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Contemporary theory and practice of survey sampling:  
A celebration of research contributions of J.N.K. Rao 

 

J.N.K. Rao is a Distinguished Research Professor in the School of Mathematics and Statistics at Carleton 

University, Canada. He is the world’s leading researcher in the area of survey methodology and has profoundly 

influenced the field of sample surveys as used by government agencies and other organizations and businesses. 

Professor Rao received an MA from Bombay University in 1956 and a Ph.D. from Iowa State University in 1961. 

For more than 50 years, he has been a driving force in the development of unequal probability sampling methods, 

small sample approximations, analysis of complex survey data, empirical likelihood based inferences, variance 

estimation techniques and re-sampling methods, and missing data solutions with sound design-based properties. 

His abiding effort in meeting real world needs led to another prolific area of his research on small area estimation, 

highlighted by his book Small Area Estimation (1st edition in 2003 and 2nd edition with Molina in 2015) published 

by Wiley. 

In addition to his phenomenal research impact, Professor Rao has had a significant influence on official 

statistics agencies through his participation on advisory boards and panels, and his role as advisor and consultant. 

He has also inspired several generations of survey statisticians through his teaching, mentoring and research 

collaboration. In particular, he mentored many Chinese statisticians who have become top researchers in Chinese 

universities. 

During his remarkable and continuing academic career, Professor Rao has been honored by an array of 

prestigious academic awards, including the Gold Medal of the Statistical Society of Canada (1993), the Annual 

Morris Hansen Lecture (1998), the Waksberg Award (2005), the inaugural SAE Award (2017), and Honorary 

Doctorates from University of Waterloo, Canada (2008) and Catholic University of Sacred Heart, Italy (2013). 

He is Fellow of the American Statistical Association (1964), the American Association for the Advancement of 

Science (1965), and the Institute of Mathematical Statistics (1972). He was elected Fellow of the Royal Society 

of Canada in 1991. 

On the occasion of Professor Rao’s 80th Birthday, the Big Data Institute and the School of Mathematics and 

Statistics at Yunnan University, China, hosted a conference (May 24-27, 2017) celebrating Professor Rao’s 

research contributions. Professor Jiahua Chen, the Director of the Big Data Institute and a long-time research 

collaborator of Professor Rao, was the Chair of the Organizing Committee. The conference brought together a 

distinguished group of researchers from many countries and presented a world-class scientific program on 

contemporary theory and practice in survey sampling. 

In honour of Professor Rao’s contributions, The International Statistical Review and Survey Methodology 

have agreed to publish joint special issues of papers presented at the conference. The special issue of the 

International Statistical Review features 15 papers. The first paper is a specially invited submission from 

Professor Rao on “My Chancy Life as a Statistician”, which provides a brief account with amazing anecdotes on 
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his personal and research journey from India first to the United States and then to Canada. This paper is also 

reproduced in the Survey Methodology special issue. The remaining 14 papers in the International Statistical 

Review special issue are from all plenary speakers at the conference, covering diverse topics that reflect the 

current state-of-the-art research development in survey sampling. The Survey Methodology special issue contains 

8 papers which are a subset of the remaining papers which were presented at the conference. 

The joint special issues would not be possible without the unconditional support of the Co-Editors-in-Chief 

of the International Statistical Review, Drs. Ray Chambers and Nalini Ravishanker and the Editor of Survey 

Methodology, Wesley Yung. We would also like to use this opportunity to thank the sponsors of the conference, 

the Canadian Statistical Sciences Institute (CANSSI), the International Association of Survey Statisticians 

(IASS) of the International Statistical Institute (ISI), the International Chinese Statistical Association (ICSA), the 

International India Statistical Association (IISA), the Statistical Society of Canada (SSC), and Yunnan 

University, for their support.  

 

 

Jiahua Chen, Yunnan University and University of British Columbia 

Changbao Wu, University of Waterloo 

Guest co-editors for the International Statistical Review Special Issue 

 

Song Cai, Carleton University 

Mahmoud Torabi, University of Manitoba 

Guest co-editors for the Survey Methodology Special Issue 
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My chancy life as a Statistician 

J.N.K. Rao1 

Abstract 

In this short article, I will attempt to provide some highlights of my chancy life as a Statistician in chronological 
order spanning over sixty years, 1954 to present. 

 
Key Words: Bootstrap; Empirical likelihood; Linear mixed models; Small area estimation; Unequal probability sampling. 

 
 

1  Introduction 
 

Professor Changbao Wu, Guest Editor for this joint special issue between ISR and Survey Methodology, 

invited me to write an article tracing my chancy life as a statistician over the past 60 years. The joint special 

issue consists of papers based on plenary talks presented at a conference held in Kunming, China, May 24-

27, 2017. This conference was sponsored by the Research Institute of Big Data, Yunnan University, and the 

organizing committee was chaired by Professor Jiahua Chen. I wish to first thank Professor Chen for 

organizing this conference “Contemporary Theory and Practice of Survey Sampling”, celebrating my 80th 

birthday. I also wish to thank Professor Ray Chambers, Guest co-editor of ISR and Wesley Yung, Editor of 

Survey Methodology, for proposing this joint special issue, and to all the speakers for their excellent 

presentations. In this short article, I will attempt to provide some highlights of my chancy life as a 

Statistician in chronological order covering the period 1954-1958 in India, 1959-68 in USA with a one year 

break in 1963 in India, 1968-69 again in India and finally in Canada since 1969.  

 
2  Early life in India 
 

In 1954 I obtained a B.A. degree in Mathematics with specialization in Astronomy. I studied at a local 

college in my hometown Eluru, affiliated to Andhra University in India. Soon after writing my final exams, 

I was wondering what to do next and went to see my favorite algebra teacher, C.D. Murthy, for advice. He 

told me that I should study Statistics. I knew nothing about Statistics at that time but my mind was made up 

and I applied to some universities, including Bombay University, for admission. Only a few universities in 

India offered Statistics those days, only seven years after India achieved independence from Britain. But I 

was refused admission despite my first class in B.A. because my grades were not high enough. Only one 

student from Andhra University was admitted to Bombay University in 1954 for the Master degree in 

Statistics and his overall grade in his B. Sc. was 495 out of 500! 

I was very frustrated and was wondering what to do next. My uncle, who studied in Bombay, advised 

me to go to Bombay and join the M.A. degree program in Pure and Applied Mathematics and try my luck 

afterwards. I was able to get admission and started my studies in Bombay three weeks later. But my mind 
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was set on Statistics and I did not enjoy the program I enrolled in except for the one course in Statistics I 

was allowed to take from the Statistics Department. Every week I used to see the Head of the Statistics 

Department, Professor M.C. Chakrabarti, to express my keen interest in pursuing a degree in Statistics. A 

month or so passed by and one fine morning, when I was at the Department to attend my statistics class, 

Professor Chakrabarti asked me if I would like to join his Department because one of the students left the 

program to study engineering in England. He also warned me that it would be extremely difficult for me to 

secure even a second class because I had no background in statistics and would be joining almost two months 

late. I took the chance and joined the program knowing that next year my chances will be slim again. First 

year was daunting and I managed to scrape through the first year unofficial examinations securing 23rd rank 

out of 24! I studied very hard next year and my enthusiasm for Statistics helped me a lot in my efforts. To 

my great surprise, I secured a First Class in the Final Examinations in 1956. (Only four students out of 24 

secured first class that year if I remember correctly and that was a record compared to previous years!). I 

had great teachers including Chakrabarti and Anant Kshirasagar. I learnt a lot from them even though some 

of the stuff was boring (like working out the recurrence relations for the moments from Kendall’s book!). 

Chakrabarti taught sampling theory and I got attracted to it. Also, it was fortunate for me that three classic 

books in survey sampling by Cochran, Sukhatme and Hansen, Hurwitz and Madow appeared around 1954. 

I might add that India produced some great statisticians by that time, including C.R. Rao, R.C. Bose, 

P.C. Mahalanobis and P.V. Sukhatme. Indian statisticians owe much to Mahalanobis for his vision and 

pioneering contributions in promoting Statistics in India and putting India on the world map.  

After finishing my M.A. degree, I wanted to take a job so that I could support my family (my father died 

when I was only six), but my mother insisted that I should pursue a Ph.D. degree. Chakrabarti offered me a 

Government of India Senior Research Scholarship to work with him on the construction of experimental 

designs but I was not strong in that subject and also had no interest. I applied to the Indian Statistical Institute 

for a research scholarship without success but I was admitted to the second year of a three- year Diploma 

course. I joined that program but most of the stuff was a repeat of what I learnt in my M.A. program. At that 

time Dr. K.R. Nair, well-known for his work on the construction of experimental designs, was looking for 

a research scholar to work with him at the Forest Research Institute in Dehra Dun, India. I joined him in 

October 1956 as a research scholar. Seeing my interest in survey sampling, he encouraged me to work on 

problems related to forest surveys. He also felt that I should go abroad to do my Ph.D. I managed to publish 

few papers on sampling related to forest surveys. At that time Professor H.O. Hartley was doing great work 

at Iowa State University (ISU) on survey sampling. Nair studied with Hartley in London, so he advised me 

to apply to ISU to work with Hartley. Again I was not admitted right away but a chance vacancy occurred 

and I ended up in Ames, Iowa around the middle of the fall quarter of 1958. 

 
3  Life in USA: 1958-68 
 

Undoubtedly, ISU was among the best (if not the best) applied statistics departments at that time. (I 

believe it still is.) I even had the chance to take the last course on statistical methods with George Snedecor 



Survey Methodology, 2019 (special issue) 5 
 

 
Statistics Canada, Catalogue No. 12-001-X 

before he retired. He was the founder of the Statistics Department at ISU and his close association with 

R.A. Fisher led to the well-known Snedecor’s F and also Fisher going to ISU as a visiting professor. It was 

most rewarding to learn from great statisticians like Hartley and Kempthorne at ISU and also from others 

who visited ISU regularly. Professor Hartley was my mentor and Ph.D. supervisor and I learnt from him 

that the development of statistical theory should be motivated by practical applications. I took economics 

as a minor in my Ph.D. program and I was fortunate to work with Gerhard Tintner who was a pioneer in 

Econometrics and one of the inventors of the Variate Difference Method for finding the order of difference 

that makes a time series stationary. I even wrote two papers and a small monograph with him on this topic. 

For several years I tried to keep up with the developments in Econometrics.  

I stayed at ISU for 5 years, three years as a student and two years as Assistant Professor, before returning 

to India in 1963 for family reasons. This period was most exciting and professionally rewarding. At that 

time unequal probability sampling without replacement was a “hot” topic and people were looking for 

practical procedures. Hartley and I published a paper on this topic in the Annals of Statistics (1962) 

developing an asymptotic theory for randomized probability proportional to size (PPS) systematic sampling 

(Hartley and Rao, 1962) After finishing my Ph.D. in 1961, I published a paper with Hartley and 

W.G. Cochran, in the Journal of the Royal Statistical Society, Series B, 1962, on a very simple procedure 

of unequal probability sampling without replacement that has many desirable properties (Rao, Hartley and 

Cochran, 1962). This method is now known as the RHC method and many papers on this method have 

appeared since then. Both the PPS systematic sampling method and the RHC method have been used in the 

Canadian Labour Force Survey for the past 25 years or so. Professor Arijit Chaudhuri of the Indian 

Statistical Institute has used the RHC method extensively for large-scale sample surveys in India. I also 

wrote a paper in the Journal of the American Statistical Association on composite estimation for repeated 

surveys with my Canadian friend, Jack Graham, who was also a student at ISU at that time (Rao and 

Graham, 1964). Jack became my colleague after I joined Carleton University in Ottawa in 1973. More 

recently, I got back to composite estimation in the context of the Canadian Labour Force Survey and 

developed a new method in association with Wayne Fuller and Avi Singh, that is currently being used in 

Canada (Fuller and Rao, 2001 and Singh, Kennedy and Wu, 2001). I shared an office with Wayne Fuller at 

ISU and he has been a close friend for the past 55 years. 

I worked as a sample survey expert at the National Council of Applied Economic Research in New Delhi 

for one year after I returned to India. During my stay there I was involved in the development of the design 

and analysis of an All India Consumer Expenditure Survey. But I was very frustrated because there were no 

facilities there for research. I returned to United States in August 1964 and worked for one year in Dallas in 

a research group headed by D.B. Owen before joining Hartley at Texas A&M University. (Hartley moved 

to Texas A&M in 1963 to create an Institute of Statistics there.) My stay at Texas A&M was also most 

rewarding and professionally exciting. I worked closely with Hartley and also supervised Ph.D. students. I 

was promoted to Full Professor rank in 1967 and things were going great. My son, Sunil, was born in April 

1967 and we were well settled. But I had to return to India in June 1968 due to unexpected family problems. 
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I took leave from Texas A&M and joined the Indian Statistical Institute (ISI) in Calcutta as Visiting 

Professor. (I might mention here that my son Sunil is currently Director of Biostatistics Division and Interim 

Chair of the Department of Public Health Sciences at the University of Miami. He was elected ASA Fellow 

in 2011 and we two belong to the very small group of father-son ASA Fellows!) 

I would like to briefly mention four significant contributions I made during my stay at Texas A&M. In 

my Biometrika 1967 paper with Hartley, we gave a matrix formulation of general ANOVA mixed models 

that was instrumental to the derivation of maximum likelihood (ML) estimators of both fixed effects and 

variance components (Hartley and Rao, 1967), We also developed an EM algorithm in this paper but did 

not pursue it further due to computational limitations at that time. (EM algorithm became popular after the 

appearance of Dempster, Laird and Rubin (1977)). Patterson and Thompson (1971) modified our ML 

method and developed restricted maximum likelihood (REML) estimation. Many extensions and 

refinements have been made over the past 40 years, and several software packages implemented those 

methods. An excellent review paper by Harville (1977) contributed to the extensive use of those methods. I 

also worked with Hartley on variance estimation when only one unit is sampled from each stratum (Hartley, 

Rao and Kiefer, 1969). In this case, standard design-based methods are not applicable and it is necessary to 

resort to models. We used a linear regression model with unequal error variances and expressed the variance 

of the stratified mean as a linear combination of the error variances. We then developed a new method of 

estimating the error variances that in turn led to a new variance estimator for the stratified mean. We 

submitted this paper for publication in 1968 before I left for India. I gave a seminar talk at ISI on this work. 

After my talk, Professor C.R. Rao felt that he could establish some optimality properties for our method. 

This led to C.R. Rao’s well-known MINQUE method (Rao, 1970), and Professor Rao notes “The motivation 

for writing this article is a recent contribution by Hartley, Rao and Kiefer (1969) who obtained unbiased 

estimator when all the variances are unequal …” (page 161). 

In the 1960’s, V.P. Godambe was giving talks at various professional meetings on his important 

contributions to survey sampling inference; in particular, on the non-existence of a best estimator in a 

general class of linear unbiased estimator of a total and on the flat likelihood caused by the label property 

of a finite population. Those negative results are indeed fundamental, but Hartley and I felt that some of the 

alternative criteria proposed for the choice of an estimator, such as admissibility and hyper-admissibility for 

any sampling design, are unsatisfactory. In our Biometrika 1968 paper we suggested that some aspects of 

the sample data, depending on the situation at hand, need to be ignored to arrive at an informative likelihood 

(Hartley and Rao, 1968). We proposed such a non-parametric likelihood that is now called Empirical 

Likelihood (Owen, 1988). We also showed how to incorporate known population totals of auxiliary 

variables, and showed that the empirical likelihood (EL) estimator of a total is close to a regression 

estimator. I gave several lectures on the foundations of inference in survey sampling at ISI and Professor 

C.R. Rao wrote a nice article afterwards (Rao, 1970) that seems to agree with our approach: “In situations 

like the one we are considering where the full likelihood does not satisfy our purpose, we may have to 

depend on a statistic which for every observed value supplies information (however poor it may be) on 
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parameters of interest.” Our Biometrika 1968 paper also contained a short section on Bayesian inference for 

the mean obtained by combining our likelihood with a diffuse conjugate prior. Ericson (1969) combined 

Godambe’s flat likelihood with an informative prior to produce informative posterior inferences on the 

mean. Our results are algebraically identical to Ericson’s, but fundamentally different in the sense that our 

inferences depend on the probability distribution induced by the survey design, unlike Ericson’s results.  

While I was working on my Ph.D. thesis at ISI, I analyzed some farm survey data where the farms were 

selected with probabilities proportional to farm sizes. I found that some variables of interest, in particular 

poultry size, was unrelated to farm size and that the use of the widely used Horvitz-Thompson (HT) unbiased 

estimator in such cases would lead to very large variances. I therefore proposed an alternative estimator that 

ignores the survey weights but uses the population structure (Rao, 1966). I provided both theoretical and 

empirical justifications for preferring such an estimator. My result essentially casts doubt on the usefulness 

of criteria that advocate the HT estimator for ANY design and ANY characteristic. Later, D. Basu used an 

amusing circus elephant example to demonstrate that the HT estimator leads to absurd results if the sizes 

are unrelated to the values of interest (Basu, 1971). 

