

# **Proposed Registration Decision**

PRD2019-04

# Bixafen and F9651-2 Fungicide

(publié aussi en français)

<u>21 May 2019</u>

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides hc.pmra.publications-arla.sc@canada.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 hc.pmra.info-arla.sc@canada.ca



ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/2019-4E (print version) H113-9/2019-4E-PDF (PDF version)

#### © Her Majesty the Queen in Right of Canada, represented by the Minister of Health Canada, 2019

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of the Minister of Public Works and Government Services Canada, Ottawa, Ontario K1A 0S5.

# **Table of Contents**

| Overview                                                                          |    |
|-----------------------------------------------------------------------------------|----|
| Proposed Registration Decision for Bixafen and F9651-2 Fungicide                  | 1  |
| What Does Health Canada Consider When Making a Registration Decision?             | 1  |
| What Is Bixafen?                                                                  | 2  |
| Health Considerations                                                             | 2  |
| Environmental Considerations                                                      | 4  |
| Value Considerations                                                              | 5  |
| Next Steps                                                                        | 6  |
| Other Information                                                                 | 6  |
| Science Evaluation                                                                | 7  |
| 1.0 The Active Ingredient, Its Properties and Uses                                | 7  |
| 1.1 Identity of the Active Ingredient                                             |    |
| 1.2 Physical and Chemical Properties of the Active Ingredient and End-Use Product | 8  |
| 1.3 Directions for Use                                                            |    |
| 1.4 Mode of Action                                                                |    |
| 2.0 Methods of Analysis                                                           |    |
| 2.1 Methods for Analysis of the Active Ingredient                                 |    |
| 2.2 Method for Formulation Analysis                                               |    |
| 2.3 Methods for Residue Analysis                                                  |    |
| 3.0 Impact on Human and Animal Health                                             |    |
| 3.1 Toxicology Summary                                                            |    |
| 3.1.1 Pest Control Products Act Hazard Characterization                           |    |
| 3.2 Acute Reference Dose (ARfD)                                                   |    |
| 3.3 Acceptable Daily Intake (ADI)                                                 |    |
| 3.4 Occupational and Residential Risk Assessment                                  |    |
| 3.4.1 Toxicological Reference Values                                              |    |
| 3.4.2 Occupational Exposure and Risk                                              |    |
| 3.4.3 Residential Exposure and Risk Assessment                                    |    |
| 3.5 Food Residues Exposure Assessment                                             |    |
| 3.5.1 Residues in Plant and Animal Foodstuffs                                     |    |
| 3.5.2 Dietary Risk Assessment                                                     |    |
| 3.5.3 Drinking Water                                                              |    |
| 3.5.4 Aggregate Exposure and Risk                                                 |    |
| 3.5.5 Maximum Residue Limits                                                      |    |
| 4.0 Impact on the Environment                                                     |    |
| 4.1 Fate and Behaviour in the Environment                                         |    |
| 4.2 Environmental Risk Characterization                                           |    |
| 4.2.1 Risks to Terrestrial Organisms                                              |    |
| 4.2.2 Risks to Aquatic Organisms                                                  |    |
| 5.0 Value                                                                         |    |
| 6.0 Pest Control Product Policy Considerations                                    |    |
| 6.1 Toxic Substances Management Policy Considerations                             |    |
| 6.2 Formulants and Contaminants of Health or Environmental Concern                | 30 |

| 7.0 Sum     | nary                                                                              |
|-------------|-----------------------------------------------------------------------------------|
| 7.1 Hu      | man Health and Safety                                                             |
| 7.2 Env     | vironmental Risk                                                                  |
|             | lue                                                                               |
| 8.0 Prope   | osed Regulatory Decision                                                          |
| List of Abb | reviations                                                                        |
| Appendix I  | Tables and Figures    38                                                          |
| Table 1     | Residue Analysis                                                                  |
| Table 2     | Toxicity Profile of F9651-2 (containing 13.8% bixafen and 30.4% tebuconazole). 39 |
| Table 3     | Toxicity Profile of Bixafen (F9650) Technical Fungicide                           |
| Table 4     | Toxicology Reference Values for Use in Health Risk Assessment for Bixafen 48      |
| Table 5     | Integrated Food Residue Chemistry Summary                                         |
| Table 6     | Food Residue Chemistry Overview of Metabolism Studies and Risk Assessment 65      |
| Table 7     | Transformation Products of the Active Substance Bixafen Relevant to the           |
|             | Environment                                                                       |
| Table 8     | Fate and Behaviour of Bixafen in the Terrestrial Environment                      |
| Table 9     | Fate and Behaviour in the Aquatic Environment                                     |
| Table 10    | Toxicity of Bixafen to Non-target Terrestrial Organisms                           |
| Table 11    | Screening Level Risk Assessment of Bixafen for Non-target Terrestrial Species     |
|             | Other Than Birds and Mammals75                                                    |
| Table 12    | Screening Level Risk Assessment of Bixafen for Birds and Mammals                  |
| Table 13    | Toxicity of Bixafen to Non-target Aquatic Species77                               |
| Table 14    | Screening Level Risk Assessment of Bixafen for Aquatic Organisms                  |
| Table 15    | Refined Risk Assessment for Non-target Aquatic Organisms Exposed to Drift of      |
|             | Bixafen                                                                           |
| Table 16    | Refined Risk Assessment for Non-target Aquatic Organisms Exposed to Run-off       |
|             | of Bixafen                                                                        |
| Table 17    | Toxic Substances Management Policy Considerations for Bixafen: Comparison to      |
|             | TSMP Track 1 Criteria                                                             |
| Table 18    | List of Supported Uses                                                            |
| Appendix I  | I Supplemental Maximum Residue Limit Information—International Situation and      |
|             | Trade Implications                                                                |
| Table 1     | Comparison of Canadian MRLs and American Tolerances (where different)             |
| References  |                                                                                   |

# Overview

# **Proposed Registration Decision for Bixafen and F9651-2 Fungicide**

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act*, is proposing registration for the sale and use of Bixafen (F9650) Technical Fungicide, containing the technical grade active ingredient bixafen, and F9651-2 Fungicide, containing the technical grade active ingredients bixafen and tebuconazole, to control foliar diseases on wheat, barley, oats and soybean.

Tebuconazole is currently registered in Canada for foliar and seed treatment uses on wheat, barley, oats, corn, and soybean, as well as use on turf and for industrial uses as a wood preservative. All diseases proposed on the F9651-2 Fungicide label for cereal crops and two diseases proposed for soybean are currently registered for tebuconazole at the rates proposed for F9651-2 Fungicide.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of bixafen and F9651-2 Fungicide.

# What Does Health Canada Consider When Making a Registration Decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable<sup>1</sup> if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The *Pest Control Products Act* also requires that products have value<sup>2</sup> when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment. These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides.

<sup>&</sup>lt;sup>1</sup> "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act* 

<sup>&</sup>lt;sup>2</sup> "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "... the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

For more information on how the Health Canada regulates pesticides, the assessment process and risk-reduction programs, please visit the Pesticides section of the Canada.ca website at Canada.ca/pesticides.

Before making a final registration decision on bixafen and F9651-2 Fungicide, Health Canada's PMRA will consider any comments received from the public in response to this consultation document.<sup>3</sup> Health Canada will then publish a Registration Decision<sup>4</sup> on bixafen and F9651-2 Fungicide, which will include the decision, the reasons for it, a summary of comments received on the proposed registration decision and Health Canada's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation of this consultation document.

### What Is Bixafen?

Bixafen is classified as a Group 7 fungicide which inhibits an enzyme involved in energy production in fungi and contributes to the management of diseases of cereals and soybean.

### **Health Considerations**

#### Can Approved Uses of Bixafen Affect Human Health?

# **F9651-2** Fungicide, containing bixafen, is unlikely to affect your health when used according to label directions.

Potential exposure to bixafen may occur through the diet (food and water) or when handling and applying the product. When assessing health risks, two key factors are considered: the levels where no health effects occur and the levels to which people may be exposed. The dose levels used to assess risks are established to protect the most sensitive human population (for example, children and nursing mothers). As such, sex and gender are taken into account in the risk assessment. Only uses for which the exposure is well below levels that cause no effects in animal testing are considered acceptable for registration.

Toxicology studies in laboratory animals describe potential health effects from varying levels of exposure to a chemical and identify the dose where no effects are observed. The health effects noted in animals occur at doses more than 100-times higher (and often much higher) than levels to which humans are normally exposed when using pesticide products according to label directions.

<sup>&</sup>lt;sup>3</sup> "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

<sup>&</sup>lt;sup>4</sup> "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

In laboratory animals, the technical grade active ingredient bixafen was of low acute toxicity by the oral, dermal and inhalation routes. Bixafen was minimally irritating to the eyes and non-irritating to the skin, and did not cause an allergic skin reaction; consequently, no hazard signal words are required on the label.

The end-use product F9651-2, containing bixafen and tebuconazole, was of moderate acute toxicity via the oral route; consequently, the hazard signal words "WARNING POISON" are required on the label. It was of low toxicity via the dermal and inhalation routes of exposure. It was non-irritating to the eyes and skin and did not cause an allergic skin reaction.

Registrant-supplied short- and long-term (lifetime) animal toxicity tests were assessed for the potential of bixafen to cause neurotoxicity, immunotoxicity, chronic toxicity, cancer, reproductive and developmental toxicity, and various other effects. The most sensitive endpoints used for risk assessment included effects on body weight, the liver and thyroid gland, and blood coagulation. There is low concern for increased susceptibility of the young exposed to bixafen. The risk assessment protects against these and any other potential effects by ensuring that the level of exposure to humans is well below the lowest dose at which these effects occurred in animal tests.

#### **Residues in Water and Food**

#### Dietary risks from food and drinking water have been determined to be acceptable.

Aggregate dietary intake estimates (food plus drinking water) revealed that the general population and children 1–2 years old, the subpopulation which would ingest the most bixafen relative to body weight, are expected to be exposed to less than 33% of the acceptable daily intake. Based on these estimates, the chronic dietary risk from bixafen is not of health concern for all population subgroups.

Acute dietary (food plus drinking water) intake estimates for the general population and all population subgroups were less than-15% of the acute reference dose, and are not of health concern. The highest exposed subpopulation was children 1–2 years old.

The *Food and Drugs Act* prohibits the sale of adulterated food, that is, food containing a pesticide residue that exceeds the established maximum residue limit (MRL). Pesticide MRLs are established for *Food and Drugs Act* purposes through the evaluation of scientific data under the *Pest Control Products Act*. Food containing a pesticide residue that does not exceed the established MRL does not pose an unacceptable health risk.

Residue trials conducted throughout the United States and Canada using bixafen on wheat, field corn, sweet corn, sorghum, carrots, radishes, sugar beets, potatoes, soybeans and peanuts, and throughout the European Union on barley are acceptable. The MRLs for this active ingredient can be found in the Science Evaluation section of this consultation document.

New MRLs are not proposed for tebuconazole given that adequate MRLs are currently established for tebuconazole on all proposed crops.

#### **Occupational Risks from Handling F9651-2 Fungicide**

# Occupational risks have been determined to be acceptable when bixafen is used according to the label directions, which include protective measures.

Farmers and custom applicators who mix, load or apply F9651-2 Fungicide, as well as field workers entering freshly treated fields of wheat (spring, durum and winter), barley, oats and soybeans, can come in direct contact with bixafen residues on the skin. Therefore, the label specifies that handlers mixing/loading and applying F9651-2 Fungicide must wear long-sleeved shirt, long pants, chemical-resistant gloves and shoes plus socks (gloves are not required inside a closed cab or cockpit). The label also requires that workers do not enter treated fields of wheat (spring, durum and winter), barley, oats and soybeans for 12 hours after application.

Taking into consideration these label statements, the number of applications and the expectation of the exposure period for handlers and workers, the health risk to these individuals are not of concern.

Potential for bystander exposure is considered minimal and is expected to be significantly less than exposure estimated for workers. Based on the worker assessment, bystander exposure is not of concern.

F9651-2 Fungicide is co-formulated with tebuconazole. Tebuconazole is already registered for use in Canada.

#### **Environmental Considerations**

#### What Happens When Bixafen Is Introduced Into the Environment?

# When bixafen is used according to the label directions, the risks to the environment have been determined to be acceptable.

Bixafen enters the environment when applied to control foliar diseases of cereal crops and soybeans caused by fungi. On land, bixafen is slow to break down and is not expected to move through the soil and reach groundwater. In water bodies, bixafen will move to sediments where it will remain over time. Bixafen is not expected to be found in the air, or to travel long distances from where it was applied. Bixafen is not expected to build-up in the tissues of organisms.

Bixafen presents negligible risk to wild mammals, birds, bees, beneficial insects, earthworms, invertebrates, marine algae, or aquatic plants. When bixafen is used at labelled application rates, it may pose risks of concern to freshwater diatoms/algae, freshwater fish, amphibians, and terrestrial plants. Therefore, mitigation measures, such as spray buffer zones, are required to minimize potential exposure to organisms in freshwater habitats and non-target terrestrial plants. When bixafen is used in accordance with the label and the required risk reduction measures are applied, the reduced environmental exposure is deemed adequate and risks are considered to be acceptable.

#### **Value Considerations**

#### What Is the Value of F9651-2 Fungicide?

# **F9651-2** Fungicide contains a combination of active ingredients with different modes of action to control concurrent diseases and manage the development of pathogen resistance.

Both bixafen and tebuconazole have particular strengths against certain diseases which are enhanced by the contribution of the other. The combination of these two active ingredients will control different diseases that co-occur while eliminating the need for tank mixing. F9651-2 Fungicide is an additional fungicide option for cereal and soybean growers that can be used to manage diseases in their crops.

#### **Measures to Minimize Risk**

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the label of Bixafen (F9650) Technical Fungicide and F9651-2 Fungicide to address the potential risks identified in this assessment are as follows:

#### **Key Risk-Reduction Measures**

#### Human Health

Because there is a concern with users coming into direct contact with bixafen on the skin or through inhalation of spray mists, anyone mixing, loading and applying F9651-2 Fungicide must wear long-sleeved shirt, long pants, chemical-resistant gloves and shoes plus socks (gloves are not required inside a closed cab or cockpit). The label also requires that workers do not enter treated fields of wheat (spring, durum and winter), barley, oats and soybeans for 12 hours after application. In addition, standard label statements to protect against drift during application are present on the label.

#### Environment

To minimize exposure and reduce risks to freshwater diatoms/algae, freshwater fish, amphibians, and terrestrial plants, spray buffer zones and precautionary label statements are required. Using vegetative filter strips may also help to reduce contamination of water bodies.

# **Next Steps**

Before making a final registration decision on bixafen and F9651-2 Fungicide, Health Canada's PMRA will consider any comments received from the public in response to this consultation document. Health Canada will accept written comments on this proposal up to 45 days from the date of publication of this document. Please note that, to comply with Canada's international trade obligations, consultation on the proposed MRLs will also be conducted internationally via a notification to the World Trade Organization.

Please forward all comments to Publications (contact information on the cover page of this document). Health Canada will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed decision and Health Canada's response to these comments.

### **Other Information**

When the Health Canada makes its registration decision, it will publish a Registration Decision on bixafen and F9651-2 Fungicide (based on the Science Evaluation of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room (located in Ottawa).

# **Science Evaluation**

#### **Bixafen and F9651-2 Fungicide**

# **1.0** The Active Ingredient, Its Properties and Uses

#### **1.1** Identity of the Active Ingredient

| Ac         | tive substance                                                     | Bixafen                                                                                                    |  |
|------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Fu         | nction                                                             | Fungicide                                                                                                  |  |
| Ch         | emical name                                                        |                                                                                                            |  |
| 1.         | International<br>Union of Pure and<br>Applied Chemistry<br>(IUPAC) | N-(3',4'-dichloro-5-fluoro[1,1'-biphenyl]-2-yl)-3-<br>(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide  |  |
| 2.         | Chemical Abstracts<br>Service (CAS)                                | sN-(3',4'-dichloro-5-fluoro[1,1'-biphenyl]-2-yl)-3-<br>(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide |  |
| CAS number |                                                                    | 581809-46-3                                                                                                |  |
| Mo         | olecular formula                                                   | $C_{18}H_{12}Cl_2F_3N_3O$                                                                                  |  |
| Mo         | olecular weight                                                    | 414.2 g/mol                                                                                                |  |
| Stı        | ructural formula                                                   |                                                                                                            |  |

Purity of the active 99.15% ingredient

#### **1.2** Physical and Chemical Properties of the Active Ingredient and End-Use Product

| Property                                                   |                                                                 | Result                                  |  |
|------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|--|
| Colour and physical state                                  | Light brown solid                                               |                                         |  |
| Odour                                                      | No noticeable odour                                             |                                         |  |
| Melting point                                              | 142.9°C                                                         |                                         |  |
| Boiling point or range                                     | Decomposition at 210°C                                          |                                         |  |
| Relative density                                           | 1.51                                                            |                                         |  |
| Vapour pressure at 20°C                                    | $4.6 \times 10^{-8} \text{ Pa}$                                 |                                         |  |
| Henry's constant at 25°C                                   | $9.177 \times 10^{-10} \text{ atm} \cdot \text{m}^3/\text{mol}$ |                                         |  |
| Ultraviolet (UV)-visible spectrum                          | Absorption maxima at 210 a                                      | nd 233 nm.                              |  |
| Solubility in water at 20°C                                | $4.9 	imes 10^{-4}$ g/L                                         |                                         |  |
| Solubility in organic solvents at                          | Solvent                                                         | Solubility (g/L)                        |  |
| 20°C                                                       | Methanol                                                        | 32                                      |  |
|                                                            | n-Heptane                                                       | 0.056                                   |  |
|                                                            | Toluene                                                         | 16                                      |  |
|                                                            | Dichloromethane                                                 | 102                                     |  |
|                                                            | Acetone                                                         | > 250                                   |  |
|                                                            | Ethyl acetate                                                   | 82                                      |  |
|                                                            | Dimethyl sulfoxide                                              | > 250                                   |  |
| <i>n</i> -Octanol-water partition coefficient ( $K_{ow}$ ) | 3.3                                                             |                                         |  |
| Dissociation constant $(pK_a)$                             | No dissociation between pH 1–12.                                |                                         |  |
| Stability (temperature, metal)                             | Stable to elevated temperatu aluminium acetate, iron, iron      | res and to metals (aluminium, citrate). |  |

#### Technical Product—Bixafen (F9650) Technical Fungicide

#### End-Use Product—F9651-2 Fungicide

| Property                     | Result                                               |
|------------------------------|------------------------------------------------------|
| Colour                       | Off-white                                            |
| Physical state               | Liquid                                               |
| Formulation type             | Suspension                                           |
| Label concentration          | 340 g/L tebuconazole, 160 g/L bixafen                |
| Container material and       | 0.5 L bulk HDPE jugs and HDPE drums with outer metal |
| description                  | support                                              |
| Density                      | 1.14 g/mL                                            |
| pH of 1% dispersion in water | 7.70                                                 |
| Oxidizing or reducing action | Not an oxidizing or reducing substance.              |

| Property                  | Result                                                            |
|---------------------------|-------------------------------------------------------------------|
| Storage stability         | Stable in fluorinated plastic bottles stored at 54°C for 14 days. |
| Corrosion characteristics | No adverse effects to fluorinated plastic bottles after storage.  |
| Explodability             | Not expected to be explosive.                                     |

#### **1.3** Directions for Use

**For cereals:** Apply preventatively, once per season, at rates of 279–364 ml/ha (depending on disease) when conditions are favourable for disease development and disease thresholds are met. Use the high rate for high disease pressure. If early season application is required, use the lower rate. A non-ionic surfactant may be added at 0.25% v/v to improve efficacy. The product may be applied with ground application equipment using a minimum of 100 L water/ha spray volume or with aerial application equipment with a minimum of 45 L water/ha spray volume.

**For soybean:** Apply at rates of 279–400 ml/ha (depending on disease) when weather conditions are favourable for disease development. Apply up to two times per season on a 10–14 day interval. Use the high rate under high disease pressure. A non-ionic surfactant may be added at 0.125–0.25% v/v to improve efficacy. The product may be applied with ground application equipment using a minimum of 100 L water/ha spray volume.

#### 1.4 Mode of Action

Bixafen restricts the activity of succinate dehydrogenase, an enzyme of complex II within the fungal mitochondrial respiration chain (for energy production) and is classified as a Group 7 fungicide by the Fungicide Resistance Action Committee (FRAC).

# 2.0 Methods of Analysis

#### 2.1 Methods for Analysis of the Active Ingredient

The methods provided for the analysis of the active ingredient and impurities in the technical product have been validated and assessed to be acceptable for the determinations.

#### 2.2 Method for Formulation Analysis

The method provided for the analysis of the active ingredient in the formulation has been validated and assessed to be acceptable for use as an enforcement analytical method.

#### 2.3 Methods for Residue Analysis

High performance liquid chromatography methods with tandem mass spectrometric detection (HPLC-MS/MS) were developed and proposed for data generation and enforcement purposes. These methods fulfilled the requirements with regards to specificity, accuracy and precision at the respective method limit of quantitation. Acceptable recoveries (70–120%) were obtained in plant and animal matrices. The proposed enforcement methods were successfully validated in environmental media, plant and animal matrices by an independent laboratory. Adequate

extraction efficiencies were demonstrated using radiolabelled wheat samples analyzed using plant data-gathering Method 01012 for which the extraction procedure is identical to that of plant enforcement Method 00983. Extraction solvents used in livestock enforcement Method 01063 were similar to those used in the goat and poultry metabolism studies; thus, further demonstration of extraction efficiency with radiolabelled livestock matrices was not required for the enforcement method. Methods for residue analysis are summarized in Appendix I, Table 1.

# 3.0 Impact on Human and Animal Health

#### 3.1 Toxicology Summary

Bixafen (also known as BYF 00587) is a broad spectrum fungicide from the carboxamide fungicide class and pyrazole-carboxamide sub-class. The pesticidal mode of action has been shown to rely on the inhibition of the enzyme succinate dehydrogenase (complex II) within the fungal mitochondrial respiration chain, preventing energy production. A detailed review of the toxicology database for bixafen was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. In addition, mechanistic studies were also provided to investigate the effects observed on hepatic enzyme activation, coagulation time and thyroid hormone levels. The studies in the database were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The scientific quality of the data is high and the database is considered adequate to characterize the potential health hazards associated with bixafen.

Toxicokinetic investigations were conducted in rats with bixafen, radiolabelled with <sup>14</sup>C in either the phenyl or pyrazole ring, administered via gavage at various dose levels for different durations. These investigations also included a study with bile duct-cannulated rats.

The radiolabelled test substance was rapidly absorbed and maximum plasma concentrations were achieved within 2–4 hours of dosing for males and females at the single low and repeated low dose levels and within 8 hours at the single high dose level. Based on the radioactivity detected in bile, urine and carcass, oral absorption of bixafen was approximately 88% of the administered dose (AD) in both sexes. The liver and kidneys had the highest levels of residues, with slightly higher levels in females versus males. Based on area under curve (AUC) data, females received a slightly larger systemic dose, likely the result of slower elimination. Noticeably higher levels of residues were observed in female animals at termination compared to males. However, there was no evidence of tissue retention in males or females, as there was  $\leq 3\%$  of the AD found in animals at termination.

At termination, radioactivity from the single low, single high and repeated dose regimens was eliminated predominantly via feces, with minimal elimination via the urine in both sexes. Although still a minor route of excretion, female rats excreted approximately twice the amount of AD in urine compared to males. In bile duct-cannulated animals, males excreted more of the AD via the bile than females. Biliary excretion was the main route of elimination in both sexes.

Parent compound was detected in feces only, and at < 10% of the AD. The main metabolic reaction was the demethylation of the pyrazole ring to form bixafen-desmethyl. Parent compound and bixafen-desmethyl were hydroxylated at different positions. Most of the hydroxy-compounds were conjugated with glucuronic acid. An N-conjugation of bixafen-desmethyl with glucuronic acid was also observed. Conjugation of bixafen with glutathione was a major metabolic reaction in bile. Glutathione conjugation and related metabolites were also found for bixafen-desmethyl. Minor metabolic reactions included cleavage of the amide structure of bixafen forming pyrazole-4-carboxamide and desmethyl-pyrazole-4-carboxamide, which were observed as label-specific metabolites in urine. The oxidation of bixafen-pyrazole-4-carboxamide led to bixafen-pyrazole-4-carboxylic acid. Another minor reaction was the elimination of one of the two chlorine atoms of bixafen-desmethyl, bixafen-desmethyl-5-hydroxyphenyl and a further conjugation with a methylthio group. In feces, bixafen-desmethyl, bixafen-desmethyl-5-hydroxyphenyl, bixafen-4-fluoro-5-hydroxyphenyl and bixafen-5-hydroxyphenyl-6-(methylthio), 4-hydroxyphenyl, bixafen-4-fluoro-5-hydroxyphenyl and bixafen-5-hydroxyphenyl-6-thiol-acetaldehyde were identified.

In acute toxicity studies, technical bixafen was of low acute toxicity via the oral, dermal and inhalation routes in rats. Bixafen was non-irritating to the skin and minimally irritating to the eyes of rabbits. It was not a skin sensitizer in mice by the local lymph node assay (LLNA).

The end-use product F9651-2 fungicide was of moderate acute toxicity via the oral route and of low acute toxicity via the dermal and inhalation routes in rats. It was non-irritating to the eyes and skin of rabbits. F9651-2 was not a skin sensitizer in mice by the LLNA.

In the guideline repeat-dose oral toxicity studies, the primary targets of toxicity for bixafen were the liver in rats, mice and dogs and the thyroid in rats and mice. The rat was the most sensitive species. The effects observed were consistent in both short- and long-term studies. In rodents, males appeared more sensitive to the liver effects than females. Effects in the liver included increased size (rats and mice) and weight (rats, mice and dogs), single cell necrosis (mice and female dogs), and hepatocyte diffuse centrilobular (rats, mice, and female dogs) to panlobular (rats and mice) hypertrophy, as well as increased aspartate aminotransferase (AST) and increased alanine aminotransferase (ALT) in both sexes (mice). In a long-term study, female rats also showed increased incidence of hepatocellular brown pigment and multinucleated hepatocytes. Cholesterol levels were increased in all species. A mechanistic study in the rat showed that increased liver weight was associated with increased liver enzyme activity (phase I and II enzymes) after bixafen administration.

Thyroid gland toxicity consisted of increased incidences of thyroid follicular cell hypertrophy, hyperplasia and colloid alteration. Colloid alteration, as well as thyroid hyperplasia, occurred in rats of both sexes and thyroid follicular cell hyperplasia was observed in female mice. In rats, males appeared more sensitive to thyroid effects than females in subchronic studies (28-day, 90-day and one-generation reproductive toxicity studies), while female mice seemed more sensitive than male mice in a long-term study (18-month). Other effects on the thyroid gland included increased weight, dark and/or pigmented organ, and increased thyroid-stimulating hormone (TSH) levels. In a mechanistic 14-day gavage study in rats, TSH levels were slightly increased in females from the third day of dosing until the end of the study period while, in males, TSH was

increased only at termination. A slight transient decrease in triiodothyronine (T3) was observed in females on days 3 to 7 and a slight decrease in thyroxine (T4) was observed in males at termination. There was evidence of increased clearance of T4, as reflected by the increased glucuronosyltransferase (UDPGT) enzyme activity in both sexes. A recovery study showed that TSH levels returned to normal within 28 days post-dosing, indicating that the effects on the thyroid gland were reversible; however, enlarged liver persisted in female rats.

All species showed body weight effects and pale feces with repeated oral dosing. Increased incidences of stomach squamous hyperplasia, unilateral focal tubular degeneration in testes and focal/multifocal squamous cell hyperplasia in the ovaries were observed in mice. Additional effects in dogs included decreased red blood cell parameters.

Six months into the two-year chronic toxicity/oncogenicity study in rats, several males died from what appeared to be a hemorrhagic syndrome (increased prothrombin and activated partial thromboplastin times). The applicant proposed that the effects were the result of vitamin K deficiency in the diet of the long-term rat study. Altered coagulation times and hemorrhagic syndrome were observed in several studies in rats, but the diet used in the short-term studies was not analysed. Analysis of the long-term diet showed that it contained less than 0.3 ppm of vitamin K3; and thus, was vitamin K deficient. As this was unintentional, the study methodology was modified, the males were removed and the study continued with the female groups using a diet supplemented with 7.1 to 15.7 ppm of vitamin K3 (PMRA No. 2642789). A complementary two-year chronic toxicity/oncogenicity study was initiated in male rats using a diet supplemented with 7.1 to 10.6 ppm of vitamin K3 (PMRA No. 2642790). In these studies, no alteration in coagulation parameters were observed, but the amount of vitamin K was considered excessive and therefore, could have masked any potential effects of bixafen on these parameters (Reference PMRA No. 2914470).

Surviving males from the high dose group within the initial long-term study were used in a mechanistic study, which demonstrated that the addition of 16 ppm of vitamin K3 to the diet significantly lowered both the prothrombin (PT) and the activated partial thromboplastin times (aPTT) to historical control values within two weeks of supplementation (PMRA No. 2642810). As a control group was not used in the mechanistic study, it was difficult to evaluate the role of bixafen on the coagulation parameters. An additional mechanistic study in rats showed that a diet supplemented with 16 ppm of vitamin K3 reduced PT in animals treated with bixafen for 28 days at all doses tested, reaching statistical significance at the mid- and high-dose levels, compared to vitamin K supplemented controls. Although the results of this 28-day study showed a decrease in PT, contrary to what was observed in the long-term study (increases in PT and aPTT), it appears that bixafen may be amplifying the effects resulting from either an excess or deficiency of vitamin K. While the decrease in PT was evident in the vitamin K3 supplemented diet groups, the amount of vitamin K3 supplementation was considered excessive (Reference PMRA No. 2914470), which confounds the interpretation of the studies. Furthermore, in a 90-day dietary toxicology study in rats, increased coagulation times returned to control values after a 4-week recovery period. However, the vitamin K level in the diet used in this study was not assessed. In the absence of a known mechanism of action for bixafen on coagulation, the PMRA concluded that any significant effect on coagulation parameters, regardless of the direction of the change, was treatment-related and adverse.

A repeat-dose dermal toxicity study in the rat did not identify any adverse effects when bixafen was tested up to the limit dose.

There was no evidence of genotoxicity in a battery of in vitro and in vivo genotoxicity studies conducted with bixafen. There was no evidence of oncogenicity after long-term dietary dosing in mice and rats.

There was no evidence of sensitivity of the young in gavage developmental toxicity studies conducted with bixafen in rats or rabbits. In rats, reduced fetal body weight and an increased incidence of multiple skeletal variations were observed at a dose level that produced decreased body weight, body weight gain, and food consumption, as well as clinical signs, in dams. In the rabbit study, there was a reduction in fetal body weight. At the same dose level, decreased body weight gain and food consumption, and increased liver weight were observed in dams. At a high dose level, there was decreased body weight, additional liver toxicity and an increased incidence of abortions, fetal loss and maternal mortality.

In a dietary two-generation reproductive toxicity study in rats, there were no effects on mating, gestation or fertility. Offspring effects consisted of decreased body weight and body weight gain in pups of both generations. At the same dose level, parental toxicity in both generations consisted of increased liver weight and incidence of diffuse centrilobular hypertrophy. Decreased body weight and body weight gain occurred in maternal animals of both generations at premating, gestation and lactation periods. Additional effects in the F0 animals included decreased thymus weight in females and increased kidney and spleen weights in males. There was no evidence of sensitivity of the young.

In an acute neurotoxicity study, rats exposed via gavage to bixafen demonstrated decreased motor activity and body temperature, and, in females, decreased rearing counts. These observations occurred at 4 hours post-dosing, which corresponded to the approximated time of peak bixafen levels in plasma. At the highest dose tested, male animals exhibited decreased body weight gains. There was no evidence of selective neurotoxicity in animals tested with a single dose of bixafen.

Results of the toxicology studies conducted on laboratory animals with bixafen and its associated end-use product are summarized in Appendix I, Tables 2 and 3. The toxicology reference values for use in the human health risk assessment are summarized in Appendix I, Table 4.

#### **Incident Reports – Human Health and Domestic Animals**

Since 26 April 2007, registrants have been required by law to report incidents to the PMRA, including adverse effects to Canadian health or the environment. Bixafen is a new active ingredient pending registration for use in Canada. There have been no incident reports involving this active ingredient received by the PMRA as of 6 September 2018.

# 3.1.1 Pest Control Products Act Hazard Characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, the database contains the full complement of required studies including gavage developmental toxicity studies in rats and rabbits and a dietary two-generation reproductive toxicity study in rats.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased sensitivity of fetuses or offspring compared to parental animals in the developmental toxicity or reproductive toxicity studies. In developmental toxicity studies, reduced fetal weights (rats and rabbits) and skeletal variations (rats) were observed in the presence of maternal toxicity. In the two-generation rat reproductive toxicity study, decreased body weight and body weight gain occurred at a dose level that also showed maternal toxicity consisting of liver toxicity, and decreased body weight and body weight gain. Overall, endpoints in the young were well-characterized and not considered serious in nature. Therefore, the *Pest Control Products Act* factor (PCPA factor) was reduced to onefold.

# 3.2 Acute Reference Dose (ARfD)

To estimate acute dietary risk, the developmental toxicity study in the rat with a NOAEL of 75 mg/kg bw/day was selected for risk assessment. At the LOAEL of 250 mg/kg bw/day, significantly lower body weight in dams was observed. This effect occurred within the first few days of dosing and is therefore relevant to an acute risk assessment. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* Hazard Characterization section, the PCPA factor was reduced to one-fold. Accordingly, the composite assessment factor (CAF) is 100.

The ARfD is calculated according to the following formula:

 $ARfD = \frac{NOAEL}{CAF} = \frac{75 \text{ mg/kg bw/day}}{100} = 0.8 \text{ mg of bixafen/kg bw}$ 

# 3.3 Acceptable Daily Intake (ADI)

To estimate risk following repeated dietary exposure, the NOAEL of 2.0 mg/kg bw/day from the two-year chronic toxicity/oncogenicity study in male rats was selected for risk assessment. Liver and thyroid effects were observed at the study LOAEL of 12.1 mg/kg bw/day. This study provided the lowest NOAEL in the database. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* Hazard Characterization section, the PCPA factor was reduced to onefold. The CAF is 100.

The ADI is calculated according to the following formula:

ADI =  $\frac{\text{NOAEL}}{\text{CAF}} = \frac{2.0 \text{ mg/kg bw/day}}{100} = 0.02 \text{ mg of bixafen/kg bw/day}$ 

#### **Cancer Assessment**

There was no evidence of carcinogenicity and therefore, no cancer risk assessment is necessary.

#### 3.4 Occupational and Residential Risk Assessment

#### 3.4.1 Toxicological Reference Values

Exposure to bixafen is expected to be mainly via the dermal and inhalation routes for chemical handlers and through the dermal route for postapplication workers. Exposure is expected to be short- to intermediate-term in duration, since the product can be applied up to twice during the growing season by farmers and over 30 days per season by custom applicators.

#### Short- and- Intermediate-term Dermal

For exposures of short- and intermediate-term durations via the dermal route, the NOAEL of 1000 mg/kg bw/day from the 28-day dermal toxicity study in rats was selected for risk assessment. This study assessed the endpoints of concern and no adverse effects were observed. The target Margin of Exposure (MOE) is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of the NOAEL from the 28-day dermal toxicity study in rats and target MOE is considered protective of all populations, including nursing infants and the unborn children of exposed female workers.

#### Short- and Intermediate-term Inhalation

Repeat-dose inhalation toxicity studies were not available for bixafen. For exposures of shortand intermediate-term duration via the inhalation route, the NOAEL of 13 mg/kg bw/day from the 90-day dietary toxicity study in rats was selected for risk assessment. At the LOAEL of 50 mg/kg bw/day, hepatic centrilobular hypertrophy, thyroid follicular cell hypertrophy and altered coagulation parameters were observed. The MOE is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of the NOAEL from the 90-day dietary toxicity in rats and MOE is considered protective of all populations, including nursing infants and the unborn children of exposed female workers.

#### **Cumulative Assessment**

The *Pest Control Products Act* requires the Agency to consider the cumulative effects of pest control products that have a common mechanism of toxicity. Bixafen belongs to a group of fungicides known as carboxamide fungicides, more specifically it belongs to the pyrazole-carboxamide sub-class. Bixafen shares common metabolites in mammals, plants and soil with other active ingredients of the same class, namely fluxapyroxad, sedaxane and isopyrazam. These metabolites were considered to be of equal or lower toxicity than bixafen, and were

present at very low levels (<0.2 ppm), thus would not have a significant impact in a cumulative assessment. Furthermore, no common mechanism of action for the endpoints of concern has been determined at this time.

#### 3.4.1.1 Dermal Absorption

No chemical-specific dermal absorption data were submitted. Dermal absorption data are not required as the dermal endpoint is based on a dermal study.

#### 3.4.2 Occupational Exposure and Risk

Individuals have potential for exposure to F9651-2 Fungicide during mixing, loading and application. Exposure to workers mixing, loading and applying F9651-2 Fungicide is expected to be short- to intermediate-term duration and to occur primarily by the dermal and inhalation routes. Exposure estimates were derived for mixer/loaders and applicators applying F9651-2 Fungicide to wheat (spring, durum and winter), barley, oat and soybean fields using groundboom and aerial application equipment.

The exposure estimates are based on mixers/loaders/applicators wearing a single layer and chemical-resistant gloves (unless inside a closed cab or cockpit).

As chemical-specific data for assessing human exposures were not submitted, dermal and inhalation exposures for workers were estimated using data from the Agricultural Handlers Exposure Task Force (AHETF). AHETF are compilations of generic mixer/loader and applicator passive dosimetry data with associated software which facilitates the generation of scenario-specific exposure estimates.

Dermal exposure was estimated by coupling the unit exposure values with the amount of product handled per day. Inhalation exposure was estimated by coupling the unit exposure values with the amount of product handled per day and 100% inhalation absorption. Exposure was normalized to  $\mu$ g/kg bw/day by using 80 kg adult body weight.

Dermal and inhalation exposure estimates were compared to the relevant bixafen toxicological reference value (no observable adverse effect level [NOAEL] = 1000 mg/kg bw/day for dermal and 12.9 mg/kg bw/day for inhalation) to obtain the margins of exposure (MOEs); the target MOE is 100. Tables 3.4.2.1.1 and 3.4.2.1.2 present the AHETF unit exposure values and estimates of exposure and risk, respectively. Acceptable MOEs were calculated for workers who wear the proposed PPE, use the engineering controls, and follow the restrictions on the product label.

| Fung  | icide (µg/kg a.i. handled)                                                                    |        |                         |
|-------|-----------------------------------------------------------------------------------------------|--------|-------------------------|
| Scena | nrio                                                                                          | Dermal | Inhalation <sup>1</sup> |
| Mixe  | r/loader AHETF estimates                                                                      |        |                         |
| А     | Open Mix/Load Liquids (Single layer, CR gloves)                                               | 58.50  | 0.63                    |
| Appli | cator AHETF estimates                                                                         |        | -                       |
| В     | Open Cab Groundboom Liquid Application (Single layer, CR gloves)                              | 25.40  | 1.68                    |
| С     | Aerial Closed Cockpit liquid application (single layer)                                       | 2.67   | 0.00969                 |
| Mixe  | r/loader + applicator AHETF estimates                                                         |        | <u>·</u>                |
| A+B   | Open Mix/Load Liquids and Open Cab Groundboom<br>Liquid Application (Single layer, CR gloves) | 83.90  | 2.31                    |

<sup>1</sup> Light inhalation rate

| TABLE 3.4.                                                     | TABLE 3.4.2.1.2 Mixer/Loader/Applicator Risk Assessment for Chemical Handlers |                                                                        |                               |                         |                                                      |                                                          |                                               |                                                   |  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-------------------------|------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--|--|
| Exposure<br>scenario                                           | Dermal<br>Unit<br>exposure<br>(µg/kg a.i.<br>handled) <sup>1</sup>            | Inhalation<br>Unit<br>exposure<br>(µg/kg a.i.<br>handled) <sup>1</sup> | ATPD<br>(ha/day) <sup>2</sup> | Rate<br>(kg<br>a.i./ha) | Dermal<br>exposure<br>(µg/kg<br>bw/day) <sup>3</sup> | Inhalation<br>exposure<br>(µg/kg<br>bw/day) <sup>3</sup> | Dermal<br>MOE<br>(target<br>100) <sup>4</sup> | Inhalation<br>MOE<br>(target<br>100) <sup>5</sup> |  |  |
| PPE: (Single layer, CR gloves except in closed cab or cockpit) |                                                                               |                                                                        |                               |                         |                                                      |                                                          |                                               |                                                   |  |  |
| Farmer<br>(M/L/A)                                              | 83.90                                                                         | 2.31                                                                   | 107                           |                         | 7.18                                                 | 0.20                                                     | 139240                                        | 65238                                             |  |  |
| Custom<br>(M/L)                                                | 58.50                                                                         | 0.63                                                                   | 360                           | 0.064                   | 16.85                                                | 0.18                                                     | 59354                                         | 71098                                             |  |  |
| Custom<br>(A)                                                  | 25.40                                                                         | 1.68                                                                   | 360                           | 0.064                   | 7.32                                                 | 0.48                                                     | 26662                                         | 136702                                            |  |  |
| Custom<br>(M/L/A)                                              | 83.90                                                                         | 2.31                                                                   | 360                           |                         | 24.16                                                | 0.67                                                     | 41385                                         | 19390                                             |  |  |
| Aerial<br>(M/L)                                                | 58.50                                                                         | 0.63                                                                   | 400                           | 0.0582                  | 17.02                                                | 0.18                                                     | 58742                                         | 70365                                             |  |  |
| Aerial (A)                                                     | 2.67                                                                          | 0.00969                                                                | 400                           |                         | 0.78                                                 | 0.003                                                    | 1287051                                       | 4574809                                           |  |  |

<sup>1</sup> Unit exposure based on AHETF from Table 3.4.2.1.1

<sup>2</sup> Default Area Treated Per Day tables (2015)

<sup>3</sup> Exposure = (Unit exposure [ $\mu$ g/kg a.i.] x ATPD [ha] x Rate [kg/ha]) / (80 kg bw x 1000  $\mu$ g/mg)

<sup>4</sup> Based on dermal NOAEL = 1000 mg/kg bw/day, target MOE = 100

<sup>5</sup> Based on inhalation NOAEL = 13 mg/kg bw/day, target MOE = 100

#### 3.4.2.2 Exposure and Risk Assessment for Workers Entering Treated Areas

Bixafen has a vapour pressure of  $4.6 \times 10^{-8}$  Pa at 20°C and is considered to be non-volatile and therefore only a dermal assessment is required.

Postapplication dermal exposure may occur when workers enter treated fields of wheat (spring, durum and winter), barley, oats and soybeans to perform various activities. The duration of exposure is considered to be short- to intermediate-term as these activities may occur throughout the growing season.

Dermal exposure to workers entering treated areas is estimated by coupling default dislodgeable foliar residue (DFR) values with activity-specific transfer coefficients.

The exposure estimates were compared to the bixafen dermal toxicological reference value (NOAEL = 1000 mg/kg bw/day) to obtain the MOE; the target MOE is 100. Since these values exceed the target MOE of 100 (Table 3.4.2.2.1) for wheat (spring, durum and winter), barley, oats and soybeans, the level of postapplication exposure is not of health concern.

 TABLE 3.4.2.2.1 Postapplication Exposure and Risk Estimate for Bixafen on Day 0 After the Last

 Application

| Re-entry activity | Peak DFR<br>(µg/cm <sup>2</sup> ) <sup>1</sup> | Transfer coefficient<br>(cm <sup>2</sup> /hr) <sup>2</sup> | Dermal exposure<br>(mg/kg bw/day) <sup>3</sup> | MOE<br>(target 100) <sup>4</sup> | REI <sup>5</sup> |
|-------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------|----------------------------------|------------------|
| Hand weeding      | 0.1996                                         | 70                                                         | 0.0014                                         | 715701                           | 12 hours         |
| Scouting          | 0.1996                                         | 1100                                                       | 0.0220                                         | 45545                            | 12 hours         |

 $^1$  Calculated using the default peak residue value of 25% and a default daily dissipation rate of 10%

<sup>2</sup> Transfer coefficients obtained from the PMRA Agricultural TCs Table (12.22.2016)

<sup>3</sup> Exposure = (Peak DFR [ $\mu$ g/cm<sup>2</sup>] × TC [cm<sup>2</sup>/hr] × 8 hours) / (80 kg bw × 1000  $\mu$ g/mg)

<sup>4</sup> Based on a NOAEL of 1000 mg/kg bw/day, target MOE = 100

<sup>5</sup> Minimum REI is 12 hours to allow residues to dry

#### 3.4.3 Residential Exposure and Risk Assessment

#### 3.4.3.1 Handler Exposure and Risk

F9651-2 Fungicide is not a domestic class product; therefore, a residential handler assessment was not required.

