

Catalogue 11-528E Occasional

Environmental Perspectives 1993

Studies and Statistics

Data in Many Forms . . .

Statistics Canada disseminates data in a variety of forms. In addition to publications, both standard and special tabulations are offered on computer print-outs, microfiche and microfilm, and magnetic tapes. Maps and other geographic reference materials are available for some types of data. Direct access to aggregated information is possible through CANSIM, Statistics Canada's machine-readable data base and retrieval system.

How to Obtain More Information

Inquiries about this publication and related statistics or services should be directed to:
System of National Accounts,
National Accounts and Environment Division,
Statistics Canada, Ottawa, K1A OT6 (Telephone: 613-951-3765, Facsimile number: 613-951-3618) or to the Statistics Canada reference centre in:

St. John's	$(772-4073)$	Winnipeg	$(983-4020)$
Halifax	$(426-5331)$	Regina	$(780-5405)$
Montreal	$(283-5725)$	Edmonton	$(495-3027)$
Ottawa	$(951-8116)$	Calgary	$(292-6717)$
Toronto	$(973-6586)$	Vancouver	$(666-3691)$

Toll-free access is provided in all provinces and territories, for users who reside outside the local dialing area of any of the regional reference centres.

Newfoundland and Labrador	$1-800-563-4255$
Nova Scotia, New Brunswick	
\quad and Prince Edward Island	$1-800-565-7192$
Quebec	$1-800-361-2831$
Ontario	$1-800-263-1136$
Manitoba	$1-800-542-3404$
Saskatchewan	$1-800-667-7164$
Alberta	$1-800-282-3907$
Southern Alberta	$1-800-472-9708$
British Columbia (South and Central)	$1-800-663-1551$
Yukon and Northern B.C. (area served \quad by NorthwesTel Inc.)	
Northwest Territories (area served by \quad NorthwesTel Inc.)	Zenith 0-8913

How to order Publications

This and other Statistics Canada publications may be purchased from local authorized agents and other community bookstores, through the local Statistics Canada offices, or by mail order to Publication Sales, Statistics Canada, Ottawa, K1A OT6.

Telephone Number 1-613-951-7277
Facsimile Number 1-613-951-1584

National toll free order line 1-800-267-6677
Toronto
Credit card only 1-416-973-8018

Statistics Canada

National Accounts and Environment Division
System of National Accounts

Environmental Perspectives 1993

Studies and Statistics

Published by authority of the Minister responsible for Statistics Canada

- Minister of Industry, Science and Technology, 1993

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission from Licence Services, Marketing Division, Statistics Canada, Ottawa, Ontario, Canada K1A OT6.

March 1993

Price: Canada \$25.00
United States: US $\$ 30.00$
Other Countries: US\$35.00
Catalogue No. 11-528E

ISBN 0-660-14755-6
Ottawa
Version française de cette publication disponible sur demande ($\mathrm{n}^{\circ} 11-528 \mathrm{~F}$ au catalogue).

Note of Appreciation

Canada owes the success of its statistical system to a long-standing cooperation involving Statistics Canada, the citizens of Canada, its businesses and governments. Accurate and timely statistical information could not be produced without their continued cooperation and goodwill.

Printed on recycled paper.

Canadian Cataloguing in Publication Data

Main entry under title:

Environmental perspectives, 1993 : studies and statistics

Issued also in French under title:
Perspectives environnementales, 1993 : études et statistiques.
ISBN 0-660-14755-6
CS11-528E

1. Environmental indicators -- Canada.
2. Environmental protection -- Canada.
3. Conservation of natural resources -- Canada.
I. Statistics Canada. National Accounts and Environment Division.
II. Statistics Canada. System of National Accounts Branch.
III. Title.

HC113.5 E58 1993 333.7'0971
C93-099317-9

Environmental Perspectives 1993
 Studies and Statistics

Table of Contents

Introduction 1

1. Energy Consumption 3
2. Canadian Greenhouse Gas Emissions: An Input-Output Study 9
3. Pulp and Paper Industry Compliance Costs 19
4. Transportation of Dangerous Goods 27
5. Land Use Change Around Riding Mountain National Park 33
6. The 1991 Census of Agriculture: Land Management for Soil Erosion Control 47
7. Household Activity, Household Expenditures and the Environment 53
8. Pollution Abatement and Control Expenditures 59
9. Packaging Use and Disposition 63
10. Waste Management Industry Survey 67
11. Local Government Waste Management Practices Survey 69
12. Materials Recovery and Recycling by the Industrial Sector 75
13. Preliminary Estimates of the Value of Crude Oil and Natural Gas Reserves in Alberta 79

Technical Information

Introduction

Understanding changes in environmental quality in Canada demands a wide variety of information to portray environmental change, its causes and its impacts. Physical and biological data, compiled by scientific, environmental and natural resource agencies, contribute to the evaluation of water, air, land and biotic resources. Social and economic data on population, agriculture, manufacturing, transportation and energy are essential in describing the role human activities play in the process of environmental change.

Environmental Perspectives: Studies and Statistics is a new publication for disseminating the results of surveys and data development projects related to the environment. It brings together data from a variety of sources including surveys undertaken by Statistics Canada, the agency's Environmental Information System, and other government and non-government databases. The publication will appear between issues of the quinquennial Human Activity and the Environment which was last published in 1991 ${ }^{1}$.

Whereas Human Activity and the Environment is a comprehensive compendium of environmental data, this publication should be seen more as a selection of data and analysis that reflect the progress of Statistics Canada in developing a more complete set of environmental accounts and underlying data bases. The topics covered in this volume have not been chosen to provide a balanced view of environmental conditions and related activities, but rather to fill perceived gaps in the environmental information system.

This edition of the publication covers five general themes. Chapters 1 through 4 relate to the impact of industrial activity on the environment. The first two chapters present newly developed data on energy use and greenhouse gas emissions. The third brings together economic and environmental data in a cross-sectional analysis of the pulp and paper industry. In Chapter 4, the movement of dangerous goods by truck and rail is examined. Information on interprovincial movements by class of material is presented along with statistics on accidents.

Chapters 5 and 6 analyze land use and soil conservation. Chapter 5 presents a case study on the

[^0]changing use of land surrounding Riding Mountain $\mathrm{Na}-$ tional Park in Manitoba. More intensive land use around the park brings increased stress on park wildlife that use the surrounding area as part of their range. Chapter 6 contains results on soil conservation practices from the 1991 Census of Agriculture. Data on the prevention of soil erosion are presented on a provincial basis.

Chapter 7 combines data from the new Household Environment Survey with family expenditure information to provide an insight into environmental behaviour of households. Data pertaining to mode of travel to work, use of energy saving devices and many other practices having an environmental impact are examined in the context of various characteristics such as family income and dwelling type.

Chapters 8 through 12 deal with four new surveys related to recycling and pollution abatement. Chapter 8 presents pollution abatement and control expenditures by industry for 1989 as well as a six-year perspective on pollution abatement expenditures relative to total capital spending. Chapter 9 examines the 1990 survey of industrial packaging undertaken to provide benchmark data for the National Packaging Protocol which seeks to reduce packaging sent to disposal to 50% of the 1988 level by the year 2000 . Waste management is examined from the perspective of private contractors and local governments in Chapters 10 and 11 respectively. The results of the initial survey of private waste management reported in Chapter 10 depict a $\$ 1$ billion industry in 1989. Tables show financial data by province and firm size. Chapter 11 provides a preliminary look at the characteristics of waste management by local governments and the division of responsibilities for collection, disposal and recycling for those municipalities with a population greater than 50000 . Information is presented on recycling and hazardous waste programs as well as other aspects of waste management. Chapter 12 examines the prices of selected scrap and virgin materials in order to describe their respective behaviour in changing markets.

Finally, Chapter 13 reports on developmental work on resource accounting for oil and gas. Different valuation methods are compared and a series of estimates are provided for oil and gas reserves according to several assumptions about future prices and costs.

Acknowledgements

This publication was prepared by the National Accounts and Environment Division, Philip Smith, Director and Kirk Hamilton, Assistant Director. The book was edited by Craig Gaston and major contributions to the overall content and presentation were made by Gylliane Gervais, Robert Smith and Hélène Trépanier. The authors were as follows:

Alice Born

Craig Gaston
Alan Goodall
Kirk Hamilton
Marcia Santiago
Robert Smith
Douglas Trant
Michael Bordt, Jacques Delisle, Phillip Fong, Jeff Fritzsche, Yvan Gervais, Bruce Mitchell, Michel Pascal, René Piché, Philippe Rhul, Michel Vallières, Sylvain Venne and Robert Loggie all provided valuable advice. The authors are also indebted to Mitzi Ross as marketing coordinator and advisor, and Susie Boyd for technical help.

1 Energy Consumption

by Kirk Hamilton

Energy in general, and fossil fuel in particular, plays an important role in the interaction between human activities and the environment. Each stage in the production, transport, refining, transformation and consumption of energy commodities has actual or potential consequences for the state and quality of the environment.

The production of energy commodities often requires gross physical changes in the environment, in the form of open-pit mines for coal or oil sands, or flooding of large areas to provide reservoirs for hydro-electricity. The transport systems for these commodities may entail physical changes such as above-ground pipelines, or may produce undesirable side-effects such as spills. Refining of energy commodities carries with it the risk of emissions of noxious or poisonous substances to the environment. And their transformation (for example, burning fossil fuels or the fission of nuclear materials to produce electricity) and consumption produces a full range of possible environmental consequences: release of noxious substances, emissions of oxides of carbon, sulphur and nitrogen, and accumulations of solid wastes requiring disposal.

As a result of energy conservation policies and rapid price increases until 1986, the efficiency with which energy is used has changed considerably in recent years. An aggregate indicator of this change is the primary energy/GDP ratio, which declined from 17.3 megajoules (MJ) per constant 1986 dollar in 1981 to 15.5 MJ per dollar in 1986, a fall of over 10\% (Statistics Canada, 1991). This study aims to characterize energy use in Canada and to examine the macro-level changes that determine the overall efficiency of energy use.

To explore key aspects of the relationship between energy use and economic activity, detailed energy disposition accounts have been developed as part of the new National Accounts Environmental Component at Statistics Canada. These energy accounts measure the use of 9 major types of energy (coal, crude oil, natural gas, fuel oil, aviation gasoline, motor gasoline, liquefied petroleum gases, electricity and coke) for each of the 216 producing industries and 136 categories of final demand employed in the national input-output accounts (Statistics Canada, 1992a). A summary of the distribution of energy consumption by broad categories, based on these accounts, is shown in Table 1.

Table 1: Distribution of Energy Consumption

Sector	1971		1986	
	petajoules	percent	petajoules	percent
Business (excl. transport)	2737	52.4	3199	53.3
Transport	931	17.8	1139	19.0
Household	1551	29.7	1654	27.6
Total	5219	100.0	5992	100.0

Source:
Statistics Canada, Industry Division.
The organization of energy data in Table 1 requires some explanation. Household energy includes that consumed in rented dwellings. Transport energy use includes for-hire transportation industries and energy for the operation of private vehicles, but excludes energy used for ownaccount transport (e.g. delivery vans) in the business sector. Business energy use spans all energy used in agriculture, mining, manufacturing and services, but excludes energy converted from one form to another (e.g. coal to electricity) and energy products used as feedstocks. In this accounting scheme, use of own product by energy producers is included in energy use. Table 1 sums to total private energy consumption.

Table 1 shows that household energy use as a proportion of the total declined by 2% between 1971 and 1986, because of stronger growth in the energy used in the business sector and transport. Energy use in the business sector is highly concentrated, as seen in Table 2. In 1986 the five largest energy using industries accounted for 31% of total business sector energy use.

Table 2: Large Industrial Energy Consumers, 1986

Industry	petajoules
Pulp and paper	344
Iron and steel	216
Non-ferrous metals	175
Industrial chemicals	148
Petroleum refineries	114
Total	$\mathbf{9 9 7}$
Source:	
Statistics Canada, Industry Division.	

PRICES

Price is an obvious determinant of the demand for energy. It is worth examining two levels of prices. One is the international and domestic price for crude oil, the former reflecting worldwide demand and scarcity (or cartel pricing in the case of crude oil) and the latter reflecting this as well as domestic energy policy. The second is the price paid by Canadian residential consumers for delivered energy commodities, which reflects local market conditions as well as taxes. In Figures 1 and 2 these prices are expressed in dol-
lars per gigajoules so that they can be compared on a common basis of the energy content of the commodity.

As can be seen in Figure 1, crude oil prices have varied widely since the first OPEC oil shock in 1973. This figure compares imported crude oil, domestic crude oil and domestic natural gas prices. The striking feature of Canadian energy policy prior to 1984 was the establishment of a crude oil price substantially lower than the world price. These prices converged in 1984, but are not exactly equal because Figure 1 compares a domestic price that is weighted towards the well-head price in Alberta with the delivered price (including freight) of imported crude in Montreal. Natural gas prices at the field gate generally tracked the trends in crude oil prices but at a significantly lower level per unit of energy.

Figure 1: Crude Oil and Natural Gas Prices, 1971-1991

Source:
Canadian Petroleum Association, 1990.
Figure 2 compares the per-gigajoule prices (including taxes) of electricity, fuel oil and natural gas sold to households over the period 1980-1991. Electricity showed a steady increase in price over this period, whereas natural gas displayed both the lowest level and a virtually constant price. Fuel oil prices were much more erratic, falling sharply in 1986 (in step with crude oil prices), levelling off, then increasing in 1990 and 1991. It is noteworthy that electricity prices reached a level roughly 5 times those of natural gas by 1991 .

While Figures 1 and 2 display current or nominal prices, the movement of energy prices relative to other prices is also of interest. Table 3 shows the nominal prices of imported crude oil and residential electricity and fuel oil, for 1981 as well as 1991. In addition, this table shows the movement in each of these prices relative to other prices since 1981. Over this decade, the price of imported crude
oil declined substantially relative to other prices, while that of electricity showed a significant relative increase.

Figure 2: Residential Energy Prices, 1980-1991

Source:
Statistics Canada, 1992b

Table 3: Energy Prices and Indices

Commodity	1981	1991	1991	
	dollars per gigajoule			index
	6.93	4.18	0.41	
Imported crude oil	10.14	20.11	1.23	
Residential electricity	6.36	11.45	1.12	
Residential fuel oil				

Note:

The index is relative to changes in the general price level since 1981. In the case of crude oil the GDP implicit price index is used to measure the price level, while for the residential energy prices the consumer price index, excluding energy and food, is used. For example, an index of 1.0 for imported crude oil would indicate that imported crude prices moved at the same rate as the general price level from 1981 to 1991. Source:
Statistics Canada, Industry Division.

ENERGY INTENSITY OF BASIC MATERIALS

The energy intensiveness of a good or service is the total energy required in production directly (in the producing sector) and indirectly (by the producers of the inputs to the producing sector) per unit of output. For example, the energy intensity of an automobile consists of the energy consumed on the production line plus the energy required to make the steel, rubber, plastic and other component materials making up a car, divided by the dollar value of the car - this gives a measure in joules of energy per dollar of product. The data in the energy flow accounts and the in-put-output accounts to which they are linked permit straightforward energy intensity calculations (see, for instance, Hamilton, 1988).

By combining energy intensity in joules per dollar with producer prices it is possible to estimate direct and indirect energy requirements per physical unit of product. This is a particularly useful way to examine the changing energy intensiveness of basic materials over time. Because so much of buildings, other infrastructure and manufactured products are made up of lumber, steel, non-ferrous metals, paper products and cement, the energy intensiveness of these basic materials has a profound influence on the requirements for energy in the economy as a whole. Table 4 presents the estimated energy intensity of these products in 1971, 1981 and 1986.

Table 4: Energy Intensity of Basic Materials

Material	1971	1981	1986	$\begin{array}{r} \text { Decrease } \\ \text { 1971-86 } \end{array}$
	megajoules per tonne			percent
Lumber	1554	1669	1454	6.4
Puip and paper	24215	20921	17329	28.4
Iron and steel	23430	22035	18711	20.1
Non-ferrous metal	.	26757	20424	23.7
Cement	6567	5045	4373	33.4

Source:
Statistics Canada, National Accounts and Environment Division.
The figures in Table 4 and subsequent tables measure total use of energy commodities, exclusive of the amounts used as feedstocks or converted into other forms of energy (e.g. when burning coal to produce thermal electricity). Imported products used as inputs into the production of these materials are assumed to have the same energy intensity as if they were produced in Canada. The figures therefore represent a pure measure of the energy required along the chain of production from extraction or harvest to final product.

When the materials are heterogeneous, changes in the product mix of the producing sector may influence the estimation of energy intensity ${ }^{1}$. Classification changes did not permit estimation of the energy intensity of non-ferrous metals in 1971, and so the percentage decrease shown in Table 4 for this material is from 1981 to 1986.

What emerges from this table is a striking drop in energy intensity for basic materials. Lumber shows an anomalous rise in 1981. However, lumber is generally low in energy intensity, and few opportunities exist for energy conservation in its production because it is a relatively unprocessed raw material. Pulp and paper and cement show substantial declines in energy intensity, while metals declined more moderately (although this is a fall over 5 years rather than 15 in the case of non-ferrous metals).

[^1]
ENERGY INTENSITY OF FINAL EXPENDITURE

Another useful way to summarize energy intensiveness and its change over time is to examine the energy intensiveness of the different categories of final expenditure. This is shown in Table 5.

Table 5: Energy Intensity of Final Expenditure, 1981-1986

Category	1981	1982	1983	1984	1985	1986
Consumer expenditure	10.1	9.8	10.0	9.3	10.0	9.8
Investment in fixed capital	12.7	11.5	11.7	10.9	11.5	10.9
Government current expenditure	3.9	3.8	3.9	3.7	4.0	3.9
Exports	21.5	19.4	20.0	18.1	18.3	17.7
Imports	17.9	16.8	18.7	16.0	16.9	16.2

Source:
Statistics Canada, National Accounts and Environment Division.
It must be emphasized that this table presents not the energy consumed directly by (for instance) households, but rather the energy required to produce one dollar's worth of the whole spectrum of goods and services consumed by households. The energy consumed directly by households was shown in Table 1.

These figures reveal a consistent ranking of energy intensiveness by category of expenditure, with exports leading, followed closely by imports, then investment in fixed capital, consumer expenditure, and far behind, government current expenditure (which is largely wages and salaries and so does not entail significant energy use).

Notable declines in energy intensity from 1981 to 1986 include one of 14% for investment in fixed capital, 18% for exports and 10% for imports. The energy intensity of exports decreased by about 3.5% per year over this period, echoing the declines in energy intensiveness of basic materials measured earlier.

Some explanation is required for the row labelled "imports" in Table 5. The values reported in this row do not represent the actual energy intensities of our imports but rather, the energy intensities of these goods as if they were produced in Canada. The assumption implicit in these estimates is that foreign industries are exactly as energy intensive in the production of a particular commodity as are Canadian industries.

The results in Table 5 indicate that Canadian exports were approximately 20% more energy intensive than imports in 1981. By 1986 this gap had shrunk to 9%. Dollar

Table 6: Direct Energy Intensity by Industry, 1981-1986

Industry	1981	1982	1983	1984	1985	1986	1986	Annual change
	megajoules per constant 1981 dollar of output						rank	percent
1 Agriculture	8.1	7.4	10.5	7.3	7.5	7.2	14	- 4.6
2 Fishing and trapping	19.6	19.6	17.7	20.3	16.6	15.9	6	-3.6
3 Logging and forestry	6.6	5.4	5.3	4.4	5.5	6.7	15	-3.5
4 Mining	16.4	14.4	15.9	14.2	14.3	14.1	8	-3.5
5 Crude oil and natural gas	2.1	1.9	2.2	2.0	2.1	2.2	37	
6 Quarries and sand pits	13.0	16.3	12.8	11.8	11.5	12.1	9	-2.1
7 Service related to mineral extraction	10.5	10.5	9.4	9.6	9.8	9.7	11	-1.2
8 Food processing	3.1	3.2	3.0	2.9	3.5	3.8	28	1.2 3
9 Beverages	5.7	5.6	5.0	4.8	5.7	5.9	21	
10 Tobacco products	1.0	1.1	1.1	1.1	1.5	1.5	44	8.7
11 Rubber products	5.2	3.7	4.9	4.5	5.0	5.3	24	
12 Plastic products	3.2	3.4	3.1	3.0	3.3	3.4	30	
13 Leather products	1.7	1.7	1.8	1.9	2.6	2.4	36	8.8
14 Textiles	6.6	6.5	5.9	6.0	6.1	6.0	19	-1.7
15 Clothing	0.9	0.9	1.0	1.0	1.3	1.3	45	-1.7
16 Wood products	5.2	5.5	5.0	4.9	4.6	4.2	26	-3.9
17 Furniture	2.0	2.5	2.2	2.2	3.1	2.8	32	-3.1
18 Paper products	23.8	18.1	22.2	22.0	21.3	20.6	4	-2.7
19 Printing and publishing	1.1	1.2	1.2	1.1	1.5	1.6	42	-2.7 8.0
20 Primary metals	25.4	26.1	24.9	21.7	23.3	22.7	3	-2.6
21 Fabricated metals	2.8	3.0	3.1	3.3	3.7	3.8	29	-2.6 6.6
22 Machinery	1.9	2.5	2.4	2.3	2.8	2.6	33	6.4
23 Transport equipment	1.8	1.9	1.7	1.5	1.9	2.0	38	
24 Electrical products	1.8	2.1	1.6	1.5	1.8	1.7	41	
25 Non-metallic mineral products	25.6	26.0	23.8	23.7	24.2	24.8	2	\ldots
26 Refined petroleum products	7.5	8.2	7.9	7.9	8.1	6.6	17	\cdots
27 Chemical products	16.0	16.9	17.4	15.3	14.9	6.6 14.2	17	-3.0
28 Other manufacturing	1.9	1.9	1.8	1.8	2.3	2.6	34	6.3
29 Construction	2.1	2.0	1.8	1.9	1.9	1.8	40	6.3 -2.1
30 Transport	19.2	18.0	18.5	17.4	17.7	1.8 17.4	40	-2.1
31 Pipeline transport	42.4	37.7	27.4	34.4	41.8	36.0	1	-2.1
32 Storage	6.0	6.3	5.4	7.8	8.3	7.6	12	8.1
33 Communication	2.1	2.2	1.9	1.9	2.1	7.6 1.8	12	8.1
34 Electric power and other utilities	11.4	12.8	12.4	11.7	12.3	12.0	10	
35 Wholesale trade	5.4	5.3	4.7	4.9	4.7	4.1	27	-4.2
36 Retail trade	6.1	6.4	5.7	5.9	6.3	6.0	20	
37 Finance and real estate	6.0	7.0	6.8	6.2	7.4	7.3	13	4.1
38 Insurance	1.3	1.1	0.9	0.7	0.7	0.7	46	4.1 -13.3
39 Government royalties on resources	0.7	0.7	46	-13.3
40 Owner occupied dwellings	-	-	-	.	-		47	
41 Business services	1.5	1.4	1.4	1.4	1.6	1.6	43	
42 Educational services	5.9	6.1	5.5	5.9	7.4	6.6	16	\cdots
43 Health services	2.7	2.8	2.4	2.7	2.6	2.6	16 35	4.2
44 Accommodation and food	6.0	6.3	6.0	6.5	7.1	6.6	18	3.0
45 Amusement and recreation	3.5	3.7	3.4	3.2	3.4	3.3	31	
46 Personal services	6.1	6.0	5.1	4.9	4.7	4.8	25	-1.0
47 Other services	4.5	4.6	4.5	5.0	5.3	4.8 5.3	25	-4.9
48 Operating supplies	5.3		23	4.0
49 Travel, advertising and promotion	7.2	6.6	6.3	6.7	5.8	5.7	48	-4
50 Transport margins	.	.	.	6.7	5.8	5.7	22	-4.4

Note
Industries 48, 49 and 50 are fictive industries used for estimating the use of groups of commodities whose precise content is unknown.
Source:
Statistics Canada, National Accounts and Environment Division.
for dollar, therefore, Canada was a significant net exporter of energy embodied in the goods and services it traded.

DIRECT ENERGY INTENSITY BY INDUSTRY

Underlying the energy intensities presented in the preceding sections is the energy use per dollar of output of each of the 216 industries comprising the business sector of the input-output accounts. These direct energy intensities are presented for the years 1981 to 1986 at the level of 50 industries (see Table 6).

Although this table shows the rank of industries by energy intensiveness only for 1986, the ranking is remarkably stable over the years shown. Pipeline transport, with its high energy input and low value of output, ranks first, followed by the non-metallic mineral products industry (whose energy use is dominated by cement producers). These are followed in the top 5 by primary metals, paper products and the transport industry.

The annual changes in industry direct energy intensiveness were calculated over this period. Only those industries showing a significant trend appear in Table 6. While there are many instances of positive change (i.e. increasing energy intensiveness), these occur only for industries ranked very low in energy intensiveness. The majority

Table 7: Fuel and Electricity Shares by Industry, 1986

Industry	Coal	Natural Gas	Gasoline	Fuel oil	LPG	Electricity	Coke	Total
				ercent				terajoules
1 Agriculture	1.7	10.3	29.2	37.5	3.1	18.2	-	179243
2 Fishing and trapping	--	2.7	46.8	49.9	--	0.6	--	16704
3 Logging and forestry	--	1.1	17.6	79.3	0.7	1.3	--	37688
4 Mining	4.6	25.1	0.9	29.2	2.0	36.1	2.0	152067
5 Crude oil and natural gas	--	19.4	20.2	7.5	5.9	47.0	--	47015
6 Quarries and sand pits	-	10.9	7.0	67.2	--	14.7	--	10621
7 Service related to mineral extraction	-	13.4	24.6	46.9	--	15.1	--	30362
8 Food processing	--	70.6	4.1	9.9	1.2	14.0	-	114441
9 Beverages	--	79.2	3.9	x	x	10.3	--	23526
10 Tobacco products	--	x	x	x	${ }^{\mathrm{x}}$	25.4	--	1770
11 Rubber products	x	67.7	\times	X	0.6	21.0	.-	12816
12 Plastic products	x	54.1	2.2	3.8	x	38.7	--	12562
13 Leather products	\times	x	\times	x	x	21.6	--	2825
14 Textiles	x	x	0.6	x	0.6	17.6	--	32082
15 Clothing	--	59.5	x	7.0	\times	27.8	--	7190
16 Wood products	--	42.1	4.0	16.9	2.3	34.6	-	44321
17 Furniture	x	68.5	3.7	5.1	x	21.3	--	8962
18 Paper products	x	26.4	0.1	20.8	0.2	50.6	x	358294
19 Printing and publishing	--	60.4	5.0	2.6	2.0	30.0	--	12680
20 Primary metals	2.5	26.5	\times	\times	0.2	38.1	28.6	420190
21 Fabricated metal	--	76.6	2.7	3.2	1.7	15.8	--	48451
22 Machinery	x	72.3	3.7	3.5	x	19.2	x	17565
23 Transport equipment	x	x	x	x	x	20.4	x	68253
24 Electrical products	x	x	\times	x	\times	26.7	${ }^{\mathrm{x}}$	25379
25 Non-metallic minerals	18.6	\times	0.6	7.6	0.7	11.1	1.7	129473
26 Refined petroleum	x	41.1	x	\times	0.4	12.3	x	3529
27 Chemical products	\times	68.7	x	3.8	0.5	25.9	\times	242535
28 Other manufacturing	--	69.7	x	\times	\times	20.9	--	12309
29 Construction	x	x	60.0	29.8	2.4	3.9	--	105298
30 Transport industry	0.1	5.2	10.7	79.1	2.1	2.8	-	497737
31 Pipeline transport	\times	92.9	--	1.1	\times	6.0	--	84349
32 Storage	--	17.9	6.9	56.7	2.8	15.8	--	6713
33 Communication	--	18.7	28.8	26.9	4.3	21.3	--	24879
34 Electric power and other utilities	--	7.3	6.9	0.7	0.2	84.9	--	164023
35 Wholesale trade	x	13.9	54.9	14.8	4.2	11.9	\times	118028

Table 7: Fuel and Electricity Shares by Industry, 1986

Industry	Coal	Natural Gas	Gasoline	Fuel oil	LPG	Electricity	Coke	Total
	percent							terajoules
36 Retail trade	--	37.8	24.4	10.1	0.4	27.3	--	201296
37 Finance and real estate	--	50.3	4.7	20.8	0.6	23.6	--	294158
38 Insurance	--	24.4	19.8	20.9	2.2	32.6	--	4370
39 Government royalties	-	--	--	--	--	-.	-*	--
40 Owner occupied dwellings	-	--	--	--	-	--	--	--
41 Business services	-	22.8	42.4	20.0	1.8	13.0	-*	28918
42 Educational services	x	55.1	x	14.8	--	29.1	--	7395
43 Health services	X	19.2	30.1	35.5	x	12.9	--	22068
44 Accommodation and food	--	47.6	1.3	23.9	0.7	26.5	--	95703
45 Amusement and recreation	-	26.0	4.9	23.6	0.8	44.7	--	15399
46 Personal services	--	10.8	12.2	52.2	2.7	22.1	--	19837
47 Other services	-	16.1	52.7	19.2	1.5	10.6	--	30173
48 Operating supplies	--	--	--	--	-	.-	--	--
49 Travel, advertising and promotion	--	-	98.9	--	1.1	-*	--	69151
50 Transport margins	--	--	--	--	--	--	--	--

Industries 48, 49 and 50 are fictive industries used for estimating the use of groups of commodities where the precise commodity content is unknown
of the most energy intensive industries showed declines between 2.1% and 3.5% per year.

FUEL AND ELECTRICITY SHARES BY INDUSTRY

The analysis to this point has concentrated on total use of energy and not on the fuels that constitute this total. Table 7 shows the percentage share of each type of energy in total use, by industry, in 1986. In total, the dominant energy type is natural gas with a share of nearly 33%, followed by electricity at roughly 25% and fuel oil at 24%.

Coal shows up as only 2.5% of energy use in the primary metals industry because most of it is converted to coke before use - coke in turn constitutes 28.6% of the energy used in this sector. Natural gas is the major energy input to pipeline transport, but is also important in beverages and fabricated metals. Gasoline is the dominant energy source in wholesale trade, to power fleets of delivery vehicles. Fuel oil, which includes diesel and aviation gasoline, is the chief energy source for the transport industry and logging and forestry. Finally, electricity is the major energy input to the paper products industry.

SUMMARY

The distribution of energy consumption across broad sectors has changed little since 1971, and the use of energy in the business sector remains highly concentrated in a few large industries. Crude oil and natural gas prices have been extremely volatile since 1973, while residential energy prices, particularly for electricity, have risen faster than
the general price level since 1981. There is an overall trend towards increasing energy efficiency evident in the decreasing energy intensiveness of basic materials and in the direct use of energy per dollar of output in the major energy consuming industries. Among categories of final expenditure, exports, investment in fixed capital and imports, all showed marked declines in energy intensiveness from 1981 to 1986.

REFERENCES

Canadian Petroleum Association. Statistical Handbook. Calgary, 1990.
Hamilton, K.E. "Energy Intensiveness and Economic Performance Since 1971" in Canadian Economic Observer, 1: 12. Catalogue 11-010. Statistics Canada, Ottawa, 1988.

Statistics Canada. Human Activity and the Environment 1991. Catalogue 11-509, Ottawa, 1991.
----. The Input-Output Structure of the Canadian Economy. Catalogue 15-201, Ottawa, 1992a.
----. Energy Statistics Handbook. Catalogue 57-601, Ottawa, 1992 b .

2 Canadian Greenhouse Gas Emissions: An InputOutput Study

by Robert Smith ${ }^{1}$

INTRODUCTION

Statistics Canada has recently initiated development of a set of accounts that will form an environmental component for the Canadian System of National Accounts. Four accounts will comprise this component: a natural resource stock account, a natural resource use account, a waste and pollutant output account and an environmental expenditure account.

The work presented below has been undertaken as a pilot study for the waste and pollutant output account. This account will integrate information on the types, quantities and destinations of waste material generated by economic activity into a framework based on the Canadian input-output tables published annually by Statistics Canada. In the present study information on the types and quantities of greenhouse gases released from Canadian production and consumption activity have been analyzed using an augmented version of the 1985 input-output tables (Statistics Canada, 1989). The general method for augmenting the in-put-output tables used here is based on the work of Victor (1972). ${ }^{2}$

Greenhouse gas emissions have been chosen for this pilot account for two reasons. First, greenhouse gas emissions are currently under scrutiny in Canada and elsewhere because of the likelihood that increased atmospheric concentrations of these gases will create an enhanced greenhouse effect (see below). The federal government, for its part, has committed Canada to the stabilization of greenhouse gas emissions at 1990 levels by 2000 (Government of Canada, 1990). It is hoped that the work presented here will aid in the effort to meet this goal. Second, in contrast to many categories of waste emissions, a good deal of data are available for estimating greenhouse gas emissions. Thus, it is possible to present a very complete pilot account of these emissions.

[^2]
THE GREENHOUSE EFFECT

The atmosphere surrounding the earth consists almost entirely of nitrogen and oxygen, with the remaining portion comprised of a variety of gases found in very low concentrations. A certain group of these trace gases are responsible for what has come to be known as the "greenhouse effect", which can be briefly explained as follows.

Short wave solar radiation passes relatively unhindered through the earth's atmosphere to the surface of the planet. Objects on the surface absorb this incoming radiation and are warmed. The warmed objects, in turn, re-emit longer wavelength (infrared) radiation back into the atmosphere. The atmosphere is less transparent to infrared radiation than it is to short wave radiation however. Trace quantities of water vapour, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, nitrous oxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ and a few other gases absorb some of the out-going infrared radiation, re-radiating it back to the earth's surface. In this way they act like the glass covering on a greenhouse. By preventing a portion of the infrared radiation from escaping to space, these "greenhouse gases" keep global temperatures much warmer than would be the case in their absence.

It is worth noting that the greenhouse effect is a naturally occurring phenomenon; it has not been created by human activity. However, there is concern that humaninduced changes in the atmospheric concentrations of the greenhouse gases may significantly enhance the naturally occurring greenhouse effect. Although some evidence of the expected increase in global mean temperature has already been noted, an unequivocal demonstration of the enhanced greenhouse effect is not expected for at least another decade (Intergovernmental Panel on Climate Change, 1992). Studies have demonstrated conclusively, however, that the atmospheric concentrations of $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$ have significantly increased from their pre-industrial values as a result of anthropogenic emissions (ibid.). ${ }^{3}$ Humankind has also introduced a new and extremely powerful set of greenhouse gases into the atmosphere. Known collectively as the chlorofluorocarbons (CFCs), each of these has thousands of times the ability of CO_{2} to absorb infrared radiation.

ESTIMATED 1985 GREENHOUSE GAS EMISSIONS BY ECONOMIC SECTOR

Table 1 lists the greenhouse gases that are included in this study. Emissions of these gases result from the activities of businesses, households ${ }^{4}$ and governments. All three sectors purchase and consume commodities that either contain greenhouse gases that are released upon use

[^3](paints and solvents, for example) or that are converted to greenhouse gases as a result of use (fossil fuels are the most important example of the latter type of commodity). Using the emissions data discussed at the end of this chapter in combination with data from the 1985 input-output tables, it has been possible to estimate the 1985 greenhouse gas emissions from 49 industries and 4 categories of household and government expenditure. These estimates are shown in Table 2.

