 | 65.07 | 64.97 | 65.07 | 64.97 | 64.97 |
| LAB-14 | (TITR) | 65.27 | 65.27 | 65.07 | 65.17 | 65.17 | 65.17 | 65.17 | 65.17 | 65.07 | 65.17 |
| LAB-16 | (TITR) | 64.78 | 64.60 | 64.71 | 64.64 | 64.58 | 64.56 | 64.58 | 64.60 | 64.66 | 64.59 |
| LAB-18 | ( $T$ ITR) | $\begin{aligned} & 64.83 \\ & 64.78 \end{aligned}$ | $\begin{aligned} & 64.96 \\ & 64.85 \end{aligned}$ | 65.03 | 64.89 | 64.96 | 64.95 | 64.86 | 64.96 | 64.96 | 64.96 |
| LAB-21 | (TITR) | 64.91 | 64.85 | 64.96 | 64.88 | 64.92 | 64.92 | 64.91 | 64.87 | 64.98 | 64.88 |
| LA8-23 | (TITR) | 64.80 | 64.80 | 64.70 | 64.60 | 64.40 | 64.60 | 64.60 | 64.70 | 64.70 | 64.60 |
| LAB-26 | (TITR) | 64.45 | 64.32 | 64.16 | 63.90 | 64.10 | 64.02 | 63.93 | 64.01 | 64.12 | 63.92 |
| LAB-30 | (TITR) | 65.06 | 64.86 | 65.06 | 64.86 | 64.86 | 64.86 | 64.86 | 64.86 | 64.86 | 64.96 |
| LAB-32 | (TITR) | 64.83 | 64.62 | 64.57 | 64.52 | 64.52 | 64.42 | 64.62 | 64.62 | 64.57 | 64.62 |
| LAB-34 | (TITR) | 65.02 | 65.14 | 65.04 | 64.74 | 64.95 | 64.72 | 64.86 | 64.82 | 64.80 | 64.66 |
| LAB-35 | (TITR) | $\begin{aligned} & 64.76 \\ & 64.81 \end{aligned}$ | $\begin{aligned} & 64.85 \\ & 64.89 \end{aligned}$ | 64.65 | 64.66 | 64.69 | 64.78 | 64.85 | 64.97 | 64.77 | 64.78 |
| LAB-37 | (TITR) | 64.59 | 64.70 | 64.60 | 64.48 | 64.69 | 64.61 | 64.59 | 64.71 | 64.61 | 64.58 |
| LAB-40 | (TITR) | 65.00 | 64.80 | 64.70 | 65.00 | 65.00 | 64.90 | 64.60 | 64.70 | 64.40 | 65.00 |
|  |  | 64.90 | 64.80 | 64.80 | 64.70 | 64.80 | 64.70 | 64.70 | 64.40 | 64.90 |  |
| LAB-45 | (TITR) | 64.68 | 64.67 | 64.62 | 64.68 | 64.68 | 64.67 | 64.60 | 64.65 | 64.59 | 64.62 |
| LAB-24 | (GRAV) | 65.31 | 65.49 | 65.42 | 65.51 | 65.37 | 65.38 | 65.48 | 65.44 | 65.35 | 65.40 |
| LAB-29 | (GRAV) | 64.26 | 64.24 | 64.26 | 64.24 | 64.24 | 64.24 | 64.19 | 64.21 | 64.26 | 64.29 |
| * LAB-31 | (GRAV) | 63.64 | 63.54 | 63.52 | 63.52 | 64.03 | 63.83 | 63.59 | 63.78 | 63.49 |  |
| LAB-33 | (GRAV) | 64.56 | 64.53 | 64.52 | 64.58 | 64.44 | 64.59 | 64.53 | 64.55 | 64.55 | 64.47 |