#### 3.4.3.2 Postapplication Exposure and Risk

F9651-2 Fungicide is not a domestic class product; therefore, a residential postapplication exposure assessment was not required.

#### 3.4.3.3 Bystander Exposure and Risk

Bystander exposure should be negligible since the potential for drift is expected to be minimal. Application to agricultural crops is permitted only when there is low risk of drift to areas of human habitation or activity such as houses, cottages, schools and recreational areas, taking into consideration wind speed, wind direction, temperature inversions, application equipment and sprayer settings.

#### 3.5 Food Residues Exposure Assessment

#### 3.5.1 Residues in Plant and Animal Foodstuffs

The residue definition in plant products for risk assessment is bixafen and the metabolite bixafen-desmethyl, and for enforcement is bixafen. The residue definition for both risk assessment and enforcement in livestock matrices is bixafen and the metabolite bixafen-desmethyl. The data gathering/enforcement analytical methods are valid for the quantitation of bixafen and bixafen-desmethyl residues in crop and livestock matrices. The residues of bixafen

and bixafen-desmethyl are stable in representative matrices from five crop categories (high water, high oil, high protein, high starch and high acid content) for up to 24 months when stored in a freezer at -18°C. Therefore, bixafen and bixafen-desmethyl residues are considered stable in all frozen crop matrices and processed crop fractions for up to 24 months. Storage stability data were not submitted for animal matrices; however, these data are not required since all tissue, milk and egg samples were analyzed within 30 days of collection in the dairy cattle and laying hen feeding studies.

The raw agricultural commodities, wheat grain, barley grain, soybean seed, sorghum grain, field corn grain, potato tubers, sugar beet roots and peanut nutmeats were processed and bixafen residues concentrated in the following processed commodities: field corn refined oil (1.8×), meal (1.4×) and flour (1.4×), and refined peanut oil (2.2×).

Adequate feeding studies were carried out to assess the anticipated residues in livestock matrices resulting from the proposed uses. Crop field trials conducted throughout Canada, the United States and Europe using end-use products containing bixafen at approved or exaggerated rates are sufficient to support the proposed maximum residue limits.

#### 3.5.2 Dietary Risk Assessment

Acute and chronic dietary risk assessments were conducted using the Dietary Exposure Evaluation Model (DEEM–FCID<sup>TM</sup>).

#### 3.5.2.1 Chronic Dietary Exposure Results and Characterization

The following criteria were applied to the basic chronic analysis for bixafen: 100% crop treated, default processing factors (where available), and residues in/on crops and animal commodities at the recommended MRL levels. The basic chronic dietary exposure from all supported bixafen food uses (alone) for the total population, including infants and children, and all representative population subgroups is less than 33% of the acceptable daily intake (ADI). Aggregate exposure from food and drinking water is considered acceptable. The PMRA estimates that chronic dietary exposure to bixafen from food and drinking water is 10.8% (0.002164 mg/kg bw/day) of the ADI for the total population. The highest exposure and risk estimate is for children 1–2 years of age at 32.5% (0.006506 mg/kg bw/day) of the ADI.

#### 3.5.2.2 Acute Dietary Exposure Results and Characterization

The following assumptions were applied in the basic acute analysis for bixafen: 100% crop treated, default processing factors, and residues in/on crops and animal commodities at the recommended MRL levels. The refined acute dietary exposure (food alone) for all supported bixafen registered commodities is estimated to be 7.3% (0.009066 mg/kg bw/day) of the ARfD for the general population (95<sup>th</sup> percentile, deterministic). Aggregate exposure from food and drinking water is 7.4% of the ARfD for the general population and is, therefore, acceptable. The highest exposure and risk estimate is for children 1–2 years of age at 14.4% (0.014495 mg/kg bw/day) of the ARfD.

#### 3.5.3 Drinking Water

The residue definition for drinking water includes bixafen only.

Estimated environmental concentrations (EECs) of bixafen in groundwater were calculated using the Pesticide Water Calculator (PWC v1.52) model to simulate leaching through a layered soil profile over a 100-year period. The concentrations calculated using PWC are average concentrations in the top 1 m of the water table. EECs of bixafen in surface water were also calculated using the PWC model over a 50-year period, which simulate pesticide runoff from a treated field into an adjacent water body and the fate of a pesticide within that water body. Pesticide concentrations in surface water were estimated in a vulnerable drinking water source, a small reservoir.

A Level 1 drinking water assessment was conducted using conservative assumptions with respect to environmental fate, application rate and timing, and geographic scenario. The largest EECs across all modelled scenarios are reported in Table 3.5.1.1 below. The Level 1 EEC estimates cover all regions of Canada and are expected to allow for future use expansion into other crops at the modelled application rate.

| Table 3.5.1.1 | Level 1 Estimated Environmental Concentrations of Bixafen in Potential |
|---------------|------------------------------------------------------------------------|
|               | Drinking Water Sources                                                 |

| Crop/use pattern                                                                                     | Groundwater<br>(µg a.i./L) |                     | Surface Water<br>(µg a.i./L) |                     |
|------------------------------------------------------------------------------------------------------|----------------------------|---------------------|------------------------------|---------------------|
|                                                                                                      | Daily <sup>1</sup>         | Yearly <sup>2</sup> | Daily <sup>3</sup>           | Yearly <sup>4</sup> |
| Soybeans: 2 applications at 64 g a.i./ha<br>with an interval of 10 days, total 128 g<br>a.i./ha/year | 1.6                        | 1.6                 | 3.0                          | 1.5                 |

<sup>1</sup> 90<sup>th</sup> percentile of daily average concentrations

<sup>2</sup> 90<sup>th</sup> percentile of 365-day moving average concentrations

<sup>3</sup>90<sup>th</sup> percentile of the peak concentrations from each year

<sup>4</sup> 90<sup>th</sup> percentile of yearly average concentrations

#### 3.5.4 Aggregate Exposure and Risk

The aggregate risk for bixafen consists of exposure from food and drinking water sources only; there are no residential uses.

#### 3.5.5 Maximum Residue Limits

| Table 3.5.1.2 | Proposed | Maximum | Residue | Limits |
|---------------|----------|---------|---------|--------|
|---------------|----------|---------|---------|--------|

| Commodity                                                                                                              | Recommended MRL (ppm) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Sorghum                                                                                                                | 3.0                   |
| Crop group 15: Cereal grains, except sorghum and rice                                                                  | 0.4                   |
| Crop subgroup 1A: Root vegetables                                                                                      | 0.3                   |
| Fat, meat and meat byproducts of cattle, goats, horses and sheep                                                       | 0.2                   |
| Milk                                                                                                                   | 0.05                  |
| Dry soybeans                                                                                                           | 0.04                  |
| Crop subgroup 1C: Tuberous and corm vegetables; eggs;<br>fat, meat and meat byproducts of hogs and poultry;<br>peanuts | 0.01                  |

MRLs are proposed for each commodity included in the listed crop groupings in accordance with the <u>Residue Chemistry Crop Groups</u> webpage in the Pesticides section of the Canada.ca website.

For additional information on Maximum Residue Limits (MRLs) in terms of the international situation and trade implications, refer to Appendix II.

The nature of the residues in animal and plant matrices, analytical methodologies, field trial data, and acute and chronic dietary risk estimates are summarized in Appendix I, Tables 1, 5 and 6.

# 4.0 Impact on the Environment

#### 4.1 Fate and Behaviour in the Environment

Bixafen is highly persistent under laboratory and field conditions, and biotransformation of bixafen occurs very slowly in the environment. Only minor transformation products were produced in soil during laboratory studies of less than one year. In a laboratory soil biotransformation study using loam soil under anaerobic conditions, the  $DT_{50}$  value for bixafen was 819 days. Under aerobic conditions in four soils (loam, sandy loam, and silt loam), the  $DT_{50}$  values for bixafen were 96–1773 days. Non-extracted residues were observed exceeding 10% of applied amounts of bixafen in soil studies.

Hydrolysis and phototransformation are also not expected to be important routes of environmental transformation. Bixafen is stable to hydrolysis at environmentally relevant pH values, and phototransformation half-lives for bixafen under continuous irradiation were approximately 109 days and 81 days in soil and water, respectively. Bixafen is sparingly soluble in water. Volatilization from water or moist soils is also not expected as the vapour pressure and Henry's law constant for bixafen are relatively low. The adsorption  $K_{oc}$  values for bixafen (3858–5812 mL/g in five soils) indicate that it is expected to exhibit slight mobility in a variety of soil types. Bixafen meets four of the eight criteria of leaching potential, so there is a suggestion of potential leaching, but when aerobic soil half-lives are considered with  $K_{oc}$  values, the resulting Groundwater Ubiquity Score (GUS) values indicate that bixafen is a non-leacher.

Moreover, results from two terrestrial field dissipation studies relevant to Canada (in Alberta and New Jersey) showed that bixafen residues were detected mainly in the 0 to 15 cm layers. The number of detections and amounts of bixafen in each layer decreased with soil depth. There were substantially lower concentrations measured in the 15 to 30 cm layers, only a few detections in the 30 to 45 cm layers, and just two detections in the 45 to 60 cm layer. Representative half-lives/DT<sub>50</sub> values were 550 and 748 days in Alberta and 300 and 100 days in New Jersey.

Overall, taking into consideration results from laboratory studies and terrestrial field dissipation studies, in addition to the assessment of mobility using GUS scores and the criteria of leaching potential, bixafen has low potential to leach to ground water. From conservative multi-year modelling estimates, environmental concentrations of bixafen in surface and ground water are expected to be low.

If bixafen was to reach water bodies, it has been observed that bixafen readily partitions to sediment in two laboratory water-sediment systems under aerobic conditions. The amount of bixafen remaining in the water phase was 10% to 18% after 59 days and was generally less than 10% at study termination (118 days), at which point there was approximately 74–89% of applied radioactivity in sediment, with the majority identified as bixafen. Total system half-lives for bixafen ranged from 1144–6793 days.

Carryover into the next growing season was more significant in Alberta (62% and 82%) than in New Jersey (15% and 19%). However, a carry-over statement for bixafen is not required for foliar applications on the F9651-2 Fungicide label to protect sensitive organisms in the environment, as bixafen is strongly bound to soil, is a non-leacher, and, in general, there is very little systemic uptake of bixafen by rotational crops. There is also evidence of even lower uptake of aged bixafen residues by rotational crops compared with fresh residues. However, it is noted that a carry-over statement is required for tebuconazole, and, therefore, a carry-over statement will be included on the label for F9651-2 Fungicide.

No transformation products were tracked during field studies in Alberta and New Jersey, likely because only minor transformation products were observed during aerobic soil studies. However, there is evidence from a field rotational crop study in Germany that the transformation product, Bixafen-desmethyl, will accumulate in soil over time and may become a major transformation product.

A sharp reduction in the concentrations for bixafen occurred over the first 1 to 2 months in New Jersey that cannot be explained by aerobic soil degradation, volatilization, or abiotic transformation. It is noted that mass balances for bixafen residues in the New Jersey soil were estimated as lower than 57% at day 15 and lower than 40% at day 29. There is therefore uncertainty associated with the half-life values obtained from the New Jersey field study. Mass balances for bixafen residues in Alberta were between 77% and 100% up to day 274.

The potential for bioaccumulation of bixafen in fish is low. The maximum estimated  $BCF_{k,g,l}$  was 454, and depuration of bixafen from fish reached over 99% after 14 days.

Bixafen fate data is summarized in Appendix I, Tables 7, 8, and 9.

#### 4.2 Environmental Risk Characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air. The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. Ecotoxicology information includes acute and chronic toxicity data for various organisms, or groups of organisms, from both terrestrial and aquatic habitats including invertebrates, vertebrates, and plants. Toxicity endpoints used in risk assessments may be adjusted to account for potential differences in species sensitivity, as well as varying protection goals (in other words, protection at the community, population, or individual level).

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate), and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (LOC = 1 for most species, 0.4 for acute risk to pollinators, and 2 for glass plate studies using the standard beneficial arthropod test species, *Typhlodromus pyri* and *Aphidius rhopalosiphi*; LOC = 1 is used for higher tier tests of the standard arthropod test species and for other arthropod test species).

If the screening level RQ is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level RQ is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints.

Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized, or no further refinements are possible.

#### 4.2.1 Risks to Terrestrial Organisms

A risk assessment for bixafen was conducted for terrestrial organisms. For acute toxicity studies, uncertainty factors of 1/2 and 1/10 of EC<sub>50</sub> (LC<sub>50</sub>) values are typically used to adjust the toxicity values for terrestrial invertebrates, birds, and mammals when calculating risk quotients. No uncertainty factors are applied to chronic NOEC endpoints. A summary of terrestrial toxicity data for bixafen is presented in Appendix I, Table 10. The screening level risk assessment for bixafen is presented in Appendix I, Table 11 (for terrestrial organisms other than birds and mammals) and Appendix I, Table 12 (for birds and mammals).

**Earthworms:** The risk quotients for earthworms resulting from chronic exposure to bixafen are well below the level of concern for survival and reproduction at the screening level. The use of bixafen is not expected to pose chronic risk to earthworms.

**Beneficial arthropods:** The risk to predatory and parasitic arthropods was assessed at the screening level using maximum cumulative in-field EECs on plant surfaces, calculated from direct spray on a field. The in-field EEC on plant surfaces from the cumulative maximum application rate for soybeans is 96 g a.i./ha.

Refinement of the risk assessment was done for off-field exposure due to spray drift. Based on crops and type of equipment used, spray drift factors are applied to in-field exposure values to obtain off-field exposure values. The F9651-2 Fungicide label allows for aerial applications to oats, barley, and wheat. For a 'medium' droplet size, the maximum spray drift deposition at one metre downwind from the point of application is 23% of the in-field application rate. Off-field exposure from drift is a conservative estimate as it considers the method of application that produces the greatest amount of spray drift deposition. The off-field EEC from the proposed use on cereals is 13.4 g a.i./ha (58.2 g a.i./ha  $\times$  0.23) for plant surfaces.

The in-field RQs for the predatory arthropods, *Chrysoperla carnea* and *Typhlodromus pyri*, resulting from chronic exposure to bixafen do not exceed the level of concern at the screening level. The risk quotient for the parasitic arthropod, *Aphidius rhopalosiphi*, was only slightly higher than the level of concern (LOC = 2) at the screening level for in-field exposure from direct overspray (RQ = 2.7), however, off-field exposure did not exceed the level of concern (RQ = 0.38). The use of bixafen is therefore not expected to pose a chronic risk to soil-dwelling invertebrates under realistic exposure scenarios.

**Bees:** Bixafen may be found on pollen and nectar as spray droplets are deposited onto open flowers during foliar application. The highest exposures for bees are expected to be from direct foliar applications during bloom, versus systemic exposures. Applications during bloom may result in exposure to adult forager bees, and also to bees in the hive, from contaminated pollen and nectar being brought back to the hive for consumption.

Based on the Tier 1 risk assessment, risks were not of concern for adult bees from acute contact (RQ = 0.0031) and oral (RQ = 0.031) exposures and also for adult (RQ = 0.45) and larval (RQ = 0.39) bees from chronic exposure.

**Birds and mammals:** To assess the risk to birds and mammals, the concentration of bixafen on various food items is used to determine the amount of pesticide in the diet, or estimated daily exposure (EDE). Because exposure is dependent on the body weight of the organism and the amount and type of food consumed, a set of generic body weights is used to represent a range of bird (20, 100, 1000 g) and mammal (15, 35 and 1000 g) species, and specialized feeding guilds are considered for each category of animal weights (herbivore, frugivore, insectivore, granivore). Also, as animals may consume large quantities of a given food if they encounter an abundant or desirable food source, it is assumed that the diet is comprised entirely (100%) of a particular dietary item.

A screening level assessment is initially carried out to identify uses that do not pose a risk to non-target organisms, groups of organisms that are not expected to be at risk, and areas where there may be a potential for concern and for which further characterization of the risk is required. The screening level risk assessment is based on simple methods, conservative exposure scenarios, and sensitive toxicity endpoints. For this assessment, EDEs are based on EECs that were calculated with maximum residue concentrations from the nomogram. At the screening level, only one feeding guild for each category of bird and mammal weights is selected. The selected feeding guilds are relevant to each specific size of bird or mammal and based on the most conservative residue values. A diet consisting of 100% plant material is not considered realistic for small and medium sized birds (20 and 100 g) and small mammals (15 g) and, therefore, was not included in the determination of EDEs. The most conservative exposure estimate for these categories of bird and mammal weights is associated with a diet comprised of 100% small insects.

Bixafen is expected to pose negligible risk to birds and mammals, as acute and reproduction exposures did not exceed the level of concern at the screening level. The risk quotients for birds and mammals resulting from acute exposures ranged from 0.02 to 0.16, while RQs from reproduction exposures to bixafen ranged from 0.13 to 0.33.

**Terrestrial vascular plants:** The risk to terrestrial vascular plants was assessed using maximum cumulative in-field EECs on plant or soil surfaces, calculated from a direct spray on a field. The in-field EECs on plant and soil surfaces from the cumulative maximum application rate for soybeans are 96 g a.i./ha and 128 g a.i./ha, respectively. As described for beneficial arthropods, off-field exposure is due to spray drift. The off-field EEC from the proposed aerial use on cereals is 13.4 g a.i./ha (58.2 g a.i./ha × 0.23) for plant surfaces.

The screening level risk quotients for terrestrial plants following exposure to bixafen exceeded the level of concern. With respect to seedling emergence, the level of concern was exceeded at the screening level for in-field exposure (RQ = 79) and also for off-field exposure due to drift (RQ = 8.2). With respect to vegetative vigour, the level of concern was exceeded at the screening level for in-field exposure (RQ = 4.7), but off-field exposure did not exceed the level of concern (RQ = 0.66).

Risk to non-target terrestrial plants is predominantly to seedling emergence, however, risk concern is reduced because applications of bixafen are likely to occur between mid-June and end of August, when most non-target terrestrial plants are expected to be past the early-life stage. When the risk is further refined to off-field exposures due to spray drift, the risk to seedling emergence is low.

Standard label statements and spray buffer zones (2 to 3m for field sprayer; 50 to 65m for aerial) are required to mitigate the impact of bixafen in F9651-2 Fungicide on sensitive non-target plants in terrestrial habitats. While significant carry-over of bixafen is expected, a carry-over statement for bixafen is not required for foliar applications on the F9651-2 Fungicide label as there is expected to be low off-field risk to non-target plants. Moreover, bixafen is strongly bound to soil, is a non-leacher, and, in general, there is very little systemic uptake of bixafen by rotational crops. There is also evidence of even lower uptake of aged residues by rotational crops compared with fresh residues. However, it is noted that a carry-over statement is required for tebuconazole (co-formulated in this product with bixafen), and, therefore, a carry-over statement will be included on the label for F9651-2 Fungicide.

#### 4.2.2 Risks to Aquatic Organisms

A risk assessment for bixafen was conducted for freshwater and marine aquatic organisms based on available toxicity data. A summary of aquatic toxicity data is presented in Appendix I, Table 13. For acute toxicity studies, uncertainty factors of 1/2 and 1/10 of EC<sub>50</sub> (LC<sub>50</sub>) values are typically used for aquatic plants, invertebrates, and fish species when calculating RQs. No uncertainty factors are applied to chronic NOEC endpoints.

At the screening level, EECs in the aquatic environment were calculated based on a cumulative maximum rate of 128 g a.i./ha and directly sprayed on a 15-cm deep water body representing a seasonal pond suitable for amphibians, and a 80 cm deep water body representing a permanent pond for aquatic organisms. For marine organisms, the EEC in water was also based on an application rate of 128 g a.i./ha to an 80 cm deep water body. It was assumed that bixafen was instantaneously and completely mixed within the water body. The resulting EECs were 0.0853 mg a.i./L for a water body of 15 cm in depth and 0.0160 mg a.i./L for a water body of 80 cm in depth (Appendix I, Table 14).

For groups where the LOC is exceeded (thus, if  $RQ \ge 1$ ), a refined Tier 1 assessment is conducted to determine risk resulting from spray drift and runoff separately. Exposure resulting from spray drift was considered by applying spray drift factors associated with various application methods as described in Section 4.2.1 and the resulting EECs are summarized in Appendix I, Table 15.

Exposure through surface run-off was estimated using the PWC model, which simulates pesticide runoff from a treated field into an adjacent water body and the fate of a pesticide within that water body. The water body consists of a 1 ha wetland with an average depth of 80 cm and a drainage area of 10 ha.

EECs in a scaled down version of the permanent water body described above, but having a water depth of 15 cm, was also modelled to assess the risk to amphibians, as a risk was identified at the screening level. EECs in pore water were also generated to assess the risk to sediment-dwelling organisms. The most conservative EECs obtained from the modelling are reported in Appendix I, Table 16.

The screening level risk quotients for bixafen are summarized in Appendix I, Table 14. The risk quotients for the Tier 1 refined assessment of bixafen are presented in Appendix I, Table 15 (spray drift) and Appendix I, Table 16 (runoff).

**Invertebrates:** The acute (RQ = 0.030) and chronic (RQ = 0.30) risk quotients for freshwater pelagic invertebrates (*Daphnia magna*) do not exceed the level of concern at the screening level. As well, the acute RQs for two saltwater benthic invertebrates, mysid shrimp (RQ < 0.13), and marine oyster (RQ < 0.09), in addition to the chronic risk quotient for mysid shrimp (RQ = 0.18), all do not exceed the level of concern at the screening level.

The chronic risk quotient for freshwater benthic invertebrates (chironomid/midge) is equal to the level of concern (1.0) at the screening level. As well, the acute risk quotient for estuarine amphipods is exceeded when cumulative applications for marine ecosystems are considered (RQ < 1.5). These acute and chronic risk exposures are further characterized using refinements for drift and runoff.

**Fish:** The RQ for marine fish (sheepshead minnow; RQ = 1.1) resulting from acute exposure to bixafen exceeds the level of concern at the screening level. As well, the RQs for freshwater fish resulting from acute (RQs = 2.2 and 1.5, respectively, for rainbow trout and fathead minnow) and chronic early-life stage (RQ = 3.5 for fathead minnow) exposures to bixafen exceed the level of concern at the screening level. The acute and chronic risks to freshwater and marine fish are further characterized using refinements for drift and runoff.

**Amphibians:** Due to lack of amphibian specific data, data from freshwater fish studies are used as surrogate data with a further safety factor of 10 applied. Using acute and chronic endpoints from surrogate studies with freshwater fish, along with the EEC for bixafen in a 15 cm deep body of water, the RQs for amphibians resulting from acute and early-life stage exposure to bixafen exceed the level of concern at the screening level (RQs = 12 and 19, respectively). The acute and chronic risks to amphibians are further characterized using refinements for drift and runoff.

Algae: The risk quotients resulting from acute exposure to bixafen do not exceed the level of concern for freshwater green (RQ = 0.47) and bluegreen (RQ < 0.04) algae, nor for marine diatoms (RQ = 0.21). Thus, the use of bixafen is not expected to pose a risk to these taxonomic groups of algae. However, the level of concern is exceeded for acute exposures to freshwater diatoms (RQ = 2.0), so the risk to this algal group is further characterized using refinements for drift and runoff.

Aquatic vascular plants: The RQs for two species of aquatic vascular plants resulting from acute exposure to bixafen do not exceed the level of concern at the screening level (RQs < 0.08 and <0.04), and no further characterization is needed. The use of bixafen is not expected to pose a risk to aquatic vascular plants.

#### **Tier 1: Refined Aquatic Risk Assessment**

#### Assessment of potential risk from spray drift

The EEC used during the screening level assessment assumed direct application to water bodies. Refined EECs for ground boom (field sprayer) and aerial applications were calculated using a maximum percent drift deposition at one metre downwind (6% for ground and 23% for aerial) from the point of application for an ASAE 'medium' droplet size. Although 'medium' was not formally specified on the proposed product label, this is the droplet size typically used for fungicides.

The screening level EECs for fresh water bodies 80 and 15 cm deep (0.0160 and 0.0853 mg a.i./L, respectively) were based on the maximum annual proposed use on soybeans (2 applications at 64 g a.i./ha with a 10-day interval), as were the screening level EECs for marine water bodies 80 cm deep (0.0160 mg a.i./L). For ground use, once drift is taken into account, these values become 0.00096 mg a.i./L for the 80 cm depth and 0.0051 mg a.i./L for the 15 cm depth.

Since aerial use is only approved for use on cereals (1 application at 58.2 g a.i./ha), this is the rate used to refine for drift. Once aerial drift is taken into account, the screening level values (0.00728 mg a.i./ha for the 80 cm depth and 0.0388 for the 15 cm depth) become 0.00167 mg a.i./L for the 80 cm depth and 0.00892 mg a.i./L for the 15 cm depth.

The risk quotients obtained using the EECs corrected for maximum drift from aerial and ground boom use at one meter from the point of application are presented in Appendix I, Table 15.

The refined risk quotients indicate that the level of concern from bixafen exposure due to spray drift is not exceeded for fish, freshwater diatoms, benthic invertebrates, or estuarine amphipods from either ground or aerial applications. However, the LOC is still exceeded for amphibians from both ground (RQ = 1.1, chronic) and aerial (RQ = 1.2, acute; RQ = 1.9, chronic) applications.

#### Assessment of potential risk from runoff

The screening level risk quotients for aquatic organisms following exposure to bixafen exceeded the level of concern for freshwater and marine fish (acute and chronic), amphibians (acute and chronic), freshwater diatoms (acute), freshwater benthic invertebrates (chronic), and estuarine amphipods (acute). In order to further characterize the risk, exposure from runoff into a body of water directly adjacent to the application field was determined using EECs predicted by the PWC model.

The risk quotients for exposure to bixafen through runoff are provided in Appendix I, Table 16. These were calculated based on the same toxicity endpoints as for the screening level assessment, but using modelled EECs for a timeframe reflecting the exposure duration of the toxicity tests. The level of concern is still exceeded for freshwater fish, amphibians, freshwater diatoms, and estuarine amphipods. The revised risk quotients range from <1.3 (estuarine amphipods, acute) to 3.3 (amphibians, chronic). These risk quotients only slightly exceed the level of concern. Given the conservatisms that are imbedded in the modelling, the overall concern is thus expected to be low. In addition, the exposure from runoff would be further reduced if the best practices included on the product label are implemented.

#### **Tier 1 summary**

Spray buffer zones are required to mitigate potential effects on aquatic organisms from drift of F9651-2 Fungicide into adjacent freshwater habitats. The spray buffer zones are specific to the methods of application and are up to 1 m using field sprayers and up to 10 m for aerial applications. Runoff into freshwater habitats is mitigated using precautionary label statements and may be further reduced by including a vegetative strip between the treated area and the edge of the water body.

#### **Incident Reports – Environment**

Since 26 April 2007, registrants have been required by law to report incidents to the PMRA, including adverse effects to Canadian health or the environment. Bixafen is a new active ingredient pending registration for use in Canada. There have been no incident reports involving this active ingredient received by the PMRA as of 6 September 2018.

# 5.0 Value

Cereal and soybean growers use many different strategies to reduce disease incidence, such as crop rotation, balanced fertility, use of resistant crop varieties, removal of alternate hosts, and the use of thresholds to time fungicide applications. Cereals are usually only sprayed once or twice per season. Soybeans may receive additional fungicide treatments throughout the season depending on the risk of disease development or the diseases present.

Tebuconazole is currently used by cereal and soybean growers to treat foliar diseases. The addition of bixafen allows growers to target additional diseases that may be present at the time of treatment. Where both active ingredients are effective against the same disease, the combination of the two modes of action helps delay the development of pathogen resistance. The registration of F9651-2 Fungicide provides cereal and soybean growers with an additional tool for managing diseases in their crops.

A total of 23 efficacy trials conducted on wheat were reviewed to support disease claims on cereals and eight trials were reviewed to support claims on soybean. The individual active ingredients were tested separately and combined to determine the contribution of each to efficacy. In many cases, the contribution of one active ingredient was significantly better than the other, but in general, both active ingredients reduced disease symptoms. Scientific rationales

were reviewed to support certain claims currently registered on the tebuconazole precedent label; for these use claims the contribution of bixafen could not be determined. The addition of a nonionic surfactant often improved the level of efficacy of the product on both wheat and soybean. Treatments applied with ultra-low volume sprays to simulate aerial application demonstrated equivalent levels of efficacy on cereal crops compared to ground application equipment. The results of efficacy trials conducted on wheat were applied to other cereal crops based on their susceptibility to the disease and pathogen. The supported use claims are listed in Appendix I, Table 19.

F9651-2 Fungicide did not cause injury to wheat or soybean when applied as proposed, with or without a surfactant, or when applied at a rate  $1.3 \times$  higher than proposed. Adverse effects are not expected as a result of application to cereal crops or soybean.

Use claims on the F9651-2 Fungicide label for control or suppression of foliar diseases of cereal crops and soybean are supported according to the use directions on the label. Details of the supported uses are summarized in Appendix I, Table 19.

# 6.0 Pest Control Product Policy Considerations

#### 6.1 Toxic Substances Management Policy Considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances (those that meet all four criteria outlined in the policy, (in other words, persistent in air, soil, water, or sediment, bio-accumulative, primarily a result of human activity, and toxic as defined by the *Canadian Environmental Protection Act*).

During the review process, bixafen and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03<sup>5</sup> and evaluated against the Track 1 criteria, as summarized in Appendix I, Table 17. The PMRA has reached the following conclusions:

- Bixafen does not meet all TSMP Track 1 criteria and is not considered a Track 1 substance. See Appendix I, Table 17 for comparison with Track 1 criteria.
- No Track 1 substances resulting from the use of bixafen have been detected in soils from laboratory or field studies.

#### 6.2 Formulants and Contaminants of Health or Environmental Concern

During the review process, contaminants in the technical, and formulants and contaminants in the end-use product, are compared against the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern* maintained in the *Canada Gazette*.<sup>6</sup> The list

<sup>6</sup> Canada Gazette, Part II, Volume 139, Number 24, SI/2005-114 (2005-11-30) pages 2641–2643: List of

<sup>&</sup>lt;sup>5</sup> DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy

is used as described in the PMRA Notice of Intent NOI2005-01<sup>7</sup> and is based on existing policies and regulations including Regulatory Directive DIR99-03, Regulatory Directive DIR2006-02,<sup>8</sup> and taking into consideration the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol). The PMRA has reached the following conclusions:

- Technical grade bixafen and the end-use product, F9651-2 Fungicide, do not contain any formulants or contaminants of environmental concern identified in the *Canada Gazette*.
- The use of formulants in registered pest control products is assessed on an ongoing basis through the PMRA formulant initiatives and Regulatory Directive DIR2006-02.

#### 7.0 Summary

#### 7.1 Human Health and Safety

The submitted toxicology database is adequate to characterize the potential health hazards associated with bixafen. In short- and long-term toxicity studies with laboratory animals, the primary targets of toxicity were the liver, thyroid gland and coagulation parameters. Bixafen was not genotoxic and there was no evidence of carcinogenicity in rodents after long-term dosing. Impaired fetal growth (rats and rabbits) and effects on fetal skeletal development (rats) were observed in the presence of maternal toxicity in developmental toxicity studies. In reproductive toxicity studies, bixafen did not have adverse effects on fertility, mating, or gestation. Impaired growth was observed in pups at dose levels that also caused maternal toxicity. This risk assessment protects against the toxic effects noted above by ensuring that the level of human exposure is well below the lowest dose level at which these effects occurred in animal tests.

Mixers, loaders and applicators handling F9651-2 Fungicide and workers entering treated fields of wheat (spring, durum and winter), barley, oats and soybeans are not expected to be exposed to levels of bixafen that will result in health risks of concern when F9651-2 Fungicide is used according to label directions. The personal protective equipment on the product label is adequate to protect workers.

The nature of the residues in plants and animals is adequately understood. The residue definition for enforcement is bixafen in plant products and bixafen and the metabolite bixafen-desmethyl in animal matrices. The proposed use of bixafen on wheat, barley, oats and soybeans does not constitute a health risk of concern for chronic or acute dietary exposure (food and drinking

Pest Control Product Formulants and Contaminants of Health or Environmental Concern and in the order amending this list in the Canada Gazette, Part II, Volume 142, Number 13, SI/2008-67 (2008-06-25) pages 1611-1613. Part 1 Formulants of Health or Environmental Concern, Part 2 Formulants of Health or Environmental Concern that are Allergens Known to Cause Anaphylactic-Type Reactions and Part 3 Contaminants of Health or Environmental Concern.

- <sup>7</sup> NOI2005-01, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern* under the New *Pest Control Products Act.*
- <sup>8</sup> DIR2006-02, Formulants Policy and Implementation Guidance Document.

water) to any segment of the population, including infants, children, adults and seniors and is therefore considered acceptable. Sufficient crop residue data have been reviewed to recommend MRLs. The PMRA recommends that the following MRLs be specified for residues of bixafen.

| Commodity                                                                                                              | Recommended MRL (ppm) |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Sorghum                                                                                                                | 3.0                   |
| Crop group 15: Cereal grains, except sorghum and rice                                                                  | 0.4                   |
| Crop subgroup 1A: Root vegetables                                                                                      | 0.3                   |
| Fat, meat and meat byproducts of cattle, goats, horses and sheep                                                       | 0.2                   |
| Milk                                                                                                                   | 0.05                  |
| Dry soybeans                                                                                                           | 0.04                  |
| Crop subgroup 1C: Tuberous and corm vegetables;<br>eggs; fat, meat and meat byproducts of hogs and<br>poultry; peanuts | 0.01                  |

#### 7.2 Environmental Risk

The use of F9651-2 Fungicide containing the active ingredient, bixafen, at the proposed label rates does not pose a risk of concern to wild mammals, birds, bees, beneficial insects, earthworms, freshwater invertebrates, marine algae and fish, or aquatic plants. When bixafen is used at labelled application rates, it may pose risks of concern to freshwater diatoms/algae, freshwater fish, marine invertebrates, amphibians, and terrestrial plants. Risks to these organisms can be mitigated with spray buffer zones and precautionary label statements. Using vegetative filter strips may also help to reduce contamination of freshwater habitats. When bixafen is used in accordance with the label and the required risk reduction measures are applied, the reduced environmental exposure is deemed adequate and risks are considered to be acceptable.

#### 7.3 Value

The active ingredients bixafen and tebuconazole have been shown to be effective against foliar diseases of cereal crops and soybean. The combination of these active ingredients allows growers to target multiple diseases simultaneously. Where both active ingredients are effective against the same disease, the combination of the two modes of action helps delay the development of pathogen resistance. The registration of F9651-2 Fungicide provides cereal and soybean growers with an additional tool for managing diseases in their crops. Based on the information provided, the value is supported for the registration of F9651-2 Fungicide to control or suppress diseases on cereal crops and soybean.

## 8.0 Proposed Regulatory Decision

Health Canada's PMRA, under the authority of the <u>Pest Control Products Act</u>, is proposing registration for the sale and use of Bixafen (F9650) Technical Fungicide, containing the technical grade active ingredient bixafen, and the end use product F9651-2 Fungicide, containing the technical grade active ingredients bixafen and tebuconazole, for use on wheat, barley, oats and soybean to control foliar diseases.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

## List of Abbreviations

| μg               | microgram(s)                                                              |
|------------------|---------------------------------------------------------------------------|
| μs<br>2          | males                                                                     |
| 0                | females                                                                   |
|                  | increased                                                                 |
|                  | decreased                                                                 |
| ↓<br><           | less than                                                                 |
|                  |                                                                           |
| >                | greater than                                                              |
| ≥<br>°C          | greater than or equal to                                                  |
|                  | Celsius                                                                   |
| AB               | Alberta                                                                   |
| abs              | absolute                                                                  |
| a.i.             | active ingredient                                                         |
| AD               | administered dose                                                         |
| ADI              | acceptable daily intake                                                   |
| ADME             | absorption, distribution, metabolism and excretion                        |
| AHETF            | Agricultural Handlers Exposure Task Force                                 |
| ALP              | alkaline phosphatase                                                      |
| ALT              | alanine aminotransferase                                                  |
| AOPWIN           | Atmospheric Oxidation Program for Microsoft Windows                       |
| aPTT             | activated partial thromboplastin time                                     |
| AR               | applied radioactivity                                                     |
| ARfD             | acute reference dose                                                      |
| ARTF             | Agricultural Reentry Task Force                                           |
| ASAE             | American Society of Agricultural Engineers                                |
| AST              | aspartate aminotransferase                                                |
| atm              | atmosphere                                                                |
| ATPD             | area treated per day                                                      |
| AUC              | area under curve                                                          |
| BAF              | bioaccumulation factor                                                    |
| BBCH             | Biologishe Bundesanstalt, Bundessortenamt and Chemical industry           |
| BC               | British Columbia                                                          |
| BCF              | bioconcentration factor                                                   |
| $BCF_{k,g,l}$    | bioconcentration factor based on kinetic (k) analysis, normalized to a 5% |
|                  | lipid (l) content in fish tissue, and corrected for growth (g) dilution   |
| BROD             | 7-benzoxyresorufin O-debenzylase                                          |
| bw               | body weight                                                               |
| bwg              | body weight gain                                                          |
| BYF 00587        | code used for bixafen                                                     |
| CAF              | composite assessment factor                                               |
| CAS              | Chemical Abstracts Service                                                |
| CEPA             | Canadian Environmental Protection Act                                     |
| cm               | centimetres                                                               |
| C <sub>max</sub> | maximum plasmatic concentration                                           |
| CYP              | cytochrome                                                                |
| d                | day(s)                                                                    |
| -                |                                                                           |

|                                      | down often the star and                                              |
|--------------------------------------|----------------------------------------------------------------------|
| DAT                                  | days after treatment                                                 |
| DEEM-FCID                            | Dietary Exposure Evaluation Model                                    |
| DFOP                                 | double first-order in parallel                                       |
| DFR                                  | dislodgeable foliar residue                                          |
| DIR                                  | directive                                                            |
| $DT_{50}$                            | dissipation time 50% (the dose required to observe a 50% decline in  |
|                                      | concentration)                                                       |
| dw                                   | dry weight                                                           |
| EC                                   | emulsifiable concentrate                                             |
| $EC_{25}$                            | effective concentration on 25% of the population                     |
| $EC_{50}$                            | effective concentration on 50% of the population                     |
| EDE                                  | estimated daily exposure                                             |
| EEC                                  | estimated environmental concentration                                |
| ELS                                  | early life stage                                                     |
| $ER_{25}$                            | effective rate on 25% of the population                              |
| EU                                   | Europe                                                               |
| F0                                   | parental generation                                                  |
| F1                                   | first generation                                                     |
| F2                                   | second generation                                                    |
| fc                                   | food consumption                                                     |
| FDA                                  | The Food and Drugs Act                                               |
| FIR                                  | food ingestion rate                                                  |
| FRAC                                 | Fungicide Resistance Action Committee                                |
| g                                    | gram(s)                                                              |
| GD                                   | gestation day                                                        |
| GIT                                  | gastrointestinal tract                                               |
| GUS                                  | groundwater ubiquity score                                           |
| ha                                   | hectare(s)                                                           |
| HAFT                                 | highest average field trial                                          |
| HB                                   | hemoglobin                                                           |
| НСТ                                  | hematocrit                                                           |
| HDPE                                 | high-density polyethylene                                            |
| HPLC                                 | high performance liquid chromatography                               |
| HPLC-MS/MS                           | high performance liquid chromatography with tandem mass spectrometry |
| hr                                   | hour(s)                                                              |
| IC <sub>25</sub>                     | inhibition concentration on 25% of the population                    |
| IC <sub>25</sub><br>IC <sub>50</sub> | inhibition concentration on 50% of the population                    |
| IORE                                 | indeterminate order rate equation                                    |
| IUPAC                                | International Union of Pure and Applied Chemistry                    |
| K+CWHR                               | kernels plus cob with husks removed                                  |
| K+C WIIK<br>K <sub>d</sub>           | soil-water partition coefficient                                     |
|                                      | kilogram                                                             |
| kg<br>K <sub>oc</sub>                | organic-carbon partition coefficient                                 |
|                                      | •                                                                    |
| $K_{ m ow}$ L                        | <i>n</i> -octanol-water partition coefficient<br>litre(s)            |
| L<br>$LC_{50}$                       | lethal concentration required to kill 50% of the test group          |
| $LC_{50}$<br>$LD_{50}$               | lethal dose required to kill 50% of the test group                   |
| <b>LL2</b> 0                         | ienar dose required to kin 50% of the test group                     |
|                                      |                                                                      |

| LLNA           | local lymph node assay                                    |
|----------------|-----------------------------------------------------------|
| LOAEL          | lowest observed adverse effect level                      |
| LOC            | level of concern                                          |
| LOD            | limit of detection                                        |
| LOEL           | lowest observed effect level                              |
| LOQ            | limit of quantitation                                     |
| $LR_{50}$      | lethal rate 50%                                           |
| m              | metre(s)                                                  |
| m <sup>3</sup> | metres cubed                                              |
| M              | multisite (mode of action)                                |
| MB             | Manitoba                                                  |
|                | milligram                                                 |
| mg<br>mL       | millilitre                                                |
| M/L/A          |                                                           |
| MAS            | Mixer/Loader/Applicator                                   |
|                | maximum average score for 24, 48 and 72 hours             |
| MIS            | maximum irritation score                                  |
| mo             | month                                                     |
| MOE            | margin of exposure                                        |
| mol            | mole                                                      |
| MRL            | maximum residue limit                                     |
| °N             | degrees North                                             |
| NAFTA          | North American Free Trade Agreement                       |
| NC             | not calculated                                            |
| NOAEL          | no observed adverse effect level                          |
| NOAEC          | no observed adverse concentration                         |
| NOAEL          | no observed adverse effect level                          |
| NOEC           | no observed effect concentration                          |
| NOED           | no observed effect dose                                   |
| NOEL           | no observed effect level                                  |
| NOI            | notice of intent                                          |
| NZW            | New Zealand white                                         |
| OC             | organic carbon content                                    |
| ON             | Ontario                                                   |
| Р              | host plant defense induction (mode of action)             |
| Pa             | Pascal                                                    |
| PBI            | plantback interval                                        |
| PCPA           | Pest Control Product Act                                  |
| PEI            | Prince Edward Island                                      |
| pН             | measure of the acidity or basicity of an aqueous solution |
| PHI            | preharvest interval                                       |
| p <i>K</i> a   | dissociation constant                                     |
| PMRA           | Pest Management Regulatory Agency                         |
| PND            | postnatal day                                             |
| PND<br>PPE     | - · ·                                                     |
|                | personal protective equipment                             |
| ppm<br>ppOD    | parts per million                                         |
| PROD           | 7-pentoxyresorufin O-depentylase                          |
| PT             | prothrombin time                                          |
|                |                                                           |

| PWC              | Pesticide in Water Calculator                 |
|------------------|-----------------------------------------------|
| QC               | Québec                                        |
| RAC              | raw agricultural commodity                    |
| RBC              | red blood cell                                |
| REI              | restricted entry interval                     |
| rel              | relative                                      |
| RQ               | risk quotient                                 |
| RTI              | re-treatment interval                         |
| SFO              | single first-order                            |
| SHD              | single high dose                              |
| SK               | Saskatchewan                                  |
| SLD              | single low dose                               |
| t <sub>1/2</sub> | half-life                                     |
| T1, T2           | tautomers 1 and 2                             |
| T3               | triiodothyronine                              |
| T4               | thyroxine                                     |
| TC               | transfer coefficient                          |
| TGAI             | technical grade active ingredient             |
| t <sub>max</sub> | time to reach maximum plasmatic concentration |
| TRR              | total radioactive residue                     |
| TSMP             | Toxic Substances Management Policy            |
| TSH              | thyroid-stimulating hormone                   |
| TWA              | time weighted average                         |
| UDPGT            | uridine diphosphate glucuronosyltransferase   |
| UK               | United Kingdom                                |
| US               | United States                                 |
| UV               | ultraviolet                                   |
| v/v              | volume per volume dilution                    |
| Vitamin K3       | menadione                                     |
| wk(s)            | week(s)                                       |
| wt(s)            | weight(s)                                     |
|                  |                                               |

## Appendix I Tables and Figures

## Table 1Residue Analysis

| Matrix          | Method ID  | Analyte(s)                                                                                                             | Method Type                           | LOQ                                                          |                                                                                                        | Reference (PMRA<br>Document Number) |
|-----------------|------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| Soil / Sediment | 00952      | Bixafen                                                                                                                | HPLC-MS/MS                            | 0.005 ppm                                                    |                                                                                                        | 2642817                             |
| Soil / Sediment | 00952/M001 | Bixafen-desmethyl                                                                                                      | HPLC-MS/MS                            | 0.005 ppm                                                    |                                                                                                        | 2642751                             |
| Water           | 01073      | Bixafen                                                                                                                | HPLC-MS/MS                            | 0.05 µg/L                                                    |                                                                                                        | 2642740                             |
| Plant           | 01366      | Bixafen -pyrazole-<br>4-carboxamide<br>(M43) and<br>Bixafen -<br>desmethyl-<br>pyrazole-4-<br>carboxylic acid<br>(M44) | Data-gathering (HPLC-<br>MS/MS)       | 0.01 ppm per analyte<br>(expressed as parent<br>equivalents) | Orange fruit, tomato<br>fruit, potato tuber, dry<br>bean seed, soybean<br>seed                         | 2643810, 2643805                    |
|                 | 01012      | Bixafen<br>and Bixafen-<br>desmethyl                                                                                   | Data-gathering (HPLC-<br>MS/MS)       | 0.01 ppm per analyte<br>(expressed as parent<br>equivalents) | Wheat grain, straw,<br>green material; head<br>lettuce; turnip                                         | 2643807, 2643808                    |
|                 | 00983      | Bixafen                                                                                                                | Enforcement method<br>(HPLC-MS/MS)    | 0.01 ppm                                                     | Wheat green material<br>and grain; orange fruit;<br>rape oilseed                                       | 2643809, 2643804                    |
| Animal          | 01036      | Bixafen<br>and Bixafen-<br>desmethyl                                                                                   | Data-gathering method<br>(HPLC-MS/MS) | 0.01 ppm per analyte<br>(expressed as parent<br>equivalents) | Egg yolk, egg white,<br>milk, skim milk, cream,<br>muscle, kidney, poultry<br>liver, cattle liver, fat | 2642755                             |
|                 | 01063      | Bixafen<br>and Bixafen-<br>desmethyl                                                                                   | Enforcement method<br>(HPLC-MS/MS)    | 0.01 ppm per analyte<br>(expressed as parent<br>equivalents) | Egg, milk, muscle,<br>kidney, fat, liver                                                               | 2642756, 2642737                    |

## Table 2Toxicity Profile of F9651-2 (containing 13.8% bixafen and 30.4% tebuconazole)

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons)

| Study Type/Animal/PMRA No.               | Study Results                          |
|------------------------------------------|----------------------------------------|
| Acute oral toxicity                      | $LD_{50\circ} = 550 \text{ mg/kg bw}$  |
| Sprague-Dawley rats                      | Moderate toxicity                      |
| PMRA No. 2643780                         |                                        |
| Acute dermal toxicity                    | LD <sub>50</sub> ⊰♀ > 5000 mg/kg bw    |
| Sprague-Dawley rats                      | Low toxicity                           |
| PMRA No. 2643781                         |                                        |
| Acute inhalation toxicity<br>(nose-only) | $LC_{50} > 2.09 \text{ mg/L}$          |
| Sprague-Dawley rats                      | Low toxicity                           |
| PMRA No. 2643782                         |                                        |
| Primary dermal irritation                | $MAS = 0/8, MIS_{at 1 hour} = 0.67/8$  |
| NZW rabbits                              | Non-irritating                         |
| PMRA No. 2643784                         |                                        |
| Primary eye irritation                   | $MAS = 0/110, MIS_{at 1 hour} = 2/110$ |
| NZW rabbits                              | Non-irritating                         |
| PMRA No. 2643783                         |                                        |
| Dermal sensitization<br>(LLNA)           | Not a dermal sensitizer                |
| CBA/J mice                               |                                        |
| PMRA No. 2643785                         |                                        |

## Table 3Toxicity Profile of Bixafen (F9650) Technical Fungicide

NOTE: Effects noted below are known or assumed to occur in both sexes unless otherwise noted; in such cases, sex-specific effects are separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted). Effects above the LOAEL(s) have not been reported in this table for most studies for reasons of brevity.

| Study Type/Animal/PMRA No. | Study Results |
|----------------------------|---------------|
| Toxicolainatic Studies     |               |

Toxicokinetic Studies

The absorption, distribution, metabolism, and elimination (ADME) of bixafen were investigated in rats studies.