Table 1: Greenhouse Gases Included in this Study

Name	Formula / Acronym
Carbon dioxide	CO_{2}
Methane	CH_{4}
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$
Volatile organic carbon compounds	VOCs^{2}
Nitric oxide and nitrogen dioxide	NO_{x}
Carbon monoxide	CO

The data presented in Table 2 show that the electric power and other utilities industry (34) was the largest industrial emitter of CO_{2} in 1985. This industry also rates as the largest industrial emitter when ranked in terms of CO_{2} equivalent emissions. ${ }^{1}$ The transportation industry (30), primary metals industry (20), agriculture industry (1), and chemical products industry (27) make up the remainder of the top five industrial emitters in terms of CO_{2} equivalents.

The concentration of industrial greenhouse gas emissions is highlighted by the fact that these five industries alone accounted for almost 58% of total CO_{2} equivalent emissions from industries in 1985. The top ten emitters accounted for 76% of total industrial CO_{2} equivalent emissions.

A direct cause and effect relationship exists between fossil fuel consumption and greenhouse gas emissions. It is not surprising, then, that four of the top five CO_{2} equivalent emitting industries also rank among the five largest industrial consumers of fossil fuels. The agriculture industry stands out as something of an anomaly in this regard. It ranks fourth in terms of CO_{2} equivalent emissions, but eighth in terms of fossil fuel consumption. The reason for the relatively high ranking of the agriculture industry in

1. CO_{2} equivalent emissions are calculated using the concept of global warming potential (Intergovernmental Panel on Climate Change, 1992). Global warming potential (GWP) is the potential contribution to global warming over a specified time period (usually 20 or 100 years) of a given greenhouse gas relative to that of CO_{2}, which is assigned a GWP of 1 . When 100 years is the considered time period, methane is calculated to have a GWP of 11, and nitrous oxide to have a GWP of 270. This means, for example, that the emission of one tonne of CH_{4}, considered over a period of 100 years from the date of emission, is equivalent to the emission of 11 tonnes of CO_{2} in terms of its potential contribution to global warming.
No GWP values exist for VOCs, NO_{x} and CO. Thus, it is not possible to include these gases in CO_{2} equivalent emission estimates. The reader is cautioned to keep this exclusion in mind when interpreting the CO_{2} equivalent emission data presented here.

Table 2: Greenhouse Gas Emissions by Sector, 1985

	CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO	CO_{2}	CO_{2} equiv. ${ }^{1}$
Sector	kilotonnes								
								rank	
Business sector									
1 Agriculture	9525	24663	973	16	64	127	610	8	4
2 Fishing and trapping	1134	1187	--	--	10	14	96	29	29
3 Logging and forestry	2076	2151	--	--	10	30	88	21	21
4 Mining	6563	8220	140	--	7	48	81	14	12
5 Crude oil and natural gas	7845	16459	779	--	33	184	143	11	6
6 Quarries and sand pits	474	488	.-	--	1	7	10	35	35
7 Services related to mineral extraction	2303	2381	--	-	14	29	136	20	20
8 Food processing	4773	4816	--	--	10	9	33	15	16
9 Beverages	1054	1064	--	--	2	3	8	30	30
10 Tobacco products	63	63	--	--	.-	--	..	46	46
11 Rubber products	511	514	--	--	5	2	1	34	34
12 Plastic products	350	353	--	--	1	--	2	40	40
13 Leather products	126	127	--	--	--	45	45
14 Textiles	1263	1269	--	-.	2	2	6	27	28
15 Clothing	231	233	--	--	-.	--	2	43	43
16 Wood products	1796	1815	.-	--	48	10	860	23	23
17 Furniture	315	318	--	--	4	--	2	42	42
18 Paper products	9985	10046	--	--	19	38	96	7	9
19 Printing and publishing	423	427	.-	--	1	1	4	38	38
20 Primary metals	24492	25060	--	2	15	35	449	3	3
21 Fabricated metals	2002	2017	--	--	12	2	8	22	22
22 Machinery	760	766	--	--	3	1	4	33	33
23 Transport equipment	2772	2791	--	--	28	4	11	19	19

Table 2: Greenhouse Gas Emissions by Sector, 1985

	CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO	CO_{2}	CO_{2} equiv. ${ }^{1}$
Sector	kilotonnes							rank	
24 Electrical products	989	995	-	--	4	1	7	31	31
25 Non-metallic minerals	12678	12721	--	--	5	27	62	4	7
26 Refined petroleum	8201	8302	--	--	51	39	240	10	11
27 Chemical products	12612	16903	--	16	233	29	31	5	5
28 Other manufacturing	450	454	--	--	3	1	3	36	36
29 Construction	7511	7848	1	1	132	93	841	12	13
30 Transport industry	33713	34874	14	4	98	259	614	2	2
31 Pipeline transport	4519	4891	32	--	--	--	--	16	15
32 Storage	418	423	--	--	--	--	3	39	39
33 Communication	1417	1453	--	--	8	7	63	25	26
34 Electric power \& other utilities	84540	85300	16	2	15	272	142	1	1
35 Wholesale trade	7239	7537	1	1	60	48	418	13	14
36 Retail trade	8760	8983	1	1	44	34	305	9	10
37 Finance and real estate	11444	11540	--	--	9	10	66	6	8
38 Insurance	161	165	--	--	1	1	5	44	44
39 Government royalties on resources	-	-	-	-	-	-	-
40 Owner occupied dwellings	-	-	-	-	-	-	-	\cdots	\ldots
41 Business services	1412	1456	--	--	9	7	66	26	25
42 Education services	330	332	--	-	--	-	1	41	41
43 Health services	1258	1290	--	--	6	4	41	28	27
44 Accommodation and food	4331	4361	-	--	1	2	10	17	18
45 Amusement and recreation	440	445	-	--	1	1	4	37	37
46 Personal services	946	961	--	--	21	2	14	32	32
47 Other services	1673	1736	--	--	13	9	90	24	24
48 Operating supplies	-	-	-	-	47	-	-	47	47
49 Travel, advertising \& promotion	4300	4536	1	1	55	39	386	18	17
50 Transportation Margins	-	-	-	-	-	-	
Sub-total, business sector	290181	323596	1962	48	1106	1432	6060		
Household sector									
Motor fuels \& lubricants	40694	44709	11	14	374	251	2514
Home heating fuels	48719	48986	2	1	111	41	641
All other goods	3007	3061	0	0	101	7	55
Government - current expenditures	17859	18225	2	1	59	52	289
Sub-total, household and government sectors	110278	114980	15	17	645	351	3499
Total, whole economy	400459	438576	1977	65	1750	1783	9559

Notes:

Readers familiar with input-output accounting will note that the format of this table does not correspond exactly to that of the national input-output tables. Specifically, the following categories of final demand have been excluded: fixed capital formation, inventory change, imports and exports. These have been excluded because they do not result in direct greenhouse gas emissions and because their exclusion simplifies the presentation.
Industries 48,49 and 50 are fictive industries used for estimating the use of groups of commodities whose precise content is unknown.
${ }_{1} \mathrm{CO}_{2}$ equivalent emissions include CO_{2} emissions plus $\mathrm{N}_{2} \mathrm{O}$ and CH_{4} emissions expressed as equivalent CO_{2} emissions.
terms of CO_{2} equivalents is found in its very large emissions of CH_{4} and $\mathrm{N}_{2} \mathrm{O}$. Farm animals, cattle in particular, release a great deal of CH_{4} during their digestion processes. This accounts for almost all of the CH_{4} emissions from the agriculture industry. Nitrification processes in soils to which nitrogenous fertilizers have been applied account for the very large emissions of $\mathrm{N}_{2} \mathrm{O}$. The agriculture industry is estimated to have accounted for 50% of total industrial CH_{4} emissions and 33% of total industrial $\mathrm{N}_{2} \mathrm{O}$ emissions in $1985 .{ }^{1}$

Table 2 shows an estimated 114980 kt of CO_{2} equivalent emissions from households and governments in 1985, which represents more than 26% of the economy-wide emissions. The majority (93%) of household and govern-

1. Had it been possible to include landfill CH_{4} emissions in this study, other industries would have shown higher CH_{4} emissions in Table 2 to the extent that they contribute to bio-degradable material in landfill sites. Since landfill CH_{4} emissions represent 38% of total CH_{4} emissions as estimated by Environment Canada (Jaques, 1992, p. xviii), this exclusion puts the agriculture industry in an unfairly poor light in comparison to other industries.
ment CO_{2} equivalent emissions come from the consumption of motor and heating fuels.

The conventional wisdom that industry, especially heavy manufacturing, is the major polluter in the economy is borne out by the results presented in Table 2, at least in terms of greenhouse gas emissions. It should not be left unsaid, however, that households account for more CO_{2} equivalent emissions than any single industry.

GREENHOUSE GAS INTENSITY OF PRODUCTION

It is possible, using an input-output model, to estimate the greenhouse gas emissions associated with the delivery of $\$ 1000$ of a given commodity (that is, a good or a service) to final consumption. ${ }^{1}$ The nature of input-output models is such that both the direct and indirect emissions associated with commodity production can be included in these estimates. Direct emissions are defined as the emissions from the commodity producing industry. Emissions

1. Final consumption includes household consumption expenditure, investment in fixed capital, inventory change, government current expenditure and net exports.
from those industries that supply the producing industry with the inputs used in the commodity's production are defined as indirect emissions. Table 3 shows the direct and indirect greenhouse gas emissions associated with the delivery to final consumers of $\$ 1000$ worth of each of 92 unique commodities.

The first value in Table 3 indicates that in 1985 each $\$ 1000$ worth of grain purchased by final consumers resulted in the emission of an estimated 0.8963 t of CO_{2} from Canadian industries. The other values shown in Table 3 can be similarly interpreted.

It is interesting to compare the greenhouse gas intensity of various commodities but, before doing so, a note of caution is in order. In many cases, more than one commodity is produced by a given industry. For example, both grains and live animals are produced by the agriculture industry. In these cases, the greenhouse gas intensity of the co-produced commodities will be identical, and will reflect the average intensity of one unit of "production" from the industry regardless of what commodities comprise this production. The reader is warned, then, not to take the rankings of co-produced commodities as absolute, but in-

Table 3: Greenhouse Gas Intensity of Commodities, 1985

Commodity	CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO	CO_{2}	CO_{2} equiv. ${ }^{1}$
	tonnes per thousand dollars								rank
1 Grains	0.8963	1.7768	0.0555	0.0010	0.0054	0.0087	0.0386	28	12
2 Live animals	0.8963	1.7768	0.0555	0.0010	0.0054	0.0087	0.0386	27	11
3 Other agricultural products	0.8968	1.7707	0.0549	0.0010	0.0053	0.0087	0.0384	26	13
4 Forestry products	0.7561	0.8194	0.0033	0.0001	0.0037	0.0080	0.0255	34	43
5 Fish landings	1.1486	1.2268	0.0022	0.0002	0.0091	0.0134	0.0859	19	25
6 Hunting \& trapping products	1.1486	1.2268	0.0022	0.0002	0.0091	0.0134	0.0859	20	26
7 Iron ores \& concentrates	1.0858	1.2866	0.0158	0.0001	0.0019	0.0068	0.0136	23	24
8 Other metal ores \& concentrates	1.2093	1.3826	0.0133	0.0001	0.0020	0.0063	0.0165	17	20
9 Coal	1.0859	1.2867	0.0158	0.0001	0.0019	0.0068	0.0136	22	23
10 Crude mineral oils	0.4835	0.7761	0.0266	0.0000	0.0017	0.0071	0.0082	66	46
11 Natural gas	0.4871	0.7775	0.0264	0.0000	0.0018	0.0071	0.0083	65	45
12 Non-metallic minerals	0.8894	1.0660	0.0136	0.0001	0.0026	0.0079	0.0134	29	28
13 Services incidental to mining	0.8305	0.8795	0.0020	0.0001	0.0042	0.0075	0.0329	30	41
14 Meat products	0.7083	1.0286	0.0193	0.0004	0.0033	0.0046	0.0198	40	30
15 Dairy products	0.7091	1.0272	0.0191	0.0004	0.0032	0.0046	0.0197	39	34
16 Fish products	0.7115	1.0285	0.0190	0.0004	0.0032	0.0047	0.0201	36	31
17 Fruit \& vegetable preparations	0.7051	1.0188	0.0187	0.0004	0.0032	0.0046	0.0196	42	36
18 Feeds	0.7050	1.0165	0.0185	0.0004	0.0032	0.0046	0.0196	43	37
19 Flour, wheat, meal \& other cereals	0.7093	1.0274	0.0191	0.0004	0.0032	0.0046	0.0197	38	32
20 Breakfast cereal \& bakery products	0.6905	0.9618	0.0173	0.0003	0.0032	0.0044	0.0189	45	40
21 Sugar	0.7093	1.0274	0.0191	0.0004	0.0032	0.0046	0.0197	37	33
22 Miscellaneous food products	0.7061	1.0209	0.0188	0.0004	0.0033	0.0046	0.0197	41	35
23 Soft drinks	0.6271	0.6816	0.0025	0.0001	0.0019	0.0025	0.0092	49	52
24 Alcoholic beverages	0.6270	0.6815	0.0025	0.0001	0.0019	0.0025	0.0092	50	53
25 Tobacco, processed unmanufactured	0.4016	0.5012	0.0066	0.0001	0.0017	0.0023	0.0100	78	69
26 Cigarettes \& tobacco, manufactured	0.4016	0.5012	0.0066	0.0001	0.0017	0.0023	0.0100	79	70
27 Tires \& tubes	0.5814	0.6486	0.0012	0.0002	0.0045	0.0022	0.0053	55	54

Table 3: Greenhouse Gas Intensity of Commodities, 1985

Commodity		CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO	CO_{2}	CO_{2} equiv. ${ }^{1}$
		tonnes per thousand dollars							rank	
28	Other rubber products	0.5595	0.6300	0.0015	0.0002	0.0041	0.0021	0.0054	57	58
29	Plastic fabricated products	0.6252	0.6957	0.0015	0.0002	0.0045	0.0022	0.0067	51	51
30	Leather \& leather products	0.3737	0.4205	0.0018	0.0001	0.0017	0.0015	0.0050	81	77
31	Yarns \& man made fibres	0.6046	0.6437	0.0011	0.0001	0.0025	0.0018	0.0052	52	55
32	Fabrics	0.5893	0.6273	0.0010	0.0001	0.0023	0.0017	0.0051	54	59
33	Other textile products	0.5931	0.6311	0.0010	0.0001	0.0024	0.0018	0.0052	53	56
34	Hosiery \& knitted wear	0.2678	0.2788	0.0010	0.0000	0.0010	0.0010	0.0038	86	86
35	Clothing \& accessories	0.2773	0.2883	0.0010	0.0000	0.0010	0.0010	0.0039	85	85
36	Lumber \& timber	0.6619	0.7076	0.0017	0.0001	0.0067	0.0046	0.0937	46	48
37	Veneer \& plywood	0.6588	0.7045	0.0017	0.0001	0.0067	0.0046	0.0951	47	49
38	Other wood fabricated materials	0.6567	0.7024	0.0017	0.0001	0.0065	0.0045	0.0888	48	50
39	Furniture \& fixtures	0.4607	0.4976	0.0009	0.0001	0.0028	0.0017	0.0140	69	71
40	Pulp	1.2551	1.3041	0.0020	0.0001	0.0034	0.0056	0.0192	13	21
41	Newsprint \& other paper stock	1.2516	1.3006	0.0020	0.0001	0.0034	0.0056	0.0193	15	22
42	Paper products	1.1080	1.1559	0.0019	0.0001	0.0034	0.0048	0.0167	21	27
43	Printing \& publishing	0.4115	0.4203	0.0008	0.0000	0.0014	0.0018	0.0068	75	78
44	Advertising \& print media	0.4024	0.4112	0.0008	0.0000	0.0014	0.0017	0.0067	77	80
45	Iron \& steel products	1.7957	1.8849	0.0032	0.0002	0.0020	0.0042	0.0296	9	9
46	Aluminum products	1.8807	1.9710	0.0033	0.0002	0.0020	0.0044	0.0311	7	7
47	Copper \& copper alloy products	1.8711	1.9614	0.0033	0.0002	0.0020	0.0044	0.0309	8	8
48	Nickel products	1.8991	1.9905	0.0034	0.0002	0.0020	0.0045	0.0314	5	6
49	Other non ferrous metal products	1.7604	1.8496	0.0032	0.0002	0.0023	0.0042	0.0287	10	10
50	Boilers, tanks \& plates	0.6995	0.7452	0.0017	0.0001	0.0020	0.0020	0.0096	44	47
51	Fabricated structural metal products	0.9377	0.9856	0.0019	0.0001	0.0021	0.0026	0.0139	25	38
52	Other metal fabricated products	0.7413	0.7870	0.0017	0.0001	0.0021	0.0021	0.0105	35	44
53	Agricultural machinery	0.4295	0.4383	0.0008	0.0000	0.0012	0.0013	0.0064	72	74
54	Other industrial machinery	0.5271	0.5684	0.0013	0.0001	0.0016	0.0017	0.0080	63	64
55	Motor vehicles	0.3313	0.3379	0.0006	0.0000	0.0015	0.0010	0.0046	84	84
56	Motor vehicle parts	0.3430	0.3496	0.0006	0.0000	0.0015	0.0011	0.0047	82	82
57	Other transport equipment	0.4242	0.4330	0.0008	0.0000	0.0017	0.0018	0.0064	73	75
58	Household appliances \& receivers	0.4106	0.4194	0.0008	0.0000	0.0014	0.0013	0.0063	76	79
59	Other electrical products	0.3807	0.3884	0.0007	0.0000	0.0013	0.0012	0.0059	80	81
60	Cement \& concrete products	2.7703	2.8237	0.0024	0.0001	0.0023	0.0072	0.0168	3	3
61	Other non-metallic mineral products	2.5183	2.5706	0.0023	0.0001	0.0024	0.0066	0.0158	4	4
62	Gasoline \& fuel oil	0.7634	0.9730	0.0166	0.0001	0.0037	0.0063	0.0163	33	39
63	Other petroleum \& coal products	0.8114	1.0458	0.0164	0.0002	0.0052	0.0061	0.0136	32	29
64	Industrial chemicals	1.2530	1.5681	0.0041	0.0010	0.0151	0.0044	0.0097	14	14
65	Fertilizers	1.0299	1.5340	0.0311	0.0006	0.0057	0.0073	0.0237	24	16
66	Pharmaceuticals	1.2420	1.5582	0.0042	0.0010	0.0158	0.0043	0.0091	16	15
67	Other chemical products	1.2023	1.5218	0.0045	0.0010	0.0148	0.0043	0.0095	18	17
68	Scientific equipment	0.4344	0.4735	0.0011	0.0001	0.0021	0.0016	0.0069	70	73
69	Other manufactured products	0.5485	0.5953	0.0018	0.0001	0.0023	0.0019	0.0083	59	60
70	Residential construction	0.5311	0.5724	0.0013	0.0001	0.0035	0.0033	0.0231	61	62
71	1 Non-residential construction	0.5311	0.5724	0.0013	0.0001	0.0035	0.0033	0.0231	60	61
72	2 Repair construction	0.5311	0.5724	0.0013	0.0001	0.0035	0.0033	0.0231	62	63
	3 Pipeline transportation	1.8972	2.0501	0.0139	0.0000	0.0004	0.0018	0.0024	6	5
74	4 Transportation \& storage	1.3950	1.4776	0.0026	0.0002	0.0044	0.0101	0.0258	11	18
	5 Radio \& television broadcasting	0.2085	0.2129	0.0004	0.0000	0.0010	0.0010	0.0064	91	91
76	6 Telephone \& telegraph	0.2085	0.2129	0.0004	0.0000	0.0010	0.0010	0.0064	90	90
	7 Postal services	0.2085	0.2129	0.0004	0.0000	0.0010	0.0010	0.0064	89	89
	8 Electric power	4.7870	4.8338	0.0018	0.0001	0.0012	0.0157	0.0098	1	1
	9 Other utilities	4.7827	4.8295	0.0018	0.0001	0.0012	0.0156	0.0098	2	2
	0 Wholesale margins	0.4793	0.5250	0.0017	0.0001	0.0030	0.0027	0.0167	68	66
	1 Retail margins	0.4904	0.5025	0.0011	0.0000	0.0018	0.0021	0.0117	64	68
	2 Imputed rent, owner occupied dwellings	0.0337	0.0348	0.0001	0.0000	0.0002	0.0002	0.0013	92	92

Table 3: Greenhouse Gas Intensity of Commodities, 1985

Commodity		CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO	CO_{2}	CO_{2} equiv. ${ }^{1}$
		tonnes per thousand dollars							rank	
83	Other finance, insurance \& real estate	0.4206	0.4305	0.0009	0.0000	0.0009	0.0012	0.0049	74	76
84	Business services	0.2149	0.2204	0.0005	0.0000	0.0012	0.0011	0.0068	88	88
85	Education services	0.5570	0.5658	0.0008	0.0000	0.0010	0.0016	0.0050	58	65
86	Health services	0.2173	0.2217	0.0004	0.0000	0.0010	0.0009	0.0056	87	87
87	Amusement \& recreation services	0.3333	0.3399	0.0006	0.0000	0.0010	0.0012	0.0055	83	83
88	Accommodation \& food services	0.5609	0.6308	0.0039	0.0001	0.0011	0.0019	0.0068	56	57
89	Other personal \& miscellaneous services	0.4794	0.5163	0.0009	0.0001	0.0028	0.0021	0.0119	67	67
90	Transportation margins	1.3543	1.4099	0.0026	0.0001	0.0042	0.0098	0.0250	12	19
	Operating, office, lab. \& food supplies	0.4329	0.4863	0.0024	0.0001	0.0046	0.0020	0.0084	71	72
	Travel, advertising \& promotion	0.8121	0.8622	0.0021	0.0001	0.0054	0.0056	0.0350	31	42

${ }^{1} \mathrm{CO}_{2}$ equivalent emissions include CO_{2} emissions plus $\mathrm{N}_{2} \mathrm{O}$ and CH_{4} emissions expressed as equivalent CO_{2} emissions.
stead as general indicators of their greenhouse gas intensity relative to other commodities.

When either CO_{2} or CO_{2} equivalent emission intensity is considered, electric power (78) was the most polluting commodity produced in the Canadian economy in 1985. "Other utilities" (79) (mainly natural gas and water supply) ranked second. Note that commodity 79 is co-produced with electricity by the electric power and other utilities industry (industry 34 in Table 2). Cement (60) and other nonmetallic mineral products (61) were ranked next. Pipeline transportation (73) and the primary metals - iron and steel (45), aluminum (46), copper (47), nickel (48) and other non-ferrous metals (49) - round out the list of the ten most highly CO_{2} intensive commodities produced in 1985.

The agricultural and food commodities (1-3 and 14-22) show significant increases in intensity when ranked in order of CO_{2} equivalents. This change is expected given the large emissions of CH_{4} and $\mathrm{N}_{2} \mathrm{O}$ from the agriculture industry shown in Table 2 above.

INDUSTRIAL EMISSIONS BY FINAL DEMAND CATEGORY

Production activity takes place to meet the demand for commodities from final consumers. It is reasonable, then, to ask what portion of total industrial greenhouse gas emissions are attributable to the production required to meet the demand from different final consumption categories. Table 4 shows such a breakdown of industrial greenhouse gas emissions. ${ }^{1}$ As one might expect, production to meet the demand for commodities from households is responsible

[^4]for the greatest portion of industrial greenhouse gas emissions.

Some explanation is required for the row labelled "imports" in Table 4. The emissions reported in this row are not the actual emissions that occurred in other countries during the manufacturing of Canada's imported commodities. Rather, they represent the emissions that would have obtained had we produced domestically, instead of importing, this group of commodities. The assumption implicit in these estimates is that foreign industries emit the same quantities of greenhouse gases in producing one unit of a particular commodity as do Canadian industries.

The results reported in Table 4 indicate that Canada exported a more greenhouse gas intensive set of goods and services than it imported in 1985. Put another way, Canada was a net exporter of greenhouse gas emissions as a result of its international trade.

CO_{2} EMISSIONS PER UNIT OF ENERGY CONSUMPTION, 1970-1990

It was noted above that greenhouse gas emissions are causally related to fossil fuel consumption. In particular, anthropogenic CO_{2} emissions result mainly from the combustion of fossil fuels.

The magnitude of fuel combustion-related CO_{2} emissions is a function of two variables. Most obviously, the quantity of fossil fuels burned has a direct impact on the magnitude of CO_{2} emissions. Less obvious is the effect of the variability of CO_{2} emissions per unit of energy across fossil fuel types. Since each fuel type results in different CO_{2} emissions per unit of energy, the composition of overall energy consumption will affect aggregate CO_{2} emissions. A shift in consumption from coal to natural gas, for example, would result in lower CO_{2} emissions, other things equal, since natural gas combustion results in only 55% as

Table 4: Industrial Greenhouse Gas Emissions by Demand Category, 1985

Final Demand Category	CO_{2}	CO_{2} equiv. ${ }^{1}$	CH_{4}	$\mathrm{N}_{2} \mathrm{O}$	VOC	NO_{x}	CO
	kilotonnes						
Household expenditure	127299	142198	839	21	402	586	2060
Investment in fixed capital	39423	41829	96	5	238	226	1502
Exports	98433	113259	906	18	358	502	2044
Imports	69088	78550	492	15	298	288	1105
Government current expenditure	21685	23320	75	3	94	103	383

Note:

1. CO_{2} equivalent emissions include CO_{2} emissions plus $\mathrm{N}_{2} \mathrm{O}$ and CH_{4} emissions expressed as equivalent CO_{2} emissions.
much CO_{2} per unit of energy as does the combustion of coal (Jaques, 1992, p. xX).

Figure 1 shows the effect on total fossil fuel combus-tion-related CO_{2} emissions of the changing composition of Canadian energy consumption during the period 19701990. It is clear from this figure that the trend in Canada since 1970 has been toward a less CO_{2} intensive energy mix. CO_{2} emissions per unit of total energy consumption declined at an annual rate of $0.29 \mathrm{t} / \mathrm{J}$ over this period.

Figure 1: Direct CO_{2} Emissions per Unit of Energy Consumption, 1970-1990

The reasons for the decline in the CO_{2} intensity of energy consumption can be seen in Figure 2, which shows the composition of total energy consumption during the period 1970-1990. During the past two decades, the share in Canadian energy consumption of both natural gas and primary electricity (hydro and nuclear) has increased, entirely at the expense of petroleum-based fossil fuels. ${ }^{1}$ Since nat-
ural gas is the least CO_{2} intensive fossil fuel (ibid.), and primary electricity does not result in any direct CO_{2} emissions, this change in energy mix results in the decreasing trend shown in Figure 1. The percentage of consumption met by coal also increased during this period, but not enough to offset the reduction in CO_{2} intensity resulting from the increased share of natural gas and primary electricity.

Figure 2: Composition of Total Energy Consumption, 1970-1990

[^5]
CONCLUSION

Several useful pieces of information have emerged from the results presented above. Perhaps most important is the highly concentrated nature of industrial greenhouse gas emissions. When considered in terms of CO_{2} equivalent emissions, the five largest industrial sources accounted for almost 58% of 1985 industrial emissions. Particularly noteworthy is the fact that the electric power and other utilities industry alone was responsible for 26% of all industrial emissions. The very large emissions from this industry meant that electricity was the most greenhouse gas intensive commodity in the Canadian economy in 1985. Each $\$ 1000$ worth of electricity delivered to final consumers resulted in the emission of nearly 5 tonnes of CO_{2} equivalents.

The importance of transportation activity in total greenhouse gas emissions is also clear from the above analysis. The transportation industry (which includes for-hire land, air and marine transportation services) is the second largest source of CO_{2} equivalent gas emissions among all industries. This is so even though the emissions from transportation activity undertaken by firms, households or governments on own-account are not included in the estimated emissions from the transportation industry. All told, transportation is a significant source of greenhouse gas emissions.

Households also appear as very important sources of greenhouse gas emissions. The consumption of commodities by households contributed almost 22% of economywide $1985 \mathrm{CO}_{2}$ equivalent emissions. On top of this are the 142 Mt of CO_{2} equivalent emissions, or 44% of total industrial emissions (see Table 4), that are associated with the production of commodities ultimately purchased by households. This is not meant to imply that households are solely responsible for the greenhouse gases emitted during the production of the commodities they purchase; the responsibility for these emissions must be shared between the consumers who demand the commodities and the industries that meet this demand. Nonetheless, it serves to highlight the importance of household consumption in overall greenhouse gas emissions.

To conclude, it can be said that the input-output accounting and modelling frameworks have proven to be useful tools for the analysis of greenhouse gas emissions. The majority of anthropogenic greenhouse gas emissions have been included in the input-output model used here and some interesting results have followed. However, where the nature of emissions is such that there exists no linear and constant relationship to annual economic activity, specifically in the cases of CFCs and landfill methane emissions, the input-output framework alone is inappropriate. Future work will require the development of extensions to the framework that will allow the incorporation of emissions that are sporadic, stock driven or otherwise related in an non-linear way to human activity.

DATA SOURCES AND EMISSION ESTIMATION METHOD

The gases considered in this study include carbon dioxide, methane, nitrous oxide, volatile organic compounds (VOC), nitric oxide and nitrogen dioxide (collectively, NO_{x}) and carbon monoxide (CO).

Chlorofluorocarbons are notable for their absence in this list. The reason for this absence is explained briefly a few paragraphs below. Also missing from the list is tropospheric ozone $\left(\mathrm{O}_{3}\right)^{1}$, another powerful greenhouse gas. Tropospheric ozone has been excluded because it is not emitted to an appreciable extent as a by-product of economic activity. Instead, it is formed in the troposphere through chemical reactions involving the precursor gases VOC, NO_{x} and CO, all of which are emitted in large quantities as by-products of economic activities.

The method and coefficients used in the estimation of the 1985 emissions of carbon dioxide, methane and nitrous oxide have been adopted from an Environment Canada report titled Canada's Greenhouse Gas Emissions Estimates for 1990 (Jaques, 1992). The $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and $\mathrm{N}_{2} \mathrm{O}$ emission estimates reported here are, with some important differences, directly comparable with those published for 1990 by Environment Canada.

The first, and most obvious, difference between the estimates reported here and those reported by Environment Canada is that the former are for the year 1985, while the latter are for the year 1990. It was not possible to use 1990 as the base year for this study as no input-output tables for that year are yet available. 1985 was chosen instead, because of the availability of a good inventory of VOC, NOx and CO emissions.

More significant than the choice of a different base year is the exclusion of CFC emissions in the present study. This exclusion is due in part to a lack of data to establish the link between CFC emissions and economic activity at the detailed level represented in the input-output tables. It is also a function of the somewhat inflexible nature of the input-output structure which only allows the modelling of greenhouse gas emissions with constant and linear relationships to annual economic activity. Many types of CFC emissions do not meet this criterion. In any given year CFC emissions are, to a large extent, determined by the stock of the chemicals that has accumulated in prior years and, therefore, bear little relationship to economic activity in that year. ${ }^{2}$

A third departure is the exclusion here of several emission sources included in the Environment Canada report. These have been excluded mainly because of the afore-

[^6]mentioned lack of data and/or inflexibility of the input-output framework. With respect to CO_{2}, emissions from nonenergy uses of petroleum products other than ammonia production (1990 estimate: approximately 10000 kt) have been excluded, as well as all biomass related CO_{2} emissions. ${ }^{1}$ The following sources of CH_{4} emissions have also been excluded: waste incineration (<2 kt), landfill sites (1 405 kt) and slash burning (38 kt). As already noted, landfill sites account for 38% of the total $1990 \mathrm{CH}_{4}$ emissions estimated by Environment Canada (Jaques, 1992; p. xviii). Thus, the estimated total $1985 \mathrm{CH}_{4}$ emissions reported here are significantly lower than Environment Canada's 1990 estimate. Finally, the emissions of $\mathrm{N}_{2} \mathrm{O}$ from nitric acid production, anaesthetics, propellants and high-voltage transmission lines have all been excluded here. These sources account for less than one percent of total 1990 $\mathrm{N}_{2} \mathrm{O}$ emissions estimated by Environment Canada.

The last departure from Environment Canada's 1990 greenhouse gas inventory is the inclusion of VOC, NO_{x} and CO . Only $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{~N}_{2} \mathrm{O}$ and CFC emissions are estimated in the former. The inclusion VOC, NO_{x} and CO yields more complete information and is not without precedent. A major international body engaged in research on global warming, the Intergovernmental Panel on Climate Change, includes these gases in its list of greenhouse gases (Intergovernmental Panel on Climate Change, 1992), as does the International Energy Agency of the Organisation for Economic Cooperation and Development (International Energy Agency, 1991). For the sake of completeness and because of the international precedents, it was decided that VOC, NO_{x} and CO should be included in this study.
. The estimated total VOC, NO_{x} and CO emissions reported in this study match those reported in the Canadian Emissions Inventory of Common Air Contaminants (1985) (Kosteltz and Deslauriers, 1990 and Deslauriers, Personal communication) with, again, some important differences. The most significant of these is the exclusion of the following emission sources in the present study: forest fires (201 kt VOC, 37 kt NO ${ }_{x}, 1141$ kt CO); slash burning (96 kt VOC, $20 \mathrm{kt} \mathrm{NO} \mathrm{x}_{\mathrm{x}} 1134 \mathrm{kt} \mathrm{CO}$); structural fires (6 kt VOC, 12 kt CO); and municipal and industrial incineration (6 kt VOC, 2 $\mathrm{kt} \mathrm{NO}_{x}, 9 \mathrm{kt} \mathrm{CO}$). These sources have been excluded because they are not related in a linear and constant way to identifiable economic activity.

Another difference with the Environment Canada study, of less importance, is the modified procedure for es-

1. Biomass emission sources include the combustion of wood and spent pulping liquor wastes at pulp and lumber mills; slash burning; forest fires; fuelwood combustion; municipal and industrial waste incineration; and landfill sites. Environment Canada excludes these emissions from the estimated total CO_{2} emissions reported in Canada's Greenhouse Gas Emissions Estimates for 1990 because of uncertainty in estimating the magnitude of the corresponding natural sink for CO_{2} (such as growing forests). Because it did not have a reliable estimate of both the biomass sink and source terms, Environment Canada felt it misleading to include only biomass CO_{2} sources in its estimated total emissions. The estimated magnitude of biomass CO_{2} emissions in 1990 is 109 Mt
(Jaques, 1992, p. xviii).
timating VOC, NO_{x} and CO emissions from heavy duty road vehicles (trucks and buses) used in this study. In spite of this, the estimated emissions from these vehicles are in good agreement in the two studies. Furthermore, since heavy duty road vehicles contribute a relatively small proportion of the total emissions of these three gases, the differences in these estimates have little effect on the estimated total emissions. The estimated emissions of VOC, NO_{x} and CO from government activities are higher than those reported in the other study, also because of a different estimation method. Again, the effect of this difference on total emissions is very small.

It should be emphasized that, the exclusion of the major emission sources mentioned above notwithstanding, the estimated total 1985 VOC, NO_{x} and CO emissions reported here agree closely with those published in the Canadian Emissions Inventory of Common Air Contaminants (1985).

APPENDIX

The input-output accounts published by Statistics Canada contain detailed information on annual production and consumption activities in the Canadian economy. The accounts consist of three tables. A "make" table lists the dollar values of all commodities produced by each Canadian industry. A "use" table details the purchases of these same commodities by industries for use as inputs in the production of other commodities. These purchases are referred to as intermediate commodity use. A "final demand" table lists the dollar values of commodities purchased by households and governments, investment in fixed capital, inventory change and net exports (exports less imports). The structure of the input-output accounts is such that there exists an identity between total commodity production (from the make table) and intermediate plus final consumption (from the use and final demand tables).

Using the three tables of the input-output accounts, and given two assumptions regarding the structure of production activity, it is possible to derive linear models (called input-output models) of the relationship between final commodity use and the levels of production activity required to meet this use.