 
4  Life in Canada: 1959-2000 
 

I found that the Canadian universities suited my family circumstances in India at that time and decided 

to migrate to Canada in 1969 directly from Calcutta. Hartley was very unhappy with my decision, but we 

continued our collaboration for several years. I worked four years at the University of Manitoba before 

joining Carleton University, Ottawa in 1969. I have also worked at Statistics Canada for the past 40 years 

or so as a consultant, and this practical exposure was extremely useful in my later research work. I have 

collaborated with many statisticians over the past 25 years, thanks to my Canadian NSERC research grant 

that encourages collaborative work. I supervised many outstanding Ph.D. students in Canada. My first Ph.D. 

student in Canada, David Bellhouse (co-supervised with Jim Kalbfleish at the University of Waterloo), 

wrote his thesis on optimal estimation in finite population sampling. He had a distinguished career at the 

University of Western Ontario and retired recently. Bellhouse is also a leading expert in the history of 

Statistics. Dan Krewski was my first Ph.D. student at Carleton University. He developed asymptotic theory 

for stratified multistage sampling designs (Krewski and Rao, 1981) which provided theoretical justification 

for replication methods, such as the jackknife and balanced repeated replication, widely used for the analysis 

of complex survey data (see Shao and Tu, 1995, Chapter 6). Krewski is currently a distinguished professor 

of biostatistics and population health at the University of Ottawa and he is a leading authority on risk 

assessment. Both Bellhouse and Krewski are ASA Fellows. Several of my Masters and Ph.D. students 

established successful careers at Statistics Canada and elsewhere. 

In 1977, I was looking for a suitable place to spend my sabbatical leave. By chance, I bumped into Fred 

Smith of the University of Southampton at a survey sampling conference held at the University of North 

Carolina. He mentioned that he has applied for a research project on the analysis of complex survey data 
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and if successful I could spend my sabbatical leave at his university working on the project. His research 

project was approved and I joined the project team (Fred Smith, Tim Holt, Gad Nathan and Alastair Scott) 

in April 1978 for 4 months. I also had a chance to interact with Graham Kalton who was also at the 

University of Southampton. I might mention that Smith, Holt and Kalton developed a strong program in 

survey sampling research at the University of Southampton. In later years, Chris Skinner, Ray Chambers 

and Danny Pfeffermann contributed greatly and made it into a leading center for survey research.  

During my sabbatical leave, Alastair Scott and I worked on methods for the analysis of categorical 

survey data and published several papers subsequently. In Rao and Scott (1981, 1984), we developed simple 

corrections to standard chi-squared tests for testing independence in a two-way table of weighted counts 

that account for the survey design features. It was nice to see the 1981 paper with Scott included among the 

19 landmark papers in survey sampling published over the period 1930-90. Scott visited me regularly for 

several years to continue our work on analysis of survey data and other topics until his health did not permit 

him to travel alone. He was suffering from brain cancer but hoped to attend the China conference in May 

2017. I was deeply saddened by the news of his death on the first day of the conference. I would like to 

dedicate this joint special issue of ISR and Survey Methodology to the memory of my dear friend and 

collaborator, Alastair Scott. 

I collaborated with several excellent researchers after my return from sabbatical leave. Jeff Wu and I 

developed valid bootstrap variance estimators for stratified multistage sampling and other designs (Rao and 

Wu, 1988) and we introduced the concept of bootstrap weights (Rao, Wu and Yue, 1992). Currently, 

bootstrap weights are used at Statistics Canada for variance estimation in several large-scale surveys. Other 

major collaborations include the following: (1) multiple frame surveys with Chris Skinner, Sharon Lohr and 

Changbao Wu, (2) empirical likelihood intervals for survey data with Changbao Wu, Jiahua Chen, 

Yves Berger and M. Salehi, (3) analysis of survey data with Alastair Scott, Chris Skinner, Roland Thomas, 

Mike Hidiroglou, Wesley Yung and Jun Shao, (4) imputation for missing data with Jun Shao, Randy Sitter, 

Jae Kim, Qihua Wang, Jiahua Chen and Y.S. Qin. Randy Sitter and Jun Shao were my colleagues during 

the period 1990-95, and our statistics group was rated among the top 15 in the world for research 

productivity. Other collaborators include Arun Nigam, Jurgen Kleffe, K. Vijayan, Avi Singh, 

Gordon Brackstone, Poduri Rao and P.A.V.B. Swamy. 

Around 1985, I got interested in small area estimation after organizing an international symposium on 

small area statistics in 1985 jointly with Statistics Canada. Invited papers presented at the symposium are 

published in a Wiley book (Platek, Rao, Särndal and Singh, 1987). Demand for reliable small area statistics 

has steadily grown in the past 25 years which in turn led to many theoretical and practical contributions. I 

supervised several Ph.D. students on this topic, including N.G.N. Prasad, Diane Stukel, Ming Yu and 

Yong You. Prasad developed accurate mean squared error estimators of model-based small area estimators 

(Prasad and Rao, 1990) and this work is widely cited. Yong You received the Pierre Robillard award of the 

Statistical Society of Canada for the best Ph.D. thesis in the year he graduated. 
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5  Post retirement: 2000-present 
 

I took early retirement in 2000, two years before the mandatory 65, but I have not really slowed down 

since my retirement 17 years ago. I almost died in 2002 of cardiac arrest without any prior symptoms, but 

by chance it happened in the hospital and I was saved. I was able to complete my Wiley book on small area 

estimation (Rao, 2003) and I am happy to see that it is well received and highly cited. I had excellent 

collaborators in small area estimation (SAE), including Isabel Molina, Malay Ghosh, Partha Lahiri, 

Gauri Datta, Jiming Jiang, Bal Nandram, Kalyan Das, Sharon Lohr, Domingo Morales, Leyla Mohadjer, 

Hussain Chowdhry and Tatsuya Kubokawa. By chance, I met Isabel Molina at the ISI meetings in Lisbon 

and she invited me to Madrid to give a workshop. This led to close collaboration on SAE with her and our 

paper on empirical Bayes (EB) estimation of complex small area parameters, such as poverty indicators, 

received the best paper award in 2010 from the Canadian Journal of Statistics (Molina and Rao, 2010). 

Measurement of poverty indicators for small areas received considerable attention after the World Bank 

promoted a method based on simulated censuses. In the 2010 paper we showed that the EB method can be 

considerably more efficient. I also collaborated with Molina on the second edition of my Wiley book (Rao 

and Molina, 2015). I was very fortunate to have two excellent students, M. Torabi and M. Diallo, working 

on SAE after my retirement. I also supervised another excellent student, David Haziza, on missing data and 

imputation. All three are “rising stars” and Haziza is also an ASA Fellow and received the prestigious 

Gertrude Cox Award for 2018. 

I am happy that several of my collaborators participated in the China Conference as plenary speakers 

and contributed to this joint special issue of ISR and Survey Methodology. My thanks are due to them as 

well as to other speakers who have contributed to the joint special issue. 

All in all, my chancy life as a Statistician has been very rewarding and satisfying. It was a great pleasure 

to work with many excellent researchers and graduate students. I owe it to my algebra teacher C. D. Murthy, 

to Professor M.C. Chakrabarti, to my mentor Professor H.O. Hartley, to my mother and to my wife for 

whatever success I have achieved in my chancy life as a Statistician over the past 60 years. 
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Bayesian small area demography 

Junni L. Zhang, John Bryant and Kirsten Nissen1 

Abstract 

Demographers are facing increasing pressure to disaggregate their estimates and forecasts by characteristics such 
as region, ethnicity, and income. Traditional demographic methods were designed for large samples, and perform 
poorly with disaggregated data. Methods based on formal Bayesian statistical models offer better performance. 
We illustrate with examples from a long-term project to develop Bayesian approaches to demographic estimation 
and forecasting. In our first example, we estimate mortality rates disaggregated by age and sex for a small 
population. In our second example, we simultaneously estimate and forecast obesity prevalence disaggregated 
by age. We conclude by addressing two traditional objections to the use of Bayesian methods in statistical 
agencies. 

 
Key Words: Small area estimation; Bayesian hierarchical model; Weakly informative prior; Life expectancy; Obesity; 

New Zealand; Forecasting. 

 
 

1  Introduction 
 

Demography has traditionally been a big-data and big-area discipline. Demographers have used 

censuses, registration data, and surveys to obtain national-level estimates and forecasts. Big sample sizes 

for national populations have meant that, in contrast to most of applied statistics, sampling variation is small. 

Demographers have instead concentrated on other problems, such as measurement errors, and developed 

their own techniques and terminology distinct from mainstream statistics. Classic demographic methods 

combine simple deterministic models with complex expert judgements. The models are simple enough to 

be implemented on computer spreadsheets, but require practitioners to intervene and correct for problems 

caused by violations of the underlying assumptions. These methods have had many successes. They have, 

for instance, been used to document the dramatic fall in mortality and fertility in developed countries, and 

have alerted policy makers to future population ageing. 

Traditional demographic methods are, however, coming under strain. The reason is the rising demand 

for disaggregation. Policy makers, social scientists, market researchers, and other users of demographic 

estimates and forecasts require ever-more disaggregated numbers. The United Nations 2030 Agenda for 

Sustainable Development, for instance, calls for increasing significantly “the availability of high-quality, 

timely and reliable data disaggregated by income, gender, age, race, ethnicity, migratory status, disability, 

geographic location and other characteristics relevant in national contexts” (United Nations General 

Assembly, 2015, Goal 17.18). Disaggregation is challenging to traditional demography because, even when 

the overall population is large, the number of people in each subpopulation can be small. With these small 

numbers, random variation in data collection, or in underlying demographic processes such as fertility, 

mortality, and migration, becomes prominent, and deterministic methods break down. 



14 Zhang, Bryant and Nissen: Bayesian small area demography 
 

 
Statistics Canada, Catalogue No. 12-001-X 

To deal with these problems, demographers have been turning to mainstream statistics for new ideas on 

ways to deal with random variation. Similarly, statisticians have been showing an increasing interest in 

demographic applications. The result has been a boom in statistical demography (Alho and Spencer, 2006). 

Demographic phenomena are often highly regular. Mortality, fertility, and migration rates, for instance, 

have characteristic age-sex profiles that are stable over time or that change in consistent ways. These 

regularities reflect common events over individuals’ life courses. Migration rates typically peak in the late 

teenage years, for instance, because these are the years when people reach adulthood and begin to leave 

home. The ability to model units that are similar but not identical is a particular strength of Bayesian 

methods. Bayesians build models with multiple layers that can capture multiple, overlapping types of 

variability. Bayesian models pool information from across similar units, to improve accuracy and precision. 

Bayesian methods have other advantages for demographic modelling. They can coherently combine 

uncertainty from many sources, including random variation, missing data, and uncertainty about future 

trends. Bayesian methods also make it easy to construct inferences about derived quantities. Life 

expectancy, for instance, is a complicated nonlinear deterministic function of age-specific mortality rates, 

but within a Bayesian framework, deriving inferences about life expectancy from inference about age-

specific mortality rates is straightforward. 

Because of advantages such as these, within the field of statistical demography, there has been 

particularly fast growth in Bayesian statistical demography (Bijak and Bryant, 2016). The most prominent 

example has been the adoption, by the United Nations, of Bayesian methods for population forecasting 

(Gerland, Raftery, Ševčíková, Li, Gu, Spoorenberg, Alkema, Fosdick, Chunn, Lalic, Bay, Buettner, Heilig 

and Wilmoth, 2014). 

In this paper, we illustrate how Bayesian methods, and particularly Bayesian hierarchical models, can 

be used to obtain disaggregated demographic estimates and forecasts. The examples are drawn from a long-

term project to develop Bayesian demographic methods for use in official statistics, including the 

development of open source software implementing the methods. In the statistical literature, the problem of 

obtaining estimates for domains with small sample sizes has been referred to as small area estimation 

(Pfeffermann, 2013; Rao and Molina, 2015). The models that we consider are all “area-level” models, in 

that they use counts and rates for disaggregated cells, rather than individual-level data. With area-level 

models, we can use datasets in the form of confidentialized tables that individual-level models cannot use. 

Demands for disaggregated estimates and forecasts are also related to groups rather than individuals. 

In Section 2, we present mortality estimates for Māori, the indigenous people of New Zealand. The main 

inferential challenge is to capture the complex relationship between mortality and age, despite small 

numbers and considerable random variation. In Section 3, we interpolate and forecast obesity rates in New 

Zealand by age, based on survey data. The main problem here is carrying out a time series analysis with 

data from only five years. We conclude, in Section 4, by addressing two traditional objections to the use of 

Bayesian methods in statistical agencies. 
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2  Mortality rates for Māori 
 
2.1  The estimation problem 
 

Mortality rates are a fundamental measure of human welfare, as well as a major performance indicator 

for the health sector. Mortality rates are also a key input for population forecasts, and for the life insurance 

industry. 

New Zealand’s national statistical office (Stats NZ), publishes estimates of mortality rates for Māori by 

sex and by one-year age groups. These rates are “super-population” estimates. Super-population mortality 

rates measure the underlying risk of dying. They can be contrasted with finite-population rates, which 

measure the actual number of deaths divided by the actual population at risk. Suppose, for instance, that no 

6-year-old Māori die in a particular year. The finite-population mortality rate is exactly zero, but the 

underlying risk of dying, and hence the super-population mortality rate, is presumably non-zero. 

To derive death rates we need death counts and measures of population at risk. New Zealand’s death 

registration system is efficient and complete, and reporting of ethnicity on the death registrations is generally 

reliable (Bryant and Howard, 2017), so data on death counts can be treated as error-free. Finding appropriate 

measures of population at risk is more challenging. Population at risk is measured using person-years. For 

instance, if a person spends 9 months in New Zealand during the period of interest, then that person 

contributes 0.75 person-years to the population at risk. Ideally, population at risk would be obtained by 

summing up person-years contributed by each person in the population. However, such data can be difficult 

to obtain. Instead, demographers typically approximate population at risk using population count multiplied 

by length of period. Population counts for Māori in New Zealand are relatively accurate for census years 

(Bryant, Dunstan, Graham, Matheson-Dunning, Shrosbree and Speirs, 2016), but become less accurate away 

from census years, because it is not possible to tell, from international migration data, how many Māori are 

entering and leaving the country. In addition, Stats NZ does not treat ethnicity as a characteristic that is fixed 

at birth, but rather as an aspect of personal identity that individuals can change over their lifetimes. 

In response to the difficulties in estimating Māori population counts outside census years, Stats NZ 

focuses on periods centered on census years. Censuses are normally carried out every 5 years in New 

Zealand, though the 2011 census was postponed until 2013 because of an earthquake. The standard approach 

to mortality estimation is to use three-year periods, centered on a census year, such as 2012-2014. Using a 

three-year period gives larger numbers of death counts in each age-sex cell, and hence more stable estimates, 

than would be the case with single-year periods. To approximate the population at risk over a three-year 

period, Stats NZ uses the population count at the middle of the period, that is on June 30 of the census year, 

multiplied by 3. 

To give an idea of the modelling challenge, Figure 2.1 shows direct estimates of mortality rates on a log 

scale for Māori males in 2012-2014, for single-year age groups 0, 1, , 100 .  Direct estimates of mortality 

rates are simply death counts for each age-sex cell divided by the population at risk for that cell. The 

diameter of each circle in Figure 2.1 is proportional to the square root of the number of deaths. Altogether, 
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there were 9,170 deaths during the period, with the largest cell consisting of 130 deaths, two cells having 0 

deaths, and a median death count of 27. The Māori male population on June 30, 2013 was 328,000, giving 

a population at risk of 328,000 3 = 984,000  person-years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Direct estimates of mortality rates for Māori males in 2012-2014, by single year of age. The diameter 

of the circles are proportional to the square root of the number of deaths during the period.  

 
Estimating underlying death rates between ages 40 and 90 is relatively easy. There are plenty of data, 

and, when shown on a log scale, the rates appear to fall on a straight line. 

Somewhere between age 10 and age 20, death rates rise sharply, and then climb slowly up to about age 

35. Many countries have a similar pattern of unusually high mortality rates in the late teenage years and 20s, 

particularly among males. The phenomenon is referred to as the “accident hump” (meaning, mainly, car 

accidents), though in many places, including New Zealand, it would be more accurate to call it an accident 

and suicide hump. 

Death rates are relatively high during the first year of life, before falling to very low levels. Exactly how 

low these rates go is difficult to tell, because death counts are small and the associated direct estimates are 

highly erratic. The same problem also exists above age 90, where trends in death rates are difficult to pin 

down. 

The death rate for 99-year-olds is over 1. This implies that the number of deaths of 99-year-olds is greater 

than the (approximate) number of person-years lived during the period 2012-2014 by 99-year-olds. Rates, 

unlike probabilities, have no upper bound. Consider, for instance, a population consisting of one person, 

who dies 9 months into a one-year period. The implied death rate for that period is 1 0.75 1.33.  
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2.2  The model 
 

2.2.1  Model specification 
 

Our input data are death counts asty  and population at risk .astn  Subscript a  denotes age group; 

subscript s  denotes sex; and subscript t  denotes time, taking values 2005-2007 and 2012-2014. Using two 

periods allows us to borrow strength across time, and also to study change over time. 

We model death counts as draws from a Poisson distribution,  

  Poisson ,ast ast asty n  (2.1) 

where ast  is the super-population mortality rate. We calculate astn  by multiplying the population at June 

30 in the census years by 3, and treat it as error-free. The main goal of the modelling is to estimate .ast  

Traditionally, demographers have ignored the fact that, even after knowing the population at risk and the 

underlying death rate, the actual number of deaths is still random and therefore uncertain. With large cell 

counts, such as for national populations, this uncertainty is small, so ignoring it is sensible. With small cell 

counts, however, this uncertainty is substantial, and needs to be accounted for. We do this by treating asty  

as a random draw from a Poisson distribution. 