**Doses:** Single dose of 2 or 50 mg/kg bw via gavage in 0.5% aqueous tragacanth with dichlorophenyl-UL-<sup>14</sup>C radiolabelled bixafen and sacrificed at 72 hours (4/sex/group), or 2 mg/kg bw/day for 14 days with non-radiolabelled bixafen and 1 day with dichlorophenyl-UL-<sup>14</sup>C radiolabelled bixafen and sacrificed at 72 hours (4/sex/group), or bile duct-cannulated animals dosed at 2 mg/kg bw in 0.5% aqueous tragacanth and sacrificed at 48 hours (5/sex/group).

**Absorption:** Approximately 93-107% of the AD was recovered based on the measurement of the total radioactivity in excreta (urine, bile and feces) and organs and tissues at sacrifice. The radioactivity was rapidly absorbed and the maximum plasma concentrations were achieved at 2 hours for  $3^\circ$  and 4 hours for  $9^\circ$  in the SLD and repeated dose groups and 8 hours for the SHD groups. In bile duct-cannulated rats, ~ 87% of the AD was absorbed by  $3^\circ$  and 89% by  $9^\circ$  based on the recoveries in bile, urine and carcass (excluding GIT).

**Distribution:** For all dose regimens, at the 72 hour sacrifice, ~ 0.1-3.0% of the AD was found in the  $3^\circ$  and  $9^\circ$  (including GIT residues) or 0.1-1.6% (excluding GIT residues). The liver and kidneys had the highest levels of residues. Levels in tissues were generally higher in  $9^\circ$ . There was no evidence of tissue retention in  $3^\circ$  or  $9^\circ$ . In bile duct-cannulated rats (48 hour sacrifice), there were high residue levels in  $9^\circ$  (~32% of the AD excluding GIT residues and 43% of the AD including GIT residues) compared to  $3^\circ$  (~2.7% of the AD excluding GIT residues and 9% of the AD including GIT residues). AUC was greater in  $9^\circ$  animals (up to twofold at the low dose) compared to  $3^\circ$  animals.

**Elimination:** At the 72 hour sacrifice, ~93-99% of SLD and SHD were eliminated in urine and feces (106% in the repeated dose group). In bile duct-cannulated rats, ~91% and 63% of the AD was eliminated by the 48 hour sacrifice in  $\bigcirc$  and  $\bigcirc$ , respectively. Biliary excretion (~83% in  $\bigcirc$  and 56% of the AD in  $\bigcirc$  at 48 hours after dosing) was the major route of excretion with minor amounts in urine (<3% of the AD at 72 hours after dosing). Female rats excreted approximately twice the amount of the administered radioactivity in urine than  $\bigcirc$  [SLD 1.41% ( $\bigcirc$ ) vs 2.87% ( $\bigcirc$ ) and SHD 0.69% ( $\bigcirc$ ) versus 1.67% ( $\bigcirc$ )]. Based on AUC data  $\bigcirc$  animals showed slower elimination compared to  $\bigcirc$  animals.

**Metabolism:** The primary metabolic reaction was the demethylation of the pyrazole ring forming bixafen-desmethyl. Parent compound and bixafen-desmethyl were hydroxylated at different positions. Most of the hydroxy compounds were conjugated with glucuronic acid. An N-conjugation of bixafen-desmethyl with glucuronic acid was also observed. Conjugation of Bixafen with glutathione was a major metabolic reaction in bile. The glutathione conjugation and related metabolites were also found for bixafen-desmethyl. A minor metabolic reaction was the cleavage of the amide structure of bixafen forming pyrazole-4-carboxamide and desmethyl-pyrazole-4-carboxamide which were observed as label specific metabolites in urine. An oxidation of bixafen-pyrazole-4-carboxamide led to bixafen-pyrazole-4-carboxylic acid. Another minor reaction was the elimination of one of the two chlorine atoms of bixafen-desmethyl-5-hydroxyphenyl and a further conjugation with a methylthio group. (PMRA No. 2642798).

Doses: Single dose of 2 mg/kg bw pyrazole-5-<sup>14</sup>C labelled bixafen in 0.5% aqueous tragacanth and sacrificed at 72 hours (4 ♂).

| Study Type/Animal/PMRA No. | Study Results |
|----------------------------|---------------|
|----------------------------|---------------|

**Absorption:** Rapid absorption and distribution with plasma  $t_{max}$  at ~3 hours and plasma  $C_{max}$  of 0.42 µg/mL. The major route of excretion was via feces (>93% of the AD), radioactivity in the urine accounted for <4.4% of the AD.

**Distribution:** At sacrifice, the remaining concentration in mean equivalent concentration was negligible and the highest concentration was found in the liver (0.0266  $\mu$ g/g; 0.0715% of the AD\*) followed by thyroid gland (0.0093  $\mu$ g/g; <0.0001% of the AD), adrenal gland (0.0083  $\mu$ g/g; 0.0001% of the AD) and kidney (0.0066  $\mu$ g/g; 0.0029% of the AD).\*Based on dose normalised concentration ([radioactivity per g tissue/radioactivity per g bw]).

**Metabolism:** Parent compound was detected in feces only (8.57% of the AD). The predominant metabolic reaction was the demethylation of the pyrazole ring forming bixafen-desmethyl. Both the parent compound and bixafen-desmethyl were hydroxylated at different positions, especially in the fluoro-phenyl ring. Elimination of the fluorine atom and subsequent hydroxylation was also detected. Rearrangement (migration) of the fluorine atom on the phenyl ring was also detected following hydroxylation reactions. Conjugation of bixafen with glutathione was a major metabolic reaction and led to an intermediate glutathione conjugate, which was further degraded to cysteine conjugates and methylthio-, methylsulfinyl- and thiol-acetaldehyde compounds. The glutathione conjugate and related metabolites were also found for bixafen-desmethyl.

A minor metabolic reaction, observed as label specific metabolites in urine, was the cleavage of the molecule forming pyrazole-4-carboxamide and desmethylpyrazole-4-carboxamide. An oxidation of bixafen-pyrazole-4-carboxamide led to bixafen-pyrazole-4-carboxylic acid. Cleavage can also occur to generate biphenyl derivatives that represented up to 4% of the AD. Another minor reaction was the elimination of one of the two chlorine atoms of bixafen-desmethyl-5hydroxyphenyl and a further conjugation with a methylthio group.

**In urine:** Bixafen-desmethyl-pyrazole-4-carboxamide (2.78% of the AD), bixafen-pyrazole-4-carboxamide (0.97% of the AD); **In feces:** Bixafen (8.57% of the AD), bixafen-desmethyl-5-hydroxyphenyl-6-(methylthio) (14.13% of the AD), bixafen-5-hydroxyphenyl-6-(methylthio) and 4-hydroxyphenyl (10.34% of the AD), bixafen-4-fluoro-5-hydroxyphenyl and bixafen-5-hydroxyphenyl-6-thiol-acetaldehyde (6.97% of the AD). (PMRA No. 2642799).

Doses: Single doses of 10, 50, 500 or 1000 mg/kg bw of unlabelled bixafen in 0.5% aqueous methylcellulose (3/sex/group; 1 🕉 served as control).

Absorption:  $C_{max}$  of bixafen (F9650) was reached between 5.33 and 7.33 hours post-dose. At  $\geq$ 500 mg/kg bw, the increase in  $C_{max}$  was not proportional (sublinear) to the dose and  $t_{max}$  was shorter in  $\bigcirc$  compared to  $\bigcirc$  (about 1.7-fold). (PMRA No. 2642800).

**Doses:** Single dose of 3 mg/kg bw pyrazole-5-<sup>14</sup>C labelled bixafen in 0.5% aqueous tragacanth (9  $\Im$ ).

**Distribution:** Radioactivity was detected in all organs and tissues and decreased rapidly between 8 and 48 hours. In most organs and tissues the residues were < LOD or < LOQ at 72 to 168 hours after dosing. At the end of the test period, liver and nasal mucosa showed residues above the LOD but below 0.05 mg/kg.

**Metabolism:** Parent compound and the metabolites bixafen-desmethyl-5-hydroxyphenyl-6-sulfoxide and bixafen-5-hydroxyphenyl-6-sulfoxide were identified in feces. Bixafen-desmethyl-pyrazole-4-carboxamide and bixafen-pyrazole-4-carboxylic acid were identified in urine. **Elimination:** No significant expiration of <sup>14</sup>C-labelled volatiles was observed. (PMRA No. 2642801).

**Doses:** Single dose of 3 mg/kg bw dichlorophenyl-UL-<sup>14</sup>C labelled bixafen in 0.5% aqueous tragacanth (8  $\delta$ ).

**Absorption:** Absorption was rapid (t<sub>max</sub> approximately 1 hour).

Distribution: Maximum concentrations in the organs and tissues were observed between 1 and 8 hours after dosing. The low radioactivity concentration in blood

| Study Type/Animal/PMRA No.                                                                                                                                                                                                                                                                                                            | Study Results                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| during the study indicated a fast distribution within the body with highest levels in liver, kidney, fat and several glands (adrenal, pituitary, thyroid, salivary, harderian, infraorbital). A rapid decline of the radioactivity concentrations in all organs and tissues was observed between 1 and 48 hours after administration. |                                                                                                                                                                      |  |  |
| Elimination: The majority of radioactivity was eliminated via feces. During the 1-48 hour time interval tissue residues dropped by at least one order of                                                                                                                                                                              |                                                                                                                                                                      |  |  |
| magnitude. No significant expiration of                                                                                                                                                                                                                                                                                               | <sup>14</sup> C-labelled volatiles was detected.<br>npound bixafen was detected as a major component in feces extract. Bixafen-desmethyl-5-hydroxyphenyl-6-sulfoxide |  |  |
|                                                                                                                                                                                                                                                                                                                                       | le were identified as metabolites in feces. In urine, no parent compound was detected. (PMRA No. 2642802).                                                           |  |  |
| Acute oral toxicity                                                                                                                                                                                                                                                                                                                   | $LD_{50\degree} > 2000 \text{ mg/kg bw}$                                                                                                                             |  |  |
| Wistar rats                                                                                                                                                                                                                                                                                                                           | Low toxicity                                                                                                                                                         |  |  |
| PMRA No. 2642766                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| Acute dermal                                                                                                                                                                                                                                                                                                                          | $LD_{50\Im \circ} > 2000 \text{ mg/kg bw}$                                                                                                                           |  |  |
| Wistar rats                                                                                                                                                                                                                                                                                                                           | Low toxicity                                                                                                                                                         |  |  |
| PMRA No. 2642767                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| Acute inhalation                                                                                                                                                                                                                                                                                                                      | $LC_{50\Im \Im} \ge 2.0 \text{ mg/L of respirable particles}$                                                                                                        |  |  |
| Wistar rats                                                                                                                                                                                                                                                                                                                           | Low toxicity                                                                                                                                                         |  |  |
| PMRA No. 2642768                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| Primary eye irritation                                                                                                                                                                                                                                                                                                                | MAS = $0.22/110$ , MIS <sub>at 1 hour</sub> = $2/110$                                                                                                                |  |  |
| NZW rabbits                                                                                                                                                                                                                                                                                                                           | Minimally irritating                                                                                                                                                 |  |  |
| PMRA No. 2642769                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| Primary dermal irritation                                                                                                                                                                                                                                                                                                             | MAS = 0/8, MIS = 0/8                                                                                                                                                 |  |  |
| NZW rabbits                                                                                                                                                                                                                                                                                                                           | No signs of irritation in any of the animals tested.                                                                                                                 |  |  |
| PMRA No. 2642770                                                                                                                                                                                                                                                                                                                      | Non-irritating                                                                                                                                                       |  |  |
| Dermal sensitization                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |  |  |
| (LLNA)                                                                                                                                                                                                                                                                                                                                | Not a dermal sensitizer                                                                                                                                              |  |  |
| CBA/J mice                                                                                                                                                                                                                                                                                                                            | not a definal sensitizer                                                                                                                                             |  |  |
| PMRA No. 2642772                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |  |  |
| 28-Day toxicity                                                                                                                                                                                                                                                                                                                       | No NOAEL established, range-finding study.                                                                                                                           |  |  |
| (dietary)                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |  |  |

| Study Type/Animal/PMRA No.   | Study Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C57BL/6J mice                | ≥81/103 mg/kg bw/day $\mathcal{J}/\mathbb{Q}$ : ↑ liver size, ↑ liver wt, hepatocyte centrilobular hypertrophy, focal coagulative necrosis, ↓ total protein, ↓ albumin, ↑ AST; ↑ ALT ( $\mathbb{Q}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PMRA No. 2642774             | $305/424 \text{ mg/kg bw/day } \mathcal{J}/\mathcal{Q}$ : mortality days 7–14; $\downarrow$ bw, $\downarrow$ fc, $\downarrow$ albumin, $\uparrow$ cholesterol ( $\mathcal{Q}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | Decedents: $\downarrow$ bw, $\downarrow$ fc, $\downarrow$ motor activity, cold to touch, hunched posture; tremor, piloerection ( $\bigcirc$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 28-Day toxicity<br>(dietary) | No NOAEL established, range-finding study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Wistar rats                  | ≥ 25/28 mg/kg bw/day $\mathcal{O}/\mathcal{Q}$ : ↑ rel liver wt, minimal to slight hepatic centrilobular hypertrophy; P450 CYP2B and CYP3A induction ( $\mathcal{O}$ ); ↑ abs liver wt, induction of BROD, PROD (associated with ↑ liver wt ( $\mathcal{Q}$ ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PMRA No. 2642773             | 137/138 mg/kg bw/day $^{?}/^{?}$ : ↓ bwg, ↓ bilirubin, ↑ liver wt; ; ↓ bw, ↑ prothrombin time, thyroid hypertrophy of follicular cells ( $^{?}$ ); dark liver, enlarged liver, ↑ platelets, ↑ cholesterol ( $^{?}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 90-Day toxicity              | NOAEL = $34/43$ mg/kg bw/day $\delta/Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (dietary)                    | LOAEL = 88/110  mg/kg bw/day  3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C57BL/6J mice                | Effects at the LOAEL: $\uparrow$ liver wt, hepatocellular hypertrophy, $\uparrow$ incidence stomach squamous hyperplasia; $\downarrow$ cholesterol, $\uparrow$ incidence of unilateral focal tubular degeneration in testes, $\uparrow$ ALT ( $\circlearrowleft$ ); $\uparrow$ incidence of focal/multifocal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PMRA No. 2642777             | squamous cell hyperplasia ovaries ( $\mathcal{Q}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 90-Day toxicity              | NOAEL = $13/15 \text{ mg/kg bw/day } 3/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (dietary)                    | $LOAEL = 50/59 \text{ mg/kg bw/day} \sqrt[3]{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Wistar rats                  | Effects at the LOAEL: enlarged liver, minimal to slight hepatic centrilobular hypertrophy, minimal to slight thyroid follicular cell hypertrophy; $\uparrow$ rel liver wt ( $3$ ); $\uparrow$ liver wt, $\downarrow$ prothrombin time ( $\Im$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PMRA No. 2642776             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | At the end of a 28-day recovery period in the high dose level group (130/153 mg/kg bw/day in $\partial/Q$ ), all effects observed returned to control values except for enlarged liver in $Q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 90-Day toxicity              | NOAEL= 300 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (gavage)                     | LOAEL= 1000 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Beagle dogs                  | Effects at the LOAEL: $\downarrow$ bwg, enlarged hepatocytes with vacuolated cytoplasm; $\downarrow$ bw, $\downarrow$ RBC, $\downarrow$ HB on Days 58 and 86, $\downarrow$ HCT on Days 58 and 86 ( $\Diamond$ ); single cell liver necrosis and ovarian cysts in one animal (not same) ( $\bigcirc$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PMRA No. 2642779             | $\langle \cdot , \psi \rangle = 0$ $\langle \cdot , \psi \rangle = $ |
| 12-Month toxicity            | NOAEL= $100 \text{ mg/kg bw/day}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (gavage)                     | LOAEL= 1000 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Beagle dogs                  | Effects at the LOAEL: $\uparrow$ liver wt; $\downarrow$ RBC, $\downarrow$ HB, $\downarrow$ HCT (transient 3–6 mo) ( $\Diamond$ ); $\downarrow$ bw, $\downarrow$ bwg, slight hepatocellular hypertrophy, liver pigmentation, minimal single cell liver necrosis, $\uparrow$ ALP, $\uparrow$ cholesterol, pale feces ( $\bigcirc$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PMRA No. 2642787             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28-Day toxicity              | NOAEL= 1000 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (dermal)                     | LOAEL= not determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Study Type/Animal/PMRA No.                     | Study Results                                                                                                                                                   |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wistar rats                                    | No adverse effects at the highest dose tested.                                                                                                                  |
|                                                |                                                                                                                                                                 |
| PMRA No. 2642781                               |                                                                                                                                                                 |
| 80-Week oncogenicity (dietary)                 | NOAEL= 6.7/8.6 mg/kg bw/day $\Im/\Im$<br>LOAEL= 20/26 mg/kg bw/day in $\Im/\Im$                                                                                 |
| C57BL/6J mice                                  | 10 AEL = 20/20  mg/kg bw/day m  0/2                                                                                                                             |
|                                                | Effects at the LOAEL: $\uparrow$ liver wt, dark liver; hepatocyte centrilobular hypertrophy, hepatocellular single cell                                         |
| PMRA No. 2642788                               | degeneration/necrosis, small thymus ( $\Im$ ); minimal to slight thyroid follicular cell hyperplasia ( $\Im$ )                                                  |
|                                                | No evidence of oncogenicity.                                                                                                                                    |
| 2-Year dietary combined chronic                | NOAEL= 2.81 mg/kg bw/day $\stackrel{\bigcirc}{\rightarrow}$                                                                                                     |
| toxicity/oncogenicity                          | $LOAEL = 17 \text{ mg/kg bw/day} \stackrel{\circ}{\downarrow}$                                                                                                  |
| Wistar rats (♀)                                | Effects at the LOAEL: $\uparrow$ liver wt, enlarged liver, dark liver, $\downarrow$ bilirubin (18 and 24 mo), $\uparrow$ multinucleated hepatocytes, $\uparrow$ |
|                                                | hepatocellular brown pigment, ↑ minimal to slight diffuse centrilobular to panlobular hepatocellular hypertrophy, ↑                                             |
| PMRA No. 2642789                               | dark thyroid, $\uparrow$ minimal to slight diffuse follicular cell hypertrophy, $\uparrow$ minimal to slight thyroid colloid alteration                         |
|                                                | No evidence of oncogenicity.                                                                                                                                    |
| 2-Year dietary combined chronic                | NOAEL= 2.0 mg/kg bw/day ♂                                                                                                                                       |
| toxicity/oncogenicity                          | LOAEL = 12  mg/kg bw/day                                                                                                                                        |
| Wistar rats (♂)                                | Effects at the LOAEL: 1 bilirubin, 1 minimal to slight diffuse centrilobular to panlobular hepatocellular hypertrophy, 1                                        |
|                                                | incidence of minimal to moderate alteration of the thyroid colloid                                                                                              |
| PMRA No. 2642790                               |                                                                                                                                                                 |
|                                                | No evidence of oncogenicity.                                                                                                                                    |
| One-generation reproductive toxicity (dietary) | No NOAEL established, range-finding study.                                                                                                                      |
|                                                | Parental toxicity:                                                                                                                                              |
| Wistar rats                                    | $\geq$ 36 mg/kg bw/day $\circ$ : $\uparrow$ liver wt, $\uparrow$ thyroid wt ( $\circ$ )                                                                         |
|                                                | 110/125 mg/kg bw/day $\partial/\varphi$ : $\uparrow$ liver wt ( $\varphi$ )                                                                                     |
| PMRA No. 2642786                               | 326/368 mg/kg bw/day $\partial/\dot{\varphi}$ : $\downarrow$ bw, $\downarrow$ bwg, $\downarrow$ thymus wt; $\uparrow$ aPTT ( $\partial$ )                       |
|                                                | Reproductive toxicity:                                                                                                                                          |
|                                                | No treatment-related adverse effects                                                                                                                            |
|                                                | Offspring toxicity:                                                                                                                                             |
|                                                | 371 mg/kg bw/day: ↓ bw from PND4, ↓ bwg                                                                                                                         |
| Two-generation reproductive toxicity           | Parental toxicity:                                                                                                                                              |
| (dietary)                                      | NOAEL= 26/31 mg/kg bw/day $3/2$                                                                                                                                 |

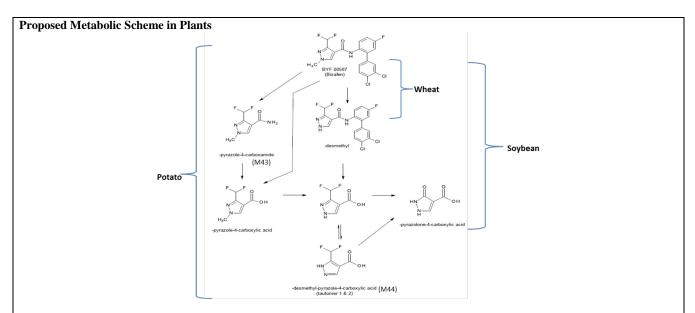
| Study Type/Animal/PMRA No.      | Study Results                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | LOAEL= 169/194 mg/kg bw/day $\partial/Q$                                                                                                                                                                                                                                                                                                                    |
| Wistar rats                     |                                                                                                                                                                                                                                                                                                                                                             |
| PMRA No. 2642785                | Effects at the LOAEL: $\uparrow$ liver wt, $\uparrow$ incidence of minimal to slight centrilobular and diffuse hypertrophy; $\uparrow$ F0 kidney wt, $\uparrow$ F0 spleen wt ( $\circlearrowleft$ ); $\downarrow$ F0 and F1 bw (pre-mating, gestation and lactation), $\downarrow$ F0 and F1 bwg (pre-mating), $\downarrow$ F0 thymus wt ( $\updownarrow$ ) |
|                                 | Reproductive toxicity:<br>NOAEL= 169/194 mg/kg bw/day ♂/♀<br>LOAEL= Not determined                                                                                                                                                                                                                                                                          |
|                                 | No adverse effects at the highest dose tested.                                                                                                                                                                                                                                                                                                              |
|                                 | Offspring toxicity:<br>NOAEL= 31 mg/kg bw/day<br>LOAEL= 194 mg/kg bw/day                                                                                                                                                                                                                                                                                    |
|                                 | Effects at the LOAEL: $\downarrow$ pup bw and bwg in F1 (PND 7-21) and F2 (PND 14-21)                                                                                                                                                                                                                                                                       |
|                                 | No evidence of sensitivity of the young.                                                                                                                                                                                                                                                                                                                    |
| Developmental toxicity (gavage) | Maternal toxicity:<br>NOAEL= 75 mg/kg bw/day                                                                                                                                                                                                                                                                                                                |
| Sprague-Dawley rats             | LOAEL= 250 mg/kg bw/day                                                                                                                                                                                                                                                                                                                                     |
| PMRA No. 2642784                | Effects at the LOAEL: $\downarrow$ bw at GD 6-8, $\downarrow$ bwg at GD 18-21, $\downarrow$ fc, piloerection, soiling around nose, mouth and abdomen.                                                                                                                                                                                                       |
|                                 | Developmental toxicity:<br>NOAEL= 75 mg/kg bw/day<br>LOAEL= 250 mg/kg bw/day                                                                                                                                                                                                                                                                                |
|                                 | Effects at the LOAEL: $\downarrow$ fetal bw, incomplete ossification of 5 <sup>th</sup> sternebrae and/or unossified 5 <sup>th</sup> sternebrae and unossified 7 <sup>th</sup> cervical centrum, extra ossification points on the 14 <sup>th</sup> thoracic vertebra, shortened 14 <sup>th</sup> ribs and bipartite or dumbbell-shaped thoracic centra      |
|                                 | No treatment-related malformations.                                                                                                                                                                                                                                                                                                                         |
|                                 | No evidence of sensitivity of the young.                                                                                                                                                                                                                                                                                                                    |
| Developmental toxicity (gavage) | Maternal toxicity:                                                                                                                                                                                                                                                                                                                                          |
| NZW rabbits                     | NOAEL= 25 mg/kg bw/day<br>LOAEL= 100 mg/kg bw/day                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                                                                                                                                                                                                             |

| Study Type/Animal/PMRA No.                                             | Study Results                                                                                                                                                                    |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMRA No. 2642783                                                       | Effects at the LOAEL: $\downarrow$ bwg, $\downarrow$ fc, hair loss, $\downarrow$ or no excreta, $\uparrow$ liver wt, $\uparrow$ vaginal discharge                                |
|                                                                        | Developmental toxicity:                                                                                                                                                          |
|                                                                        | NOAEL= 25 mg/kg bw/day                                                                                                                                                           |
|                                                                        | LOAEL= 100 mg/kg bw/day                                                                                                                                                          |
|                                                                        | Effects at the LOAEL: $\downarrow$ fetal bw                                                                                                                                      |
|                                                                        | No treatment-related malformations.                                                                                                                                              |
|                                                                        | No evidence of sensitivity of the young.                                                                                                                                         |
| Bacterial reverse mutation test                                        | Negative                                                                                                                                                                         |
| S. typhimurium<br>(TA 1535, TA 1537, TA 98, TA 100, TA<br>102 strains) |                                                                                                                                                                                  |
| PMRA No. 2642791                                                       |                                                                                                                                                                                  |
| In vitro gene mutation assay                                           | Negative                                                                                                                                                                         |
| Chinese Hamster V79 cells                                              |                                                                                                                                                                                  |
| PMRA No. 2642792                                                       |                                                                                                                                                                                  |
| Chromosomal aberration assay                                           | Negative                                                                                                                                                                         |
| Chinese Hamster V79 cells                                              |                                                                                                                                                                                  |
| PMRA No. 2642793                                                       |                                                                                                                                                                                  |
| In vivo mammalian cytogenetics<br>(micronucleus test)                  | Negative                                                                                                                                                                         |
| NMRI mice                                                              |                                                                                                                                                                                  |
| PMRA No. 2642794                                                       |                                                                                                                                                                                  |
| Acute oral neurotoxicity study (gavage)                                | Systemic toxicity:<br>NOAEL= 250 mg/kg bw                                                                                                                                        |
| Sprague-Dawley rats                                                    | LOAEL= 250 mg/kg bw based on $\downarrow$ motor activity (total and ambulatory) at 4 hours; $\downarrow$ body temperature at 4 hours, $\downarrow$ rearing counts ( $\bigcirc$ ) |

| Study Type/Animal/PMRA No.             | Study Results                                                                                                                                                                                                                                                  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PMRA No. 2642796                       | ľ                                                                                                                                                                                                                                                              |
|                                        | No evidence of selective neurotoxicity.                                                                                                                                                                                                                        |
| 28-Day oral                            | Supplemental study (mechanistic)                                                                                                                                                                                                                               |
| (dietary)                              |                                                                                                                                                                                                                                                                |
|                                        | This study was designed to determine if administration of bixafen results in changes to blood coagulation parameters                                                                                                                                           |
| Wistar rats (♂)                        | when the diet contains 16 ppm of vitamin K3.                                                                                                                                                                                                                   |
| PMRA No. 2642775                       | $\geq$ 162 mg/kg bw/day: $\uparrow$ rel liver wt, $\uparrow$ rel thyroid wt, dark livers, $\downarrow$ prothrombin times                                                                                                                                       |
|                                        | $\geq$ 375 mg/kg bw/day: $\downarrow$ bw, $\downarrow$ bwg, $\downarrow$ fc, $\uparrow$ liver wt, $\uparrow$ rel thyroid wt, enlarged liver, $\uparrow$ nasal discharge                                                                                        |
|                                        | The level of vitamin K3 added to the diet is considered to be significantly higher than the recommended level. From                                                                                                                                            |
|                                        | the data presented in this study, an effect of bixafen on coagulation time cannot be excluded.                                                                                                                                                                 |
| Comparison of the effect of bixafen on | Supplemental study (mechanistic)                                                                                                                                                                                                                               |
| blood coagulation parameters with      |                                                                                                                                                                                                                                                                |
| vitamin K3 supplemented and vitamin    | This study was designed to compare the effect of vitamin K supplementation on blood coagulation parameters of rats                                                                                                                                             |
| K3 deficient diets                     | dosed with 1000 ppm of bixafen for 6 months.                                                                                                                                                                                                                   |
| (dietary)                              |                                                                                                                                                                                                                                                                |
| Window made ( 7)                       | Male rats administered bixafen in vitamin K3 deficient diet (containing <0.3 ppm of vitamin K3) at a concentration of                                                                                                                                          |
| Wistar rats (♂)                        | 1000 ppm of bixafen for approximatively six months exhibited a hemorrhagic syndrome (increased PT and aPTT values) and a high rate of mortality in the original two-year chronic toxicity/onocogenicity study. The addition of 16                              |
| PMRA No. 2642810                       | ppm of vitamin K to the diet significantly lowered these values after two weeks compared to the previous time point.                                                                                                                                           |
| FWIRA NO. 2042810                      | There was no control group fed with the vitamin K deficient diet (<0.3 ppm of vitamin K3), which would have been                                                                                                                                               |
|                                        | helpful to evaluate the role of bixafen on coagulation parameters.                                                                                                                                                                                             |
| 14-day toxicity                        | Supplemental study (mechanistic)                                                                                                                                                                                                                               |
| (gavage)                               | Supponental study (meenalistic)                                                                                                                                                                                                                                |
| (hepatic enzymes and thyroid hormones  | This study was designed to investigate the changes in the thyroid gland following treatment with 150 mg bixafen/kg                                                                                                                                             |
| investigations)                        | bw/day by measuring plasma thyroid hormone levels (TSH, T3 and T4) and liver enzyme induction.                                                                                                                                                                 |
| Wistar rats                            | Thyroid: bixafen induced slight $\uparrow$ in serum TSH. Higher TSH values were observed in $\bigcirc$ on study Days 3, 7 and 14                                                                                                                               |
|                                        | while in $\delta$ a significant increase was observed only after 14 days. A slight transient reduction of T3 was also observed                                                                                                                                 |
| PMRA No. 2642765                       | in $\mathcal{Q}$ on study Days 3 and 7 and a slight decrease in T4 was observed in $\mathcal{J}$ on study Day 14.                                                                                                                                              |
|                                        | Liver: liver weight was increased in both sexes after administration of the test substance for 14 days. There was an                                                                                                                                           |
|                                        | increase in BROD activity in both sexes compared to controls. In addition, a slight ↑ was also observed in mean UDPGT activity in both sexes. The test substance slightly induced both phase I and II hepatic enzymes after 14 days of bixafen administration. |

| Exposure<br>Scenario                                        | Study                                 | Point of Departure and Endpoint                                                    | CAF <sup>1</sup> or<br>Target MOE |
|-------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|
| Acute dietary                                               | study in rat                          | NOAEL= 75 mg/kg bw/day<br>Decreased body weight in dams<br>between GD 6–8          | 100                               |
| 1 2                                                         | toxicity/oncogenicity<br>study in rat | NOAEL= 2.0 mg/kg bw/day<br>Liver and thyroid effects                               | 100                               |
| Short- and<br>Intermediate –<br>term dermal                 |                                       | ay<br>NOAEL= 1000 mg/kg bw/day<br>No adverse effects at the highest dose<br>tested | 100                               |
| Short- and<br>Intermediate-<br>term inhalation <sup>2</sup> |                                       | NOAEL= 13 mg/kg bw/day<br>Liver and thyroid effects                                | 100                               |
| Cancer                                                      |                                       | f oncogenic potential of bixafen in rode                                           |                                   |

### Table 4Toxicology Reference Values for Use in Health Risk Assessment for Bixafen


<sup>1</sup> CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments

 $^2$  Since an oral NOAEL was selected, an inhalation absorption factor of 100% (default value) was used in route-to-route extrapolation.

### Table 5 Integrated Food Residue Chemistry Summary

| NATURE OF THE RESI         | DUE IN SOYBEANS                                   |                                                                                                                                                                                                                                                                                              |                                                      | PMRA No. 2642741                     | & 2642748                     |  |  |  |
|----------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-------------------------------|--|--|--|
| <b>Radiolabel Position</b> | [pyrazole-5-14C]-bixafe                           | en (PY-l                                                                                                                                                                                                                                                                                     | abel) and [dichlorophen]                             | yl-UL- <sup>14</sup> C]-bixafen (PH  | -label)                       |  |  |  |
| Test Site                  | Climate controlled gree                           | enhouse                                                                                                                                                                                                                                                                                      | in a planting container f                            | illed with a sandy loam              | soil.                         |  |  |  |
| Treatment                  | Foliar treatments                                 |                                                                                                                                                                                                                                                                                              |                                                      |                                      |                               |  |  |  |
|                            | Three applications at a label) and 187 g a.i./ha  |                                                                                                                                                                                                                                                                                              |                                                      | blication, for actual tota           | l rates of 188 g a.i./ha (PY- |  |  |  |
| Total Rate                 |                                                   | Forage and hay samples were harvested at the specified PHIs (see below) after the second application at the<br>end of flowering (BBCH 69) at rates totalling 127-128 g a.i/ha.<br>Seed and straw samples were collected at the specified PHIs (see below) after the third foliar application |                                                      |                                      |                               |  |  |  |
|                            |                                                   |                                                                                                                                                                                                                                                                                              | ollected at the specified<br>were ripe (BBCH 88) for |                                      |                               |  |  |  |
| Formulation                | Emulsifiable concentra                            | Emulsifiable concentrate                                                                                                                                                                                                                                                                     |                                                      |                                      |                               |  |  |  |
| Preharvest interval        | Forage and hay: 5 and 2<br>Seed and straw: 26 day |                                                                                                                                                                                                                                                                                              | respectively, after the she third application.       | econd application.                   |                               |  |  |  |
| Matrices                   | PHI                                               |                                                                                                                                                                                                                                                                                              | [ <sup>14</sup> C-PY]                                |                                      | [ <sup>14</sup> C-PH]         |  |  |  |
| Matrices                   | (days)                                            |                                                                                                                                                                                                                                                                                              | TRRs (ppm)                                           | TRRs (ppm)                           |                               |  |  |  |
| Forage                     | 5 after the 2nd                                   |                                                                                                                                                                                                                                                                                              | 5.32                                                 |                                      | 3.98                          |  |  |  |
| Нау                        | application                                       |                                                                                                                                                                                                                                                                                              | 4.00                                                 | ) 2.81                               |                               |  |  |  |
| Straw                      | 26 after the third                                | 12.90                                                                                                                                                                                                                                                                                        |                                                      | 9.52                                 |                               |  |  |  |
| Seed                       | application                                       |                                                                                                                                                                                                                                                                                              | 0.024                                                |                                      | 0.005                         |  |  |  |
| Metabolites Identified     | Major Metaboli                                    | tes (>10                                                                                                                                                                                                                                                                                     | % of the TRRs)                                       | Minor Metabolites (<10% of the TRRs) |                               |  |  |  |
| Radiolabel Position        | [ <sup>14</sup> C-PY]                             |                                                                                                                                                                                                                                                                                              | [ <sup>14</sup> C-PH]                                | [ <sup>14</sup> C-PY]                | [ <sup>14</sup> C-PH]         |  |  |  |
| Forage                     |                                                   |                                                                                                                                                                                                                                                                                              |                                                      |                                      | ·                             |  |  |  |
| Hay                        |                                                   | Bixafen                                                                                                                                                                                                                                                                                      | L                                                    | Bixaf                                | en-desmethyl                  |  |  |  |
| Straw                      |                                                   |                                                                                                                                                                                                                                                                                              |                                                      |                                      | -                             |  |  |  |

| Seed                       | Bixafen, bixafen<br>pyrazole-4-carb<br>and bixafen-pyr                       | oxylic acid                                      | None                                                | Nor                                                                                                                                     | ne                                            |  |
|----------------------------|------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|                            | carboxylic acid                                                              |                                                  |                                                     |                                                                                                                                         |                                               |  |
| NATURE OF THE RES          | IDUE IN WHEAT                                                                |                                                  |                                                     | PMRA No. 2642746 & 20                                                                                                                   | 542747                                        |  |
| Radiolabel Position        | [pyrazole-5-14C                                                              | ]-bixafen (PY-l                                  | abel) and [dichloroph                               | nenyl-UL- <sup>14</sup> C]-bixafen (PH-labe                                                                                             | el)                                           |  |
| Test Site                  | The crop was gr<br>conditions.                                               | rown in the veg                                  | etation area of the tes                             | t facility under natural light and                                                                                                      | l temperature                                 |  |
| Treatment                  | Foliar treatment                                                             | s.                                               |                                                     |                                                                                                                                         |                                               |  |
| Total Rate                 | Two application                                                              | ns at 128-132 g                                  | a.i./ha per application                             | n for a total rate of 286 g a.i./ha                                                                                                     | •                                             |  |
| Formulation                | Emulsifiable co                                                              |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Preharvest interval        | Forage: 9 days a                                                             |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Trenarvest meervar         |                                                                              |                                                  |                                                     | l straw) after the 2 <sup>nd</sup> application                                                                                          |                                               |  |
| Matrices                   | PH                                                                           | -                                                | [ <sup>14</sup> C-PY]                               | [ <sup>14</sup> C-PH                                                                                                                    | 2                                             |  |
|                            | (day                                                                         |                                                  | TRRs (ppm)                                          | TRRs (pj                                                                                                                                | om)                                           |  |
| Forage                     | 9 after the 1st ap                                                           |                                                  | 1.67                                                | 1.57                                                                                                                                    |                                               |  |
| Hay                        | 9 after the 2 <sup>nd</sup> ap                                               | oplication                                       | 6.57                                                | 7.64                                                                                                                                    |                                               |  |
| Straw                      | 50 after the 2 <sup>nd</sup>                                                 | application                                      | 24.27                                               | 22.85                                                                                                                                   |                                               |  |
| Grain                      |                                                                              | 0.162       Metabolites (>10% of the TRRs)       |                                                     | 0.229                                                                                                                                   |                                               |  |
| Metabolites Identified     |                                                                              |                                                  |                                                     | Minor Metabolites (<1                                                                                                                   | 0% of the TRRs)<br>[ <sup>14</sup> C-PH]      |  |
| Radiolabel Position        | [ <sup>14</sup> C-PY]                                                        | [14                                              | C-PH]                                               | [ <sup>14</sup> C-PY]                                                                                                                   | [ <sup>1+</sup> C-PH]                         |  |
| Forage                     |                                                                              |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Hay                        | _                                                                            | Bixafen                                          |                                                     | Bixafen-desi                                                                                                                            | methyl                                        |  |
| Straw                      | _                                                                            |                                                  |                                                     |                                                                                                                                         | •                                             |  |
| Grain                      |                                                                              | OFC                                              |                                                     | PMRA No. 2642750 & 26427                                                                                                                | 140                                           |  |
| NATURE OF THE RES          | IDUE IN POTATO                                                               | UES                                              |                                                     | PMIKA NO. 2042/50 & 2042/                                                                                                               | 49                                            |  |
| Radiolabel Position        | [pyrazole-5-14C                                                              | ]-bixafen (PY-l                                  | abel) and [dichloroph                               | enyl-UL- <sup>14</sup> C]-bixafen (PH-labe                                                                                              | el)                                           |  |
| Test Site                  | The crop was gr                                                              | own in a green                                   | house under natural l                               | ight and temperature conditions                                                                                                         |                                               |  |
| Treatment                  | Foliar treatment                                                             |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Total Rate                 | application mad<br>with rates totali                                         | e at BBCH 70<br>ng 486-490 g a<br>and dried) and | (first berries visible).<br>i./ha. The third applic | BBCH 61 (beginning of flower<br>Leaves were harvested after the<br>cation was made at BBCH 97 (I<br>l after the third application for a | e second application<br>eaves and stems dead, |  |
| Formulation                | Emulsifiable co                                                              | ncentrate                                        |                                                     |                                                                                                                                         |                                               |  |
| Preharvest interval        | Leaves: 30 days                                                              |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Trenarvest meervar         | Tubers: 7 days a                                                             |                                                  |                                                     |                                                                                                                                         |                                               |  |
| Matrices                   | PHI                                                                          |                                                  | <sup>4</sup> C-PY]                                  | [ <sup>14</sup> C-PH]                                                                                                                   |                                               |  |
|                            | (days)                                                                       | TR                                               | Rs (ppm)                                            | TRRs (p                                                                                                                                 | opm)                                          |  |
| Leaves                     | $\begin{array}{c} 30 \text{ after the} \\ 2^{nd} \\ application \end{array}$ |                                                  | 24.38                                               | 21.77                                                                                                                                   |                                               |  |
| Tubers                     | 7 after the<br>3 <sup>rd</sup><br>application                                |                                                  | 0.003                                               | 0.002                                                                                                                                   |                                               |  |
| Metabolites Identified     |                                                                              |                                                  | % of the TRRs)                                      | Minor Metabolites (<                                                                                                                    |                                               |  |
| <b>Radiolabel Position</b> | [ <sup>14</sup> C-P                                                          | Y]                                               | [ <sup>14</sup> C-PH]                               | [ <sup>14</sup> C-PY]                                                                                                                   | [ <sup>14</sup> C-PH]                         |  |
| Leaves<br>Tubers           |                                                                              | Bixafen                                          |                                                     | Bixafen-desmethyl, M43;<br>bixafen-pyrazolone-4-<br>carboxylic acid; bixafen-<br>pyrazole-4-carboxylic acid                             | Bixafen-desmethyl                             |  |