A useful quality of input-output models is their ability to capture both the direct and indirect impacts of final demand on production activity. The impact of the demand for automobiles on the output of the automobile industry is a good example. As the demand for automobiles changes, the output of the automobile industry will adjust to reflect this change. This is an example of a direct impact of demand on production activity. There are, however, further impacts that will result from a change in the demand for cars. The steel industry, for instance, will also see the demand for its product affected by such a change. The change in demand for steel is an example of an indirect impact of demand on
production activity. Such indirect demands can propagate through many industries of as a result of a change in the demand for just one commodity. Input-output models capture all these changes automatically, estimating the effect of a change in the demand for one or more commodities across the entire spectrum of economic activity.

There are some limitations on input-output modelling that should be noted. Most significant are the "snapshot" representation of the economy in the input-output accounts, and the assumption of fixed proportionality between the inputs employed in production processes and the outputs of these processes. To the extent that technological change is present in the economy, the first assumption limits the capacity of input-output models for accurately predicting future economic activity. Thus, the technique is most useful for studying the impact of demand changes in a given year or, at most, a few years into the future. The second assumption limits the accuracy of input-output models for impact analysis in any time period, as the capacity for input substitution that exists in the actual economy is not captured in the constant-proportion input-output framework.

Beyond purely economic analysis, input-output modelling can also be used to study the relationship between economic activity and the use of raw materials and generation of wastes. To do so requires two modifications to the standard conception of the input-output accounts. First, it is necessary to introduce physical quantities into the inputoutput framework. Second, the framework must be expanded beyond its normal market-activity boundary to include the non-marketed inputs and outputs of economic activity. Once these changes to the accounting framework are made, the incorporation of environmental inputs and outputs into the framework is conceptually no different than the incorporation of any marketed input or output. Just as industries produce commodities for the marketplace, they also produce waste materials that can be released into the environment. Similarly, just as industries purchase commodities for use in their production processes, they also make use of non-marketed inputs from the environment, air and water for example. It is possible to incorporate tables showing the inputs and outputs of these environmental commodities, in physical quantities, into the standard inputoutput framework. Assuming that these environmental commodities are produced and consumed in fixed proportion to the production and consumption of marketed commodities, a set of input-output accounts so modified can be used to study the relationship between production, consumption and the use of the environment as a source of raw materials and a sink for wastes.

REFERENCES

Deslauriers, M. Personal communication. October, 1991.
Government of Canada. Canada's Green Plan for a Healthy Environment. Ottawa, 1990.

Intergovernmental Panel on Climate Change. 1992 IPCC Supplement (Draft). In press. 1992.

International Energy Agency. Greenhouse Gas Emissions: The Energy Dimension. Paris: Organisation for Economic Cooperation and Development/International Energy Agency. 1991.

Jaques, A. P. Canada's Greenhouse Gas Emissions: Estimates for 1990. Environment Canada Report EPS 5/AP/4, Ottawa, 1992.

Kosteltz, A. and M. Deslauriers. Canadian Emissions Inventory of Common Air Contaminants (1985). Environment Canada Report EPS 5/AP/3, Ottawa, 1990.
Statistics Canada. The Input-Output Structure of the Canadian Economy, 1985. Catalogue No. 15-201, Ottawa, 1989.
Victor, Peter A. Pollution: Economy and Environment. United Kingdom: George Allen and Unwin Ltd. 1972.

3 Pulp and Paper Industry Compliance Costs

by Craig Gaston

INTRODUCTION

The pulp and paper industry is currently under considerable scrutiny by environmentalists, regulators and the general public. This resource based industry is the main livelihood for over 76,000 Canadians and has a long history as one of Canada's most important economic activities. The industry has made significant progress over the last 20 years in reducing pollution but as the volume of production has increased and our ability to study the composition and the effects of the pollutants has improved, regulations have become more stringent. The increased concern over pollution comes at a time when U.S. customers are demanding a higher recycled fibre content in newsprint and European buyers are beginning to give preference to paper that has not been bleached with chlorine. These pressures translate necessarily into expensive capital expenditures and coincide with a period of weak demand and increasingly strong competition.

BACKGROUND

Canadian mills are often criticized for being old and inefficient. Fifty-eight percent of Canadian newsprint machines commenced operation prior to 1950 compared to 28% in the U.S. and 7% in Scandinavia. Also, 15% of annual production capacity is greater than 400 tonnes a year in Canada compared to 30% in the U.S., 80% in Sweden, 40% in Finland and 20% in Norway (Sinclair, 1990). Industry analysts claim that Canadian companies must modernize, shift to higher value products such as fine papers, and invest in pulp and paper mills outside of Canada (Headlam and Stevenson, 1990, p. 43).

This study examines the estimated cost of compliance to the 1992 federal regulations on traditional pollutants. How do compliance costs vary according to the type of treatment facility in place? What effect does the age of a mill have on estimated expenditures? How do these costs vary according to region, type of product, capacity, profitability, recent investment or foreign control? The aim of this chapter is to shed light on the nature of the pulp and paper pollution problem in Canada and on how the industry will be affected by certain federal regulations which take effect this year.

Economic Importance of Pulp and Paper

The pulp and paper industry comprised 82 firms which operated 147 mills in 1989. Although concentrated in Quebec, Ontario and British Columbia, plants are located in every province with the exception of Prince Edward Island. In terms of value added, the industry ranks first among all manufacturing industries in Canada, followed by the automobile industry. The industry has declined in relative importance since the fifties, when it accounted for 5.3% of GDP, to 1.4% of GDP in 1989. Canada ranks second in the world in terms of wood pulp production, and first in terms of exports of this commodity. Pulp and paper products accounted for 15% of total exports and 0.6% of employment in 1990.

The industry is currently under considerable financial pressure due to a combination of economic and environmental factors. The recent recession has resulted in many temporary mill shutdowns and several permanent closings. Environmentally, U.S. customers' increasing insistence upon recycled paper content and stricter pollution regulations portend large capital expenditures for de-inking mills and pollution abatement equipment.

Environmental Concerns

The pulp and paper industry is the focus of considerable attention due to its environmental impact. In 1987, waste discharges from the pulp and paper industry were the major industry-related environmental concern in British Columbia and New Brunswick according to provincial environmental authorities (Sinclair, 1990, p. 177). In Ontario and Quebec, the industry ranked third amongst polluting industries and only the chemical industry (a major supplier to the pulp and paper industry) and the mining industry were rated as high as the pulp and paper industry Canada-wide (Sinclair, 1990, p. 177). The industry has, however, made substantial environmental improvements over the last 20 years.

Water pollution has received most of the attention accorded to pulp and paper mills. The industry is not "... a significant contributor to global air pollution problems, such as acid rain or warming. Its [air pollution] problems are very localized and most likely nuisance odour-type problems" (Paul Shepson in Jamieson, 1991, p. 12). Pollution discharged to water consists mainly of wood particles too small to be filtered, organic material (mainly lignin) from the wood and waste chemicals used in the pulping and bleaching process. The wood particles, measured as total suspended solids (TSS), upset the aquatic habitat and ruin fish spawning beds. The dissolved organic material decomposes and in the process uses oxygen thereby reducing the ability of the water to support life. This potential is generally measured as biochemical oxygen demand (BOD) expressed in kilograms per tonne of product. Other organic materials such as resins, fatty acids and sulphur com-
pounds are acutely toxic to fish. Mills that use elemental chlorine for bleaching have also been identified as a significant source of dioxins and furans, which are discharged in the wastewater (Environment Canada, 1991, p. 14-19). Environment Canada considers these substances to be highly toxic.

Regulation

The pulp and paper industry is currently faced with new federal regulations governing the release of various pollutants. From 1971 until 1991 only new mills or mills that underwent significant expansion were subject to restrictions under the Fisheries Act. The new constraints, introduced in 1992 and effective in December 1992, apply to all mills (although the criteria are somewhat different for mills discharging their effluent to off-site treatment facilities). The 1992 federal regulations, under the authority of the Fisheries Act, apply to the discharge of BOD, TSS, and effluents acutely lethal to fish. New regulations were also established under the authority of the Canadian Environmental Protection Act (CEPA) requiring the elimination of dioxins and furans from the effluent of pulp and paper mills performing chlorine bleaching. Regulations controlling defoamers and wood chip insecticides were also implemented under CEPA. Some provinces have also passed regulations limiting or banning organochlorines, a whole class of compounds which result from chlorine bleaching and which include dioxins and furans. This study examines the costs related to the abatement of TSS, BOD, and toxicity. Only mills that discharge effluent directly to receiving waters are examined here.

Treatment Facilities for Traditional Pollutants

Primary treatment facilities remove from 80 to 90% of the settleable portion of the suspended solids, usually by means of gravity clarifiers or settling basins. Secondary treatment is designed to remove BOD associated with the dissolved organic materials in the effluent, and normally uses a biological process. In Canada, aerated lagoons are most often used for secondary treatment. The objectives of this process are to reduce the BOD by 70% to 95% and to
render the effluent non-toxic to fish. Although these facilities do reduce toxicity they are not effective in eliminating dioxins and furans.

The estimated capital cost to pulp and paper mills to be in compliance with the 1992 regulations is $\$ 2.2$ billion (1990 dollars) or about $\$ 23$ million per mill. This cost can vary from over $\$ 100$ thousand to $\$ 100$ million depending upon the circumstances of an individual establishment (Department of Fisheries and Oceans, 1991). By way of comparison, the average annual investment from 1978 to 1989 by mills in this study was $\$ 16.8$ million per mill in 1989 dollars.

Table 1 shows that most pulp and paper mills in this study had primary treatment facilities in 1989 (84\%). In 1989, only 30% of the mills in the sample had secondary treatment facilities. On average, mills without secondary treatment produced over 34 kg of BOD per tonne whereas those with these facilities generated effluent containing 8.8 kg per tonne, just over the 1992 federal limit of 5 kg per tonne. On average, the mills considered here generate 11.4 kg of TSS per tonne while the new limit is 7.5 kg per tonne.

Table 1: Treatment Facilities, 1989

Treatment facilities	Mills	TSS	BOD	Capacity
None	number	kg per tonne		tonnes per day
	20	19.3	17.2	379
Primary only	67	8.9	34.2	600
Primary and secondary	37	9.9	8.8	784
All direct discharge mills	124	11.4	23.9	619

The variation in BOD factors by region reflects, to a large degree, the use of secondary treatment. Table 2 shows that only 13% of Quebec mills had secondary treatment facilities in 1989 and the BOD factors were highest in this province. Similarly, Prairie province mills had the lowest average BOD factor and the highest incidence of secondary treatment.

Table 2: Attributes of Mills by Region

Region	Mills	Mills with treatment facilities		Effluent			
		Primary	Secondary	TSS	BOD	TSS	BOD
	number	percentage		kg per tonne per mill		thousand tonnes per day (all mills)	
Atlantic Provinces	19	81	25	13.6	24.5	118	215
Quebec	49	82	13	11.9	28.5	220	888
Ontario	27	96	27	4.6	19.1	75	304
Prairie Provinces	6	100	85	27.9	12.2	88	304 39
British Columbia	23	81	52	12.6	21.9	234	383
Canada	124	84	30	11.4	23.9	735	1829

Environment Canada, Regulatory Affairs and Program Integration Branch.

The inverse relationship between BOD factors and the incidence of secondary treatment is not perfect, however, as shown by British Columbia where the BOD factor is almost the same as the Canadian average and more than half the mills have secondary treatment facilities. Process type is another important variable in explaining BOD factors.

COST OF COMPLIANCE TO RECENT FEDERAL REGULATIONS ${ }^{1}$

It is possible to assess the financial impact of the 1992 federal pollution regulations on pulp and paper mills by examining the estimated compliance costs ${ }^{2}$ in the light of historical investment and earnings.

Traditionally, measures related to the pulp and paper industry are expressed in terms of a tonne of final product. This measure is widely understood by industry experts but it does not provide an intuitive appreciation for the actual impact of the required expenditures in relation to a mill's earnings. In this study we will examine the compliance costs relative to average annual investment in new plant and equipment and to average annual surplus ${ }^{3}$. In both cases we have calculated averages over time to avoid the cyclical variation which is inherent in data pertaining to this industry. The averages are based upon 12 years of data in the case of investment and 9 years for surplus. The data have been recalculated in 1989 dollars.

We will examine two ratios. The first is the capital cost of compliance per dollar of average investment by each mill. This ratio can be thought of as the number of years of average equivalent investment (AEI). The second ratio is the annualized capital cost plus operating cost per dollar of average surplus ${ }^{4}$, hereafter referred to as the annualized cost ratio (ACR). The AEI is interesting in that it shows the impact of the estimated pollution abatement costs in terms of recent historical investment but it is incomplete since the investment in a mill does not reflect a mill's profitability. Table 3 shows that the ratio of average investment to average surplus increases with decreasing surplus suggesting that there is a minimum amount of investment required for a mill to remain competitive and that more profitable mills can distribute a larger proportion of profits as dividends. Of the

[^7]two ratios, the ACR is perhaps the best measure of the impact of the regulations on a mill.

The AEI seems to be independent of the level of the ACR. However, it is clear that the overall compliance costs per dollar of surplus are inversely proportional to the ACR.

The average capital cost of compliance per mill is estimated at $\$ 25.7$ million in 1989 dollars compared to $\$ 17.0$ million of average investment. This is equal to 1.5 years of average equivalent investment (AEI). Average estimated annualized cost per mill is $\$ 4.4$ million or 7.9% of the average annual surplus of $\$ 55.3$ million.

Presence of Treatment Facilities

One of the most important factors determining compliance costs is whether a mill has already invested in treatment facilities. Twenty one mills already equipped with primary and secondary facilities must invest, on average, almost $\$ 13$ million. This amount represents about half of a year's average equivalent investment. In comparison, 13 mills with no treatment facilities must invest almost $\$ 27$ million or 2.2 years of AEI. This difference results from the combination of higher capital costs and lower average investment for mills without facilities. In terms of the ACR, mills with both types of facility must spend 3% of surplus annually compared to 14% for mills with no facilities. The majority of the mills considered here have primary treatment facilities only.

Capacity

Mill capacity does not seem to be a factor in terms of the years of AEI needed to comply with the regulations except for the smallest mills for which the AEI is 4.69 years. However, there is a clear correlation between mill size and the ACR which ranges from 6% for mills producing more than 1000 tonnes per day to 19.5% for the smallest mills producing less than 200 tonnes per day.

Although there are important economies of scale in this industry, they do not seem to be related to mill capacity. It is the size of the pulp and paper machines that matters: the total output can be produced by one large machine or two or more small ones. From Table 3 it can be seen that mills producing fewer than 300 tonnes per day were substantially less profitable than average yet so were the mills producing between 620 and 800 tonnes per day. The best performing mills had a daily capacity of between 300 and 620 tonnes per day. These mills had an average surplus of $\$ 247$ per tonne compared to only $\$ 232$ per tonne for mills producing over 1000 tonnes per day. Mills producing in the range of 620 to 800 tonnes per day are particularly notable, given their size, their relatively high compliance costs and low profitability representing an ACR of 13%.

Table 3: Cost of Compliance and Other Measures

	Mills	Capacity	BOD	Mills with secondary utilities	Average Average investment surplus		$\begin{array}{rr}\text { Investment } & \begin{array}{r}\text { Surplus } \\ \text { over } \\ \text { over }\end{array} \\ \text { surplus production }\end{array}$		Compliance costs					
							Capital		Annualized					
							Operating	Over production	A.E.I.	A.C.R.				
	number	tonnes per day	kg per tonne	percent	millions of	dollars		dollars per dollar	dollars per \qquad	millions	of dollars	dollars per tonne	years	percent of surplus
All mills	86	721	30.2	24.4	17.0	55.3	0.31	227	25.7	2.3	18.0	1.51	7.9	
Treatment														
None	13	504	21.5	...	12.3	35.5	0.35	223	27.2	2.8	31.4	2.22	14.1	
Primary only	52	693	40.6	...	15.9	53.5	0.30	226	30.5	2.6	21.7	1.92	9.1	
Primary \& sec.	21	925	9.8	100.0	22.5	72.1	0.31	230	12.8	1.1	6.8	0.57	2.9	
Capacity (tonnes per day)														
Over 1000	17	1428	24.0	41.2	27.9	111.1	0.25	232	38.3	3.5	13.8	1.37	5.9	
800 to 1000	14	885	33.9	28.6	23.4	66.2	0.35	210	28.7	2.3	14.7	1.23	7.0	
620 to 800	9	706	43.4	44.4	24.2	46.9	0.52	198	39.0	3.1	26.8	1.61	13.5	
300 to 620	34	478	32.3	14.7	11.4	40.0	0.29	247	21.0	1.9	22.1	1.84	13.5	
200 to 300	8	273	21.1	12.5	5.7	16.7	0.34	207	7.9	1.4	25.6	1.39	12.3	
Under 200	4	136	13.8	0.0	1.3	6.6	0.20	228	6.2	0.8	44.4	4.69	19.5	
Year built														
Before 1900	8	365	14.0	0.0	8.6	30.3	0.28	256	13.8	1.1	193	1.61		
1900 to 1971	64	769	35.6	18.8	18.8	59.6	0.32	226	29.4	2.7	19.2	1.61 1.56	7.5 8.5	
After 1971	7	619	9.0	100.0	15.2	49.2	0.31	232	5.1	0.4	3.9	0.34	1.7	
Product														
Integrated kraft	15	1127	16.2	46.7	21.2	89.5	0.24	241	29.9	2.7	13.7	1.41		
Market kraft	19	746	18.1	47.4	17.6	58.9	0.30	222	20.3	1.6	13.7	1.41 1.15	5.7	
Mechanical	5	457	11.9	20.0	17.1	27.9	0.61	176	12.5	2.0	18.8	1.15	5	
Newsprint	29	757	36.2	6.9	17.8	62.2	0.29	237	30.4	2.6	19.6	1.70	10.7	
Other paper and board	9	250	10.7	11.1	3.2	16.3	0.19	227	4.5	2.6 0.5	11.8	1.43	8.2 5.2	
Sulphite, semichemical and dissolving	9	497	89.2	11.1	19.4	22.9	0.85	159	43.2	4.0	52.5	2.23	33.1	
Region														
Atlantic Provinces	11	713	31.8	27.3	17.7	47.3	0.37	190	25.2	2.0	16.4	1.42	8.6	
Quebec	36	615	35.1	8.3	15.7	49.3	0.32	242	27.3	2.1	21.4	1.74	8.9	
Ontario	17	635	27.2	11.8	11.6	52.5	0.22	250	19.7	2.2	18.4	1.74	8.9	
Prairie Provinces	4	633	14.5	75.0	26.5	53.5	0.49	211	10.2	2.2 1.2	18.2	1.70	7.3	
B.C. coastal	9	1214	40.8	33.3	29.2	99.8	0.29	229	55.0	5.1	8.1	0.39	3.8	
B.C. interior	9	865	10.5	77.8	14.9	50.6	0.29	193	8.6	5.1	22.1	1.89	9.7	
Investment														
Capital > average	31	1052	32.8	32.3	32.0	84.3	0.38	230	38.5	3.5	18.2	120		
Capital < average	55	535	28.7	20.0	8.5	39.0	0.22	224	18.5	1.6	17.7	2.20	7.9	
Control														
Canadian	54	661	34.3	16.7	15.0	48.0	0.31	221	26.5	22				
Foreign	32	823	23.2	37.5	20.2	67.7	0.30	234	24.2	2.3	20.4 14.9	1.20	9.2	
Surplus (dollars per tonne)														
Over 250	22	709	28.1	36.4	17.1	75.7	0.23	299	26.1	23				
200 to 250	21	953	23.0	19.0	19.0	78.1	0.24	237	28.6	2.7	17.4	1.52 1.50	5.8	
160 to 200	22	696	35.8	18.2	17.9	46.8	0.38	196	26.9	2.7 2.3	15.3	1.50	6.5	
Under 160	21	528	33.6	23.8	13.8	20.1	0.69	132	21.0	2.3	18.8	1.51	9.6	

Sources:
Statistics Canada, National Accounts and Environment Division.
Environment Canada, Regulatory Affairs and Program Integration Branch.

Age and Modernization

The year that a mill was built does not necessarily dictate its efficiency or its pollution abatement except for mills which were built since 1971 when the first federal regulations came into effect. This fact is illustrated by the very low ACR (2\%) for milis built since 1971 compared to 8.5% for mills built between 1900 and 1971. Those built prior to 1900 must spend, on average, 7% of annual surplus to be in compliance. It is interesting to note that the surplus per tonne of capacity was almost the same for recent mills and older mills, confirming that the actual age of the mill is not an important variable in profitability.

On the other hand, if modernization can be equated to a high level of investment averaged over the last 12 years then mills with above average investment might be expected to perform better and generate less pollution. This tendency exists to some extent as the surplus per tonne of capacity was $\$ 230$ for high investors compared to $\$ 224$ for low investors. The latter group of mills have a much smaller capacity (535 tonnes compared to 1052 tonnes per day). Although the mills with above average investment have a higher percentage of secondary treatment facilities (32\% compared to 20%) their BOD factors are slightly higher. This reflects the fact that the smaller mills are less likely to produce their own pulp. Both groups of mills must spend 8% of their surplus annually to comply with the regulations, indicating that higher investment did not generally put mills in a better position with respect to compliance costs.

Product

The indicators by product category are very uneven, reflecting the underlying production processes and the presence of secondary treatment facilities. This latter variable, however, seems to be linked to the type of process. For instance, half of the producers of market kraft pulp in this sample have secondary treatment facilities yet their capital costs per tonne of product are higher than those of other paper and board mills, 11% of which have secondary facilities. Since the latter generally do not produce their own pulp, their BOD factors are low.

Although the AEI is much below average for mechanical pulp mills, these mills have one of the highest ACRs due to relatively high operating costs and a lower than average surplus per tonne of product. By far the highest compliance costs per doliar of surplus have been estimated for mills producing sulphite, semi-chemical or dissolving pulps. These mills generate a very high level of BOD and have a lower than average percentage of secondary facilities. Their required capital costs per tonne of product are three times the average and their surplus per tonne is 30% less than the average. These factors result in an ACR of 33% for the 9 mills in this category. These milis have an important impact on other characteristics in Table 3.

Region

Regionally, Quebec producers face the highest absolute compliance costs but they also produce more pulp and paper than those in other regions. Quebec mills account for 44% of the total capital costs of compliance but in terms of costs per dollar of surplus, mills on the Pacific coast ${ }^{1}$ are the most affected. Average capital costs per mill in Quebec are estimated at $\$ 27$ million, or about 1.7 years of $A E 1$ compared to 1.9 years for British Columbia coastal mills and only 0.4 years for mills in the Prairie provinces.

For the ACR, the pattern is similar although the differences between the regions are less marked. Mills in the Prairie provinces and the interior of British Columbia must spend 3% of surplus annually while mills on the Pacific coast must devote 10%. According to this measure there is little difference between mills in Eastern Canada despite the fact that Quebec has the lowest percentage of mills already equipped with secondary treatment facilities. The relatively low average surplus per tonne of product during the eighties in the Atlantic provinces and in the British Columbia interior mills increases this measure compared to other regions. In contrast, the above average surplus in Ontario reduces the relative impact of compliance costs in this province.

Control

The average capital and operating compliance costs are much the same for Canadian and foreign controlmd mills yet the former were somewhat less profitable and thus had higher compliance costs relative to surplus. The 54 Canadian controlled mills had an AEl of 1.8 compared to 1.2 for the 32 foreign controlled mills.

The ratio of average investment to average surplus is very similar for both groups despite the higher surplus per tonne of product for the foreign controlled mills. (As shown in Table 3 for all mills considered here, there is generally an inverse relationship between level of surplus and this ratio). Average investment is indeed larger for foreign controlled mills but they are also larger and the investment per tonne of capacity is similar. There is no indication, therefore, that foreign controlled mills are less inclined to reinvest their earnings. On the other hand, the higher percentage of secondary treatment in foreign controlled establishments does not necessarily reflect a higher expenditure on pollution abatement. It would be necessary to examine the historical ownership records to determine this.

[^8]
Mills in Compliance

The mills that are deemed to have no costs resulting from the 1992 federal regulations on traditional pollutants are smaller, less profitable and had a higher investment per tonne of production than those for which such expenditures were assessed (Table 4). The low surplus per tonne of these mills seems to be mainly related to their product. These mills do not, by and large, produce newsprint or kraft pulp, products that generated a relatively high surplus per tonne during the eighties.

Table 4: Characteristics of Mills With and Without Compliance Costs

	With compliance costs	Without compliance costs
Number of mills	86	25
Average capacity (tonnes per day)	721	408
Average surptus (dollars per tonne)	210	169
Average investment (doliars per tonne)	64	104
Number with secondary facilites (percent)	24	48

Sources:
Statistics Canada, National Accounts and Environment Division.
Environment Canada, Fegulatory Affairs and Program Integration Branch.

CONCLUSIONS

On average, mills not in compliance with the new federal regulations must spend an estimated 8% of operating surplus annually to purchase and operate the required treatment facilities. This percentage is inversely correlated with the production capacity of the mill and is strongly related to the type of product and the amount and type of pollution abatement equipment already in place. Although Eastern Canadian mills are often singled out as being old and less efficient, of the mills considered it is the British Columbia coastal mills that must devote the largest percentage of their surplus to this type of expenditure. For mills built before 1971, neither the age of the mill nor the level of investment over the last 12 years explains much of the variation in this percentage. Foreign controlled mills tended to perform better than Canadian controlled mills and had a higher percentage of secondary facilities already operational in 1989. These factors resulted in the former mills having a lower compliance cost per dollar of surplus.

Using average surplus as a denominator in the above measure gives an interesting perspective on the relative burden of compliance costs. Clearly, however, the performance of mills during the eighties is not necessarily a good predictor of their performance during the nineties, when the expenditures will have to be made. The high price of market pulp contributed substantially to surplus in the latter part of the decade. According to McCubbin (1990, p. 68), "the highest concentration of vuinerable mills is in the province of Quebec. All such mills are typified by high produc-
tion costs, dated equipment vintage and high compliance costs." We have shown, however, that Quebec mills performed better than average during the eighties and invested a proportion of surplus equivalent to the average of all mills considered. The ACR in Quebec was only one percentage point higher than the general average. This potential contradiction illustrates one of the hazards of comparing estimated future costs to actual historical financial data. In the final analysis, however, there is no significant difference in the average surplus per tonne of product for mills that have both primary and secondary facilities, those that have only primary facilities or those that have none, a fact that suggests that pollution abatement costs have not detracted from the performance of pulp and paper mills in the past.

DATA SOURCES AND MEASUREMENT PROBLEMS

The following data files were used for this study:

Pollution Data

Information on BOD factors and treatment facilities came from the Pulp and Paper Mill Profile System described in Statistics Canada (1992, p. 96). The data pertain to 1989. This database contains information on 124 direct discharge mills.

Estimated Compliance Costs

As noted in the text, these data come from a report prepared for Environment Canada by N. McCubbin Consultants Inc. The report states that:

> "The approach of calcuiating estimates for each mill was selected as the best way of estimating the total costs for each industry sector and geographic region. Clearly, such estimates can never be as reliable as those based on detailed engineering analysis, flowsheets, site layout, soils studies and contractors bid prices. Several capital cost estimates were checked against independent estimates based on detailed studies, and were found to be within 20% of the latter costs. Some extreme mills are bound to exist where the individual costs estimated for this report are either excessive or inadequate. However, it is considered that the aggregate of any reasonably sized sub-set of mills (such as Quebec newsprint mills) is accurate within 20% " (McCubbin, 1990, p. 56).

Manufacturing Data

Records from the manufacturing survey for individual mills classified to SIC 271 were processed to obtain 1989 production figures by type of product. Surplus was calculated for the period 1981-1989 by subtracting the cost of materials, fuel and labour from the value of shipments. As noted in the text, this value is equivalent to operating profit
before depreciation and depletion allowances except that it includes head office expenses. Since the study considers individual milis, it was not possible to derive a net profit estimate at this level. A weighted average of the annual surplus was calculated using the GDP implicit price deflator.

Investment Data

It was possible to obtain investment data dating back to 1979 from the Capital and Repair Expenditure Survey conducted by Statistics Canada. Although data exist prior to this year, it would have been difficult to match individual mills. Averages were computed using the price indexes for capital expenditure on plant and equipment for paper and allied industries.

Record Matching

The matching of company names by location was relatively straightforward, especially with the help of the Pulp \& Paper Canada Annual for 1989. In some cases one source reported data on a combined basis whereas other sources reported on the individual establishments. Mills for which all data were not available were omitted from parts of the analysis. This problem explains the variance in the number of mills reported. For instance, in Table 4 only 111 of the 124 direct discharge milis could be matched to combine information on surplus and investment. In Table 3 only 86 of the 94 mills reported as having compliance costs could be matched to show all the variables.

Variance

The variance about the mean is quite high in many cells of the tables presented in this study. Although excluding the outliers would have an effect on the mean in some cases, the difference is not large enough to change the conclusions. It should be noted, however, that the measures for a mill in any given category may be quite different from the average.

REFERENCES

Department of Fisheries and Oceans. "Pulp and Paper Effluent Regulations." Canada Gazette, Part I, December 14, 1991.

Environment Canada. The State of Canada's Environment. Ottawa, 1991.
Headlam, B. and M.Stevenson. "Winning the Paper Chase." Canadian Business, June 1990, p. 43.

Jamieson, Scott. "Airing Some Concerns: The Next Wave in Pollution Control." Pulp \& Paper Canada, 92, 10 (October 1991): 12-13.
McCubbin, Neil. "Economic Impact of Proposed Regulation of Pulp and Paper Industry." (Unpublished.) Prepared for

Regulatory and Economic Affairs Division, Environment Canada, June, 1990.

Pulp \& Paper Canada. 1989 Annual and Directory. Southam Business Publications. St.-Laurent, Quebec, 1989.

Sinclair, William F. Controlling Pollution from Canadian Pulp and Paper Manufacturers: A Federal Perspective. Environment Canada, 1990.
Statistics Canada. Databases for Environmental Analysis: Government of Canada. Occasional, Catalogue 11-527, Ottawa, 1992.

4 Transportation of Dangerous Goods

by Marcia Santiago

INTRODUCTION

Cargo transportation is an essential element of economic activity. The transportation system itself - roads, railways, pipelines and seaways - is a tangible link between industrial production and the consumer population.

Many aspects of transportation are associated with some level of environmental impact, including fossil fuel consumption, land use change and pollution from both the vehicles and people that use the transportation network. These may be measured in terms of either energy and material consumed or substances released into the environment. Other aspects of transportation, such as environmental risk, are not so easily quantified. This is because risk to the environment is quite different in nature from impact. The potential for impact is substantially more difficult to describe than an actual or realized effect. It is, nonetheless, a dynamic element of the relationship between the human and physical environments.

This chapter examines the regulation concerning the transport of dangerous goods in Canada. This is followed by the presentation and discussion of a variety of data on the tonnage of dangerous goods moved by various modes of transport, and on accidents involving dangerous goods. These two sets of data are used to estimate some simple indicators of the risk of accidental release of material associated with transportation of dangerous goods.

TRANSPORT REGULATIONS

In a practical sense, risk in transportation is usually understood in terms of human safety. Transportation is regulated on two levels: in the economic or competitive context, as well as in terms of safety. Safety is one of the main objectives of the National Transportation Policy (National Transportation Act 1987).

Dangerous goods are encountered in many economic activities, notably in many basic resource industries. In various forms, they are involved in virtually all types of manufacturing. Many are not intrinsically dangerous to the physical environment. In fact, most are regulated on the basis of their potential danger to transportation safety and human health. The term "dangerous goods" may, as such,
be misleading in an environmental context but it is used in this chapter because it is the regulatory term of reference.

In Canada, the movement of dangerous goods is largely controlled through the federal Transport of Dangerous Goods Act (1985) and its associated Regulations $(1985,1989)$. This legislation applies to all domestic and international movements of dangerous goods by Canadian carriers.

Within this context, dangerous goods are those commodities recognized by the Act as "any product, substance, or organism included by its nature or by the regulations in any of the classes listed in the Schedule" to the Act. This schedule contains over 3000 commodities, which are classified by United Nations Product Identification Numbers (PIN). These dangerous goods are aggregated into nine classes which form the basis of specific regulatory measures. Dangerous goods are controlled at all stages of transport: labelling of shipments, identification of hazardous substances on bills of lading and cargo manifests, and marking of vehicles. These regulations also stipulate training of anyone handling, offering to transport, or transporting dangerous goods.

THE ECONOMIC CONTEXT

Table 1: Dangerous Goods Transported, by Mode of Transport, 1986

| Class | Rail | Road | Marine |
| :--- | ---: | ---: | ---: | ---: |
| | thousand tonnes | | |
| 1. Explosives (potentiafly explosive
 material) | 51 | 115 | 14 |
| 2. Compressed or liquefied gases | 5647 | 1158 | 246 |
| 3. Flammable and combustible liquids | 3748 | 18186 | 10283 |
| 4. Flammable and combustible solids | 117 | 359 | 283 |
| 5. Oxidizers and organic peroxides | 645 | 1562 | 155 |
| 6. Poisonous and infectious substances | 99 | 246 | 111 |
| 7. Radioactive materials | - | 34 | 17 |
| 8. Corrosive materials | 3435 | 1372 | 921 |
| 9. Miscellaneous dangerous | 2047 | 401 | 99 |
| \quad substances or articles | | | |
| Total | 15790 | 23433 | 12129 |

Sources:
Transport Canada and Statistics Canada (OECD, 1988)
Table 1 shows that, overall, road transport accounts for 46% of the dangerous cargo tonnage shipped ${ }^{1}$. Shipments by rail and by marine carriers account for 31% and

1. The refative importance of various modes in dangerous goods movement varies with the method of estimating levels of activity. For example, the comparison between trucking and marine shipments may produce different resuits depending on whether or not the distance travelled is associated with the quantity of freight (i.e., tomne-kiometres vs. tonnes). Rail and road data are qualified in the following sections. For marine shipments, the figure shown is for international movements only; the tonnage of dangerous goods for domestic shipping is not available.

24\%, respectively. Flammable and combustible liquids (Class 3 substances) are the dangerous goods most commonly transported, representing 63% of the total weight of dangerous goods shipments. In terms of the mode of transport, flammable and combustible liquids represent 85% of international marine, 78% of for-hire trucking and 24% of rail shipments of dangerous goods.

Rail Movements

Dangerous goods represented 9%, by weight, of all commodities transported by rail within Canada and across the Canada-U.S. border in 1989. Domestic shipments of dangerous goods amounted to 11 million tonnes (or 68% of the total weight of dangerous goods shipments) and 181 thousand carloads (or 72% of total carloads shipped). Trans-border shipments contributed the remainder, at 5 million tonnes and 69 thousand carloads. These movements are summarized, by origin and destination, in Table 2.

Differences in unit weight (that is, the average weight per carload) across rail corridors may be attributed to a number of factors. High unit weights (e.g., 74 tonnes per car for domestic movements originating in Alberta) may indicate that the dangerous goods carried mainly consist of heavy, bulk materials. These would include crude petroleum oil or semi-refined petroleum products. Lower unit weights might suggest that the commodities being transported are more refined and less dense products. Low unit weights may also indicate that dangerous goods are being
carried in mixed carloads with other, non-regulated products.

One fifth of rail movements in dangerous goods (representing 4 million tonnes and 49 thousand carloads) took place within provincial boundaries. Interprovincial shipments totalled 7 million tonnes (42%) and 195 thousand carloads. Alberta, Ontario and Quebec accounted for most of the activity.