We add to (2.1) assumptions about how ast  is likely to vary. In Bayesian terminology, we specify a 

prior model for the .ast  Because ast  is positive with no upper bound, we specify the model on a log scale. 

We assume that ast  varies systematically by age, sex, and time, with age patterns potentially differing 

between females and males,  

 0 age sex time age:sexlog = .ast a s t as aste           (2.2) 

Here, 0  is an intercept, capturing the overall level of log mortality rates, age
a  is an age effect, capturing 

variation across age, sex
s  is a sex effect, capturing variation between sexes, time

t  is a time effect, capturing 

common time trends, and age:sex
as  is an age-sex interaction, capturing variation between sexes in the age 

pattern. The presence of the error term ,aste  implies that we do not expect our prior model to predict log ast  

with complete accuracy. Standard generalized linear models do not have an equivalent term, and thus are 

implicitly making stronger assumptions about the correctness of the model. We assume that the error term 

aste  has a normal distribution with mean 0 and variance 2 .  The higher the value of 2 ,  the less the 

implied accuracy of the prior model. 

The most importance source of variation in mortality rates is age. As is apparent in Figure 2.1, mortality 

rates for people in the 90s are three or four orders of magnitude higher than mortality rates for young 

children. It is therefore crucial for accurate estimation that we capture the main features of the age pattern. 

We model age effects using an approach originally developed for modelling change over time rather 

than age, a “local trend” model (Prado and West, 2010, pages 119-121),  

   age age age= 1 = 0 ,a a aa u     (2.3) 

                                                           age ageage age
1 1= ,a a a av      (2.4) 
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 ageage age
1= .a a aw     (2.5) 

Use of time series models to capture variation over age is relatively common in statistical demography. The 

fundamental idea is that values for neighboring age groups, like values for neighboring time periods, are 

more highly correlated than values for age groups or time periods that are distant from one another. 

Equation (2.3) says that age effects are a combination of underlying level, captured by age ,a  and age-

specific idiosyncratic effects, captured by error term age .au  Age group 0 typically has much higher mortality 

rates than those for other young age groups, reflecting the special risks faced by infants. This extra mortality 

is modelled by parameter .  Equation (2.4) says that the level effect at age a  equals the level effect at age 

1,a   plus an increment age
1 ,a   plus an idiosyncratic error age .av  Equation (2.5) says that the increment at 

age ,a age ,a  equals the increment at age 1,a  age
1 ,a   plus an idiosyncratic error age .aw  Under a local trend 

model, age effects are expected to rise or fall linearly, but the slope of the line can change, or even reverse 

direction, over the whole length of the age pattern. Our priors for the starting values of age  and age  are 

 age 2
0 N 0, 10   and  age

0 N 0, 1 .   

The age-sex interaction term age:sex
as  measures variation between sexes in the age pattern for mortality. 

We use a “local level” model (Prado and West, 2010, pages 119-121),  

 age:sex age:sex age:sex= ,as as asu    (2.6) 

 age:sexage:sex age:sex
1,= ,as a s asv     (2.7) 

 Female, Male .s   This model expresses the idea that, after accounting for age effects and sex effects, 

the residuals for mortality rates will be similar between neighbouring age groups, within each sex. The lack 

of a trend term    implies that we do not expect these residuals to systematically trend upwards or 

downwards across the age range. We assume that any systematic trend will be shared by both sexes, and 

hence will be accounted for by the trend term in the age effect. Our prior for the starting value of age:sex  is 

 age:sex 2
0 N 0, 10 .   

We use a simple model for sex effects,  

  sex N 0, 1 ,s   (2.8) 

 Female, Male .s   This implies that we expect that the mean difference between mortality rates for sex 

s  and the average mortality rates for both sexes to lie within the range  2, 2  on a log scale. The variance 

of the female-male differences is 1 1 = 2,  so we expect this difference to lie within the range 

 2 2, 2 2  on a log scale , or (0.06, 16.9) on the original scale, which is a very large range compared 

to actual sex differences. This is an example of a “weakly informative” prior, in that it understates the actual 

strength of existing scientific knowledge (Gelman, Jakulin, Pittau and Su, 2008). Weakly informative priors 

provide many of the benefits of strong priors, by ruling out implausible values, and speeding up 
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computations. However, they are much more convenient, since they do not require the analyst to precisely 

summarize external information about the parameter in question, which can be difficult. 

As there are only two time periods, and hence insufficient information to warrant a complicated model 

for time effects, we simply assume that  time N 0, 1 .t   We assume  0 2N 0, 10 .   

All the error terms in our model  age age age age:sex, , , , ,ast a a a ase u v w u  and age:sex
asv  have normal distributions 

with mean 0. The standard deviation parameters for the error terms age age, ,ast a ae u v  and age
aw  all have a 

half t  distribution, with 7 degrees of freedom and scale parameter 1. Figure 2.2 shows a half t  

distribution with 7 degrees of freedom and scale parameter 1. The distribution puts a 65% probability on 

values below 1, and a 2% probability on values exceeding 3. 

In practice, we expect the standard deviation of our error terms to be well under 1. The standard deviation 

governs the size of age-to-age, sex-to-sex, or time-to-time differences in rates. A standard deviation of 1 

implies that we would often see differences of 100% or more, which we do not see in practice. Our prior for 

standard deviations is therefore weakly informative. 

The standard deviation parameters for the error terms age:sex
asu  and age:sex

asv  in the age-sex interaction have 

a half t  distribution, with 7 degrees of freedom and scale parameter 0.5. We use a smaller scale for the 

interaction on the principle that interactions are typically smaller in size than main effects (Gelman et al., 

2008). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 A half t  distribution with 7 degrees of freedom and scale 1. 
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parameters in the model for age effects, parameters in the model for sex effects, and so on. Our main interest 

lies in the mortality rates. The mortality rates are well identified from the data. The main effects and 

interactions in the prior model, in contrast, are only weakly identified. We discuss the identification issue 

further in Appendix A. 

We simulate draws from the posterior distribution using 4 independent chains, each with a burnin of 

100,000 and production of 100,000. We keep every 250th iteration from each chain, yielding a combined 

sample of = 1,600S  draws. We monitor convergence using potential scale reduction factors (Gelman, 

Carlin, Stern, Dunson, Vehtari and Rubin, 2014, Section 11.4). The calculations are done in our own open 

source R package demest. Sample code is shown in Appendix B. 

For any given parameter, we use the median of its posterior draws as the point estimate, and use the 

100 %p  0 < < 1p  credible interval formed by the   50 1 p  and  50 50 p  percentiles of its 

posterior draws to measure the uncertainty. For instance, a 95% credible interval with = 0.95p  is formed 

by the 2.5% and 97.5% percentiles of the posterior draws. 

The posterior draws can easily be used to construct estimates of functions of the model parameters, 

together with measures of uncertainty. In the study of mortality, a particularly important example is life 

expectancy at birth. Life expectancy is a complicated nonlinear function of age-specific mortality rates 

(Preston, Heuveline and Guillot, 2001). Let  f   denote the nonlinear function that produces life 

expectancy from a set of age-specific mortality rates .  If    1 , , S   represent a sample from the 

posterior distribution of ,  then      1 , , Sf f   form a sample from the posterior distribution of life 

expectancy. We can summarize this sample to get point estimates and credible intervals of life expectancy. 

Our approach is fully Bayesian in that, in addition to specifying a prior for ,ast  we also specify priors 

for hyper-parameters, such as 2 ,  that govern the prior for .ast  Inferences about the hyper-parameters are 

made together with inferences about ,ast  using the joint posterior distribution. An alternative approach, 

known as Empirical Bayes, is to construct point estimates for the hyper-parameters and make inferences 

about ast  conditional on these point estimates (Rao and Molina, 2015, Chapter 9). 

Empirical Bayes approaches can be less computationally intensive than fully Bayesian ones, which 

means they sometimes scale better to large datasets. They can, however, be difficult to implement with 

complicated models containing many levels, such as ours. Using probability distributions, rather than point 

estimates, for hyper-parameters also leads to a more complete representation of uncertainty. 

 
2.3  Results 
 

Figure 2.3 shows results from the model. The light blue band represents 95% credible intervals. If the 

assumptions of the model are met, then each vertical slice of the band has a 95% probability of containing 

the true value for .ast  The pale line in the middle is the median of the posterior distribution, which can be 

used for point estimates. The black circles are the direct estimates from Figure 2.1. 
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Figure 2.3 Modelled estimates of mortality rates for Māori males in 2012-2014, by single year of age. The light 
blue band represents 95% credible intervals, and the white line represents posterior medians. The 
black circles represent direct estimates.  

 
The age pattern obtained from the model is approximately linear over ages 40-80. The model 

successfully smooths through the random variation in the direct estimates. Around age 18, however, the 

slope changes abruptly, marking the beginning of the accident hump. The smoothness at ages 40 and over 

does not come at the expense of an ability to detect local changes in the teenage years. The model also 

makes no attempt to smooth away the spike in mortality at age 0. This is a result of the inclusion of a 

covariate for age 0: models that do not have this term do partly smooth away the spike (results not shown). 

Estimates around age 10 are, on a log scale, less precise than for most other age groups, reflecting the 

small cell counts for children. In other words, the model produces uncertainty measures that reflect local 

availability of data. 

Uncertainty also increases steadily beyond age 90, as death counts become smaller and smaller. The 

posterior median suggests little increase in death rates beyond age 90. The apparent plateauing in mortality 

rates may be genuine: Māori males who survive to age 90 may systematically differ from ones who do not, 

so that the flat mortality for people at high ages reflects a kind of selection effect (Vaupel, Manton and 

Stallard, 1979). However, it is also possible that the plateauing reflects problems with the input data, such 

as inaccurate recording of ages of very old people. 

Figure 2.4 shows life expectancies derived from the model. Unlike Figures 2.1 and 2.3, it shows results 

for both sexes and both periods. Female life expectancy at birth increased from 75.1 years, with a 95% 

credible interval of (74.8, 75.5), in 2005-2007 to 76.7 years, with a credible interval of (76.4, 77.0), in 
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2012-2014. The corresponding estimates for males are 70.8 (70.5, 71.1) and 72.5 (72.2, 72.9). It is still rare 

in demography for life expectancies to be accompanied by uncertainty measures. Using Bayesian methods, 

however, uncertainty measures can be calculated routinely. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Modelled estimates of life expectancy at birth, for Māori, 2005-2007 and 2012-2014. The light blue 
bands represent 95% credible intervals, and the white lines represent posterior medians.  

 
3  Interpolating and forecasting obesity prevalence 
 

3.1  The estimation problem 
 

In New Zealand, as in most countries, obesity rates are rising. Public health researchers and policy 

makers monitor and forecast obesity prevalence, to assess the success, or otherwise, of obesity-reduction 

measures, and to gauge future demand for services. 

The main source of data on obesity prevalence in New Zealand is the New Zealand Health Survey, a 

nationally-representative survey of around 19,000 people (Ministry of Health, 2013). Like most household 

surveys, it has a complex design, with stratification and clustering. Obesity is measured using body mass 

index (BMI). A person is defined as being obese if he or she has a BMI of 30 or higher. 

Surveys were carried out in 1997, 2003, 2007, 2012, and 2013. We use data for all these years. Our 

objective is to obtain prevalence estimates for the period 1997-2013, including non-survey years, and then 

forecast for the period 2014-2023. Our estimates and forecasts are disaggregated into age groups 15-24, 25-

34, 35-44, 45-54, 55-64, 65-74, and 75+. 

 

3.2  The model 
 

Our main input data are published estimates for the proportion of New Zealanders aged a  at time t  who 

are obese, which we denote ,atp  and the published standard errors for the ,atp  denoted .ats  The atp  are 

graphed in Figure 3.1. 
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Figure 3.1 Proportion of obesity in New Zealand, by age and year, as estimated in the New Zealand Health 
Survey. 

 

When individual-level data are available, the standard Bayesian approach towards accounting for 

complex survey design is to include as many features of the design as possible in the estimation model 

(Gelman et al., 2014, Chapter 8). Chen, Wakefield and Lumely (2014) show, however, how the full 

individual-level approach can be approximated by an aggregate-level approach that starts from design based 

estimates such as atp  and .ats  Chen et al. (2014) assume that the design-based estimates are constructed so 

as to reflect all the important features of the survey design, and show how these estimates can be converted 

into a form suitable for inclusion in an aggregate-level model. 

Applying the approach of Chen et al. (2014), we approximate the individual-level approach using a 

Binomial likelihood. We obtain counts of individuals with obesity aty  and total counts of individuals atn  

by finding aty  and atn  such that at

at

y
atn p  and   21 .at at

at at

y y
atn n s   The likelihood is  

  Binomial , .at at aty n   (3.1) 

Here at  is the super-population probability of obesity: the probability that a person aged a  at time t  is 

obese. Our objective is to estimate at  for past years, including years without survey data, and to forecast 

at  for future years. 

Our prior model for at  is  

   0 age timelogit = ,at a t      (3.2) 

which includes age and time effects, but not an age-time interaction. We experimented with an age-time 

interaction, but found that its size was small enough to omit (results not shown). 

As with the mortality model of Section 2, we use a local trend model for the age effect, though in the 

obesity case we do not have an infant covariate. The rationale for using a local trend model is, once again, 

to capture the correlations between neighbouring age groups. We also use the same prior for the intercept 

as we do in Section 2, a normal distribution with mean 0 and standard deviation 10. 

We use a local trend model for time,  

                                                                  time time time=t t tu    (3.3) 

                                                                  time timetime time
1 1=t t t tv      (3.4) 

                                                                  timetime time
1= ,t t tw     (3.5) 
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but with two different sets of assumptions about innovation terms time
tv  and time .tw  

In our first version, we assume that time
tv  and time

tw  are always very close to 0, which we implement by 

using extremely tight priors on the standard deviations for these terms. The standard deviations for both 

terms have half t  priors with scales of 0.001. This version of the local trend model essentially fits a 

straight line through the data. Aside from assuming no change, this is perhaps the most common approach 

to forecasting future rates in epidemiology and demography. We refer to this model as the “straight line” 

model. 

Our second version is a generalization of the first. Rather than assuming that time
tv  and time

tw  are always 

close to 0, we allow them to take values that imply year-on-year changes in obesity rates of a few percentage 

points. We do this by setting the scale of the prior for the standard deviation of time
tv  to 0.05 and setting the 

scale of the prior for standard deviation of time
tw  to 0.025. We use a larger scale for time

tv  than for time
tw  on 

the basis that levels change more rapidly than systematic trends. We refer to the model based on this version 

of the time effect as the “flexible” model. 

We carry out the estimation using our package demest, with the same settings for burnin, production, 

chains, and thinning as for the mortality application. 

 

3.3  Results 
 

Figure 3.2 shows results based on the “straight line” model. Estimates for survey years are shown in red, 

and estimates and forecasts for the remaining years are shown in blue. As is conventional with forecasting, 

we use 80% credible intervals, rather than 95%. 

Estimates for years with survey data are more precise than those for years without survey data, as we 

would expect. Estimates for years between surveys are more precise than those for forecasts. The differences 

in precision between estimates and forecasts are, nevertheless, small. Strong assumptions about linearity 

lead to precise forecasts. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Estimates and forecasts of obesity prevalence in New Zealand−“straight line” model. The bands 
represent 80% credible intervals, and the pale lines represent posterior medians. The red bands are 
for years with survey data and the light blue bands are for years without data.  
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Figure 3.3 shows results based on the “flexible” model. Point estimates and forecasts from the flexible 

model are indistinguishable from those of the straight line model. The level of uncertainty, however, is 

clearly different. Compared with the straight line model, there is a modest increase in uncertainty for years 

between surveys and a large increase in uncertainty for the forecast period, particularly in later years. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Estimates and forecasts of obesity prevalence in New Zealand−“flexible” model. The bands 
represent 80% credible intervals, and the pale lines represent posterior medians. The red bands are 
for years with survey data and the light blue bands are for years without data.  

 
The flexible model, arguably, gives a better representation of knowledge about obesity trends in New 

Zealand than the linear model. The linear assumption is conventional, but does not have any strong 

theoretical basis. Over-reliance on the linear assumption can produce over-confidence. The flexible model 

illustrates the implications of weaker assumptions. 

 
4  Discussion 
 

Despite the increasing popularity of Bayesian methods in the research community, national statistical 

agencies and policy analysts have been wary of these methods. National statistical agencies are particularly 

concerned about two aspects of Bayesian methods: their use of prior distributions, and their complexity. 

The use of prior distributions to represent external information is indeed a distinctive feature of Bayesian 

analyses. Little (2012) has argued that national statistical agencies should use “noninformative” priors, 

which avoid the impression of subjectivity, and which form a bridge to classical methods, in that they often 

lead to similar results. Among Bayesian statisticians, however, weakly informative priors have been 

gradually displacing noninformative priors as the default for most analyses. Compared with noninformative 

priors, weakly informative priors can stabilize estimates, and speed up calculations. But because they rule 

out only the most implausible values, they are generally no more controversial, and require little more work 

or justification, than noninformative priors. 
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However, in cases where the data to hand do not permit sufficiently strong answers to the questions of 

interest, there may be advantages to using priors that are strongly, rather than weakly, informative. In our 

obesity example, for instance, it may be possible to improve on both of our forecasting models by specifying 

priors for the standard deviation parameters that accurately reflect likely year-on-year variation in obesity 

rates. 

If statistical agencies were to use strongly informative priors, they would need to spell these priors out 

clearly, justify their choices, and test sensitivity to alternative choices. But, in most cases, this would be an 

improvement on current practice. Current practice with analyses such as population forecasts is often to 

apply informal adjustments, or to retrospectively adjust assumptions, until a plausible result is obtained. 