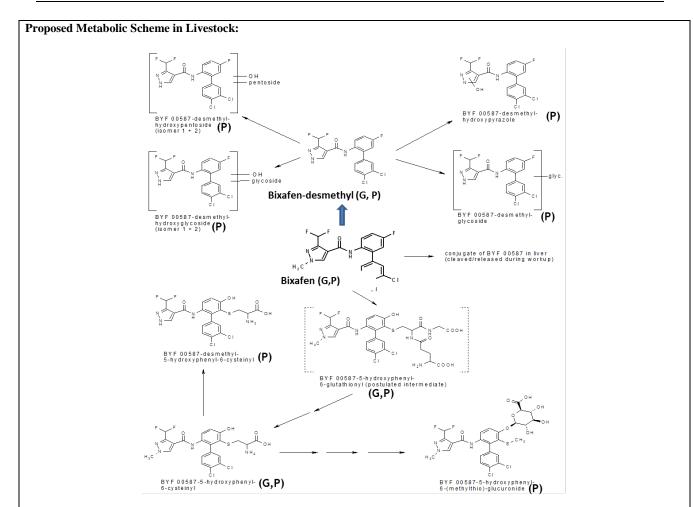
The metabolism of bixafen in three diverse crops was determined to be similar. In all three crops and their associated matrices, the major residue observed was unchanged bixafen, thereby indicating that following foliar application and uptake/distribution, limited metabolism of the active substance occurs. When metabolism occurred, the mechanism involves *N*-desmethylation of the pyrazole amide moiety, generating the minor metabolite bixafen-desmethyl, which was observed in all crops, all matrices. In addition, minor metabolites specific to the [pyrazole-5-<sup>14</sup>C]-label, bixafen-pyrazolone-4-carboxylic acid and bixafen-desmethyl-pyrazole-4-carboxylic acid (M44), the latter of which results from the cleavage of bixafen-desmethyl by hydrolysis or photolysis, were observed in soybean seed and potatoes; in potatoes, bixafen-pyrazole-4-carboxamide (M43) and bixafen-pyrazole-4-carboxylic acid were observed as minor components.

| CONFINED ACCUM                |                                                                                                                                              |                                                                                                                                                                                                                                                                                        | OPS –                           | PMRA No. 2642763, 264                                                                       |                                                   |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| Wheat, Swiss chard an         |                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                 |                                                                                             |                                                   |  |  |
| Radiolabel Position           | *                                                                                                                                            | [pyrazole-5-14C]-bix                                                                                                                                                                                                                                                                   | afen (PY-label) and [dicl       | nlorophenyl-UL-14C]-bixat                                                                   | fen (PH-label)                                    |  |  |
| Test site                     |                                                                                                                                              | Sandy loam soil in planting containers located in a vegetation area during the first rotation and the first period of the second rotation until day 191 after application. Subsequently, the planting containers were moved into a greenhouse for the remainder of the study duration. |                                 |                                                                                             |                                                   |  |  |
| Formulation                   |                                                                                                                                              | Emulsifiable concentrate                                                                                                                                                                                                                                                               |                                 |                                                                                             |                                                   |  |  |
| Application rate and ti       | matrices (leaves and root) were harvested at maturity. Soil was also sampled at 30 days after treatment (DAT), 138 DAT, 285 DAT and 418 DAT. |                                                                                                                                                                                                                                                                                        |                                 |                                                                                             | eat forage and hay were<br>Swiss chard and turnip |  |  |
| <b>Metabolites Identified</b> |                                                                                                                                              | Major Metabolite                                                                                                                                                                                                                                                                       | es (>10% of the TRRs)           | Minor Metabolites                                                                           | (<10% of the TRRs)                                |  |  |
| Matrices                      | PBI (days)                                                                                                                                   | [ <sup>14</sup> C- PY-label]                                                                                                                                                                                                                                                           | [ <sup>14</sup> C- PH-label]    | [ <sup>14</sup> C- PY-label]                                                                | [ <sup>14</sup> C- PH-label]                      |  |  |
| Wheat forage                  | 30                                                                                                                                           | Bixafen, bixafen-<br>desmethyl, M43,<br>bixafen pyrazole-<br>4-carboxylic acid                                                                                                                                                                                                         |                                 | M44 (T2), bixafen<br>pyrazolone-4-<br>carboxylic acid                                       |                                                   |  |  |
|                               | 138                                                                                                                                          | Bixafen, bixafen-<br>desmethyl                                                                                                                                                                                                                                                         | Bixafen, bixafen-<br>desmethyl, | M43. bixafen<br>pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid | None detected                                     |  |  |
|                               | 285                                                                                                                                          | Bixafen, bixafen-<br>desmethyl, M43                                                                                                                                                                                                                                                    |                                 | None detected                                                                               |                                                   |  |  |
|                               | 30                                                                                                                                           |                                                                                                                                                                                                                                                                                        |                                 | M43                                                                                         |                                                   |  |  |
| Wheat hay                     | 138                                                                                                                                          | Bixafen, bixafen-<br>desmethyl                                                                                                                                                                                                                                                         | Bixafen, bixafen-<br>desmethyl  | M43, bixafen<br>pyrazole-4-carboxylic<br>acid                                               | None detected                                     |  |  |
|                               | 285                                                                                                                                          | Bixafen, bixafen-<br>desmethyl, M43                                                                                                                                                                                                                                                    |                                 | None detected                                                                               |                                                   |  |  |
| Wheat straw                   | 30                                                                                                                                           | Bixafen, biz                                                                                                                                                                                                                                                                           | xafen-desmethyl                 | M44 (T1 & T2), M43,<br>bixafen pyrazole-4-<br>carboxylic acid                               | None detected                                     |  |  |

|               | 138                     |                                                                                       |                                                   | M44 (T1 & T2), M43                                                                                                          |                   |
|---------------|-------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|
|               | 285                     | 1                                                                                     |                                                   | M43                                                                                                                         |                   |
|               | 30                      |                                                                                       |                                                   |                                                                                                                             |                   |
| Wheat grain   | 138                     |                                                                                       | Not determine                                     | d; TRRs were too low                                                                                                        |                   |
| U             | 285                     |                                                                                       |                                                   |                                                                                                                             |                   |
|               | 30                      | Bixafen, M44 (T1<br>& T2), M43,<br>bixafen hydroxy-<br>glycoside-sulfate              |                                                   | Bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid                                         | None detected     |
| Swiss chard   | 138                     | Bixafen, bixafen-<br>desmethyl, M44<br>(T1), bixafen<br>hydroxy-<br>glycoside-sulfate | Bixafen, bixafen<br>hydroxy-glycoside-<br>sulfate | M43, M44 (T2),<br>bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen-desmethyl                                            | Bixafen-desmethyl |
|               | 285                     | Bixafen, M44<br>(T1), bixafen-<br>hydroxy-<br>glucoside-sulfate                       |                                                   | M44 (T2), M43,<br>bixafen-desmethyl                                                                                         | Bixafen-desmethyl |
| Turnip leaves | 30                      | Bixafen, M43                                                                          |                                                   | M44 (T1 & T2),<br>bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid,<br>bixafen-desmethyl |                   |
|               | 138                     | Bixafen, M44 (T1)                                                                     | Bixafen, bixafen-<br>desmethyl                    | M44 (T2), M43,<br>bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid,<br>bixafen-desmethyl | None detected     |
|               | 285                     | Bixafen, M43                                                                          |                                                   | M44 (T2), bixafen<br>pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid,<br>bixafen-desmethyl      |                   |
|               | 30                      |                                                                                       |                                                   | M44 (T2), M43,<br>bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid                       |                   |
| Turnip roots  | 138                     | Bixafen, biz                                                                          | xafen-desmethyl                                   | Bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid                                         | None detected     |
|               | 285                     |                                                                                       |                                                   | Bixafen pyrazolone-4-<br>carboxylic acid,<br>bixafen pyrazole-4-<br>carboxylic acid                                         |                   |
| Soil          | 30<br>138<br>285<br>418 | - В                                                                                   | ixafen                                            |                                                                                                                             | desmethyl         |

| Proposed Metabolic Scheme in Rotational Crops |
|-----------------------------------------------|
|-----------------------------------------------|




The results of the confined rotational crop studies indicate that the metabolism of bixafen in secondary crops is similar to that observed in primary crops with the major observed compound being unchanged bixafen. Bixafen-desmethyl was observed in all matrices at varying levels, but tended to be more prevalent in wheat matrices at levels higher than bixafen, but lower than that of bixafen in Swiss chard, turnip leaves and turnip roots. Other metabolites observed at lower levels included bixafen-hydroxy-glycoside-sulfate in Swiss chard (14.6-38.3% of the TRR; 0.007-0.016 ppm) and the five pyrazole metabolites (bixafen-pyrazole-4-carboxylic acid, bixafen-desmethyl-pyrazole-4-carboxylic acid [M44] [tautomers 1 and 2], bixafen-pyrazolone-4-carboxylic acid, and bixafen-pyrazole-4-carboxamide [M43]), which were observed in all RACS and all rotational intervals. In aged soil samples, bixafen was the only major metabolites observed and bixafen-desmethyl was the only minor metabolite observed.

 NATURE OF THE RESIDUE IN LAYING HEN
 PMRA No. 2642744 & 2642745

 Six and five laying hens were dosed orally with [<sup>14</sup>C-bixafen] at 25.7 ppm [pyrazole-5-<sup>14</sup>C]-bixafen (PY-label)-32.52 ppm [dichlorophenyl-UL-<sup>14</sup>C]-bixafen (PH-label), respectively, in the feed by gelatin capsule once daily for 14 days. Samples of excreta were collected daily. Samples of eggs were collected twice daily. The hens were euthanized 24 hours after administration of the final dose and the following tissue samples were collected at sacrifice: muscle (leg and breast), liver, kidney, fat (subcutaneous) and skin (without fat).

| Matriaga              | [руг                                  | razole-5- <sup>14</sup> C]-bixafen (PY-label) |                                     |                        |                                                    | [dichlorophenyl-UL- <sup>14</sup> C]-bixafen (PH-label)                                                                                                                     |                                         |  |  |
|-----------------------|---------------------------------------|-----------------------------------------------|-------------------------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| Matrices              | TRRs                                  | (ppm)                                         | % of Adı                            | % of Administered Dose |                                                    | TRRs (ppm)                                                                                                                                                                  | % of Administered Dose                  |  |  |
| Excreta               | 13                                    | 5.0                                           |                                     | 88.3                   |                                                    | 18.6                                                                                                                                                                        | 92.5                                    |  |  |
| Muscle                | 0.0                                   | 33                                            |                                     | 0.05                   | 0.037                                              |                                                                                                                                                                             | 0.05                                    |  |  |
| Fat                   | 0.2                                   | 34 0.1                                        |                                     | 0.1                    |                                                    | 0.365                                                                                                                                                                       | 0.03                                    |  |  |
| Liver                 | 0.6                                   | i39                                           |                                     | 0.05                   |                                                    | 0.807                                                                                                                                                                       | 0.06                                    |  |  |
| Eggs:<br>Days 1-14    | 0.7                                   | 1.15                                          |                                     | 0.640                  |                                                    | 0.98                                                                                                                                                                        |                                         |  |  |
| Metabolites identifie | d                                     | Major M                                       | Major Metabolites (>10% of the TRR  |                        |                                                    | Rs)Minor Metabolites (<10% of the TRRs)                                                                                                                                     |                                         |  |  |
|                       |                                       | [ <sup>14</sup> C- P]                         | Y-label] [ <sup>14</sup> C- PH-labe |                        | el]                                                | [ <sup>14</sup> C- PY-label]                                                                                                                                                | [ <sup>14</sup> C- PH-label]            |  |  |
| Muscle<br>Fat         |                                       | Bixafen, bixafen-desmethyl                    |                                     |                        |                                                    | None                                                                                                                                                                        |                                         |  |  |
| Liver                 |                                       | Bixafen-desmethyl                             |                                     |                        | Bixafen, bixafen-<br>desmethyl-<br>hydroxypyrazole | Bixafen, bixafen-5-<br>hydroxyphenyl-6-cysteinyl,<br>bixafen-desmethyl-<br>glycoside, bixafen-<br>desmethyl-hydroxy-<br>pentoside,<br>bixafen-desmethyl-<br>hydroxypyrazole |                                         |  |  |
| Eggs:                 | Days 1-6/7 Bixafen, bixafen-desmethyl |                                               |                                     |                        |                                                    | None                                                                                                                                                                        | Bixafen-desmethyl-<br>hydroxy-pentoside |  |  |

|                                     | Days 7/8-1             | 4                           |           |                             | Bixafen-desmethyl- | Bixafen-desmethyl-<br>glycoside, bixafen-<br>desmethyl-hydroxy-                                                   |                               |  |  |
|-------------------------------------|------------------------|-----------------------------|-----------|-----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
|                                     |                        |                             |           |                             |                    | hydroxypyrazole                                                                                                   | pentoside, bixafen-           |  |  |
|                                     |                        |                             |           |                             |                    |                                                                                                                   | desmethyl-hydroxypyrazole     |  |  |
| NATURE OF THE I                     |                        |                             |           |                             |                    | PMRA No. 2642742 & 2642743                                                                                        |                               |  |  |
|                                     |                        |                             |           |                             |                    | ng bixafen per kg feed                                                                                            |                               |  |  |
|                                     |                        |                             |           |                             |                    |                                                                                                                   | PY-label). Total radioactive  |  |  |
|                                     |                        |                             |           |                             |                    |                                                                                                                   | which was collected daily     |  |  |
|                                     |                        |                             |           |                             |                    |                                                                                                                   | re pooled separately from the |  |  |
| (round [both labels] and            |                        |                             |           |                             |                    |                                                                                                                   | ples were collected: muscle   |  |  |
|                                     |                        |                             |           | afen (PH-label)             | and pe             |                                                                                                                   | bixafen (PY-label)-           |  |  |
| Matrices                            |                        | Rs (ppm)                    |           | dministered Dose            |                    | TRRs (ppm)                                                                                                        | % of Administered Dose        |  |  |
| Urine (cumulative<br>over 5 days)   | IR                     | 1.95 5.62                   |           |                             |                    | 0.806                                                                                                             | 1.75                          |  |  |
| Feces<br>(cumulative over 5         |                        | 13.50                       |           | 82.08                       |                    | 17.63                                                                                                             | 71.88                         |  |  |
| days)                               |                        |                             |           |                             |                    |                                                                                                                   |                               |  |  |
| Muscle (total; loin + round)        |                        | 0.047                       | 0.134     |                             |                    | 0.057                                                                                                             | 0.17                          |  |  |
| Fat (total; perirenal<br>+ omental) |                        | 0.611                       | 0.70      |                             | 0.466              |                                                                                                                   | 0.553                         |  |  |
| Kidney                              |                        | 0.143                       |           | 0.004                       |                    | 0.203                                                                                                             | 0.007                         |  |  |
| Liver                               |                        | 0.737                       |           | 0.166                       | 1.178              |                                                                                                                   | 0.278                         |  |  |
| Milk (cumulative over 5 days)       |                        | 0.040 0.275                 |           |                             | 0.037              | 0.094                                                                                                             |                               |  |  |
| Metabolites ident                   |                        |                             |           | (>10% of the TRRs           |                    |                                                                                                                   | tes (<10% of the TRRs)        |  |  |
| Radiolabel Posi                     | tion                   | [ <sup>14</sup> C-PY-l      | abel]     | [ <sup>14</sup> C-PH-label] |                    | [ <sup>14</sup> C-PY-label]                                                                                       | [ <sup>14</sup> C-PH-label]   |  |  |
|                                     | ning Pool<br>ning Pool | Bixafen & bixafen-desmethyl |           | afen-desmethyl              |                    | Bixafen-desmethyl-N-<br>glucuronide (isomer<br>2)<br>Bixafen-desmethyl-N-<br>glucuronide (isomer                  |                               |  |  |
| Muscle                              |                        |                             |           | n & bixafen-desmethyl       |                    | None                                                                                                              |                               |  |  |
| Fat                                 |                        | Bixafen & bixafen-desmethyl |           | afen-desmethyl              |                    | None                                                                                                              |                               |  |  |
| Liver                               |                        | Bixaf                       |           | en & bixafen-desmethyl      |                    | Bixafen-desmethyl-5-<br>hydroxyphenyl-6-<br>cysteinyl, bixafen-<br>desmethyl-N-<br>glucuronide (isomers<br>1 & 2) |                               |  |  |
| Kidney                              |                        | Bixa                        | fen & bix | afen-desmethyl              |                    | Bixafen-desmethyl-N-                                                                                              | glucuronide (isomers 1 & 2)   |  |  |



#### G = goat; P = poultry.

The results indicate that metabolism of bixafen in both laying hen and lactating goat are similar. When ingested orally, bixafen is primarily excreted (>73% of the administered dose). The nature of the residue was not determined in the excreta. When retained in the tissues, the distribution of residues appears to reflect a preferred secretion of bixafen-derived compounds into the developing eggs and fatty tissues of poultry. Characterization of tissue-retained residues indicated that bixafen metabolism in both animals proceeds via demethylation of the pyrazole ring yielding the bixafen-desmethyl metabolite. Further minor biochemical reactions included substitution of the fluorine atom by a hydroxy group and an adjacent glutathione conjugation, an unspecified hydroxylation of an aromatic ring and conjugate resulting in the exclusive minor liver metabolite, bixafen-5-hydroxy-phenyl-6-cysteinyl. No evidence of cleavage of bixafen between the pyrazole and phenyl rings was detected in either organism.

| FREEZER STORAGE STABILITY | PMRA No. 2643811, 2643812 & |
|---------------------------|-----------------------------|
|                           | 2643814; 2643813            |

#### **Plant matrices:**

Bixafen and bixafen-desmethyl - Dry bean seed, orange fruit, wheat, potato tuber, lettuce head and rape seed

The freezer storage stability data indicate that residues of bixafen and bixafen-desmethyl are stable at  $\leq$ -18°C for up to 24 months.

#### M43 and M44 - Orange fruit, tomato fruit, potato tuber, dry bean seed and soybean seed

The freezer storage stability data indicate that residues of the metabolites M43 and M44 are stable at  $\leq$ -18°C for up to 24 months.

Data are available for representative high water (wheat green material, lettuce), high oil (rape seed), high protein (dry bean seed), high starch (wheat grain and potato tuber), and high acid (orange fruit) crops for bixafen and bixafen-desmethyl. Data are also available for representative high water (tomato fruit), high oil (soybean seed), high protein (dry bean seed), high starch (potato tuber) and high acid (orange fruit) crops for metabolites bixafen-pyrazole-4-carboxamide (M43) and bixafen-desmethyl-pyrazole-4-carboxylic acid (M44). Therefore, storage stability can be extrapolated to all crops and processed commodities for up to 24 months.

Animal matrices: Storage stability data were not submitted for animal matrices; however, these data are not required since all tissue, milk and egg samples were analyzed within 30 days of collection in the dairy cattle and laying hen feeding studies.

PMRA No. 2643803

#### CROP FIELD TRIALS AND RESIDUE DECLINE ON WHEAT

Field trials were conducted on wheat in 2014 and 2015 in Canada and the United States. Trials were conducted in North America Growing Regions 2 (1 trial), 4 (1 trial), 5 (4 trials), 6 (1 trial), 7 (5 trials), 7A (1 trial), 8 (4 trials), 11 (3 trials) and 14 (6 trials) for a total of 26 trials. An emulsifiable concentrate formulation of bixafen was applied twice as foliar broadcast sprays at rates of 109-116 g a.i./ha/ application for seasonal application rates of 219-231 g a.i./ha. The timing of the first application was based on approximate crop growth stage (BBCH 25) with the second application occurring 30 to 35 days prior to normal harvest for wheat grain and straw, 18-27 days for hay and 8-19 days for forage. An adjuvant was included in the spray mixtures at 18 of the 26 trials. Residue decline behavior was determined at 2 sites where forage samples were collected at 0, 3, 6-7, 9-10, and 13-15 days after the first application, and grain and straw samples were collected at 25-27, 30, 35, 41, and 44-46 days after the last treatment.

Residue decline data show that residues of bixafen, bixafen-desmethyl and total bixafen demonstrated a decreasing trend in forage and residues of bixafen and total bixafen remained relatively constant in grain and straw with longer PHIs. Decline behavior could not be evaluated for bixafen-desmethyl in grain as residues at all PHIs were non quantifiable.

|                  | Total                              |               | Residue Levels (ppm) |                       |           |        |        |  |  |
|------------------|------------------------------------|---------------|----------------------|-----------------------|-----------|--------|--------|--|--|
| Commodity        | Application<br>Rate<br>(g a.i./ha) | PHI<br>(days) | n                    | HAFT                  | Median    | Mean   | SD     |  |  |
| Bixafen          |                                    |               |                      |                       |           |        |        |  |  |
| Wheat<br>Forage  |                                    | 8-19*         | 25                   | 3.18                  | 0.91      | 1.119  | 0.87   |  |  |
| Wheat Hay        | 210 221                            | 18-27         | 25                   | 2.56                  | 0.972     | 1.013  | 0.738  |  |  |
| Wheat<br>Grain   | 219-231                            | 25.25         | 26                   | 0.107                 | 0.036     | 0.0755 | 0.149  |  |  |
| Wheat<br>Straw   |                                    | 25-35         | 26                   | 3.58                  | 1.49      | 1.755  | 0.980  |  |  |
| Bixafen-desmeth  | yl                                 |               |                      |                       |           |        |        |  |  |
| Wheat<br>Forage  | 219-231                            | 8-19*         | 25                   | 0.297                 | 0.106     | 0.122  | 0.066  |  |  |
| Wheat Hay        |                                    | 18-27         | 25                   | 0.644                 | 0.187     | 0.221  | 0.166  |  |  |
| Wheat<br>Grain   |                                    | 25-35         | 26                   | 0.0233                | 0.0183    | 0.0185 | 0.0045 |  |  |
| Wheat<br>Straw   |                                    |               | 26                   | 0.793                 | 0.354     | 0.391  | 0.178  |  |  |
| Total Bixafen Re | esidues (Bixafen +                 | bixafen-de    | esmethyl, exp        | ressed as bixafen equ | ivalents) |        |        |  |  |
| Wheat<br>Forage  | 219-231                            | 8-19*         | 25                   | 3.4                   | 1.0       | 1.2    | 0.88   |  |  |
| Wheat Hay        |                                    | 18-27         | 25                   | 3.2                   | 1.1       | 1.2    | 0.9    |  |  |
| Wheat<br>Grain   |                                    | 25.25         | 26                   | 0.11                  | 0.04      | 0.05   | 0.03   |  |  |
| Wheat<br>Straw   |                                    | 25-35         | 26                   | 4.2                   | 1.9       | 2.2    | 1.1    |  |  |

Values based on per-trial averages. For computation, values < LOQ are assumed to be at the LOQ.

n = number of independent field trials.

\*At only 1 of trials were forage samples collected at 19 days. PHIs for forage at the remaining trials ranged from 8-12 days.

| CROP FIELD TRIALS AND RESIDUE DECLINE ON BARLEY | PMRA No. 2934416, 2934417, 2934418 |
|-------------------------------------------------|------------------------------------|
|                                                 |                                    |
|                                                 | & 2934419                          |

Field trials were conducted on barley in 2006 and 2007 in representative growing regions in Northern Europe (Northern France [4 trials], Sweden [1 trial], United Kingdom [2 trials], Germany [2 trials], Belgium [1 trial]) and Southern Europe (France [4 trials], Italy [3 trials], Spain [2 trials], Portugal [1 trial]) for a total of 20 trials. An emulsifiable concentrate (EC) formulation of bixafen was applied twice as foliar broadcast sprays at a rate of 125 g a.i./ha/application for seasonal application rates of 250 g a.i./ha. The timing of the first application was based on approximate crop growth stage BBCH 37-41 with the second application occurring at BBCH 61-71, with PHIs of 0 days for forage and 34-66 days for grain and stover. Adjuvant use was not specified.

Residue decline data show that residues of bixafen, bixafen-demethyl and total bixafen demonstrated a declining trend in forage with longer PHIs.

|                                                                                                                                     | Total                                                                                                                 |                                                                                                                           |                                                                                                               |                                                                                                        | Residue Lev                                                                                                | vels (ppm)                                                    |                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------|
| Commodity                                                                                                                           | Applicat<br>Rate<br>(g a.i./h                                                                                         | (days                                                                                                                     |                                                                                                               | HAFT                                                                                                   | Median                                                                                                     | Mean                                                          | SD                                                                               |
| Bixafen                                                                                                                             |                                                                                                                       |                                                                                                                           |                                                                                                               |                                                                                                        |                                                                                                            |                                                               |                                                                                  |
| Barley<br>Forage                                                                                                                    |                                                                                                                       | 0                                                                                                                         | 20                                                                                                            | 7                                                                                                      | 3.5                                                                                                        | 3.65                                                          | 1.2                                                                              |
| Barley<br>Grain                                                                                                                     | 250                                                                                                                   | 24.6                                                                                                                      | 20                                                                                                            | 0.34                                                                                                   | 0.07                                                                                                       | 0.090                                                         | 0.08                                                                             |
| Barley<br>Straw                                                                                                                     |                                                                                                                       | 34-60                                                                                                                     | 20                                                                                                            | 10                                                                                                     | 1.7                                                                                                        | 2.9                                                           | 2.6                                                                              |
| Bixafen-desm                                                                                                                        | ethyl                                                                                                                 |                                                                                                                           |                                                                                                               |                                                                                                        |                                                                                                            |                                                               |                                                                                  |
| Barley<br>Forage                                                                                                                    |                                                                                                                       | 0                                                                                                                         | 20                                                                                                            | 0.25                                                                                                   | 0.09                                                                                                       | 0.102                                                         | 0.061                                                                            |
| Barley<br>Grain                                                                                                                     | 250                                                                                                                   | 34-60                                                                                                                     | 20                                                                                                            | 0.04                                                                                                   | 0.01                                                                                                       | 0.017                                                         | 0.011                                                                            |
| Barley<br>Straw                                                                                                                     |                                                                                                                       | 34-0                                                                                                                      | 20                                                                                                            | 1.4                                                                                                    | 0.18                                                                                                       | 0.27                                                          | 0.3                                                                              |
| Total Bixafen                                                                                                                       | Residues (Bixa                                                                                                        | afen + bixafen-d                                                                                                          | esmethyl, exp                                                                                                 | ressed as bixafe                                                                                       | en equivalents)                                                                                            |                                                               |                                                                                  |
| Barley<br>Forage                                                                                                                    |                                                                                                                       | 0                                                                                                                         | 20                                                                                                            | 7.25                                                                                                   | 3.6                                                                                                        | 3.76                                                          | 1.2                                                                              |
| Barley<br>Grain                                                                                                                     | 250                                                                                                                   | 34-60                                                                                                                     | 20                                                                                                            | 0.38                                                                                                   | 0.09                                                                                                       | 0.11                                                          | 0.09                                                                             |
| Barley<br>Straw                                                                                                                     |                                                                                                                       | 54-0                                                                                                                      | 20                                                                                                            | 11.4                                                                                                   | 1.9                                                                                                        | 3.17                                                          | 2.9                                                                              |
|                                                                                                                                     | n per-trial avera                                                                                                     |                                                                                                                           |                                                                                                               |                                                                                                        | ed to be at the LO                                                                                         | -                                                             |                                                                                  |
|                                                                                                                                     |                                                                                                                       | <b>RESIDUE DE</b>                                                                                                         |                                                                                                               |                                                                                                        |                                                                                                            | PMRA No. 26438<br>owing Regions 4 (1 t                        |                                                                                  |
| broadcast spray<br>applications wa<br>9-10 days, while<br>included in the<br>15 and 20 days,<br>Residue decline<br>metabolite in gr | s at rates of 112<br>s approximately<br>e grain and stov<br>spray mixtures a<br>, and 20, 25, 30,<br>e data show that | 2-115 g a.i./ha/ aq<br>7 50 and 30 days<br>rer samples were<br>at 6 of the 9 sites<br>35 and 40 days,<br>residues of bixa | oplication for so<br>prior to norma<br>harvested follo<br>At the declino<br>respectively.<br>fen and total bi | easonal applicati<br>l harvest of the s<br>owing the second<br>e trial, forage and<br>xafen in forage, | ion rates of 224 to<br>sorghum RACs. Fo<br>d application at PI<br>d grain/stover sam<br>grain and stover s | Hs of 27-35 days. A pples were harvested samples, and residue | iming of the<br>harvested at PHIs of<br>n adjuvant was<br>l at PHIs of 0, 5, 10, |
| PHIs.                                                                                                                               | Total                                                                                                                 |                                                                                                                           |                                                                                                               |                                                                                                        | Residue Level                                                                                              | ( <b>nnm</b> )                                                |                                                                                  |
| Commodity                                                                                                                           | Application<br>Rate<br>(g a.i./ha)                                                                                    | PHI (days)                                                                                                                | n                                                                                                             | HAFT                                                                                                   | Median                                                                                                     | Mean                                                          | SD                                                                               |
| Bixafen                                                                                                                             |                                                                                                                       | 1                                                                                                                         |                                                                                                               | -                                                                                                      | 1                                                                                                          | T                                                             |                                                                                  |
| Forage                                                                                                                              |                                                                                                                       | 9-10                                                                                                                      | 9                                                                                                             | 1.26                                                                                                   | 0.359                                                                                                      | 0.558                                                         | 0.371                                                                            |
| Grain                                                                                                                               | 224-230                                                                                                               | 77 25                                                                                                                     | 9                                                                                                             | 1.78                                                                                                   | 0.246                                                                                                      | 0.438                                                         | 0.555                                                                            |
| Stover                                                                                                                              |                                                                                                                       | 27-35                                                                                                                     | 9                                                                                                             | 3.83                                                                                                   | 0.720                                                                                                      | 1.194                                                         | 1.15                                                                             |
| Bixafen-desm                                                                                                                        | ethyl                                                                                                                 | Γ                                                                                                                         | [                                                                                                             |                                                                                                        | 1                                                                                                          | 1                                                             |                                                                                  |
| Forage                                                                                                                              |                                                                                                                       | 9-10                                                                                                                      | 9                                                                                                             | 0.777                                                                                                  | 0.17                                                                                                       | 0.259                                                         | 0.232                                                                            |
| Grain                                                                                                                               | 224-230                                                                                                               | 27-35                                                                                                                     | 9                                                                                                             | 0.112                                                                                                  | 0.061                                                                                                      | 0.686                                                         | 0.030                                                                            |
| Stover                                                                                                                              |                                                                                                                       |                                                                                                                           | 9                                                                                                             | 1.45                                                                                                   | 0.278                                                                                                      | 0.471                                                         | 0.438                                                                            |
| Total Bixafen                                                                                                                       | Residues (Bixa                                                                                                        | afen + bixafen-d                                                                                                          |                                                                                                               |                                                                                                        |                                                                                                            |                                                               |                                                                                  |
| Forage                                                                                                                              |                                                                                                                       | 9-10                                                                                                                      | 9                                                                                                             | 1.6                                                                                                    | 0.8                                                                                                        | 0.83                                                          | 0.5                                                                              |
|                                                                                                                                     | 224 220                                                                                                               |                                                                                                                           |                                                                                                               |                                                                                                        |                                                                                                            |                                                               |                                                                                  |
| Grain<br>Stover                                                                                                                     | 224-230                                                                                                               | 27-35                                                                                                                     | 9<br>9                                                                                                        | <u> </u>                                                                                               | 0.28                                                                                                       | 0.5                                                           | 0.58                                                                             |

HAFT = Highest Average Field Trial, SD = Standard Deviation.

Values based on per-trial averages. For computation, values < LOQ are assumed to be at the LOQ.

n = number of independent field trials.

PMRA No. 2643801 **CROP FIELD TRIALS AND RESIDUE DECLINE ON FIELD CORN** Field trials were conducted on field corn in 2014 in Canada and the United States in North America Growing Regions 1 (1 trial), 2 (1 trial), 5 (12 trials), 6 (1 trial) and 11 (1 trial) for a total of 16 trials. An emulsifiable concentrate formulation of bixafen was applied twice as foliar broadcast sprays at rates of 108.4-117.8 g a.i./ha/application for seasonal application rates of 217-230 g a.i./ha. The first application was applied 47 to 68 days prior to field corn harvest and the last application occurred 27-32 days prior to harvest. Field corn forage was harvested 8-11 days after the first treatment, while field corn grain and stover were harvested 27-32 days after the last treatment. An adjuvant was included in the spray mixtures at 12 of the 16 sites. At the decline trials, forage samples were collected at 0, 5, 10, 14-15, and 20 days after the first treatment and grain and stover samples were harvested at 19-20, 24-25, 30-31, 33-35 and 40 days after the last treatment.

Residue decline data show that in corn forage, residues of bixafen and total bixafen declined with increasing PHIs and residues of the desmethyl metabolite remained relatively constant. In field corn stover, all residues remained at a similar level with increasing PHIs. Residue decline behavior could not be evaluated in field corn grain given that all residues were non quantifiable at all PHIs.

|                      | Total                              |                   | 0               | 6               | <b>Residue Level</b> | s (ppm) |        |
|----------------------|------------------------------------|-------------------|-----------------|-----------------|----------------------|---------|--------|
| Commodity            | Application<br>Rate<br>(g a.i./ha) | PHI (days)        | n               | HAFT            | Median               | Mean    | SD     |
| Bixafen              |                                    |                   |                 |                 |                      |         |        |
| Field Corn<br>Forage |                                    | 9-11              | 14*             | 1.11            | 0.374                | 0.442   | 0.293  |
| Field Corn<br>Grain  | 217-230                            | 27.00             | 16              | <0.01           | <0.01                | <0.01   | NA     |
| Field Corn<br>Stover |                                    | 27-32             | 16              | 2.45            | 1.785                | 1.614   | 0.798  |
| Bixafen-desm         | ethyl                              |                   |                 |                 |                      |         |        |
| Field Corn<br>Forage |                                    | 9-11              | 14*             | 0.126           | 0.055                | 0.0709  | 0.0387 |
| Field Corn<br>Grain  | 217-230                            |                   | 16              | <0.01           | <0.01                | <0.01   | NA     |
| Field Corn<br>Stover |                                    | 27-32             | 16              | 0.378           | 0.183                | 0.188   | 0.105  |
| Total Bixafen        | Residues (Bixat                    | fen + bixafen-de  | smethyl, expre  | ssed as bixafer | equivalents)         |         |        |
| Field Corn<br>Forage |                                    | 9-11              | 14*             | 1.20            | 0.383                | 0.46    | 0.32   |
| Field Corn<br>Grain  | 217-230                            | 27.22             | 16              | <0.02           | < 0.02               | <0.02   | NA     |
| Field Corn<br>Stover |                                    | 27-32             | 16              | 3.21            | 2.1                  | 1.79    | 0.85   |
| HAFT = Highe         | est Average Field                  | l Trial, SD = Sta | ndard Deviation | , NA = not app  | icable.              |         |        |

est Average Field Trial, SL Standard Deviation, NA

Values based on per-trial averages. For computation, values < LOQ are assumed to be at the LOQ.

n = number of independent field trials.

\*Forage samples at two of the 16 trial sites were inadvertently collected at later PHIs of 29 and 30 days; as such, the residue values for these sites were not included in the summary table above.

PMRA No. 2643793

#### CROP FIELD TRIALS AND RESIDUE DECLINE ON SWEET CORN

Field trials were conducted on sweet corn in 2014 in Canada and the United States in North America Growing Regions 1 (1 trial), 2 (1 trial), 3 (1 trial), 5 (4 trials), 10 (1 trial), 11 (2 trials) and 12 (1 trial) for a total of 11 trials. An emulsifiable concentrate formulation of bixafen was applied twice as foliar broadcast sprays at rates of 109.4-115.2 g a.i./ha/application for seasonal application rates of 222.9-229.5 g a.i./ha. The first and second applications were applied approximately 48-54 and 29-32 days prior to normal fresh sweet corn harvest, respectively. Sweet corn forage, kernels plus cob with husk removed (K+CWHR) and stover samples were collected at PHIs of 29-32 days following the second application. An adjuvant was included in the spray mixtures at 8 of the 11 sites. At the decline trials, forage, K+CWHR and stover samples were collected at 18, 25, 30, 35 and 39 days after the last treatment.

Residue decline data show that in sweet corn forage, all residues tended to remain the same with increasing PHIs. In sweet corn stover, all residues declined over longer PHIs. Residue decline behavior could not be evaluated in K+CWHR given that all residues were non quantifiable at all PHIs.

|               | Total                              |                  |                   |                 | <b>Residue Levels</b> | s (ppm) |       |
|---------------|------------------------------------|------------------|-------------------|-----------------|-----------------------|---------|-------|
| Commodity     | Application<br>Rate<br>(g a.i./ha) | PHI (days)       | n                 | HAFT            | Median                | Mean    | SD    |
| Bixafen       |                                    |                  |                   |                 |                       |         |       |
| Forage        |                                    |                  | 11                | 0.352           | 0.145                 | 0.159   | 0.101 |
| K+CWHR        | 222.9-229.5                        | 29-32            | 11                | < 0.01          | < 0.01                | < 0.01  | NA    |
| Stover        |                                    |                  | 11                | 0.639           | 0.237                 | 0.282   | 0.197 |
| Bixafen-desm  | ethyl                              |                  |                   |                 |                       |         |       |
| Forage        |                                    |                  | 11                | 0.142           | 0.0392                | 0.0516  | 0.041 |
| K+CWHR        | 222.9-229.5                        | 29-32            | 11                | < 0.01          | < 0.01                | < 0.01  | NA    |
| Stover        |                                    |                  | 11                | 0.207           | 0.0695                | 0.081   | 0.06  |
| Total Bixafen | Residues (Bixat                    | fen + bixafen-de | esmethyl, expres  | ssed as bixafen | equivalents)          |         |       |
| Forage        |                                    |                  | 11                | 0.45            | 0.15                  | 0.20    | 0.13  |
| K+CWHR        | 222.9-229.5                        | 29-32            | 11                | < 0.02          | < 0.02                | < 0.02  | NA    |
| Stover        |                                    |                  | 11                | 0.79            | 0.33                  | 0.36    | 0.224 |
| HAET H        | at Awaraga Field                   | 1T.:             | a Jaw J Dawietian | NIA matamali    | 1-1 -                 |         |       |

HAFT = Highest Average Field Trial, SD = Standard Deviation, NA = not applicable.

Values based on per-trial averages. For computation, values < LOQ are assumed to be at the LOQ.

n = number of independent field trials.

#### CROP FIELD TRIALS AND RESIDUE DECLINE ON RADISH

PMRA No. 2643800

Field trials were conducted on radish in the 2014 and 2015 season in Canada and the United States in North America Growing Regions 1 (1 trial), 3 (2 trials), 5 (2 trials) and 10 (1 trial) for a total of 6 trials. An emulsifiable concentrate formulation of bixafen was applied four times as foliar broadcast sprays at rates of 55.3-57.8 g a.i./ha/application for seasonal application rates of 224-229 g a.i./ha. All applications were made at 4-7 day re-treatment intervals. Radish roots and tops were harvested 6-8 days after the last application. For the decline trial, radishes (roots and tops) were harvested immediately prior to the last application (-0 days) and immediately after the last application (0), and 3, 6, 10, and 13 days following the last application.