Six products account for 44% of the dangerous goods tonnage transported by rail from the U.S. Ranked highest, in terms of tonnage, is sodium hydroxide (81 thousand tonnes, Class 8). In this group, there are also two Class 3 commodities: cyclohexane (74 thousand tonnes) and benzene (27 thousand tonnes). Isobutylene (71 thousand tonnes) and propylene (65 thousand tonnes) are both Class 2 substances. One commodity, ethylenediamine tetra-acetic acid (EDTA), is classified by Transport Canada as an environmentally hazardous substance (Class 9.2, 44 thousand tonnes).

Similarly, among rail shipments of dangerous goods from Canada to the U.S., five products account for half of the tonnage. Three of these are compressed or liquefied gases (Class 2): ammonia (902 thousand tonnes), isobutane (396 thousand tonnes), and propane (313 thousand tonnes). Asbestos (473 thousand tonnes, Class 9) and sulphuric acid (468 thousand tonnes, Class 8) are also substantial components of the activity.

Table 2: Rail Movement of Dangerous Goods, by Origin and Destination, 1989

	Destination							
Origin	Nova Scotia and New Brunswick	Quebec	Ontario		Alberta	British Columbia and the Territories	United States	Total
Nova Scotia and New Brunswick	thousands of tonnes transported\qquad carloads							
	278	24	55	3	2	1	12	375
	4136	1035	2119	110	122	55	214	
Quebec	289	577	227	57	65	51	737	2003
	5985	8033	5361	1660	2086	1407	10137	
Ontario	227	342	1323	209	318	254	1601	4875
	7266	14223	17689	7313	10.396	7785	21653	86.325
Manitoba and Saskatchewan	16	5	181	257	8	36	172	676
	215	151	2856	3907	233	588	2457	10407
Alberta	53	255	530	292	721	2329	2490	6668
	813	3172	6404	4117	9775	28926	32094	86111
British Columbia and the Territories	2	5	12	7	32	577	47	679
	2	200	4833	147	522	7794	672	9896
United States	2	183	342	29	121	82	62	821
	94	4967	36821	507	1783	1026	785	14005
Total	865	1990	2670	853	1268	3331	5119	16097
	18421	31781	39821	17761	24927	47581	68822	249114

Source:

Statistics Canada. Rail in Canada 1989. Catalogue 52-216.

Road Movements

As in other industrial economies, road transport accounts for most of the dangerous cargo shipments within Canada (OECD, 1988). This reflects, to a great extent, the prominence of for-hire trucking in local freight distribution.

Table 3 is a summary of interprovincial dangerous goods movement by for-hire trucking in 1989. Shipments between and within urban areas account for 40% (1.9 million) of the shipments and 23% (7.7 million tonnes) of the weight transported. About 244 thousand shipments are made within Toronto's Census Metropolitan Area (CMA), the greatest number of dangerous goods movements within an urban centre. The greatest concentration of tonnage is transported within the Vancouver CMA, which accounts for 1.7 million tonnes of dangerous goods. Transborder activity accounted for 2% of shipments and 5% of dangerous goods tonnage. Compared to transborder rail movements, this is a considerably lower proportion of activity.

ACCIDENTS

Over time, the overall frequency of transportation accidents has tended simply to reflect the level of shipping activity. In 1991, the Transportation Safety Board reported a decrease in air and marine accidents compared to the previous year (TSB, 1992). In the same time period, there was
an increase in the number of rail accidents but the accident rate actually declined somewhat (TSB, June 1992).

The pattern of transportation accidents that involve dangerous goods is also tied to the level of activity. Overland shipments account for most of the dangerous tonnage transported and it follows that the road and rail modes also account for most of the accidents involving dangerous goods (Table 4).

The likelihood of an accident may also be expressed, for either overland mode of transport, in terms of the total shipments. Among rail movements, it is estimated that one accident occurs for every 545 carloads, or 36 thousand tonnes, of dangerous goods transported. In for-hire trucking, the probability of accident is estimated at one in 21 thousand truckloads, or 70 thousand tonnes, of dangerous goods transported.

Between classes of dangerous goods, the occurrence of accidents is only weakly correlated with the quantities transported. In rail shipments, Class 3 substances account for 24% of the tonnage and 29% of the accidents (one accident for every 29 thousand tonnes transported). In road movements, these commodities account for 78% of the tonnage and 43% of the accidents (one accident for every 90 thousand tonnes transported).

An important dimension of any accident involving dangerous goods is whether or not material release occurs as

Table 3: Dangerous Goods Handled in For-hire Trucking, by Origin and Destination, 1989

Origin	Destination								
	Newfoundland and Prince Edward Island	Nova Scotia and New Brunswick	Quebec	Ontario	Manitoba and Saskatchewan	Alberta	British Columbia and the Territories	United States	Total
	thousands of tomnes thousands of truckioads								
Newfoundland and	163	25	1	-.	--	33	-	-	223
Prince Edward island	18	3	--	--	-	1	-	\cdots	22
Nova Scotia and	50	2400	39	14	-	--	-	220	2725
New Brunswick	7	195	5	5	--	1	1	8	233
Quebec	9	107	3308	684	12	23	7	148	4299
	4	32	495	335	11	14	11	11	913
Ontario	9	90	688	6632	71	56	20	546	8113
	11	55	316	1735	39	34	27	41	2259
Manitoba and Saskatchewan	--	4	5	176	2983	214	47	293	3721
	..	1	2	29	245	29	7	11	325
	-	-	11	40	949	6810	924	284	8998
Alberta	\cdots	1	3	9	62	402	68	13	557
British Columbia and the Territories	-	7	4	16	26	793	3392	124	4362
	-.-	1	3	8	6	45	297	9	367
United States	2	19	139	492	53	73	60	8	845
	1	4	21	75	9	11	9	2	131
	234	2652	4195	8054	4094	8003	4450	1604	33287
Total	52	291	845	2196	372	372	419	96	4808

Source:

Statistics Canada. For-hire Trucking (Commodity Origin-Destination) Survey.

Table 4: Transportation Accidents Involving Dangerous Goods, 1990

Class	Total accidents					Accidents with material release				
	Foad	Rail	Marine	Air	Total	Road	Rail	Marine	Air	Total
1. Explosives (potentially explosive material)	9	4	-	-	13	2	1	-	-	3
2. Compressed or liquefied gases	63	193	-	-	256	44	105	-	-	149
3. Flammable and combustible liquids	203	131	3	8	345	194	67	3	7	271
4. Flammable and combustible solids	15	10	-	1	26	14	1	*	1	16
5. Oxidizers and organic peroxides	11	15	-	-	26	8	4	-	-	12
6. Poisonous and infectious substances	44	14	1	3	62	42	9	1	2	54
7. Radioactive materials	4	-	1	1	6	1	-	-	,	1
8. Corrosive materials	99	74	2	1	176	94	39	2	${ }^{*}$	13
9. Miscellaneous dangerous substances or articles	13	4	*	1	18	12	3	2	1	136 16
n.e.s	16	7	1	\checkmark	24	15	5	1	-	21
Total	477	452	8	15	952	426	234	7	12	679

Transport Canada. Dangerous Goods Directorate.
a result of the accident. With the data provided in Table 4, it is difficult to ascertain whether material release in accidents is related to mode of transport. Overall, 71% of all accidents that involve dangerous goods do result in material release. By relating the frequency of material release to the number of accidents, there would appear to be many more accidents with material release by road transport (89%) than by rail (52%). However, in terms of the tonnage of cargo transported, rail and road shipments have about the same probability of material release; there is about one accident in which material is released for every 70 thousand tonnes of material transported.

Simple frequencies cannot truly depict the magnitude of the impact that results from the accidental release of dangerous cargo. For example, in the summer of 1991 an accident provoked the derailment of twenty-five cars in St. Lazare, Manitoba (TSB 1992). Ten were carrying dangerous cargo and four of those ruptured. A toxic cloud was released, which contained methanol and acetic anhydride, and village residents were temporarily removed from the area.

HAZARDOUS WASTE

Class 9 substances, which are described as miscellaneous dangerous substances or articles, constitute a very small proportion of the total shipments and accidents involving dangerous goods. This category also includes hazardous waste such as PCBs (Table 5). Despite their minimal contribution to the total shipments of regulated
substances, these commodities receive a great deal of public attention. Such a high profile is likely related to perceptions of the probability of accidents and spills, as well as the risks to health, safety and the environment that are believed to be associated with hazardous waste.

Table 5: Rail and Road Movements of Class 9 Substances, 1992

Class	Movements				Average distance
	Rail		Road		
	thousand tonnes	cars	thousand tonnes	trips	km
9.1 Miscellaneous dangerous goods	1053	17824	485	67076	818
9.2 Environmentally hazardous substances	496	7819	44	6573	620
9.3 Dangerous wastes	2	42	-	.	.
9.9 Other	977	38149	
Total	2528	63834	530	73849	800
Source: Transport Canada. Dangerou	Goods Dir	ctorate			

Rail shipments of hazardous waste in 1992 were estimated at about two thousand tonnes or 42 cars, representing less than one tenth of one percent of Class 9 freight in this mode. Furthermore, Class 9 materials were involved in a very small proportion of the accidents involving dangerous goods. Among accidents involving dangerous goods
where material was released, only 2% involved Class 9 cargo.

There is a great deal of discussion regarding the risks associated with storing, handling, and transporting hazardous waste. Some perceive that the transport of hazardous waste poses a greater health and safety risk than that of other classes of dangerous goods. Others believe that accidents involving hazardous waste are more likely to occur in transportation than in storage and handling or after equipment failure. There is one study, for the province of Manitoba, where it has been shown that the risk of accident in transportation is no greater than in any other activity involving hazardous waste (Manitoba Environment, 1991). It is difficult, however, to compile complete, reliable data and, therefore, to arrive at firm conclusions.

The risks associated with hazardous waste transport are difficult to ascertain. Among rail movements, the likelihood of an accident involving a Class 9 substance is estimated at one in 16 thousand carloads, or one in 632 thousand tonnes. Compared to the accident rate among dangerous goods, in general, this probability is considerably lower. Among road movements, it is estimated that one accident occurs for every 6 thousand shipments, or 41 thousand tonnes, of Class 9 substances. Based on these data, there is one accident for every 33 thousand tonne-kilometres of dangerous goods transported by road. It should be noted, however, that the estimates of shipment frequency and tonnage for road movement are based only on forhire trucking whereas statistics on accidents cover all trucking. Thus, the probability of accidents may be overstated.

DATA SOURCES

By law, dangerous goods movements are monitored through a system of permits but, despite this requirement, there is no central source of data.

Data for rail shipments are collected by the Dangerous Goods Directorate of Transport Canada from the Canadian National and Canadian Pacific Railways. Data for the period 1987-1989 were supplied by Transport Canada to Statistics Canada for special studies on dangerous goods movement, which appeared in Rail in Canada 1988 and 1989 (Catalogue 52-216).

The Transportation Division of Statistics Canada maintains databases on for-hire trucking. With the assistance of Transport Canada, commodities designated as being "dangerous" under the Act are identified on this database. A similar exercise is being undertaken with international shipping data. In all cases, estimates of dangerous goods shipments are based on bills of lading, cargo manifests or their equivalent; none are based on dangerous goods permits. At present, no data are available for the following types of shipments: own-account trucking, rail movements other
than CN and CP , domestic shipping and permits for exception in all modes.

The data derived from bills of lading are coded by either the Standard Trade Commodity Classification or the Harmonized Commodity Description and Coding System. Neither corresponds precisely to the PIN classification and the estimates of movements of dangerous goods require adjustments. For example, in rail movements, Class 9.9 was created for mixed cargoes of regulated and non-regulated commodities.

REFERENCES

Manitoba Environment. State of the Environment: Report for Manitoba, 1991. Winnipeg, 1991.

Organization for Economic Cooperation and Development (OECD). Transporting Hazardous Goods by Road. Report prepared by an OECD Scientific Experts Group. Paris, 1988.

Transportation Safety Board of Canada (TSB). Annual Report 1991. Ottawa, 1992.
-...--. Summary of Railway Accidents/Incidents, Ottawa, June 1992.

5 Land Use Change Around Riding Mountain National Park

by Douglas Trant

INTRODUCTION

Riding Mountain National Park has been described as:
"An island of natural environment surrounded by a sea of man-altered environment. The transition zone from farmlands is illustrated dramatically by the wheat fields and pastures abutting the natural environment."
(Parks Canada, 1987).
The park is a unique area of Canadian wilderness where habitats characteristic of eastern, western and northern Canada converge in a series of forests, grasslands, hills and valleys. Riding Mountain National Park's 3000 square kilometre area is home to 5000 elk, 4000 moose, and over 1000 black bears. Many other species such as wolf, beaver, cougar and osprey also inhabit this nature reserve. In summer months more than 30000 people visit the park each weekend.

Riding Mountain National Park is located on the Manitoba Escarpment, and can be described as an elevated boreal island surrounded by prairie. Because of its unusual combination of attributes it was designated as an International Biosphere Reserve, as part of the United Nations Educational, Scientific and Cultural Organization's (UNESCO) Man-Biosphere Program. UNESCO established the ManBiosphere Program in 1971 to ensure the preservation of unique natural environments in each of the world's biogeographic regions. A Man-Biosphere reserve typically consists of a protected core of natural environment together with adjacent areas which collectively form a zone of cooperation. The Man-Biosphere Program recognizes that socio-economic activities and natural ecosystems must coexist in an effort to guarantee the survival of both. Some 266 Man Biosphere Zones have been selected globally to date.

In recent years the transition zone from park to agriculture has become narrower, making the likelihood of conflict between activities more probable. Close co-existence of agriculture and wilderness can induce conflict, as one interferes with the other. The survival of the nature reserve depends on careful organization, planning and management. The role of information to support decision-making in this
process is important. The findings of this analysis and the information that supports it will be added to a larger inventory of data supporting the Biosphere Reserve Program at Parks Canada.

This study will examine the changing mosaic of socioeconomic activity that surrounds Riding Mountain National Park. The inter-relation between park, biosphere reserve and beyond is explored from both spatial and temporal perspectives. Many Statistics Canada micro-databases have been tapped to generate a detailed profile of the area as it has evolved over the last twenty years. Most of these information bases are accessed through the National Accounts and Environment Division's Environmental Information System (EIS) which uses geo-referenced data within a geographic information system (GIS) framework.

This analysis is divided into three Sections. The first section provides background on the history of the park and focuses on issues that have emerged as human settlements and activities move closer to the park, placing more and more pressure on the nature reserve. This section will also describe the physical setting of Riding Mountain, by briefly looking at physiography, hydrology and important biotic communities.

The second section will look at changing population and land use trends around the park over the last twenty years. A detailed statistical profile consisting of a series of concentric zones around the park, will be used to indicate composite activity changes in relation to proximity to the park.

The third section examines changes in agricultural practices around the park. Trends in farm input levels and cropping practice changes will be examined over time to suggest potential effects on the park.

PHYSIOGRAPHY AND HISTORICAL BACKGROUND OF RIDING MOUNTAIN NATIONAL PARK

History

In the early 1800's the land that comprises Riding Mountain National Park was exploited largely as a timber resource for the construction of railways and farm buildings. In 1895, in response to continued pressure from growing settlements, the Dominion Government chose to set aside today's park area as a forest reserve. The purpose of this reserve was to continue to provide lumber to developing communities at controlled rates in an effort to maintain a continual long term supply of wood (Tabulenas, 1983, p. 175). As a new forest reserve, Riding Mountain came under the jurisdiction of the Forestry Branch of the former Department of the Interior. Husbandry of the reserve became the responsibility of foresters who controlled forest harvest rates. By the early 1900's increased de-
mands for lumber and uncontrolled hunting access had diminished wildlife populations to dangerously low levels. In response to public concern, the Manitoba Government enacted legislation to make Riding Mountain into a game reserve (Tabulenas, 1983, p. 191).

Despite the economic depression of the 1920's and early 30 's, agriculture continued to expand and ultimately advanced to the very edge of the Riding Mountain Reserve. In response to this pressure, and a new public demand for leisure and recreational space, the Riding Mountain Preserve became a National Park in 1930. Since then two very different landscapes have evolved, and Riding mountain has become an island of wilderness within a sea of agricultural development (Tabulenas, 1983, p. 200).

Physiography

Riding Mountain National Park straddles an upland plateau formed by the geologic fautting of the Manitoba escarpment and the subsequent deposition of glacial moraine landforms from the last glacial period some 12000 years ago. The bedrock geology underneath the park and sur-
rounding area is largely sedimentary, consisting of highly erodible shale types. The soils on Riding Mountain Plateau have developed from shale parent materials and are largely Grey Luvisols. These soils form in cool climates under woodland vegetation. (See map 1) The soils surrounding the Riding Mountain Plateau are largely Chernozems which form in cool climates under grassland vegetation. The Chernozems are quite fertile because of their high organic matter content and provide the soil base for a productive agricultural industry.

Hydrology

The Riding Mountain Plateau is the origin for many streams and rivers including the Wilson River, the Vermillion River, the Ochre River and the Turtle River. Flooding problems in these watersheds are not uncommon and are exacerbated by the build-up of shales in the stream network (Krawchuk, 1990, p. 113). The shale build-ups are primarily from erosion of alluvial fan material which has been disturbed by the recent clearing of land for agricultural use.

Map 1: Soil Types in Southern Manitoba

Notes:
Map 1 is from Agricuture Canada's $1: 1000000$ Soil Landscape Series. Riding Mountain National Park is outined in black and is surrounded by a series of radial buffers which will form the basis for a socio-economic data analysis in the section Population and Land Use Characteristics.
Sources;
Agriculture Canada, Centre for Land and Biological Pesources.
Statistics Canada, National Accounts and Environment Division.

Natural Vegetation and Ecological Communities

There are three distinct ecological communities within the Riding Mountain Biosphere Reserve. These are: Mixedwood Forest, Aspen-Oak Woodland and Grassland. The rough fescue prairie grassland within the park is of international significance as there are few undisturbed examples left in the world. (Most former fescue grasslands are now producing grain crops.) The hardwood forest community on the southern slopes of the park is also unique. This forest is growing 1000 kilometres north of its traditional northern limit, and has survived because of the warm mi-cro-climate created along the south facing escarpment (Krawchuk, 1990, p. 124).

POPULATION AND LAND USE CHARACTERISTICS

The land use and population study area is oval in shape and extends 250 kilometres in an east-west direction and 160 kilometres in a north-south direction. The study area represents more than 3.3 million hectares of park and surrounding farmland. A series of 10 km wide radial buffer zones have been developed to which micro-geographic data have been linked and aggregated ${ }^{1}$. Each radial zone around the central core represents an increasing area as the zones radiate away from the park. The 0-10 km zone is just under 320 thousand hectares while the 6070 km zone is just under 656 thousand hectares. (See zone areas in Table 2 and Map 1.)

Rural populations have been declining in Manitoba and Saskatchewan for some years now. Manitoba's rural population declined by 1.9% between 1971 and 1986 , while Saskatchewan's declined by 10.6%. The Riding

1. See Data Limitations section

Mountain area has experienced even sharper declines in population. (See Table 1 and Map 2.)

Table 1 indicates that rural population has declined by more than 21.6%, between 1971 and 1986. All zones showed a decline in rural population, zone 0-10 showed the smallest decline at 6.7%, and zone $20-30$ showed the largest decline at 31.8%. These patterns indicate a declining farm population and an increasing trend towards living in urban centres.

Urban populations in the study area are quite small and exist primarily in zone $10-20$ where the towns of Minnedosa and Dauphin are located. Zone $10-20$ showed an urban increase of slightly more than 10.3%. Urban population for the study period grew by 16.4%. (See Table 1)

Changing demographic patterns around Riding Mountain reflect changing farm economics. Farm populations have been declining on the prairies for some time now. World grain prices have in part contributed to this decline. For example, in 1914, a tonne of wheat was worth $\$ 468$ (1991 dollars) on the world market; in 1990, a tonne of wheat sold for an average of $\$ 113^{2}$. As the nature of farming changes in an intensely competitive international market, more and more rural dwellers move to urban areas. This trend is evident around Riding Mountain, as it is elsewhere in Canada.

Agriculture is the dominant land use activity around Riding Mountain National Park. Throughout the study period (1971-1986), agriculture has consistently occupied 80% of land around the park and directly provides almost a quarter of all employment in the study area. Table 2 describes farmland areas and changes in these areas as pro-
2. Statistics Canada, Canada Level Price Series, Agriculture Division, Farm income and Prices Section, 1992.

Table 1: Change in Population, 1971 and 1986

	Rural population			Urban population			Total population		
Radial zone	1971	1986	Change in population 1971-1986	1971	1986	Change in population 1971-1986	1971	1986	Change in population 1971-1986
	number		percent	number		percent	number		percent.
0.10 km zone	6090	5685	-6.7	0	0	0.0	6090	5685	-6.7
$10-20 \mathrm{~km}$ zone	11920	8650	-27.4	10415	11485	10.3	22335	20135	-9.9
20.30 km zone	8120	5540	-31.8	0	1030	.	8120	6570	-19.1
$30-40 \mathrm{~km}$ zone	9000	7465	-17.1	4375	4435	1.4	13370	11900	-11.0
$40-50 \mathrm{~km}$ zone	8620	6930	-19.6	4450	4280	-3.8	13073	11215	-14.2
$50-60 \mathrm{~km}$ zone	10030	8755	-12.7	0	0	0.0	10030	8755	-12.7
$60-70 \mathrm{~km}$ zone	12530	8955	-28.5	0	1160	.	12530	10110	-19.3
Total	66310	51980	-21.6	19240	22390	16.4	85550	74365	-13.1

Notes:
10 kilometre radial buffers were used to classify data concentrically around Riding Mountain National Park.
Figures may not add to totals due to rounding.
Sources:
Sources:
Statistics Canada, National Accounts and Environment Division and Census of Population

Table 2: Change in Farmland Area, 1971-1986

	Farmland area			Proportion of zone area in farmland			Average farm size		
Radial zone	Zone area	1971	1986	1971	1986	Change in farmland area 1971-1986	1971	1986	Change 1971-1986
	thousand hectares			percent			hectares		percent
$0-10 \mathrm{~km}$ zone	320	246	297	76.8	92.7	20.7	191	263	38.0
$10-20 \mathrm{~km}$ zone	354	316	273	89.4	77.1	-13.8	216	273	26.7
$20-30 \mathrm{~km}$ zone	411	388	383	94.4	93.2	-1.3	257	324	26.1
30.40 km zone	471	343	340	72.7	72.1	-0.9	238	314	32.2
$40-50 \mathrm{~km}$ zone	535	443	420	82.8	78.7	-5.0	292	360	23.5
$50-60 \mathrm{~km}$ zone	595	411	455	89.0	76.5	10.8	264	354	34.4
$60-70 \mathrm{~km}$ zone	656	487	467	74.3	71.2	-4.2	288	374	29.8
Total	3341	2633	2634	78.8	78.8	0.3	249	323	29.8

Note:
10 kilometre radial buffers were used to ctassity data concentrically around Fiding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agricuture Division.

Map 2: Population Density, 1971 and 1986

Note:

Municipalities making up the Piding Mountain Biosphere Feserve are outined around the park
Source:
Statistics Canada, National Accounts and Environment Division.
portions of total area for the 7 radial zones between the 1971 and 1986 census years. (See Map 3.)

In brief, farmland area for the entire study area has essentially remained constant over the 15 year study period, showing an increase of less than 1%. However, significant changes have occurred when individual radial zones are examined. The $0-10$ kilometre zone nearest the park shows the highest change where agricultural areas continue to expand. Farmland has increased by 20% in this zone, going from 77% of zone area to over 92%, making it second only to zone $20-30$ at 93% agriculture. This trend indicates that the boundaries separating land use activities are becoming narrower and the likelihood of conflict between uses is therefore increased.

Idie land that used to form a cushion between activities is no longer there and the probability of having bears in farmers fields has increased as has the potential for animal poisoning by farm pesticides. ${ }^{1}$

Table 3 looks at the improved farmiand ${ }^{2}$ trends at varying distance from the park. Cropland trends are on the rise
in all of the radial zones. The entire study area shows a 27.8% increase in cropland area. Since farmland areas in Table 2 have remained stable, and cropland areas in Table 3 are on the rise, it is apparent that a larger proportion of farmland is being placed in production and that land use intensity is increasing. Map 4 shows the radial distribution of cropland area changes around the park. The $0-10$ zone shows the largest change with a 41.7% increase. Summerfallow areas are declining in all of the radial zones. The study area shows a decline of 43.8%. This is positive from a soil salinization perspective since the rate at which salinization occurs is dependent on soil moisture levels as they are affected by summerfallowing (Dumanski, 1986, p. 206). Summerfallowing contributes to salinization by raising soil moisture levels, and causing migration of stored salts.

1. Riding Mountain National Park warden Mac Estabrooks indicated, in a telephone conversation, that bear and elk were entering surrounding fields with increasing regularity.
2. Farmland that is considered improved can be cropland, improved pasture, summerfallow, or other improved land.

Map 3: Change in Farmland Area, 1971-1986

[^9]Table 3: Change in Improved Farmland Area, 1971-1986

Radial zone	Improved farmland											
	Cropiand			Improved pasture			Summerfallow			Other improved land		
	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$
	thousand hectares			thousand hectares		percent	thousand hectares		percent	thousand hectares		percent
0.10 km zone	107	151	41.5	9	15	58.3	46	34	-25.9	4	4	1.2
$10-20 \mathrm{~km}$ zone	145	154	6.3	11	9	-15.9	58	30	-49.3	5	3	-36.8
$20-30 \mathrm{~km}$ zone	150	192	27.5	15	18	17.0	67	34	-48.3	6	4	-32.0
$30-40 \mathrm{~km}$ zone	141	184	30.2	8	9	8.2	70	35	-49.4	5	4	-17.6
$40-50 \mathrm{~km}$ zone	159	203	27.7	22	27	22.0	70	41	-41.6	6	5	-16.3
$50-60 \mathrm{~km}$ zone	157	211	34.6	17	14	-15.7	73	40	-44.8	6	5	-16.4
60.70 km zone	177	224	26.7	16	17	6.5	80	42	-47.6	6	5	-9.4
Total	1035	1318	27.3	97	107	10.4	463	256	-44.7	37	30	-18.9

Note:
10 kilometre radial buffers were used to classify data concentrically around Riding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agricutture Division.

Map 4: Change in Cropland Area, 1971-1986

Notes:

Cropland change refers to change in proportion of zone in cropland. Municipalities making up the Fiding Mountain Biosphere Feserve are outined around the park Sources:
Statistics Canada, National Accounts and Environment Division and the Census of Agriculture.

Table 4 depicts trends in unimproved farmland. These areas, with the exception of unimproved pasture, are showing significant declines. Woodland which is important to wildife as cover, and as a food source, shows sharp declines in all of the radial zones. The zone closest to the park contains the highest proportion of farm woodland, of its 320000 hectares 8887 remained in farm woodland in 1986. (Some woodland still exists outside farmland areas but this amount must be less than 7.3% of the zone area, 92.7% of zone $0-10$ is farmland.) Map 5 portrays the extent to which farm woodland areas have been declining around the park.

As human activities intensify and move closer to the park the likelihood of conflict increases. Agriculture-wildlife conflict can manifest itself in many different ways. For example, species such as the burrowing owl and prairie chicken can lose habitat to agriculture and be reduced in numbers or even disappear. Other birds such as the brown headed cowbird, thrive in a cleared cropland environment. These birds displace other species, such as the yellow warbler by reproducing in a parasitic manner, reducing the breeding success of other species (Environment Canada, 1991, p. 6-6).

Expanding agricultural land use further limits not only the diversity and numbers of wild animals, but that of plant life as well. Native plant communities are displaced and replaced by crop monocultures. (See below.) Even when land is later withdrawn from agriculture, the original grasses and wild flowers tend to be supplanted by hardier opportunistic weed species (Environment Canada, 1991, p. 6-6).

FARM INCOME, INPUTS AND AGRICULTURAL PRACTICES

The distribution of farm income per hectare of farmland around Riding Mountain appears to show a concentration of high income earners in the south on the black chernozemic soils, with lower incomes in the north on the luvisolic soils. (See Map 6 and Map 1.) Farmers in areas close to the park tend to have lower incomes, with the exception of some polygons ${ }^{1}$ along the northern park boundary which are on dark grey chernozemic soils.

Agricultural practices have changed significantly on the Prairies over the last twenty years. As previous tables have indicated, fewer farmers are operating more farm area. In an effort to increase production and stay competitive, more farm inputs such as fertilizers, chemicals and fuels are being consumed than ever before. Bigger, more costly equipment is being purchased to operate larger and larger farms. Farmers have expanded their operations and have begun to rely on labour saving, capital intensive technology to operate these bigger farms. The environmental cost of these new technologies is substantial (Dumanski, 1986, p. 205).

Agricultural production in Canada has quadrupled in the last 60 years (Statistics Canada, 1991, p. 186). Farming methods and cropping practices have changed. Farms have become highly productive and are specializing in a narrower range of activities than ever before. Farms are

[^10] point.

Table 4: Change in Unimproved Farmland Area, 1971-1986

Radial zone	Unimproved farmland								
	Unimproved pasture			Woodland			Other improved land		
	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$	1971	1986	$\begin{gathered} \text { Change } \\ 1971-1986 \end{gathered}$	1971	1986	Change 1971-1986
	thousand hectares		percent	thousand hectares		percent	thousand hectares		percent
$0-10 \mathrm{~km}$ zone	42	59	39.5	16	9	-45.2	63	25	-60.7
$10-20 \mathrm{~km}$ zone	48	50	3.9	15	6	-60.6	83	21	-74.2
20.30 km zone	93	104	12.0	18	6	-64.8	132	25	-81.4
$30-40 \mathrm{~km}$ zone	59	74	25.2	12	5	-59.0	108	29	-73.1
40.50 km zone	98	110	11.6	26	8	-70.2	160	28	-82.7
$50-60 \mathrm{~km}$ zone	74	133	81.1	27	8	-72.3	132	44	-66.5
60.70 km zone	129	136	5.2	24	7	-69.7	185	36	-80.7
Total	544	667	25.5	138	48	-63.1	863	207	-74.2

Note:
10 kilometre radial buffers were used to classify data concentrically around Riding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Notes:
Woodland change refers to change in proportion of zone tarmiand. Municipalities making up the Fiding Mountain Biosphere Reserve are outtined around the park.
Sources:
Statistics Canada, National Accounts and Environment Division and the Census of Agricultufe.
taking advantage of the economies of scale that result specialized functions. Increased production often implies modifying the natural environment, so that growth can take place unimpeded by environmental factors which might otherwise slow it. An extreme example of this is the use of a green house where natural conditions are so controlled that almost any crop can be grown at any latitude. A less extreme example is the growth of a typical field crop. Environmental factors such as moisture level, flora diversity, fauna variety, soil tilth, wind strength and nutrient availability are all controlled by man. Implementing these types of controls on a large scale (millions of hectares) has inevitable consequences for the natural environment. For example, agricultural production can change the water table level and may reduce the number of animal species present by limiting vegetational diversity which are food supplies to particular wildlife species.

The agricultural activity surrounding Riding Mountain is not the intense, high yielding type found in the mid-west-
ern United States. The range of crops that can be grown economically at such northerly latitudes is small, and consists mainly of grains and cereals, or close-row type crops. Table 5 summarizes how the majority of cultivated land is being utilized.

Close-row crops dominate the study area. In total they made up more than 85% of cultivated land in 1986, a decrease from more than 90% in 1971. The remainder of cropland in the study area is planted in forage type crops such as tame hay. Crop cover around the park is important because it influences food supply for wild animals, determines soil erosion rates, affects soil quality, affects water quality and influences ecological stability by limiting species diversity. The downward trend suggested by the data, away from completely close-row monoculture is positive because it indicates that crop rotation may be increasing and that the cropping base is becoming more diverse from an ecological perspective. Two crop types of

Map 6: Farm Revenue per Hectare of Farmland, 1986

Notes:
Farm revenues refer to farm sales in 1986 . Municipalities making up the Riding Mountain Biosphere Reserve are outined around the park. Sources:
Statistics Canada, National Accounts and Environment Division and the Census of Agriculture.

Table 5: Change in Close-Row Monoculture Cropped Area, 1971-1986

Radial zone	Cultivated fand area			Close-row monoculture area			Close-row monoculture proportion of total cultivated land		
	1971	1986	Change 1971-1986	1971	1986	$\begin{array}{r} \text { Change } \\ 1971-1986 \end{array}$	1971	1986	Change 1971-1986
	thousand hectares		percent	thousand hectares		percent			
$0-10 \mathrm{~km}$ zone	153	185	21.3	131	143	9.1	85.9	77.3	-10.0
$10-20 \mathrm{~km}$ zone	203	183	-9.7	180	152	-15.8	88.9	82.8	-6. 8
$20-30 \mathrm{~km}$ zone	217	226	4.2	192	185	-3.7	88.4	81.7	-7.6
$30-40 \mathrm{~km}$ zone	211	219	3.8	195	198	1.7	92.6	90.7	-2.1
$40-50 \mathrm{~km}$ zone	229	244	6.4	202	203	0.6	88.3	83.4	-5.5
$50-60 \mathrm{~km}$ zone	229	251	9.5	210	217	3.5	91.4	86.4	-5.5
60.70 km zone	257	266	3.6	231	233	0.6	90.1	87.5	-2.9
Total	1499	1574	5.1	1342	1331	-0.8	89.5	84.6	-5.6

Cultivated land refers to land under crops and land in summerfatiow.
Sources:
Sources:
Statistics Canada, National Accounts and Environment Division and Agricuture Division.
note are oilseeds and specialty crops, which have both increased significantly over the study period.

The volume of agricultural fertilizers applied within 70 kilometres of Riding Mountain National Park has more than quintupled during the study period, from roughly 20000 tonnes in 1970, to almost 150,000 tonnes in 1985. The ap-
plication rate also increased from 65 kilograms per hectare to 145 kilograms per hectare. (See Table 6 and Map 7.)

These rates have increased sharply, but are still well below those found in eastern Canada which can exceed 2000 kilograms per hectare. Fertilized area around the park has gone up by 235% over the study period.

Table 6: Change in Commercial Agricultural Fertilizer Application, 1970-1985

	Commercial fertilizer tonnage			Area fertilized			Application rate		
Radial zone	1970	1985	Change 1970-1985	1970	1985	$\begin{array}{r} \text { Change } \\ 1970-1985 \end{array}$	1970	1985	$\begin{array}{r} \text { Change } \\ 1970-1985 \end{array}$
	tonnes		percent	thousand hectares		percent	kg per hectare		percent
0.10 km zone	1843	14382	680.3	28	106	279.1	66.13	136.12	105.9
$10-20 \mathrm{~km}$ zone	2950	16533	460.4	43	119	175.3	68.52	139.47	103.5
$20-30 \mathrm{~km}$ zone	2944	23258	689.9	47	147	215.0	62.98	157.95	150.8
$30-40 \mathrm{~km}$ zone	2576	22059	756.3	43	154	257.3	59.68	143.00	139.6
$40-50 \mathrm{~km}$ zone	2909	22022	636.9	46	157	237.6	64.28	140.33	118.3
50.60 km zone	3009	25902	760.8	49	171	255.9	62.59	151.40	141.9
60.70 km zone	3635	25076	589.8	53	179	236.6	68.47	140.33	104.9
Total	19947	349233	648.2	309	1032	234.7	64.65	144.55	123.6

10 kibometre radiad zones were used to classify data concentrically around Aiding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.
Map 7: Commercial Agricultural Fertilizer Application Rates, 1970 and 1985

Notes:
Fertilizer data for 1970 were estimated from expense data. These maps represent areas within 90 km raclius of the park. Municipalities making up the Riding Mountain Biosphere Reserve are
outined around the park.
Source:
Statistics Canada, National Accounts and Environment Division.