Bayesian methods provide analysts with a more transparent and systematic way of bringing in external 

information and expert judgement. 

Objections about Bayesian models being complicated are partly true. Many Bayesian models are 

complicated, in that, like the models presented in this paper, they use many layers and many parameters. At 

the same time, however, the individual components of these models are often simple and intuitive. To make 

sense of our model for mortality rates, for instance, we can start with the likelihood, move on to the prior 

model, and then consider the priors for main effects and interactions one by one. With this divide-and-

conquer approach, even complicated models are accessible. Moreover, the main assumptions behind the 

models can often be described in nontechnical language, even if the mathematical techniques cannot. 

Similarly, the traditional objection that Bayesian modelling require advanced computing skills is 

gradually losing force. Packages such as ours allow analysts to fit specific classes of demographic estimation 

models relatively easily. General-purpose Bayesian programming languages such as Stan (Carpenter, 

Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li and Riddell, 2016) offer greater flexibility 

in exchange for slightly more programming effort. These tools allow practitioners to easily fit complicated 

Bayesian models. 
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Appendix A 
 

Identification of our model 
 

In the prior model, each main effect or interaction includes all possible categories of the classifying 

dimensions. For instance, the sex effect includes separate female and male effects, and the age-sex 

interaction includes effects for every possible combination of age and sex. Because all of our priors are 

proper (i.e., are genuine probability distributions that integrate to 1), the posterior distribution is proper. All 

parameters are therefore identified in the broadest sense, and a Bayesian analysis can be carried out. 

The main effects and interactions are, however, only weakly identified. For instance, adding a value   

to the female and male effects sex
Female  and sex

Male ,  and subtracting   from the intercept 0 ,  will produce 
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exactly the same expected value for the ast  as the original parameter settings. The data do not allow us to 

distinguish between the two possibilities. Identification is achieved entirely through the differences in prior 

densities for the original and shifted parameters. 

The ,ast  in contrast, cannot be arbitrarily shifted without affecting the likelihood 

 Poisson .ast ast asty n  In others words, the ast  are well identified from the data. Shifting the values of 

the main effects and interactions does not affect inferences about standard deviation terms, as inferences 

about standard deviations depend on variation across effects, rather than absolute levels. The standard 

deviation terms are therefore also well identified. 

In this paper we only report the .ast  In some applications, however, the main effects and interactions 

are also of interest. In such cases, one approach is to systematically shift the parameter estimates to achieve 

identification (Gelman, 2005). 

 

Appendix B 
 

R code 
 

We have developed a set of R packages for implementing Bayesian small area demographic estimation 

and forecasting. The packages are available at github.com/statisticsnz/R. Package dembase 

contains data structures for demographic data and functions for manipulating these data structures. The basic 

data structure is a “demographic array”, which, in addition to the counts or rates themselves, also holds 

metadata such as age groups or time periods, and units of measurement. Bayesian estimation and forecasting 

is carried out by functions in package demest. The estimation functions use metadata from the demographic 

arrays to assign sensible default values. As a result, complex models can be specified and run relatively 

simply. For instance, the key parts of the code for our model in the mortality example are set out in 

Figure B.1. Package demlife contains tools for creating life tables and extracting life table functions. 

 
  model < − Model (y ~ Poisson (mean ~ age * sex + period), 
              age ~ DLM (covariates = Covariates (infant = TRUE), 
                    damp = NULL), 
              age: sex ~ DLM (trend = NULL, 
                         damp = NULL), 
              jump = 0.05) 

filename < − “out/mortality_model.est” 
  estimateModel (model = model, 
      y = deaths,  
      exposure = 3 * population, 
      filename = filename, 
      nBurnin = 100000, 
      nSim = 100000, 
      nChain = 4, 
      nThin = 250) 
 

Figure B.1 R code to specify and run the mortality model, using package demest. 
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Small area estimation of survey weighted counts under aggregated 
level spatial model 

Hukum Chandra, Ray Chambers and Nicola Salvati1 

Abstract 

The empirical predictor under an area level version of the generalized linear mixed model (GLMM) is extensively 
used in small area estimation (SAE) for counts. However, this approach does not use the sampling weights or 
clustering information that are essential for valid inference given the informative samples produced by modern 
complex survey designs. This paper describes an SAE method that incorporates this sampling information when 
estimating small area proportions or counts under an area level version of the GLMM. The approach is further 
extended under a spatial dependent version of the GLMM (SGLMM). The mean squared error (MSE) estimation 
for this method is also discussed. This SAE method is then applied to estimate the extent of household poverty 
in different districts of the rural part of the state of Uttar Pradesh in India by linking data from the 2011-12 
Household Consumer Expenditure Survey collected by the National Sample Survey Office (NSSO) of India, and 
the 2011 Indian Population Census. Results from this application indicate a substantial gain in precision for the 
new methods compared to the direct survey estimates. 

 
Key Words: Complex surveys; Direct survey weighted estimator; Poverty estimate; Spatial Model; Mapping. 

 
 

1  Introduction 
 

Sample surveys are generally planned to produce estimates for population characteristics of interest 

mainly at higher geographic (e.g., national and state) levels. The sample size is fixed in such a way that the 

direct estimators for larger domains provide reliable estimates, where by direct estimators we mean 

estimators that use only sample-weighted data from the domain of interest. In many practical situations, 

however, the aim is to estimate parameters for domains that contain only a small number of sample 

observations. The term “small areas” is used to describe domains whose sample sizes are not large enough 

to allow sufficiently precise direct estimation. When direct estimation is not possible, one has to rely on 

alternative, model-based methods for producing small area estimates. Such methods depend on model 

specification as well as on the availability of population level auxiliary information related to the variable 

of interest, and are commonly referred to as indirect methods (Rao, 2003). The underlying theory is referred 

to as the small area estimation (SAE), and SAE techniques aim at producing reliable estimates based on 

such small sample sizes by using the model “linking” the small areas to “borrow strength” from the sample 

data from other small areas, see for example, Pfeffermann (2002) and Rao and Molina (2015). In this 

context, we differentiate between SAE methods based on unit-level models and those based on area-level 

models. In the former case these models are for the individual survey measurements and include area effects, 

while in the latter case these models are used to smooth out the variability in the unstable area-level direct 

survey estimates. Area-level modelling is typically used when unit-level data are unavailable, or, as is often 

the case, where model covariates (e.g., census variables) are only available at area level. The Fay-Herriot 

model (Fay and Herriot, 1979), is a widely used area level model that assumes area-specific survey estimates 
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are available, and that these follow an area level linear mixed model with independent area random effects. 

This model can also accommodate survey weights in SAE by using the survey weighted direct estimates 

when fitting the linear mixed model. When the variable of interest is not continuous (for example, binary 

and count data), a generalized linear mixed model (GLMM) is often used. If the variable of interest is binary 

and the target of inference is a small area proportion, then the GLMM with logistic link function (also 

referred as the logistic linear mixed model) is commonly used. An empirical plug-in predictor (EP) is 

commonly used for the estimation of small area proportions under a GLMM, see for example, Chandra, 

Chambers and Salvati (2012), Salvati, Chandra and Chambers (2012), Rao and Molina (2015) and 

references therein, although it is not the most efficient predictor under this model. An alternative is the 

Empirical Best Predictor (EBP, Jiang, 2003). This predictor does not have a closed form in general and so 

must be computed via numerical approximation, which is typically not straightforward. As a consequence 

national statistical agencies tend to favour computation of an approximation like the EP. It is also our 

understanding that EP-type predictors are used in Molina, Saei and José Lombardìa (2007) and Lopez-

Vizcaino, Lombardìa and Morales (2013). When only area level data are available, an area level version of 

a GLMM can be considered for SAE, see for example, Saei and Chambers (2003), Johnson, Chandra, Brown 

and Padmadas (2010), Chandra, Salvati and Sud (2011), Chandra, Salvati and Chambers (2017) and 

references therein. Unlike the Fay-Herriot model, this approach implicitly assumes simple random sampling 

with replacement within each area and ignores the survey weights. Unfortunately, this has the potential to 

seriously bias the estimates if the small area samples are seriously unbalanced with respect to key population 

charcteristics. Consequently use of the survey weights appears to be inevitable for if one wishes to generate 

representative small area estimates. 

Modelling the survey weighted estimates of proportions by a continuous distribution, as in the Fay-

Herriot model, can be problematic since the sampling distribution of these proportions is inherently discrete 

due to small sample sizes and binary nature of the underlying observations. For example, such a linear model 

based approach can lead to negative predictions or, more likely, prediction intervals that include negative 

values, both absurd results. Clearly GLMMs are more suitable for modelling inherently discrete data arising 

from survey weighted direct estimates, see Liu, Lahiri and Kalton (2014), Ghosh, Natarajan, Stroud and 

Carlin (1998) and Rao (2003, Sections 5.6 and 10.11). Malec, Sedransk, Moriarity and LeClere (1997) 

describe a hierarchical Bayes model for binary survey data. The authors examined the use of sampling 

weights as a covariate in the model and did not find any improvement for their example of county-level data 

from the National Health Interview Survey. Unlike estimation of survey weighted linear parameters like 

small area means and totals, there has been comparatively little research on estimation of survey weighted 

small area proportions or counts under area level small area models. Recently, some authors including 

Mercer, Wakefield, Chen and Lumley (2014), Liu et al. (2014) and Franco and Bell (2013) have described 

how survey weights can be used in a Bayesian hierarchical model framework for estimating small area 

proportions by using effective sample sizes for inference about the underlying binomial distributions in 

order to preserve sampling variances estimated via a generalized variance function. These approaches are 

defined within a Bayesian framework. In this article, we adopt a frequentist approach and describe an SAE 
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method that uses the sampling weights for binary data when estimating small area proportions under an area 

level version of a GLMM. Following Korn and Graubard (1998), we model the survey weighted estimates 

as binomial proportions, with an “effective sample size” chosen to match the binomial variance to the 

sampling variance of the estimates. Using the effective sample size rather than the actual sample size allows 

for the varying information in each area under complex sampling. Furthermore, the area-specific random 

effects in the GLMM are typically assumed to be independent, that is, different small areas are considered 

to be independent of each other. However, in practice most small area boundaries are arbitrary and there 

appears to be no good reason why units that are just one side of such a boundary should not generally be 

correlated with units just on the other side (Pratesi and Salvati, 2008). One approach to incorporating such 

spatial information in SAE modelling is to extend the random effects model to allow for spatially correlated 

area effects using, for example, a Simultaneous Autoregressive (SAR) model. See Anselin (1992) and 

Cressie (1993). These models embed spatial behaviour in the model random effects, which in the context of 

SAE typically means area effects. Applications of SAR models in small area estimation have been 

considered by Singh, Shukla and Kundu (2005), Pratesi and Salvati (2008), Pratesi and Salvati (2009), 

Molina, Salvati, and Pratesi (2009), Marhuenda, Molina and Morales (2013) and Porter, Wikle and Holan 

(2015). SAR models are commonly used for modelling spatial dependence under the frequentist approach 

to SAE. Other the hand, Bayesian approaches to SAE favour Conditionally Auto-Regressive (CAR) models 

for modelling spatial dependence, see Besag, York and Mollié (1991), Leroux, Lei and Breslow (1999) and 

Mercer et al. (2014). This paper takes a frequentist approach to SAE and so we consider an extension of an 

area level GLMM to account for spatial dependence between the small areas based on a SAR specification, 

and develop small area estimates under this model that use the survey design information. 

The structure of the paper is as follows. Section 2 describes the data from the 2011-12 Household 

Consumer Expenditure Survey of the National Sample Survey Office (NSSO) of India and the 2011 Indian 

Population Census that will be used to estimate the district level incidence of household poverty in the rural 

part of the Indian State of Uttar Pradesh. In Section 3 we set out the theoretical background to the area level 

version of the GLMM, and then discuss the use of effective sample size for incorporating the information 

in the survey weights when estimating small area proportions under this model. The spatial extension of the 

area level GLMM, as well as an empirical predictor based on this model, are also introduced in this section. 

The results from the poverty incidence application along with various diagnostic measures are reported in 

Section 4. In this section we also provide a poverty map that serves to demonstrate district-level inequalities 

in the distribution of poor rural households in Uttar Pradesh. Finally, Section 5 summarizes the paper and 

provides concluding remarks. 

 
2  Data description 
 

This section introduces the basic sources of the data, i.e., the 2011-12 Household Consumer Expenditure 

Survey (HCES) of the NSSO for rural areas of the State of Uttar Pradesh in India and the 2011 Population 

Census, used in the small area application reported in this paper. Data obtained from these sources are then 
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used to estimate the proportion of poor households at district level in Uttar Pradesh. The State of Uttar 

Pradesh is the most populous State in the country and accounts for about 16.16 per cent of India’s 

population. It covers 243,290 square km, equal to 6.88% of the total area of the country. Poverty estimates 

in India are produced for all the States separately for both rural and urban sectors. Our analysis is restricted 

to the rural areas of Uttar Pradesh because about 78% of the population of this State live in rural areas 

according to 2011 Population Census. The NSSO conducts nationwide HCE surveys at regular intervals as 

part of its “rounds”, with the duration of each round normally being a year. These surveys are aimed at 

generating estimates of average household monthly per capita consumer expenditure (MPCE), the 

distribution of households and persons over the MPCE range, and the break-up of average MPCE by 

commodity group, separately for the rural and urban sectors of the country, for States and Union Territories, 

and for different socio-economic groups. These indicators are amongst the most important measures of the 

living conditions of the relevant domains of the population. The surveys are conducted through interviews 

of a representative sample of households selected randomly through a suitable sampling design and covering 

almost the entire geographical area of the country. In particular, the sampling design used in the NSSO 

survey is stratified multi-stage random sampling with districts as strata, villages as first stage units and 

households as second stage units. Although, these surveys provide reliable and representative state and 

national level estimates, they cannot be used directly to produce reliable estimates at the district level due 

to small sample sizes. In particular, although district is a very important domain of the planning process in 

India, there are no surveys aimed at producing estimates at this level. The lack of robust and reliable outcome 

measures at the district level puts constraints on the design of targeted interventions and policy development. 

More importantly, state and national estimates do not adequately capture the extent of geographical 

inequalities, which restricts the scope for evaluating progress locally within and between districts. Balanced 

against all of this however is the fact that conducting a district level survey would be very costly as well as 

time-consuming. In the 2011-12 HCES, a total of 5,916 households from the 71 districts of Uttar Pradesh 

were surveyed. The district sample sizes ranged from 32 to 128 with average of 83. It is evident that these 

district level sample sizes are relatively small, with an average sampling fraction of 0.0002. As a 

consequence, it is difficult to generate reliable district level direct survey estimates with associated standard 

errors from this survey. This small sample size problem can be resolved by using SAE methodology 

provided auxiliary information is available to strengthen the limited sample data from the districts (Rao and 

Molina, 2015; Tzavidis, Salvati, Pratesi and Chambers, 2008).  

We note here that the target variable Y  at the unit (household) level in the published survey data file is 

binary, corresponding to whether a household is poor or not. In our application however we focus on 

estimation where the available data are the corresponding counts of the number of poor households in 

sample in each district. In this context a household having MPCE below the state poverty line is defined as 

being poor. The poverty line used in this study (Rs. 768) is the same as that set by the Planning Commission, 

Govt. of India, for 2011-12. The parameter of interest is then the proportion of poor rural households within 

each district. The auxiliary variables (covariates) used in our analysis are taken from the Indian Population 

Census of 2011. These auxiliary variables are only available as counts at district level, and so SAE methods 
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based on area level small area models, as described in next section, must be employed to derive the small 

area estimates. There are approximately 50 such covariates that are available for use in SAE analysis. We 

therefore carried out a preliminary data analysis in order to define appropriate covariates for SAE modelling, 

using Principal Component Analysis (PCA) to derive composite scores for selected groups of variables. In 

particular, we carried out PCA separately on three groups of variables, all measured at district level and 

identified as S1, S2 and S3 below. The first group (S1) consisted of literacy rates by gender and proportions 

of worker population by gender. The first principal component (S11) for this group explained 51% of the 

variability in the S1 group, while adding the second principal component (S12) increased explained 

variability to 85%. The second group (S2) consisted of the proportions of main worker by gender, 

proportions of main cultivator by gender and proportions of main agricultural labourer by gender. The first 

principal component (S21) for this second group explained 49% of the variability in the S2 group, while 

adding the second component (S32) increased explained variability to 67%. Finally, the third group (S3) 

consisted of proportions of marginal cultivator by gender and proportions of marginal agriculture labourers 

by gender. The first principal component (S31) for this third group explained 61% of the variability in the 

S3 group, while adding the second component (S22) increased explained variability to 78%. Using the 

methods detailed in the following sections, we fitted a generalised linear model using direct survey estimates 

of proportions of poor rural households as the response variable and the six principal component scores S11, 

S12, S21, S22, S31 and S32 as potential covariates. The final selected model included the three covariates 

S11, S21 and S31, with residual deviance and AIC values of 327.18 and 636.89, respectively. This final 

model was then used to produce district wise estimates of rural poverty incidence, i.e., estimates of the head 

count ratio (HCR) at this level.  