For radish samples collected from the decline trial, bixafen and total bixafen residues remained relatively constant in the radish roots but residues of the desmethyl metabolite increased slightly in this same matrix with increasing PHIs; in radish tops, residues of bixafen, the desmethyl metabolite and total residues showed an overall decreasing trend with increasing PHIs.

|                 | Total                              |            |   |       | Residue Levels |       |       |
|-----------------|------------------------------------|------------|---|-------|----------------|-------|-------|
| Commodity       | Application<br>Rate<br>(g a.i./ha) | PHI (days) | n | HAFT  | Median         | Mean  | SD    |
| Bixafen         |                                    |            |   |       |                |       |       |
| Radish<br>Roots | 224-229                            | 6-8        | 6 | 0.096 | 0.062          | 0.057 | 0.029 |
| Radish<br>Tops  | 224-229                            | 0-8        | 6 | 1.26  | 0.905          | 0.857 | 0.389 |
| Bixafen-desm    | ethyl                              |            |   |       |                |       |       |
| Radish<br>Roots | 224-229                            | 6-8        | 6 | 0.017 | 0.012          | 0.013 | 0.003 |
| Radish<br>Tops  | 224-229                            | 0-8        | 6 | 0.276 | 0.118          | 0.156 | 0.075 |

| Total Bixafen                                                                                                           | Residues (Bixat                                                                                                                 | fen + bixafen-de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esmethyl, expre                                                                                                            | ssed as bixafen                                                                                                           | equivalents)                                                                                                                |                                                                                                                       |                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Radish<br>Roots                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                          | 0.111                                                                                                                     | 0.075                                                                                                                       | 0.069                                                                                                                 | 0.030                                                                                  |
| Radish<br>Tops                                                                                                          | 224-229                                                                                                                         | 6-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                          | 1.53                                                                                                                      | 1.04                                                                                                                        | 1.012                                                                                                                 | 0.450                                                                                  |
| HAFT = Highe<br>Values based o                                                                                          | est Average Field<br>on per-trial avera<br>independent fiel                                                                     | ges. For comput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           | d to be at the LO                                                                                                           | Q.                                                                                                                    |                                                                                        |
| CROP FIELD                                                                                                              | TRIALS AND                                                                                                                      | <b>RESIDUE DE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CLINE ON CA                                                                                                                | RROTS                                                                                                                     |                                                                                                                             | PMRA No. 2643                                                                                                         | 799                                                                                    |
| 3 (1 trial), 5 (4<br>four times as for<br>Adjuvants were<br>the first and set<br>fourth application<br>last application | trials), 6 (1 trial)<br>bliar broadcast sp<br>e included in the<br>cond application<br>ions made 11-14                          | ) and 10 (3 trials<br>prays at rates of a<br>spray mixtures<br>s made 21-24 da<br>days and 6-9 da<br>trial, carrot root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) for a total of 10<br>54.56-61.42 g a.<br>at 7 of the 10 tri-<br>ys and 16-19 da<br>ys, respectively,<br>t samples were c | 0 trials. An emu<br>i./ha/application<br>al sites. All appl<br>ys, respectively,<br>prior to normal<br>ollected immedi    | lsifiable concentr<br>for seasonal app<br>ications were ma<br>prior to normal of<br>harvest. Carrot r<br>ately prior to the | ate formulation of l<br>lication rates of 223<br>de at 4-7 day re-trea<br>carrot root harvest,<br>oots were harvested |                                                                                        |
|                                                                                                                         | e data show that<br>abolite were all <                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | es in carrot roots                                                                                                        | increased with in                                                                                                           | ncreasing PHIs. Re                                                                                                    | sidues of the                                                                          |
|                                                                                                                         | Total                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | -                                                                                                                         | Residue Level                                                                                                               | s (ppm)                                                                                                               |                                                                                        |
| Commodity                                                                                                               | Application<br>Rate<br>(g a.i./ha)                                                                                              | PHI (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                          | HAFT                                                                                                                      | Median                                                                                                                      | Mean                                                                                                                  | SD                                                                                     |
| Bixafen                                                                                                                 | (g)                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           |                                                                                                                             |                                                                                                                       |                                                                                        |
| Carrot Root                                                                                                             | 225.06-<br>235.79                                                                                                               | 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                         | 0.171                                                                                                                     | 0.046                                                                                                                       | 0.0551                                                                                                                | 0.050                                                                                  |
| Bixafen-desm                                                                                                            | nethyl                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I                                                                                                                          | 1                                                                                                                         |                                                                                                                             | ſ                                                                                                                     |                                                                                        |
| Carrot Root                                                                                                             | 225.06-<br>235.79                                                                                                               | 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                         | < 0.01                                                                                                                    | <0.01                                                                                                                       | <0.01                                                                                                                 | NA                                                                                     |
|                                                                                                                         | n Residues (Bixa                                                                                                                | ifen + bixafen-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | esmethyl, expr                                                                                                             | essed as bixafer                                                                                                          | n equivalents)                                                                                                              | 1                                                                                                                     |                                                                                        |
| Carrot Root                                                                                                             | 225.06-<br>235.79                                                                                                               | 6-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                         | 0.180                                                                                                                     | 0.055                                                                                                                       | 0.065                                                                                                                 | 0.05                                                                                   |
|                                                                                                                         | est Average Field                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           |                                                                                                                             | 2                                                                                                                     |                                                                                        |
|                                                                                                                         | independent fiel                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation, values $< 1$                                                                                                        | OQ are assume                                                                                                             | d to be at the LO                                                                                                           | <u>ر</u> .                                                                                                            |                                                                                        |
|                                                                                                                         | TRIALS AND                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLINE ON SU                                                                                                                | CAR BEETS                                                                                                                 |                                                                                                                             | PMRA No. 2643                                                                                                         | 798                                                                                    |
| Field trials wer<br>trials), 7 (1 tria<br>bixafen was ap<br>229 g a.i./ha. A<br>sugar beet harv<br>harvest of matu      | re conducted on s<br>al), 7A (4 trials),<br>plied four times<br>adjuvants were in<br>yest and subsequence<br>are sugar beets (6 | sugar beets in the<br>8 (1 trial), 9 (1 trials), 1 trial | e 2014 season in<br>rial) and 10 (1 tr<br>ast sprays at rate<br>or y mixtures at<br>were made at 6-<br>or the decline tr   | Canada and the<br>ial) for a total of<br>s of 55.2-58.3 g<br>9 of the 13 trial<br>8 day intervals v<br>ial, sugar beet ro | 13 trials. An em<br>a.i./ha/applicatio<br>sites. The first ap<br>with the last appli<br>ot and leaf sampl                   | ulsifiable concentra<br>n for seasonal appli<br>plication was made<br>cation occurring 6-                             | ication rates of 223-<br>27-29 days prior to<br>8 days prior to<br>mmediately prior to |
|                                                                                                                         | thyl increased at                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           | over all PHIs in r                                                                                                          |                                                                                                                       | nd tops, whereas                                                                       |
|                                                                                                                         | Total                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           | Residue Level                                                                                                               | s (ppm)                                                                                                               |                                                                                        |
| Commodity                                                                                                               | Application<br>Rate<br>(g a.i./ha)                                                                                              | PHI (days)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                          | HAFT                                                                                                                      | Median                                                                                                                      | Mean                                                                                                                  | SD                                                                                     |
| Bixafen                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |                                                                                                                           |                                                                                                                             |                                                                                                                       |                                                                                        |
|                                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                         | 0.057                                                                                                                     | 0.030                                                                                                                       | 0.031                                                                                                                 | 0.015                                                                                  |
| Root                                                                                                                    |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                         | 0.057                                                                                                                     | 0.050                                                                                                                       | 0.001                                                                                                                 |                                                                                        |

| Bixafen-desm                                                                                                                            | ethyl                                                                                                                                  |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Root                                                                                                                                    |                                                                                                                                        |                                                                                                                             | 13                                                                                                                        | < 0.01                                                                                                                      | < 0.01                                                                                                                   | < 0.01                                                                                                                                                                        | NA                                                                                         |
| Tops<br>(leaves)                                                                                                                        | 223-229                                                                                                                                | 6-8                                                                                                                         | 13                                                                                                                        | 0.061                                                                                                                       | 0.011                                                                                                                    | 0.022                                                                                                                                                                         | 0.017                                                                                      |
|                                                                                                                                         | Residues (Bixaf                                                                                                                        | en + bixafen-de                                                                                                             | esmethyl, expres                                                                                                          | ssed as bixafen                                                                                                             | equivalents)                                                                                                             |                                                                                                                                                                               |                                                                                            |
| Root                                                                                                                                    |                                                                                                                                        |                                                                                                                             | 13                                                                                                                        | 0.068                                                                                                                       | 0.040                                                                                                                    | 0.041                                                                                                                                                                         | 0.015                                                                                      |
| Tops                                                                                                                                    | 223-229                                                                                                                                | 6-8                                                                                                                         |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
| (leaves)                                                                                                                                |                                                                                                                                        |                                                                                                                             | 13                                                                                                                        | 3.2                                                                                                                         | 1.2                                                                                                                      | 1.5                                                                                                                                                                           | 0.82                                                                                       |
| /alues based o                                                                                                                          | est Average Field<br>on per-trial average<br>independent field                                                                         | ges. For comput                                                                                                             |                                                                                                                           | OQ are assumed                                                                                                              | to be at the LOO                                                                                                         | Q.                                                                                                                                                                            |                                                                                            |
|                                                                                                                                         | TRIALS AND                                                                                                                             |                                                                                                                             | CLINE ON PO'                                                                                                              | TATOES                                                                                                                      |                                                                                                                          | PMRA No. 26437                                                                                                                                                                | 97                                                                                         |
| Regions 1 (5 tr<br>emulsifiable co<br>a.i./ha/applicat<br>trial sites. The<br>with the last ap<br>trials, potato tu<br>the last treatme | ials), 2 (1 trial),<br>oncentrate formu-<br>ion for seasonal a<br>first application<br>oplication occurri-<br>ber samples were<br>ent. | 3 (1 trial), 5 (4 tr<br>lation of bixafen<br>application rates<br>was applied 26-3<br>ng 6-8 days price<br>e collected imme | rials), 9 (1 trial),<br>was applied fou<br>of 223.5-232.6<br>80 days prior to<br>or to harvest (in c<br>ediately prior to | 10 (1 trial), 11 (<br>rr times as foliar<br>g a.i./ha. Adjuva<br>potato harvest wi<br>other words, 6-8<br>the fourth applic | 6 trials) and 14 (<br>broadcast sprays<br>nts were include<br>th subsequent ar<br>day PHIs for pot<br>ation (-0 days), a | States in North Amer<br>1 trial) for a total of<br>a trates of 53.7-62.2<br>d in the spray mixtur<br>oplications made at 5<br>ato tuber samples). I<br>and at 0, 2-4, 7, 10-1 | 20 trials. An<br>2 g<br>-9 day intervals<br>For the two declin<br>1 and 14 days afte       |
| Decline behavi                                                                                                                          |                                                                                                                                        | letermined in po                                                                                                            | tato tubers giver                                                                                                         | that all residues                                                                                                           |                                                                                                                          | ifiable at all tested P                                                                                                                                                       | HIs.                                                                                       |
| Commodity                                                                                                                               | Total<br>Application<br>Rate                                                                                                           | PHI (days)                                                                                                                  | n                                                                                                                         | HAFT                                                                                                                        | Residue Levels                                                                                                           | s (ppm)<br>Mean                                                                                                                                                               | SD                                                                                         |
| Bixafen                                                                                                                                 | (g a.i./ha)                                                                                                                            |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
| Potato<br>Fubers                                                                                                                        | 223.5-232.6                                                                                                                            | 6-8                                                                                                                         | 20                                                                                                                        | 0.0105                                                                                                                      | <0.01                                                                                                                    | 0.01                                                                                                                                                                          | 0.0001                                                                                     |
| Bixafen-desm                                                                                                                            | ethyl                                                                                                                                  |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
| Potato<br>Fubers                                                                                                                        | 223.5-232.6                                                                                                                            | 6-8                                                                                                                         | 20                                                                                                                        | < 0.01                                                                                                                      | < 0.01                                                                                                                   | < 0.01                                                                                                                                                                        | NA                                                                                         |
|                                                                                                                                         | Residues (Riva                                                                                                                         | fen + hivafen-d                                                                                                             | esmethyl eynra                                                                                                            | essed as bixafen                                                                                                            | equivalents)                                                                                                             |                                                                                                                                                                               |                                                                                            |
| Potato<br>Fubers                                                                                                                        | 223.5-232.6                                                                                                                            | 6-8                                                                                                                         | 20                                                                                                                        | 0.02                                                                                                                        | < 0.02                                                                                                                   | <0.02                                                                                                                                                                         | 0.0001                                                                                     |
| HAFT = Highe                                                                                                                            |                                                                                                                                        |                                                                                                                             |                                                                                                                           | NA = not applic                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
|                                                                                                                                         |                                                                                                                                        |                                                                                                                             | ation, values < L                                                                                                         | OQ are assumed                                                                                                              | to be at the LOO                                                                                                         | Q.                                                                                                                                                                            |                                                                                            |
|                                                                                                                                         | independent field                                                                                                                      |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          | PMRA No. 26437                                                                                                                                                                | 05                                                                                         |
|                                                                                                                                         | TRIALS AND                                                                                                                             |                                                                                                                             |                                                                                                                           |                                                                                                                             | nited States in N                                                                                                        | orth America Growi                                                                                                                                                            |                                                                                            |
| trials), 4 (3 tria<br>broadcast spray<br>the spray mixtu<br>subsequent app<br>For the two dea                                           | ls) and 5 (16 tria<br>ys at rates of 108<br>irres at 15 of the 2<br>plications made a<br>cline trials, soybe                           | ls) for a total of<br>-121 g a.i./ha/ap<br>21 trial sites. The<br>t 11-14 day retre<br>can seed sample:                     | 21 trials. An em<br>plication for sea<br>e first application<br>eatment intervals<br>s were harvested                     | ulsifiable concer<br>sonal application<br>n was applied 30<br>s (RTIs) with ma<br>9, 14-15, 20, 25                          | trate formulation<br>rates of 219-23<br>-39 days prior to<br>ture soybean see<br>-26, and 28-30 d                        | n of bixafen was app<br>3 g a.i./ha. Adjuvant<br>normal soybean har<br>d samples harvested<br>ays after the last trea<br>pling intervals; at th                               | lied twice as folia<br>s were included in<br>vest, with the<br>at 18-27 day PHI<br>ttment. |
| quantifiable re                                                                                                                         | sidues of bixafen<br>behavior of the N                                                                                                 | and total bixafe                                                                                                            | n observed at the                                                                                                         | e earliest 9-day I                                                                                                          | PHI were non qua<br>an seed given that                                                                                   | antifiable at the subs<br>at all residues were n                                                                                                                              | equent and longe                                                                           |
|                                                                                                                                         | Total                                                                                                                                  |                                                                                                                             |                                                                                                                           |                                                                                                                             | Residue Levels                                                                                                           | s (ppm)                                                                                                                                                                       |                                                                                            |
| Commodity                                                                                                                               | Application<br>Rate<br>(g a.i./ha)                                                                                                     | PHI (days)                                                                                                                  | n                                                                                                                         | HAFT                                                                                                                        | Median                                                                                                                   | Mean                                                                                                                                                                          | SD                                                                                         |
| Bixafen                                                                                                                                 | ()                                                                                                                                     |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
| Soybean seed                                                                                                                            | 219-233                                                                                                                                | 18-27                                                                                                                       | 21                                                                                                                        | 0.029                                                                                                                       | < 0.01                                                                                                                   | < 0.013                                                                                                                                                                       | NA                                                                                         |
| -<br>Bixafen-desm                                                                                                                       | l l                                                                                                                                    | 10-27                                                                                                                       | 21                                                                                                                        | 0.027                                                                                                                       | <u>\0.01</u>                                                                                                             | <u>\0.013</u>                                                                                                                                                                 |                                                                                            |
|                                                                                                                                         | ~                                                                                                                                      |                                                                                                                             |                                                                                                                           |                                                                                                                             |                                                                                                                          |                                                                                                                                                                               |                                                                                            |
| Soybean seed                                                                                                                            | 219-233                                                                                                                                | 18-27                                                                                                                       | 21                                                                                                                        | < 0.01                                                                                                                      | < 0.01                                                                                                                   | < 0.01                                                                                                                                                                        | NA                                                                                         |

| Total Bixafen                                                                                                                      | Residues (Bixat                                                                                                              | fen + bixafen-de                                                                                                                                 | esmethyl, expre                                                                                                                           | ssed as bixafen                                                                                                                            | equivalents)                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Soybean seed                                                                                                                       | 219-233                                                                                                                      | 18-27                                                                                                                                            | 21                                                                                                                                        | 0.034                                                                                                                                      | < 0.02                                                                                                                                      | 0.022                                                                                                                                                                                                    | 0.0051                                                                                                                    |
| M44                                                                                                                                |                                                                                                                              | 10 27                                                                                                                                            | 21                                                                                                                                        | 0.034                                                                                                                                      | <0.02                                                                                                                                       | 0.022                                                                                                                                                                                                    | 010001                                                                                                                    |
| Soybean seed                                                                                                                       | 219-233                                                                                                                      | 18-27                                                                                                                                            | 21                                                                                                                                        | < 0.01                                                                                                                                     | < 0.01                                                                                                                                      | <0.01                                                                                                                                                                                                    | NA                                                                                                                        |
|                                                                                                                                    | st Average Field                                                                                                             |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                           |
|                                                                                                                                    | n per-trial average independent field                                                                                        |                                                                                                                                                  | ation, values $< L$                                                                                                                       | OQ are assumed                                                                                                                             | to be at the LO                                                                                                                             | Q.                                                                                                                                                                                                       |                                                                                                                           |
|                                                                                                                                    |                                                                                                                              | ALS AND RESIDUE DECLINE ON PEANUTS PMRA No. 2643794                                                                                              |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                           |
| 5 (3 trials), 6 (2<br>foliar broadcas<br>a.i./ha, with pe-<br>sites. Residue c<br>immediately fo<br>In the decline t               | 2 trials) and 8 (1<br>t sprays at rates of<br>anut nutmeat and<br>decline behavior<br>llowing the four<br>rial, in peanut ha | trial) for a total of 54-58 g a.i./ha<br>d hay harvested a<br>was evaluated a<br>th application (d                                               | of 15 trials. An education, at<br>a/application, at<br>at 12-16 day PHI<br>at a single trial sit<br>ay 0), and at 6, 1<br>residues demons | emulsifiable cond<br>11-14 day RTIs,<br>(s. Adjuvants we<br>where samples<br>14, 21, and 28 da<br>trated a declinin                        | centrate formulat<br>for total seasona<br>are included in the<br>swere harvested<br>ays after the four<br>g trend with long                 | Growing Regions 2 (<br>tion of bixafen was an<br>al application rates of<br>e spray mixtures at 1<br>prior to the fourth ap<br>th and final application<br>ger PHIs. There were<br>smethyl or M44 were   | oplied four times a<br>219.7 – 229.1 g<br>1 of the 15 trial<br>plication (-0 days)<br>on.<br>no quantifiable              |
|                                                                                                                                    | y sampling interv                                                                                                            |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             | •                                                                                                                                                                                                        |                                                                                                                           |
|                                                                                                                                    | Total<br>Application                                                                                                         |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            | Residue Level                                                                                                                               | s (ppm)                                                                                                                                                                                                  |                                                                                                                           |
| Commodity                                                                                                                          | Rate<br>(g a.i./ha)                                                                                                          | PHI (days)                                                                                                                                       | n                                                                                                                                         | HAFT                                                                                                                                       | Median                                                                                                                                      | Mean                                                                                                                                                                                                     | SD                                                                                                                        |
| Bixafen                                                                                                                            | (g a.i./iia)                                                                                                                 |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                           |
| Nutmeat                                                                                                                            |                                                                                                                              |                                                                                                                                                  | 15                                                                                                                                        | < 0.01                                                                                                                                     | < 0.01                                                                                                                                      | < 0.01                                                                                                                                                                                                   | NA                                                                                                                        |
| Hay                                                                                                                                | 219.7 – 229.1                                                                                                                | 12-16                                                                                                                                            | 15                                                                                                                                        | 4.42                                                                                                                                       | 2.52                                                                                                                                        | 2.4                                                                                                                                                                                                      | 1.36                                                                                                                      |
| Bixafen-desmo                                                                                                                      | ethyl                                                                                                                        |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                          |                                                                                                                           |
| Nutmeat                                                                                                                            |                                                                                                                              | 10.16                                                                                                                                            | 15                                                                                                                                        | < 0.01                                                                                                                                     | < 0.01                                                                                                                                      | < 0.01                                                                                                                                                                                                   | NA                                                                                                                        |
| Hay                                                                                                                                | 219.7 – 229.1                                                                                                                | 12-16                                                                                                                                            | 15                                                                                                                                        | 1.04                                                                                                                                       | 0.399                                                                                                                                       | 0.499                                                                                                                                                                                                    | 0.27                                                                                                                      |
| Total Bixafen                                                                                                                      | Residues (Bixat                                                                                                              | fen + bixafen-de                                                                                                                                 | esmethyl, expre                                                                                                                           | ssed as bixafen                                                                                                                            | equivalents)                                                                                                                                |                                                                                                                                                                                                          |                                                                                                                           |
| Nutmeat                                                                                                                            |                                                                                                                              | 10.14                                                                                                                                            | 1.5                                                                                                                                       | < 0.02                                                                                                                                     | < 0.02                                                                                                                                      | < 0.02                                                                                                                                                                                                   | NA                                                                                                                        |
| Hay                                                                                                                                | 219.7 – 229.1                                                                                                                | 12-16                                                                                                                                            | 15                                                                                                                                        | 5.3                                                                                                                                        | 3.0                                                                                                                                         | 2.9                                                                                                                                                                                                      | 1.6                                                                                                                       |
| M44                                                                                                                                |                                                                                                                              |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             | ,                                                                                                                                                                                                        |                                                                                                                           |
| Nutmeat                                                                                                                            | 219.7 - 229.1                                                                                                                | 12-16                                                                                                                                            | 15                                                                                                                                        | < 0.01                                                                                                                                     | < 0.01                                                                                                                                      | <0.01                                                                                                                                                                                                    | NA                                                                                                                        |
|                                                                                                                                    | TA IN ROTAT                                                                                                                  | TIONAL CROP                                                                                                                                      | S - RADISH, L                                                                                                                             |                                                                                                                                            |                                                                                                                                             | PMRA No. 264378<br>2643788                                                                                                                                                                               | 87, 2643789,                                                                                                              |
| Study 1: Three                                                                                                                     |                                                                                                                              |                                                                                                                                                  |                                                                                                                                           |                                                                                                                                            |                                                                                                                                             | wheat, were conducted                                                                                                                                                                                    |                                                                                                                           |
| bixafen was ap<br>At each trial lo<br>ai/ha, with a 14<br>added to the sp<br>capture all poss<br>winter or sprin<br>normal harvest | plied to bare soi<br>cation for the oth<br>-day re-treatmer<br>ray mixture. Ma<br>sible residues. To<br>g wheat were see     | at the rate of 28<br>her plant-back in<br>ht interval (RTI),<br>ture barley was h<br>urnip and lettuce<br>eded into treated<br>and tops] and let | I g ai/ha follow<br>tervals, bixafen<br>for a total of 28<br>harvested 296 da<br>were seeded int<br>plots at PBIs of<br>ettuce or at BBC  | ed by incorporat<br>was applied as to<br>1 g ai/ha to wint<br>by after planting<br>o the treated plo<br>28, 140 and 300<br>H 29-30 – green | tion (maximum 8<br>wo foliar applica<br>ter barley as the p<br>g and threshed, w<br>ts at PBIs of 27-<br>days. Crops we<br>material – for w | mulsifiable concentra<br>3 cm depth) to avoid p<br>tions at the rates of 1<br>primary crop. An adju<br>ith the straw ploughe<br>30 days, 61 days and<br>re harvested at early (<br>heat) and at normal h | whoto-degradation.<br>56 g ai/ha + 125 g<br>avant was not<br>d under in order to<br>314-328 days, and<br>14 days prior to |

The results from this study indicated that residues of bixafen and the desmethyl metabolite were non quantifiable (i.e., <LOQ) in all crop matrices, at all PBIs, with the exception of bixafen residues of 0.05 ppm in one lettuce sample from the 30-day PBI plot.

**Study 2**: Three European field trials for bixafen uptake into rotational crops carrots, lettuce and wheat, were conducted in Spain during the 2006 growing season. At each trial location, for the 32-day plant-back interval, an emulsifiable concentrate formulation of bixafen was applied to bare soil at the rate of 281 g ai/ha followed by incorporation (maximum 8 cm depth) to avoid photo-degradation. At each trial location for the other plant-back intervals, bixafen was applied as two foliar applications at the rates of 156 g ai/ha + 125 g ai/ha, with a 15-day RTI, for a total of 281 g ai/ha to winter barley as the primary crop. An adjuvant was not added to any spray mixture. Mature barley was harvested 185 days after planting and threshed, with the straw was ploughed under in order to capture all possible residues. Carrots and lettuce were seeded into the treated plots at PBIs of 32, 70 and 302 days. Winter wheat was seeded into treated plots at PBIs of 32, 184 and 278 days. Crops were harvested at early harvest (14 days prior to normal harvest for carrot [tops and rootrs]

and lettuce or at BBCH 29-30 – green material – for wheat) and at normal harvest maturity (BBCH 49 for carrot and lettuce and BBCH 89 for wheat grain and straw).

The results from this study indicated that residues of bixafen and the desmethyl metabolite were non quantifiable (in other words, <LOQ) in all crop matrices, at all PBIs, with the exception of bixafen-desmethyl residues of 0.02 ppm in one wheat straw sample from the 32-day PBI plot.

**Study 3**: Three European field trials for bixafen uptake into rotational crops turnip, lettuce and wheat were conducted Northern France during the 2006 growing season. At each trial location, for the 30-PBI, an emulsifiable concentrate formulation of bixafen was applied to bare soil at the rate of 281 g ai/ha followed by incorporation (maximum 8 cm depth) to avoid photo-degradation. At each trial location for the other PBIs, bixafen was applied as two foliar applications at the rate of 156 g ai/ha + 125 g ai/ha, with a 15-day PBI, for a total of 281 g ai/ha to winter barley as the primary crop. An adjuvant was not added to the spray mixture. Mature barley was harvested 279 days after planting and threshed, with the straw ploughed under in order to capture all possible residues. Turnip and lettuce were seeded into treated plots at PBIs of 30, 60 and 298-331 days. Wheat was seeded into treated plots at PBIs of 30, 120 and 298 days. Crops were harvested at early harvest (14 days prior to normal harvest for turnip [roots and tops] and lettuce or at BBCH 30 – green material – for wheat) and at normal harvest maturity (BBCH 49 for turnip [roots and tops] and lettuce and BBCH 89 for wheat grain and straw).

The results from this study indicated that residues of bixafen and the desmethyl metabolite were non quantifiable (i.e., <LOQ) in all crop matrices, at all PBIs.

Based on the results of the field accumulation studies, a plant-back interval of 0-days for the proposed crops wheat, oats, barley and soybeans, and of 30 days for all non-labelled crops is required.

| PROCESSED FOOD AND FEED - WHEAT           |                                                                                    | PMRA No.20                                      | 543803                                      |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--|--|--|--|
| Test Site                                 | One trial in North America Growing Region 5.                                       |                                                 |                                             |  |  |  |  |
| Treatment                                 | Two broadcast foliar applications made 34 days apart at rates of 553.3 and 573.7 g |                                                 |                                             |  |  |  |  |
|                                           | a.i./ha per application, including an adjuvant in both spray application mixtures. |                                                 |                                             |  |  |  |  |
| Total Rate                                | 1.127 kg a.i./ha                                                                   |                                                 |                                             |  |  |  |  |
| End-use product/formulation               |                                                                                    | entrate formulation (guarante                   | ee - 125 g/L bixafen)                       |  |  |  |  |
| Preharvest interval                       | 30 days after the last application                                                 |                                                 |                                             |  |  |  |  |
|                                           |                                                                                    | rage Processing Factor (An<br>Bixafen-desmethyl |                                             |  |  |  |  |
| Processed Commodity:                      | Bixafen                                                                            | Total Bixafen (bixafen + bixafen-desmethyl)     |                                             |  |  |  |  |
| Aspirated grain fractions                 | 206x                                                                               | 48x                                             | 176x                                        |  |  |  |  |
| Bran                                      | 0.8x                                                                               | 1.1x                                            | 0.88x                                       |  |  |  |  |
| Flour                                     | 0.12x                                                                              | 0.52x                                           | 0.23x                                       |  |  |  |  |
| Middlings                                 | 0.18x                                                                              | 0.52x                                           | 0.29x                                       |  |  |  |  |
| Shorts                                    | 0.18x                                                                              | 0.52x                                           | 0.39x                                       |  |  |  |  |
| Germ                                      | 0.57x                                                                              | 0.72x                                           |                                             |  |  |  |  |
| PROCESSED FOOD AND FEED - BARLEY          |                                                                                    | PMRA No. 264                                    | 3791                                        |  |  |  |  |
| Test Site                                 | Four trials in Europe (1 tri                                                       | al in Sweden, 2 in Germany                      | and 1 in Northern France).                  |  |  |  |  |
| Treatment                                 | Two foliar applications at                                                         | 250 g a.i./ha per application                   | with 14-29 day RTIs.                        |  |  |  |  |
| Total Rate                                | 500 g a.i./ha                                                                      |                                                 |                                             |  |  |  |  |
| End-use product/formulation               | EC 125 emulsifiable conce                                                          | entrate formulation (guarante                   | ee - 125 g/L bixafen)                       |  |  |  |  |
| Preharvest interval                       | 35-46 days after the last ap                                                       |                                                 |                                             |  |  |  |  |
|                                           | Average Processing Factor (Analyte)                                                |                                                 |                                             |  |  |  |  |
| Processed Commodity:                      | Bixafen                                                                            | Bixafen-desmethyl                               | Total Bixafen (bixafen + bixafen-desmethyl) |  |  |  |  |
| Malt                                      | 0.86x                                                                              | 2x                                              | 0.8x                                        |  |  |  |  |
| Malt culms                                | 0.72x                                                                              | 2x                                              | 0.8x                                        |  |  |  |  |
| Beer                                      | <0.05x                                                                             | <0.50x                                          | 0.2x                                        |  |  |  |  |
| Brewer's yeast                            | 0.18x                                                                              | <0.50x                                          | 0.3x                                        |  |  |  |  |
| Brewer's grain                            | 0.92x                                                                              | 1.50x                                           | 1.1x                                        |  |  |  |  |
| Hops draff                                | 0.67x                                                                              | 1.0x                                            | 0.7x                                        |  |  |  |  |
| Pearl barley                              | 0.21x                                                                              | 0.50x                                           | 0.3x                                        |  |  |  |  |
| Pearl barley rub-off                      | 4.11x                                                                              | 3x                                              | 4x                                          |  |  |  |  |
| <b>PROCESSED FOOD AND FEED - SOYBEANS</b> |                                                                                    |                                                 | No.2643795                                  |  |  |  |  |
| Test Site                                 | One trial site in North Am                                                         |                                                 |                                             |  |  |  |  |
| Treatment                                 | Two foliar broadcast spray                                                         | applications applied with a                     | 34-day RTI at rates of 556-                 |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                  | 574 g a i /ha per ap                                                                                                                                                                                                                                                                                                                                                                                                                           | plication. An adjuy                                                                                                                                                                                              | ant was included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in both spray applications.                                                                                                                                                                                                                                                    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Total Rate                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.13 kg a.i/ha                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| End-use product/formulation                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                | EC 125 emulsifiable concentrate formulation (guarantee - 125 g/L bixafen)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Preharvest interval                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 days following the last application                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  | sing Factor (An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alyte)                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | Bixafen                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bixafen-                                                                                                                                                                                                         | Total Bixa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Processed Commodity:                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                | desmethyl                                                                                                                                                                                                        | (bixafen + biz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                | desmethy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Aspirated grain fractions                                                                                                                                                                                                                                                                                                                                        | 308x                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Refined oil                                                                                                                                                                                                                                                                                                                                                      | 0.34x                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34x NC <0.46x NC                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Hulls                                                                                                                                                                                                                                                                                                                                                            | 2.4x                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Meal                                                                                                                                                                                                                                                                                                                                                             | <0.22x                                                                                                                                                                                                                                                                                                                                                                                                                                         | NC                                                                                                                                                                                                               | <0.36x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NC                                                                                                                                                                                                                                                                             |  |  |  |  |
| NC = not calculated as residues in both the RA                                                                                                                                                                                                                                                                                                                   | C and processed commod                                                                                                                                                                                                                                                                                                                                                                                                                         | ity were each <0.0                                                                                                                                                                                               | l ppm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                |  |  |  |  |
| <b>PROCESSED FOOD AND FEED – SUGAR</b>                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                | PMRA No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2643798                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test Site                                                                                                                                                                                                                                                                                                                                                        | A single trial site lo                                                                                                                                                                                                                                                                                                                                                                                                                         | cated in North Am                                                                                                                                                                                                | erica Region 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Treatment                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -8 days, at rates of 279-287                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l spray applications.                                                                                                                                                                                                                                                          |  |  |  |  |
| Total Rate                                                                                                                                                                                                                                                                                                                                                       | 1.128 kg a.i/ha                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| End-use product/formulation                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                | e concentrate form                                                                                                                                                                                               | ulation (guarante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e - 125 g/L bixafen)                                                                                                                                                                                                                                                           |  |  |  |  |
| Preharvest interval                                                                                                                                                                                                                                                                                                                                              | 6 days                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  | · <del>·</del> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - '                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average Proces                                                                                                                                                                                                   | sing Factor (An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alyte)                                                                                                                                                                                                                                                                         |  |  |  |  |
| Processed Commodity:                                                                                                                                                                                                                                                                                                                                             | Bixafen                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | en-desmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Bixafen (bixafen +                                                                                                                                                                                                                                                       |  |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bixafen-desmethyl)                                                                                                                                                                                                                                                             |  |  |  |  |
| Refined sugar                                                                                                                                                                                                                                                                                                                                                    | 0.28x                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | <0.72x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.31x                                                                                                                                                                                                                                                                          |  |  |  |  |
| Dried pulp                                                                                                                                                                                                                                                                                                                                                       | 1.1x                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                  | 10.7x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.9x                                                                                                                                                                                                                                                                          |  |  |  |  |
| Molasses                                                                                                                                                                                                                                                                                                                                                         | 0.83x                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 0.72x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.82x                                                                                                                                                                                                                                                                          |  |  |  |  |
| <b>PROCESSED FOOD AND FEED – POTAT</b>                                                                                                                                                                                                                                                                                                                           | OES                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  | PMRA No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2643797                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test Site                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | A single processing                                                                                                                                                                                                                                                                                                                                                                                                                            | g trial in North Ame                                                                                                                                                                                             | erica region 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                |  |  |  |  |
| Treatment                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  | 6.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 204 4                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-284.6 g a.i./ha per                                                                                                                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | a n n n can on at o-8 d                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  | rav applications (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                |  |  |  |  |
| T-4-1 D-4-                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay mervus. 7m sp                                                                                                                                                                                                 | applications (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | contained an adjuvant.                                                                                                                                                                                                                                                         |  |  |  |  |
| Total Rate                                                                                                                                                                                                                                                                                                                                                       | 1.12 kg a.i./ha                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |  |  |  |  |
| End-use product/formulation                                                                                                                                                                                                                                                                                                                                      | 1.12 kg a.i./ha<br>EC 125 emulsifiabl                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e - 125 g/L bixafen)                                                                                                                                                                                                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                  | 1.12 kg a.i./ha                                                                                                                                                                                                                                                                                                                                                                                                                                | e concentrate form                                                                                                                                                                                               | ulation (guarante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e - 125 g/L bixafen)                                                                                                                                                                                                                                                           |  |  |  |  |
| End-use product/formulation<br>Preharvest interval                                                                                                                                                                                                                                                                                                               | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days                                                                                                                                                                                                                                                                                                                                                                                          | e concentrate form Average Proces                                                                                                                                                                                | ulation (guarante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e - 125 g/L bixafen)<br>alyte)                                                                                                                                                                                                                                                 |  |  |  |  |
| End-use product/formulation                                                                                                                                                                                                                                                                                                                                      | 1.12 kg a.i./ha<br>EC 125 emulsifiabl                                                                                                                                                                                                                                                                                                                                                                                                          | e concentrate form Average Proces                                                                                                                                                                                | ulation (guarante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e - 125 g/L bixafen)                                                                                                                                                                                                                                                           |  |  |  |  |
| End-use product/formulation<br>Preharvest interval                                                                                                                                                                                                                                                                                                               | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days                                                                                                                                                                                                                                                                                                                                                                                          | e concentrate form Average Proces                                                                                                                                                                                | ulation (guarante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +                                                                                                                                                                                                                     |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel                                                                                                                                                                                                                                                                                    | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days       Bixafen       1.2x                                                                                                                                                                                                                                                                                                                                                                 | e concentrate form Average Proces                                                                                                                                                                                | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x                                                                                                                                                                                       |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:                                                                                                                                                                                                                                                                                       | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days       Bixafen                                                                                                                                                                                                                                                                                                                                                                            | e concentrate form Average Proces                                                                                                                                                                                | ulation (guarante<br>ssing Factor (An<br>en-desmethyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)                                                                                                                                                                                               |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes                                                                                                                                                                                                                                                                    | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days       Bixafen       1.2x       NC                                                                                                                                                                                                                                                                                                                                                        | e concentrate form Average Proces Bixafe                                                                                                                                                                         | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC                                                                                                                                                                                 |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips                                                                                                                                                                                                                                               | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod                                                                                                                                                                                                                                                                                                    | e concentrate form Average Proces Bixafe                                                                                                                                                                         | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC                                                                                                                                                                           |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA                                                                                                                                                                                             | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod                                                                                                                                                                                                                                                                                                    | e concentrate form Average Proces Bixafe ity were each <0.0                                                                                                                                                      | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802                                                                                                                                                                |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE                                                                                                                                                          | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days       Bixafen       1.2x       NC       NC       C and processed commod       IUM       One trial with two                                                                                                                                                                                                                                                                               | e concentrate form Average Proces Bixafe ity were each <0.0                                                                                                                                                      | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>th America Regio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802                                                                                                                                                                |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site                                                                                                                                             | 1.12 kg a.i./ha       EC 125 emulsifiabl       7 days       Bixafen       1.2x       NC       NC       C and processed commod       IUM       One trial with two                                                                                                                                                                                                                                                                               | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5                                                                                                            | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day                                                                                                                        |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site                                                                                                                                             | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two to         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./                                                                                                                                                                       | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in boo                                                                                        | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.                                                                                                                |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site<br>Treatment<br>Total Rate                                                                                                                  | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two to         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./                                                                                                                                                                       | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in boo                                                                                        | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.                                                                                                                |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site<br>Treatment                                                                                                                                | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two to         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./                                                                                                                                                                       | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in boo                                                                                        | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day                                                                                                                        |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site<br>Treatment<br>Total Rate<br>End-use product/formulation                                                                                   | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl                                                                                                                                                           | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor pplications at 560.5 was included in bor ha e concentrate form                                                                  | ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>th America Regio<br>562.7 g a.i/ha pe<br>th spray applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)                                                                                              |  |  |  |  |
| End-use product/formulation<br>Preharvest interval<br>Processed Commodity:<br>Wet peel<br>Granules/flakes<br>Chips<br>NC = not calculated as residues in both the RA<br>PROCESSED FOOD AND FEED – SORGE<br>Test Site<br>Treatment<br>Total Rate<br>End-use product/formulation                                                                                   | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl                                                                                                                                                           | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor pplications at 560.5 was included in boo ha e concentrate form Average Proces                                                   | ulation (guarante<br>ssing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)                                                                                              |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGE Test Site Treatment Total Rate End-use product/formulation Preharvest interval                                                                                                | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         C and processed commod         IUM         One trial with two to         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days                                                                                                                         | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor pplications at 560.5 was included in boo ha e concentrate form Average Proces                                                   | ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati<br>ulation (guarante<br>ssing Factor (An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +                                                        |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGH Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity:                                                                           | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         NC         C and processed commod         IUM         One trial with two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen                                                                                                             | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in botha e concentrate form Average Proces Bixafe                                             | ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.:<br>PMRA No.:<br>1 ppm.<br>PMRA No.:<br>1 ppm.<br>1 ppm.<br>2 pm.<br>2 pm.<br>2 pm.<br>2 pm.<br>2 pm.<br>3 ppm.<br>2 pm.<br>2 pm.<br>3 ppm.<br>2 pm.<br>2 pm.<br>3 ppm.<br>2 pm.<br>2 pm.<br>2 pm.<br>2 pm.<br>3 ppm.<br>2 pm.<br>2 pm. | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>rr application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)                                  |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity:  Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGE Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity: Aspirated grain fractions Syrup PROCESSED FOOD AND FEED – FIELD          | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         One trial with two to foliar spray ap RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen         26x         0.17x                                                                                                                                              | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in botha e concentrate form Average Proces Bixafe                                             | ulation (guarante<br>sing Factor (An<br>m-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.<br>562.7 g a.i/ha pe<br>h spray applicati<br>ulation (guarante<br>sing Factor (An<br>m-desmethyl<br>18.2x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>26x<br>0.15x                  |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGH Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity: Aspirated grain fractions Syrup                                           | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         One trial with two to foliar spray ap RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen         26x         0.17x                                                                                                                                              | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor oplications at 560.5 was included in bor ha e concentrate form Average Proces Bixafe                                            | ulation (guarante<br>sing Factor (An<br>n-desmethyl<br>NC<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.:<br>th America Regio<br>-562.7 g a.i/ha pe<br>h spray applicati<br>ulation (guarante<br>sing Factor (An<br>m-desmethyl<br>18.2x<br>0.037x<br>PMRA No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>26x<br>0.15x                  |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGE Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity: Aspirated grain fractions Syrup PROCESSED FOOD AND FEED – FIELD           | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         NC         C and processed commod         IUM         One trial with two         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen         26x         0.17x         CORN         One trial site locate                            | e concentrate form Average Proces Bixafe ity were each <0.0 treated plots in Nor pplications at 560.5 was included in bor ha e concentrate form Average Proces Bixafe d in North America                         | ulation (guarante<br>sing Factor (An<br>n-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.:<br>PMRA No.:<br>1 spray applicati<br>ulation (guarante<br>sing Factor (An<br>n-desmethyl<br>18.2x<br>0.037x<br>PMRA No.:<br>1 Region 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>er application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>26x<br>0.15x            |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGH Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity: Aspirated grain fractions Syrup PROCESSED FOOD AND FEED – FIELD Test Site | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         NC         C and processed commod         IUM         One trial with two         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen         26x         0.17x         CORN         One trial site locate         Two foliar broadca | e concentrate form  Average Proces Bixafe  ity were each <0.0 treated plots in Nor pplications at 560.5 was included in bor ha e concentrate form Average Proces Bixafe d in North America st sprays at rates of | ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.:<br>th America Regio<br>562.7 g a.i/ha pe<br>h spray applicati<br>ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>18.2x<br>0.037x<br>PMRA No.:<br>a Region 5.<br>558-562 g a.i/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>rr application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>26x<br>0.15x<br>2643801 |  |  |  |  |
| End-use product/formulation Preharvest interval Processed Commodity: Wet peel Granules/flakes Chips NC = not calculated as residues in both the RA PROCESSED FOOD AND FEED – SORGH Test Site Treatment Total Rate End-use product/formulation Preharvest interval Processed Commodity: Aspirated grain fractions Syrup PROCESSED FOOD AND FEED – FIELD Test Site | 1.12 kg a.i./ha         EC 125 emulsifiabl         7 days         Bixafen         1.2x         NC         NC         NC         C and processed commod         IUM         One trial with two 1         Two foliar spray ap         RTIs. An adjuvant         1.121-1.143 kg a.i./         EC 125 emulsifiabl         30-31 days         Bixafen         26x         0.17x         CORN         One trial site locate                          | e concentrate form  Average Proces Bixafe  ity were each <0.0 treated plots in Nor pplications at 560.5 was included in bor ha e concentrate form Average Proces Bixafe d in North America st sprays at rates of | ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>NC<br>NC<br>NC<br>I ppm.<br>PMRA No.:<br>th America Regio<br>562.7 g a.i/ha pe<br>h spray applicati<br>ulation (guarante<br>sing Factor (An<br>en-desmethyl<br>18.2x<br>0.037x<br>PMRA No.:<br>a Region 5.<br>558-562 g a.i/ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>1.1x<br>NC<br>NC<br>2643802<br>on 8.<br>rr application at 20-21 day<br>ons.<br>e - 125 g/L bixafen)<br>alyte)<br>Total Bixafen (bixafen +<br>bixafen-desmethyl)<br>26x<br>0.15x<br>2643801 |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                   | EC 125 et                                                              | mulsifiable concent                                                                                                                                                                                  | rate formulat                                                                                                      | tion (guarantee                 | - 125 g/I                                                                               | bixafen)                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| End-use product/formulation<br>Preharvest interval                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                   | 27 days                                                                |                                                                                                                                                                                                      |                                                                                                                    |                                 |                                                                                         |                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                        | Avera                                                                                                                                                                                                | ge Processin                                                                                                       | ng Factor (Ana                  | alvte)                                                                                  |                                                                                                                                                      |
| Processed Comm                                                                                                                                                                                                                                                                                                                                                                | nodity:                                                                                                                                                                                                                                             | 1                                                                      | Bixafen                                                                                                                                                                                              | Bixafen-desmethyl                                                                                                  |                                 | Total Bixafen (bixafen + bixafen-desmethyl)                                             |                                                                                                                                                      |
| AGF                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                        | 153x                                                                                                                                                                                                 | 2.3x                                                                                                               |                                 |                                                                                         | 81x                                                                                                                                                  |
| Starch, grits, germ, refined o                                                                                                                                                                                                                                                                                                                                                | oil (dry milling)                                                                                                                                                                                                                                   | 0.9x                                                                   |                                                                                                                                                                                                      | N                                                                                                                  | IC                              | 0.9x                                                                                    |                                                                                                                                                      |
| Refined oil (wet mi                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     |                                                                        | 1.8x                                                                                                                                                                                                 | N                                                                                                                  | IC                              |                                                                                         | 1.4x                                                                                                                                                 |
| Flour, meal                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                     |                                                                        | 1.4x                                                                                                                                                                                                 | N                                                                                                                  | IC                              |                                                                                         | 1.2x                                                                                                                                                 |
| NC = not calculated as residues                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     | d processed                                                            | l commodity were e                                                                                                                                                                                   | each <0.01 pp                                                                                                      | pm.                             |                                                                                         |                                                                                                                                                      |
| PROCESSED FOOD AND F                                                                                                                                                                                                                                                                                                                                                          | TEED – PEANUT                                                                                                                                                                                                                                       | -                                                                      |                                                                                                                                                                                                      |                                                                                                                    | PMRA No. 2                      | 2643794                                                                                 |                                                                                                                                                      |
| Test Site                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                        | in North America R                                                                                                                                                                                   |                                                                                                                    |                                 |                                                                                         |                                                                                                                                                      |
| Treatment                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                     |                                                                        | r broadcast sprays                                                                                                                                                                                   |                                                                                                                    |                                 |                                                                                         | plication with 13-                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     |                                                                        | ΓIs. No adjuvants w                                                                                                                                                                                  | vere added to                                                                                                      | the spray mixt                  | ures.                                                                                   |                                                                                                                                                      |
| Total Rate                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                     | 1.143 kg a                                                             |                                                                                                                                                                                                      | . C 1.                                                                                                             | · · · ·                         | 105 /                                                                                   | 1. ( )                                                                                                                                               |
| End-use product/formulation<br>Preharvest interval                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                   |                                                                        | mulsifiable concent                                                                                                                                                                                  | rate formula                                                                                                       | tion (guarantee                 | - 125 g/1                                                                               | _ bixaten)                                                                                                                                           |
| Prenarvest interval                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                     | 14 days                                                                | Avono                                                                                                                                                                                                | a Drocostin                                                                                                        | ng Factor (Ana                  | lyta)                                                                                   |                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                     | Bixa                                                                   |                                                                                                                                                                                                      | ge Flocessiii<br>xafen-                                                                                            | Total Bixa                      |                                                                                         | M44                                                                                                                                                  |
| Processed Comm                                                                                                                                                                                                                                                                                                                                                                | nodity:                                                                                                                                                                                                                                             | DIA                                                                    |                                                                                                                                                                                                      | methyl                                                                                                             | (bixafen<br>bixafen<br>desmethy | +                                                                                       | 111-14                                                                                                                                               |
| Meal                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | 0.6x                                                                   |                                                                                                                                                                                                      | NC                                                                                                                 | 0.7x                            |                                                                                         | NC                                                                                                                                                   |
| Refined oil                                                                                                                                                                                                                                                                                                                                                                   | l                                                                                                                                                                                                                                                   | 2.2x                                                                   |                                                                                                                                                                                                      | NC                                                                                                                 | 1.8x                            |                                                                                         | NC                                                                                                                                                   |
| NC = not calculated as residues                                                                                                                                                                                                                                                                                                                                               | s in both the RAC and                                                                                                                                                                                                                               |                                                                        | l commodity were e                                                                                                                                                                                   | ach <0.01 pr                                                                                                       | pm.                             |                                                                                         |                                                                                                                                                      |
| LIVESTOCK FEEDING - D                                                                                                                                                                                                                                                                                                                                                         | Dairy cattle                                                                                                                                                                                                                                        | •                                                                      | •                                                                                                                                                                                                    | ĺ                                                                                                                  | PMRA No.264                     | 2761                                                                                    |                                                                                                                                                      |
| Lactating dairy cows were adm                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                        |                                                                                                                                                                                                      |                                                                                                                    | C 1 C 00                        |                                                                                         |                                                                                                                                                      |
| levels of 5.7, 16.0 and 54.3 rep                                                                                                                                                                                                                                                                                                                                              | present 3x, 9x and 30x                                                                                                                                                                                                                              |                                                                        |                                                                                                                                                                                                      |                                                                                                                    |                                 |                                                                                         |                                                                                                                                                      |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair                                                                                                                                                                                                                                                                                                          | present 3x, 9x and 30x y cattle.                                                                                                                                                                                                                    | , respective                                                           | ely, the estimated n                                                                                                                                                                                 | ore balanced                                                                                                       |                                 | o beef cat                                                                              | tle and 1x, 2.8x                                                                                                                                     |
| levels of 5.7, 16.0 and 54.3 rep                                                                                                                                                                                                                                                                                                                                              | oresent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve                                                                                                                                                                                                 | , respective                                                           | ely, the estimated n<br>Highest Res                                                                                                                                                                  | idues*                                                                                                             |                                 | beef cat                                                                                | tle and 1x, 2.8x                                                                                                                                     |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br><b>Commodity</b>                                                                                                                                                                                                                                                                                      | present 3x, 9x and 30x y cattle.                                                                                                                                                                                                                    | , respective                                                           | ely, the estimated n<br>Highest Res<br>(ppm)                                                                                                                                                         | idues*                                                                                                             |                                 | o beef cat                                                                              | tle and 1x, 2.8x                                                                                                                                     |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair                                                                                                                                                                                                                                                                                                          | oresent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve                                                                                                                                                                                                 | , respective                                                           | Highest Res<br>(ppm)<br>0.046                                                                                                                                                                        | idues*                                                                                                             |                                 | beef cat                                                                                | tle and 1x, 2.8x                                                                                                                                     |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br><b>Commodity</b><br>Whole milk                                                                                                                                                                                                                                                                        | oresent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve                                                                                                                                                                                                 | , respective                                                           | ely, the estimated n<br>Highest Res<br>(ppm)                                                                                                                                                         | idues*                                                                                                             |                                 | beef cat                                                                                | tle and 1x, 2.8x ppm) Dairy                                                                                                                          |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat                                                                                                                                                                                                                                                                        | versent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)                                                                                                                                                                                        | , respective                                                           | Highest Res<br>(ppm)<br>0.046<br>0.209                                                                                                                                                               | idues*                                                                                                             |                                 | beef cat<br>MBD (j<br>Beef/D                                                            | tle and 1x, 2.8x ppm) Dairy                                                                                                                          |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver                                                                                                                                                                                                                                                               | versent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)                                                                                                                                                                                        | , respective                                                           | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69                                                                                                                                                       | idues*                                                                                                             |                                 | beef cat<br>MBD (j<br>Beef/D                                                            | tle and 1x, 2.8x ppm) Dairy                                                                                                                          |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest                                                                                                                                                                   | versent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given                                                                                                                               | el he metabol that the fee                                             | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>ite bixafen-desmet                                                                                                               | idues*                                                                                                             | d diet (MBD) to                 | MBD (j<br>Beef/D<br>5.70                                                                | tle and 1x, 2.8x  ppm) bairy 6 ixafen equivalents                                                                                                    |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat                                                                                                                               | versent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues                                                                                                    | el he metabol that the fee                                             | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>ite bixafen-desmet                                                                                                               | idues*                                                                                                             | d diet (MBD) to                 | MBD (j<br>Beef/D<br>5.70<br>ssed as b<br>tary burde                                     | tle and 1x, 2.8x  ppm) bairy 6 ixafen equivalents                                                                                                    |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L<br>Laying hens were administered                                                                     | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>.aying hens<br>l bixafen at dose level                                                           | el he metabol that the feas.                                           | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmet<br>eding level in the s                                                                                      | nore balancec<br>idues*<br>hyl, converte<br>tudy correspo<br>PMR<br>n the feed fo                                  | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.76<br>ssed as b<br>tary burde                         | tle and 1x, 2.8x  ppm) bairy 6 ixafen equivalents en for dairy cattle,                                                                               |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L                                                                                                      | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>.aying hens<br>l bixafen at dose level                                                           | el<br>he metabol<br>that the fee<br>s.<br>Is of 1.38, 4<br>150x, respe | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmet<br>eding level in the s                                                                                      | nore balancec<br>idues*<br>hyl, converte<br>tudy correspondent<br><b>PMR</b><br>n the feed for<br>ed MBD to p<br>M | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.7<br>ssed as b<br>tary burda<br>we days. T<br>Anticip | tle and 1x, 2.8x  ppm) bairy 6 ixafen equivalents en for dairy cattle,                                                                               |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L<br>Laying hens were administered<br>1.38, 4.34 and 15.0 ppm repress                                  | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>aying hens<br>1 bixafen at dose level<br>sent 13.8x, 43.4x and<br>Feeding Level                  | el<br>he metabol<br>that the fee<br>s.<br>Is of 1.38, 4<br>150x, respe | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmet<br>eding level in the s                                                                                      | nore balancec<br>idues*<br>hyl, converte<br>tudy correspondent<br><b>PMR</b><br>n the feed for<br>ed MBD to p<br>M | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.7<br>ssed as b<br>tary burda<br>we days. T<br>Anticip | tle and 1x, 2.8x ppm) bairy 6 ixafen equivalents en for dairy cattle, The dose levels of bated Residue at                                            |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L<br>Laying hens were administered<br>1.38, 4.34 and 15.0 ppm repres<br>Commodity                      | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>aying hens<br>bixafen at dose level<br>sent 13.8x, 43.4x and<br>Feeding Level<br>(ppm)           | el<br>he metabol<br>that the fee<br>s.<br>Is of 1.38, 4<br>150x, respe | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmet<br>eding level in the s<br>4.34 and 15.0 ppm i<br>ectively, the estimat<br>t Residues (ppm)                  | nore balancec<br>idues*<br>hyl, converte<br>tudy correspond<br>PMR<br>n the feed for<br>ed MBD to p<br>(p          | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.7<br>ssed as b<br>tary burda<br>we days. T<br>Anticip | tle and 1x, 2.8x<br>ppm)<br>bairy<br>6<br>ixafen equivalents<br>en for dairy cattle,<br>The dose levels of<br>bated Residue at<br>IBD (ppm)          |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L<br>Laying hens were administered<br>1.38, 4.34 and 15.0 ppm repress<br>Commodity<br>Whole Egg        | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>aying hens<br>1 bixafen at dose level<br>sent 13.8x, 43.4x and<br>Feeding Level                  | el<br>he metabol<br>that the fee<br>s.<br>Is of 1.38, 4<br>150x, respe | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmetl<br>eding level in the s<br>4.34 and 15.0 ppm i<br>ectively, the estimat<br>t Residues (ppm)<br>0.23         | nore balancec<br>idues*<br>hyl, converte<br>tudy correspond<br>PMR<br>n the feed for<br>ed MBD to p<br>(p          | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.7<br>ssed as b<br>tary burda<br>we days. T<br>Anticip | tle and 1x, 2.8x<br>ppm)<br>bairy<br>6<br>ixafen equivalents<br>en for dairy cattle,<br>The dose levels of<br>bated Residue at<br>IBD (ppm)<br>0.002 |
| levels of 5.7, 16.0 and 54.3 rep<br>and 9.4x, respectively, for dair<br>Commodity<br>Whole milk<br>Fat<br>Liver<br>Kidney<br>Muscle<br>*Total bixafen residues = the s<br>(the residue definition in livest<br>it was not necessary to calculat<br>LIVESTOCK FEEDING – L<br>Laying hens were administered<br>1.38, 4.34 and 15.0 ppm repress<br>Commodity<br>Whole Egg<br>Fat | resent 3x, 9x and 30x<br>y cattle.<br>Feeding Leve<br>(ppm)<br>5.7<br>sum of bixafen plus t<br>tock matrices). Given<br>te anticipated residues<br>aying hens<br>d bixafen at dose level<br>sent 13.8x, 43.4x and<br>Feeding Level<br>(ppm)<br>15.0 | el e                               | Highest Res<br>(ppm)<br>0.046<br>0.209<br>0.69<br>0.152<br>0.065<br>lite bixafen-desmetl<br>eding level in the s<br>4.34 and 15.0 ppm i<br>ectively, the estimat<br>t Residues (ppm)<br>0.23<br>0.09 | nore balancec<br>idues*<br>hyl, converte<br>tudy correspond<br>PMR<br>n the feed for<br>ed MBD to p<br>(p          | d diet (MBD) to                 | beef cat<br>MBD (j<br>Beef/D<br>5.7<br>ssed as b<br>tary burda<br>we days. T<br>Anticip | tle and 1x, 2.8x  ppm) airy 6 ixafen equivalents en for dairy cattle, The dose levels of bated Residue at IBD (ppm) 0.002 0.002                      |