Fertilizer tonnages for 1971 were estimated from fertilizer expense data. Changing commercial fertilizer tonnages do not fully account for increases in commercial nutrients applied. Fertilizer nutrient contents have been increasing steadily over time. The average nutrient content of fertilizers in 1971 was 48%. By 1986 this value had increased to 58\% (Agriculture Canada, 1987).

Agricultural pesticide applications have also increased substantially in the study period. Pesticide expenditures indicate that there has been a 744% increase in pesticides applied. These increases are large but actual application rates are one third of those in eastern regions of Canada. The use of pesticide expense data does not directly indicate changing pesticide volumes or toxicity levels. (See Tables 7 and 8, Map 8.)

Table 7: Change in Agricultural Pesticide Expenditures and Application Rates, 1970-1985

	Agricultural pesticide expenditures			Cultivated land area			Value of pesticide per hectare of cultivated land		
Radial zone	1970	1985	$\begin{array}{r} \text { Change } \\ 1970-1985 \end{array}$	1970	1985	Change 1970-1985	1970	1985	$\begin{array}{r} \text { Change } \\ 1970 \text {-1985 } \end{array}$
	constant 1985 dollars		percent	thousand hectares		percent	dollars per hectare		percent
0.10 km zone	315053	2966482	841.6	153	185	21.3	2.1	16.0	676.4
$10-20 \mathrm{~km}$ zone	480591	3350309	597.1	203	183	-9.7	2.4	18.3	671.7
20.30 km zone	422734	4009348	848.4	217	226	4.2	1.9	17.7	810.0
$30-40 \mathrm{~km}$ zone	489741	4209813	759.6	211	219	3.6	23	19.2	727.8
$40-50 \mathrm{~km}$ zone	522824	3666636	601.7	229	244	6.4	2.3	15.1	559.5
$50-60 \mathrm{~km}$ zone	457376	4407643	863.7	229	251	9.5	2.0	17.5	780.4
$60-70 \mathrm{~km}$ zone	516911	4444918	759.9	257	265	3.6	2.0	16.7	730.2
Total	3205230	27057210	744.2	1499	1574	5.1	2.1	17.2	703.6

Note:
0 kilometre radial zones were used to classify data concentrically around Riding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Map 8: Agricultural Pesticide Application Rates, 1970 and 1985

Note:
These map represents areas within a 90 km radius of the park. Municipalities making up the Fiding Mountain Biosphere Reserve afe outined around the park
Source:
Statistics Canada, National Accounts and Environment Division

Table 8: Change in Areas Sprayed With Insecticides and Herbicides, 1970-1985

	Area sprayed for insects			Area sprayed for weeds		
Radial zone	1970	1985	$\begin{array}{r} \text { Change } \\ 1970-1985 \end{array}$	1970	1985	$\begin{array}{r} \text { Change } \\ 1970-1985 \end{array}$
	nec		percent	he		percent
$0-10 \mathrm{~km}$ zone	3316	6124	84.7	41538	111147	167.6
$10-20 \mathrm{~km}$ zone	5234	5043	-3.6	63379	118755	87.4
$20-30 \mathrm{~km}$ zone	6831	9309	36.3	64367	145373	125.9
$30-40 \mathrm{~km}$ zone	3541	10591	199.1	62060	152467	145.7
40.50 km zone	4595	15761	243.0	68747	150081	118.3
$50-60 \mathrm{~km}$ zone	3250	15370	373.0	69604	184822	136.8
$60-70 \mathrm{~km}$ zone	4425	16330	289.0	72581	175276	141.5
Total	31191	78528	151.8	442276	1017921	130.2

Note:
10 kilometre radial zones were used to classify data concentrically around Piding Mountain National Park.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

The increase in agricultural inputs around the park does not imply that the park itself is receiving increased inputs. The transportation mechanisms bringing residual agricultural inputs into the park protect the park to some degree. Streamflow is downslope away from the park, keeping water soluble pesticides and fertilizer nutrients from entering the park in surface water. Ground water is a possible route of entry, but the extent too which this source contributes to loadings on the park is very difficult to quantify without detailed subsurface hydrology data. More probable entry routes are via the wind, and in birds and animals as they forage in fields around the park.

CONCLUSIONS

Riding Mountain National Park has long been threatened by agricultural encroachment. The natural geographic barrier posed by the escarpment has always protected the park, and despite the changes that have occurred around the park, wildife continues to thrive.

However, agricultural activities around Riding Mountain National Park are still intensifying.

- Tilled land areas close to the park have increased by more than 20%.
- Woodland areas close to the park have declined by more than 45%.
- Pesticide use has increased markedly.
- Fertilizer application rates have more than doubled.
- Fertilized areas have more than tripled.

The land base used by agriculture is expanding to take up more and more land. At the same time, cultivation
activities are also increasing with higher proportions of farmland going into production. Farm pesticide and fertilizer application rates are also increasing, placing additional stress on natural systems. Reductions in biodiversity around the park brought on by large scale agricultural development and mono-cropping are potentially dangerous to established ecological balances within the park. Wildlife food supplies and subsequent population stabilities are as a result at higher risk.

These facts lead to important questions that will have to be answered if the relationship between the park and its surroundings is to remain stable in the long term. For example, what are the effects of current agricultural practices and what will further agricultural development do? Indeed, is the current relationship sustainable? What formula can be used to weigh environmental costs against the benefits of agricultural development? What measures can be taken to ensure a long term, viable co-existence? These and other related questions will have to be carefully considered by society in the years ahead.

DATA LIMITATIONS

This type of analysis has limitations that should be described. Micro-data for the Census Enumeration Areas used in this study, are stored on a single geographic co-ordinate, otherwise known as a point. This information has to be "rolled up" or aggregated to larger areas representing large land surfaces. The accuracy of this point-polygon match is determined by the density of points per polygon and the spatial distribution of the data represented by the points. In brief, where point densities are too low results have to be suppressed or ground truthed using paper maps. (Hamilton, and Trant, 1989, p. 340) The Riding Mountain study has used large surface areas with high point densities to ensure statistical reliability. The area is
also more than 80% farmland, making the data distribution associated with the points quite homogeneous.

Other problems can arise when micro-data are aggregated to larger zones. Averaging of values can lead to under or over emphasis of certain characteristics for component smaller areas. The advantage of using composite concentric zones is that aggregate trends become discernible in contrast to the "noise" that is generated by individual data points.

RERERENCES

Agriculture Canada. Statistics on Canadian Fertilizer Consumption 1985/1986. Ottawa, 1987.
Dumanski. et al. "Soil Conservation in Canada." Journal of Soil and Water Conservation, Soil Conservation Society of America, July/August, 1986.
Environment Canada, The State of Canada's Environment. Ottawa, 1991.
Hamilton, K.E, and Trant, D.F. "Statistical Aspects of the Application of Geographic Information Systems in Canadian Environment Statistics." Journal of Official Statistics, Statistics Sweden, 5,1989.
Krawchuk, W.A. "The Riding Mountain Biosphere Reserve: A Synthesis of the Natural Resource Databasen. Masters Thesis. University of Manitoba, 1990.
Parks Canada. Riding Mountain National Park Management Plan. Environment Canada, Ottawa, 1987.
Tabulenas, D.T. A Narrative Human History of Riding Mountain National Park and Area; Pre-history to 1980. Parks Canada, micro-fiche report series 102, 1983.

6 The 1991 Census of Agriculture: Land Management for Soil Erosion Control

by Douglas Trant ${ }^{1}$

INTRODUCTION

Soil erosion and land degradation in general are problems of increasing economic and environmental concern. The main economic concern relating to land degradation is the loss of soil productivity, while the air and water pollution resulting from wind and water erosion are the primary environmental quality issues. Until recently, soil productivity declines have been masked by technological advances in the agricultural chemical industry, by the development of higher yielding cultivars, and by a seemingly endless supply of land and water resources. Investigation indicates that the economic costs of these degradation problems exceed one billion dollars annually, in terms of lost production (Fox and Coote, 1986). The environmental costs of water and air pollution resulting from continued wind and water erosion may be even higher. Although no estimates are available for Canada, estimates based on an American cropland area four times that of Canada's indicate that the combined annual environmental and economic costs of the U.S. soil erosion problem range from 4 to 44 billion dollars (Steiner, 1990). The magnitude of this range demonstrates just how difficult it is to estimate the cost of soil erosion.

A new land management module was added to the 1991 Census of Agriculture to provide a first comprehensive look at soil conservation practices on farms in Canada. Farm operators were asked to respond to a series of questions, mostly with simple yes or no answers. Because the survey is new, some of the results must be interpreted cautiously. Nonetheless, these data provide an indication of how well soil erosion and land degradation are being addressed across Canada. This chapter summarizes soil erosion control practices on a provincial basis.

[^11]
SOIL EROSION CONTROL PRACTICES

Soil erosion control practices on farms in Canada are shown in Table 1. More than a third of farms in Canada (36.9%) used a forage based crop rotation system on some of their cropland. This type of crop rotation helps promote soil aggregate stability and improves soil structure while recharging soil nitrogen when legumes such as alfalfa or clover are used. The historical decline in forage based crop rotations has contributed to soil quality deterioration in Canada (Dumanski et al.,1986).Crop rotations with forage are more prevalent in Eastern Canada. Differences in farm types account for much of the regional variation.

Table 1: Farms Reporting Erosion Control, 1991

Erosion control	Number of farms	Percent of farms
Crop rotation using torage	103355	36.9
Winter cover crop	24289	8.7
Grassed waterway	31474	11.2
Strip cropping	22006	7.9
Contour Cultivation	25630	9.2
Other practices	61818	22.1

Note:
A farm may use more than one erosion control practice, or none at all.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Figure 1: Potential Cropland Area in Forage Rotations and Strip Cropping, 1991

Note:
Not all cropland area on reporting farms is protected by a particular erosion control practice.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Strip cropping is an erosion control method where crops are planted in strips, and are often laid out parallel to the slope contour. For example, a grain crop can be planted along the contour, with alternating strips of hay and grain. The hay crop checks water run-off from the grain crop. Wind erosion can also be prevented using strip cropping. One crop can protect the other from high wind during a particularly vuinerable growth or harvest stage. Table 1 and Figure 1 show that strip cropping is used on 7.9% of farms managing 14.8% of cropland in Canada. It is most prevalent in Western Canada.

Winter cover crops are used on 8.7% of farms manag. ing 10.5% of cropland. This practice serves mainly as protection against wind erosion in winter months. However, winter cover crops can also provide protection in spring when intense rainfall might erode unprotected soil surfaces (Figure 2).

Figure 2: Number of Farms Using Winter Cover Crops and Grassed Waterways, 1991

Note:
There are indications that the area of winter cover crops has been over reported by farmers responding to the Census.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.
Grassed waterways are an erosion control measure used to check overland flow and prevent gully erosion. Exposed soil surfaces on slopes can form gullies that may eventually grow in size to form ditches or ravines. Grassed waterways direct overland flow and protect soil surfaces.

Nationally, 11% of farms reported using grassed waterways. Alberta farms reported using this practice more than in any other province.

Another method of erosion control is to cultivate the soil parallel to the contour of the slope. This method traps soil particles between plough furrows rather than allowing water and soil particles to gain velocity and move down
slope. Across the country 9% of farms use this method and as much as 14% of cropland is protected by these measures. Figure 3 shows the proportions of cropland potentially protected by contour cultivation. Saskatchewan and Prince Edward Island top the list with over 16% of their cropland potentially protected by contour cultivation.

Figure 3: Cropland Potentially Protected by Contour Cultivation, 1991

Note:
The percentages above represent a maximum and tend to overestimate area under contour cultivation
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Table 2 looks at farms by erosion control category, by province. Ontario farmers are more likely to use multiple soil erosion control practices. Seven percent of Ontario farmers used 4 or more erosion control practices.

Newfoundland has the smallest proportion of farmers using erosion control (Figure 4). This is due primarily to the types of agriculture found in Newfoundland. In 1991, Newfoundland had only slightly more than 2000 hectares that were prepared for seeding. In contrast, Saskatchewan has single farms with seeded areas larger than 2000 hectares. British Columbia and Nova Scotia have the second and third lowest percentages of participants in erosion control respectively. Both provinces have large tree fruit areas which contribute to their total cropland areas, and as such do not normally require tillage or substantial erosion control. The province with the highest percentage is Saskatchewan where almost 72% of all farmers use some form of erosion control. Sixty three percent of farms in Canada report employing one or more erosion control practices (Figure 4).

Table 2: Number of Farms Employing Erosion Control, 1991

Number of erosion control practices	Nfld.	P.E.I.	N.S.	N.B.	Que.	Ont.	Man.	Sask.	Alta.	B.C.	Canada
No erosion control	485	710	2401	1801	18769	21913	8742	17300	18025	12410	102556
1 erosion control	160	1063	1059	978	15959	25237	8947	24160	22226	4846	104635
2 erosion controls	44	260	317	267	1961	10474	4064	9745	8992	1237	37361
3 erosion controls	29	209	126	110	892	6255	2610	6134	5343	492	22200
4 erosion controls	6	68	44	63	268	3065	922	2396	1868	147	8847
5 erosion controls	1	34	24	25	126	1256	305	823	616	57	3267
6 erosion controls	0	14	4	7	96	345	92	225	136	33	952
7 erosion controls	0	3	5	1	5	88	24	57	39	3	225
All farms	725	2361	3980	3252	38076	68633	25706	60840	57245	19225	280043

Sources:
Statistics Canada, National Accounts and Environment Division and Agricutture Division.

Table 3: Erosion Control Practice by Farm Type, 1991

Farm type	$\begin{aligned} & \text { Crop } \\ & \text { rotation } \end{aligned}$	Cover crops	Grassed waterways	$\begin{array}{r} \text { Strip } \\ \text { cropping } \end{array}$	Contour cultivation	Other practices
	percentage of farms					
Livestock operations	43.4	10.0	12.7	7.2	9.9	21.3
Wide-row cropping ${ }^{1}$	65.5	20.1	12.9	7.6	8.7	27.3
Close-row cropping ${ }^{2}$	41.6	11.8	11.4	3.9	12.5	28.6
Forage cropping	57.6	8.0	11.9	3.4	6.4	19.7
Speciaity farming and other	27.3	8.7	8.0	5.8	8.3	20.6

Notes:

Generalized farm types are derived by aggregating farm types from the Census of Agriculture. Ideally a land-based farm typing should be used here where farms are grouped according to land use rather than on sales. Agriculture Canada is proposing to analyse erosion control using land based farm types in the near future.
${ }^{i}$ Corn, scybeans, vegetables and other crops typically grown in wide rows more than 10 cm
${ }^{2}$ Wheat, oats, barley and other crops typically grown in narrow rows less than 5 cm apart.
Scurces: Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Figure 4: Farms Using One or More Erosion Control, 1991

Sources:

Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Table 3 shows the association between farm type and erosion control practice. Wide-row crops are potentially the most erosive crop type (Wischmeier, 1978). The data indicate that wide-row croppers do in fact respond to higher erosion risk and are the most frequent users of erosion control in 4 out of 6 erosion control techniques. Close-row cropping, potentially the second most erosive farm type, employs more contour cultivation and "other" erosion control practices most frequently.

SEED BED PREPARATION AND SOIL EROSION CONTROL

The 1991 Census of Agriculture asked farmers questions about their seed bed preparation techniques. Three broad practices were identified: conventional tillage, conservation tillage and no tillage. Conventional tillage actually turns soil over and buries crop residues, making the risk of soil erosion greater than with conservation tillage or no tillage. Conventional tillage methods are quite different from region to region. For example, equipment types vary, reasons for tillage vary, and the timing between tillages is often different. In conservation tillage, as the name implies,
fields are cultivated fewer times with implements that do not turn the soil over. This conserves beneficial crop residues on the surface. Finally, seed bed preparation may be done without any tillage. This is considered the most environmentally benign tillage method from a physical degradation standpoint ${ }^{1}$ (Wischmeier, 1978).

Most soil types suffer some degradation when tilled continually. Soil organic matter levels have a tendency to decline due to the increased oxidation caused by the turning and mixing action of cultivation. When organic matter levels decline most soils begin to deteriorate structurally. If a soil undergoes structural degradation and loses porosity and permeability, rain water does not infiltrate as quickly and water begins to run off. If this situation occurs on vulnerable soils, erosion becomes a definite risk. Another problem more commonly associated with conventional tillage is soil compaction. Compaction can lead to crop rooting problems by limiting the rooting zone and can also lead to water puddling in fields, which prevents cultivation until much later in the spring. One way of combating structural decline is to use a forage or legume in the crop rotation.

Seed bed preparation methods by province are shown in Figure 5. Conventional tillage is most prevalent in Prince Edward Island with more than 90% of seeded area cultivated with this method. Conservation tillage is most common in Manitoba at close to 30% of area prepared for seeding. No-tillage is also highest in the Prairies with a value approaching 10\% in Saskatchewan.

Table 4 describes the association between soil erosion control and seed bed preparation. This table provides an indication of the degree to which agricultural soils are being protected across Canada. Nationally, more than 29 million hectares were prepared for seeding in 1991 with conventional, conservation tillage or no tillage. Four and one half million hectares out of 29 million (15.3%) had no erosion control applied and were not tilled using a conservation technique. Although not all require erosion control, these soils are potentially under the greatest stress, and could benefit the most from improved tillage practice or through the use of some erosion controls. Conversely, this implies that 24.5 million hectares (84.7%) of the area prepared for seeding had at least one erosion control applied, or was cultivated using methods that do not promote soil erosion. This is a positive sign and indicates that Canadian farmers are indeed combating the erosion problem.

[^12]Figure 5: Seed Bed Preparation Methods, 1991

Note:
No till areas indicated are higher than actual due to respondent error.
Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

Table 4: Seed Bed Preparation Methods and Erosion Control Practices, 1991

Number of erosion controf practices	Conventional tillage	Conservation village	No tillage	Total seeded area
	thousand of hectares			
No erosion control	4447	1110	356	5913
1 erosion control	8014	2592	773	11379
2 erosion controls	3705	1582	407	5684
3 erosion controls	2302	1026	234	3562
4 erosion controls	1038	519	116	1673
5 erosion controls	364	196	48	608
6 erosion controls	95	49	12	158
7 erosion controls	23	17	6	44
Total seeded area	19986	7091	1952	29029

Sources:
Statistics Canada, National Accounts and Environment Division and Agriculture Division.

CONCLUSIONS

The 1991 Census of Agriculture provides important baseline information on agricultural soil conservation practices in Canada. Data for a single year provide only a snapshot of soll conservation practices and obviously give no indication of whether the situation is getting better or worse. Nationally, the indications are generally encouraging, insofar as farm operators with 84.7% of seeded area use some form of soil erosion control or conservation practice, and that farms with the most potentially erosive crops are the most frequent users of 4 out of 6 erosion control measures.

The real question is: are farmers winning the fight? To answer this question more information is needed. For example, where is the 4.4 million hectares of conventionally tilled land to which no erosion control is applied? Is it located on vulnerable soils? Is the area steeply sloped? Do the farms generate significant net revenues or are they among the less productive? Future research should provide insight into these questions as Agriculture Canada's soil landscape maps are more directly linked to the Census data base. This will allow detailed analysis of erosion risk as it relates to farm land use, farm economics and agricultural conservation practices.

REFERENCES

Dumanski, J., D.R. Coote, G.Luciuk, C.Lok, 'Soil Conservation in Canada", Journal of Soil and Water Conservation. 41:4, July-August 1986.

Fox, M.G. and Coote D.R., A Preliminary Economic Assessment of Agricultural Land Degradation in Atlantic and Central Canada and Southern British Columbia. Development Consulting House (DCH) For Agriculture Canada, Contribution 85-70, Ottawa, 1986.

Steiner F.K., Soll Conservation in the United States. Johns Hopkins University Press, Baltimore, 1990.
Trant, D., Estimating Agricultural Soil Erosion Losses from Census of Agriculture Crop Coverage Data, Research Paper Series \#27, Analytical Studies Branch, Statistics Canada, 1989.

Wischmeier, W.H. and D.D. Smith, Predicting Rainfall Erosion Losses - A Guide to Conservation Planning. Agricultural Handook $\# 537$, Washington, D.C., United States Department of Agriculture, 1978.

7 Household Activity, Household Expenditures and the Environment

by Marcia Santiago

INTRODUCTION

Many areas of daily household activity affect the natural environment. Some, such as the consumption of fossil fuels for residential heating or automobile operation, have direct impact in terms of using natural resources and in releasing pollutants. There are also other activities that are relevant to environmental quality but whose impact is indirect. One example is the use of recycling facilities, as an alternative to the immediate disposal of solid waste.

Using data from two Statistics Canada surveys, one on household behaviour (Household Environment Survey, 1991) and another on household expenditures (Family Expenditure Survey, 1990, abbreviated as FAMEX), this chapter describes patterns of household activity and household expenditure that are relevant to environmental concerns. The reader should bear in mind that the data presented in this chapter describe the reported activity of households, which may be different from their actual activity. In the case of environmentally relevant behaviour, this effect has been labelled a "green bias". It has been shown that a heightened media or social profile may influence respondents to give what they expect to be 'appropriate' answers (Rathje 1990). The reader must also recognize that expenditure and activity decisions are conditioned as much by social and economic considerations as they are by conscious response to an environmental imperative. Nevertheless, expenditures and activity do provide some important insight into the relationship of households and the environment.

Three general areas are discussed: access to and use of recycling facilities, energy and water consumption, and commuting patterns. Patterns of activity and expenditure are summarized, along with their relationship to a number of geographic and economic factors.

ACCESS TO AND USE OF RECYCLING SERVICES

Although the public has long been concerned about the disposal of solid waste, this issue has become much more prominent in recent years. Perhaps in response to
this issue, there has been widespread implementation of recycling facilities and programs. In 1991, access to various recycling facilities was reported by almost half of the households questioned in the Household Environment Survey. Access to paper recycling facilities was reported by 53% of households, with $49 \%, 50 \%$ and 42% of households reporting access to metal can, glass and plastic recycling facilities respectively. Among households that reported access to these facilities, about 86% reported that they used them.

Table 1 shows the rates of access to and use of paper recycling facilities in fifteen Census Metropolitan Areas. There is quite a range in the reported access to this service. The highest rates of access are reported in KitchenerWaterloo (94%) and Victoria (92%), while Québec (24\%) and Montréal (37%) report the lowest proportions of households with access. Reported use of the facilities also varies considerably, with the lowest rate reported in Winnipeg (55%) and the highest rate in Toronto (98%)

Table 1: Access to and Use of Facilities for Paper Recycling by Census Metropolitan Area, 1991

	With access	Reporting use						
	percent of households							
Halifax	47 E	84 E						
Québec	24 F	79 F						
Montréal	37 E	77 E						
Ottawa	70 D	91 D						
Toronto	74 C	98 C						
Hamiton	81 D	94 D						
St. Catharines-Niagara	85 C	94 D						
Kitchener-Waterioo	94 E	94 D						
London	66 E	94 E						
Windsor	77 D	95 D						
Winnipeg	78 E	55 E						
Edmonton	68 D	89 D						
Calgary	47 D	75 E						
Vancouver	72 D	93 D						
Victoria	92 D	92 D						
Canada	53 B	86 B						

Note:
See the standard error symbots at the end of this chapter.
Source:
Statistics Canada, Household Environment Survey.

The type of service to which a household has access is related to the size of the municipality and to the type of dwelling (Table 2). This is in part because larger municipalities were the first to implement curbside collection programs and these generally served only single detached dwellings. Thus, it follows that the highest access rate (76%) is reported by households in single detached dwellings in major metropolitan areas. The same group also reports the highest rate of use (91%). In contrast, access
rates for apartment dwellers are quite low (23% to 36%). Access might well be more difficult for apartment dwellers, which would partially explain their lower usage rate.

Table 2: Access to and Use of Facilities for Paper Recycling by Area and Dwelling Type, 1991

	With access	Reporting use
	percent of households	
Major metropoltan areas (population of 100000 and over)		
Single, detached	76	91
Singie, attached	66	90
Aparmment or flat	35	83
Other	56	92
Mid-size metropolitan areas (population between 30000 and 99999)		
Single, detached	64	87
Single, attached	55	82
Apartment or flat	36	69
Other	52	81
Other urban areas (population less than 30000)		
Single, detached	52	50
Single, attached	46	79
Apartment or flat	36	71
Other	43	63
Rural areas		
Single, detached	34	76
Single, attached	30	80
Apartment or flat	23	72
Other	26	65
Canada	53	86

Source:
Statistics Canada. Household Environment Survey.

ENERGY AND WATER CONSUMPTION

It is reasonable to say that many households have considerable scope to reduce their consumption of water and energy. While concern for the environment may be a factor in the decision to do so, the potential to reduce utility bills is likely to be an important motivator as well.

In 1990, urban households spent, on average, \$1 170 on the consumption of water, fuel and electricity, which represents 14% of their spending on shelter, or 2.4% of their total spending. The average cost of water supply to primary residences was $\$ 118$, or 10% of household spending on fuel and energy.

At least partly in response to these costs, many households have adopted energy-saving habits. Seventyone percent of households with a thermostat report either that it is programmable or that it is regularly lowered during the heating season (Table 3).

Table 3: Energy and Water Consumption Practices and Expenditures

Percentage of households in 1991	
With a thermostat	88
With a programmable thermostat	13
With a regularly lowered thermostat	58
With compact fluorescent buibs	11
With low-flow shower heads	28
With low-flow toilet tanks	9
Average household expenditure in 1990 (dollars per year)	
Electricity	644
Heating fuel	408
Water supply	118

Sources:
Statistics Canada, Household Environment Survey and Family Expenditure Survey.
Water-conserving practices are not as widely adopted as those for energy. Comparatively few households have either low-flow shower heads (28%) or low-flow toilet tanks (9%). This may be because, in many cases, the cost of water supply is not directly related to the quantity used.

The tenure of a dwelling influences the degree to which the household feels responsible for the dwelling's condition and, therefore, its energy and water consumption. Households owning their place of residence have control over changing fixtures (like the thermostats), whereas tenants usually depend on their landlords to make these types of changes. This factor may contribute to the differences in energy- and water-use habits between households owning their dwellings and those renting. (Table 4). A higher proportion of homeowners report implementing conservation measures.

Table 4: Energy and Water Consumption Practices by Tenure of Dwelling, 1991

	Owned dwellings	Rented dwellings
	percent of households	
With compact fluorescent bulbs	14	6
With thermostats	87	76
With programmable thermostats	16	7
With regularly lowered thernostat settings	56	42
With low-fiow shower heads	34	19
With low-flow toilet tanks	12	5
All househoids	64	$\mathbf{3 6}$

Source:
Statistics Canada, Household Environment Survey.

TRANSPORTATION

Commuting to the place of work is a common feature of most households' transportation activity, although the needs of households vary considerably. The potential environmental impact from this activity also varies depending
on the modes of transport that are chosen: walking or cycling instead of using a motor vehicle, taking public transportation rather than driving a private vehicle.

The cost of transportation accounted for 17%, or $\$ 5$ 603, of total household expenditure (FAMEX, 1990). Most of this amount (88%) is for private vehicles, the rest being for public transport. Fuel alone accounts for 23% of expenditures on private vehicles.

Households show a clear preference for private automobile travel when commuting to and from work. Overall, 76% of households reported at least one member who drives to work (Table 5). This rate does vary among metropolitan areas, although it is generally quite high (Table 6). The rate of private vehicle use ranged from 83% in Windsor and Kitchener-Waterloo, to 65% in Halifax.

Table 5: Commuting Patterns by Area and Dwelling Type, 1991

	Households where at least one member		
	Has employment outside the home	Drives private vehicie	Uses public transportation
	thousand		ent
Major metropolitan areas (population of 100000 and over)			
Single, detached	2255	77	17
Single, attached	639	74	24
Apartment or flat	1391	57	34
Other	42
Other areas			
Single, detached	1859	82	2
Single, attached	203	77	5
Apartment or flat	254	67	9
Other	115	...	\cdots
Canada	6758	76	15

In contrast, only 15\% of Canadian households report that at least one member uses public transportation for travelling to and from their workplace. This rate also varies through metropolitan areas. It is generally higher in the larger and more densely populated metropolitan areas such as Toronto (33%) and Montréal (30%).

INCOME AND HOUSEHOLD ACTIVITY

Environmentally relevant expenditures and activities may also be associated with household income. This variable is correlated with some of the geographic factors, such as urban structure, already discussed in this chapter. Income is related to the level of education attained, which might in turn influence the overall environmental awareness and activities chosen in a household.

Table 6: Commuting Patterns by Census Metropolitan Area, 1991

Note:
See the standard error symbols at the end of this chapter.
Source:
Statistics Canada, Household Environment Survey.
In fact, higher household incomes are associated with higher rates of adoption of certain environmentally useful practices (Table 7). With respect to energy conservation practices, households in the highest income group report the highest use of compact fluorescent bulbs (16\%); the proportion of households with programmable or regularly lowered thermostats is also highest in this group (79%). For access to facilities for paper recycling, the rates range from 40% in the lowest income group to 73% in the highest income group. The reported rate of use varies in much the same way, ranging from 77% to 93%. In both cases, the differences are also related to factors discussed in previous sections: tenure and type of dwelling. Higher income households are more likely to be owners and reside in single detached dwellings than households in lower income groups.

In contrast to the positive correlation between income and the adoption of environmentally useful practices, Tables 8 and 9 show that the use of public transport declines in favour of automobile use as income increases.

Vehicle operation expenditures illustrate the differences in consumption between higher and lower income households (Table 8). Among households in the highest income decile, 94% are automobile or truck owners, compared to 90% in the fifth and 68% in the third deciles of income. The pattern of expenditure on automotive fuel is similar. The average expenditure increases with household
income, ranging from $\$ 659$ in the first income decile to \$ 2048 in the tenth. In addition, among the higher income groups, more households report expenditures on this commodity. In contrast, the proportion of households that report expenditure on public transit is higher in the lowest two deciles of income than in the highest two. However, the opposite is true for their average expenditure on this service (Table 8). The highest proportion of households with at least one member commuting to work by public transportation is in the first income group (37\%) but the lowest rate is in a middle income group, the seventh, at 21% (Table 9) ${ }^{1}$.

Table 7: Selected Practices and Characteristics by Household Income Group, 1991

Income groups	Owning their dwelling	Thermostats programmable or lowered	Compact fuorescent bulbs	Living in single detached dweling	Access to paper recycling facilities and reporting use
	percent of households				
First (lowest)	21	61	7	16	77
Second	23	64	6	16	86
Third	27	63	7	22	81
Fourth	37	70	6	28	88
Fifth	42	70	8	30	87
Sixth	46	72	12	35	88
Seventh	53	73	11	39	86
Eighth	65	70	12	50	89
Ninth	73	76	13	62	90
Tenth (highest)	87	79	16	74	93
Canada	55	72	11	44	85

Sources:
Statistics Canada. Household Environment Survey and Survey of Consumer Finance.

CONCLUSIONS

Response to recycling programs appears to be very positive. In areas where the facilities are available, most households report that they are used. Some households, those residing in less densely populated areas or those living in apartments, for instance, have lower overall rates of access.

The data suggest that households are both conscious of their consumption of water and energy, and willing to take steps towards conservation. The extent to which energy and water-efficient fixtures are used is related to income level (at least, in the case of energy) and the tenure of the dwelling.

[^13]Table 8: Selected Transportation Expenditures, by Household Income Decile, 1991

Income deciles	Households that own vehicies percent	Average household expenditure			
		Automotive fuel		Public transit	
		dollars	percent reporting	dollars	percent reporting
First (lowest)	21	659	22	243	84
Second	52	764	53	347	81
Third	68	952	73	383	77
Fourth	81	1058	83	350	70
Fifth	90	1246	92	371	70
Sixth	90	1415	91	339	74
Seventh	94	1436	94	396	76
Eighth	96	1852	97	383	72
Ninth	97	1776	96	436	74
Tenth (highest)	94	2048	98	459	77
FAMEX cities	78	1430	80	363	76
Note:					
"Average household expenditure" is the mean expenditure among all families reporting a non-zero expenditure in a given category.					reporting a

Table 9: Commuting Patterns by Household Income Group, 1991

However, Canadian households generally remain committed to the use of private vehicles. For travelling to work, commuters far prefer to drive their cars instead of using public transportation. This preference is probably related to the level of service in the transit system and the particular circumstances of individuals. The above results show, nevertheless, that those considerations are more important to the households than the possible environmental effects.

DATA SOURCES

Refer to the publication Households and the Environment for details on the methodology of the 1991 Household Environment Survey. For comparisons between income categories, a subset of the Household Environment Survey was selected corresponding to the urban areas that were sampled in the 1990 Family Expenditure Survey. "FAMEX cities" include St. John's, Charlottetown, Summerside, Halifax, Saint John, Québec, Montréal, Ottawa, Toronto, Thunder Bay, Winnipeg, Regina, Saskatoon, Calgary, Edmonton, Vancouver and Victoria.

Expenditure data are taken from the Family Expenditure Survey. These are based on a survey of households in Census Metropolitan Areas.

REFERENCES

Rathie, W.L. "The History of Garbage". Garbage: The Practical Journal for the Environment 2(4): 33-39,1990.

Statistics Canada. Family Expenditure Survey, 1990. Catalogue 62-555, Irregular,Ottawa, 1991.

Statistics Canada. Households and the Environment 1991. Catalogue 11-526, Occasional,Ottawa, 1992.

Alphabetic Designation of Percent Standard Error

A	0 to.5
B	.6 to 1.0
C	1.1 to 2.5
D	2.6 to 5.0
E	5.1 to 10.0
F	10.1 to 16.5
G	6.6 to 25.0
H	$25.1+$

8 Pollution Abatement and Control Expenditures

by Craig Gaston

Pollution abatement and control expenditures (PAC) are of interest as a measure of the impact of environmental regulations on affected industries and, more broadly, as part of overall environmental expenditures in national income. Since both the desirable and undesirable outputs derive from the same process, the generation of pollution can be viewed as a joint product problem. In many cases, expenditures to reduce pollution are often not distinguishable from those outlays made to improve overall performance. There are, however, some expenditures which are solely for the purpose of pollution abatement and control. These are often described as "end-of-pipe" solutions. Using this restrictive but unambiguous definition, PAC capital expenditures amounted to over $\$ 1$ billion in 1989, or about 1% of total capital expenditures in Canada. Table 1 shows that the distribution of PAC expenditure is very uneven across industrial sectors.

Table 1: Relative Importance of PAC Expenditures, Selected Industries, 1989

Industrial sector	PAC operating	PAC capital ${ }^{1}$	Total capital	PAC/ total capital
	milion dollars			percent
Manufacturing	469	918	18942	4.3
Paper \& allied	76	368	5501	6.7
Primary metals	258	288	2341	12.3
Petroleum \& coal	36	71	961	7.4
Chemicals	44	71	1627	4.4
Mining	77	80	3573	1.1
Utilities	x	106	19486	1.1
Total economy ${ }^{2}$	729	1188	89722	1.3
Notes: ${ }^{1}$ See Statistics Canada (1992) for more detail on this survey, especially Appendix F for an explanation of the difference between the above data and those contained in Table 2 of Statistics Canada (1992). 2 The total excludes capital items charged to operating expenditures and capital expenditures made by residential construction, agriculture, fishing and construction industries. Source: Statistics Canada, Investment and Capital Stock Division.				

The Pollution Abatement and Control survey, conducted for the first time in 1989 by Statistics Canada, intentionally avoided the ambiguity inherent in the use of a broader definition such as "environmental expenditures". Interna-
tionally, there is no consistent approach. A similar survey conducted in the United States asks specifically for change-in-process expenditures as well as end-of-pipe expenditures as do France, Sweden and the Netherlands. Norway has abandoned PAC surveys altogether, rather than present partial results.