A major problem with application of SAE in many developing and underdeveloped countries is the fact 

that administrative or civic registration data that are suitable for use as covariates in the SAE model are 

unavailable at small area level. Typically, what auxiliary variables are available (e.g., census tabulations) 

do not have good association with variable of interest. This results in very limited information for producing 

the small area estimates. In such cases, it can be beneficial to supplement the available data by using 

geospatial information about the small areas. In this study, we use the geographical locations (centroids) of 

the different districts in the Indian State of Uttar Pradesh to extend our SAE model to one that allows rural 

poverty counts from neighbouring districts to be correlated. 

 
3  Small area estimation under the area level GLMM 
 

3.1  Spatially uncorrelated random area effects 
 

We assume that a probability sampling method is used to draw a sample s  of size n  from a finite 

population U  of size ,N  which consists of D  non-overlapping domains  1, , .iU i D   Following 

standard practice, we refer to these domains as small areas or just areas. Furthermore, we assume that there 

is a known number iN  of population units in small area ,i  with in  of these sampled. The total number of 
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units in the population is 
1

,
D

ii
N N


   with corresponding total sample size 

1
.

D

ii
n n


   We use s  to 

denote the collection of units in sample, with is  the subset drawn from small area i  (i.e., | | ),i is n  and 

use expressions like j i  and j s  to refer to the units making up small area i  and sample ,s  

respectively. Similarly, ir  denotes the set of units in small area i  that are not in sample, with | |i i ir N n   

and .i i iU s r   Let ijy  denotes the value of the variable of interest for unit j   1, , ij N   in area .i  

The variable of interest, with values ,ijy  is binary (e.g., 1ijy   if household j  in area i  is poor household 

and 0 otherwise), and the aim is to estimate the small area population count, ,
i

i ijj U
y y


   or equivalently 

the small area proportion, 1 ,
i

i i ijj U
P N y


   in area i  1, , .i D   The standard direct survey 

estimator (hereafter denoted by DIR) for iP  is ,
i

iw ij ijj s
p w y


    where 

i
ij ij ijj s

w w w


   is the 

normalized survey weight for unit j  in area i  with 1
i

ijj s
w


   and ijw  is the survey weight for 

unit j  in area .i  The estimated design-based variance of DIR is approximated by  iwv p   

    2
1 .

i
ij ij ij iwj s

w w y p


     This formula for the variance estimator of DIR is obtained from Särndal, 

Swensson and Wretman (1992; see pages 43, 185 and 391), with the simplifications 1 ,ij ijw a  ,ij ij ija a  

and , , ,ij ik ij ika a a j k   where ija  is the first order inclusion probability of unit j  in area i  and ,ij ika  is 

the second order inclusion probability of units j  and k  in area .i  Under simple random sampling (SRS), 
1

ij i iw N n   and DIR is then 1 ,i i sip n y  with estimated variance    1 1 ,i i i iv p n p p   where 

i
si ijj s

y y


   denotes the sample count in area .i  

If the sampling design is informative, the SRS-based version of DIR defined in the previous paragraph 

may be biased. For the 2011-12 HCES we therefore computed district specific design effects, defined by 

the ratios of the variance of the weighted estimates (i.e., for a given sampling design) to the variance of the 

unweighted estimates (i.e., assuming SRS). These design effects were more than one in all but three districts, 

with values greater than one that varied from 1.17 to 8.44 with an average of 2.71. This is strong evidence 

that the sampling design used in the 2011-12 HCES is informative. Furthermore, DIR is based on area-

specific sample data and can therefore be very imprecise when the area specific sample size is small or may 

even be impossible to compute if this sample size is zero. However, model-based SAE procedures that 

“borrow strength” via a common statistical model for all the small areas can be used to address this problem, 

see Rao and Molina (2015). 

Suppose now that the available data consist of the sample aggregates siy  (i.e., the sample counts of poor 

households), together with the values of area specific contextual covariates. That is, for area i  we observe 

the count siy  together with a k -vector of area-specific covariates ix  derived from secondary data sources 

(e.g., the census or administrative registers). If we ignore the sampling design, the sample count siy  in area 

i  can be assumed to follow a Binomial distribution with parameters in  and ,i  i.e.,  Bin , ,si i iy n   

where i  is the probability of occurrence of an event for a population unit in area i  or the probability of 

prevalence in area .i  Following Saei and Chambers (2003), Johnson et al. (2010) and Chandra et al. (2011), 

the model linking the probability i  with the covariates ix  is the logistic linear mixed model of form 

     1logit ln 1 ,T
i i i i i iu       x β  (3.1) 
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with       1exp 1 exp expit .T T T
i i i i i i iu u u      x β x β x β  Here β  is the k -vector of regression 

coefficients, often referred to as the vector of fixed effects, and iu  is the area-specific random effect, with 

 20, .i uu N   The model (3.1) is a special case of the generalized linear mixed model (GLMM) with a 

logit link function (Breslow and Clayton, 1993). We can observe that the parameters β  and 2
u  are the 

same for every area; i.e., they can be estimated using the data from all small areas. This is usually 

accomplished by “stacking” the D  area level models given by (3.1) to produce a population level model of 

the form 

  η Xβ Zu  (3.2) 

with    1 , , expit ,T
D  π η  where  1 , , ,T

D η   1 , , TT T
DX x x  is the D k  matrix 

of covariates,  1 , , T
DZ z z  is a matrix of known covariates of dimension D D  characterising 

differences among the small areas, iz  is the D -vector  0, , 1, , 0 T   with the 1 in the thi  position and 

 1 , , T
Du uu   is the D -vector of random area effects with  ,Nu 0 Ω  where  2

u Ω Ω  
2
u D I  and DI  is a D D  diagonal matrix. 

The Penalized Quasi-Likelihood (PQL) approach is a widely used estimation procedure when fitting a 

GLMM. This approach constructs a linear approximation to the non-normal response variable and then 

assumes that this linearized dependent variable is approximately normal. The PQL method is widely used 

in small area estimation because it is much easier to implement in practice than estimation under the EBP 

approach. In particular, we employ a hybrid approach, with PQL used to estimate the parameters β  and u  

in the GLMM (3.2), and restricted maximum likelihood used to estimate the variance parameter  2 .uΩ  

See Breslow and Clayton (1993), Saei and Chambers (2003) and Manteiga, Lombardia, Molina, Morales 

and Santamarìa (2007). It is known that in some situations PQL can lead to inconsistent estimators, however 

recent empirical applications of PQL (Manteiga et al., 2007) note that the method works well in practice. 

Under the model (3.2), the expected values of siy  and riy  given iu  are given by si   

   expit T T
si i i i iE y u n x β z u  and      expit ,T T

ri ri i i i i iE y u N n    x β z u  respectively. 

Under (3.2), a plug-in empirical predictor (EP) of the population count iy  in area i  is 

  EP EPˆ ˆˆ ,i si ri si i i iy y y N n       (3.3) 

where  EP ˆˆ ˆexpit .T T
i i i  x β z u  An estimate of the corresponding proportion in area i  is obtained as 

EP 1 EPˆ ˆ .i i iP N y  For non-sampled area i  with associated vector of covariates , out ,ix  the synthetic estimator 

of iy  under (3.2) is SYN SYNˆˆ ,i i iy N   with  SYN
, out

ˆˆ expit .T
i i  x β  

The model (3.1), being based on unweighted sample counts, assumes that sampling within areas is non-

informative given the values of the contextual variables and the random area effects. As a result, the 

predictor (3.3) ignores the complex survey design. If the sampling design is informative and survey 

weighted counts are available, there are two main difficulties. First, the values for the weighted sample 

counts will not necessarily be the integers 0, 1, , ;in  rather they will take a value from a finite set of 

unequally-spaced numbers (not necessarily integers) determined by the survey weights of the sample cases 

in area .i  Second, the estimated sampling variance of the weighted sample counts, siy  implied by the 
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Binomial distribution, i.e.,    1 ,siw i iw iwv y n p p   will be incorrect. Korn and Graubard (1998) suggest 

that one instead model the survey weighted probability estimate for an area as a binomial proportion, with 

an “effective sample size” that equates the resulting binomial variance to the actual sampling variance of 

the survey weighted direct estimate for the area. The use of “effective sample size” has been discussed by a 

number of authors including Mercer et al. (2014) and Liu et al. (2014) as a way of incorporating the survey 

weights. Mercer et al. (2014) observe that the pseudo likelihood approach and effective sample size 

approach lead to identical estimates of small area proportions. Using the effective sample size rather the 

actual sample size allows for the survey weights under complex sampling. Furthermore, the precision of an 

estimate from a complex sample can be higher than for a simple random sample, because of the better use 

of population data through a representative sample drawn using a suitable sampling design. Here we use a 

subscript of  e  in all the quantities associated with the “effective sample size”. We address the above two 

issues by defining an “effective sample size”   ,i en  and an “effective sample count”   ,is ey  such that 

    .iwis e i ey n p  This leads to  

 

is e

i e

y

iw np   with its corresponding estimator of variance estimate   .iwv p  

The model (3.1) is then applied assuming the effective sample count  is ey  in small area i  follows a Binomial 

distribution, i.e.,     Bin , .iis e i ey n   The “effective sample size”  i en  is given by  
 
 *

ˆ ˆ1
,i

i

i

w

P P

i e v pn
  where 

ˆ
iP  is a preliminary model-based prediction of the population proportion iP  under a generalised linear 

model, and the estimate of variance  *
iwv p  depends on ˆ

iP  through a fitted generalized variance function 

(GVF), see Liu et al. (2014). Here,   0is ey   if 0,iwp   but this does not cause problems since ˆ 0iP   

implies   0.i en   Note that we use a generalised variance function (GVF) to generate estimates of the 

sampling variance even for areas that have an observed count of zero. Consequently we do not exclude any 

area from model fitting. The empirical predictor of iy  is finally obtained by replacing  , si in y  by 

    ,i e is en y  in (3.2), thus ensuring that sampling weights are used in the small area estimation process. In 

particular, the plug-in empirical predictor (EP) of iy  is then 

         
EP EPˆˆ ,ii e is e i e i ey y N n     (3.4) 

with       EP ˆˆ ˆexpit .T T
i ii e e e  x β z u  The estimate of the proportion in area i  is    

EP EP1ˆ ˆ .ii e i eP N y  Here  
ˆ

eβ  

and  ˆ i eu  are the estimates of the fixed effects parameter and the predictor of the random effects parameter 

respectively under model (3.2), based on an “effective sample size”   ,i en  and an “effective sample count” 

  .is ey  Similarly, the synthetic estimator of iy  is    
SYN SYNˆˆ ,ii e i ey N   with     SYN

, out
ˆˆ expit .T

ii e e  x β  

 

3.2  Computation of effective sample size 
 

Building on the ideas set out in Liu et al. (2014) and Franco and Bell (2013), we describe a procedure 

for calculating the district-wise values of effective sample size as well as the corresponding effective sample 

count of the number of poor households. We first obtain an approximate model-based prediction of ,iP  say 
ˆ ,iP  from a logistic linear model fitted to district-specific direct (i.e., weighted) estimates iwp  and a set of 

district level auxiliary variables. This model is fitted using the glm  function in R, specifying the family as 

“binomial” and with the district specific sample sizes as the weights. By definition, these model-based 

estimates,  ˆˆ exp T
i iP  x λ  will lie inside the interval (0, 1). Here ix  denotes the vector of covariates used 
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in glm  function, as in model (3.1). We then use the direct variance estimates  2
i iws v p  from the NSSO 

survey as the dependent variables in a GVF model. Using the data from districts that do not have zero 

poverty counts, we develop a smoothed estimate of the sampling variance through the following model: 

       1 22
0GVF 1 .i i i iiE s P P R      

Here    12
2

1 1
,i in n

i ij ijj j
R w w



 
    where ijw  is the weight of household j  in district .i  Taking 

logarithms on both sides leads to 

        *
0 1 2

ˆ ˆlog GVF log 1 log .i iii P P R          

This model can be fitted using the lm  function in R to obtain the estimates *
0ˆ , 1̂  and 2̂  of regression 

coefficients. We then compute the smoothed GVF estimates of the sampling variance as  2 *ˆi iws v p   

     1 2
ˆ ˆ*

0
ˆ ˆˆexp 1 .i i iP P R

        Finally, for each district, we compute the effective sample size,  i en  

and the effective sample count of poor households,   ,is ey  as  
 
 *

1ˆ ˆ
i

w

i

i

P P

i e v pn
  and     .iwis e i ey n p  These 

values are rounded to the nearest integer. Figure 3.1 shows the effective sample sizes, plotted against the 

observed sample sizes. The effective sample counts and observed sample counts are shown in Figure 3.2. 

In the majority of cases the effective sample size is lower than the observed sample sizes. Similarly, in most 

of the cases, the effective sample counts are smaller than the observed sample counts. This indicates that 

the sampling design results in a loss in information, when compared with simple random sampling, in such 

districts. The district-wise survey weighted and unweighted direct estimates of proportion of poor 

households are shown in Figure 3.3. It is evident from Figure 3.3 that the unweighted direct estimates 

underestimate the proportion of poor households. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Effective sample size versus observed sample size for NSSO data. 
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Figure 3.2 Effective sample count versus observed sample count for NSSO data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 District-wise survey weighted direct estimates versus unweighted direct estimates of proportion of 
poor households. 
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3.3  Spatially correlated random area effects  
 

The model (3.2) assumes that the random area effects are uncorrelated. In many applications the physical 

locations of the areas reflect missing contextual information and so this lack of correlation assumption for 

the area random effects is doubtful. It is often reasonable to assume that the effects of neighbouring areas 

(defined, for example, by a contiguity criterion) are correlated, with the correlation decaying to zero as the 

distance between these areas increases. In order to take into account the dependence between neighbouring 

areas, spatial models for random area effects are often used in SAE (Pratesi and Salvati, 2008; Chandra and 

Salvati, 2018). We achieve this by introducing spatial dependence in the error structure of model (3.2). In 

particular, we assume a Simultaneous Autoregressive (SAR) error process (Pratesi and Salvati, 2008), where 

the vector of random area effects  ivv  can be expressed as  

 , v Lv u  (3.5) 

where   1 ,D   v I L u  with   0E v  and         12Var .T
u D D sp      v I L I L Ω δ  Here, 

L  is a proximity matrix of order ,D  20, u DN u I  and   is a spatial autoregressive coefficient. From 

(3.2) and (3.5), the spatially dependent GLMM (SGLMM) is given by 

   1 .D      η Xβ Z I L u Xβ Zv  (3.6) 

The proximity matrix L  describes how random effects from neighbouring areas are related, whereas   

defines the strength of this spatial relationship, i.e., the indicator of the degree to which one object is similar 

to other nearby objects. In what follows, we use the index sp“ ”  to denote quantities associated with model 

(3.5). The simplest way to define L  is as a contiguity matrix, i.e., L  is a square binary matrix of order ,D  

with non-zero values only for those pairs of areas that are adjacent. For ease of interpretation, this matrix is 

generally defined in row-standardized form; in which case   is called the spatial autocorrelation parameter 

(Banerjee, Carlin and Gelfand, 2004). Formally, the element  , 1, ,jkl j k D   of a contiguity matrix 

takes the value 1 if area j  shares an edge with area k  and 0 otherwise. In row-standardised form this 

becomes 

 
1 if  and  are contiguous

0 otherwise,

j

jk

t j k
l


 


 (3.7) 

where jt  is the total number of areas that share an edge with area j  (including area j  itself). Contiguity is 

arguably the simplest, but not necessarily the best, specification of a spatial interaction matrix, see for 

example Chandra (2013). It may be more informative to express this interaction in a more detailed way, 

e.g., as some function of the length of shared border between neighboring areas or as a function of the 

distances between the areas. In this paper, we therefore investigate a distance based definition for the 

proximity matrix L  (i.e., a matrix with entries that are a function of the distances between the small areas 

or districts). In particular, we consider different ways of defining this proximity (or spatial weight matrix) 

with the aim of identifying the most effective approach to exploiting spatial information in order to produce 

reliable estimates for small areas. Let the spatial location of area or district i  correspond to the coordinates 



42 Chandra, Chambers and Salvati: Small area estimation of survey weighted counts under aggregated level spatial model 
 

 
Statistics Canada, Catalogue No. 12-001-X 

of an arbitrarily defined spatial location (i.e., two dimensional x y  coordinates or latitude and longitude) 

in the area, e.g., its centroid, which we denote by  , .i ix iyc c c  Let jk j kd c c   be an appropriate 

measure of the distance between the spatial locations of areas j  and .i  We then consider the following 

specifications for the proximity matrix L  as function of distance: 

(i) Proximity defined as the inverse of distance between the areas: 

  
1 ;

0 .

jk

jk

d j k
l

j k

 
  


L  (3.8) 

(ii) An exponential specification for the proximity function, defined as  

                                                                    2exp 0.5jk jkl d  L  (3.9) 

(iii) A Gaussian specification for the proximity function, defined as  

                                                                     2
exp 0.5 ,jk jkl d b  L  (3.10) 

where parameter b  is the bandwidth, which can be optimally defined using a least squares 

criterion (Fotheringham, Brunsdon and Charlton, 2002). The bandwidth is a measure of how 

quickly the proximity decays with increasing distance. We use a cross validation procedure to 

estimate bandwidth. Here as the distance between areas j  and k  increases the proximity in (3.10) 

decreases exponentially. In particular, we use the .gwr sel  function in the spgwr  package of R 

to compute the value of the bandwidth. We also use the .Moran I  function in the ape  package 

of R to test for the presence of spatial correlation in the data. The results from this test show that 

there is evidence of spatial autocorrelation in the NSSO data. In particular, we reject the null 

hypothesis of zero spatial correlation at a 1 per cent level of significance. 