## Table 6Food Residue Chemistry Overview of Metabolism Studies and RiskAssessment

|                                                                                                                       | PLANT STU             | DIES                                               |                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|------------------------------------------------------------------|--|
| <b>RESIDUE DEFINITION FOR ENFO</b><br>Primary: Soybeans, wheat and potatoes<br>Rotational: Wheat, Swiss chard, turnip |                       | Bixafen                                            |                                                                  |  |
| <b>RESIDUE DEFINITION FOR RISK</b><br>Primary: Soybeans, wheat and potatoes<br>Rotational: Wheat, Swiss chard, turnip |                       | Bixafen and b                                      | ixafen-desmethyl                                                 |  |
| METABOLIC PROFILE IN DIVER                                                                                            | SE CROPS              | potatoes) and rotational                           | ops (soybeans, wheat and<br>crops (wheat, Swiss chard,<br>rnip). |  |
|                                                                                                                       | ANIMAL STU            | JDIES                                              |                                                                  |  |
| ANIMALS                                                                                                               |                       | Ruminan                                            | t and Poultry                                                    |  |
| RESIDUE DEFINITION FOR ENFO<br>RESIDUE DEFINITION FOR RISK                                                            |                       | Bixafen and b                                      | ixafen-desmethyl                                                 |  |
| METABOLIC PROFILE IN ANIMA<br>(goat, hen, rat)                                                                        |                       | The metabolic profile is si                        | milar in all three animals.                                      |  |
| FAT SOLUBLE RE                                                                                                        | SIDUE                 |                                                    | Yes                                                              |  |
| DIETARY RISK FROM FOOD ANI                                                                                            | ) WATER               |                                                    |                                                                  |  |
|                                                                                                                       | POPULATION            | ESTIMATED RISK<br>% of ACCEPTABLE DAILY INTAKE (AD |                                                                  |  |
|                                                                                                                       |                       | Food Alone                                         | Food and Water                                                   |  |
|                                                                                                                       | All infants < 1 year  | 18.5                                               | 19.0                                                             |  |
| Basic chronic dietary exposure                                                                                        | Children 1–2 years    | 32.3                                               | 32.5                                                             |  |
| analysis                                                                                                              | Children 3 to 5 years | 26.8                                               | 26.9                                                             |  |
| ADI = 0.02 mg/kg bw/day                                                                                               | Children 6–12 years   | 18.1                                               | 18.2                                                             |  |
| Estimated chronic drinking water                                                                                      | Youth 13–19 years     | 11.0                                               | 11.1                                                             |  |
| concentration = $1.5 \ \mu g/L$                                                                                       | Adults 20–49 years    | 8.6                                                | 8.7                                                              |  |
|                                                                                                                       | Adults 50+ years      | 6.6                                                | 6.8                                                              |  |
|                                                                                                                       | Females 13-49 years   | 8.0                                                | 8.2                                                              |  |
|                                                                                                                       | Total population      | 10.7                                               | 10.8                                                             |  |
| Basic acute dietary exposure<br>analysis, 95 <sup>th</sup> percentile                                                 | POPULATION            |                                                    | ATED RISK<br>CRENCE DOSE (ARfD)                                  |  |
|                                                                                                                       |                       | Food Alone                                         | Food and Water                                                   |  |
| $\mathbf{ARfD} = 0.8 \text{ mg/kg bw}$                                                                                | All infants < 1 year  | 12.9                                               | 13.2                                                             |  |
| Estimated acute drinking water                                                                                        | Children 1–2 years    | 14.4                                               | 14.4                                                             |  |
| concentration = 2.7 μg/L                                                                                              | Children 3 to 5 years | 12.0                                               | 12.1                                                             |  |

| Children 6–12 years | 8.9 | 9.0 |
|---------------------|-----|-----|
| Youth 13–19 years   | 5.9 | 6.0 |
| Adults 20–49 years  | 4.6 | 4.7 |
| Adults 50+ years    | 3.3 | 3.4 |
| Females 13-49 years | 4.4 | 4.4 |
| Total population    | 7.3 | 7.4 |

# Table 7Transformation Products of the Active Substance Bixafen Relevant to the<br/>Environment

| Code and<br>Chemical name                                                          | Chemical structure              | Study                                                                                                    | Findings                                                                                                                                                |
|------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| M42<br>Bixafen-pyrazole-<br>4-carboxylic acid                                      | F<br>N<br>H <sub>3</sub> C      | Anaerobic soil<br>(PMRA No.<br>2642687)                                                                  | • Day 0 to Day 146 not detected; max<br>9.0% M42 (single detection) on Day<br>210 (Day 181 of anaerobic incubation)                                     |
| M44 & M45<br>Bixafen-desmethyl-<br>pyrazole-4-<br>carboxylic acid (2<br>tautomers) | F<br>N<br>N<br>H<br>OH          | Aerobic soil<br>(PMRA No.<br>2642684)                                                                    | <ul> <li>&lt;0.1 – 2.9% extracted M44/45,<br/>gradual increasing trend starting Day<br/>14 for all soils</li> </ul>                                     |
| M43<br>Bixafen-pyrazole-<br>4-carboxamide                                          | F<br>N<br>N<br>H <sub>3</sub> C | Metabolism of<br>[pyrazole-5-<br>14C]bixafen in<br>confined<br>rotational crops<br>(PMRA No.<br>2642763) | • M43 was described by the applicant as<br>a potential soil metabolite that was<br>taken up by the plants and found at<br>concentrations in plants >10% |
| M21<br>bixafen-desmethyl                                                           |                                 | Degradation in<br>Soil Under<br>Rotational Crops<br>(PMRA No.<br>2642685)                                | • Max 2.7% extracted M21 at the end of<br>the study (Day 418; dichlorophenyl<br>label); gradual increasing trend<br>throughout study                    |
|                                                                                    | CI                              | BCF in Fish<br>(PMRA No.<br>2642712)                                                                     | • 14.9% and 22.5% of the <sup>14</sup> C-residues<br>on Day 14 in viscera and edible<br>extracts, respectively                                          |

|                                     |                                       |                             | 714 14                                                                                  |
|-------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|
| Code and                            | Chemical structure                    | Study                       | Findings                                                                                |
| Chemical name                       |                                       |                             |                                                                                         |
| Glucuronidated<br>Bixafen-desmethyl | F F F                                 | BCF in Fish<br>(PMRA No.    | • 15.1% and 14.9% of the <sup>14</sup> C-residues<br>on Days 7 and 14, respectively, in |
|                                     | + glucuronic acid, - H <sub>2</sub> O | 264271)                     | viscera; none found in edibles                                                          |
| Anaerobic                           |                                       | A                           | · Single detection of 2.20/ on Day 110                                                  |
| Anaerobic                           |                                       | Anaerobic soil<br>(PMRA No. | • Single detection of 2.3% on Day-119<br>(Day-90 of anaerobic incubation;               |
| ulikliowli                          |                                       | (FMRA No.<br>2642687)       | (Day-90 of anaerobic incubation,<br>pyrazole label)                                     |
| Non-extracted                       |                                       | Aerobic soil                | • $7.5 - 12.0\%$ non-extracted <sup>14</sup> C-                                         |
| residues                            |                                       | (PMRA No.                   | residues after 120 days                                                                 |
| residues                            |                                       | 2642684)                    | <ul> <li>Increasing trends in most cases. NERs</li> </ul>                               |
|                                     |                                       | 2042004)                    | were consistently higher for the                                                        |
|                                     |                                       |                             | dichlorophenyl label.                                                                   |
|                                     |                                       | Anaerobic soil              | • $1.4 - 10.5\%$ non-extracted <sup>14</sup> C-                                         |
|                                     |                                       | (PMRA No.                   | residues after 210 days (118 days of                                                    |
|                                     |                                       | 2642687)                    | anaerobic incubation)                                                                   |
|                                     |                                       |                             | Increasing trend                                                                        |
|                                     |                                       | Degradation in              | • Mean non-extracted <sup>14</sup> C-residues                                           |
|                                     |                                       | Soil Under                  | increased from 5.1% at Day-30 to                                                        |
|                                     |                                       | Rotational Crops            | 16.2% at the end of the study (Day                                                      |
|                                     |                                       | (PMRA No.                   | 418)                                                                                    |
|                                     |                                       | 2642685)                    |                                                                                         |
|                                     |                                       | Total sediment              | • Max 5% non-extracted <sup>14</sup> C-residues in                                      |
|                                     |                                       | system                      | sediment after 90 days (dichlorophenyl                                                  |
|                                     |                                       | (water +                    | label in River Roding system)                                                           |
|                                     |                                       | sediment)                   | <ul> <li>Increasing trends</li> </ul>                                                   |
|                                     |                                       | (PMRA No.                   |                                                                                         |
|                                     |                                       | 2642813)                    |                                                                                         |

## Table 8 Fate and Behaviour of Bixafen in the Terrestrial Environment

| Property                       | Test substance                                                                                                               | Value                                                              | Transformation<br>products                                                                                                                                                                             | Comments                                                                                                                             | PMRA<br>No. |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Abiotic transformati           | ion                                                                                                                          |                                                                    |                                                                                                                                                                                                        |                                                                                                                                      |             |  |
| Hydrolysis                     | Stable to hydrolysis                                                                                                         | Stable to hydrolysis at environmentally relevant pH values.        |                                                                                                                                                                                                        |                                                                                                                                      |             |  |
| Phototransformation<br>on soil | Bixafen parent<br>2 labels:<br>[pyrazole-5- <sup>14</sup> C]-<br>bixafen<br>[dichlorophenyl-<br>UL- <sup>14</sup> C]-bixafen | DT <sub>50</sub> = 109<br>days (SFO;<br>continuous<br>irradiation) | No major<br>transformation<br>products.<br>Multiple unknown<br>minor<br>transformation<br>products, with the<br>largest individual<br>peak accounting<br>for 1.4% AR (day<br>8 sample).<br>The maximum | Direct<br>phototransformation<br>on soil surfaces is not<br>a major route of<br>transformation for<br>bixafen in the<br>environment. | 2642683     |  |

| Property                          | Test substance                                                                                                        | Value                      | Transformation products                    | Comments                                   | PMRA<br>No. |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|--------------------------------------------|-------------|--|
|                                   |                                                                                                                       |                            | sum of                                     |                                            |             |  |
|                                   |                                                                                                                       |                            | unidentified                               |                                            |             |  |
|                                   |                                                                                                                       |                            | extracted<br>radioactivity was<br>4.4% AR. |                                            |             |  |
| Phototransformation               | Bixafen is not expec                                                                                                  | ted to be volati           |                                            | ns based on vapour pres                    | sure and    |  |
| in air                            |                                                                                                                       |                            | sformation study in air                    |                                            |             |  |
| Biotransformation                 |                                                                                                                       |                            |                                            |                                            |             |  |
| Biotransformation in aerobic soil | Bixafen parent                                                                                                        | $DT_{50} = 963$            | <0.1 – 2.9%<br>extracted M44/45,           | Parent bixafen is persistent in aerobic    | 2642684     |  |
| in aerodic son                    | 2 labels:                                                                                                             | - 1773 days<br>(SFO)       | gradual increasing                         | soil.                                      |             |  |
|                                   | [pyrazole-5- <sup>14</sup> C]-                                                                                        | (510)                      | trend starting Day                         | 3011.                                      |             |  |
|                                   | bixafen                                                                                                               |                            | 14 for all soils                           | Biotransformation in                       |             |  |
|                                   | &                                                                                                                     |                            |                                            | aerobic soil is not an                     |             |  |
|                                   | [dichlorophenyl-                                                                                                      |                            |                                            | important route of                         |             |  |
|                                   | UL- <sup>14</sup> C]-bixafen                                                                                          |                            |                                            | dissipation for bixafen.                   |             |  |
|                                   | 4 European soils                                                                                                      |                            |                                            | bixaien.                                   |             |  |
|                                   | Study duration:<br>120 days                                                                                           |                            |                                            |                                            |             |  |
| Biotransformation                 | Bixafen parent                                                                                                        | $DT_{50} = 819$            | Maximum 9.0%                               | Parent bixafen is                          | 2642687     |  |
| in anaerobic soil                 | ···· 1····                                                                                                            | days (SFO)                 | M42 (single                                | persistent in                              |             |  |
|                                   | 2 labels:                                                                                                             |                            | detection) on Day                          | anaerobic soil.                            |             |  |
|                                   | [pyrazole-5- <sup>14</sup> C]-                                                                                        |                            | 210 (Day 181 of                            |                                            |             |  |
|                                   | bixafen<br>&                                                                                                          |                            | anaerobic incubation). Day 0               | Biotransformation in anaerobic soil is not |             |  |
|                                   | ∝<br>[dichlorophenyl-                                                                                                 |                            | to Day 146 not                             | an important route of                      |             |  |
|                                   | UL- <sup>14</sup> C]-bixafen                                                                                          |                            | detected.                                  | dissipation for                            |             |  |
|                                   | 1 European soil                                                                                                       |                            |                                            | bixafen.                                   |             |  |
|                                   | G( 1 1                                                                                                                |                            |                                            |                                            |             |  |
|                                   | Study duration: 29<br>days ( aerobic                                                                                  |                            |                                            |                                            |             |  |
|                                   | conditions) $+$ 181                                                                                                   |                            |                                            |                                            |             |  |
|                                   | days (anaerobic                                                                                                       |                            |                                            |                                            |             |  |
|                                   | conditions)                                                                                                           |                            |                                            |                                            |             |  |
| Mobility<br>Adsorption /          | Bixafen parent                                                                                                        | K <sub>OC</sub> = 3858     | N/A                                        | Bixafen is classified                      | 2642679     |  |
| desorption in soil                | Bizaren parent                                                                                                        | $K_{0C} = 3838$<br>to 5812 | 11/11                                      | as having a slight                         | 2042079     |  |
| F                                 | 1 label:                                                                                                              | mL/g                       |                                            | potential for mobility in soil.            |             |  |
|                                   | [dichlorophenyl-                                                                                                      | $K_d = 50.16$              |                                            |                                            |             |  |
|                                   | UL-14C]-bixafen                                                                                                       | to 128.15                  |                                            |                                            |             |  |
|                                   |                                                                                                                       | mL/g                       |                                            |                                            |             |  |
| Soil leaching                     | No soil leaching study with bixafen was submitted and none is required.                                               |                            |                                            |                                            |             |  |
| Volatilization                    | A volatilization study was not submitted nor required for the review of bixafen. The vapour                           |                            |                                            |                                            |             |  |
|                                   | pressure of bixafen is $1.1 \times 10^{-7}$ Pa at 25°C and the calculated Henry's constant is $9.177 \times 10^{-10}$ |                            |                                            |                                            |             |  |
|                                   | $^{10}$ atm·m3/mol in water at 25°C. Bixafen not expected to volatilize from water, moist soil, or vegetation.        |                            |                                            |                                            |             |  |
| Field studies                     | vegetation.                                                                                                           |                            |                                            |                                            |             |  |
| Field dissipation                 | Bixafen parent                                                                                                        | $DT_{50} = 550$            | Not tracked.                               | Bixafen is likely to                       | 2642692     |  |
| (Alberta)                         | _                                                                                                                     | days (SFO;                 |                                            | accumulate in soil.                        |             |  |
|                                   | Bare ground site                                                                                                      | Plot T-1)                  |                                            | Carryover into next                        |             |  |

| Property                          | Test substance                                                                                                                                                                                                                                                                                                        | Value                                                                                             | Transformation | Comments                                                                                                                                                                                                                                            | PMRA<br>No |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                   | (Ecoregion 9.2)                                                                                                                                                                                                                                                                                                       |                                                                                                   | products       | growing season was                                                                                                                                                                                                                                  | No.        |
|                                   | <ul> <li>(Ecoregion 9.2)</li> <li>Plot T-1: 3 <ul> <li>applications (75 g</li> <li>a.i./ha each)</li> <li>within a 21-day</li> <li>period, at 10- and</li> <li>11-day intervals.</li> </ul> </li> <li>Plot T-2: same <ul> <li>amount of bixafen</li> <li>parent as Plot T-1,</li> <li>but as 1</li> </ul> </li> </ul> | DT <sub>50</sub> = 748<br>days (SFO;<br>Plot T-2)                                                 |                | growing season was<br>62% (Plot T-1; April,<br>or day- 266) and 82%<br>(Plot T-2; day-274).<br>Bixafen does not<br>appear to be<br>inherently susceptible<br>to leaching.                                                                           |            |
|                                   | application of the full amount.                                                                                                                                                                                                                                                                                       |                                                                                                   |                |                                                                                                                                                                                                                                                     |            |
| Field dissipation<br>(New Jersey) | Bixafen parentBare ground site<br>(Ecoregion 8.3)Plot T-1: 3<br>applications (75 g<br>a.i./ha each)<br>within a 21-day<br>period, at 10-day<br>intervals.Plot T-2: same<br>amount of bixafen<br>parent as Plot T-1,<br>but as 1<br>application of the<br>full amount.                                                 | Slow $t_{1/2} =$<br>300 days<br>(DFOP;<br>Plot T-1)<br>$t_R = 110$<br>days<br>(IORE; Plot<br>T-2) | Not tracked.   | Bixafen is likely to<br>accumulate in soil.<br>Carryover into next<br>growing season was<br>14.5% (Plot T-1;<br>April, day-251) and<br>19.4% (Plot T-2; day-<br>259).<br>Bixafen does not<br>appear to be<br>inherently susceptible<br>to leaching. | 2642691    |

Field leachingNo field leaching study with bixafen was submitted and none is required.SFO – single first-order; DFOP – double first-order in parallel; IORE – indeterminate order rate equation

| Study type                         | Test material                            | Value                                      | Transformation                                         | Comments                                                     | PMRA    |
|------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|---------|
| 1.7.4                              |                                          |                                            | products                                               |                                                              | No.     |
| Abiotic transform                  |                                          |                                            |                                                        | ** • • • •                                                   |         |
| Hydrolysis                         | Bixafen<br>parent                        | pH 4, 7, and<br>9: stable to<br>hydrolysis | No transformation products.                            | Hydrolysis is not<br>expected to be an<br>important route of | 2642680 |
|                                    | One label:                               |                                            |                                                        | dissipation for<br>bixafen in the                            |         |
|                                    | [pyrazole-5-<br><sup>14</sup> C]-bixafen |                                            |                                                        | environment.                                                 |         |
| Phototransformati                  | Bixafen                                  | $DT_{50} = 81$                             | No major transformation                                | Direct                                                       | 2642681 |
| on in water                        | parent                                   | days (SFO)                                 | products.                                              | phototransformatio<br>n in water is not a                    |         |
|                                    | 1 label:                                 |                                            | No major transformation<br>products (> 10% AR)         | major route of<br>transformation for                         |         |
|                                    | [dichlorophen<br>yl-UL-14C]-             |                                            | were formed. Multiple<br>unknown minor                 | bixafen in the environment.                                  |         |
|                                    | bixafen                                  |                                            | degradates were<br>observed, with the largest          |                                                              |         |
|                                    |                                          |                                            | individual peak<br>accounting for 1.5% AR              |                                                              |         |
|                                    |                                          |                                            | (polar radioactivity<br>detected by HPLC at day        |                                                              |         |
|                                    |                                          |                                            | 8). The maximum of total<br>unidentified radioactivity |                                                              |         |
|                                    |                                          |                                            | was 4.6% AR and was reached at day 8.                  |                                                              |         |
| Biotransformation                  |                                          |                                            |                                                        |                                                              |         |
| Biotransformation in aerobic water | Bixafen<br>parent                        | Total system only:                         | One minor component<br>was observed at a               | Bixafen dissipated steadily from the                         | 2642813 |
| systems                            | 2 labels:                                | $DT_{50} = 4198$<br>to 6793 days           | maximum level of 1.4%<br>in the water of system        | water phase to the sediment phase.                           |         |
|                                    | [pyrazole-5-<br><sup>14</sup> C]-bixafen | (Clayton,<br>US; SFO)                      | River Roding at day 14, pyrazole label, and to ca      | Total applied radioactivity                                  |         |
|                                    | &<br>[dichlorophen                       | $DT_{50} = 1144$                           | 1.2% in the corresponding sediment extracts at day     | declined from ca.<br>93-98% in the                           |         |
|                                    | yl-UL- <sup>14</sup> C]-<br>bixafen      | to 2357 days<br>(River                     | 59.                                                    | water phase at time zero to ca.7-8% at                       |         |
|                                    | 2 water-                                 | Roding, UK;<br>SFO)                        |                                                        | day 118 for the system Clayton,                              |         |
|                                    | sediment<br>systems                      |                                            |                                                        | and from 93-95% to 10-17% for the                            |         |
|                                    | (Clayton, US<br>and River                |                                            |                                                        | system River<br>Roding.                                      |         |
|                                    | Roding, UK)                              |                                            |                                                        | Conversely, the radioactivity                                |         |
|                                    | Study<br>duration: 118                   |                                            |                                                        | detected in the<br>sediment increased                        |         |
|                                    | days                                     |                                            |                                                        | from zero at time<br>zero to 74-89% at                       |         |
|                                    |                                          |                                            |                                                        | the end of the                                               |         |
|                                    |                                          |                                            |                                                        | study. In all cases<br>the radioactivity                     |         |
|                                    |                                          |                                            |                                                        | consisted largely of the parent bixafen.                     |         |

## Table 9Fate and Behaviour in the Aquatic Environment

|                          | 1                          |                              | 1                                            |                                                     | 1            |
|--------------------------|----------------------------|------------------------------|----------------------------------------------|-----------------------------------------------------|--------------|
|                          |                            |                              |                                              | Parent bixafen is<br>persistent in<br>aerobic water |              |
|                          |                            |                              |                                              | systems.                                            |              |
|                          |                            |                              |                                              | Biotransformation aerobic water                     |              |
|                          |                            |                              |                                              | systems is not an                                   |              |
|                          |                            |                              |                                              | important route of dissipation for                  |              |
|                          |                            |                              |                                              | bixafen.                                            |              |
| Biotransformation        | The applicant re           | equested a data v            | waiver for conducting an anae                |                                                     | sm study     |
| in anaerobic water       | with bixafen bas           | sed on slow deg              | radation of bixafen in anaerol               | bic soil and aerobic aqu                            | atic         |
| systems                  |                            |                              | ated from these studies indica               |                                                     |              |
|                          |                            |                              | idly dissipate to the sediment $100(AB)$     |                                                     |              |
|                          | was considered             |                              | >10% AR) were measured in $PMR \Delta$       | these studies. This wa                              | iver request |
| Partitioning             | was considered             |                              | c I WIKA.                                    |                                                     |              |
| Adsorption /             | Not required as            | an acceptable ad             | dsorption/desorption study in                | soil was submitted.                                 |              |
| desorption in            | 1                          | I                            | 1 1 5                                        |                                                     |              |
| sediment                 |                            |                              |                                              |                                                     |              |
| Field studies            |                            |                              |                                              |                                                     |              |
| Field dissipation        |                            |                              | ly with bixafen was submitted                | d and none is required.                             |              |
| Bioconcentration /       |                            |                              |                                              | D' C '1                                             | 2642712      |
| Bioconcentration in fish | Bixafen                    | $BCF_{k,g,l} =$<br>381 (high | Characterization of transformation products  | Bixafen residues<br>were depurated                  | 2642712      |
| 111 11511                | parent                     | concentratio                 | in fish and water was                        | with a half-life of                                 |              |
|                          | 1 label at 2               | n)                           | performed during a 14-                       | 1.84 and 1.95 days                                  |              |
|                          | concentrations             | $BCF_{k,g,l} =$              | day parallel study. The                      | for the high and                                    |              |
|                          | :                          | 454 (low                     | main metabolic reactions                     | low concentrations,                                 |              |
|                          |                            | concentratio                 | of Bixafen in fish were:                     | respectively.                                       |              |
|                          | 0.1 and 1 $\mu$ g          | n)                           | • Demethylation of the                       |                                                     |              |
|                          | [Dichlorophen              |                              | pyrazole moiety leading                      | Bixafen is not                                      |              |
|                          | yl-UL-14C]-<br>bixafen / L |                              | to M21 (Bixafen-                             | expected to bioaccumulate in                        |              |
|                          | Bluegill                   |                              | desmethyl) (14.9% and 22.5% of the TRR on    | fish.                                               |              |
|                          | sunfish                    |                              | Day 14 in viscera and                        | 11511.                                              |              |
|                          | (Lepomis                   |                              | edible extracts,                             |                                                     |              |
|                          | macrochirus)               |                              | respectively)                                |                                                     |              |
|                          | Study                      |                              | Glucuronidation of                           |                                                     |              |
|                          | duration: 28               |                              | Bixafen-desmethyl                            |                                                     |              |
|                          | days                       |                              | (15.1% and 14.9% of<br>the TPP on Days 7 and |                                                     |              |
|                          | (exposure) +<br>14 days    |                              | the TRR on Days 7 and 14 in viscera,         |                                                     |              |
|                          | (depuration)               |                              | respectively; none                           |                                                     |              |
|                          | (asparation)               |                              | found in edibles)                            |                                                     |              |
|                          |                            |                              | • An unknown compound                        |                                                     |              |
|                          |                            |                              | was also observed                            |                                                     |              |
|                          |                            |                              | accounting for 1.7%                          |                                                     |              |
|                          |                            |                              | and 1.6% of the TRR in                       |                                                     |              |
|                          |                            |                              | extracts from viscera on                     |                                                     |              |
|                          |                            |                              | Days 7 and 14,<br>respectively               |                                                     |              |
| 1                        | 1                          | 1                            | respectively.                                |                                                     |              |

SFO - single first-order; DFOP - double first-order in parallel; IORE - indeterminate order rate equation

## Table 10 Toxicity of Bixafen to Non-target Terrestrial Organisms

| Organism                                                                            | Exposure                      | Test substance        | Endpoint value                                                                                            | Degree of<br>toxicity <sup>a</sup> | PMRA<br>No. |
|-------------------------------------------------------------------------------------|-------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|-------------|
| Invertebrates                                                                       | ·                             | ·                     |                                                                                                           | ·                                  |             |
| Earthworm<br>(Eisenia fetida)                                                       | 8wk-Chronic                   | Bixafen               | Reproduction:<br>NOEL: 100 mg a.i./kg soil<br>dw<br>LOEL: 200 µg a.i./L                                   | N/A                                | 2642728     |
|                                                                                     |                               |                       | Survival:<br>NOEL: ≥400 mg a.i./kg soil<br>dw                                                             |                                    |             |
| Pollinator (honey<br>bee; <i>Apis</i><br><i>mellifera</i> )                         | 48hr-Acute<br>oral            | Bixafen               | LOEL: >400 µg a.i./L<br>Survival:<br>Oral LC <sub>50</sub> : >121.4 µg<br>a.i./bee                        | Practically<br>nontoxic            | 2642727     |
|                                                                                     |                               |                       | No mortality observed.                                                                                    |                                    |             |
|                                                                                     | 48hr-Acute<br>contact         | Bixafen               | Survival:<br>Contact LC <sub>50</sub> : >100 μg<br>a.i./bee                                               | Practically<br>nontoxic            | 2642727     |
|                                                                                     |                               |                       | No mortality observed.                                                                                    |                                    |             |
|                                                                                     | 72hr-Brood /<br>hive          | Bixafen               | 72 hr LD <sub>50</sub> : >100 μg<br>a.i./larva<br>72 hr NOED: 4 μg a.i./larva                             | N/A                                | 2642701     |
|                                                                                     | 10d-Dietary                   | Bixafen               | Mortality:<br>LD <sub>50</sub> : >17.3 µg a.i./bee<br>NOAEL: 8.26 µg a.i./bee<br>LOAEL: 17.3 µg a.i./bee  | N/A                                | 2642702     |
|                                                                                     |                               |                       | LC <sub>50</sub> : >948 mg a.i./kg diet<br>NOAEC: 470 mg a.i./kg<br>diet<br>LOAEC: 948 mg a.i./kg<br>diet |                                    |             |
|                                                                                     |                               |                       | Daily Food Consumption:<br>NOAEL: 17.3 µg a.i./bee<br>LOAEL: >17.3 µg a.i./bee                            |                                    |             |
|                                                                                     |                               |                       | NOAEC: 948 mg a.i./kg<br>diet<br>LOAEC: >948 mg a.i./kg<br>diet                                           |                                    |             |
| Predatory<br>arthropod (Green<br>lacewing;<br><i>Chrysoperla</i><br><i>carnea</i> ) | 6wk-Chronic<br>(extended lab) | Bixafen EC<br>(125 G) | Survival:<br>LR <sub>50</sub> : >246 g a.i./ha<br>LR <sub>50</sub> : >2 L product/ha                      | N/A                                | 2642694     |
| Predatory<br>arthropod<br>( <i>Typhlodromus</i><br><i>pyri</i> )                    | 2wk-Contact<br>(lab)          | Bixafen EC<br>(125 G) | Reproduction: Not<br>acceptable<br>Survival:<br>LR <sub>50</sub> : 116 g a.i./ha                          | N/A                                | 2642698     |

|                                                            |                                                             |                       | LR <sub>50</sub> : 0.948 L product/ha                                                                                                                                          |                         |         |
|------------------------------------------------------------|-------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
|                                                            | 2wk-Contact<br>(extended lab,<br>freshly dried<br>residue)  | Bixafen EC<br>(125 G) | Reproduction:<br>NOEL: 1.002 L product/ha<br>LOEL: 2 L product/ha<br>Survival:                                                                                                 | N/A                     | 2642695 |
| Parasitic                                                  | 48hr-Contact                                                | Bixafen EC            | $LR_{50}: >244 \text{ g a.i./ha}$ $LR_{50}: >2 \text{ L product/ha}$ Survival:                                                                                                 | N/A                     | 2642699 |
| arthropod<br>(Aphidius                                     | (lab)                                                       | (125 G)               | LR <sub>50</sub> : 35.5 g a.i./ha<br>LR <sub>50</sub> : 0.291 L product/ha                                                                                                     | IN/A                    | 2042099 |
| rhopalosiphi)                                              | 48hr-Contact<br>(extended lab,<br>freshly dried<br>residue) | Bixafen EC<br>(125 G) | Reproduction: Not<br>acceptable<br>Survival: Not acceptable                                                                                                                    | N/A                     | 2642697 |
|                                                            | 48hr-Contact<br>(extended lab,<br>aged residue)             | Bixafen EC<br>(125 G  | Reproduction:<br>NOEL: ≥1 L product/ha<br>LOEL: >1 L product/ha                                                                                                                | N/A                     | 2642696 |
| Birds                                                      |                                                             |                       |                                                                                                                                                                                |                         |         |
| Bobwhite quail<br>( <i>Colinus</i><br><i>virginianus</i> ) | Acute oral                                                  | Bixafen               | LD <sub>50</sub> : >2000 mg a.i./kg bw                                                                                                                                         | Practically<br>nontoxic | 2642717 |
| virginanus)                                                | 5d-Acute<br>dietary                                         | Bixafen               | LC <sub>50</sub> : >4847 mg a.i./kg diet                                                                                                                                       | Slightly toxic          | 2642720 |
|                                                            | 22wk -<br>Reproduction                                      | Bixafen               | Based on mean-measured<br>concentrations:<br>NOAEC: <95 mg a.i./kg<br>diet LOAEC: 95 mg a.i./kg<br>diet<br>Most sensitive endpoint(s):<br>eggs laid/pen, female<br>weight gain | N/A                     | 2642721 |
|                                                            |                                                             |                       | Reliable with restrictions.                                                                                                                                                    |                         |         |
|                                                            | 6wk-<br>Reproduction                                        | Bixafen               | NOAEC: 206 mg a.i./kg<br>diet (30.6 mg a.i./kg<br>bw/day)<br>LOAEC: 282 mg a.i./kg<br>diet                                                                                     | N/A                     | 2642722 |
|                                                            |                                                             |                       | Most Sensitive Endpoint(s):<br>eggshell thickness, 14-d<br>survivor weight, mean food<br>consumption                                                                           |                         |         |
| Mallard duck<br>(Anas                                      | 5d-Acute<br>dietary                                         | Bixafen               | LC <sub>50</sub> : >4990 mg a.i./kg diet                                                                                                                                       | Slightly toxic          | 2642719 |
| platyrhynchos)                                             | 21wk-<br>Reproduction                                       | Bixafen               | Based on mean measured<br>concentrations:<br>NOAEC: 408 mg a.i./kg<br>diet<br>LOAEC: 1030 mg a.i./kg<br>diet<br>Endpoint(s) affected:<br>Hatchling and 14-day old              | N/A                     | 2642726 |

|                          | T                                              |                                                       | · · · · ·                                                                                                    | 1                       |         |
|--------------------------|------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------|---------|
|                          |                                                |                                                       | survivor body weights                                                                                        |                         |         |
|                          |                                                |                                                       | Reliable with restrictions.                                                                                  |                         |         |
| Canary (Serinus canaria) | Acute oral                                     | Bixafen                                               | LD <sub>50</sub> : >2000 mg a.i./kg bw                                                                       | Practically<br>nontoxic | 2642718 |
| Rat                      | Acute Oral                                     | Bixafen (95.8%<br>purity)                             | LD <sub>50 female</sub> :>2000 mg kg/bw<br>(LD <sub>50 male</sub> cut-off: 5000<br>mg/kg bw)                 | Practically<br>nontoxic | 2642766 |
|                          | Acute Oral                                     | F9650 (13.8%<br>bixafen and<br>30.4%<br>tebuconazole) | LD <sub>50 female</sub> : 550 mg/kg bw                                                                       | Slightly toxic          | 2643780 |
|                          | Chronic<br>Toxicity and<br>Carcinogenici<br>ty | Bixafen (95.8%<br>purity)                             | NOAEL male: 2.0 mg/kg<br>bw/day<br>LOAEL male: 12.1 mg/kg<br>bw/day                                          | N/A                     | 2642790 |
|                          | Two-<br>generation<br>Reproductive<br>Toxicity | Bixafen (95.8%<br>purity)                             | NOAEL male: 26.4 mg/kg<br>bw/day<br>LOAEL male: 169 mg/kg<br>bw/day                                          | N/A                     | 2642785 |
|                          |                                                |                                                       | NOAEL <sub>female</sub> : 30.8 mg/kg<br>bw/day<br>LOAEL <sub>female</sub> : 169 mg/kg<br>bw/day              |                         |         |
| Vascular plants          | I                                              | 1                                                     |                                                                                                              | 1                       | 1       |
| Vascular plant           | 21d-Seedling<br>emergence                      | Bixafen<br>formulation<br>F9650-1 (12.7%<br>a.i.)     | Most sensitive monocot:<br>corn (based on dry weight)<br>EC <sub>25</sub> /IC <sub>25</sub> : 75.7 g a.i./ha | N/A                     | 2642729 |
|                          |                                                |                                                       | NOEC: 72 g a.i./ha<br>Most sensitive dicot:<br>cucumber (based on dry<br>weight)                             |                         |         |
|                          |                                                |                                                       | EC <sub>25</sub> /IC <sub>25</sub> : 1.63 g a.i./ha<br>NOEC: 1.24 g a.i./ha                                  |                         |         |
|                          | 21d-<br>Vegetative<br>vigour                   | Bixafen<br>formulation<br>F9650-1 (12.7%<br>a.i.)     | Most sensitive monocot:<br>onion (based on dry weight)<br>NOEC: <1.46 g a.i./ha                              | N/A                     | 2642730 |
|                          |                                                |                                                       | Most sensitive dicot:<br>cucumber (based on dry<br>weight)                                                   |                         |         |
|                          |                                                |                                                       | EC <sub>25</sub> /IC <sub>25</sub> : 20.4 g a.i./ha<br>NOEC: 5.57 g a.i./ha                                  |                         |         |

# Table 11Screening Level Risk Assessment of Bixafen for Non-target Terrestrial<br/>Species Other Than Birds and Mammals

| Organism                                                                            | Exposure                                                   | Endpoint value                                                         | EEC                                        | RQ      | Level of<br>Concern <sup>1</sup> |
|-------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|---------|----------------------------------|
| Invertebrates                                                                       |                                                            |                                                                        |                                            |         |                                  |
| Earthworm<br>( <i>Eisenia fetida</i> )                                              | 8wk-Chronic<br>(Reproduction)                              | NOEL: 100 mg<br>a.i./kg soil dw                                        | 0.057 mg a.i./kg<br>soil                   | 0.00057 | Not exceeded                     |
|                                                                                     | 8wk-Chronic<br>(Survival)                                  | NOEL: ≥400 mg<br>a.i./kg soil dw                                       | 0.057 mg a.i./kg<br>soil                   | 0.00014 | Not exceeded                     |
| Pollinator (honey bee; <i>Apis</i>                                                  | 48hr-Acute oral                                            | LC <sub>50</sub> : >121.4 ug<br>a.i./bee                               | 3.66 µg a.i./bee                           | 0.030   | Not exceeded                     |
| mellifera)                                                                          | 48hr-Acute<br>contact                                      | LC <sub>50</sub> : >100 ug<br>a.i./bee                                 | 0.307 µg a.i./bee                          | 0.0031  | Not exceeded                     |
|                                                                                     | 72hr-Brood /<br>hive                                       | 72 hr LD <sub>50</sub> :<br>>100 ug<br>a.i./larva                      | 1.56 µg a.i./larva                         | 0.016   | Not exceeded                     |
|                                                                                     |                                                            | 72 hr NOED:<br>4 μg a.i./larva                                         | 1.56 µg a.i./larva                         | 0.39    | Not exceeded                     |
|                                                                                     | 10d-Dietary                                                | Mortality:<br>LD <sub>50</sub> : >17.3 μg<br>a.i./bee<br>NOED: 8.26 μg | 3.66 µg a.i./bee                           | 0.44    | Not exceeded                     |
| Predatory mite                                                                      | 2wk-Contact                                                | a.i./bee<br>LR <sub>50</sub> : 116 g                                   | In-field <sup>2</sup> : 96 g               | 0.83    | Not exceeded                     |
| (Typhlodromus<br>pyri)                                                              | (glass plates)                                             | a.i./ha (survival)                                                     | a.i./ha                                    |         |                                  |
| pyn)                                                                                | 2wk-Contact<br>(extended lab,<br>freshly dried<br>residue) | LR <sub>50</sub> : >244 g<br>a.i./ha (survival)                        | In-field <sup>2</sup> : 96 g<br>a.i./ha    | 0.39    | Not exceeded                     |
| Parasitoid wasp<br>(Aphidius                                                        | 48hr-Contact<br>(glass plates)                             | LR <sub>50</sub> : 35.5 g<br>a.i./ha (survival)                        | In-field <sup>2</sup> : 96 g<br>a.i./ha    | 2.7     | Exceeded                         |
| (Aphilius<br>rhopalosiphi)                                                          | (glass places)                                             |                                                                        | Off-field <sup>3</sup> : 13.4<br>g a.i./ha | 0.38    | Not exceeded                     |
| Predatory<br>arthropod (Green<br>lacewing;<br><i>Chrysoperla</i><br><i>carnea</i> ) | 6wk-Chronic<br>(extended lab,<br>freshly dried<br>residue) | LR <sub>50</sub> : >246 g<br>a.i./ha                                   | In-field <sup>2</sup> : 96 g<br>a.i./ha    | 0.39    | Not exceeded                     |
| Vascular plants                                                                     | J                                                          | I                                                                      | I                                          | I       | I                                |
| Vascular plant                                                                      | 21d-Seedling<br>emergence                                  | ER <sub>25</sub> : 1.63 g<br>a.i./ha                                   | In-field: 128 g<br>a.i./ha                 | 79      | Exceeded                         |
|                                                                                     |                                                            |                                                                        | Off-field <sup>3</sup> : 13.4<br>g a.i./ha | 8.2     | Exceeded                         |
|                                                                                     | 21d-Vegetative<br>vigour                                   | ER <sub>25</sub> : 20.4 g<br>a.i./ha                                   | In-field <sup>2</sup> : 96 g<br>a.i./ha    | 4.7     | Exceeded                         |
|                                                                                     |                                                            |                                                                        | Off-field <sup>3</sup> : 13.4<br>g a.i./ha | 0.66    | Not exceeded                     |

<sup>1</sup> Level of concern = 1 for most species; 0.4 for acute risk to pollinators; 1 for chronic risk to pollinators; and 2 for glass plate studies using the standard beneficial arthropod test species, *Typhlodromus pyri* and *Aphidius rhopalosiphi*. A level of concern = 1 is used for higher tier tests of the standard arthropod test species and for other arthropod test species.