There is no doubt that the Statistics Canada PAC survey represents a lower bound on environmental expenditures. A survey of environmentally related expenditures prepared for Environment Canada by Dun and Bradstreet (1991), reported $\$ 20.9$ billion in capital plus operating costs in 1989, over 12 times greater than the combined capital and operating expenditures figure resulting from the Statistics Canada survey. This wide difference is not surprising since it is possible to argue that major improvements costing many millions of dollars are at least partially environmentally motivated, even though the decision to invest is dependent on a number of factors aside from environmental protection.

HISTORICAL PAC EXPENDITURES

Statistics Canada has asked respondents to its regular annual Capital Repair and Expenditure Survey (CRES) to report capital expenditures by purpose, one of which is pollution abatement and control. The respondents are asked to assign their capital expenditures to the most relevant category in recognition of the fact that many expenditures could be assigned to more than one category. Even though the total for 1989 is similar to that reported in the PAC survey of the same year, an examination of the results by establishment shows important inconsistencies, a fact which demonstrates the need for strict definitions. Nevertheless, CRES provides us with a unique source of information covering the period 1985-1990.

Table 2: Capital Expenditure by Purpose, 1985-1990

Investment categories	1985	1986	1987	1988	1989	1990
	percent of total investment					
Expansion/ modernization/other	97.4	97.7	97.7	97.6	97.1	96.8
Pollution abatement and control	. 7	. 7	. 6	1.1	1.7	2.1
Improvement to working environment	. 9	1.0	1.1	. 9	. 8	7
Reduction of energy costs	. 9	7	. 5	4	. 4	4

Source:
Statistics Canada, Investment and Capital Stock Division.

Table 2 shows a marked increase in the percentage of investment in pollution abatement equipment from 1988 to 1990 largely owing to the paper and allied industries and primary metal industries.

PAC EXPENDITURES BY PROVINCE

Table 3 shows that the large relative increase in PAC expenditures between 1988 and 1990 is accounted for mainly by Ontario and British Columbia. Investment in general, and investment in PAC in particular, tends to be volatile, and one would expect considerable variation of these ratios as the aggregates observed become smaller.

Although the 1989 PAC survey is felt to be more meaningful than CRES due to the stricter definitions, it is interesting to observe the movement of the latter over time (since the PAC survey itself has been conducted for only one year, 1991). Table 3 shows that no one province devotes a consistently higher proportion of investment to polfution abatement than the others.

PHYSICAL MEASURES OF POLLUTION ABATEMENT

An important measure of effectiveness of PAC expenditures is the reduction in pollutants. The 1989 PAC survey attempted to obtain information on the physical quantity of pollutants abated but experience has shown that this is difficult to achieve with a single questionnaire designed to cover all industrial sectors. Since a number of the most polluting industries are covered by environmental regulations, administrative data collected for this purpose are probably a better source of information on volumes of pollutants.

Figure 1: Discharges from Canadian Pulp and Paper Mills, 1970-1987

Source:
Environment Canada, 1991, p. 14-19
As an example, the above chart shows the decline of pollutants from the pulp and paper industry compared with increasing production. Of course, the total volume of pollut-

Table 3: Provincial PAC Expenditures

ants abated is, in itself, an inadequate measure of environmental impact since the toxicity of the pollutant is also important. Recent regulations governing the production of dioxins and furans, for example, require that the levels of these chemicals be kept below the measurable concentration which, in this case, is 50 parts per quadrillion (10^{15}).

CANADIAN VERSUS UNITED STATES PAC EXPENDITURES

Unlike the Canadian survey, the U.S. industrial PAC survey asks respondents to report the portion of change-inprocess investment which is related to pollution abatement. This is a subjective judgement by respondents that limits comparability both within and between sectors. The U.S. expenditures are higher than those for Canada at least partly for this reason.

Table 4: PAC Capital Expenditures as a Percentage of Total Capital Expenditures, Canada and U.S., 1989

	Total	Air	Water	Solid waste	
	percent				
		1.3	.6	.5	
Canada	3.4	1.3	1.9	.2	
United States					

Source:
OECD, 1992.

CONCLUSION

End-of-pipe pollution abatement and control expenditures have been increasing in absolute terms and as a percentage of total investment. These costs represent a lower bound on total PAC expenditures, many of which are impossible to isolate due to the complexity of the investment decision making process. There are no international standards in the definition or measurement of these costs and as a result, comparisons with other surveys should be made with caution.

There is an inherent ambiguity in interpreting PAC expenditures since end-of-pipe outlays are not necessarily the most efficient way to prevent pollution. In many instances, a change in production process leads to a more efficient use of energy and raw materials and reduces the need to install expensive and "non-productive" capital for the purpose of pollution abatement. Since the joint product nature of the problem precludes knowledge of the total costs associated with pollution control, it is useful to know the actual reductions in specific pollutants as well as expenditures on pollution abatement and control.

REFERENCES

Dun \& Bradstreet Canada. Market Survey of Environmental Expenditures by Canadian Business. Report prepared for Environment Canada. Duns Marketing Services, May, 1991.

Environment Canada. The State of Canada's Environment. Ottawa, 1991.

Organization for Economic Cooperation and Development (OECD). Pollution Abatement and Control Survey 1992. ENV/EPOC/GEEI(92)11. Preliminary. Paris, 1992.

Statistics Canada, "Analysis of the 1989 Pollution Abatement and Control Survey". Uncatalogued. Investment and Capital Stock Division, Ottawa, 1992.

9 Packaging Use and Disposition

by Marcia Santiago

INTRODUCTION

Packaging material is used to protect, to contain, or to transport commodities. It is also used to market products and to communicate information about products. Most importantly, packaging may protect commodities from damage or spoilage. However, packaging is also associated with a number of environmental concerns, the most prominent of which is the disposal of solid waste.

In 1989, Canadian environment ministers gave formal recognition to the need for packaging policy in managing solid waste. The National Packaging Protocol, which resulted from this recognition, recommended six management policies:
packaging shall have minimal effects on the environment;
priority will be given to the management of packaging through source reduction, reuse and recycling;

- a continuing campaign of information and education will be undertaken to make all Canadians aware of the function and environmental impacts of packaging;
䀝 these policies will apply to all packaging used in Canada, including imports;
- regulations will be implemented as necessary to achieve compliance with these policies; and
all government policies and practices affecting packaging will be consistent with these national policies.

Ultimately, the protocol seeks to reduce the quantity of packaging material that is sent to landfills. Over the next few years, diversion targets should be met and, by the year 2000 , it is expected that packaging sent for disposal shall not exceed 50% of the 1988 level of 5.3 million tonnes (National Task Force on Packaging, 1992a).

Using results from the 1990 National Packaging Survey (ibid.), this chapter presents a profile of industrial packaging disposition and use. It describes the materials and the users of industrial packaging, with particular attention paid to the use, reuse, recycling and disposal of packaging.

Figure 1: Packaging Flows

PACKAGING FLOWS

Businesses typically handle packaging in conjunction with products they ship and with products they receive. Firms are described here as "using" packaging when it is filled with the product to be shipped whereas both businesses and households are said to have "consumed" packaging when it is removed from the product purchased. The use of packaging is equal to its consumption, except for the quantities attached to imported or exported goods. Since the survey included the waste management industry, estimates are available for the amount of household packaging waste that was recycled in 1990. It is therefore possible to calculate the total disposal for Canada as the difference between consumption and the sum of reused and recycled packaging (see Figure 1).

PACKAGING MATERIALS

The consumption of packaging materials amounted to 13.5 million tonnes during 1990 (see Table 1). Wood was the leading material employed, accounting for 39% of the total quantity consumed. Most wood packaging was in pallets, accounting for 4.9 million of the 5.3 million tonnes of wood packaging consumed. Consumption of paper packaging, including cardboard (paperboard) amounted to over 3 million tonnes (23% of the total), with the largest portion consisting of corrugated cartons, boxes and cases. Most goods sold, from food products to electronic equipment, have at least some amount of cardboard or paper packaging attached. Glass and plastic materials made up 16\% and 10% of the total packaging consumed in 1990.

Eighty-five percent ${ }^{1}$ of wood packaging was estimated to be reused or recycled. Pallets, the largest component of

[^14]wood packaging, can be used over and over with only occasional minor repairs, so the low disposal of wood is not surprising. Glass also has a high rate of reuse and recycling (69%). For paper and plastic which represent the second and fourth largest volumes of packaging material, the rate of reuse and recycling is lower. Seventy-nine percent of plastic was disposed while 48% of paper was sent to landfills or incinerated. Paper was the largest material by weight to be disposed of. As a percentage of total packag. ing consumed in 1990, 33\% (4.5 millions tonnes) was discarded.

Figure 2: Disposition of Packaging, 1990

Sources:
Statistics Canada, National Packaging Survey and National Task Force on Packaging.

Table 1: Consumption and Disposition by Packaging Type, 1990

Material	Types	Total consumed		Total reused		Total recycled		Total disposed	
		thousand tonnes	percent						
Wood	pallets, boxes, crates	5327	39.4	4187	57.1	335	20.1	805	17.8
Paper	corrugated cartons, boxes, labels	3149	23.3	899	12.3	723	43.4	1527	33.7
Glass	carboys, bottles, containers	2185	16.2	1373	18.7	136	8.1	676	14.9
Plastic	containers, foam egg trays, wrap, liners	1358	10.0	190	2.6	95	5.7	1073	23.7
Metal	aluminum cans, caps, steel strapping	888	6.6	362	4.9	162	9.7	364	8.0
Muiti-material	mikk and juice cartons	193	1.4	7	**	36	2.2	150	3.3
Textiles and other materials	jute sacks, bags, wrapping	426	3.1	318	4.4	180	10.8	-	--
Total		13526	100.0	7336	100.0	1667	100.0	4595	100.0

Sources:

Statistics Canada, National Packaging Survey and National Task Force on Packaging.

PACKAGING USE BY INDUSTRY

The manufacturing sector was the largest user of packaging, accounting for well over 10 million tonnes of the total 13.3 million tonnes used (see Table 2). Manufacturing industries, excluding food, beverage, and tobacco, were least heavily involved in reuse of packaging. Use of packaging material was relatively evenly spaced across the other industry groups, except agriculture, for which use was estimated at 376 thousand tonnes. The estimated packaging use by the wholesale and retail trade industries is not surprising, given their activity of packaging goods and selling them to consumers. Of the important industries in terms of packaging use, the largest percentage of packaging reuse was in the beverage manufacturing industry. This is consistent with the large proportion of glass packaging, which is most commonly used in distributing beverages to consumers.

It is important to note that wooden pallets account for over one-third of all packaging used, by weight, and that there is an economic incentive to reuse these rather than to recycle or discard them. The high reuse of packaging as a percent of use is partly due to this fact. (See Table 2.)

Table 2: Industrial Use and Reuse of Packaging, 1990

Industry	Used (includes reused)		Reused	
	thousand tonnes	percent	thousand tonnes	percent of used
Agriculture	376	2.8	200	53
Manufacturing (excl. food and beverages)	4287	32.3	1630	38
Food manufacturing	3556	26.8	1444	41
Beverage manufacturing	2423	18.3	2076	86
Wholesale and retail trade	2477	18.7	1853	75
Other industries	138	1.0	129	93
Total	13257	100.0	7332	55

Sources:
Sources:
Statistics Canada, National Packaging Survey and National Task Force on Packaging.

PROVINCIAL CONSUMPTION AND REUSE

The provincial pattern of recycling rates (as a percentage of consumption) is similar to that observed in the Local Government Waste Management Practices Survey (see Chapter 11, Table 3). In both cases, Ontario had the highest rate of recycling followed by British Columbia.

Table 3: Provincial Consumption and Recycling of Packaging, 1990

Province	Total consumed		Recycled	
	thousand tonnes	percent	thousand tomes	percent of consumed
Newfoundiand	166	1.2	--	-
Prince Edward island	47	0.3	4	9
Nova Scotia	338	2.5	24	7
New Brunswick	295	2.2	13	4
Quebec	3516	26.0	325	9
Ontario	5820	43.0	1065	18
Manitoba	514	3.8	31	6
Saskatchewan	328	2.4	17	5
Alberta	1130	8.4	41	4
British Columbia	1956	10.0	144	11
Yukon	5	0.0	0	-
North West Territories	11	0.1	0	--
Canada	13527	100.0	1664	12

Sources:
Statistics Canada, National Packaging Survey and National Task Force on Packaging.

DATA SOURCES AND METHODOLOGY

In 1991, Statistics Canada conducted the National Packaging Survey. A large representative sample of establishments in all major industry groups was selected. Thirtytwo packaging categories were defined in the survey, spanning seven broad groups of materials: plastic, wood, textiles, glass, metal and multi-material packaging. Respondents were asked to report quantities (in tonnes) of packaging that was used during the 1990 calendar year. They were also asked to report the proportions of new and reused content in the materials. Finally, survey respondents were asked to report the quantities of packaging that were reused, recycled and sent for disposal.

Estimates of use, reuse, and recycling of packaging materials presented in this chapter were based upon the responses to the National Packaging Survey described in National Task Force on Packaging (1992b). Certain data collected by the survey were not deemed reliable. For instance, businesses were not generally capable of providing a good estimate of the amount of packaging discarded. Disposal was, therefore, calculated residually. Packaging attached to imports and exports of goods was based on data from the International Trade Division. The exports and imports of in-use packaging were pro-rated in proportion to the packaging used. Imports and exports of new packaging (not attached to goods) came from the International Trade Division of Statistics Canada. These data were available by commodity group and were allocated to industries and provinces on a proportional basis.

Provincial consumption of packaging was not measured directly since inter-provincial trade of in-use packaging was not known. Packaging was assigned to two categories, industrial and consumer. Total Industrial pack-
aging was allocated to provinces according to provincial sales for each industry group, whereas consumer packaging was distributed according to provincial population. Provincial recycling rates for each packaging type and industrial sector were based upon survey data.

For further analysis of these data and for comparisons with the 1988 benchmark levels, see National Task Force on Packaging (1992b). For information on the establishment of the 1988 benchmark see National Task Force on Packaging (1992a).

REFERENCES

National Task Force on Packaging (NTFP). National Packaging Protocol: 1988 Benchmark Estimates. Report prepared for the Canadian Council of Ministers of the Environment. Office of Waste Management, Environment Canada. Hull, Quebec, December, 1992a.

National Task Force on Packaging (NTFP), National Packaging Protocol: Results of the 1990 National Packaging Survey. Report prepared for the Canadian Council of Ministers of the Environment. Office of Waste Management, Environment Canada. Hull, Quebec, December, 1992b.

10 Waste Management Industry Survey

by Craig Gaston

The waste management industry, which is not officially defined in the 1980 Standard Industrial Classification, includes all establishments that are primarily engaged in the collecting, hauling, recycling or disposing of waste material ${ }^{1}$. This industry is comprised of private companies as well as local government departments. Until recently, the waste management industry has not been surveyed by Statistics Canada. Therefore, two recent surveys covering the private and public components provide important, new information on the industry's structure in Canada. Chapter 11 provides preliminary information from the 1990 Local Government Waste Management Practices Survey and this chapter presents the 1989 Waste Management Industry Survey results.

The 1989 survey gathered information on 643 companies representing some 759 establishments. These establishments accounted for over $\$ 1.1$ billion in revenues and employed almost 10000 people. Table 1 shows that almost 72% of industry revenues were earned from

[^15] ties Industry (SIC 4999).
collection and haulage of waste, while about 21% came from disposal. In principal, disposal revenues are earned by operators of waste disposal facilities such as landfills, incinerators, etc. There is evidence, however, that some respondents indicated disposal revenues even though they provided only collection and transportation services.

Relatively high disposal revenue shares can be expected in provinces which are characterized by densely populated urban areas where space suitable for new landfilis is scarce. This pattern is detectable in Table 1 notwithstanding the exception of Newfoundland. Local government involvement in waste disposal also effects disposal revenues. A relatively high proportion of contractors are responsible for waste disposal in both Quebec and British Columbia according to the Local Government Waste Management Practices Survey ${ }^{2}$. Recycling services and sales of recycled goods accounted for less than 2% of industry income nationally. Even in Ontario, where recycling programs are best established ${ }^{3}$, the share of total revenues from this activity was only 2.6%.

In Table 2 the category "Other expenses" contains such costs as depreciation, taxes and professional and contracted services.

Firm size appears to be a significant factor in the pattern of relative costs (see Table 3). Salary and wage costs as a percentage of total revenue increase with declining revenue size whereas tipping expenses show the opposite tendency. Fuel costs show a similar pattern to

[^16]Table 1: Revenues by Type of Service and Province, 1989

Province	Establishments	Total revenue	Collection and haulage	Disposal	Recycling	Sales of recycled goods	Sales of energy	Other sales
	number	millions of dollars	percent of provincial revenue					
Newfoundland	28	9	45.8	46.8	1.4	. 1	\cdot	5.8
Prince Edward Isiand	5	\times	x	\times	x	\times	\times	x
Nova Scotia	45	13.2	81.5	13.3	1.7	. 3	4	2.8
New Brunswick	24	4.8	80.7	17.6	. 5	1	-	1.1
Quebec	207	339.6	70.0	22.6	3	. 1	-	7.0
Ontario	222	517.7	70.5	21.3	2.6	8	. 1	4.7
Manitoba	19	14.4	84.7	13.5	. 8	. 1	. 6	. 3
Saskatchewan	23	4.6	80.5	12.7	1.9	. 1	-	4.8
Alberta	63	91.0	77.1	17.5	2.2	. 1	2	2.9
British Columbia	112	127.8	76.1	19.6	1.0	. 1	1	3.0
Yukon and N.W.T.	11	\times	\times	\times	\times	\times	\times	x
Canada	759	1119.1	71.9	20.8	1.6	. 4	. 1	5.0

Statistics Canada, industry Division and National Accounts and Environment Division.

Table 2: Distribution of Expenses by Province, 1989

Province	Establishments	Total expenses	Tipping fees	Fuel and electricity	Other materials	Salaries and wages	Other expenses
	number	millions of dollars	percent of total expenses				
Newfoundland	28	0.8	2.2	12.9	10.9	46.6	27.5
Prince Edward Island	5	x	*	\times	\times	x	x
Nova Scotia	45	11.5	18.0	6.5	16.1	27.8	31.5
New Brunswick	24	4.3	6.2	7.2	37.8	30.8	18.2
Quebec	207	284.2	19.5	5.3	22.6	29.3	23.4
Ontario	222	448.8	30.1	4.2	14.6	24.5	26.6
Manitoba	19	12.1	25.3	6.5	6.9	22.1	39.2
Saskatchewan	23	4.1	13.5	9.8	10.8	36.3	29.6
Alberta	63	73.4	17.3	5.0	8.8	28.7	40.1
British Columbia	112	107.8	26.1	4.4	14.0	25.4	30.2
Yukon and N.W.T.	11	\times	\times	\times	\times	\times	\times
Canada	759	952.0	24.9	4.7	16.5	26.6	27.3

Sources:
Statistics Canada, Industry Division and National Accounts and Environment Division.

Table 3: Distribution of Expenses by Company Size, 1989

Revenue class	Companies	Total expenses	Tipping fees	Fuel and electricity	Other materials	Salaries and wages	Other expenses
	number	millions of \qquad tollars	percent of total expenses				
Greater than \$5 million	27	665.2	26.5	3.5	17.2	24.0	28.9
\$1-\$4.9 milion	100	185.1	26.4	6.2	16.4	30.2	20.7
\$.5-\$.9 million	100	59.2	15.0	9.4	11.5	34.5	29.5
Less than \$.5 million	416	42.6	8.5	10.6	12.2	40.1	28.6
All companies	643	952.0	24.9	4.7	16.5	26.6	27.3

Sources:
Statistics Canada, Industry Division and National Accounts and Environment Division.
salaries and wages. The fact that larger firms are more likely to operate in densely populated urban areas could partly explain the correlation of tipping expense ratios to size.

Table 4: Employment and Salaries by Company Size, 1989

Revenue class of company	Employees	Salaries and wages	Salaries and wages per employee	Salaries and wages/ revenue
	number	millions of dollars	thousands of dollars	percent
Greater than \$5 million	6084	159.6	26.2	20.1
\$1-\$4.9 miltion	1868	55.9	29.9	26.7
\$.5-\$.9 million	897	20.4	22.8	30.5
Less than $\$.5$ million	947	17.1	18.0	34.6
All companies	9796	253.1	25.8	22.6

Sources:
Statistics Canada, Industry Division and National Accounts and Environment Division.

Table 4 shows that about 60% of industry employment is in companies with revenues greater than $\$ 5$ million. These companies account for over 70% of the total industry revenues. Although a larger proportion of revenues is paid to employees as the firm size diminishes, employees in the smaller firms earn a lower average salary.

This brief profile of the private sector waste management industry is limited by a lack of time series information. The growth of the industry over time and the changing composition of revenues and expenses is a subject of increasing interest as waste management continues to be a focus of public attention. For more information on the 1989 Waste Management Industry Survey see Statistics Canada (1992).

REFERENCES

Statistics Canada. "1989 Waste Management Survey". Uncatalogued. Industry Division, Ottawa, 1992.

11 Local Government Waste Management Practices Survey

by Craig Gaston and Alan Goodall ${ }^{\prime}$

INTRODUCTION

This chapter provides a preliminary report of some results from the national Local Government Waste Management Practices Survey. This survey sampled municipalities of all types and some special purpose boards known to be heavily involved in waste management. While questionnaires were mailed to a total of 1000 local government entities, data presented here reflect only 83 lower-tier municipalities ${ }^{2}$ that had a population of greater than 50000 in 1991. These 83 entities accounted for about half of the Canadian population.

The survey, the first of its kind for Statistics Canada, contained a number of questions designed to profile the practices of local governments with respect to the collection, transportation and disposal of garbage, as well as recycling and the handling of hazardous waste. As a pilot study, it was intended to obtain an overview of the structure and function of Canadian local government activities pertaining to waste management. Toward this end, the surveyed sample included every type of local government believed to have some responsibility for waste management. Questions were asked to determine whether the various functions were performed by the municipality surveyed, by contractors, or by another level of government. Information was also sought on a number of other items, including costs associated with waste management. A comprehensive examination of financial and other data is to be released in the final full survey report.

RESULTS

Based upon the total annual quantities reported, the 83 municipalities collected, on average, slightly over 0.9 tonnes of residential garbage ${ }^{3}$ per dwelling served or about 2.5 kilograms per day (see Figure 1). Seventy-three of these municipalities reported having a recycling program, through which approximately 9% (by weight) of the

[^17]total waste ${ }^{4}$ stream was recycled. (This excludes private contracts by apartment building operators.)

Fifty-six of the municipalities had some form of residential hazardous waste program while only 10 had a program for non-residential hazardous wastes.

Thirty-six of the municipalities reported having arranged for waste composition studies, an important step towards effective waste management. In addition, 53 of the municipalities had some form of waste reduction program (public education, for example, but not recycling).

Figure 1: Garbage Collected per Dwelling, 1990

Sources:
Statistics Canada, Public institutions Division and National Accounts and Environment Division.

Collection

Waste collection is primarily a function of lower-tier governments, frequently involving both contractors and municipal employees. Eighteen municipalities (22\%) reported using only their own employees for this purpose and 40 (48%) reported hiring only contractors (see Table 1). On a regional basis, only 5% of Quebec respondents had their own employees performing this function while 84% of them used only contractors. Municipalities within census metropolitan areas (CMAs) or census agglomerations (CAs) with populations of less than 500000 tended to use their own employees while those in CMAs or CAs greater than 500000 relied more on contractors.

[^18]Table 1: Garbage Collection by Agent Responsible, Municipality Size and Region, 1990

	Population of CA/CMA to which municipality belongs			Canada	Region				
	$\begin{aligned} & 50000 \\ & 499999 \end{aligned}$	$\begin{array}{r} 500000 \text { - } \\ 999999 \end{array}$	$\begin{aligned} & 1000000 \\ & \text { and over } \end{aligned}$		Atlantic Provinces	Quebec	Ontario	Prairie Provinces	8.C.
Number of municipalities reporting	37	14	32	83	5	19	37	7	15
Agent responsible for collection	percent of muricipalities reporting								
Municipal employees only	32	14	13	22	40	5	27	14	27
Contractors only	30	64	83	48	40	84	41	14	40
Municipal employees and other	5	0	3	4	0	0	0	29	7
Municipal employees, other levels of government and other	3	0	0	1	0	0	3	0	0
Municipal employees and contractors	24	21	22	23	20	11	27	43	20
Municipal employees, contractors and other	5	0	0	2	0	0	3	\bigcirc	7
Total	100	100	100	100	100	100	100	100	100

Sources:
Statistics Canada, Public Institutions Division and National Accounts and Environment Division.

Table 2: Garbage Disposal by Agent Responsible, Municipality Size and Region, 1990

	Population of CA/CMA to which municipality belongs			Canada	Region				
	50000 - 499999	$\begin{array}{r} 500000- \\ 999999 \end{array}$	$\begin{aligned} & 1000000 \\ & \text { and over } \end{aligned}$		Atlantic Provinces	Quebec	Ontario	Praifie Provinces	8.C.
Number of municipalities reporting	37	14	32	83	5	19	37	7	15
Agent responslble for disposal	percent of municipalities reporting								
Municipal employees only	35	21	6	22	60	11	16	71	13
Contractors only	24	0	44	28	0	58	14	29	33
Other levels of government only	30	64	44	41	40	32	57	0	33
Contractors and other levels of government	3	7	3	4	0	0	5	0	7
Municipal employees and other	3	0	0	1	0	0	3	0	0
Municipal employees and other levels of government	3	7	0	2	0	0	3	0	7
Municipal employees and contractors	3	0	3	2	0	0	3	0	7
Total	100	100	100	100	100	100	100	100	100

Sources:
Statistics Canada, Public Instiutions Division and National Accounts and Environment Division.

Disposal

Upper-tier governments play a much more important role in waste disposal than they do in collection. Thirty-three of the municipalities (41%) indicated that this function was handled solely by other levels of government (see Table 2). Contractors were exclusively involved in waste disposal for $23(28 \%)$ of the municipalities while $18(22 \%)$ used only their own employees. Again, population size is a factor as the municipalities within a CMA or CA having a population of under 500000 tended to rely more on their own employees, whereas those within CMAs or CAs with a population greater than 500000 contracted the function or relied more heavily on the upper tier. Regionally, Quebec municipalities
tended to rely more on contractors for disposal while disposal programs were run most frequently by upper-tier local governments in Ontario.

Recycling Programs

Seventy-three municipalities (88%) reported having an organized recycling program (of which 54 provided details) (see Table 3). In all size groups and regions, the percentage of respondents with recycling programs was quite high, ranging from a low of 74% in Quebec to 100% in the Prairies. Both collection and preparation for sale of recyclable ${ }^{1}$ materials are most often handied by contractors (see Tables 4 and 5). Municipal employees play a much smaller role in

Table 3: Recycling Programs and Percent of Waste Recycled by Municipality Size and Region, 1990

	Population of CA/CMA to which municipality belongs			Canada	Region				
	$\begin{aligned} & 50000 . \\ & 499999 \end{aligned}$	$\begin{array}{r} 500000- \\ 999999 \end{array}$	$\begin{aligned} & 1000000 \\ & \text { and over } \end{aligned}$		Atlantic Provinces	Quebec	Ontario	Prairie Provinces	B.C.
Number of municipalities reporting	37	14	32	83	5	19	37	7	15
					ercent				
Municipalities with recycling program	86	93	88	88	80	74	97	100	80
Waste recycled as a proportion of total waste collected	9	7	10	9	4	5	13	6	10

Sources:
Statistics Canada, Pubbic Institutions Division and National Accounts and Environment Division.

Table 4: Collection of Recyclable Materials by Agent Responsible, Municipality Size and Region, 1990

	Population of CA/CMA to which municipality belongs			Canada	Region				
	$\begin{aligned} & 50000 \text { - } \\ & 499999 \end{aligned}$	$\begin{array}{r} 500000 \text {. } \\ 999999 \end{array}$	$\begin{array}{r} 1000000 \\ \text { and over } \end{array}$		Atlantic Provinces	Quebec	Ontario	Prairie Provinces	B.C.
Number of municipalities reporting	37	14	32	83	5	19	37	7	15
Agent responsible for collecting recyclable materlals	percent of municipalities reporting								
Municipalities' employees only	11	14	22	16	20	5	22	14	13
Contractors only	46	36	56	48	40	58	57	14	33
Other levels of government only	8	21	6	10	0	5	14	0	13
Other only	14	7	0	7	20	5	0	29	13
Contractors and other	B	0	0	4	0	0	3	14	7
Municipal employees and contractors	0	7	3	2	0	0	3	14	0
Municipal employees, contractors and other	0	7	0	1	0	0	0	14	0
Municipal employees, contractors and other levels of government	3	0	0	1	0	0	3	0	0
No program	11	7	13	11	20	26	0	0	20
Total	100	100	100	100	100	100	100	100	100

Sources:
Statistics Canada, Public Institutions Division and National Accounts and Environment Division
these functions compared to general waste management. Other organizations (primarily volunteer organizations and private enterprises) also play an important part in recycling operations. Upper-tier local governments tend to be more involved in the handling and preparation for sale of recycled materials than in their collection.

Table 6 shows the percentage of municipalities offering a recycling program for each of the nine materials listed by type of collection service offered. Percentages are based upon information from the 54 respondents reporting the detail of their programs. All of the municipalities reported newsprint recycling for low density dwellings. As one might expect, the frequency of such programs decreases as the density of dwelling increases since the logistics of coordi-

[^19]nating recycling programs for multiple unit dwellings may be more complex. The fourth column in Table 6 shows the percentage of local governments offering a depot recycling program. It should be noted that the existence of a program for compostable materials does not mean all possible materials in this category are collected. In some cases municipalities have reported collecting only Christmas trees.

Hazardous Waste Programs

Fifty-six (67\%) of the municipalities reported they had a residential hazardous waste program. Ontario had the highest regional representation, with 95% of municipalities reporting some type of program (see Table 7). Note that for this survey, once-per-year household hazardous waste drop-off programs qualified as valid responses.

Table 5: Sorting and Preparing of Recyclable Materials for Sale by Agent Responsible, Municipality Size and Region, 1990

	Population of CA/CMA to which municipality belongs			Canada	Region				
	$\begin{aligned} & 50000 . \\ & 499999 \end{aligned}$	$\begin{array}{r} 500000- \\ 999999 \end{array}$	$\begin{array}{r} 1000000 \\ \text { and over } \end{array}$		Atlantic Provinces	Quebec	Ontario	Prairie Provinces	B.C.
Number of municipalities reported	37	14	32	83	5	19	37	7	15
Agent responsible for sorting/preparing recyclable materials	percent of municipalities reporting								
Municipal employees only	5	7	0	4	20	0	3	14	0
Contractors only	41	50	47	45	40	58	43	43	33
Other levels of government only	19	21	22	20	0	11	35	0	13
Other only	16	14	3	11	20	5	3	43	20
Contractors and other	5	0	0	2	0	0	3	0	7
Contractors and other levels of government	3	0	0	1	0	0	3	0	0
Other levels of government and other	0	0	3	1	0	0	3	0	0
Municipal employees and other levels of government	0	0	3	1	0	0	3	0	0
No program	11	7	22	14	20	26	5	0	27
Total	100	100	100	100	100	100	100	100	100

Sources:
Statistics Canada, Public Institutions Division and National Accounts and Environment Division.

Backyard Composting

Thirty-two municipalities (39\%) indicated that a backyard composting program existed within their boundaries. Of these, 28 provided data on the number of composters distributed. As reported, over 83000 composters had been distributed. Thirty percent were supplied by the municipality, 17% by contractors, 42% by other levels of government, with the remainder supplied by other organizations.

Table 6: Recycling Collection Programs and Depots, 1990

Recyclable Material	Recycing collection program			Depots
	Low density dwellings	Medium density dwellings	High density dwellings	
	percent			
Newspaper	100	61	37	54
Cardboard	50	30	20	35
Fine paper	20	7	4	28
Glass	96	59	35	41
Ferrous metal	85	50	30	39
Non-ferrous metal	76	48	33	37
Plastic	67	37	30	37
Compostable materials	33	17	9	13
Used motor oil	15	7	2	13

Note:

Based on detaifed information provided by 54 municipalities that provided details of their recycing programs.
Sources:
Statistics Canada, Public Institutions Division and National Accounts and Environment Division.

Disposal Facilities

Information was provided for 165 of the disposal facilities used by respondents (see Table 8). Sanitary landfills are the most commonly reported means of waste disposal for municipalities with a population of 50000 and over. However, not all the sites (as described by respondents) appear to meet the criteria set for sanitary landfills. At a minimum, in addition to frequent and regular coverage of waste, a sanitary landfill must have either a natural or an artificial liner to prevent leachate from contaminating groundwater.

Of the 100 landfills reported, some detailed characteristics were provided for 60 sanitary landfills within local municipal boundaries (see Table 8). As reported, in addition to frequent coverage of waste, these sites had the attributes shown in Table 9.

DATA QUALITY

Completed questionnaires were received for all of the 83 lower-tier governments reported here. Most of these were contacted by telephone in order to clarify responses, correct inconsistencies and obtain missing information. As a result of this follow-up, data on the availability of programs and the agent responsible for their delivery is considered to be very accurate. The more detailed information on characteristics of disposal sites is of lower quality because not all municipalities were able to provide these data. Population counts were verified using information from the 1991 Census of Population.

Table 7: Hazardous Waste Program by Type of Program, Municipality Size and Region, 1990

	Population of CA/CMA to which Municipality Belongs			Canada	Region				
	$\begin{aligned} & 50000- \\ & 499999 \end{aligned}$	$\begin{array}{r} 500000- \\ 999999 \end{array}$	$\begin{aligned} & 1000000 \\ & \text { and over } \end{aligned}$		Attantic Provinces	Quebec	Ontario	Prairies Provinces	B.C.
Number of municipalities reporting	37	14	32	83	5	19	37	7	15
	percent of municipalities reporting								
Residential	70	64	66	67	20	42	95	86	40
Non-residential	16	29	0	12	20	0	8	43	20

Sources:

Statistics Canada, Public Institutions Division and National Accounts and Envifonment Division.

Table 8: Garbage Handling and Disposal Facilities, 1990

Type of facitity as reported by respondent	Number	Percent
Sanitary landfils	100	61
Other landfills	5	3
Volume reduction facilities	7	4
(e.g. incinerators)	7	4
Material recovery facilities	46	28
Transfer stations	.	
Quarry dumps	165	100
Total		

Sources:
Statistics Canada, Public Institutions Division and National Accounts and Environment Division.

Table 9: Sanitary Landfills by Characteristics Reported, 1990

| | Number reported | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | No |
| Characteristic | 48 | 11 | 1 | 60 |
| Presence of weigh scales | 27 | 9 | 24 | 60 |
| Natural attenuation | 17 | 35 | 8 | 60 |
| Artificial liner | 29 | 27 | 4 | 60 |
| Leachate coliection system | 11 | 41 | 8 | 60 |
| Methane gas harnessing system | | | | |

Sources:
Statistics Canada, Public institutions Division and National Accounts and Environment Division.

Data were requested for the fiscal year ending nearest December 31, 1990 but many respondents reported programs implemented subsequent to that date. As it was not possible to correct for this tendency, some percentages are higher than would be expected for the reporting period requested. An analysis of responses to the recycling question indicates that the impact is greatest on local governments with the smallest population. There does not appear to be a regional bias to this tendency.

LOCAL GOVERNMENTS: UPPER AND LOWER TIERS

Local government in Canada includes all government entities below the provincial/territorial level which, by the terms of their establishment, do not form part of the provincial/territorial level. Within this broad category, structures and responsibilities of local governments are further divided between municipalities, special purpose boards and local school districts. Municipalities are subdivided into unitary, regional and quasi-municipalities. To prevent double-counting, these municipalities were further classified into upper and lower-tier. For the purposes of this survey, upper-tier municipalities are those encompassing one or more local government entities. Lower-tier municipalities are those within the jurisdiction of another municipality type.