| LAB-38 | (GRAV) | 64.22 | 64.23 | 64.46 | 64.57 | 64.73 | 64.34 | 64.25 | 63.87 | 64.37 | 64.46 |
| LAB-39 | (GRAV) | 63.98 | 64.24 | 64.16 | 64.34 | 64.28 |  |  |  |  |  |
| *LAB-39 | (GRAV) | 62.02 | 62.11 | 62.02 | 61.76 | 61.38 |  |  |  |  |  |
|  |  |  |  |  |  | $s$ (wt |  |  |  |  |  |
| LAB- 5 | (GRAV) | 17.98 | 18.04 | 18.09 | 18.10 | 18.10 | 18.01 | 17.98 | 17.96 | 17.96 | 18.01 |
| LAB- 6 | (GRAV) | 17.52 | 17.58 | 17.47 | 17.56 | 17.54 | 17.60 | 17.57 | 17.68 | 17.72 | 17.70 |
| LAB- 9 | (GRAV) | 17.57 | 17.60 | 17.60 | 17.53 | 17.51 | 17.56 | 17.60 | 17.60 | 17.53 | 17.57 |
| LAB-13 | (GRAV) | 17.90 | 17.94 | 18.01 | 17.97 | 17.99 | 17.91 | 17.83 | 17.95 | 17.93 | 18.01 |
| LAB-14 | (GRAV) | 17.95 | 17.91 | 17.82 | 17.94 | 17.99 | 17.83 | 17.78 | 17.86 | 18.04 | 17.92 |
| LAB-21 | (GRAV) | 18.12 | 18.02 | 18.03 | 17.82 | 17.88 | 18.00 | 18.09 | 17.91 | 18.19 | 18.00 |
| LAB-23 | (GRAV) | 17.66 | 17.83 | 17.86 | 17.80 | 17.91 | 17.70 | 17.68 | 17.74 | 17.65 | 17.70 |
| * LAB-30 | (GRAV) | 16.60 | 16.90 | 17.30 | 17.20 | 16.60 | 16.80 | 16.70 | 16.50 | 16.80 | 17.00 |
| LAB-31 | (GRAV) | 17.54 | 17.49 | 17.78 | 17.51 | 17.72 | 17.69 | 17.73 | 17.63 | 17.89 | 17.65 |
| LAB-34 | (GRAV) | 17.65 | 17.64 | 17.65 | 17.61 | 17.71 | 17.64 | 17.76 | 17.80 | 17.60 | 17.60 |
| LAB-35 | (GRAV) | 17.77 | 18.06 | 17.79 | 17.84 |  |  |  |  |  |  |
| LAB-38 | (GRAV) | 18.05 | 18.08 | 18.00 | 17.97 | 18.07 | 18.07 | 18.07 | 18.00 | 18.03 |  |
| LAB-39 | (GRAV) | 17.98 | 18.02 | 18.10 | 18.06 | 18.10 |  |  |  |  |  |
| * LAB-39 | (GRAV) | 19.14 | 18.66 | 18.68 | 18.92 | 18.88 |  |  |  |  | . |
| LAB-14 | ( CoMB ) | 17.35 | 17.75 | 17.50 | 17.75 | 17.90 | 17.60 | 17.60 | 17.75 | 17.65 | 17.65 |
| LAB-18 | (COMB) | 17.85 | 17.92 | 17.77 | 17.81 | 17.85 | 17.90 | 17.90 | 17.90 |  |  |
| LAB-26 | ( COMB ) | 18.40 | 18.20 | 18.20 | 18.00 | 18.40 | 18.20 | 18.30 | 18.40 | 18.00 | 18.40 |