Note: Contact exposure= application rate (kg a.i./ha) x (2.4  $\mu$ g a.i./bee); adult oral exposure= application rate (kg a.i./ha) x (98  $\mu$ g a.i./g) x (0.292 g/day); brood exposure= application rate (kg a.i./ha) x (98  $\mu$ g a.i./g) x (0.124 g/day).

Note: acute LOC for bees is set at 0.4; chronic LOC for bees is set at 1.0.

 $^{2}$  In-field EEC based on maximum cumulative application rate based on seasonal use rate for soybeans (2 ground applications at 64 g a.i./ha) and a foliar half-life of 10 days

<sup>3</sup> Off-field EEC based on single application to cereals at 58.2 g a.i./ha and 23% drift from aerial application, medium spray quality (ASAE)

#### Table 12 Screening Level Risk Assessment of Bixafen for Birds and Mammals

|                 | Toxicity      | Food Guild (food        | EDE                          | RQ   | Level of             |
|-----------------|---------------|-------------------------|------------------------------|------|----------------------|
|                 | (mg a.i./kg   | item)                   | (mg a.i./kg bw) <sup>1</sup> |      | Concern <sup>2</sup> |
|                 | bw/d)         |                         |                              |      |                      |
| Small Bird (0.0 | )2 kg)        |                         |                              |      |                      |
| Acute           | 200           | Insectivore             | 7.81                         | 0.04 | Not exceeded         |
| Reproduction    | 13.49         | Insectivore             | 7.81                         | 0.26 | Not exceeded         |
| Medium Sized    | Bird (0.1 kg) | ·                       | •                            | •    |                      |
| Acute           | 200           | Insectivore             | 6.10                         | 0.03 | Not exceeded         |
| Reproduction    | 13.49         | Insectivore             | 6.10                         | 0.20 | Not exceeded         |
| Large Sized Bi  | rd (1 kg)     | ·                       |                              |      |                      |
| Acute           | 200           | Herbivore (short grass) | 3.94                         | 0.02 | Not exceeded         |
| Reproduction    | 13.49         | Herbivore (short grass) | 3.94                         | 0.13 | Not exceeded         |
| Small Mamma     | l (0.015 kg)  | ·                       |                              |      |                      |
| Acute           | 55            | Insectivore             | 4.49                         | 0.08 | Not exceeded         |
| Reproduction    | 26.4          | Insectivore             | 4.49                         | 0.17 | Not exceeded         |
| Medium Sized    | Mammal (0.035 | kg)                     |                              |      |                      |
| Acute           | 55            | Herbivore (short grass) | 8.72                         | 0.16 | Not exceeded         |
| Reproduction    | 26.4          | Herbivore (short grass) | 8.72                         | 0.33 | Not exceeded         |
| Large Sized M   | ammal (1 kg)  |                         |                              | ·    |                      |
| Acute           | 55            | Herbivore (short grass) | 4.66                         | 0.08 | Not exceeded         |
| Reproduction    | 26.4          | Herbivore (short grass) | 4.66                         | 0.18 | Not exceeded         |

<sup>1</sup> EDE = Estimated dietary exposure; is calculated using the following formula: (FIR/BW)  $\times$  EEC, where:

FIR: Food Ingestion Rate.

For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used:

Passerine Equation (body weight < or = 200 g): FIR (g dry weight/day) = 0.398(BW in g)<sup>0.850</sup>

All birds Equation (body weight > 200 g): FIR (g dry weight/day) = 0.648(BW in g)<sup>0.651</sup>.

For mammals, the "all mammals" equation was used: FIR (g dry weight/day) = 0.235(BW in g)  $^{0.822}$ 

BW: Generic Body Weight

EEC: Concentration of pesticide on food item. At the screening level, relevant food items representing the most conservative EEC for each feeding guild are used.

<sup>2</sup> Level of concern = 1 for birds and mammals

| Organism                                  | Exposure                            | Test<br>substance | Endpoint value                                                                                                                                 | Degree of toxicity <sup>a</sup> | PMRA<br>No. |
|-------------------------------------------|-------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| Freshwater inve                           | rtebrates                           | -                 | ·                                                                                                                                              | ·                               |             |
| Daphnia magna                             | 48hr-Acute                          | Bixafen           | 48-hour EC <sub>50</sub> : 1100 $\mu$ g a.i./L<br>No sublethal effects were                                                                    | Moderately toxic                | 2642703     |
|                                           | 21d-Chronic                         | Bixafen           | observed.<br>NOAEC: 53.5 μg a.i./L<br>LOAEC: 134 μg a.i./L<br>(number of offspring per<br>surviving adult)                                     | N/A                             | 2642709     |
|                                           |                                     |                   | No sublethal effects noted for offspring.                                                                                                      |                                 |             |
| Chironomus<br>riparius                    | 28d-Chronic<br>(spiked<br>sediment) | Bixafen           | Based on TWA sediment<br>concentrations:<br>NOAEC: 16.7 mg a.i./kg<br>LOAEC: >16.7 mg a.i./kg<br>Based on TWA sediment                         | N/A                             | 2642714     |
|                                           |                                     |                   | concentrations, OC-normalized:<br>NOAEC: 877 mg a.i./kg OC<br>LOAEC: >877 mg a.i./kg OC                                                        |                                 |             |
|                                           |                                     |                   | Based on TWA pore water<br>concentrations:<br>NOAEC: 0.12 mg a.i./L<br>LOAEC: >0.12 mg a.i./L                                                  |                                 |             |
|                                           |                                     |                   | Based on TWA overlying water<br>concentrations:<br>NOAEC: 0.16 mg a.i./L<br>LOAEC: >0.16 mg a.i./L                                             |                                 |             |
|                                           | 28d-Chronic<br>(spiked water)       | Bixafen           | Based on emergence rate (pooled<br>sex) using nominal overlying<br>water concentrations:<br>NOAEC: 0.0156 mg a.i./L<br>LOAEC: 0.0313 mg a.i./L | N/A                             | 2642716     |
| dilutus (s                                | 36d-Chronic<br>(spiked<br>sediment) | Bixafen           | Reliable with restrictions.Based on TWA sediment<br>concentrations:NOAEC: 18.6 mg a.i./kg dwLOAEC: 38.6 mg a.i./kg dw                          | N/A                             | 2642715     |
|                                           |                                     |                   | Based on TWA Pore water<br>concentrations:<br>NOAEC: 0.0582 mg a.i./L<br>LOAEC: 0.114 mg a.i./L                                                |                                 |             |
| Freshwater fish                           | Ochr Aguta                          | Rivofon           |                                                                                                                                                | Vory highly toxic               | 2642707     |
| Rainbow trout<br>(Oncorhynchus<br>mykiss) | 96hr-Acute                          | Bixafen           | LD <sub>50</sub> : 74.0 µg a.i./L<br>Sublethal effects were observed.                                                                          | Very highly toxic               | 2642707     |

| Table 13 | Toxicity of Bixafen to Non-target Aquatic Species |
|----------|---------------------------------------------------|
|----------|---------------------------------------------------|

| Organism                               | Exposure               | Test<br>substance | Endpoint value                                                                                                      | Degree of toxicity <sup>a</sup> | PMRA<br>No. |
|----------------------------------------|------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| Fathead<br>minnow                      | 96hr-Acute             | Bixafen           | 96-hour LD <sub>50</sub> : 108 μg a.i./L                                                                            | Highly toxic                    | 2642706     |
| (Pimephales<br>promelas)               | 33d-Chronic            | Bixafen           | Sublethal effects were observed.<br>NOAEC: 4.60 µg a.i./L<br>LOAEC: 8.93 µg a.i./L<br>(total length)                | N/A                             | 2642711     |
| <b>F</b>                               |                        |                   | Reliable with restrictions.                                                                                         |                                 |             |
| Freshwater alga<br>Anabeana flos-      | 96hr-Acute             | Bixafen           | Using mean measured                                                                                                 | N/A                             | 2642733     |
| aquae                                  | Join-Acute             | Dixaten           | concentrations:                                                                                                     |                                 | 2042755     |
|                                        |                        |                   | Yield, growth rate, area under the<br>curve (biomass):<br>IC <sub>50</sub> : >737 µg a.i./L<br>NOAEC: 737 µg a.i./L |                                 |             |
| Pseudokirchner<br>iella<br>subcapitata | 72hr-Acute             | Bixafen           | Using mean measured concentrations:                                                                                 | N/A                             | 2642734     |
| sub cup nunu                           |                        |                   | Yield:<br>IC <sub>50</sub> : 68.47 μg a.i./L<br>NOAEC: <15.6 μg a.i./L                                              |                                 |             |
|                                        |                        |                   | Growth rate:<br>IC <sub>50</sub> : 101.4 μg a.i./L<br>NOAEC: <15.6 μg a.i./L                                        |                                 |             |
|                                        |                        |                   | Area under the curve:<br>IC <sub>50</sub> : 72.99 μg a.i./L<br>NOAEC: 32.5 μg a.i./L                                |                                 |             |
| Navicula<br>pelliculosa                | 96hr-Acute             | Bixafen           | Using mean measured concentrations:                                                                                 | N/A                             | 2642736     |
|                                        |                        |                   | Yield:<br>IC <sub>50</sub> : 15.94 μg a.i./L<br>NOAEC: <0.743 μg a.i./L                                             |                                 |             |
|                                        |                        |                   | Growth rate:<br>IC <sub>50</sub> : 25.63 µg a.i./L<br>NOAEC: 7.31 µg a.i./L                                         |                                 |             |
|                                        |                        |                   | Area under the curve (biomass):<br>IC <sub>50</sub> : 16.04 µg a.i./L<br>NOAEC: <0.743 µg a.i./L                    |                                 |             |
| Freshwater vaso                        |                        | Dime              | Frend much service 1.1 and the sec                                                                                  | NT/A                            | 2642721     |
| Duckweed<br>(Lemna gibba<br>G3)        | 7d Acute-<br>Dissolved | Bixafen           | Frond number yield, growth rate:<br>IC <sub>50</sub> : >410 µg a.i./L<br>NOAEC: 55.7 µg a.i./L                      | N/A                             | 2642731     |
|                                        |                        |                   | Final biomass, biomass growth<br>rate:<br>IC <sub>50</sub> : >410 µg a.i./L<br>NOAEC: 110 µg a.i./L                 |                                 |             |

| Organism                                                              | Exposure                          | Test<br>substance | Endpoint value                                                                                                                                                                                                                                                                                                                                                       | Degree of toxicity <sup>a</sup> | PMRA<br>No. |
|-----------------------------------------------------------------------|-----------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| Duckweed<br>(Lemna minor)                                             | 7d Acute-<br>Dissolved            | Bixafen           | Frond number yield, frond<br>number growth rate, final<br>biomass, biomass growth rate:                                                                                                                                                                                                                                                                              | N/A                             | 2642732     |
|                                                                       |                                   |                   | IC <sub>50</sub> : >0.747 mg a.i./L                                                                                                                                                                                                                                                                                                                                  |                                 |             |
|                                                                       |                                   |                   | NOAEC: 0.747 mg a.i./L                                                                                                                                                                                                                                                                                                                                               |                                 |             |
|                                                                       |                                   |                   | Reliable with restrictions.                                                                                                                                                                                                                                                                                                                                          |                                 |             |
| Marine inverteb                                                       | rates                             |                   |                                                                                                                                                                                                                                                                                                                                                                      |                                 |             |
| Eastern oysters<br>(Crassostrea<br>virginica)                         | 96hr-Acute                        | Bixafen           | Based on mean measured concentrations:                                                                                                                                                                                                                                                                                                                               | Highly toxic                    | 2642704     |
| 0                                                                     |                                   |                   | 96-hr IC <sub>50</sub> : >0.360 mg a.i./L                                                                                                                                                                                                                                                                                                                            |                                 |             |
| Mysid shrimp<br>(Americamysis                                         | 96hr-Acute                        | Bixafen           | LC <sub>50</sub> : >0.243 mg a.i./L                                                                                                                                                                                                                                                                                                                                  | Highly toxic                    | 2642705     |
| <i>bahia)</i><br>Mysid shrimp                                         | 28d-Chronic                       | Bixafen           | Reliable with restrictions.Based on TWA concentrations:                                                                                                                                                                                                                                                                                                              | N/A                             | 2642710     |
| (Americamysis<br>bahia)                                               | 200 Chrome                        | Dixulen           | NOAEC: 0.0886 mg a.i./L<br>LOAEC: 0.164 mg a.i./L                                                                                                                                                                                                                                                                                                                    | 1.074                           | 2042710     |
|                                                                       |                                   |                   | Most sensitive endpoint: F0 male length, F0 female length                                                                                                                                                                                                                                                                                                            |                                 |             |
|                                                                       |                                   |                   | Affected endpoints: F0 Male<br>Total Length (Day 28), F0 Female<br>Total Length (Day 28), F0 Female<br>Dry weight (Day 28), and F1 11-<br>day Survival                                                                                                                                                                                                               |                                 |             |
| Estuarine<br>amphipod<br>( <i>Leptocheirus</i><br><i>plumulosus</i> ) | 10d-Acute<br>(spiked<br>sediment) | Bixafen           | Survival:<br>Mean-measured bulk sediment:<br>$LC_{50}$ : >92.18 mg a.i./kg<br>NOAEC: 92.18 mg a.i./kg<br>LOAEC: >92.18 mg a.i./kg<br>Mean-measured pore water:<br>$LC_{50}$ : >29.6 µg a.i./L<br>NOAEC: 29.6 µg a.i./L<br>LOAEC: >29.6 µg a.i./L<br>Mean-measured overlying water:<br>$LC_{50}$ : >21.6 µg a.i./L<br>NOAEC: 21.6 µg a.i./L<br>DOAEC: >21.6 µg a.i./L | N/A                             | 2642713     |
| Marine algae                                                          | 1                                 |                   | Reliable with restrictions.                                                                                                                                                                                                                                                                                                                                          |                                 | 1           |
| Marine alga<br>( <i>Skeletonema</i><br><i>costatum</i> ; strain       | 96hr-Acute                        | Bixafen           | Using mean measured concentrations:                                                                                                                                                                                                                                                                                                                                  | N/A                             | 2642735     |
| SKEL,                                                                 |                                   |                   | Yield:                                                                                                                                                                                                                                                                                                                                                               |                                 |             |

| Organism                   | Exposure   | Test<br>substance | Endpoint value                                                                                 | Degree of toxicity <sup>a</sup> | PMRA<br>No. |
|----------------------------|------------|-------------------|------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| CCAP1077/5)                |            |                   | IC <sub>50</sub> : 151.1 μg a.i./L<br>NOAEC: 64.6 μg a.i./L                                    |                                 |             |
|                            |            |                   | Growth rate:<br>IC <sub>50</sub> : >241μg a.i./L<br>NOAEC: 64.6 μg a.i./L                      |                                 |             |
|                            |            |                   | Area under the curve (biomass):<br>IC <sub>50</sub> : 198.9 μg a.i./L<br>NOAEC: 64.6 μg a.i./L |                                 |             |
| Marine fish                |            |                   |                                                                                                |                                 |             |
| Sheepshead minnow          | 96hr-Acute | Bixafen           | 96 hr LC <sub>50</sub> : 0.151 mg a.i./L                                                       | Highly toxic                    | 2642708     |
| (Cyprinodon<br>variegatus) |            |                   | Sublethal effects were observed. <b>Reliable with restrictions.</b>                            |                                 |             |

#### Table 14 Screening Level Risk Assessment of Bixafen for Aquatic Organisms

| Organism                                                       | Exposure: Endpoint<br>descriptor                         | Endpoint<br>value<br>(mg a.i./L) | Converted<br>value <sup>1</sup><br>(mg a.i./L) | EEC<br>(mg a.i./L) | RQ        | LOC <sup>2</sup> = 1<br>exceeded |
|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------|-----------|----------------------------------|
| FRESHWATER SPEC                                                | IES                                                      |                                  |                                                |                    |           |                                  |
| Pelagic invertebrate                                           | Acute (48hr):<br>immobilization (EC <sub>50</sub> )      | 1.1                              | 0.55                                           | 0.0160             | 0.030     | No                               |
| (Daphnia magna)                                                | Chronic (21d):<br>reproduction (NOAEC)                   | 0.0535                           | 0.0535                                         | 0.0160             | 0.30      | No                               |
| Freshwater alga<br>( <i>Navicula pelliculosa</i> )             | Acute (96hr): yield (IC <sub>50</sub> )                  | 0.0159                           | 0.0080                                         | 0.0160             | 2.0       | Yes                              |
| Benthic invertebrate<br>(Chironomus riparius)                  | Chronic (28d spiked<br>water): emergence rate<br>(NOAEC) | 0.0156                           | 0.0156                                         | 0.0160             | 1.0       | Yes                              |
| Freshwater Fish<br>(Rainbow trout;<br>Oncorhynchus mykiss)     | Acute (96hr): LC <sub>50</sub>                           | 0.074                            | 0.0074                                         | 0.0160             | 2.2       | Yes                              |
| Freshwater Fish                                                | Acute (96hr): LC <sub>50</sub>                           | 0.108                            | 0.0108                                         | 0.0160             | 1.5       | Yes                              |
| (Fathead minnow;<br>Pimephales promelas)                       | Chronic (33d): body<br>length (NOAEC)                    | 0.0046                           | 0.0046                                         | 0.0160             | 3.5       | Yes                              |
| A                                                              | Acute (96hr): LC <sub>50</sub>                           | 0.074                            | 0.0074                                         | 0.0853             | 12        | Yes                              |
| Amphibians                                                     | Chronic (33d): body<br>length (NOAEC)                    | 0.0046                           | 0.0046                                         | 0.0853             | 19        | Yes                              |
| Freshwater alga<br>(bluegreen; Anabeana<br>flos-aquae)         | Acute (96hr): yield (IC <sub>50</sub> )                  | > 0.737                          | > 0.3685                                       | 0.0160             | <<br>0.04 | No                               |
| Freshwater alga (green;<br>Pseudokirchneriella<br>subcapitata) | Acute (72hr): yield (IC <sub>50</sub> )                  | 0.0685                           | 0.0343                                         | 0.0160             | 0.47      | No                               |

| Organism                                                          | Exposure: Endpoint<br>descriptor                                                 | Endpoint<br>value<br>(mg a.i./L) | Converted<br>value <sup>1</sup><br>(mg a.i./L) | EEC<br>(mg a.i./L) | RQ        | LOC <sup>2</sup> = 1<br>exceeded |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|------------------------------------------------|--------------------|-----------|----------------------------------|
| Vascular plant<br>(duckweed; <i>Lemna</i><br>gibba G3)            | Acute (7d): frond<br>number yield (IC <sub>50</sub> )                            | > 0.410                          | > 0.205                                        | 0.0160             | <<br>0.08 | No                               |
| Vascular plant<br>(duckweed; <i>Lemna</i><br><i>minor</i> )       | Acute (7d): frond<br>number yield (IC <sub>50</sub> )                            | > 0.747                          | > 0.374                                        | 0.0160             | <<br>0.04 | No                               |
| MARINE SPECIES <sup>3</sup>                                       |                                                                                  |                                  |                                                |                    |           |                                  |
| Marine invertebrate<br>(Eastern oyster;<br>Crassostrea virginica) | Acute (96hr): shell deposition (IC <sub>50</sub> )                               | > 0.360                          | > 0.180                                        | 0.0160             | <<br>0.09 | No                               |
| Marine invertebrate                                               | Acute (96hr): IC <sub>50</sub>                                                   | > 0.243                          | > 0.122                                        | 0.0160             | <<br>0.13 | No                               |
| (mysid shrimp;<br>Americamysis bahia)                             | Chronic (28d): body<br>length (NOAEC)                                            | 0.0886                           | 0.0886                                         | 0.0160             | 0.18      | No                               |
| Marine alga (diatom;<br>Skeletonema costatum)                     | Acute (96hr): yield (IC <sub>50</sub> )                                          | 0.151                            | 0.0755                                         | 0.0160             | 0.21      | No                               |
| Estuarine amphipod<br>(Leptocheirus<br>plumulosus)                | Acute (10d spiked<br>sediment): survival<br>(LC <sub>50</sub> , overlying water) | > 0.0216                         | > 0.0108                                       | 0.0160             | < 1.5     | Yes                              |
| Sheepshead minnow<br>(Cyprinodon<br>variegatus)                   | Acute (96hr): LC <sub>50</sub>                                                   | 0.151                            | 0.0151                                         | 0.0160             | 1.1       | Yes                              |

<sup>1</sup> Conversions for acute (LC<sub>50</sub>/EC<sub>50</sub>) values:1/10 for fish and amphibians; 1/2 for algae, macrophytes, pelagic, and benthic invertebrates. No conversion required for chronic (NOEC) values. <sup>2</sup> Level of concern (LOC) = 1.

|                                            | Rainbow<br>Trout<br>(acute) | Fathead<br>Minnow<br>(acute) | Fathead<br>Minnow<br>(chronic -<br>ELS) | Amphibian<br>(acute) | Amphibian<br>(chronic) | Freshwater<br>Diatom<br>(acute) | Benthic<br>Invertebrate<br>(chronic) | Estuarine<br>Amphipod<br>(acute) | Sheepshead<br>Minnow<br>(acute) |
|--------------------------------------------|-----------------------------|------------------------------|-----------------------------------------|----------------------|------------------------|---------------------------------|--------------------------------------|----------------------------------|---------------------------------|
| Screening Level                            | l Information               |                              |                                         |                      |                        |                                 |                                      |                                  |                                 |
| Converted<br>Ecotox<br>Endpoint<br>(mg/L)  | 0.0074                      | 0.0108                       | 0.0046                                  | 0.0074               | 0.0046                 | 0.0080                          | 0.0156                               | >0.0108                          | 0.0151                          |
| GROUND<br>Screening<br>Level EEC<br>(mg/L) | 0.0160                      | 0.0160                       | 0.0160                                  | 0.0853               | 0.0853                 | 0.0160                          | 0.016                                | 0.016                            | 0.016                           |
| AERIAL<br>Screening<br>Level EEC<br>(mg/L) | 0.00728                     | 0.00728                      | 0.00728                                 | 0.0388               | 0.0388                 | 0.00728                         | 0.00728                              | 0.00728                          | 0.00728                         |
| Ground Boom (                              | (Field) Sprayer I           | Medium (6% di                | rift)                                   |                      |                        |                                 | •                                    |                                  |                                 |
| EEC Refined<br>for Drift<br>(mg/L)         | 0.0010                      | 0.0010                       | 0.0010                                  | 0.0051               | 0.0051                 | 0.0010                          | 0.0010                               | 0.0010                           | 0.0010                          |
| RQ Refined for<br>Drift                    | 0.13                        | 0.089                        | 0.21                                    | 0.69                 | 1.1                    | 0.12                            | 0.062                                | <0.089                           | 0.064                           |
| LOC Exceeded                               | No                          | No                           | No                                      | No                   | Yes                    | No                              | No                                   | No                               | No                              |
| Aerial - Agricul                           | ltural Crops - M            | edium (23% dr                | ift)                                    |                      |                        |                                 |                                      |                                  |                                 |
| EEC Refined<br>for Drift<br>(mg/L)         | 0.0017                      | 0.0017                       | 0.0017                                  | 0.0089               | 0.0089                 | 0.0017                          | 0.0017                               | 0.0017                           | 0.0017                          |
| RQ Refined for<br>Drift                    | 0.23                        | 0.16                         | 0.36                                    | 1.2                  | 1.9                    | 0.21                            | 0.107                                | <0.155                           | 0.111                           |
| LOC Exceeded                               | No                          | No                           | No                                      | Yes                  | Yes                    | No                              | No                                   | No                               | No                              |

#### Table 15Refined Risk Assessment for Non-target Aquatic Organisms Exposed to Drift of Bixafen

|                                            | Rainbow<br>Trout<br>(acute) | Fathead<br>Minnow<br>(acute) | Fathead<br>Minnow<br>(chronic -<br>ELS) | Amphibian<br>(acute) | Amphibian<br>(chronic) | Freshwater<br>Diatom<br>(acute) | Benthic<br>invertebrate<br>(chronic) | Estuarine<br>amphipod<br>(acute) | Sheepshead<br>Minnow<br>(acute) |
|--------------------------------------------|-----------------------------|------------------------------|-----------------------------------------|----------------------|------------------------|---------------------------------|--------------------------------------|----------------------------------|---------------------------------|
| Screening Leve                             | el Information              |                              |                                         |                      |                        |                                 |                                      |                                  |                                 |
| Converted<br>Ecotox<br>Endpoint<br>(mg/L)  | 0.0074                      | 0.0108                       | 0.0046                                  | 0.0074               | 0.0046                 | 0.0080                          | 0.0156                               | >0.0108                          | 0.0151                          |
| GROUND<br>Screening<br>Level EEC<br>(mg/L) | 0.0160                      | 0.0160                       | 0.0160                                  | 0.0853               | 0.0853                 | 0.0160                          | 0.0160                               | 0.0160                           | 0.0160                          |
| Refined Assess                             | ment for Run-o              | ff                           |                                         |                      |                        |                                 |                                      |                                  |                                 |
| EEC Refined<br>for Run-off<br>(mg/L)       | 0.014                       | 0.014                        | 0.014                                   | 0.016                | 0.015                  | 0.014                           | 0.014                                | 0.014                            | 0.014                           |
| RQ Refined<br>for Run-off                  | 1.9                         | 1.3                          | 3.0                                     | 2.2                  | 3.3                    | 1.8                             | 0.90                                 | <1.3                             | 0.93                            |
| LOC<br>Exceeded                            | Yes                         | Yes                          | Yes                                     | Yes                  | Yes                    | Yes                             | No                                   | Yes                              | No                              |

#### Table 16Refined Risk Assessment for Non-target Aquatic Organisms Exposed to Run-off of Bixafen

## Table 17Toxic Substances Management Policy Considerations for Bixafen:<br/>Comparison to TSMP Track 1 Criteria

| TSMP Track 1                                       | TSMP Tra              |                    | Bixafen endpoints                                            |
|----------------------------------------------------|-----------------------|--------------------|--------------------------------------------------------------|
| Criteria                                           | Criterion             | value              |                                                              |
| CEPA toxic or CEPA                                 | Yes                   |                    | Yes                                                          |
| toxic equivalent <sup>1</sup>                      |                       |                    |                                                              |
| Predominantly                                      | Yes                   |                    | Yes                                                          |
| anthropogenic <sup>2</sup>                         |                       |                    |                                                              |
| Persistence <sup>3</sup> :                         | Soil                  | Half-life $\geq$   | Laboratory studies                                           |
|                                                    |                       | 182 days           | Yes: $DT_{50} = 963 - 1773$ days (aerobic)                   |
|                                                    |                       |                    | $DT_{50} = 819$ days (anaerobic)                             |
|                                                    |                       |                    | Field dissipation studies                                    |
|                                                    |                       |                    | Yes: $DT_{50} = 550$ and 748 days (Alberta; SFO)             |
|                                                    |                       |                    | Slow $t_{1/2} = 300$ days (DFOP) and $t_R = 110$ days (IORE) |
|                                                    | Water                 | Half-life $\geq$   | Yes: Total system representative half-lives range from 1144  |
|                                                    |                       | 182 days           | to 6793 days in aerobic water sediment systems.              |
|                                                    | Sediment              | Half-life $\geq$   | Yes: Total system representative half-lives range from 1144  |
|                                                    |                       | 365 days           | to 6793 days in aerobic water sediment systems.              |
|                                                    | Air                   | Half-life $\geq 2$ | No: AOPWIN (v1.92) predicted half-life $< 1$ day based on a  |
|                                                    |                       | days or            | 12 hour day                                                  |
|                                                    |                       | evidence of        |                                                              |
|                                                    |                       | long range         | Long range transport in air unlikely based on properties of  |
|                                                    |                       | transport          | parent.                                                      |
|                                                    |                       | F                  | r                                                            |
| Bioaccumulation <sup>4</sup>                       | Log K <sub>OW</sub> ≥ | 5                  | No: 3.3                                                      |
|                                                    | BCF > 500             |                    | No:                                                          |
|                                                    |                       |                    | BCFk,g,l = 381 (high concentration)                          |
|                                                    |                       |                    | BCFk,g,l = 454 (low concentration)                           |
|                                                    | $BAF \ge 500$         | )()                | Not available                                                |
| Is the chemical a TSMP Track 1 substance (all four |                       |                    | No, does not meet TSMP Track 1 criteria.                     |
| criteria must be met)?                             | 11401 1 540           | (un iou            |                                                              |
|                                                    |                       |                    |                                                              |

<sup>1</sup>All pesticides will be considered CEPA-toxic or CEPA toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (in other words, all other TSMP criteria are met).

<sup>2</sup>The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

<sup>3</sup> If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

<sup>4</sup>Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example, log K<sub>OW</sub>).

| Table 18         List of Supported Uses |
|-----------------------------------------|
|-----------------------------------------|

| Crops | Supported disease claim         | Rates and application interval |
|-------|---------------------------------|--------------------------------|
| Wheat | Control of tan spot             | Rate: 279 – 364 ml/ha          |
|       | (Pyrenophora tritici-repentis)  | No. seasonal applications: 1   |
|       | Control of stagonospora glume   | Rate: 364 ml/ha                |
|       | blotch (Stagonospora nodorum)   | No. seasonal applications: 1   |
|       | Control of septoria leaf blotch | Rate: 279 – 364 ml/ha          |
|       | (Septoria tritici)              | No. seasonal applications: 1   |
|       | Control of leaf rust (Puccinia  | Rate: 279 – 364 ml/ha          |

| Crops        | Supported disease claim                  | Rates and application interval       |
|--------------|------------------------------------------|--------------------------------------|
|              | <i>triticina = Puccinia recondita</i> )  | No. seasonal applications: 1         |
|              | Control of stripe rust ( <i>Puccinia</i> | Rate: 279 – 364 ml/ha                |
|              | striiformis)                             | No. seasonal applications: 1         |
|              | Control of stem rust ( <i>Puccinia</i>   | Rate: $279 - 364 \text{ ml/ha}$      |
|              | graminis)                                | No. seasonal applications: 1         |
|              | Control of powdery mildew                | Rate: 279 – 364 ml/ha                |
|              | (Blumeria graminis)                      | No. seasonal applications: 1         |
| Barley       | Control of septoria leaf blotch          | Rate: 279 – 364 ml/ha                |
| 2            | (Septoria passerinii)                    | No. seasonal applications: 1         |
|              | Control of leaf rust (Puccinia           | Rate: 279 – 364 ml/ha                |
|              | hordei)                                  | No. seasonal applications: 1         |
|              | Control of stripe rust (Puccinia         | Rate: 279 – 364 ml/ha                |
|              | striiformis)                             | No. seasonal applications: 1         |
|              | Control of stem rust (Puccinia           | Rate: 279 – 364 ml/ha                |
|              | graminis)                                | No. seasonal applications: 1         |
|              | Control of powdery mildew                | Rate: 279 – 364 ml/ha                |
|              | (Blumeria graminis)                      | No. seasonal applications: 1         |
| Oats         | Control of stem rust (Puccinia           | Rate: 279 – 364 ml/ha                |
|              | graminis)                                | No. seasonal applications: 1         |
|              | Control of crown rust (Puccinia          | Rate: 279 ml/ha                      |
|              | coronata)                                | No. seasonal applications: 1         |
|              | Control of powdery mildew                | Rate: 279 – 364 ml/ha                |
|              | (Blumeria graminis)                      | No. seasonal applications: 1         |
| Aerial appli | cation to cereal crops                   | 45 L water/ha                        |
| Soybean      | Suppression of brown spot                | Rate: 370 ml/ha                      |
| -            | (Septoria glycines)                      | No. seasonal applications: 2         |
|              |                                          | Application interval: $10 - 14$ days |
|              | Control of frogeye leaf spot             | Rate: 279 – 400 ml/ha                |
|              | (Cercospora sojina)                      | No. seasonal applications: 2         |
|              |                                          | Application interval: 10 – 14 days   |
|              | Control of Asian soybean rust            | Rate: 279 – 400 ml/ha                |
|              | (Phakopsora pachyrhizi)                  | No. seasonal applications: 2         |
|              |                                          | Application interval: $10 - 14$ days |

## Appendix II Supplemental Maximum Residue Limit Information— International Situation and Trade Implications

Bixafen is a new active ingredient which is concurrently being registered in Canada and the United States. The MRLs proposed for bixafen in Canada are the same as corresponding tolerances to be promulgated in the United States, except for certain commodities, in accordance with Table 1.

American tolerances for bixafen are listed in the <u>Electronic Code of Federal Regulations</u>, 40 CFR Part 180, by pesticide.

Currently, there are no Codex MRLs<sup>9</sup> listed for bixafen in or on any commodity on the Codex Alimentarius <u>Pesticide Residues in Food</u> website.

Table 1 compares the MRLs proposed for bixafen in Canada with corresponding American tolerances.

| Food Commodity                                                 | Canadian MRL (ppm) | American Tolerance (ppm)                                    |
|----------------------------------------------------------------|--------------------|-------------------------------------------------------------|
| Milk                                                           | 0.05               | 0.04                                                        |
| Fat, meat and meat byproducts of cattle, goat, horse and sheep | 0.2                | 0.08                                                        |
| eante, goui, noise and sheep                                   |                    | (Meat and fat of cattle, goats, sheep, horses)              |
|                                                                |                    | 0.4<br>(Meat byproducts of cattle,<br>goats, sheep, horses) |
| Eggs; fat, meat and meat<br>byproducts of hog and poultry      | 0.01               | Not established                                             |

## Table 1 Comparison of Canadian MRLs and American Tolerances (where different)

MRLs may vary from one country to another for a number of reasons, including differences in pesticide use patterns and the locations of the field crop trials used to generate residue chemistry data. For animal commodities, differences in MRLs can be due to different livestock feed items and practices.

<sup>&</sup>lt;sup>9</sup> The <u>Codex Alimentarius Commission</u> is an international organization under the auspices of the United Nations that develops international food standards, including MRLs.

Canada, the United States and Mexico are committed to resolving MRL discrepancies to the broadest extent possible. Harmonization will standardize the protection of human health across North America and promote the free trade of safe food products. Until harmonization is achieved, the Canadian MRLs specified in this document are necessary. The differences in MRLs outlined above are not expected to impact businesses negatively or adversely affect international competitiveness of Canadian firms or to negatively affect any regions of Canada.