Upper-tier municipalities typically include metropolitan corporations, regional districts, regional municipalities, and counties (in Ontario and Quebec). Lower-tier municipalities include cities, towns, villages, townships, rural municipalities, districts and counties (in Nova Scotia and Alberta), and some quasi-municipalities (e.g., local government districts, local improvement districts).

12 Materials Recovery and Recycling by the Industrial Sector

by Marcia Santiago

INTRODUCTION

Recycling is not new and neither is it limited to households. Industry has been active in recycling for some time. The materials collected for industrial reuse are broadly similar to those collected from households: metals, paper, glass and plastics.

From an environmental standpoint, there are some beneficial aspects to the manufacturing of metal products from recycled material rather than from ores or concentrates. First, producing components from scrap material, rather than from primary metal results in savings of 75-95\% of energy costs (Chandler, 1990). In addition, considerably less pollution is released.

There are three essential components in a cost-effective recovery and recycling system: supply, technology and markets. The source of recovered material must be readily accessible and reliable. An efficient collection network is especially important in this regard. There must also be in place sufficient technological capability to reprocess recovered materials. Most importantly, the demand for the reprocessed materials must be well developed.

This chapter attempts to compare virgin and scrap material prices, in order to describe their relative behaviour in changing markets. In general, differences in movements of virgin and scrap prices are expected to reflect the overall pattern of manufacturing activity. In cases where there are no regulatory pressures, market forces dictate the extent to which scrap is used. For metals, the difference between scrap and ore price movements would reflect the relative energy demand of primary and secondary manufacturing depending on the quality of ore that is available.

PULPWOOD AND NEWSPRINT

Although environmental regulations and recently increased customer demand have focused attention on the recycled fibre content in paper, material recovery is actually a long-standing practice in the pulp and paper industries.

Pulpwood chips, a by-product generated by sawmills in the processing of timber to lumber, are an alternative to logs and bolts in the production of pulp. Similarly, newsprint and fine paper may be used as recycled fibre content, in the production of either other printing and writing paper or paperboard and boxboard.

Chipping is a natural extension of the sawmill business, as it is an efficient way of handling the large volumes of pulp wood debris that accumulate. One consideration in handling such waste, which usually consists of short log ends and chunks, is the distance that the chips must be hauled from the sawmill to the pulp mill. A chipping operation may, by some estimates, reduce wood debris by almost half (Phillips, 1992). These chips are eventually used in the production of pulp, newsprint and other paper products (Table 1).

Table 1: Selected Material Inputs to Pulp and Paper Products, 1987

Commodity inputs	Commodities produced			
	Pulp	Newsprint	Paperboard and building board	Paper boxes, bags and containers
	millions of dollars			
Pulpwood	504	676	54	\cdots
Pulpwood chips and other wood waste	784	313	82	-
Puip	85	261	237	9
Miscellaneous paper	22	70	539	2209
Total	1395	1320	912	2218

Source:
Statistics Canada, input-Output Division

Markets for paper containing recycled fibre continue to grow. This is especially true in newsprint, despite recurring technical problems like "stickies" - a buildup of residual ink on the paper machine that requires a great deal of cost and effort to control. The development of markets for fine paper is also well under way. A Mississauga, Ontario firm was the first to supply customers with paper that contained fibre from its own wastepaper supply (Hedlund, 1992).

Unit prices ${ }^{1}$ for some of these materials are shown in Figure 1. While the price of old newsprint has been well below that of unprinted scrap newsprint since mid-1988, the price for old newsprint began to fall about one and a half years ahead of the price for unprinted scrap newsprint. In contrast, prices for pulpwood chips and scrap wood actually increased until January 1990, when they reached their peak value of $\$ 116$ per tonne. More recently, the United States has been tightening up its regulatory framework, re-

[^20]quiring a higher recycled material content in newsprint and this may lead to higher prices in the longer term.

Figure 1: Scrap Wood and Paper Products, Monthly Unit Prices, 1984-1992

Sources:
Statistics Canada, Intemational Trade Division.
Recoup Publishing Limited.

ALUMINUM

Between 1988 and 1990, production of secondary aluminum in market economies set record volumes of about 5.1 million tonnes. These high volumes are attributed to continuing improvements in the scrap collection system and increased recycling promotion by governments and environmental groups (EMR, 1991). This is especially true of used beverage cans.

Table 2: Aluminum Production and Trade, 1989

	Quantity	Value	
Total Canadian production	thousand tonnes		million dollars
		1555	\ldots
Imports			
Aluminum ore and concentrate	2541	111	
Aluminum oxide	2031	629	
Aluminum waste and scrap	58	93	
Exports		614	1450
Aluminum, not alloyed	544	1356	
Aluminum aloys	164	328	
Aluminum waste and scrap			

Source:
Energy Mines and Pesources Canada, 1991

In 1989, aluminum scrap represented a total of \$328 million or 164 thousand tonnes in exports (Table 2). This mainly consisted of material recovered from industrial processes. Another source of aluminum scrap is consumer durable goods, which include pots, pans, flatware, appliances, as well as transportation equipment components. Packaging is also a large component of aluminum scrap; used beverage cans are the most common example.

Aluminum can scrap is used by both primary and secondary aluminum producers (Selke, 1990). The first step in recycling of aluminum cans is usually a preliminary screen with a magnet to remove any steel cans inadvertently mixed in. The cans are next shredded to one-inch pieces. Fines and dust are collected and removed by high efficiency cyclones to eliminate any explosion hazard. Magnets are again used to remove any steel scraps. Most other contaminants, such as paper, are removed in pneumatic processing. Finally, the aluminum scrap is charged in the furnace, where alloy composition is adjusted as required.

Compared to other nonferrous metal scrap, the unit prices for various grades of recovered aluminum are quite high (Figure 2). They range from $\$ 738$ per tonne for used beverage cans to $\$ 947$ per tonne for aluminum extrusions. This is also considerably higher than the unit value of aluminum ore and concentrate ($\$ 37$ per tonne).

Figure 2: Aluminum Ore, Scrap and Extrusions, Monthly Unit Prices, 1984-1991

Part of the price difference between aluminum ore/ concentrate and recovered aluminum is related to a basic cost issue: compared to one produced from ore or concentrate, a product manufactured from a recovered source of aluminum requires less energy. Because of the high energy requirements for refining aluminum ores, energy accounts for about one fifth of the cost of producing aluminum from ore (Chandler, 1990). Use of recycled aluminum represents an overall cost savings of about 40%.

However, the market for recycled packaging is subject to a number of stresses. First, aluminum is a somewhat more expensive packaging material than steel for producing beverage cans. In Ontario, some of the major soft drink manufacturers have begun to use cheaper bimetal cans. Although these alternatives may be used in steel recycling, they could pose problems for programs that depend on the more lucrative aluminum cans to fund other aspects of the recycling facility. Another factor is an environmental levy imposed on beer cans, to which some manufacturers of aluminum cans have attributed a recent drop in sales.

IRON AND STEEL

Ferrous scrap is used in steel produced in electric furnace mills and integrated mills. Foundries are also a large market for iron and steel scrap. In turn, automotive manufacturers are these industries' primary markets. As such, Canadian scrap prices often fluctuate with the pattern of growth in these industries. For example, activity in these industries has been slack recently and that pattern is reflected in the prices of steel scrap.

In Canada, new scrap averaged 17% of total finished steel and represented 60% of total purchased scrap (Stollery, 1983). High grade ferrous scrap competes directly with pig iron in steel furnaces because it can be used without intermediate smelting or refining. Thus, the price of ferrous scrap may be expected to vary positively with steel output. Stollery shows that changes in the price of ferrous scrap affect the demand for iron ore, which is also influenced by increases in the output of steel in the U.S.

Several grades of ferrous scrap are traded in secondary markets and two examples are shown in Figure 3. Heavy melting steel, valued at $\$ 96$ per tonne, consists of wrought iron and steel segments that are at least four inches thick. Black and galvanized steel scrap, clippings, old auto bodies and fenders are all compressed to bundles of fixed sizes. Depending on the impurities, bundled scrap, as it is called, also has several grades. In late 1991, flattened car bodies were priced at $\$ 61$ per tonne.

Prices for both iron ore and ferrous scrap (heavy melting steel and flattened car bodies) have been stable since the middle of 1988. Price changes for these commodities
are shown in Figure 3. Scrap prices increased steadily from the beginning of 1984, when prices ranged from $\$ 47$ per tonne to $\$ 89$ per tonne, to the latter part of 1988 , when they reached $\$ 74$ per tonne to $\$ 113$ per tonne. These prices, however, have felt the effect of recession. By the latter part of 1991, they had fallen well below the 1988 level.

Figure 3: Iron Ore and Scrap Steel, Monthly Unit Prices, 1984-1991

Sources:
Statistics Canada, Intemational Trade Division.
Fecoup Publishing Limited.

COPPER

A comparison of monthly copper ore and scrap unit prices is shown in Figure 4. Since 1984, the price movement has been similar to that of other primary and secondary metals. However, the unit price of copper ore and concentrate is about the same as that of Number 1 copper scrap, which is at least 96% pure copper and valued at $\$ 2.22$ per kg . This is quite different from the pattern shown by iron and aluminum. It reflects differences in the quality of ores and concentrates that are traded. There is also a range of lower grade, refinery brass and smelter copper, whose prices range from $\$ 0.88$ per kg to $\$ 1.83$ per kg .

Historically, Stollery (1983) has shown that the prices of scrap copper have followed the pattern of activity in U.S. and European durable goods manufacturing. Although there are considerable differences in the energy requirements of primary and secondary copper production, the availability of fairly high-grade virgin material has maintained the relative market positions of ore and scrap.

Figure 4: Copper Ore and Scrap, Monthly Unit Prices, 1984-1991

Sources:
Statistics Canada, Intemational Trade Division
Focoup Publishing Limited.

DATA SOURCES

Price data for pulpwood chips, as well as metal ore concentrates, are based on quantity-weighted averages of import/export values. At the time of writing, time series based on the Harmonized Commodity Description and Coding System were available for the period September 1988 to April 1992. These are values declared at Customs, rather than announced or actual producer or purchaser prices. This is the most easily accessible source of nonconfidential unit prices.

Price data for recovered materials were taken from a series of publications (Recoup). From this series, the most recent available issue was for October 1991 prices. In all cases, these are announced broker prices. Prices shown are specific to certain regions: Northeastern U.S. and Southern Ontario (used beverage cans), Ontario (ferrous scrap) or Toronto (other nonferrous scrap, paperstock). There may be quite a large difference between the announced prices and the discounted ones.

REFERENCES

Chandler, W.U. Materials Recycling: The Virtue of Necessity in S.E. Selke. Packaging and the Environment: Alternatives, Trends and Solutions. Lancaster, Pa: Technomic, 1990.

Energy Mines and Resources (EMR), 1990 Canadian Minerals Yearbook: Review and Outlook. Catalogue M38-5/ 39E, Ottawa, 1991.

Hedlund, J. "Recycling Kicks Into High Gear". Pulp \& Paper Canada 93(4):11, 1992.

Phillips, P.J. "At The Cutting Edge of Smallwood Pulping." Pulp \& Paper Canada 93(5):37-38, 1992.

Recoup Publishing Limited. Materials Recycling Markets. Chesterville, Ontario. Monthly issues from 1988 to 1991.

Selke, S.E. Packaging and the Environment: Alternatives, Trends and Solutions. Lancaster, PA: Technomic, 1990.

Stollery, K.R. Secondary Supply of Copper and Ferrous Metals and Canadian Metal Markets. Technical Paper No. 3. Kingston, Ont.: Centre for Resource Studies, Queen's University, 1983.

13 Preliminary Estimates of the Value of Crude Oil and Natural Gas Reserves in Alberta

by Alice Born

INTRODUCTION

Economically recoverable sub-soil mineral deposits are wealth assets and not merely "free gifts of nature" as they are presently treated by conventional methods of national accounting. Thus, there is no national accounting for the total value of Canada's renewable or non-renewable natural resources and their physical depletion. Currently, the value of Canada's natural resources is excluded from Canada's National Balance Sheet Accounts, thus underestimating Canada's wealth.

This article presents preliminary results from a pilot study of the value of Alberta's crude oil and natural gas reserves. Statistics Canada proposes to include the value of Canada's natural resources in the National Balance Sheet The development of physical accounts will provide a consistent national set of estimates of Canada's natural resource base, while the development of monetary accounts will provide a conceptual framework for monetary valuation of Canada's natural resources and their economic depletion.

Why should we measure the monetary value of Canada's natural resource endowment? Firstly, the use of natural resource assets generates substantial amounts of revenue and makes an important contribution to Canada's economic activity. The monetary accounts will provide an indication of the size of this income-generating potential. Secondly, monetary valuation of our natural resources provides a tool that allows us to compare Canada's net worth (assets - liabilities) to other industrialized countries without such natural resource endowments. The national balance sheet provides a total picture of a country's tangible and financial wealth thus aiding intertemporal and international economic structural comparisons. Thirdly, evaluation of a nation's future potential for sustained income generation can be enhanced by detailed analysis of national and provincial assets and liabilities. Revenues from non-renewable resources (e.g. royalties and land costs) may be converted into other assets capable of providing an ongoing return through savings and investment. An accounting representation should recognize that one kind of asset can be exchanged for another, the sale of a natural resource is
exchanged for the acquisition of a new income-producing asset and the loss of the natural resource extracted. There is also public concern about the availability of mineral resources needed to sustain economic growth. Will resource availability seriously constrain the high standards of living in developed countries and the economic growth of the developing countries? It is hoped that natural resource accounting will address some of these issues.

Natural resource accounts can be used to measure the interrelationship between the economy and the environment. The focus of traditional systems of national accounts on market transactions in the economy has excluded accounting for changes in the quality of the environment and the stock and depletion of natural resources. Initiatives have been taken by the United Nations and several countries on satellite accounting for the environment in the System of National Accounts (SNA) in order to account for environmental and natural resources such as air, water, land, forests and sub-soil mineral deposits. The current revision to the SNA by the United Nations presents an opportunity to examine how natural resource accounting can be linked to or incorporated in the SNA (Bartelmus, 1991). In measuring sustainable development, there is a need to fully account for the use of both man-made and natural capital in order to recognize the possibility of non-sustainable growth and development (Bartelmus et al, 1991). The proposed SNA framework extends the concept of capital assets to cover both.

Only those reserves capable of producing economic benefits to their owners with current technology, scientific knowledge and relative prices and costs at the date to which the Balance Sheet relates will be included in the physical and monetary accounts. These natural resources have a high probability of being used in production of goods and services. Known reserves of oil and natural gas reserves that are not commercially exploitable in the foreseeable future are excluded from that Balance Sheet Accounts. These reserves may possibly become economical as the result of new technologies or major changes in relative prices similar to those of the oil shocks in the 1970 s and 1980 s. Accordingly, the physical and monetary accounts record, for any given year, the value of resources known to exist in that year, and to be economically viable given the technologies available in that year, all evaluated at the prices and costs prevailing in that year.

In December 1990 the Federal Government released Canada's Green Plan. Some of the initiatives from the Green Plan include: updating estimates of all natural resource stocks; increasing monitoring programs on the uses of renewable and non-renewable resources; and identifying the value of Canada's natural resources. Statistics Canada's role is to provide statistical information that integrates economic and environmental elements so that, for example, the value of natural resources is reflected in the Canadian System of National Accounts. Two pilot projects in natural resource accounting have been initiated by the

National Accounts and Environment Division at Statistics Canada. One considers a non-renewable resource, crude oil and natural gas reserves, and the other involves a renewable resource, timber.

This work on the development of natural resource accounts is part of the continuing work to complete the Canadian System of National Accounts (CSNA). The CSNA is one of the most complete national accounting systems in the world. The National Balance Sheet is only one component of this system and it provides estimates of Canada's wealth. When partial estimates of non-financial assets were first published as part of the National Balance Sheet in 1985, it was intended that further work be undertaken to complete the balance sheet by including other non-financial assets such as renewable and non-renewable resource assets.

This chapter presents both physical and monetary accounts for the crude oil and natural gas reserves of the Province of Alberta from 1961 to 1990. It is a shorter version of an earlier discussion paper (Born, 1992). For a more theoretical and expanded discussion, readers are referred to this previous paper.

THE OIL AND NATURAL GAS SECTOR IN ALBERTA

Alberta is the largest producer and owner of economically recoverable reserves of crude oil and natural gas in Canada. At the end of 1990, there were 530 million cubic metres of conventional crude oil reserves in Alberta, representing 60% of Canada's remaining established reserves of conventional crude oil, 1.7 billion cubic metres of marketable natural gas (62% of the Canadian total) and 524 million cubic metres of developed crude bitumen (100% of the Canadian total) (Canadian Petroleum Association, 1990; and Alberta Energy Resources Conservation Board, 1990).

The value of Alberta's production of conventional crude oil, natural gas and their associated by-products was $\$ 15.5$ billion in 1990 or 83% of the value of Canada's total petroleum production (Statistics Canada, 1990). The value of Alberta's production from non-conventional sources (e.g. tar sands) was $\$ 2.8$ billion, representing all of Canada's synthetic crude oil and bitumen production in 1990.

The upstream oil and natural gas sector is a capital intensive activity. Annual capital (namely exploration and development) expenditures in Alberta increased from $\$ 272$ million in 1961 to $\$ 4.0$ billion in 1990 . Net fixed capital stock estimates for the sector have increased from $\$ 1.6$ billion to $\$ 33.6$ billion in that same period.

Royalties, and land acquisition costs and rental fees totalled $\$ 154$ million in 1961 and $\$ 3.7$ billion in 1990 for the province. Operating costs for extraction of oil and natural
gas totalled $\$ 124.0$ million in 1961 and increased to $\$ 4.8$ billion in 1990.

Since most of Canada's petroleum production and remaining reserves are located in Alberta, this province has been examined first. Valuation models developed for Alberta's conventional reserves of crude oil and natural gas reserves are extended to other areas of Canada with oil and natural gas reserves and Alberta's non-conventional reserves of crude bitumen and will be published at a later date.

DEFINITION OF MINERAL RESERVES AND RESOURCES

Estimates of the size of reserves of non-renewable (exhaustible) resources are continually being revised. In the development of physical accounts, the McKelvey Box is used to distinguish mineral resources from mineral reserves and to show what factors affect the size of the reserves (Figure 1). The vertical axis in Figure 1 represents the degree of economic recoverability and the horizontal axis measures the degree of geological certainty. Economically recoverable resources are located in the top left-hand corner of the diagram (e.g. identified proven, probable (established) and possible reserves). The feasibility of resource extraction decreases through to the lower righthand section (e.g. sub-economic and undiscovered resources). The boundary between economic and sub-economic resources is affected by the relationship between prices and extraction costs, and technological improvements. The boundary between discovered and undiscovered resources fluctuates as the result of a petroleum company's investment in exploration and development, and differing geological conditions.

Oil and natural gas reserve estimates of Canada provided by the Canadian Petroleum Association (CPA), Alberta Energy Resources Conservation Board (AERCB), National Energy Board and other government agencies are reported as established reserves. Established reserves are "those reserves recoverable under current technological and present and anticipated economic conditions, specifically proved by drilling, testing or production, plus that judgement portion of contiguous recoverable reserves that are interpreted to exist from geological, geophysical or similar information, with reasonable certainty" (Tanner, 1986; p. 22).

The AERCB estimates two types of established reserves: remaining established reserves and yet-to-be established reserves, the sum of which is remaining ultimate potential established reserves ${ }^{1}$. Yet-to-be established reserves are based on estimates of future reserve growth from new discoveries and reserve additions to be recov-

[^21]Figure 1: The McKelvey Box Used to Distinguish Reserves from Resources

Source:
Modified after McKelvey, 1972
ered from future enhanced recovery. The ultimate potential is defined as an estimate of established reserves that will have been developed in an area by the time all exploratory and development activity has ceased (AERCB, 1991). Estimates of the ultimate potential are used to forecast Alberta's oil supply. Table 1 shows the remaining and yet-to-be established reserves for crude oil and natural gas at the end of 1990.

Table 1: Established Reserves of Crude Oil and Natural Gas in Alberta, 1990

	Remaining established	Yet-to-be established	Remaining ultimate potential	Reserve life
	mililions of cubic metres			years
Crude Oil	510	649	1159	21
Natural Gas	1649000	1420000	3114000	35

Source:

Alberta Energy Resources Conservation Board, 1991
This study is concerned with identified economic resources which are defined as those deposits whose location, quality and quantity are known and that can be economically extracted at the time of determination. The physical accounts consist of opening and closing stocks of remaining established reserves, extraction (depletion) of reserves and their appreciation as the result of discoveries, development, revisions and enhanced oil recovery (secondary and tertiary recovery) since these reserves have a high probability of being extracted for economic purposes.

In natural resource accounting, both physical and monetary units are needed to provide a complete picture of the use and the stock of natural assets. Physical resource accounts show the total stock of reserves and changes in the stocks, thus providing the stock and flow data required for the monetary balance sheet accounts.

Estimates of remaining established reserves of crude oil and natural gas for the Province of Alberta are provided in Table 5 in the Physical Accounts for the period from 1961 to 1990 . Figures 2 and 3 compare the remaining reserves and cumulative production for crude oil and natural gas. For crude oil reserves, the rate of depletion of reserves has remained stable since 1981, averaging 55.2 million cubic metres per year. However, the remaining reserve stock has declined by 27% during that same period. For natural gas reserves, the average depletion rate was 68.3 billion cubic metres from 1978 to 1987 but has increased to an average of 88.2 billion cubic metres for 1988 to 1990. The stock of remaining reserves of natural gas peaked at 1853 billion cubic metres in 1982 but declined to 1647 billion cubic metres in 1990. General current trends of reserve stocks indicate that reserve additions are not replacing reserve depletion. This is more prevalent for crude oil than for natural gas.

Figure 2: Summary of Remaining Established Reserves and Cumulative Production of Conventional Crude Oil in Alberta, 1961-1990

Sources:

Aberta Energy Resources Consenvation Board.
Statistics Canada National Accounts and Enviromment Division

Figure 3: Summary of Remaining Established Reserves and Cumulative Production of Marketable Natural Gas in Alberta, 1961-1990

Sources:
Alberta Energy Resources Conservation Board.
Statistics Canada. National Accounts and Environment Division.

THE CONCEPT OF ECONOMIC RENT

The concept of economic rent is central to the monetary valuation of natural resources (Repetto et al, 1989). Economic rent constitutes the difference between the international commodity price and all factor costs of extraction, including a normal return to capital but excluding taxes, royalties and other costs that are not part of the cost of physical extraction. The value of the resource in the ground is equal to the future stream of income or economic rent derived from the extraction of the natural resource.

Economic rents obtained from the extraction of petroleum are defined as the returns in excess of those required to sustain production, reserve development and exploration (Kemp, 1992). As owners of the natural resources, governments may collect rents through auctioning of exploration rights, taxation or royalties. With competitive bidding for mineral rights, the host government collects anticipated or ex ante economic rents in a lump sum payment. A royalty system is used to ensure that the government receives an acceptable share of the realized or ex post economic rents.

Economic rents from natural resources are complex, consisting of Hotelling (scarcity) rents and Ricardian (differential) rents as well as locational rents (arising from differences in transportation costs). Since oil and natural gas reserves are non-renewable and their supply is finite, at least part of the net flow of income can be attributed to the scarcity of the resource. While much of the literature has focused on aggregate economic rent or Hotelling rents, there is little discussion on how to treat these different rents in the context of the development of natural resource accounts. There are conceptual difficulties in separating these resource rents as discussed in Born (1992).

In 1931, Hotelling provided a theoretical model of the behaviour of markets for exhaustible resources. The Hotelling "hypothesis" states that under certainty, in the absence of extraction costs and under competitive market conditions, the price of a natural resource rises at the market rate of interest. The ability of the theory to describe and predict actual behaviour of natural resource markets remains an area of considerable debate with little empirical evidence to support it. However, several recent studies in natural resource accounting of oil and natural gas reserves (Landefeld and Hines, 1985; Repetto et al, 1989; and Smith, 1991) use the Hotelling model as the basis for a method of monetary valuation. This is the "net price" approach presented below.

Others (Devarajan and Fisher, 1982, and Lasserre, 1985) have suggested the use of discovery costs plus the rent on exploration prospects (e.g. land acquisition costs) as an approximation for resource rents. The argument is that exhaustible-resource rents can be measured by what firms are ready to spend in exploration and development in order to make the resource available. This is the basis of
the "replacement cost" method of monetary valuation discussed below.

MONETARY VALUATION OF OIL AND NATURAL GAS RESERVES

Mineral deposits should be viewed as capital assets that represent forms of national wealth. Ideally, reserves of mineral resources should be valued at the market prices at which the natural resource asset would be sold. However, most mineral stocks are not traded frequently on the market and their market values must be imputed. Three methods of monetary valuation are proposed in this study:
(i) Present Value
(ii) Net Price
(iii) Replacement Cost

Results from the different methods of valuation are presented for conventional crude oil and natural gas remaining established reserves in Alberta. These results are preliminary and may be further refined before the values are included formally in the Canadian National Balance Sheet Accounts. The three methods produce a wide range of monetary values and the difficulty is to determine what assumptions should be used and which set of estimates is most reliable.

Present Value

As a capital asset, a mineral deposit is valued on the basis of its net flow of income or "rent" that is anticipated over the lifetime of the deposit. If the capital market is competitive and the merit of any investment is assessed in terms of alternative investments, the expected income flow from the deposit is then discounted to establish the "net present value".

The present value approach or discounted value of future net returns has been proposed by the UN SNA Handbook on Integrated Environment and Economic Accounting (United Nations, 1990) as the most appropriate method of monetary valuation of opening and closing stocks and changes to stocks due to volumes and price changes. Discounted cash flow analysis is the standard approach used by companies to value properties and is used in annual corporate reports and U.S. Annual reports include the present value of future net cash flows from the estimated production of proven reserves based on the Reserves Recognition Accounting (RRA) method. The RRA method is based on a discounted cash flow or present value which assumes the continuation of current oil and natural gas margins discounted at an arbitrary 10% real rate. A comparison of the results from this study with those from various companies showed similar results (Born, 1992).

The choice of an appropriate discount rate for calculating the present value of reserves is problematic in terms of
choosing a "private" or "social" discount rate. There are considerations of intergenerational equity, the opportunity cost of capital and social time preference. Discounting appears to be inconsistent with the concept of sustainable development since the higher the discount rate, the lower the importance attached to the future use of the natural stock (Pearce and Turner, 1990). Adelman (1986) suggests that a nation with a highly diversified portfolio of assets should use a discount rate near the commercial rate employed by industry to discount the flow of net revenues. Long-term corporate bond rates have been used extensively in other studies and are used in this study as the discount rate.

Some of the results from the present value calculations for oil and natural gas are presented in Table 2. Values presented in this report show that in 1990, the value of oil reserves in the ground ranges from $\$ 11.9$ billion to $\$ 14.4$ billion and the value of natural gas reserves ranges from $\$ 4.1$ billion to $\$ 7.7$ billion, discounted at long-term corporate bond rates. Present value estimates vary considerably depending on the assumptions made and this is their major weakness. Several assumptions relating to the appropriate discount rate, return to man-made capital and depreciation charges need to be chosen in order to produce results.

Net Price

The net price method, as developed by Landefeld and Hines (1985) applies the current average net price per unit (i.e. current revenues less current production costs per unit) to the physical quantities of established reserves. It can be interpreted as an application of the "Hotelling" model where the net price of the resource is expected to rise at exactly at the same rate of return on alternative investments (e.g. the rate of interest). The net price method is a special case of the present value method in which on average, long-run equilibrium is assumed to occur (i.e. the net price will rise at the rate of alternative investments) and the increase in the net price will exactly offset the discount rate.

The net price is calculated from revenues less operating costs less opportunity cost of man-made capital (i.e. the return to capital and depreciation charge) divided by the quantity extracted in a given period. This net price per unit extracted is multiplied by the remaining reserves to obtain the total value of the opening and closing stocks. A variant on this approach, outlined by Landefeid and Hines (1985), subtracts the current replacement cost of manmade capital rather than its opportunity cost.

Table 3 presents preliminary results for the value of reserve of oil and natural gas reserves in Alberta. Two values are shown: the first method subtracts the opportunity cost of man-made capital employed by the petroleum industry plus depreciation and the second method uses the same methodology as Landefeld and Hines (1985). Results from this study indicate that in 1990 the value of crude oil reserves in Alberta ranges from $\$ 20.0$ billion to $\$ 41.2$ billion
and the value of natural gas reserves ranges from $\$ 10.4$ billion to $\$ 65.1$ billion using the net price approach.

The difference in the estimates from the two methodologies lies in the difference in the treatment of the manmade capital employed in exploring, developing and extracting the natural resource. In the method outlined by Landefeld and Hines (1985), there is no "normal return to (man-made) capital" excluded from the value added of the natural resource.

Most monetary values for oil and natural gas reserves reported in the current literature are based on the net price approach which assumes the Hotelling model. In Alberta, with the collapse of worid oil and natural gas prices since

1986 along with increasing extraction costs, the value of resource rents has decreased significantly. Analysis of the data in this study finds that the assumptions of the Hotelling model are too restrictive. It appears that the current net price is not appropriate for valuing future production of reserves. The net price method seems to have undervalued future production during the 1960 s and 1970 s given the rapid increase in net price from 1972 to 1985 for both oil and natural gas. The net price method has overvalued future production in the early 1980 s in light of the wellhead price collapse in 1986. However, the net price provides a basis for comparison with other studies (Repetto et al, 1989; and Smith, 1991) and the accounting procedures used in the net price method are similar to those used in the present value method. The net price has an advantage

Table 2: Estimate of the Monetary Value of Crude Oil and Natural Gas Reserves in Alberta Based on the

Year	Crude oil reserves			Natural gas reserves			Total value of reserves		
					12	[3]	[1]	[2]	[3]
	[1]	[2]	[3]	[1]	[2]				
	1927.2	1461.4		millions of dollars				916.8	7849.2
1961				-309.7	-544.6	$\begin{aligned} & 4431.8 \\ & 5494.9 \end{aligned}$	1617.5 1858.6	1145.4	日 341.1
1962	1747.9	1564.6	2846.2	110.6	$\begin{array}{r} -419.2 \\ -77.1 \end{array}$	6454.4	2980.2	1623.1	9680.6
1963	2049.5	1700.2	3216.2	${ }^{930.6}$	378.7	7333.0	3263.8	2342.3	11159.8
964	2081.7	1963.7	3826.8	1182.1		8850.7	3657.0	3218.8	17194.2
65	2297.9	2341.3	8343.5	+ 359.1	877.6	10334.9	Э 327.8	3405.9	19794.9
1966	2071.2	2257.4	9460.0	1256.5	1448.5	9953.2	3481.2	3418.3	21700.9
1967	2026.6	2161.2	11747.7	1454.6	1257.1		3686.6	3331.8	22657.2
1968	2343.1	2063.3	12643.4	1343.5	1268.5	10429.2	3539.3	3322.6	23860.1
1969	2482.7	2092.5	13430.9	1056.6	1230.0	11422.8	4184.0	3607.7	26200.2
1970	3639.0	2478.2	14777.4	544.9	1129.6	12568.4	5398.6	4395.3	$\begin{aligned} & 29441.5 \\ & 35162.6 \end{aligned}$
1971	5018.6	3398.9	16873.1	380.0	996.4		7062.0	5150.2	
1972	6543.0	4405.9	19889.6	519.0	744.3	19724.0	12133.2	7038.9	44855.2
1973	10801.3	6291.0	25131.2	1331.9	747.9	28321.2	20329.4	10679.8	57122.0
1974	15839.9	9012.5	30800.8	4489.5	1667.2	25839.9	25286.5	16459.8	56252.1
1975	15394.4	12313.9	30412.2	9892.1	4145.9	28556.5	30626.6	24231.8	61793.6
1976	16039.0	16032.5	33237.1	14587.6	8199.3	29984.0	42243.3	33786.7	65190.3
1977	21037.0	19639.8	35206.3	21206.3	18407.1	29555.4	45759.2	40016.7	65560.9
1978	24834.3	21609.6	35965.5	20924.8		34833.9	54529.7	46492.4	$\begin{aligned} & 75520.1 \\ & 68333.8 \end{aligned}$
1979	$\begin{aligned} & 28646.9 \\ & 25160.9 \end{aligned}$	24196.2$24995.7$	40686.2	28699.0	22296.3	30375.9	53859.8	48977.7	
1980			33676.1	21155.2	23982.1			46577.2	56502.4
1981	22013.9	24178.7			25640.6	19152.1	43169.1 52325.2	53122.0	$\begin{aligned} & 53981.0 \\ & 55077.4 \end{aligned}$
1982	28642.0	27481.4	34828.9	23683.3		18467.3	77695.9	68315.6	
1983	47051.1	35846.1	36610.1	30644.7	304831	11818.4	83193.2	71035.4	39774.0
1984	50967.3	40552.4	27955.6	32226.0	30483.1	9966.4	87702.9	85082.0	32858.3
1985	50620.5	49074.0	22891.9	37082.5	360081	9023.3	33873.1	82859.9	28196.4
1986	14083.6	46847.9	19173.1	19789.5	36012.0	12752.7	27626.7	65805.4	33120.9
1987	20838.2	37988.1	20368.2	6788.5	27817.3	133775	10119.3	44198.0	34555.5
1988	5958.8	25002.8	21178.0	4160.5	19190.2	15225.2	11710.3	22778.9	37183.6
1989	9218.4	13358.7	21958.4	2491.9		7705.2	16073.6	16627.0	22111.7
1990	11931.4	12033.5	14406.5	4142.2	4593.4	7705.2			

[^22]over present value calculations since there is no need to forecast or to make assumptions about future prices, extraction costs and rates, and interest rates.

Replacement Cost

Conceptually, resource rent is the most appropriate measure of the value of the resource in the ground. However, there are some problems involved when resource ents are used since rental values are not readily observed and must be imputed. Several studies have used the cost of discovering and developing reserves as a proxy for resource rent. The argument is that exploration and development dollars will be spent as long as the expected gain from finding the resource equals the marginal cost of exploration and development. The expected discovery value
of the resource stock should be equal to the present value of its expected rents.

In this study the "full marginal discovery cost" approach developed by Eglington and Uffelmann (1983), Lasserre (1985) and McLachlan (1990) has been adopted to approximate resource rent. It is the sum of the marginal cost of exploration and development plus land acquisition costs divided by reserve additions in a given period (e.g. reserves from discoveries, development and revisions, and in the case of crude oil reserves, enhanced oil recovery) to yield a replacement cost per unit of crude oil or natural gas reserve added. A 5-year average is used to average the costs and the booked reserve additions. The average unit cost of booked reserves is multiplied by the remaining es-

Table 3: Estimates of the Monetary Value of Crude Oil and Natural Gas Reserves in Alberta Based on the
Net Price Method, 1961-1990

[1] Net price equals revenue less operating costs, return on capital and depreciation charge
(2) Net price is based on the methodology by Landefeld and Hines (1985)

The results in this table should be treated as preliminary:
tablished reserves of crude oil and natural gas to obtain the value of the stock.