Sb (wt q)

| LAB- 5 | ( $A A$ ) | . 360 | . 360 | . 370 | . 370 | . 370 | . 360 | .370 | .370 | . 370 | .360 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB- 6 | ( $A A$ ) | . 399 | . 404 | . 394 | . 397 | . 408 | . 400 | . 397 | . 400 | . 406 | . 395 |
| LAB- 9 | ( $A A$ ) | . 332 | . 326 | . 344 | . 314 | . 324 | . 326 | . 336 | . 334 | . 332 | . 364 |
| LAB-14 | (AA) | . 371 | . 367 | . 376 | . 367 | . 360 | . 371 | .363 | . 365 | . 366 | . 365 |
| * LAB-19 | ( $A$ A) | . 299 | . 295 | .300 | . 296 | . 297 | . 300 | . 299 | . 298 | . 298 | . 299 |
| LAB-21 | ( $A$ A | . 343 | . 343 | . 342 | - 342 | . 342 | . 348 | . 347 | . 349 | . 348 | . 347 |
| LAB-24 | ( $A$ A) | . 366 | . 374 | . 372 | . 374 | . 362 | . 372 | . 378 | . 374 | . 377 | . 374 |
| LAB-30 | ( $A A$ ) | . 360 | - 350 | . 350 | . 360 | . 360 | . 360 | . 360 | . 360 | . 360 | . 360 |
| LAB-34 | ( $A A$ ) | . 336 | . 331 | . 321 | . 331 | . 336 | . 329 | . 328 | .335 | .333 | . 333 |
| LAB-35 | ( $A$ A) | . 380 | . 390 | . 380 | .390 |  |  |  |  |  |  |
| LAB- 3 | (COLOR) | . 376 | . 366 | . 376 | . 369 | .367 | . 376 | . 371 | . 366 | . 364 | . 365 |
| LAB-23 | (COLOR) | . 364 | . 324 | . 364 | . 344 | . 348 | . 328 | . 364 | .360 | . 372 | .348 |
| LAB-39 | (ES) | . 330 | .340 | . 314 | . 318 | . 325 |  |  |  |  |  |
| LAB-40 | (ES) | .300 | . 320 | .330 | .340 | . 360 | . 300 | . 320 | . 320 | .350 | . 330 |


| LAB-18 | ( $A A$ ) | 35 | 34 | 33 | 33 | 32 | 34 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB-24 | (AA) | 31 | 35 | 29 | 29 | 29 | 35 | 32 | 36 | 29 | 36 |
| LAB-34 | ( $A A$ ) | 30 | 30 | 29 | 29 | 29 | 29 | 30 | 29 | 30 | 29 |
| LAB- 1 | (COLOR) | 30 | 30 | 31 | 31 | 32 | 33 | 30 | 31 | 30 | 29 |
| LAB- 3 | (COLOR) | 33 | 32 | 32 | 33 | 32 | 33 | 32 | 32 | 33 | 33 |