 

In model (3.5), there are 2 parameters 2( u  and )  that need to be estimated. Put  2 , .T
u δ  

Replacing these unknown parameters by their estimated values  2ˆ ˆˆ , ,T
u δ  and denoting subsequent 

plug-in estimators by a “hat”, we define the spatial empirical predictor (SEP) of the population count in area 

i  as  

         
SEP SEPˆˆ ,ii e is e i e i ey y N n     (3.11) 

with       SEP ˆˆ ˆexpit .spT T
i ii e e e  x β z v  The corresponding spatial empirical predictor of the proportion in 

area i  is    
SEP SEP1ˆ ˆ .ii e i eP N y  For a non-sampled area, the spatial synthetic empirical predictor (hereafter 

denoted by SpSyn) of iP  is     SpSyn
, out

ˆˆ expit .spT
ii e eP  x β  Here  

ˆ sp
eβ  is the estimate of the fixed effect 

parameters β  and  ˆ ev  is the predicted value of the spatially correlated random effects v  under the SAR 

model, using “effective sample size” and “effective sample counts”. The estimation of unknown model 

parameters in (3.6) follows from the procedure discussed in previous section. However, the variance 

component 2
u  is now  2 , T

u δ  and the predicted random effect  ˆ eu  is replaced by  ˆ .ev  
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3.4  Mean squared error (MSE) estimation 
 

The MSE estimation of the small area empirical predictor (3.4) follows along the same lines as reported 

in Saei and Chambers (2003), Manteiga et al. (2007), Johnson et al. (2010), Chandra et al. (2011), Chandra, 

Salvati and Chambers (2018) and references therein. The estimate of the MSE of the empirical predictor 

(3.4) given by expression (3.12) is directly used, replacing the observed sample sizes and the observed 

sample counts by the effective sample sizes and the effective sample counts, respectively in order to 

incorporate the survey weights. Under model (3.2), using the effective sample sizes and the effective sample 

counts, an approximate estimate of the MSE of the EP (3.4) is 

         EP 2 2 2
1 2 3

ˆ ˆ ˆ ˆmse 2 .i u i u i ui eP m m m      (3.12) 

This estimate of MSE is based on an approximation that is analogous to the one used with the linear 

mixed model, see Rao and Molina (2015, Chapter 5, page 100-107), Saei and Chambers (2003) and 

Manteiga et al. (2007). To define three components of MSE (3.12), let 1ˆˆ ,T  Σ Z BZ Ω

  * 1diag iN X HX  and   * 1diag ,iN Z HZ  where 

                                   
 

     EP EP

ˆ

ˆ ˆdiag 1 ; 1, ,i e i e

h
P P i D




   

 η η

η
H

η
   

and 

        
2

1 EP EP

ˆ

ˆ ˆdiag 1 ; 1, ,i e i e i eT

l
n P P i D


  

    
η η

B
η η

   

is the matrix of second derivatives of 1l  (the log-likelihood function 1l  defined by the vector  s ey  given 

)u  with respect to η  at ˆ .η η  Following McGilchrist (1994), we can write the variance-covariance matrix 

as  

                                      11 12

1
21 22

ˆ ˆ
ˆ ,

ˆ ˆ ˆ ˆ

T T T

T T

    
                

X 0 0 X BX X BZ V V
V B X Z

Z 0 Ω Z BX Σ V V
  

so that 

                                 

1

11 121

21 22

ˆ ˆ
ˆ

ˆ ˆ ˆ

T T

T






       

X BX X BZ A A
V

Z BX Σ A A
  

where we have partitioned both V̂  and its inverse 1ˆ V  according to the dimensions of β  and .u  Here
 1

1
11

ˆ ˆT T T


   A X BX X BZΣ Z BX  and     1 1 1
22 11

ˆ ˆˆ ˆ ˆ .T T   A Σ Σ Z BX A X BZ Σ  We put  =  
* 1ˆ Z Σ  and let  

*
kZ  denote the thk  row of the matrix *,Z  with its derivative given by 

  
    

     
2 2 2 2

* 1
22 * 1 1 * 1 1 1 1

2 2
ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆˆ
u u u u

k k
uk k k

u u   


 


      

 

 
    

 

Z Σ
Z Σ Σ Z Σ Ω Ω Σ   

where  ˆˆ .T T  Σ Z B BZΩZ B Z  With this notation, assuming model (3.2) holds and using the effective 

sample sizes and the effective sample counts, the components of MSE estimate (3.12) are 
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2 * 1 *
1

2 * * 1
2 11

2 2
3

ˆˆ ,

ˆ ˆˆ with , and

ˆˆ ˆtrace .

T T
i u i i

T T T
i u i i

TT
i u i u ik l

m
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m v





 









 

   

z Z Σ Z z

z CA C z C = X Z Σ Z BX

z Σ z 

  

Here  2ˆ uv   is the asymptotic covariance matrix of 2ˆ ,u  which is obtained as the inverse of the 

appropriate Fisher information matrix for 2ˆ .u  If the REML estimate of 2
u  is used, then  2ˆ uv  =  

       12 42 2
1 11ˆ ˆ2 2u uD t t 

    with    12
1 22

ˆˆ traceut   A  and  11 22 22
ˆ ˆtrace .t  A A  

The MSE estimate of the SEP (3.11) is defined similarly. Replacing  2ˆ uΩ  by  ˆ
spΩ δ  and û  by v̂  in 

(3.12), this MSE estimate is  

                                        SEP
1 2 3

ˆ ˆ ˆˆmse 2 ,sp sp sp
i i ii eP m m m  δ δ δ  (3.13) 

where under (3.5), the three components of (3.13) are defined as follows. Put 

                                            

  

1

* 1

* 1

ˆˆ ,

diag ; 1, , ,

diag ; 1, , ,

T
sp sp sp

sp i sp

sp i sp

N i D

N i D









 

 

Σ Z B Z + Ω

Z H Z

X H X





  

with 

                                                 SEP SEPˆ ˆdiag 1 ; 1, ,sp d i e i en P P i D  B    

and 

                                                SEP SEPˆ ˆdiag 1 ; 1, , .sp i e i eP P i D  H    

Then 

                                     
   
    

* 1 *
1

1
1

2

ˆ ˆ ,

ˆ ˆ

sp T T
i i sp sp sp i

sp T T T T T
i i sp sp sp sp sp sp i

m

m








 

δ z Z Σ Z z

δ z C X B X X B ZΣ Z B X C z
  

with * * 1ˆ ,T
sp sp sp sp sp

 C X Z Σ Z B X  and 

                                               3
ˆ ˆˆtracesp sp spTT

i i sp ik lm v   δ z Σ δ z    

with  ˆˆ .T T
sp sp sp sp sp
  Σ Z B B ZΩ Z B Z  Here,  ˆv δ  is the asymptotic covariance matrix of the 

estimators of the variance component parameters ˆ ,δ  

                                            
    

       
* 1

* 1 1 1 1

2
ˆ ˆ

ˆ ˆˆ ˆ ,
ˆ ,

sp
spk "sp ksp

sp sp sp spk sp kT
u 


   

 

 
  

 
δ δ δ δ

Z Σ
Z Σ Ω δ Ω δ Σ

δ
   

where * 1ˆsp
sp sp

 = Z Σ  and  
*
sp kZ  is the thk  row of * .spZ  
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4  Empirical results 
 

In this section we discuss application of the SAE methods introduced in the previous section to real 

survey data in order to generate estimates of the proportion of poor rural households at district level in the 

State of Uttar Pradesh in India. We use survey data from the 2011-12 HCES of the Indian NSSO and the 

2011 Indian Population Census, and assume a binomial specification for the “effective” district level sample 

counts of poor rural households. The small area predictors that we consider, and their associated MSE 

estimators, are summarised in Table 4.1. We first describe some important diagnostic measures that can be 

used to examine the assumptions of the underlying models, and to validate the empirical performances of 

the different SAE methods. 

 
Table 4.1 
Definition of various small area predictors 
 

Predictor Description MSE Estimation  

DIR Direct survey estimate Variance of DIR given in Section 3 
EP EP (3.4) under model (3.1) MSE estimate (3.12) 
SEP1 Spatial EP (3.11) under model (3.6) + weights (3.7) MSE estimate (3.13) 
SEP2 Spatial EP (3.11) under model (3.6) + weights (3.8) MSE estimate (3.13) 
SEP3 Spatial EP (3.11) under model (3.6) + weights (3.9) MSE estimate (3.13) 
SEP4 Spatial EP (3.11) under model (3.6) + weights (3.10) MSE estimate (3.13) 

 
4.1  Diagnostic measures  
 

In SAE applications, two types of diagnostic measures are commonly employed, model diagnostics and 

diagnostics for the small area estimates (Brown, Chambers, Heady and Heasman, 2001). The main purpose 

of model diagnostics is to verify the distributional assumptions of the underlying small area model, i.e., how 

well this working model performs when it is fitted to the survey data. The small area estimate diagnostics, 

on the other hand, provide an indication of the reliability (and validity) of the model-based estimates 

produced by different SAE methods. 

In the small area models defined by (3.1) and (3.6), the random area effects are assumed to have a normal 

distribution with mean zero and fixed variance. If the model assumptions are satisfied then the area (or 

district) level residuals are expected to be randomly distributed around zero. These residuals are calculated 

as    
ˆˆ T

i ii e er   x β  and    
ˆˆ spT

i ii e er   x β  under models (3.1) and (3.6), respectively. Histograms and 

normal probability  q q  plots can be used to examine the normality assumption. Figure 4.1a, b, c 

displays the histogram of the district-level residuals (upper plot), the normal probability  q q  plot of the 

district-level residuals (middle plot) and the distribution of the district-level residuals (lower plot) for 

different small area methods. We also use the Shapiro-Wilk test (via the .shapiro test  function in R) to test 

the normality of the random area effects. These test results for the different SAE methods are reported in 

Table 4.2, with p -values lower than 0.05 indicating that the data deviate from normality. In Figure 4.1a ,b,c, 

the district level residuals for all SAE methods appear to be randomly distributed around zero, as expected. 

In addition, the histograms and the q q  plots in Figure 4.1a, b, c also provide evidence in support of the 

normality assumption. Also, from Table 4.2, we see that the Shapiro-Wilk p -values are large for all the 

SAE methods. We conclude that the area random effects are likely to be normally distributed. 
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Figure 4.1a Histograms of the district-level residuals generated by the different SAE methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.1b Normal q q  plots of the district-level residuals generated by the different SAE methods. 
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Figure 4.1c Distributions of the district-level residuals generated by the different SAE methods. 
 

 

 

Table 4.2 
Shapiro-Wilk test results for normality of district-level random effects 
 

SAE Method Test statistics value (W) p-value 

EP 0.988 0.764 
SEP1 0.989 0.771 
SEP2 0.984 0.491 
SEP3 0.982 0.391 
SEP4 0.982 0.399 

 

 

A set of diagnostics that can be used for assessing the validity and the reliability of the model-based 

small area estimates are described in Brown et al. (2001). These diagnostics are based on the argument that 

model-based small area estimates should be (a) consistent with unbiased direct survey estimates, i.e., they 

should provide an approximation to the direct survey estimates that is consistent with these values being 

“close” to the expected values of the direct estimates; and (b) more precise than direct survey estimates, as 

evidenced by lower mean squared error estimates, i.e., the model-based small area estimates should have 

mean squared errors significantly lower than the variances of corresponding direct survey estimates. We 

consider four commonly used diagnostics measures that address these requirements, a bias diagnostic, a 

goodness of fit test, a 95 percent confidence interval diagnostic, and a percent coefficient of variation (CV) 

diagnostic. The first two diagnostics assess the validity and last two assess the reliability or improved 

precision of the model based small area estimates. In addition, we implemented a calibration diagnostic 
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where the model-based estimates are aggregated to higher level and compared with direct survey estimates 

at this level. See for example, Chandra et al. (2011). Note that here direct estimates are defined as the survey 

weighted direct estimates. 

The bias diagnostic is based on following idea. The direct survey estimates are unbiased estimates of the 

population values of interest (i.e., true values). If the model-based estimates are “close” to the small area 

values of interest, then unbiased direct survey estimators should behave like random variables whose 

expected values correspond to the values of the model-based estimates. A Goodness of Fit (GoF) diagnostic, 

which is equivalent to a Wald test, for whether the differences between direct and model-based estimates 

have a zero mean, can therefore be applied (Brown et al., 2001). This Wald test statistic is computed as 

 
 

   

2
DIR Model based estimate

DIR Model based estimate

-
W .

mse -
i i

i
i iv




   

The value of W is compared against the 95th percentile of a chi square distribution with D  degrees of 

freedom. Here 71D   and this 95th percentile value is 91.670. The results from GoF diagnostic are set out 

in Table 4.3. We also calculated the average bias (Bias) and average relative difference (RE) between the 

direct and the model-based estimates, where 

                                          1 Model based estimate DIRBias -  i ii
D     

and 

                                           1
Model based estimate DIR

DIR

-
RE .i i

i
i

D 
 

 
 

   

Table 4.4 shows the values of Bias and RE for different SAE methods. The results set out in Tables 4.3 

and 4.4 clearly show that the model-based estimates generated by the different SAE methods are consistent 

with the direct survey estimates. Finally, in Figure 4.2 we provide a set of bias diagnostic plots, defined by 

plotting direct survey estimates (Y -axis) against corresponding model-based estimates ( X -axis) and 

testing for divergence of the regression line from the Y X  line. These plots show that the model-based 

estimates are less extreme when compared to the direct survey estimates, demonstrating the typical SAE 

outcome of shrinking more extreme values towards the average. The values of R2 for the fitted (OLS) 

regression line between the direct survey estimates and the EP, SEP1, SEP2, SEP3 and SEP4 estimates are 

97, 93, 94, 92 and 96 per cent respectively. In general, these different bias diagnostics all show that the 

estimates generated by all the SAE methods appear to be consistent with the direct survey estimates.  

 

Table 4.3 
Goodness of Fit Diagnostic 
 

SAE Method Goodness of Fit* 

EP 23.645 
SEP1 30.727 
SEP2 27.784 
SEP3 30.930 
SEP4 24.442 
*A small value (< 91.670 in this case) indicates no statistically significant difference between model-based and direct estimates. 
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Table 4.4 
Bias diagnostics between for direct survey (weighted) versus model based estimates 
 

SAE Method Bias RE 

EP 0.0023 0.2068 
SEP1 0.0007 0.2155 
SEP2 0.0016 0.1935 
SEP3 0.0013 0.2096 
SEP4 0.0016 0.2028 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.2 Bias diagnostic plots with y = x line (dotted) and regression line (solid) for proportion of poor rural 

households in Uttar Pradesh: model-based estimates versus direct survey (weighted) estimates.  
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A second set of diagnostics assess the reliability and improved precision of the model-based estimates 

relative to the direct survey estimates. The percent coefficient of variation (CV) is the estimated sampling 

standard error as a percentage of the estimate. Small area estimates with large CVs are considered unreliable. 

There is no international standard for what constitutes “too large” in this context (Chandra et al., 2011 and 

Johnson et al., 2010), but in general, CVs below 10 per cent are preferable for district level estimates. 

Table 4.5 provides a summary of CVs of the direct survey estimates and the model-based estimates 

generated by the different SAE methods. The results set out in Table 4.5 lead to two conclusions. First, the 

CVs of the direct estimates are larger than the CVs of the model-based estimates. Furthermore, the relative 

performances of the model-based methods as compared to the direct survey estimates improve with 

decreasing district specific observed (or effective) sample sizes. That is, the estimates computed from the 

different model-based approaches are more reliable and provide a better indication of rural poverty 

incidence in Uttar Pradesh. Second, among five model-based SAE methods considered in this analysis, the 

CVs of the spatial EP (3.11), based on the spatial model (3.6) with proximity matrix defined by the four 

different spatial proximity functions corresponding to SEP1, SEP2, SEP3 and SEP4 are all smaller than the 

CV of the EP (3.4) under the non-spatial model (3.1). That is, the use of spatial information improves the 

efficiency of the SAE method. In particular, SEP3 appears to be the best performing method of the four 

spatial methods that were investigated. In what follows we therefore focus on the SEP3 predictor only. 

 

Table 4.5 
Distributions of CVs for different methods 
 

Value DIR EP SEP1 SEP2 SEP3 SEP4 

Minimum 12.92 13.02 12.82 12.73 12.62 12.73 
Q1 22.16 20.26 19.02 19.91 19.02 19.59 
Median 30.81 24.42 23.76 24.20 22.92 23.78 
Mean 35.68 25.35 24.11 24.94 23.95 24.80 
Q3 47.64 30.52 27.78 29.12 27.97 29.36 
Maximum 99.06 43.21 39.49 42.97 38.56 42.00 

 

Figure 4.3 shows the district-wise distribution of the CVs of the DIR, EP and SEP3 methods. These show 

that direct survey estimates of poverty incidence are unstable with CVs that vary from 12.92 to 99.06% with 

average of 35.68%. Furthermore, the CVs of the direct survey estimates are greater than 40% and 50% in 7 

and 14 (out of 71) districts respectively (see Figure 4.3). In contrast, the average CV values of EP and SEP3 

are 25.35% and 23.95% respectively, and the CV of SEP3 is smaller than that of EP in 69 out of 71 districts. 