Table 4 presents a summary of the estimates of the replacement cost value of crude oil and natural gas reserves. The replacement value for crude oil has declined from $\$ 60$ billion to $\$ 43$ billion over the 1983 to 1990 period. While replacement costs for reserve additions per unit have increased, the volume of remaining reserves has decreased by 22% over the period, thus accounting for the trend in the value of remaining oil reserve stock. The replacement cost value which represents the present value of obtaining reserve additions through exploration and development produces similar results to the present value method until 1987 (Figure 4). ${ }^{1}$ This suggests that the expected discovery value of the resource stock is equal to the present value of its expected rents. The oil price collapse in 1986 and increasing capital costs have caused a significant decrease in the present value of oil reserves since 1986. It appears since 1986 that the assumption that the full marginal discovery cost can be used as a proxy for resource rent no longer applies in the short term.

Figure 4: Estimates of the Monetary Value of Crude Oil Reserves in Alberta, 19611990

Note:
The net price is from [1] in Table 3 and the present value is from [2] in Table 2.

[^23]The replacement cost value for natural gas reserves shows an increase from $\$ 53$ billion in 1982 to $\$ 81$ billion in 1990. While physical reserve stocks have decreased by 12% from 1982 to 1990 , replacement costs per unit of reserve added have more than doubled, thus producing increasing values for the total stock of natural gas. Present value and replacement cost value have similar trends until 1979 after which the replacement cost value increases and the present value decreases (Figure 5).

Table 4: Estimates of the Economic Value of Crude Oil and Natural Gas Reserves in Alberta Based on the Replacement Cost Method

Year	Crude oil reserves		Natural gas reserves		Total reserve value
	Unit cost	Value	Unit cost	Value	
	dolars per m ${ }^{3}$	mitions of dollars	dollars per thousand m^{3}	millions of	
1963	4.35	2632.5	1.86	1728.6	4361.1
1964	3.99	3700.4	2.04	2020.7	5721.0
1965	3.50	3384.6	2.28	2412.6	5797.2
1966	2.96	3179.3	2.37	2546.2	5725.5
1967	2.41	2734.6	2.77	3101.6	5836.2
1968	2.04	2469.7	3.02	3690.8	6160.6
1969	2.30	2810.5	3.37	4296.3	7106.8
1970	2.58	3122.0	3.96	5066.6	8188.6
1971	3.02	3547.3	4.69	5984.8	9532.1
1972	3.92	4409.9	5.13	6507.7	10917.5
1973	5.38	5655.9	5.63	7860.1	13516.0
1974	7.20	7278.7	6.60	9805.7	17085.4
1975	9.66	9183.1	7.30	10593.9	19777.0
1976	14.29	12452.1	8.03	12063.3	24515.5
1977	19.40	16098.3	8.65	13570.4	29668.7
1978	25.35	20138.0	10.23	17038.9	37176.9
1979	37:99	28877.1	13.08	22472.3	51349.4
1980	56.73	40841.6	17.67	30871.4	71713.1
1981	68.74	47842.8	22.88	41082.8	88925.7
1982	83.59	54285.4	28.76	53295.5	107580.9
1983	91.04	59886.8	31.92	58292.1	118178.9
1984	90.75	58145.4	32.46	58378.1	116523.5
1985	83.21	53960.1	31.35	55428.3	109388.4
1986	83.71	53131.4	30.68	52778.0	105909.4
1987	78.89	48424.2	35.11	57988.6	106412.8
1988	82.67	49013.4	41.60	67718.3	116731.6
1989	80.71	45235.6	46.10	76050.7	121286.4
1990	84.95	43359.4	49.41	81406.1	124765.6

Notes:
The results in this table should be treated as prelminary. Includes all exploration and development expenditures and land booked reserve additions; lagged and unit costs are derived from a 5 -year average of booked reserve adowions: unit costs are averaged over 5 years.

It appears that the replacement cost method measures resource scarcity. It is not, however, a proxy for the measurement of the value of natural resource wealth which accounts for capital gains and losses due to price changes over time.

Comparison of Valuation Methods

Figures 4 and 5 provide a comparison of the estimates from the three different valuation methods described above. As previously discussed, present values and replacement cost values show similar trends until 1986. The net price estimates initially overvalue the reserve stock in the late 1980s given the price collapse of 1986 however they show a similar trend to present value after 1986.

Figure 5: Estimates of the Monetary Value of Natural Gas Reserves in Alberta, 1961-1990

Note:
The net price is from [1] in Table 3 and the present value is from [2] in Table 2.

In comparison with the net price approach, the present value approach provides a smoother times series since the method reduces price volatility by averaging or using actual wellhead price in cases [2] and [3] in Table 2, using interest rates related to the time period rather than assuming a constant discount rate such as 10% for the entire 30 -year time span and averaging or using actual variable (extraction) costs in calculations [2] and [3] in Table 2.

The advantages and disadvantages of each method have been discussed. However, with the net price method, the assumption of long-run equilibrium in natural resource markets has little empirical support and produces volatile values. The selection of the most appropriate valuation method for the Canadian National Balance Sheet will reflect the most reliable method of market valuation. The present value method conforms most closely to corporate financial reporting of the market value of reserves and is the preferred method of valuation by national accountants. However assumptions about future prices, costs and discounts have to be made when using this method.

RECONCILIATION ACCOUNTS

Table 5 presents both physical and monetary Reconciliation Accounts for oil and natural gas reserves from 1961 to 1990. Net price values from Table 3 [1] for oil and natural gas are used to construct the monetary accounts in Table 5.

Reconciliation tables show the volume and price changes of the assets during the reporting period, in this case, one year. The basic formula for the reconciliation accounts is:

$$
\begin{aligned}
\text { closing stock }= & \text { opening stock }+ \text { net reserve additions } \\
& - \text { reserve depletion }+ \text { revaluation }
\end{aligned}
$$

where revaluation reflects the change in net price during periods in the monetary accounts only.

The monetary reconciliation accounts reflect changes in the net value of the resource due to changes in physical reserves, wellhead prices and operating and capital costs. These changes will be reflected in the value of non-produced tangible assets in the Balance Sheet Accounts and ultimately in national wealth and net worth.

Table 5: Reconciliation Tables for Established Reserves of Crude Oil and Natural Gas in Alberta, 1961-1975

	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971		1973		
CRUDE OIL RESERVES															
Physical accounts (millions of cubic metres)					926.1	965.7	1074.2	1332.9	1212.8	1222.8	1207.9	1173.6	+126.0 1	1052.0	1011.5
Opening stocks	525.0	557.6	575.6	605.4	92.1	140.8	95.2	119.8	54.5	36.7	22.1	20.0	9.2	38.5	7.0
Gross additions	57.5	44.0	56.6	348.5	6	89.1	57.2	62.0	40.5	8.4	14.0	10.8	5.1	4.3	1.6
Discoveries	1.7	2.9	14.6	9.5	426	13.5	15.7	14.8	-44.5	.7.6	8.7	-5.6	-6.0	3.3	2.1
Development and reevaluation	31.5	21.8	12.6	88.2	-24	38.3	22.2	42.9	58.5	36.1	-0.8	14.8	10.2	30.8	3.3
Enhanced oil recovery	24.5	19.9	29.2	250.8	-2.4	322	36.6	39.8	44.4	51.7	56.4	67.4	83.3	79.0	67.5
Depletion	25.1	26.2	26.8	27.9	29.2	32.2	58.	80.0	10.1	-15.0	-34.3	-47.4	-74.1	-40.5	-60.5
Net change	32.4	17.8	29.8	320.6	39.6	10742	$1+32.9$	121281	1222.8	1207.9	1173.6	1126.0	1052.0	1011.5	950.9
Closing stock	557.6	575.6	605.4	926.1											
Unit values (dollars per cubic metre)				16.09	16.14	16.27	16.06	$16.14$$11.06$	$\begin{aligned} & 16.00 \\ & 1074 \end{aligned}$	16.27	17.84	17.92	21.83	36.33	45.79
Average wellhead price	14.82	14.28	15.81	16.09						9.23	9.27	8.07	7.32	9.48	13.12
Production and capital costs	9.10	9.24	10.00	10.28	5	4.79	4.34	5.07	5.26	7.05	8.57	9.85	14.51	26.85	32.67
Net price	5.72	5.03	5.81	5.81	5.29	4.9									
*onetary accounts (militons of dollars)			28	3519	5381	5107	5145	4921	6155	6431	8510	10061	11094	15262	27078
Opening stocks	2106	221	329	2025	364	674	414	608	287	259	189	197	133	1034	229
Gross additions	329						248	314	213	59	120	106	74-87	11548	69
Discoveries	10	15	85	55	151	427		75	-234	-54	75	-55			
Development and reevaluation	180	110	73	513	225	65	68	218	308	255	-7	146	148	447	108
Enhanced oil recovery	140	100	170	1458	-13	183	159	202	234	364	483	664	1209	1146	2205
Depletion	144	132	15	162	154	53	255	406	53	-106	-294	-467	-1075	-112	-1977
Net change	185	90	173	1863	203	52.	479	829	224	2184	1845	1502	5241	12.987	5887
Revaluation	896	-383	3519	-2	5107	5145	4921	6155	6431	8510	10061	11094	15262	27161	31062
Closing stock	3189	2897		5381			4921								
NATURAL GAS RESERVES															
Physical accounts (billions of cubic metres)			912.1	928.2	992.0	1057.6	1072.6	1119.1	1223.6	1273.4	1279.4	1276.3	1269.1	1396.6	1486.5
Opening stocks	878.6	879.9	35.8				73.9	134.6	87.5	46.2	45.4	45.2	183.3	147.0	20.8
Gross additions	13.3	49.7		85.9	89.7	2.1	24.3	15.3	18.6	7.6	4.8	12.5	7.8	8.6	0.8
Discoveries	9.6	8.9	3.1	78.7	78.4		49.6			38.7	40.5	32.8	175.6	138.4	20.0
Development and reevaluation	3.7	41.0	32.7			38.6	49.6 27.5	119.3	68.9	40.1	148.5	$5 \quad 52.4$	56.0	57.0	56.6
Depletion	11.9	17.6	19.6	22.1	24.2	25.	464	4104.6	4 49.7	6.2	$2-3.1$	$1 \quad 7.1$	127.4	90.0	-35.8
Net change	1.4	32.1	16.2	63.8	65.5	$\begin{array}{r}15.2 \\ \hline 10725\end{array}$	2 $\begin{array}{r}46.4 \\ 1119.1\end{array}$	+ 1223.5	¢ 1273.4	41279.4	41276.3	1269.1	1396.6	1486.5	1450.8
Closing stock	879.9	912.1	928.2	992.0	1057.6	1072.6	- 1119.1								
Unit values (collars per thou	usand cub	bic metres	res)					1234	10.48	810.75	$\begin{array}{ll}5 & 9.87\end{array}$	$7 \quad 11.01$	13.25	23.46	- 36.93
Average composite wellhead price	6.08	6.62	8.53	9.14	9.59	10.64 7.19	$\begin{array}{r}11.80 \\ \hline\end{array}$	(1).34 8.58	- 7.86	$6 \quad 9.42$	42 9.12	$2 \quad 10.05$	510.86	. 14.63	18.74
Production and capital costs	7.53	6.26	$6 \quad 5.75$	86	3	9	9	3.77	7252	21.33	330.74	$4 \quad 0.96$	$6 \quad 2.39$	8.83	- 20.18
Net price	. 1.45	0.37	$7 \quad 2.78$	- 3.28	3.56	3.45	5.03								
Monetary accounts (million	s of dollar	ars)				- 760		3509	94608	8 3335	351701	91949	91218	83343	313126
Opening stocks	. 2443	-1280	- 336	2583	3258	- 140	140208	$8 \quad 507$	7229	961	$61 \quad 34$	$34 \quad 43$	3439	- 1299	9420
Gross additions	19	918	8100	- 282	2319	-	98	985	5849	4910	10	12	219	976	$6 \quad 16$
Discoveries	-14		9	$9 \quad 24$	40		7 -	449	180	80.51	5130	$30 \quad 31$	31420	- 1222	2406
Development and reevaluation	. 5	5 15	591	1258	$8 \quad 279$	133	83	$11 \quad 113$	$13 \quad 99$	9953	53 36	3650	$50 \quad 334$	4503	$3 \quad 1142$
Depletion	-17	$7 \quad 7$	54	4	86	86	88 11	189	34130	30	8 -2	$-2 \quad-7$	-7 305	5795	5 .723
Net change	-2	212	1245	5210	0233	52	52 (87	18 - 29	- 1404	-164	43 -749	$49 \quad 27$	751820	208994	4416872
Revaluation	1167	7604	2202	2466	668	88 -109	0961	18-294	4 -1404	+ 170	701 94	$49 \quad 121$	$18 \quad 3343$	13 13131	3129283
Closing stock	-1280	- 336	366583	3258	$8 \quad 3760$	50-3703	O3 450	094608	- 333						

[^24]Table 5: Reconciliation Tables for Established Reserves of Crude Oil and Natural Gas in Alberta, 1976-1990

Physical accounts (millions of cubic metres)

Opening stocks	950.9	871.3	830.0	794.5	760.2	719.9									
Gross additions	-18.6	19.1	24.4	34.3	22.7	719.9	696.0	649.4	657.8	640.7	648.5	634.7	613.8	592.9	560.5
Discoveries	2.5	4.8	24.9	19.2	22.	32.6	6.9	64.1	42.0	64.0	39.1	33.0	36.7	21.4	3.0
Development and	5.9	5.1	-1.9	10.3	5.1	10.4	16.8 -16.5	21.4 24.8	29.1 -12.0	32.7	28.6	20.9	17.7	17.0	25.0
										9.7	-14.9	1.6	2.5	-3.4	-25.6
Enhanced oil recovery	-27.0	9.2	1.4	4.8	8.6	2	6.6								
Depletion	61.0	60.4	60.0	68.5	63.2	565		17.9	24.1	21.6	24.6	10.5	16.5	7.8	3.7
Net change	-79.6	-41.3	-36.6	-34.2	-40.5	-23.5	53.6	55.0	59.2	56.2	53.2	53.9	57.2	53.8	53.1
Closing stock	871.3	830.0	794.5	760.2	719.9	696	-46.	8.5	-17.2	7.8	-14.1	-20.9	-20.5	-32.4	-50.1
Unit values (dollars per cubic metre)							649.	657.8	640.7	648.5	634.7	613.8	592.9	560.5	510.5
Average wellhead price	53.73	64.40	76.77	82.97	97.75	119.36	157.64								
Production and capital costs	15.90	16.11	18.94	20.61	29.77	42.47	53.85	201.29	212.44	220.07	117.58	145.35	104.92	127.74	150.69
Net price	37.83	48.28	57.83	62.36	67.98	76.90	103.81	54.90	62.20	73.03	77.50	85.06	88.30	100.20	111.58
Monetary accounts (millions of dollars)							10.8	146.40	150.24	147.04	40.08	60.29	16.62	27.54	39.11
Opening stocks	31062	32960	40073	45944	47406	48936	53521			96258	95353	25440	37004	9856	15438
Gross additions	.704	922	1419	2139	1543	2507	716	67415	96300						
Discoveries	95	232	1440	197	612	1154	76	9384	6310	9410	1567	1989	610	589	117
Development and reevaluation	223	246	-110	642	353	554	-1713	3631	$\begin{array}{r} 4372 \\ -1803 \end{array}$	1426	$\begin{array}{r} 1146 \\ -565 \end{array}$	1280	294	468	978
												96	42	-94	- 1001
Enhanced oil recovery	-1021	444	81	299	585	800	685								
Depletion	2308	2916	3470	4272	4296	4345	5 6864	2621	3621	3176	986	633	274	215	145
Net change	-3011	-1994	-2059	-2133	4296 -2753	-1345 -1838	5564	8140	8894	8264	2132	3250	951	1482	2077
Revaluation	4909	9107	924	601	4270	-	4848	1244	-2 584	1147	-565	-1260	-341	-892	-1959
Closing stock	32960	40073	45944	47406	48936	6422	18732	27656	2527	-2052	-69 360	12824	-26801	6474	6484
					48936	53521	6715	96300	96258	95353	25440	37004	9856	15438	19963

NATURAL GAS RESERVES

Physical accounts (bllions of cubic metres)

Opening stocks	1450.8	1501.7	1568.3	1665.2	1718.4	17470	3								
Gross additions	105.6	127.6	163.3	123.2	92.4	1747.0	1795.3	1853.1	1826.2	1798.4	1788.3	1720.1	1651.7	1627.7	1649.7
Discoveries	6.9	6.6	24.4		30.4	117.	118.7	39.0	40.5	42.6	21.8	0.0	64.6	107.8	87.8
Development and	98.7	120.9	138.9	106.8	62.5	28.9	10.6	16.3	9.6	1.5	9.2	8.9	13.9	19.0	28.0
reevaluation					62.6	88.1	108.1	22.7	30.9	31.1	12.6	-8.9	50.7	88.8	60.0
Depletion	54.6	61.0	66.4	700	638										
Net change	51.0	66.5	. 9	53.2	287			66.0	68.3	72.8	69.9	68.4	88.6	85.8	90.1
Closing stock	1501.7	568.3	16652	1718.	28	48.4	57.8	-27.0	-27.8	-30.2	-48.1	-68.4	-24.0	22.0	-2.3
$\begin{array}{ll}\text { Unit values (dollars per thousand cubic metres) } & \end{array}$															
Average composite welihead price	54.88	64.38	66.73	80.98	117.66	117.57	146.86	135.55	144.62	139.24	107.13	92.35	74.12	76.82	81.58
Production and capital costs	24.75	26.78	31.25	36.85	55.7	66.14	84.37								
Net price	30.13	37.60	35.48	44.13	6189	51.42		74.28	78.69	75.32	75.38	80.83	68.12	73.16	75.29
Opening stocks	29283	45250	58963	59090	75827	108122									
Gross additions	3182	4797	5795	5436	5713	6016		115805	111886	118566	113028	54618	19030	9767	6041
Discoveries	208	248	866	724	\%	80	741	2389	2670	2723	692	0	388	395	553
Development and	2974	4546	4928	4713	1857	1486	662	989	633	735	292	103	83	70	176
reevaluation			492	4713	3868	4530	6755	1391	2037	+988	400	-103	304	325	376
Depletion	1645	2294	2356	3089	3955										
Net change	1537	2504	3439	2347	64	3527	3806	4044	4503	4653	2220	788	532	314	567
Revaluation	14433	209	- $33+2$	890	1704	2489	3612	-1654	-1833	-1930	-1527	-788	-144	81	-14
Closing stock	45250	58963	59090	14390	30525	-18286	19873	-2 271	8513	-3614	-56879	-34801	-9119	-3806	4342
					10812	92319	115805	111886	118566	113028	54618	19030	9767	6041	10368

Discrepancies are due to rounding and data sources.
Sources:
Alberta Energy Resources Conservation Board.
Statistics Canada, National Accounts and Environment Division.

Table 6: Value of Petroleum Royalties and Land Costs Paid to the Alberta Government, 1961-1990

Year	Royalties	Land costs	Total
	millions of dollars		
1961	55.0	85.4	140.4
1961	66.0	81.8	147.8
1962	73.0	89.8	162.8
1963		131.8	211.8
1964	80.0		272.8
1965	79.2	193.7	
1966	91.7	171.2	262.9
1967	107.4	161.2	269.0
1968	125.6	166.2	291.7
1969	136.3	181. \ddagger	317.3
1970	154.0	147.6	271.6
1971	190.4	126.2	316.6
1972	226.0	125.6	351.6
1973	422.6	145.4	568.0
1974	1107.2	158.6	¢ 265.8
1975	1477.7	209.9	1687.6
1976	2087.6	256.0	2343.6
1977	2398.9	682.1	3080.9
1978	3054.9	7493	3804.2
1979	3623.3	1153.0	4776.3
1980	3920.3	1229.6	5149.9
1981	4496.7	736.1	5232.8
1982	5098.1	465.6	5563.7
1983	5467.2	565.1	6032.3
1984	5958.1	790.3	6748.3
1985	5843.3	1021.1	6864.4
1986	3205.0	447.3	3552.3
1987	2634.7	841.1	3475.8
1988	2456.9	676.5	3133.4
1989	2559.0	551.7	3110.7
1990	3085.0	614.2	3699.2

Source:
Statistics Canada, The Crude Petroleum and Natural Gas Industry Catalogue 26-213 (various years)

Table 6 provides the value of royalties and land costs paid to the Alberta government from 1961 to 1990. The data demonstrate that the extraction of oil and natural gas generates significant amounts of revenue to the Alberta government. As suggested earlier, land costs represent an ex ante rent and royalties are expost. With the decline in the value of rent from oil and gas reserves due to declining reserve stocks and prices, and increasing operating and capital costs, one can observe how potential income to government could also decrease.

SUMMARY

This study has examined the treatment of a non-renewable resource, oil and natural gas reserves in Alberta, in the national accounts. Natural resources have long been regarded as free gifts of nature by economists. The assumption that our natural resources are in infinite supply with a zero supply price is being reconsidered in national
accounting. Since balance sheets measure national wealth, Canada's wealth is currently not being estimated correctly by including only man-made assets and excluding non-renewable and renewable resource stocks.

Physical accounts are necessary in order to describe the interrelationship between the environment and the economy. These accounts not only show the short-term exploitation of natural resources but also show the remaining stocks available for primary inputs to economic activity. The physical quantities are required in order to determine the monetary value of the remaining stock.

The focus of this study has been to determine an appropriate method of natural resource valuation. While the development of the physical accounts is based on the definition of established reserves, the monetary accounts require further evaluation in order to incorporate monetary values into the Canadian National Balance Sheet. The present value and the net price approaches seem to conform most closely to the development of wealth accounts. These approaches allow the value of man-made capital employed by the industry to be separated from the value of natural resource itself and identify capital gains and losses due to price changes. This is not the case for the replacement cost approach. While the present value approach is favoured by national accountants, in general and is used in corporate financial reporting, it is limited by the assumptions required.

Oil and natural gas reserves are assets and are components of the national wealth. By extending the definition of capital to cover both man-made and natural capital, a balance sheet presentation shows to what extent natural resource depletion is offset by the addition of man-made and natural capital. If future income and consumption are based on the level of capital stocks, it is important to include the value of the stock of natural resources as well as the value of the man-made capital in the Canadian National Balance Sheet Accounts in order to show whether or not we have sustainable growth and development.

By including the value of natural resources as a nonproduced asset and the value of man-made capital in the Canadian Balance Sheet Accounts, one has a more complete picture of Canada's wealth. One can determine whether or not we are creating wealth while depleting our natural resource base or consuming the revenue generated from natural resource extraction. Incorporating the value of oil and natural gas reserve stocks into the Balance Sheet Accounts will be the next stage of this project.

REFERENCES

Adelman, M.A. "Oil Producing Countries' Discount Rates". Resources and Energy, vol. 8, 1986. p. 309-329.

Alberta Energy Resources Conservation Board. "Alberta's Reserves of Crude Oil, Oil Sands, Gas, Natural Gas Liquids and Sulphur". ERCB ST91-18, 1991.

Barteimus, Peter. "Environment Statistics and Accounting". 48th ISI Session, Cairo Sept. 9-17, 1991.

Bartelmus, P. et al. Integrated Environmental and Economic Accounting: Framework for a SNA Satellite System; Review of Income and Wealth, ser. 37, no. 2, 1991 p. 111-148.

Born, Alice. "Development of Natural Resource Accounts: Physical and Monetary Accounts for Crude Oil and Natural Gas Reserves in Alberta, Canada". Discussion Paper No. 12, National Accounts and Environment Division, Statistics Canada, 1991.

Canadian Petroleum Association. Statistical Yearbook (various years).

Devarajan, S. and Fisher, A. "Exploration and Scarcity". Journal of Political Economy, vol. 90, no.6, 1982. p. 12791290.

Eglington, P. and Uffeimann, M. 'Observed Costs of Oil and Gas Reserves in Alberta, 1957-1979". Discussion Paper No. 235, Ottawa, Ontario: Economic Council of Canada. 1983.

Hotelling, H. "The Economics of Exhaustible Resources". Journal of Political Economy, vol. 39, 1931. p. 137-175.

Kemp, A., "Petroleum Policy issues in Developing Countries". Energy Policy, Feb. 1992, p. 104-115.

Landefeld, J.S. and Hines, J.R. "National Accounting for Non-renewable Natural Resources in the Mining Industries". Review of Income and Wealth, vol. 31, 1985. p. 1-20.

Lasserre, P. "Discovery Costs as a Measurement of Rent". Canadian Journal of Economics, vol. 18, 1985. p. 474-483.

Levin, J. "Valuation and Treatment of Depletable Resources in the National Accounts". IMF Working Paper 58, International Monetary Fund, 1991.

McKelvey, V.E. Mineral Resource Estimates and Public Policy". American Scientist, vol. 60, 1972. p. 32-40.

McLachian, M. "Replacement Costs for Oil and Gas in Western Canada: Methodologies and Application". CERI Research Report 90-1, Calgary, Alberta: Canadian Energy Research Institute, 1990.

Pearce, D.W. and Turner, R.K., Economics of Natural Resources and the Environment. Baltimore: The John Hopkins University Press, 1990.

Repetto, R. et al. "Wasting Assets: Natural Resources in the National Accounts". Washington: World Resources institute, 1989.

Smith, R.S. "Income Growth, Government Spending and Wasting Assets - Alberta's Oil and Gas". Unpublished Manuscript, University of Alberta, Edmonton, Alberta, 1991.

Statistics Canada. Exploration and Development and Capital Expenditures from Mining and Petroleum and Natural Gas Wells, Catalogue 61-216 (various years).
----. The Crude Petroleum and Natural Gas Industry. Catalogue 26-213 (various years).

Tanner, J.N. "Reserves of Hydrocarbons in Alberta: A Review of Canadian Petroleum Association and Alberta Energy Resources Conservation Board Estimates and Methodology". CERI Research Report 86-2, Calgary, Alberta: Canadian Energy Research Institute, 1986.

United Nations. SNA Handbook on Integrated Environmental and Economic Accounting: Preliminary Draft of the Part 1: General Concepts. New York, 1989.
van Tongeren, J. et al. "Integrated and Economic Accounting: A Case Study for Mexico". Environment Working Paper No. 50, The World Bank, Environment Department, 1991.

PICK A TOPIC... ANY TOPIC

The 1993 Statistics Canada
Catalogue is your guide to the most complete collection of facts and figures on Canada's changing business, social and economic environment.

No matter what you need to know, the Catalogue will point you in the right direction.

From the most popular topics of the day - like employment, income, trade, and education to specific research studies - like mineral products shipped from Canadian ports and criminal victimization in urban areas you'll find it all here.

the 1993

Statistics

 Canada Catalogue will help you get your bearings...The Catalogue puts all this information at your fingertips. With the expanded index, you can search by subject, author or title - even periodical articles are indexed. There's also a separate index for all our electronic products.

The Catalogue has everything you The Catalogue has everything you
need to access all Statistics Canada's products:

- descriptions of over 200 new titles, plus succinct abstracts of

the over 900 titles
and 7 map
series already produced;
- newly released 1991 Census products;
- a complete guide to finding and using statistics;
- electronic products in a variety of media, and advice on getting expert assistance on electronic products and on-line searches;
- tabs to each section - so you can immediately flip to the information you need.
...time

and

 time againTo make sure that
the Catalogue stands up to frequent use, we used a specially coated cover to prevent broken spines, tattered edges and dog-eared comers.

Order today - you'll be lost without it.

1093 Statistics Canada Catalogue

Onty $\$ 13.95$ in Canada (USS17 in the U.S. and USS 20 in other countries). Quate Cat, no. 11-2042.
Write to Publication Sales, Statistics Canada, Otawa, Ontario Kin OTG
fax: (613) 951-1584 call toll-free: 1-800-267-6677
Or contact the nearest statisties Canada Reference Centre listed in this publication.

Puttite Matrifitiale Datan Conalds hamm and Farmers to Work for You!

Keeping up with changes in janada's dynamic agriculture iector could be a time:onsuming task. To help, the 991 Census of Agriculture iffers the most comprehen;ive information available in a ormat to suit you.
Nith our free publication, the 1991 Census of Agriculture 'roducts and Services, you'll liscover all the products and iervices available from the خensus of Agriculture.
A unique series of 24 Data 'ublications presents a ascinating insight into agriculture at the national, proincial and sub-provincial levels.
 are a must for anyone with a keen or casual interest in agriculture.

Got a specific request? Custom Services offer a wide range of services in the combinations of variables or geographic areas that interest you. Unpublished Data are available in print or on diskette in a series of specially designed small area data tables.

Three Analytical Publications, with maps and graphics, provide a quick look at current trends in Canada's fastchanging primary agriculture industry. These publications

For more information, contact your local Statistics Canada Regional Reference Centre or:

U User Services Unit
Census of Agriculture
Statistics Canada
Ottawa, Ontario
K1A 0 T6

\square
In Ottawa, call:
613 951-8711

To order Publications:
call Toll free:
Outside Ottawa, call
$1800267-6677$
Toll free: 1800 465-1991
Fax: 613 951-1680

On the occasion of the nation's 125th anniversary of Confederation, the 1992 Canada Year Book takes a unique look at the fascinating highlights in the development of Canada since 1867.

Exceptionally popular among business people, journalists, librarians,
parliamentarians, educators and diplomats for 125 years, the 1992 Canada Year Book is designed as a comprehensive reference source for the latest on economic, political, and social information on Canada and Canadians. And for the first time, this "special collector's" edition presents picturesque vignettes on Canada's past with informative, easy-to-read text.

Special features include:

- a new 22 cm X 30 cm (9" X 12") format
- larger typeface
- over 300 rare archival photos
- historical perspectives on Canada's past
- 22 chapters, 577 pages bound in deluxe hard cover.

Time and time again, you'll reach for this compact encyclopedia to answer questions on all aspects of Canada.

- THE PEOPLE
- THE NATION - THE ECONOMY
- ARTS AND LEISURE

Available in separate English and French editions, the Canada Year Book (Cat. No. $11-402 \mathrm{E}$) sells for $\$ 49.95$ (plus $\$ 5.05$ shipping and handing) in Canada, US $\$ 60$ in the United States, and US $\$ 70$ in other countries (includes shipping and handling).
To order, write Publication Sales, Statistics Canada, Ottava, Ontario, K1A OT6, or contact the nearest Statistics Canada Regional Reference Centre listed in this publication.
For faster ordering, using your VISA or MasterCard, call toll-free 1-800-267-6677 or fax your order to (613) $951-1584$. Please do not send confirmation.
|AIL TO: ublication Sales tatistics Canada Ittawa, Ontario, K1A OT6

Yease print)
ompany
epartment \qquad
ttention
ddress
ity
ostal Code

FAX TO: (613) 951-1584
This fax will be treated as an original order. Please do not send confirmation.

Iheque or money order should be made payable to the Receiver General for Canada/Publications. Canadian clients pay in Canadian funds. Slients from the United States and other countries pay total amount in US funds drawn on a US bank.

| | | | PF | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| For faster service | $1-800-267-6677$ | VISA and MasterCard | 092146 | |
| | | | Accounts | $1993-03$ |

Version française de ce bon de commande disponible sur demande

[^25]Statistique Statistics
Canada Canada

[^0]: 1. The next issue of Human Activity and the Environment will appear in 1994 in order to provide more timely data from the quinquennial Censuses of Population and Agriculture.
[^1]: 1. For example, carbon steel sheets increased from 21% to 31% of the constant dollar value of output of iron and steel from 1971 to 1986. Copper dropped from 25% to 14% of the constant dollar value of output of nonferrous metals from 1981 to 1986.
[^2]: 1. The author would like to thank Patrick Adams for his work in developing the energy disposition tables that were used in this study.
 2. Those readers interested in more details of input-output modelling and its use for environmental analysis are referred to the appendix at the end of this chapter. Details of the input-output model used in this study are available on request from the author.
[^3]: 3. Although water vapour is the most important greenhouse gas in terms of overall warming power, its atmospheric concentration is not affected significantly by human activities.
 4. Households in this context include non-profit organisations.
[^4]: 1. It must be emphasized that the figures shown in Table 4 are the emissions associated with the production activity required to meet the demand for commodities from final consumption categories. They do not represent the emissions associated with the consumption of these commodities once they have been purchased. The latter were shown in Table 2.
[^5]: 1. Petroleum-based fossil fuels include diesel fuel, light and heavy fuel oils,
[^6]: 1. The troposphere is the lowest level of the earth's atmosphere.
 2. Environment Canada estimates that 1990 CFC emissions amounted to 11 kt (Jaques, 1992, p. xviii).
[^7]: 1. Except where explicitly noted, all references to data in this section refer to Table 3.
 2. Estimates of capital and operating costs for specific mills were prepared by N. McCubbin Consultants Inc. These data were used by Environment Canada to evaluate the anticipated impact of the Puip and Paper Effluent Regulations published in the Canada Gazette on December 14, 1991.
 3. Surplus is defined here as the value of shipments less the cost of energy, materials and labour. Since the study is conducted at the level of the individual mill, it is not possible in most cases to determine actual profits. Surplus, as defined here, includes head office overhead, certain purchased services, depreciation and profits.
 4. The capital cost is expressed as annual payments over 20 years amortized at 8.19\% (See McCubbin, 1990, p 63.)
[^8]: 1. It is important to distinguish between B.C. coastal and interior mills be cause of the marked difference in their circumstances. Most interior mills had already acquired secondary treatment facilities whereas the coastal milis were relatively unequipped. Furthermore, due to the limited area surrounding coastal mills, it is necessary for many of them to use the activated studge treatment process which is more costly.
[^9]: Farmiand change refers to change in proportion of zone farmand. Municipalities making up the Riding Mountain Biosphere Reserve are outined around the park.
 Sources:
 Statistics Canada, National Accounts and Environment Division and the Census of Agriculture.

[^10]: 1. The spatial units (polygons) in Map 5 are generated from enumeration area centroid points. Thiessen polygons are created around each centroid using a "nearest neighbor function". Lines between points are bisected at the mid-point to form continuous boundaries around each
[^11]: 1. The author would like to thank Marcia Santiago for her contribution to the research which supports this chapter. Thanks should also go to scientists at Agriculture Canada's Centre for Land and Biological Resources Research who provided valuable comments.
[^12]: 1. The 1991 Census responses to the "no-tillage" question are somewhat overestimated because in some instances hay crops were reported as "no till" when only crops requiring seed bed preparation should have been reported.
[^13]: 1. Note that in contrast to Table 8 which is in income deciles, Tables 7 and 9 show income groups. Consequently, there is not an even number of households in each group, a fact that, while unimportant for this analysis, does make it impossible to compare the three tables in detail.
[^14]: 1. The percentages in this paragraph reflect the proportions shown in Figure 2.
[^15]: 1. These establishments are, for the most part, included in the Other Utili-
[^16]: 2. See Chapter 11, Table 2.
 3. See Chapter 11, Table 3.
[^17]: 1. The authors would like to thank Don Kerr for his painstaking work in assuring the quality of the data.
 2. See the section titled: "Local Government: Upper and Lower Ters".
 3. On the questionnaire, garbage is defined as non-hazardous waste excluding materials diverted to a recycling program.
[^18]: 4. Waste is defined as any substance discarded for final disposal or recycling for which the owner or generator has no further use.
[^19]: 1. Material which, technically, can be reused as a raw material in the manufacture of a new product.
[^20]: 1. Unless otherwise specified, unit prices quoted in the text are based on October 1991.
[^21]: 1. The term "remaining" refers to initial established reserves less cumulative production.
[^22]: Notes:
 I11 Discounted using a long-tem bond corporate bond rate; based on year-end prices and costs.
 [2] Same as [1] except based on a 4 -year moving average.
 [3)
 the results in this table should be treated as preliminary.

[^23]: 1. Both the replacement cost value and the present value are "discounted" using a long-term corporate bond yield.
[^24]: Note:
 Discrepancies are due to rounding and data sources.
 Sources:
 Aberta Energy Resources Conservation Board.
 Statistics Canada, National Accounts and Environment Division

[^25]: This order coupon is available in English upon request