| LAB- 9 | (COLOR) | 27 | 24 | 27 | 25 | 22 | 27 | 24 | 27 | 25 | 26 |
| LAB-23 | (COLOR) | 35 | 36 | 36 | 37 | 36 | 36 | 37 | 36 | 35 | 36 |
|  |  | $\mathrm{SiO}_{2}$ (wt \%) |  |  |  |  |  |  |  |  |  |
| LAB- 2 | ( $A A$ ) | .73 | .73 | .73 | .72 | .73 | .72 | .72 | . 72 | .74 | . 73 |
| LAB-26 | (AA) | . 82 | . 71 | . 71 | . 78 | . 71 | . 82 | . 71 | . 82 | .71 | . 78 |
| LAB- 1 | (GRAV) | . 73 | .73 | .73 | . 75 | . 71 | . 68 | . 68 | . 68 | .68 | . 68 |
| LAB- 4 | (GRAV) | .73 | . 72 | . 72 | . 72 | . 71 | . 72 | .71 | . 71 | . 72 | .71 |
| LAB- 5 | (GRAV) | . 64 | . 64 | . 63 | . 67 | . 66 | . 63 | . 64 | . 65 | . 62 | . 63 |
| * $L A B-9$ | (GRAV) | 1.15 | 1.05 | 1.05 | 1.05 | 1.15 | 1.05 | 1.15 | 1.15 | 1.05 | 1.15 |
| LAB-13 | (GRAV) | . 78 | .73 | . 78 | .71 | .78 | . 81 | . 80 | . 83 | . 80 | . 79 |
| LAB-14 | (GRAV) | . 77 | . 81 | . 82 | . 81 | . 81 | . 86 | . 83 | . 89 | .98 | . 78 |
| * $\angle A B-18$ | (GRAV) | . 53 | . 57 | . 53 | .55 | . 62 | . 60 | . 55 | . 60 |  |  |
| LAB-19 | (GRAV) | .77 | . 69 | . 72 | . 78 | . 77 | . 78 | . 81 | . 75 | . 75 | . 72 |
| * $L A B-21$ | (GRAV) | .60 | . 60 | . 60 | . 60 | . 59 | . 58 | . 59 | . 60 | . 59 | .57 |
| LAB-23 | (GRAV) | .80 | . 81 | . 77 | - 82 | . 79 | - B | . 80 | . 82 | .79 | - 80 |
| LAB-24 | (GRAV) | . 70 | . 72 | . 80 | .72 | . 80 | . 76 | .77 | . 77 | .73 | . 72 |
| LAB-29 | (GRAV) | .68 | .72 | .72 | .72 | . 72 | .60 | .68 | . 68 | . 72 | . 72 |
| LAB-34 | (GRAV) | .77 | .77 | .74 | . 76 | . 76 | . 77 | . 76 | . 74 | .75 | .75 |
| LAB-35 | (GRAV) | . 61 | . 65 | . 66 | . 65 | . 63 | . 63 | .69 | .66 |  |  |
| LAB-39 | (GRAV) | . 30 | .24 | . 50 | . 55 | . 60 |  |  |  |  |  |
| * LAB-39 | (GRAV) | 1.02 | 1.10 | 1.04 | 1.03 | 1.09 |  |  |  |  |  |