The district-wise plot of the 95 percent confidence intervals (CIs) generated by DIR and SEP3 are 

displayed in Figure 4.4. This shows that the 95% CIs for the direct estimates are wider than the 95% CIs for 

the model based estimates generated by SEP3. We supplement this visual exploration of 95% CIs by 

computing the values of the coverage diagnostic described in Brown et al. (2001) as a way of evaluating the 

validity of the confidence intervals generated by the model-based estimates. Here we first calculate adjusted 

95% confidence intervals for the direct and model-based estimates using the district-wise critical values 

          DIR model-based estimate DIR model-based estimate1.96 mse mse .i i i i ic v v     
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We then count the number of times these adjusted intervals do not overlap. Nominally, this non-coverage 

rate should be at most 5%. The observed non-coverage rates for EP and SEP3 methods are 1.41% and 2.82% 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 District-wise coefficients of variation (%) plot for the DIR (dash line, ), EP (thick line,) and SEP3 
(solid line,) estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 District-wise 95 percent confidence interval plots for the direct estimates (thick line, ) versus SEP3 
estimates (solid line,).  
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Finally, we investigate the calibration properties of the model-based district-level estimates at higher 

(e.g., State or Region) level. Let ˆ
iP  and iN  denote the estimate of proportion of poor household and 

population size for district .i  The state-level estimate of the proportion of poor households is calculated as

1 1
ˆ ˆ .

D D

i i ii i
P N P N

 
    Uttar Pradesh is divided into Central, Eastern, Western and Southern regions, 

and calibration properties can also be examined for these regions. State and regional level estimates of the 

proportion of poor rural households generated by the different SAE methods are reported in Table 4.6. 

Comparing these with the corresponding direct estimates we see that the model-based estimates are very 

close to the direct survey estimates as state level as well in each of the four regions.  

 
Table 4.6 
Aggregated level estimates of proportion of poor household generated by different SAE methods. These 
estimates are aggregated over 71 districts at state level as well as four regional levels 
 

Region DIR EP SEP1 SEP2 SEP3 SEP4 

State 0.26 0.26 0.26 0.26 0.26 0.26 
Central 0.34 0.32 0.34 0.33 0.33 0.33 
Eastern 0.31 0.30 0.31 0.30 0.31 0.31 
Southern 0.26 0.27 0.27 0.27 0.27 0.28 
Western 0.15 0.17 0.16 0.17 0.16 0.16 

 
4.2  Discussion of results 
 

The analysis set out in the previous sub-section clearly demonstrates that model-based estimates 

generated by the different methods considered in the study are consistent with the direct survey estimates. 

Furthermore, CV values, 95% CIs and coverage diagnostic values also show that the model-based estimates 

are reliable and more stable than the corresponding direct survey estimates. Consequently the model-based 

SAE estimates, and in particular those generated by the SEP3 method, can be recommended for use by 

various stakeholders for policy planning and implementation. In Figure 4.5 we display the poverty map 

showing the estimated proportion of poor rural households (i.e., poverty incidence) in different districts of 

Uttar Pradesh produced by the SEP3 method. This map provides poverty distribution in the state of Uttar 

Pradesh. This map shows the district-wise degree of inequality with respect to the distribution of poor rural 

households, defined as a household having monthly per capita consumer expenditure below the state poverty 

line. An accompanying map showing the CV of SEP3 in the different districts is also presented in Figure 4.6. 

These maps are supplemented by the results set out in Table 4.7, where we report the district-wise estimates 

along with CVs and 95% confidence intervals generated by DIR and SEP3. For example, in the western part 

of Uttar Pradesh there are many districts with low rural poverty incidence such as Saharanpur, Hathras, 

Meerut, Baghpat, Muzaffarnagar, Bulandshahar etc. Similarly, in the eastern part and in Bundelkhand region 

(north-east part of map) we see a number of districts (for example, Azamgarh, Sitapur, Chitrakoot, Bahraich, 

Siddharthnagar, Banda, Fatehpur, Basti and Kaushambi etc) with a high level of rural poverty incidence. 

Further, in Table 4.6 we see that the SEP estimated rural poverty incidence is lowest for the Western region 

(16%) and highest for the Central (33%) region, while the state average is around 26%. In Table 4.7, the 
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district-wise estimates of rural poverty incidence generated by SEP3 vary from minimum of 6% to a 

maximum of 50%. The spatial inequality in the distribution of rural poverty incidence in different districts 

of the State of Uttar Pradesh is clearly visible in Figure 4.5 and from the estimates set out in Tables 4.6 and 

4.7. This should prove useful for policy planners and administrators aiming to take effective financial and 

administrative decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 District-wise distribution of rural poverty incidence in the State of Uttar Pradesh generated by 
SEP3 method. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.6 District-wise distribution of percent coefficient of variation for SEP3 method. 
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Table 4.7 
District-wise direct estimates (DIR) and model-based estimates (SEP3) along with their CVs (expressed in 
percentage terms) and corresponding 95 percent confidence intervals for poverty incidence in the state of Uttar 
Pradesh in 2011-12 
 

Region District Estimated poverty incidence 95 percent confidence intervals Coefficient of variation, %

DIR SEP3 DIR SEP3 DIR SEP3 

Lower Upper Lower Upper 

Western Saharanpur 0.07 0.07 0.00 0.14 0.03 0.12 53.16 33.10 
Muzaffarnagar 0.05 0.07 0.00 0.10 0.03 0.12 52.36 33.10 
Bijnor 0.17 0.17 0.06 0.28 0.08 0.25 31.79 25.41 
Moradabad 0.13 0.15 0.06 0.20 0.07 0.23 28.41 26.67 
Rampur 0.24 0.20 0.08 0.40 0.10 0.30 34.35 25.98 
Jyotiba P. Nagar 0.27 0.23 0.10 0.44 0.11 0.34 31.69 25.92 
Meerut 0.00 0.06 0.00 0.00 0.02 0.11 78.83 38.27 
Baghpat 0.14 0.11 -0.04 0.32 0.03 0.19 65.87 36.49 
Ghaziabad 0.05 0.10 -0.02 0.12 0.03 0.17 68.16 36.06 
G. B. Nagar 0.02 0.08 -0.02 0.06 0.02 0.14 99.06 38.56 
Bulandshahr 0.10 0.09 0.03 0.17 0.04 0.15 36.60 28.15 
Aligarh 0.18 0.23 0.01 0.35 0.11 0.35 47.56 26.91 
Mahamaya Nr 0.01 0.07 -0.01 0.03 0.02 0.12 82.97 36.75 
Mathura 0.18 0.17 0.05 0.31 0.08 0.26 38.23 27.59 
Agra 0.19 0.20 0.07 0.31 0.11 0.30 32.75 24.25 
Firozabad 0.25 0.23 0.09 0.41 0.12 0.34 32.69 24.38 
Etah 0.13 0.15 -0.01 0.27 0.06 0.24 56.82 29.95 
Mainpuri 0.45 0.33 0.22 0.68 0.19 0.47 26.57 21.72 
Budaun 0.23 0.20 0.07 0.39 0.10 0.30 35.57 25.00 
Bareilly 0.05 0.10 -0.01 0.11 0.04 0.17 57.98 31.89 
Pilibhit 0.18 0.18 0.01 0.35 0.08 0.28 47.72 27.93 
Shahjahanpur 0.27 0.25 0.11 0.43 0.14 0.36 30.39 22.01 
Farrukhabad 0.18 0.17 0.01 0.35 0.08 0.27 49.26 28.16 
Kannauj 0.31 0.28 0.10 0.52 0.15 0.40 35.37 22.92 
Etawah 0.09 0.15 -0.02 0.20 0.06 0.25 62.63 31.55 
Auraiya 0.15 0.18 0.04 0.26 0.08 0.28 36.53 28.02 
Kansiram Nr 0.16 0.12 0.02 0.30 0.04 0.20 46.20 33.33 

Central Kheri 0.30 0.31 0.16 0.44 0.20 0.43 24.31 18.96 
Sitapur 0.32 0.32 0.20 0.44 0.22 0.42 19.56 16.59 
Hardoi 0.26 0.26 0.15 0.37 0.16 0.36 22.25 19.46 
Unnao 0.57 0.49 0.42 0.72 0.37 0.61 13.36 12.69 
Lucknow 0.35 0.35 0.17 0.53 0.22 0.47 26.02 18.10 
Rae Bareli 0.37 0.36 0.25 0.49 0.25 0.46 16.46 14.64 
Kanpur Dehat 0.15 0.22 -0.04 0.34 0.10 0.33 63.88 26.47 
Kanpur Nagar 0.12 0.20 0.02 0.22 0.10 0.31 41.19 26.53 
Fatehpur 0.52 0.46 0.38 0.66 0.33 0.58 13.88 14.04 

Southern Jalaun 0.21 0.24 0.06 0.36 0.12 0.35 35.70 24.86 

Jhansi 0.12 0.16 0.00 0.24 0.07 0.25 48.97 29.13 

Lalitpur 0.14 0.17 0.00 0.28 0.06 0.29 52.16 33.90 

Hamirpur 0.17 0.25 -0.02 0.36 0.11 0.40 55.55 29.20 

Banda 0.49 0.40 0.28 0.70 0.25 0.55 21.36 19.04 

Chitrakoot 0.20 0.27 -0.03 0.43 0.12 0.43 59.47 28.95 

Mahoba 0.35 0.33 0.20 0.50 0.21 0.45 21.38 18.87 
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Table 4.7 (continued) 
District-wise direct estimates (DIR) and model-based estimates (SEP3) along with their CVs (expressed in 
percentage terms) and corresponding 95 percent confidence intervals for poverty incidence in the state of Uttar 
Pradesh in 2011-12 
 

Region District Estimated poverty incidence 95 percent confidence intervals Coefficient of variation, %

DIR SEP3 DIR SEP3 DIR SEP3 

Lower Upper Lower Upper 

Eastern Maharajganj 0.35 0.34 0.02 0.68 0.17 0.52 48.51 26.07 

Pratapgarh 0.45 0.41 0.31 0.59 0.29 0.53 15.77 14.71 

Kaushambi 0.45 0.32 0.28 0.62 0.19 0.46 19.16 21.16 

Allahabad 0.24 0.27 0.11 0.37 0.16 0.38 27.21 20.78 

Bara Banki 0.50 0.45 0.32 0.68 0.32 0.58 17.86 15.11 

Faizabad 0.29 0.32 0.11 0.47 0.19 0.45 30.81 21.06 

Ambedkar Nr 0.31 0.34 0.18 0.44 0.22 0.46 20.62 17.70 

Sultanpur 0.21 0.24 0.11 0.31 0.15 0.32 24.39 19.03 

Bahraich 0.49 0.47 0.32 0.66 0.33 0.61 17.90 15.14 

Shrawasti 0.36 0.33 0.16 0.56 0.19 0.48 28.08 21.80 

Balrampur 0.20 0.23 0.05 0.35 0.11 0.35 39.42 26.68 

Gonda 0.27 0.29 0.15 0.39 0.18 0.40 22.81 18.76 

Siddharth Nr 0.26 0.26 0.14 0.38 0.15 0.36 23.43 20.87 

Basti 0.58 0.50 0.43 0.73 0.38 0.62 12.92 12.62 

Sant Kabir Nr 0.33 0.32 0.18 0.48 0.20 0.44 23.54 19.13 

Gorakhpur 0.28 0.27 0.17 0.39 0.18 0.37 19.90 17.88 

Kushinagar 0.21 0.23 0.10 0.32 0.13 0.32 26.53 21.49 

Deoria 0.35 0.33 0.20 0.50 0.21 0.45 21.49 18.38 

Azamgarh 0.32 0.32 0.21 0.43 0.21 0.42 18.15 16.69 

Mau 0.15 0.24 0.03 0.27 0.12 0.37 39.89 26.03 

Ballia 0.27 0.28 0.12 0.42 0.15 0.40 27.64 22.42 

Jaunpur 0.18 0.23 0.09 0.27 0.13 0.33 25.01 21.55 

Ghazipur 0.24 0.25 0.14 0.34 0.16 0.34 21.56 19.26 

Chandauli 0.19 0.20 0.06 0.32 0.10 0.30 34.87 25.62 

Varanasi 0.19 0.19 0.08 0.30 0.11 0.28 28.43 22.47 

S. R. Das Nr 0.51 0.41 0.34 0.68 0.28 0.54 17.40 16.46 

Mirzapur 0.24 0.24 0.14 0.34 0.14 0.34 22.06 21.25 

Sonbhadra 0.38 0.35 0.21 0.55 0.22 0.48 22.77 21.25 

 
5  Concluding remarks 
 

In this article we describe a spatial extension of the area level version of the GLMM and consider SAE 

of survey weighted proportions under this model. We introduce spatial dependence in the error structure of 

GLMM through a SAR process, and we explore different ways of incorporating the resulting spatial 

dependence into the small area estimates. We use effective sample size and effective sample count to 

account for the sampling design used in the survey. An analytical MSE estimator is also described. We then 

apply these SAE methods to real survey data in order to estimate rural poverty incidence and to produce a 

corresponding poverty map of the different districts for the Indian state of Uttar Pradesh. We evaluate our 

empirical results using several diagnostic measures and show that the model-based SAE methods provide 
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significant gains in efficiency for generating district level estimates of proportions of poor households. 

Furthermore, when spatial correlation between the districts is used appropriately, the model-based estimates 

lead to significant gains in terms of efficiency for the district level estimates. For these data, a spatial 

proximity measure defined as a Gaussian function of the distances between districts appears to be the most 

effective way of incorporating spatial association between the districts. Finally, use of survey information 

through effective sample size leads to more representative and realistic estimates. 

In the context of estimation of small area counts under unit level small area models, D’Alò, Di Consiglio, 

Falorsi, Ranalli and Solari (2012) describe several different ways that spatial information using different 

distance measures can be included in analysis. An exploration of these alternative approaches to including 

spatial information under area level versions of the corresponding small area models therefore seems 

worthwhile. Furthermore, in this article we use a SAR structure to capture the spatial dependence in the 

GLMM. However, as noted earlier, there are alternative approaches such as the use of CAR models as well 

as newly developed models for spatial nonstationarity that can be used to characterise this spatial 

dependence. See, for example, Besag et al. (1991), Leroux et al. (1999), Chandra et al. (2017, 2018). These 

approaches should be explored, and we are currently carrying out further research on them. 

Finally, we note that the district level estimates of rural poverty incidence produced using the methods 

outlined in this paper will be useful for various Departments and Ministries in Government of India as well 

as International organizations for their policy research and strategic planning. They will also be useful for 

budget allocation and to target welfare interventions by identifying the districts/regions with high rural 

poverty incidence. This application also provides evidence that SAE can be used as cost effective and 

efficient approach for generating reliable disaggregate level statistics from existing survey data by 

combining auxiliary information from different published sources with direct survey estimates.  
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Measurement error in small area estimation: Functional 
versus structural versus naïve models 

William R. Bell, Hee Cheol Chung, Gauri S. Datta and Carolina Franco1 

Abstract 

Small area estimation using area-level models can sometimes benefit from covariates that are observed subject 
to random errors, such as covariates that are themselves estimates drawn from another survey. Given estimates 
of the variances of these measurement (sampling) errors for each small area, one can account for the uncertainty 
in such covariates using measurement error models (e.g., Ybarra and Lohr, 2008). Two types of area-level 
measurement error models have been examined in the small area estimation literature. The functional 
measurement error model assumes that the underlying true values of the covariates with measurement error are 
fixed but unknown quantities. The structural measurement error model assumes that these true values follow a 
model, leading to a multivariate model for the covariates observed with error and the original dependent variable. 
We compare and contrast these two models with the alternative of simply ignoring measurement error when it is 
present (naïve model), exploring the consequences for prediction mean squared errors of use of an incorrect 
model under different underlying assumptions about the true model. Comparisons done using analytic formulas 
for the mean squared errors assuming model parameters are known yield some surprising results. We also 
illustrate results with a model fitted to data from the U.S. Census Bureau’s Small Area Income and Poverty 
Estimates (SAIPE) Program. 
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1  Introduction 
 

Linear mixed models, particularly that of Fay and Herriot (1979), have gotten great attention in small 

area estimation. The Fay-Herriot (FH) model can be written 

 = = = 1, ,i i i i i iY e z u i m       (1.1) 

where, for areas i  indexed from 1 to ,m  the iY  are direct survey estimates of population quantities ,i  the 

sampling errors ie  in iY  are assumed independent  0, iN D  with the iD  taken as known (they are actually 

estimated using survey micro-data), the iz  are 1q   vectors of regression covariates with corresponding 

coefficient vector ,  and the random effects iu  are distributed  2i.i.d. 0, uN   and independently of 

the .ie  

In some cases it may be desired to augment the model for i  with one or more covariates iX  that are 

themselves estimates taken from another survey that estimates characteristics believed to be related to .i  

One approach is to simply ignore the sampling error in ,iX  treating it like the covariates in iz  which we 

shall assume are not subject to sampling or other measurement errors. We shall call this the naïve Fay-

Herriot model, which, taking for simplicity the case of a single such covariate ,iX  we write as 

 ,= = .i i i i N i i N i NY e X z u        (1.2) 
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We add the “ ”N  subscripts to the regression coefficients and the random effects  ,i Nu  to distinguish this 

model from the measurement error models to come. The model assumes that , i.i.d.i Nu   2
,0, ,u NN   

although with heteroscedastic sampling error in iX  the assumption that  ,var i Nu  is constant is incorrect, 

implying that the model (1.2) is misspecified. This point is discussed further below. 