## References

## A. List of Studies/Information Submitted by Registrant

1.0 Chemistry

**PMRA** 

| Document     |                                                                               |
|--------------|-------------------------------------------------------------------------------|
| Number       | Reference                                                                     |
| 2642829      | 2016, Tier 2 Summary of the Physical and Chemical Properties of the Active    |
| 2042027      | Substance F9650 (Bixafen/BYF 00587) and End-Use Products F9651-2 500,         |
|              | F9652-1 500, F9653-1 500, and F9654-1 500, DACO: 12.7                         |
| 2642835      | 2016, Tier III DOCUMENT N Overall Summary and Assessment of                   |
| 2042833      | Conclusions, DACO: 12.7                                                       |
| 2642807      | 2007, Bixafen (BYF 00587), pure substance Melting Point A.1. (OECD 102)       |
| 2042807      | Boiling Point A.2. (OECD 103) Thermal Stability (OECD 113), DACO: 2.14.4,     |
|              | 2.14.5, 830.7200, 830.7220                                                    |
| 2642808      | 2007, Bixafen, BYF 00587, technical substance Melting Point A.1. (OECD102)    |
| 2042808      | Boiling Point A.2. (OECD103) Thermal Stability (OECD113), DACO: 2.14.4,       |
|              | 2.14.5, 830.7200, 830.7220                                                    |
| 2642671      | 2007, Relative density of bixafen (BYF 00587) pure and technical substance,   |
| 2042071      | DACO: 2.14.6, 3.5.6, 830.7300                                                 |
| 2642677      | 2005, Vapour Pressure A.4 (OECD 104), DACO: 2.14.9, 830.7950                  |
| 2642805      | 2007, Physical characteristics color, physical state and odor of bixafen (BYF |
| 2012000      | 00587), pure substance and technical substance, DACO: 2.14.1, 2.14.2, 2.14.3, |
|              | 3.5.1, 3.5.2, 3.5.3, 830.6302, 830.6303, 830.6304                             |
| 2642664      | 2007, Spectral Data Set of BYF 00587, DACO: 2.16                              |
| 2642676      | 2005, Determination of the Water Solubility (Column elution method) of BYF    |
|              | 00587, DACO: 2.14.7, 2.14.8, 830.7840                                         |
| 2642674      | 2007, Solubility of bixafen (BYF 00587) in organic solvents, DACO: 2.14.7,    |
|              | 2.14.8, 830.7840                                                              |
| 2642673      | 2005, Partition Coefficient 1 - Octanol/Water (HPLC-Method), DACO: 2.14.11,   |
|              | 830.7550                                                                      |
| 2642672      | 2007, Dissociation contant of bixafen (BYF 00587) in water (screening         |
|              | method), DACO: 2.14.10, 8.2.3.2, 830.7370                                     |
| 2642669      | 2005, Determination of the pH-Value, DACO: 2.16                               |
| 2642668      | 2006, Storage Stability of BYF 00587, DACO: 2.14.14, 3.5.10, 830.6317         |
| 2642806      | 2014, Stability to elevated temperature, metals and metal ions and corrosion  |
|              | characteristics to plastic containers of Bixafen according to OCSPP 830.6313  |
|              | and OCSPP 830.6320, DACO: 2.14.13, 3.5.10, 3.5.14, 830.6313, 830.6320         |
| 2727260      | 2007, Determination of Bixafen (BYF 00587) Active Substance HPLC -            |
|              | external standard, DACO: 2.13.1 CBI                                           |
| 2645160      | 2007, Validation of HPLC-method AM004606MP2 BYF 00587 - Assay of              |
| 0 < 10 5 5 1 | technical grade active substance, DACO: 2.13.1                                |
| 2642764      | 2007, Validation of HPLC-method AM004606MP2 BYF 00587 Assay of                |
|              | Technical Grade Active Substance, DACO: 2.16                                  |
|              |                                                                               |

| 2645154 | 2015, Amendment no. 1 - Material accountability of technical bixafen (AE                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1698406), DACO: 2, 2.13.2, 2.13.3, 2.14 CBI                                                                                                       |
| 2645155 | 2015, Production process and starting materials for bixafen TC, DACO: 2.11.1, 2.11.2, 2.11.3 CBI                                                  |
| 2645156 | 2015, Discussion on the formation of impurities of bixafen TC, DACO: 2.11.4                                                                       |
|         | CBI                                                                                                                                               |
| 2645161 | 2007, Determination of bixafen (BYF 00587) active substance HPLC - external standard, DACO: 2.13.2                                                |
| 2679242 | 2016, Spectral data (NMR and MS) for selected specified impurities of bixafen, DACO: 2.13.2 CBI                                                   |
| 2645159 | 2015, Amendment no.1 - Validation of AM004706MP2 bixafen (BYF 00587) impurities in technical grade active substance - HPLC - external standard,   |
|         | DACO: 2.13.1 CBI                                                                                                                                  |
| 2679238 | 2014, Validation of AM004706MP1 - Bixafen (BYF 00587)- By-products in technical grade active substance HPLC - external standard, DACO: 2.13.1 CBI |
| 2748810 | 2015, Excerpt from the Bixafen Description of the Manufacturing Process of the Technical Grade Active Substance, DACO: 2.11.3 CBI                 |
| 2642665 |                                                                                                                                                   |
| 2642665 | 2007, Bixafen, BYF 00587, technical substance Oxidizing Properties A.17, DACO: 2.16                                                               |
| 2642817 | 2015, Method Validation for Determination of Bixafen in Soils, DACO: 8.2.2.1                                                                      |
| 2642751 | 2007, Analytical Method 00952/M001 for the Determination of Residues of                                                                           |
|         | BYF00587 and BYF00587-(CBI-removed) (BCS-AA-10008) in Soil by HPLC-                                                                               |
|         | MS/MS, DACO: 8.2.2.1                                                                                                                              |
| 2642740 | 2008, Analytical method 01073 for the determination of bixafen (BYF 00587)                                                                        |
| 2042740 | in drinking and surface water by HPLC-MS/MS, DACO: 8.2.2.3                                                                                        |
| 2643779 | 2015, Determination of Physical & Chemical Characteristics of F9651-2,                                                                            |
| 2043777 | DACO: 3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.4.1, 3.5.1, 3.5.11, 3.5.12, 3.5.2, 3.5.3, 3.5.6,                                                              |
|         | DACO. 5.2.1, 5.2.2, 5.2.5, 5.5.1, 5.4.1, 5.5.1, 5.5.11, 5.5.12, 5.5.2, 5.5.5, 5.5.0, 3.5.7, 3.5.8, 3.5.9 CBI                                      |
| 2643786 | 2015, Storage Stability and Container Corrosion Evaluation of F9651-2, DACO:                                                                      |
| 2043/00 |                                                                                                                                                   |
|         | 2.14.14, 3.5.10, 3.5.14, 830.6317, 830.6320                                                                                                       |

## 2.0 Human and Animal Health

| PMRA<br>Document<br>Number | Reference                                                                                                                                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2642765                    | 2008, BYF 00587 Mechanistic 14-day toxicity study in the rat by oral gavage (hepatotoxicity and thyroid hormone investigations), DACO: 4.3.8 |
| 2642766                    | 2005, Acute toxicity in the rat after oral administration, DACO: 4.2.1, 4.6.1, 870.1100                                                      |
| 2642767                    | 2005, Acute toxicity in the rat after dermal application, DACO: 4.2.2, 4.6.2, 870.1200                                                       |
| 2642768                    | 2006, Acute inhalation toxicity in rats, DACO: 4.2.3, 4.6.3, 870.1300                                                                        |
| 2642769                    | 2005, Acute Eye Irritation on Rabbits, DACO: 4.2.4, 4.6.4, 870.2400                                                                          |
| 2642770                    | 2005, Acute Skin Irritation/Corrosion on Rabbits, DACO: 4.2.5, 4.6.5, 870.2500, M4.5.2                                                       |
| 2642771                    | 2005, Local lymph node assay in mice (LLNA/IMDS), DACO: 4.2.6, 4.6.6, 870.2600                                                               |

| 2642772 | 2014, F9650 Technical: Local Lymph Node Assay (LLNA) in Mice, DACO: 4.2.6, 4.6.6, 870.2600                                                                                                               |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2642773 | 2004, BYF 00587 Exploratory 28-Day Toxicity Study in the Rat by Dietary<br>Administration, DACO: 4.3.3, 870.3050                                                                                         |  |  |  |  |  |
| 2642774 | 2004, BYF00587 Preliminary 28-day toxicity study in the mouse by dietary                                                                                                                                 |  |  |  |  |  |
| 2642775 | administration, DACO: 4.3.3, 870.3050<br>2006, BYF00587 Preliminary 28-day toxicity study in the rat by dietary                                                                                          |  |  |  |  |  |
| 2642776 | administration, DACO: 4.3.3, 870.3050<br>2005, BYF 00587 90-Day toxicity study in the rat by dietary administration,                                                                                     |  |  |  |  |  |
| 2642777 | DACO: 4.3.1, 4.7.1, 870.3100<br>2005, BYF00587 90-Day toxicity study in the mouse by dietary administration,                                                                                             |  |  |  |  |  |
| 2642778 | DACO: 4.3.1, 4.7.1, 870.3100<br>2009, Position Paper - Bixafen (BYF 00587) Contents: Questions and Response<br>by Bayer CropScience to the Request for a 90 Day Rat Study on Technical                   |  |  |  |  |  |
| 2642779 | Bixafen, DACO: 4.3.1, 4.7.1, 870.3100<br>2009, A 90-Day Toxicity Study in the Beagle Dog with Technical Grade BYF<br>00587 Administered by Oral Gavage (Amended Report), DACO: 4.3.2, 4.7.2,<br>870.3150 |  |  |  |  |  |
| 2642780 | 2016, Waiver request for 21/28-day dermal toxicity rat study with suspension concentrate end-use products of F9650, DACO: 4.3.5, 4.7.4, 870.3200                                                         |  |  |  |  |  |
| 2642781 | 2014, Bixafen technical (BYF 00587): 28-Day Dermal Toxicity Study in Wistar<br>Rats, DACO: 4.3.5, 4.7.4, 870.3200                                                                                        |  |  |  |  |  |
| 2642782 | 2016, Waiver request for a rat sub-chronic inhalation toxicity study for F9650, DACO: 4.3.6, 4.7.6, 870.3465                                                                                             |  |  |  |  |  |
| 2642783 | 2007, BYF 00587 Developmental toxicity study in the rabbits by gavage, DACO: 4.5.2, 4.5.3, 870.3700                                                                                                      |  |  |  |  |  |
| 2642784 | 2006, BYF 00587 Developmental toxicity study in the rat by gavage, DACO: 4.5.2, 4.5.3, 870.3700                                                                                                          |  |  |  |  |  |
| 2642785 | 2007, Technical Grade BYF 00587: A Two Generation Reproductive Toxicity<br>Study in the Wistar Rat, DACO: 4.5.1, 4.8, 870.3800                                                                           |  |  |  |  |  |
| 2642786 | 2006, Technical Grade BYF 00587: A Dose Range-Finding Reproductive<br>Toxicity Study in the Wistar Rat, DACO: 4.5.1, 4.8, 870.3800                                                                       |  |  |  |  |  |
| 2642787 | 2008, A One Year Toxicity Study in the Beagle Dog with Technical Grade<br>BYF 00587 Administered by Oral Gavage, DACO: 4.3.2, 4.4.1, 4.7.2, 870.4100                                                     |  |  |  |  |  |
| 2642788 | 2008, BYF 00587: Carcinogenicity study in the C57BL/6J mouse by dietary administration, DACO: 4.4.2, 4.4.3, 870.4200                                                                                     |  |  |  |  |  |
| 2642789 | 2008, BYF00587 Chronic toxicity and carcinogenicity study in the Wistar rat<br>by dietary administration, DACO: 4.4.4, 870.4300                                                                          |  |  |  |  |  |
| 2642790 | 2008, BYF 00587 Complementary chronic toxicity and carcinogenicity study in the male Wistar rat by dietary administration, DACO: 4.4.4, 870.4300                                                         |  |  |  |  |  |
| 2642791 | 2005, BYF 00587 <i>Salmonella</i> /microsome test plate incorporation and preincubation method, DACO: 4.5.4, 870.5100                                                                                    |  |  |  |  |  |
| 2642792 | 2006, BYF 00587 V79/HPRT-test in vitro for the detection of induced forward mutations, DACO: 4.5.5, 870.5300                                                                                             |  |  |  |  |  |
| 2642793 | 2006, BYF 00587 In vitro chromosome aberration test with Chinese Hamster V79 cells, DACO: 4.5.6, 870.5375                                                                                                |  |  |  |  |  |
| 2642794 | 2005, BYF 00587 Micronucleus-test on the male mouse, DACO: 4.5.7,<br>870.5395                                                                                                                            |  |  |  |  |  |

| 2642795 | 2016, Waiver request for sub-chronic neurotoxicity study with F9650, DACO: 4.5.12, 4.5.13, 870.6200                                                                                                                                             |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2642796 | 2015, An Oral (Gavage) Acute Neurotoxicity Study of F9650 Technical in Rats, DACO: 4.5.12, 4.5.13, 870.6200                                                                                                                                     |  |  |  |  |  |
| 2642798 | 2008, [Dichlorophenyl-UL-14C] BYF 00587: Absorption, Distribution,<br>Excretion and Metabolism in the Rat, DACO: 4.5.9, 870.7485                                                                                                                |  |  |  |  |  |
| 2642799 | 2007, [Pyrazole-5-14C] BYF 00587: Absorption, Distribution, Excretion and                                                                                                                                                                       |  |  |  |  |  |
| 2642800 | Metabolism in the Rat, DACO: 4.5.9, 870.7485<br>2015, An Escalating Single Dose Oral Pharmacokinetics Study in Male and<br>Female Sprague-Dawley Rats with F9650, DACO: 4.5.9, 870.7485                                                         |  |  |  |  |  |
| 2642801 | 2006, [Pyrazole-5-14C] BYF 00587: Distribution of the Total Radioactivity in<br>Male Rats Determined by Quantitative Whole Body Autoradiography,<br>Determination of the Exhaled 14CO2, DACO: 4.5.9, 870.7485                                   |  |  |  |  |  |
| 2642802 | 2007, [Dichlorophenyl-UL-14C]BYF 00587: Distribution of the total radioactivity in male rats determined by quantitative whole body autoradiography, determination of the exhaled 14CO2, DACO: 4.5.9, 870.7485                                   |  |  |  |  |  |
| 2642803 | 2016, Waiver request for an immunotoxicity study in rats for F9650, DACO: 870.78                                                                                                                                                                |  |  |  |  |  |
| 2115788 | Agricultural Reentry Task Force (ARTF). 2008. Data Submitted by the ARTF to Support Revision of Agricultural Transfer Coefficients.                                                                                                             |  |  |  |  |  |
| 2643810 | 2015, Amendment No. 2 to Analytical Method 01366 for the determination of BYF00587-pyrazole-4-carboxamide and BYF00587-desmethyl-pyrazole-4-carboxylic acid in/on plant material, DACO: 7.2.1,7.2.2,7.2.3                                       |  |  |  |  |  |
| 2643805 | 2015, Modification M001 of the analytical method 01366 for the determination of BYF 00587-pyrazole-4-carboxamide and BYF 00587-desmethyl-pyrazole-4-carboxylic acid in/on plant material, DACO: 7.2.1,7.2.2,7.2.3                               |  |  |  |  |  |
| 2643807 | 2006, Analytical Method 01012 for the Determination of Residues of BYF00587 and its Metabolite BYF00587-desmethyl in/on Plant Matrices by HPLC-MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                                                   |  |  |  |  |  |
| 2643808 | 2008, Amendment No. 1 to Analytical Method 01012 for the Determination of Residues of BYF 00587 and its Metabolite BYF00587-desmethyl in/on Plant Matrices by HPLC-MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                               |  |  |  |  |  |
| 2643809 | 2006, Analytical Method 00983 for the Determination of Residues of BYF00587 in/on Plant Matrices by HPLC-MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                                                                                         |  |  |  |  |  |
| 2643804 | 2008, Independent Laboratory Validation of the Analytical Method 00983 for<br>the Determination of Residues of BYF 00587 in/on Plant Matrices by HPLC-<br>MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                                        |  |  |  |  |  |
| 2642755 | 2007, Analytical method 01036 for the determination of residues of BYF00587 and its metabolite BYF00587-desmethyl in/on animal tissues by HPLC-MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                                                   |  |  |  |  |  |
| 2642756 | 2007, Analytical method 01063 for the determination of residues of BYF00587 and its metholite BYF00587-desmethyl in/on animal tissues, milk and eggs by HPLC-MS/MS, DACO: 7.2.1,7.2.2,7.2.3                                                     |  |  |  |  |  |
| 2642737 | 2007, Independent Laboratory Validation of the Analytical method 01063 for<br>the determination of residues of BYF00587 and its metabolite BYF00587-<br>desmethyl in/on animal tissues, milk and eggs by HPLC-MS/MS, DACO:<br>7.2.1,7.2.2,7.2.3 |  |  |  |  |  |

| 2642741 | 2007, Metabolism of [pyrazole-5-14C] BYF 00587 in soybeans after spray application, DACO: 6.3                                                                                                                               |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2642748 | 2007, Metabolism of [dichlorophenyl-UL-14C] BYF 00587 in soybeans after spray application, DACO: 6.3                                                                                                                        |
| 2642746 | 2007, Metabolism of [pyrazole-5-14C] BYF00587 in Wheat after Spray<br>Application, DACO: 6.3                                                                                                                                |
| 2642747 | 2007, Metabolism of [dichlorophenyl-UL-14C] BYF00587 in Wheat after<br>Spray Application, DACO: 6.3                                                                                                                         |
| 2642750 | 2015, Metabolism of [pyrazole-5-14C] Bixafen in Potatoes, DACO: 6.3                                                                                                                                                         |
| 2642749 | 2015, Metabolism of [dichlorophenyl-UL-14C] Bixafen in Potatoes, DACO: 6.3                                                                                                                                                  |
| 2642763 | 2007, Metabolism of [pyrazole-5-14C]BYF 00587 in confined rotational crops, DACO: 7.4.3                                                                                                                                     |
| 2642762 | 2006, Metabolism of [dichlorophenyl-UL-14C] BYF 00587 in confined rotational crops, DACO: 7.4.3                                                                                                                             |
| 2642685 | 2008, [Pyrazole-5-14C] and [Dichlorophenyl-UL-14C]BYF 00587:<br>Degradation in Soil Under Rotational Crops, DACO: 7.4.3                                                                                                     |
| 2642744 | 2007, Metabolism of [dichlorophenyl-UL-14C] BYF 00587 in the laying hen, DACO: 6.2                                                                                                                                          |
| 2642745 | 2007, Metabolism of [pyrazole-5-14C]BYF 00587 in the laying hen, DACO: 6.2                                                                                                                                                  |
| 2642742 | 2007, Metabolism of [dichlorophenyl-UL-14C] BYF 00587 in the lactating goat, DACO: 6.2                                                                                                                                      |
| 2642743 | 2007, Metabolism of [pyrazole-5-14C] BYF 00587 in the lactating goat, DACO: 6.2                                                                                                                                             |
| 2643811 | 2015, Storage stability of Bixafen and its metabolite BYF00587-desmethyl in/on dry bean seed and orange fruit for 24 months, DACO: 7.3                                                                                      |
| 2643812 | 2008, Storage stability of BYF 00587 and its metabolite BYF00587-desmethyl in/on wheat (grain, straw, green material), potato tuber, lettuce head and oil seed rape for 24 months Storage Period: 0 to 12 Months, DACO: 7.3 |
| 2643814 | 2009, Storage stability of BYF 00587 and its metabolite BYF00587-desmethyl in/on wheat (grain, straw, green material), potato tuber, lettuce head and oil seed rape for 24 months, DACO: 7.3                                |
| 2643813 | 2015, Storage Stability of BYF 00587-pyrazole-4-carboxamide and BYF 00587-desmethyl-pyrazole-4-carboxylic acid in/on Plant Matrices for 24 Months, DACO: 7.3                                                                |
| 2643803 | 2016, Residues of F9650 in Wheat Forage, Hay, Grain, Straw and Wheat Processed Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                                                                                                       |
| 2934416 | 2007, Determination of the residues of BYF 00587 in/on spring barley and winter barley after spraying of BYF 00587 (125 EC) in the field in Northern France, Sweden, the United Kingdom and Germany, DACO: 7.4.1, 7.4.2     |
| 2934417 | 2008, Determination of the residues of BYF 00587 in/on spring barley after spraying of BYF 00587 (125 EC) in the field in Northern France, Germany, the United Kingdom and Belgium, DACO: 7.4.1, 7.4.2                      |
| 2934418 | 2007, Determination of the residues of BYF 00587 in/on Spring barley and<br>Winter barley after spraying of BYF 00587 (125 EC) in the field in Southern<br>France, Italy, Spain and Portugal, DACO: 7.4.1, 7.4.2            |

| 2934419                                                                                                    | 2007, Determination of the residues of BYF 00587 in/on spring barley and winter barley after spraying of BYF 00587 (125 EC) in the field in Southern |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                            | France, Italy and Spain, DACO: 7.4.1, 7.4.2                                                                                                          |  |  |  |  |  |
| 2643791                                                                                                    | 2007, Determination of the residues of BYF 00587 in/on spring barley grain                                                                           |  |  |  |  |  |
|                                                                                                            | and the processed fractions (brewers's malt; malt culms; beer; brewers's yeast;                                                                      |  |  |  |  |  |
|                                                                                                            | brewers's grain; hops draff; pearl barley; pearl barley rub off) after spraying of                                                                   |  |  |  |  |  |
|                                                                                                            | BYF 00587 (125 EC) in the field in Sweden, Germany and Northern France,                                                                              |  |  |  |  |  |
|                                                                                                            | DACO: 7.4.5                                                                                                                                          |  |  |  |  |  |
| 2643802                                                                                                    | 2016, Residues of F9650 in Sorghum Forage, Grain, Stover and Sorghum                                                                                 |  |  |  |  |  |
| 0640001                                                                                                    | Processed Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                                                                                                     |  |  |  |  |  |
| 2643801                                                                                                    | 2016, Residues of F9650 in Field Corn Forage, Grain, Stover and Field Corn Processed Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                          |  |  |  |  |  |
| 2643793                                                                                                    | 2016, Residues of F9650 in Sweet Corn Forage, Kernels plus Cob with the                                                                              |  |  |  |  |  |
|                                                                                                            | Husk Removed, and Stover, DACO: 7.4.1, 7.4.2                                                                                                         |  |  |  |  |  |
| 2643800                                                                                                    | 2016, Residues of F9650 in Radish Roots and Tops, DACO: 7.4.1, 7.4.2                                                                                 |  |  |  |  |  |
| 2643799                                                                                                    | 2016, Residues of F9650 in Carrot Roots, DACO: 7.4.1, 7.4.2                                                                                          |  |  |  |  |  |
| 2643798                                                                                                    | 2016, Residues of F9650 in Sugar Beet and Sugar Beet Processed                                                                                       |  |  |  |  |  |
|                                                                                                            | Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                                                                                                               |  |  |  |  |  |
| 2643797                                                                                                    | 2016, Residues of F9650 in Potato and Potato Processed Commodities, DACO:                                                                            |  |  |  |  |  |
|                                                                                                            | 7.4.1, 7.4.2, 7.4.5                                                                                                                                  |  |  |  |  |  |
| 2643795                                                                                                    | 2016, Residues of F9650 in Soybean Seed and Soybean Processed                                                                                        |  |  |  |  |  |
|                                                                                                            | Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                                                                                                               |  |  |  |  |  |
| 2643794                                                                                                    | 2016, Residues of F9650 in Peanut Nutmeat, Hay and Peanut Processed                                                                                  |  |  |  |  |  |
|                                                                                                            | Commodities, DACO: 7.4.1, 7.4.2, 7.4.5                                                                                                               |  |  |  |  |  |
| 2643787                                                                                                    | 2008, Determination of the residues of BYF 00587 in/on the field rotational                                                                          |  |  |  |  |  |
|                                                                                                            | crops turnip, lettuce, winter wheat and spring wheat after spraying of BYF                                                                           |  |  |  |  |  |
|                                                                                                            | 00587 (125 EC) in the field in Germany, DACO: 7.4.4                                                                                                  |  |  |  |  |  |
| 2643788                                                                                                    | 2008, Determination of the residue of BYF 00587 in/on the field rotational                                                                           |  |  |  |  |  |
|                                                                                                            | crops turnip, lettuce, winter wheat and spring wheat after spraying of BYF                                                                           |  |  |  |  |  |
|                                                                                                            | 00587 (125 EC) in the field in Northern France, DACO: 7.4.4                                                                                          |  |  |  |  |  |
| 2643789                                                                                                    | 2008, Determination of the residues of BYF 00587 in/on the field rotational                                                                          |  |  |  |  |  |
| crops carrot, lettuce and winter wheat after spraying of BYF 00587 (125<br>the field in Spein, DACO: 7.4.4 |                                                                                                                                                      |  |  |  |  |  |
|                                                                                                            | the field in Spain, DACO: 7.4.4                                                                                                                      |  |  |  |  |  |
| 2642761                                                                                                    | 2008, Bixafen: Feeding Study with Dairy Cows, DACO: 7.5                                                                                              |  |  |  |  |  |
| 2642760                                                                                                    | 2007, Bixafen: Feeding Study Laying Hens (Gallus gallus domesticus), DACO: 7.5                                                                       |  |  |  |  |  |
| 2642810                                                                                                    | 2006, Comparison of the Effect of BYF 00587 Blood Coagulation Parameters                                                                             |  |  |  |  |  |
| 2042010                                                                                                    | of Male Wistar Rats Exposed To Vitamin K3 Adequate And Vitamin K3                                                                                    |  |  |  |  |  |
|                                                                                                            | Deficient Diets, DACO: 4.8                                                                                                                           |  |  |  |  |  |
| 2643781                                                                                                    | 2015, F9651-2: Acute Dermal Toxicity in Rats, DACO: 4.2.2,4.6.2,870.1200                                                                             |  |  |  |  |  |
| 2643782                                                                                                    | 2015, F9651-2: Acute Inhalation Toxicity in Rats, DACO: 4.2.3,4.6.3,870.1200                                                                         |  |  |  |  |  |
| 2643783                                                                                                    | 2015, F9651-2: Primary Eye Irritation in Rabbits, DACO: 4.2.4,4.6.4,870.2400                                                                         |  |  |  |  |  |
| 2643784                                                                                                    | 2015, F9651-2: Primary Eye Initiation in Rabbits, DACO: 4.2.4,4.0.4,870.2400                                                                         |  |  |  |  |  |
| 2010701                                                                                                    | 4.2.5,4.6.5,870.2500,M4.5.2                                                                                                                          |  |  |  |  |  |
| 2643785                                                                                                    | 2015, F9651-2: Local Lymph Node Assay (LLNA) in Mice, DACO:                                                                                          |  |  |  |  |  |
|                                                                                                            | 4.2.6,4.6.6,870.2600                                                                                                                                 |  |  |  |  |  |
| 2643780                                                                                                    | 2015, F9651-2: Acute Oral Toxicity - Up-And-Down Procedure in Rats,                                                                                  |  |  |  |  |  |
|                                                                                                            | DACO: 4.2.1,4.6.1,870.1100                                                                                                                           |  |  |  |  |  |

## 3.0 Environment

## PMRA

| Document |                                                                                                                                                                            |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number   | Reference                                                                                                                                                                  |
| 2642679  | 2005, BYF00587: Adsorption/Desorption of Five Soils, DACO: 8.2.2.2, 8.2.4.2, 835.1230                                                                                      |
| 2642680  | 2005, [14C]-BYF 00587: Hydrolysis in Buffer Solutions at pH 4, 7 and 9, DACO: 8.2.3.2, 835.2120                                                                            |
| 2642681  | 2006, [dichlorophenyl-UL14C] BYF 00587: Phototransformation in Water, DACO: 8.2.3.3.2, 835.2240                                                                            |
| 2642683  | 2016, [dichlorophenyl-UL-14C] and [pyrazole-5-14C] BYF 00587:<br>Phototransformation on Soil, DACO: 8.2.3.3.1, 835.2410                                                    |
| 2642684  | 2005, [Pyrazole-5-14C] & [Dichlorophenyl-UL-14C] BYF 00587: Aerobic Soil Metabolism in 4 EU Soils, DACO: 8.2.3.4.2, 835.4100                                               |
| 2642685  | 2008, [Pyrazole-5-14C] and [Dichlorophenyl-UL-14C] BYF 00587: Degradation in Soil Under Rotational Crops, DACO: 8.2.3.4.2, 835.4100                                        |
| 2642686  | 2016, F9650 Aerobic and Anaerobic Soil Metabolism Studies: GIS Soil Crosswalk<br>- Europe to North America, DACO: 8.2.3.4.2, 835.4100                                      |
| 2642687  | 2007, [Dichlorophenyl-UL-14C] and [Pyrazole-5-14C] BYF 00587: Anaerobic Soil Degradation, DACO: 8.2.3.4.4, 835.4200                                                        |
| 2642688  | 2015, Waiver Request for Anaerobic Aquatic Metabolism Study for F9650, DACO: 8.2.3.5.5, 8.2.3.5.6, 835.4400                                                                |
| 2642689  | 2016, Terrestrial Field Dissipation of Bixafen in Iowa, USA, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3, 835.6100                                                                     |
| 2642690  | 2016, Terrestrial Field Dissipation of Bixafen in Georgia, USA, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3, 835.6100                                                                  |
| 2642691  | 2015, Terrestrial Field Dissipation of Bixafen in New Jersey, USA, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3, 835.6100                                                               |
| 2642692  | 2016, Terrestrial Field Dissipation of Bixafen in Alberta, Canada, DACO: 8.3.2.1, 8.3.2.2, 8.3.2.3, 835.6100                                                               |
| 2642694  | 2007, Toxicity to the green lacewing <i>Chrysoperla carnea</i> Steph. ( <i>Neuroptera, Chrysopidae</i> ) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5 |
| 2642695  | 2007, Toxicity to the predatory mite <i>Typhlodormus pyri</i> Scheuten ( <i>Acari, Phytoxeiidae</i> ) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5    |
| 2642696  | 2007, Effect of BYF00587 EC 125 on the Parasitoid Aphidius rhopalosiphi,<br>Extended Laboratory Study - Aged Residue Test -, DACO: 9.2.6                                   |
| 2642697  | 2007, Toxicity to the parasitoid wasp <i>Anphidius rhopalosiphi (Hymenoptera: Braconidae)</i> using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.6            |
| 2642698  | 2006, Toxicity to the predatory mite <i>Typhlodromus pyri</i> Scheuten ( <i>Acari, Phytoseiidae</i> ) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.5                    |
|          |                                                                                                                                                                            |

| 2642699 | 2006, Toxicity to the parasitoid wasp <i>Aphidius rhopalosiphi</i> ( <i>Hymenoptera: Braconidae</i> ) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.6                                                  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2642701 | 2014, F9650 Technical (greater or equal 95% w/w): A laboratory study to determine the acute effects on the brood of the honey bee <i>Apis mellifera</i> L. ( <i>Hymenoptera: Apidae</i> ), DACO: 9.2.4.3 |  |  |  |  |  |
| 2642702 | 2015, Assessment of Effects on the Adult Honey Bee, <i>Apis mellifera</i> L., in a 10 Days Chronic Feeding Test under Laboratory Conditions, DACO: 9.2.4.2                                               |  |  |  |  |  |
| 2642703 | 2006, Acute Toxicity of BYF 00587 tech. to the Waterflea <i>Daphnia magna</i> in a Static Laboratory Test System, DACO: 850.1010, 9.3.2, 9.3.4, 9.3.5, 9.5.4, 9.8.6                                      |  |  |  |  |  |
| 2642704 | 2015, F9650: Acute Toxicity to Eastern Oyster ( <i>Crassestrea virginica</i> ), DACO: 850.1025, 9.4.2, 9.4.3, 9.4.4, 9.4.6, 9.5.4                                                                        |  |  |  |  |  |
| 2642705 | 2015, Acute Toxicity Test of F9650 Technical Using <i>Americamysisb bahia</i> , DACO: 850.1035, 9.4.2, 9.4.3, 9.4.4, 9.4.6, 9.5.4                                                                        |  |  |  |  |  |
| 2642706 | 2006, Acute toxicity of BYF 00587 (tech.) to the fish ( <i>Pimephales promelas</i> ) under static conditions, DACO: 850.1075, 9.3.5, 9.4.2, 9.4.3, 9.4.4, 9.4.6, 9.5.2.1, 9.5.2.2, 9.5.2.3, 9.5.4, 9.8.6 |  |  |  |  |  |
| 2642707 | 2006, Acute toxicity of BYF 00587 (tech.) to fish ( <i>Oncorhynchus mykiss</i> ) under static conditions, DACO: 850.1075, 9.3.5, 9.4.2, 9.4.3, 9.4.4, 9.4.6, 9.5.2.1, 9.5.2.2, 9.5.2.3, 9.5.4, 9.8.6     |  |  |  |  |  |
| 2642708 | 2015, Acute Toxicity Test of F9650 Technical Using Sheepshead Minnow ( <i>Cyprinodon Variegatus</i> ), DACO: 850.1075, 9.3.5, 9.4.2, 9.4.3, 9.4.4, 9.4.6, 9.5.2.1, 9.5.2.2, 9.5.2.3, 9.5.4, 9.8.6        |  |  |  |  |  |
| 2642709 | 2007, Influence of BYF 00587 (tech.) on development and reproduction output of the waterflea <i>Daphnia magna</i> in a static renewal laboratory test system, DACO: 850.1300, 9.3.3                      |  |  |  |  |  |
| 2642710 | 2015, F9650: Life-Cycle Toxicity Test of the Saltwater Mysid, <i>Americanysis bahia</i> , Conducted under Flow-Through Test Conditions, DACO: 850.1350, 9.4.5                                            |  |  |  |  |  |
| 2642711 | 2006, Early Life-Stage Toxicity of BYF 00587 tech. to Fish ( <i>Pimephales promelas</i> ), DACO: 850.1400, 9.5.3.1                                                                                       |  |  |  |  |  |
| 2642712 | 2007, [Dichlorophenyl-UL-14C] BYF 00587 Bioconcentration and Biotransformation in Fish ( <i>Lepomis macrochirus</i> ), DACO: 850.1730, 9.5.6                                                             |  |  |  |  |  |
| 2642713 | 2015, Acute 10-D Toxicity Test of F9650 Technical Using <i>Leptocheirus plumulosus</i> , DACO: 9.2.7                                                                                                     |  |  |  |  |  |
| 2642714 | 2009, <i>Chironomus riparius</i> 28-day chronic toxicity test with bixafen (tech.) in a water-sediment system using spiked sediment, DACO: 9.2.7                                                         |  |  |  |  |  |
| 2642715 | 2016, F9650: Life-Cycle Chronic Toxicity in Whole Sediment to Freshwater Midge, <i>Chironomus dilutus</i> , Using Spiked Sediment, DACO: 9.2.7                                                           |  |  |  |  |  |
| 2642716 | 2007, <i>Chironomus riparius</i> 28-day chronic toxicity test with bixafen (tech.) in a water-sediment system using spiked water Test item: BIX, DACO: 9.2.7                                             |  |  |  |  |  |
| 2642717 | 2005, Acute Oral Toxicity for Bobwhite Quail ( <i>Colinus virginianus</i> ) with BYF 00587 techn. a.s., DACO: 850.2100, 9.6.2.1, 9.6.2.2, 9.6.2.3, 9.6.4                                                 |  |  |  |  |  |
| 2642718 | 2015, Toxicity of F9650 Technical During an Acute Oral LD50 with the Canary (Serinus canaria), DACO: 850.2100, 9.6.2.1, 9.6.2.2, 9.6.2.3, 9.6.4                                                          |  |  |  |  |  |
| 2642719 | 2005, BYF 00587 (tech. a.s.).: 5-Day-Dietary LC50 for Mallard Duck ( <i>Anas platyrhynchos</i> ) GLP Study No.: E 206 2959-3, DACO: 850.2200, 9.6.2.4, 9.6.2.5                                           |  |  |  |  |  |

| 2642720 | 2006, BYF 00587 (tech. a.s.) 5-Day-Dietary LC50 Bobwhite Quail ( <i>Colinus virginianus</i> ) GLP Study No.: E 206 2934-6, DACO: 850.2200, 9.6.2.4, 9.6.2.5                                                                                                                           |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2642721 | 2007, BYF 00587 Effects of a Subchronical Dietary Exposure to Northern<br>Bobwhite Quails Including Effects on Reproduction and Behaviour GLP-Study<br>No.: E 205 3014-5, DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3                                                                   |
| 2642722 | 2009, Toxicity of Bixafen (BYF 00587) Technical on the 6-Week Reproduction to the Bobwhite Quail ( <i>Colinus virginianus</i> ), DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3                                                                                                            |
| 2642723 | 2008, Bixafen: Effects on a Subchronical Dietary Exposure to Northern Bobwhite<br>Quails Including Effects on Reproduction and Behaviour RepNo.: BAR/REPO11 /<br>M-284292-01-1, DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3                                                             |
| 2642724 | 2008, Additional Comments on study: Bixafen: Effects on a Subchronical Dietary Exposure to Northern Bobwhite Quails Including Effects on Reproduction and Behaviour, DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3                                                                        |
| 2642725 | 2008, Bixafen Effects On A Subchronic Dietary Exposure To Northern Bobwhite<br>Quails Including Effects On Reproduction And Behaviour GLP Study No: E 205<br>3014-5. REPNo: BAR/REP011/M-284292-01-1 Complementary Statistical<br>Analysis, DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3 |
| 2642726 | 2016, F9650: A Reproduction Study With The Mallard, DACO: 850.2300, 9.6.3.1, 9.6.3.2, 9.6.3.3                                                                                                                                                                                         |
| 2642727 | 2005, Effects of BYF 00587 (Acute Contact and Oral) on Honey Bees (Apis mellifera L.) in the Laboratory (GLP compliant study based on OECD 213 and 214 (1998)), DACO: 850.3020, 9.2.4.1                                                                                               |
| 2642728 | 2006, BYF 00587: Effects on Reproduction and Growth of Earthworms <i>Eisenia fetida</i> in Artificial Soil with 5% Peat (GLP compliant study based on OECD 222, 2004 and ISO 11268-2, 1998), DACO: 9.2.7                                                                              |
| 2642729 | 2015, F9650-1 (12.7 % w/w): A study to determine the effects on the seedling emergence and growth of terrestrial plants; according to OECD No. 208 (2006) and OCSPP 850.4100, DACO: 850.4100, 9.8.6                                                                                   |
| 2642730 | 2015, F9650-1 (12.7 % w/w): A study to determine the effects on the vegetative vigour of higher terrestrial plants according to OECD No. 227 (2006) and OCSPP 850.4150, DACO: 850.4150, 9.8.6                                                                                         |
| 2642731 | 2014, Toxicity of Bixafen to Duckweed ( <i>Lemna gibba</i> G3) Under Static-Renewal Conditions, DACO: 850.4400, 9.3.5, 9.5.4, 9.8.5, 9.8.6                                                                                                                                            |
| 2642732 | 2015, Aquatic Plant Toxicity Test of F9650 Technical Using <i>Lemna minor</i> , DACO: 850.4400, 9.3.5, 9.5.4, 9.8.5, 9.8.6                                                                                                                                                            |
| 2642733 | 2014, Toxicity to Bixafen Technical to the Cyanobacterium <i>Anabeana flos-auqae</i><br>During a 96 Hour Exposure, DACO: 9.8.2                                                                                                                                                        |
| 2642734 | 2006, <i>Pseudokirchneriella subcapitata</i> Growth Inhibition Test with BYF 00587, DACO: 850.5400, 9.8.2, 9.8.3, 9.8.6                                                                                                                                                               |
| 2642735 | 2014, Toxicity of Bixafen Technical to the Saltwater Diatom <i>Skeletonema costatum</i> During a 96 Hour Exposure, DACO: 850.5400, 9.8.2, 9.8.3, 9.8.6                                                                                                                                |
| 2642736 | 2014, Toxicity of Bixafen Technical to the Freshwater Diatom <i>Navicula pelliculosa</i> During a 96 Hour Exposure, DACO: 850.5400, 9.8.2, 9.8.3, 9.8.6                                                                                                                               |
| 2642757 | 2008, Determination of the storage stability of BYF00587 in soil, DACO: 8.6                                                                                                                                                                                                           |

| <ul> <li>2642813 2006, [Dichlorophenyl-UL-14C] and [Pyrazole-5-14C]-BYF 00587: Page 1<br/>Degradation and Retention in Two Water/Sediment Systems, DACO: 8.2.3.5.4</li> <li>2642814 2015, BYF 00587 Biodegradation, DACO: 8.6</li> <li>2642835 2016, Tier III Document N Overall Summary and Assessment of Conclusions,<br/>DACO: 12.7</li> <li>2731472 2017, Egg Reproduction Data, DACO: 9.6.3.1</li> <li>2731474 2017, Total Feed Consumption Data, DACO: 9.6.3.1</li> <li>2762267 2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i><br/>Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO:<br/>9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i><br/>Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC<br/>125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-<br/>DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-<br/>(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual<br/>application of 125 g Bixafen/ha or one single initial application of 930 g<br/>Bixafen/ha, DACO: 7.4.4</li> </ul> |         |                                                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>2642835 2016, Tier III Document N Overall Summary and Assessment of Conclusions, DACO: 12.7</li> <li>2731472 2017, Egg Reproduction Data, DACO: 9.6.3.1</li> <li>2731474 2017, Total Feed Consumption Data, DACO: 9.6.3.1</li> <li>2748804 2017, Predators, DACO: 9.2.5 CBI</li> <li>2762267 2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i> Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i> Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                        | 2642813 |                                                                                                                                                  |  |  |
| <ul> <li>DACO: 12.7</li> <li>2017, Egg Reproduction Data, DACO: 9.6.3.1</li> <li>2017, Total Feed Consumption Data, DACO: 9.6.3.1</li> <li>2017, Total Feed Consumption Data, DACO: 9.6.3.1</li> <li>2017, Predators, DACO: 9.2.5 CBI</li> <li>2762267</li> <li>2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i> Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2762268</li> <li>2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i> Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932</li> <li>2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2814251</li> <li>2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682</li> <li>2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684</li> <li>2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                    | 2642814 | 2015, BYF 00587 Biodegradation, DACO: 8.6                                                                                                        |  |  |
| <ul> <li>2731474 2017, Total Feed Consumption Data, DACO: 9.6.3.1</li> <li>2748804 2017, Predators, DACO: 9.2.5 CBI</li> <li>2762267 2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i> Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i> Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                         | 2642835 |                                                                                                                                                  |  |  |
| <ul> <li>2748804 2017, Predators, DACO: 9.2.5 CBI</li> <li>2762267 2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i><br/>Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i><br/>Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                   | 2731472 | 2017, Egg Reproduction Data, DACO: 9.6.3.1                                                                                                       |  |  |
| <ul> <li>2762267 2017, Amendment No. 1 to Toxicity to the predatory mite <i>Typhlodromus pyri</i><br/>Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO:<br/>9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i><br/>Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-<br/>DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on<br/>the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-<br/>(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual<br/>application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                       | 2731474 | 2017, Total Feed Consumption Data, DACO: 9.6.3.1                                                                                                 |  |  |
| <ul> <li>Scheuten (<i>Acari, Phytoseiidae</i>) in the laboratory BYF 00587 EC 125 G, DACO:<br/>9.2.5</li> <li>2762268 2017, Amendment No. 1 to Toxicity to the green lacewing <i>Chrysoperla carnea</i><br/>Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC<br/>125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-<br/>DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on<br/>the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-<br/>(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual<br/>application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                | 2748804 | 2017, Predators, DACO: 9.2.5 CBI                                                                                                                 |  |  |
| <ul> <li>Steph. (<i>Neuroptera, Chrysopidae</i>) using an extended laboratory test BYF 00587 EC 125 G, DACO: 9.2.5</li> <li>2807932 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2 in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2762267 | Scheuten (Acari, Phytoseiidae) in the laboratory BYF 00587 EC 125 G, DACO:                                                                       |  |  |
| <ul> <li>in Field Soil Samples, DACO: 8.6</li> <li>2814251 2017, Extraction and Identification of Potential Bixafen Metabolites TP1 and TP2<br/>in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-<br/>DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on<br/>the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-<br/>(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual<br/>application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2762268 | Steph. (Neuroptera, Chrysopidae) using an extended laboratory test BYF 00587 EC                                                                  |  |  |
| <ul> <li>in Field Soil Samples, DACO: 8.6</li> <li>2870323 2018, Extraction and Identification of Potential Bixafen Metabolites TP1 (BCS-DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2794682 2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2794684 2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2807932 |                                                                                                                                                  |  |  |
| <ul> <li>DF21195) and TP2 (BCS-AA10206) in Field Soil Samples, DACO: 8.6</li> <li>2014, Determination of the residues of Bixafen in/on soil in the field in Germany on the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2015, Comparison of estimated soil residues of Bixafen and its metabolite 3- (difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2814251 |                                                                                                                                                  |  |  |
| <ul> <li>the field site Laacher Hof plot 712/718, DACO: 7.4.4</li> <li>2015, Comparison of estimated soil residues of Bixafen and its metabolite 3-<br/>(difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual<br/>application of 125 g Bixafen/ha or one single initial application of 930 g</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2870323 |                                                                                                                                                  |  |  |
| (difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2794682 | •                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2794684 | (difluoromethyl)-1H-pyrazole-4-carboxylic acid (M44) following annual application of 125 g Bixafen/ha or one single initial application of 930 g |  |  |

#### 4.0 Value

#### PMRA

#### Document Number Refe

| Number  | Reference                                                                        |
|---------|----------------------------------------------------------------------------------|
| 2643815 | 2016, F9650, F9944 evaluation on soybean for foliar diseases efficacy and yield, |
|         | DACO: 10.2.3.4                                                                   |
| 2643816 | 2016, F9650, F9944 evaluation on soybean for foliar diseases efficacy and yield, |
|         | DACO: 10.2.3.4                                                                   |
| 2643817 | 2016, F9650, F9944 evaluation on soybean for foliar diseases efficacy and yield, |
|         | DACO: 10.2.3.4                                                                   |
| 2643818 | 2016, F9650, F9944 evaluation on soybean for foliar diseases efficacy and yield, |
|         | DACO: 10.2.3.4                                                                   |

- 2643819 2016, F9650, F9944 evaluation on soybean for foliar diseases efficacy and yield, DACO: 10.2.3.4
- 2643820 2016, F9650 series, F9944 evaluation on soybean for foliar diseases efficacy and yield, DACO: 10.2.3.4

| 2643821 | 2016, F9650 series, F9944 evaluation on soybean for foliar diseases efficacy and yield, DACO: 10.2.3.4              |
|---------|---------------------------------------------------------------------------------------------------------------------|
| 2643822 | 2016, F9650 series, F9944 evaluation on soybean for foliar diseases efficacy and yield, DACO: 10.2.3.4              |
| 2643823 | 2016, Spring Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643824 | 2016, Spring Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643825 | 2016, Spring Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643826 | 2016, Spring Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643827 | 2016, Winter Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643828 | 2016, F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                          |
| 2643829 | 2016, Winter Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643830 | 2016, Winter Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643831 | 2016, Winter Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643832 | 2016, Winter Wheat F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4             |
| 2643833 | 2016, F9651-1 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                               |
| 2643834 | 2016, F9651-1 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                               |
| 2643835 | 2016, F9651-1 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                               |
| 2643836 | 2016, F9650, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                          |
| 2643837 | 2016, F9650, F9944 Evaluation on Wheat for Leaf Disease Efficacy and Yield, DACO: 10.2.3.4                          |
| 2643840 | 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                   |
| 2643841 | 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield.<br>- Minto, MB -, DACO: 10.2.3.4 |
| 2643842 | 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                   |
| 2643843 | 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                   |
| 2643844 | 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4                   |

- 2643845 2016, F9650, F9651, F9944 evaluation on wheat for leaf disease efficacy and yield, DACO: 10.2.3.4
- 2643846 2016, 10.2.3.1 Efficacy Summary F9651 Fungicide Wheat, DACO: 10.6
- 2643847 2016, Value Summary for F9651-2 Fungicide, containing Bixafen and Tebuconazole, for Control of Diseases in Wheat, Barley, Oats and Soybeans, DACO: 10.1, 10.1, 10.2.1, 10.2.2, 10.2.3.1, 10.2.3.3, 10.2.4, 10.3.1, 10.3.2, 10.4, 10.5, 10.5.2, 10.5.3, 10.5.4, 10.5.5

#### **B.** Additional Information Considered

- i) Published Information
  - 1.0 Chemistry

None

| 2.0 | Human | and | Animal | Health |
|-----|-------|-----|--------|--------|
|     |       |     |        |        |

#### **PMRA**

| Document |                                                                               |
|----------|-------------------------------------------------------------------------------|
| Number   | Reference                                                                     |
| 1913109  | AHETF, 2009. Agricultural Handler Exposure Scenario Monograph: Open Cab       |
|          | Groundboom Application of Liquid Sprays. Report Number AHE1004.               |
|          | December 23, 2009.                                                            |
| 2572745  | AHETF, 2015. Agricultural Handler Exposure Scenario Monograph: Open Pour      |
|          | Mixing and Loading of Liquid Formulations. Report Number AHE1003-1.           |
|          | March 31, 2015.                                                               |
| 2172938  | AHETF, 2012. Agricultural Handler Exposure Scenario Monograph: Closed         |
|          | Cockpit Aerial Application of Liquid Sprays. Report Number AHE1007.           |
|          | January 20, 2012.                                                             |
| 2914470  | Fu X, Booth SL, Smith DE, 2007, Vitamin K contents of rodent diets: a review. |
|          | J Am Assoc Lab Anim Sci, 46:8-12. DACO: 4.8                                   |
|          |                                                                               |

3.0 Environment

None

4.0 Value

None