TABLE 8 (cont'd)

Zn (wt q)

| LAB- 1 | (AA) | 4.45 | 4.45 | 4.46 | 4.47 | 4.42 | 4.47 | 4.46 | 4.46 | 4.40 | 4.42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAB- 2 | (AA) | 4.38 | 4.45 | 4.43 | 4.43 | 4.45 | 4.45 | 4.44 | 4.43 | 4.46 | 4.45 |
| LAB- 6 | ( $A A$ ) | 4.44 | 4.41 | 4.38 | 4.41 | 4.42 | 4.37 | 4.41 | 4.41 | 4.41 | 4.40 |
| LAB-9 | (AA) | 4.35 | 4.29 | 4.29 | 4.25 | 4.28 | 4.27 | 4.28 | 4.29 | 4.25 | 4.28 |
| LAB-16 | (AA) | 4.35 | 4.30 | 4.29 | 4.29 | 4.30 | 4.26 | 4.28 | 4.26 | 4.32 | 4.33 |
| LA8-19 | (AA) | 4.47 | 4.53 | 4.50 | 4.50 | 4.47 | 4.50 | 4.48 | 4.48 | 4.50 | 4.52 |
| LAB-21 | (AA) | 4.32 | 4.30 | 4.33 | 4.33 | 4.32 | 4.40 | 4.38 | 4.38 | 4.38 | 4.43 |
| * $\mathrm{L} A B-23$ | ( $A A$ ) | 4.50 | 4.60 | 4.60 | 4.50 | 4.50 | 4.50 | 4.60 | 4.50 | 4.50 | 4.50 |
| LAB-24 | (AA) | 4.44 | 4.45 | 4.46 | 4.48 | 4.50 | 4.50 | 4.52 | 4.56 | 4.49 | 4.50 |
| LAB-26 | ( $A A$ ) | 4.42 | 4.44 | 4.36 | 4.52 | 4.46 | 4.40 | 4.42 | 4.32 | 4.54 | 4.44 |
| LAB-31 | (AA) | 4.32 | 4.34 | 4.32 | 4.37 | 4.32 | 4.33 | 4.41 | 4.36 | 4.31 | 4.34 |
| * LAB-32 | ( $4 A$ ) | 5.05 | 5.10 | 5.05 | 5.05 | 5.05 | 5.05 | 5.00 | 5.00 | 5.15 | 5.05 |
| LAB-34 | (AA) | 4.44 | 4.48 | 4.95* | 4.54 | 4.36 | 4.43 | 4.44 | 4.35 | 4.35 | 4.42 |
| LAB-35 | (AA) | 4.42 | 4.49 | 4.31 | 4.32 | 4.43 | 4.24 | 4.44 | 4.33 |  |  |
| LAB-38 | (AA) | 4.34 | 4.34 | 4.33 | 4.27 | 4.38 | 4.33 | 4.24 | 4.35 | 4.21 | 4.31 |
| LAB-39 | (AA) | $4.2 B$ | 4.40 | 4.16 | 4.20 | 4.24 |  |  |  |  |  |
| $L A B-40$ | (AA) | 4.10 | 4.38 | 4.35 | 4.38 | 4.40 | 4.35 | 4.10 | $4 \cdot 30$ | 4.35 | 4.38 |
|  |  | 4.40 | 4.30 |  |  |  |  |  |  |  |  |
| LAB- 4 | (TITR) | 4.49 | 4.46 | 4.49 | 4.45 | 4.44 | 4.46 | 4.47 | 4.45 | 4.43 | 4.42 |
| LAB- 5 | (TITR) | 4.30 | 4.36 | 4.32 | 4.30 | 4.30 | 4.24 | 4.24 | 4.24 | 4.14* | 4.24 |
| LAB-13 | (TITR) | 4.43 | 4.47 | 4.47 | 4.43 | 4.46 | 4.43 | 4.44 | 4.47 | 4.43 | 4.43 |
| LAB-14 | (TITR) | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56 | 4.53 | 4.56 | 4.53 |
| LAB-18 | (TITR) | $\begin{aligned} & 4.59 \\ & 4.6 B \end{aligned}$ | 4.65 | 4.6B | 4.68 | 4.69 | 4.63 | 4.56 | 4.72 | 4.72 | 4.65 |
| LAB-24 | (TITR) | 4.55 | 4.60 | 4.57 | 4.46 | 4.62 | 4.61 | 4.58 | 4.63 | 4.62 | 4.52 |
| LAB-30 | (TITR) | 4.43 | 4.43 | 4.41 | 4.41 | 4.43 | 4.38 | 4.41 | 4.41 | 4.42 | 4.41 |
| LAB-33 | (TITR) | 4.32 | 4.34 | 4.32 | 4.28 | 4.46 | 4.44 |  |  |  |  |
| LAB-33 | (TITR) | 4.46 | 4.55 | 4.47 | 4.47 |  |  |  |  |  |  |
| LAB-39 | (TITR) | 4.58 | 4.58 | 4.27 | 4.37 | 4.32 |  |  |  |  |  |
| LAB-45 | (TITR) | 4.45 | 4.45 | 4.44 | 4.45 | 4.44 | 4.45 | 4.44 | 4.45 | 4.45 | 4.46 |
| LAB-45 | (TITR) | 4.41 | 4.42 | 4.41 | 4.41 | 4.40 | 4.44 | 4.42 | 4.42 | 4.43 | 4.42 |

* Outliers, not used for computations.

NOTE: Results are expressed on a dry basis; some have been rounded off for presentation.
LEGEND: AA - atomic absorption; TITR - titrimetry; COLOR - colorimetry (spectrophotometry); GRAV - gravimetry; ES - emission spectroscopy; $\mathrm{FA}=$ fire assay with gravimetric finish; FA-AA - fire assay with atomic absorption finish; NAA - neutron activation analysis; COMB - combustion.



Fig. 1 - Degree of homogeneity of CPB-1. Vertical bars represent 95\% confidence intervals for the difference between the means of two bottles for each laboratory.


Fig. 1 (cont'd)



Fig. 1 (cont'd)


Fig. 1 (cont'd)


Fig. 1 (cont'd)



Fig. 1 (cont'd)


Fig. 1 (cont'd)


Fig. 2 Laboratory means for Pb vs date of analysis


Fig. 3 Change in weight of pouched and unpouched samples of CPB-1 vs storage time

## PARTICIPATING LABORATORIES

Alfred H. Knight Ltd., Wallasey, Cheshire, England.

Bondar-Clegg and Company Ltd., Ottawa, ontario.

Bondar-Clegg and Company Ltd., North Vancouver, British Columbia.

Britannia Lead Company Ltd., Gravesend, Kent, England.

Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories, Department of Energy, Mines and Resources, Ottawa, Ontario (six independent analysts).

Chemex Labs Ltd., North Vancouver, British Columbia.

Cominco Ltd., Trail, British Columbia.

Commonwealth Smelting Ltd., Avonmouth, Bristol, England.

Falconbridge Copper Ltd., Lake Dufault Division, Noranda, Quebec.

General Testing Laboratories, Vancouver, British Columbia.

Geological Survey of India, Central Chemical Laboratory, Calcutta, India (two independent analysts).

Geological Survey of Norway, Trondheim, Norway.

Geological Survey of West Malaysia, Ipoh, Perak, Malaysia.

Hudson Bay Mining and Smelting Company Ltd. Flin Flon, Manitoba.

Inco Ltd., Analytical Services, Process Technology, Copper Cliff, Ontario.

Irish Base Metals, Tynagh, Galway, Ireland.
Ledoux and Company, Teaneck, New Jersey, U.S.A.

LKAB Prospektering AB, Geochemical Laboratory, Stockholm, Sweden.

Loring Laboratories Ltd., Calgary, Alberta.

Newmont Exploration Limited, Danbury, Connecticut, U.S.A.

National Institute for Metallurgy, Randburg, South Africa.

Noranda Research Centre, Pointe Claire, Quebec.

Ontario Ministry of Natural Resources, Mineral Research Branch, Toronto, ontaxio.

Sulphide Corporation Pty. Ltd., Boolaroo, N.S.W., Australia.

The Broken Hill Associated Smelters Proprietary Ltd., Port Pirie, South Australia.

## APPENDIX B

OUTLINE OF PRINCIPAL TITRIMETRIC METHODS USED FOR LEAD IN CPB-1

The titrimetric methods for lead outlined below were used by a relatively large proportion of contributing laboratories and they can not be conveniently summarized in Table 5. It is possible that the procedures of individual laboratories may have differed in some minor details from the outlines given; however, it is unlikely that this would be of significance in the correlation of methods and means.

Molybdate method (Laboratories 6, 9, 13, 21, 34)
After sample decomposition and fuming with sulphuric acid, lead was separated as the sulphate. The precipitate was dissolved by boiling in ammonium acetate-acetic acid solution and, while hot, the solution was titrated with ammonium molybdate solution using tannic acid as an external indicator.

EDTA method (Laboratories 1, 1a, 5, 37)
After sample decomposition and fuming with sulphuric acid, lead was separated as the sulphate by filtration. Lead remaining in the filtrate was determined by atomic-absorption spectrophotometry in the case of Labs 1 and la. The lead sulphate was dissolved either in hydrochloric acid-sodium chloride solution (Labs 1 and la), or in acetate solution. After pH adjustment the solution was titrated with EDTA either at room temperature or just below the boiling point (Lab 37).


[^0]:    *Research Scientist, **Technologist and ***Research Scientist, Mineral Sciences Laboratories, CANMET, Energy, Mines and Resources Canada, Ottawa.

[^1]:    $\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean

[^2]:    $\mathrm{N}=$ number of laboratories; $\mathrm{n}=$ number of results; $\overline{\mathrm{x}}=$ overall mean.