An alternative to the naïve FH model is to use a measurement error model to account for the sampling 

(measurement) error in .iX  Assume ix  denotes the population characteristic being estimated by iX  with 

sampling error ,i  where the i  are assumed distributed independently  0, iN C  and with the iC  taken 

as known (actually estimated using survey micro-data). A generalization of the model (1.1) to include the 

covariate iX  while accounting for its sampling error is 

 = =i i i i i i iY e x z u        (1.3) 

 = .i i iX x   (1.4) 

If the ix  are assumed to be fixed unknown quantities, then the model defined by (1.3)-(1.4) is known as the 

functional measurement error model (FME model). This model is discussed by Fuller (1987) and has been 

studied for small area estimation by Ybarra and Lohr (2008), Arima, Datta and Liseo (2015, 2016), and 

Arima, Bell, Datta, Franco and Liseo (2017). Analogous unit level measurement error models for small area 

estimation have been studied by Ghosh and Sinha (2007), Datta, Rao and Torabi (2010), and Arima, Datta, 

and Liseo (2012). 

Another alternative to the naïve FH model is to specify a model for ix  in (1.4) which, with (1.3), implies 

bivariate models for  ,i ix   and  , .i iY X   This is known as a structural measurement error model (SME 

model). If ix  follows the regression model = ,i xi x ix z v   with covariates xiz  and residuals i.i.d.iv   

 20, vN   independent of ,iu  then the resulting model for  ,i iY X   can be written as 

                                   
0

= i.i.d. 0, =
0

i i i i i

i i i i i

Y e e D
N

X x C



 

         
           
                  

  (1.5) 

                                           =
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i i ii xi

x i ixi

u v ez z
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2 2 2 2

2 2

i.i.d. 0, = .
i i u v v

i v v

u v
N

v

    

 

    
    
      

  (1.7) 

This model differs from a standard bivariate FH model in that the parameter   affects both the regression 

mean function for iY  and the random effect covariance matrix .  However, if the covariates xiz  are linear 

functions of the covariates ,iz  then the fixed effects regression part of (1.6) can be reparameterized to 

unrestricted linear regression effects  i y xi xz z        with regression covariates iz  for the first equation and 

xiz  for the second. With this reparameterization   no longer affects the regression fixed effects, so the 

matrix   can then be reparameterized in the general form = ,jk     or by 11 , 22 ,  and 
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 12 11 22= 1, 1 ,       as there is now a 1-1 correspondence between  2 2, ,u v    and 

 11 22 12, ,    or  11 22, , .    Two instances where this condition on xiz  holds are (i) if the regression 

covariates are the same in both equations  = ,xi iz z  or (ii) if xiz  is just an intercept term  = 1xiz  and iz  

also includes an intercept. 

Datta, Delaigle, Hall and Wang (2018) study the area level SME model, while Huang and Bell (2012) 

present a study examining use of general bivariate models for small area estimation. Analogous unit level 

models have been studied by Ghosh, Sinha and Kim (2006) and Torabi, Datta and Rao (2009). Fuller (1987) 

and Buonaccorsi (2010) discuss additional measurement error models including nonlinear models and the 

Berkson model. 

Note that the FME and SME models model the relation between the true unobserved quantities i  and 

,ix  whereas the naïve FH model models the relation between i  and the observed .iX  The iX  contain 

noise in the form of generally heteroscedastic sampling error, and this heteroscedasticity produces the naïve 

model’s misspecification noted earlier. 

If iY  and iX  are estimates from the same survey sample their sampling errors ie  and i  are likely to 

be correlated. This can be accommodated by replacing the off-diagonal 0 of   in (1.5) by the appropriate 

 cov ,i ie   (estimated using survey micro-data). While this works for the SME model, correlation between 

ie  and i  implies that the regressor iX  and sampling error ie  are correlated, violating a fundamental 

assumption of the FH model and causing potentially severe problems for the naïve FH model. Hence, we 

do not consider that situation here. 

In this paper we compare the three alternative models – naïve FH, functional measurement error, and 

structural measurement error – focusing on their predictive performance for small area estimation. One 

motivating case involves the use of the naïve FH model when measurement error  i  is present, comparing 

the naïve FH model’s predictive accuracy with those of the other two models. We also compare the 

predictive performance of the functional versus structural measurement error models. We make these 

comparisons using analytic formulas for the mean squared errors (MSEs) for the case where model 

parameters are known (first order approximations). This provides good approximations for the case when 

the number of areas m  is large. It is also relevant as the typically dominant term in the MSEs for smaller 

values of .m  Since the naïve FH model is misspecified, we make precise in what sense its parameters are 

“known”. 

Section 2 summarizes some theoretical results for the three alternative models, first on convergence of 

parameter estimates and then on small area prediction, covering both the point predictors and their MSEs. 

We provide results for the three models first for the case where the FME model is true, and then for the case 

where the SME model is true. Derivations of these results are deferred to a corresponding technical report 

(Bell, Chung, Datta, and Franco, 2018). Section 3 compares, via contour plots, the theoretical MSEs of small 

area predictors for the three models across ranges of the parameters of a true SME model. Section 4 uses 

the theoretical MSE formulas to compare prediction MSEs from the three models when they are applied to 
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an empirical example of modeling poverty rates of school-age children for U.S. counties. The example is 

taken from the U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program. 

Section 5 then gives general conclusions. 

 
2  Theoretical results 
 

To facilitate interpretation of the results, here we use the simplest possible versions of the models 

outlined in the Introduction, specifically, models where the vector of non-measurement error covariates 

reduces to just an intercept term, i.e., = 1.iz  To revert to fairly standard notation, we use   for the intercept 

coefficient instead of ,  so the simplified model for i  in the FME and SME models (from (1.3)) becomes 

 = .i i ix u     (2.1) 

For the SME model we assume that i.i.d.ix   2, xN    so there are no regression terms other than the 

mean   in the model for .ix  

For the naïve FH model (1.2), the simplified model for i  becomes 

 ,=i N N i i NX u     (2.2) 

where, as before, we use the N“ ”  subscript to distinguish the coefficients and random effects in the naïve 

model (2.2) for ,i  since this model differs from (2.1) by substituting iX  in place of .ix  

We now give some results on parameter estimation and small area prediction for these models. The 

Appendix of Bell et al. (2018) provides derivations of these results. 

 
2.1  Parameter estimators and their large sample limits 
 

The Appendix of Bell et al. (2018) details unbiased estimating equations for the parameters of the three 

models considered here. The resulting estimators of , ,  and 2
u  for the simplified versions of the FME 

and SME models are the same, and are given by 
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 (2.3) 

where 1
=1

= ,
m

ii
X m X   with analogous definitions of ,Y ,C  and .D  For fitting the SME model, we also 

have ˆ = X  and   212
=1

ˆ = .
m

x im i
X X C    Result 1 gives the probability limits of all these parameter 

estimators. 
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Result 1: For the FME and SME models given by (1.3)-(1.4) and by (1.5)-(1.7), respectively, but with the 

simplified model for i  as in (2.1), the parameter estimators given in (2.3) are consistent for the true model 

parameters, that is, 

 2 2ˆ ˆ ˆ
P P P

u u         (2.4) 

where 
P
  denotes convergence in probability as m    under the true model (whether FME or SME). 

For fitting the SME model when it is true, we also have ˆ
P   and 2 2ˆ .

P

x x   For fitting the SME 

model when the FME model is true, we have 1
=1

ˆ = lim
mP

m im i
x x    and 2 2ˆ =

P

x xs   

  21
=1

,lim
m

m im i
x x   with both limits assumed to exist. 

 

Remark 1: The estimators in (2.3) are the same for the two models despite being obtained from different 

estimating equations – see equations (19) and (20) versus equations (36)-(38) in Bell et al. (2018). The 

consistency results in (2.4) thus hold whether the true model is the FME or the SME. These consistency 

results also hold for the more general versions of these models considered in the Appendix of Bell et al. 

(2018). 

The parameter estimators for fitting the naïve FH model with the simplified model for i  as in (2.2) are 

given by 
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 (2.5) 

 

Result 2: When the FME model (or SME model) is true, the parameter estimators in (2.5) have the following 

probability limits: 

 
   

   

2 2 2
,

2 2 2
* * , *

ˆ ˆ ˆ1 FME model true

ˆ ˆ ˆ1 SME model true

P P P
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where the “attenuation factors” are given by  

    
2 2

*2 2
= FME model true = SME model true .x x

x x

s
a a

s C C


 

 (2.6) 

 

Remark 2: The results for convergence of ˆ
N  in Result 2 are versions of the well-known attenuation of 

the estimate of the regression parameter when measurement error is ignored – see Theil (1971, page 608) 
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for the FME case and Fuller (1987, page 3) for the SME case. The limit for 2
,ˆ u N  shows that the naïve FH 

model inflates the estimate of the model error variance 2
u  for the true model (whether FME or SME) by 

the amount 2a C  (or 2
* )a C  due to the failure of the naïve model to account for the measurement error. 

 

2.2  Small area predictors and their MSEs 
 

Result 3 lists the formulas for the predictors of i  for the three models. Note that any of these formulas 

will apply whenever the corresponding model is assumed and used for prediction, regardless of whether the 

true model is the FME, the SME, or some other model. The FME predictor ,î F  is given by Theorem 1 of 

Ybarra and Lohr (2008), while the naïve FH predictor ,î N  is simply the predictor of Fay and Herriot (1979) 

for the case of our simplified naïve FH model. Derivations for the more general models are given in the 

Appendix of Bell et al. (2018). 
 

Result 3: The predictors of i  from the simple versions of the FME, SME, and naïve FH models considered 

here are as follows: 

 

 

     
 

 

,
2 2

2

,
2 2 2 2

, 2
,

ˆˆ
ˆFME predictor: =

ˆˆ

ˆ ˆˆ ˆ
ˆSME predictor: =

ˆˆ ˆ ˆ

ˆˆ
ˆnaïve FH predictor: = .

ˆ

i i i

i F i

i u i

i i i i x i i

i S i

i u i x x i

i i N N i

i N i
i u N

D Y X
Y

D C

D Y X C C X X
Y

D C C

D Y X
Y

D

 


 

   


   

 




 


 

    


  

 




  

These are the empirical versions of the optimal predictors (best linear unbiased predictors) under their 

respective assumed models. 
 

Remark 3: Several special cases are worth noting from these results. First, as 0iD   all the predictors 

converge to the direct survey estimate ,iY  and since its sampling variance is then going to 0, all the 

predictors achieve design consistency assuming that iY  is itself design consistent. Second, if =iC C  it can 

be shown that the SME and naïve FH predictors agree while the FME predictor generally remains different. 

(The Appendix of Bell et al. (2018) shows that, for the more general model considered there, the SME and 

naïve FH predictors agree asymptotically when = .)iC C  Third, it can be seen that as 2ˆ x    the SME 

predictor converges to the FME predictor. The same holds as 0,iC   which implies in the limit that ix  is 

known. We can put these together and say that the SME and FME predictors behave similarly when 2
i xC   

is small. 
 

Remark 4: It can be shown that the formula for ,î S  can be obtained by taking the formula for ,î F  and 

replacing iX  in the numerator of the fraction by    = =i i i i i iE x X X E x X   

    2ˆ ,i x i iC C X X    and  = vari i iC X x  in the denominator of the fraction by  var =i ix X  

 2 2ˆ ˆ ,i x x iC C    these being the conditional mean and variance of ix  given iX  under the estimated 

model. 
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Table 2.1 gives, for the case when the FME model is true, the first order biases and prediction error 

variances of the three predictors. The MSEs are then the squared biases plus the variances. (The prediction 

error variance, and thus the MSE, for the FME model is given by Theorem 1 of Ybarra and Lohr (2008).) 

The results assume the true FME model parameters are known, but for the naïve FH model they account for 

the fact that the estimates of the parameters are biased as shown in Result 2. This gives a realistic 

approximation for the case when ,m  the number of areas, is large. The Table 2.1 entries for the SME model 

use the quantity 

    2 2 2 2= .i u i x i x iF D s C s C     (2.7) 

 
Table 2.1 
Biases and prediction error variances when the FME model is true 
 

Prediction model Bias Prediction error variance  

FME 0  2 2

2 2
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Table 2.2 gives the results for the case when the SME model is true. In this case all the predictors are 

unbiased in the sense that  ˆ = 0.i iE    Hence, the table just gives the prediction error variances, which 

are also the MSEs. For *
iF  in Table 2.2, we substitute 2

x  for 2
xs  in the expression (2.7), analogous to the 

definition of *a  in (2.6). 

 
Table 2.2 
Prediction error variances when the SME model is true 
 

Prediction model  Prediction error variance = MSE  

FME   2 2

2 2

u i i

u i i

C D

C D

 
 



 
  

SME   2 2

*

i x i
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i
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D
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naïve FH     
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u i i
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a C D D
a C C

a C D a C D

  
   

 
     

  

 
Several points are worth noting about the results of Tables 2.1 and 2.2. 

 
1. The results for the FME predictor are the same in both cases, i.e., whether the FME or SME 

model is true. To achieve unbiasedness under the assumption that the ix  are fixed, unknown 

quantities, the FME predictor eliminates them from the prediction error. Hence, its prediction 
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error results are not affected by whether the ix  actually are fixed and unknown or are random 

variables following some distribution, as the SME model assumes. 

2. When the FME model is true, the biases of the SME and naïve FH predictors are proportional to 

  ,ix x  which is unconstrained, and so can be arbitrarily large in magnitude. Hence, for areas 

where ix x  is large the squared bias can dominate the prediction MSE. Since the ix  are 

unobserved it will typically be difficult to estimate the squared bias (unless the iC  are small so 

the iX  are very good estimators of the ,ix  in which case the motivation to use a measurement 

error model diminishes). 

3. The MSEs in Table 2.2 for the SME and naïve models can be obtained by taking the expressions 

for squared bias plus prediction error variance from Table 2.1, substituting 2
x  for 2

xs  and also 

for   2 ,ix x  and simplifying. This is the difference between assuming the ix  fixed and 

unknown versus assuming i.i.d.ix   2, .xN    

4. As noted earlier, if an area has =iC C  then the SME and naïve FH predictors agree. Hence, 

when =iC C  the biases, error variances, and MSEs of the SME and naïve FH predictors are the 

same. If the SME model is true then the SME predictor is optimal, and thus so is the naïve FH 

predictor for areas with = ,iC C  in which case both are superior to the FME predictor. In fact, 

comparing the MSEs of the naïve and FME predictors from Table 2.2, and given that *0 < 1,a  

one can show directly that the FME predictor’s MSE is larger when = .iC C  

5. When the SME model is true, for areas with =iC C  the “reported MSE” for the naïve FH model 

will agree with the true MSE. The reported MSE is the MSE one would compute assuming the 

naïve model to be true, and is given by the first term in the naïve FH MSE expression in Table 2.2. 

The second term is obviously zero when = ,iC C  and is positive when > .iC C  We thus see that 

when >iC C  the reported MSE understates the true MSE, while when <iC C  the second term 

in the MSE is negative so the reported MSE overstates the true MSE. The misspecification of the 

naïve FH model when the SME model is true can thus lead to substantial misstatement of the 

MSEs except for areas for which iC  is close to .C  
 

An implication of points 4 and 5, and the analogous result stated earlier for the point predictors, is that 

if =iC C  for all = 1, , ,i m  then the prediction results for the SME and naïve FH models are the same. 

This provides some basis for the statement sometimes made that measurement error in covariates doesn’t 

affect model prediction. Put another way, this statement is true only if the iC  are constant for all areas, and 

only when comparing prediction results for the naïve FH model to those for the SME model. Prediction 

results for the FME model will be different. 

 
3  Comparing MSEs for the alternative predictors 
 

We now compare the performance of the three alternative model predictors when applied to data from a 

true SME model, making such comparisons across a range of values for the model parameters and the iD  
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and iC  values. The comparisons use the MSE results of Table 2.2, examining percentage differences in the 

MSEs calculated, for example, as 

 
MSE

100 1
MSE

F

S


 

 
 (3.1) 

for comparing MSEs of the FME and SME predictors. We similarly define the analogs to (3.1) for 

comparing MSEs for the naïve FH and FME predictors, and of the naïve FH and SME predictors, as well 

as for comparing the reported and actual MSEs of the naïve FH predictor. Assuming that the SME model is 

true facilitates the comparisons. Assuming that the FME model is true leads to the complication that the 

MSEs for the structural and naïve models depend on ix  (Table 2.1), which has unrestricted variation over 

areas. Section 4 nonetheless makes some MSE comparisons under a true FME model. 

For making relative comparisons as in (3.1) the scale of the data doesn’t matter, so rescaling to i uY   

will not affect these comparisons. This is also true for rescaling iX  to .i xX   These rescalings reduce the 

number of varying parameters we need to consider by two, which lets us express 21 u  times MSE ,F

MSE ,S MSE ,N  and MSE N  (the reported MSE for the naïve FH predictor), all computed assuming the 

SME model is true, in terms of the following four scale independent quantities: 

  
2 2 2

= , = , = corr , , = .i i
D C i i C

u x x

D C C
r r x r 

  
 (3.2) 

The Appendix illustrates such re-expression for the calculation of 2MSE .S u  To simplify the notation, we 

omit the i  subscript from Dr  and ,Cr  though except in the unusual situation where the iD  and iC  are 

actually constant over areas, one needs to compute the MSE expressions separately for each area .i  To 

compare MSEs we examine contour plots over  ,D Cr r  for each of the MSE percentage differences defined 

as in (3.1), viewing the MSE percentage difference as a function of  , .D Cr r  We examine such plots for 

fixed values of   and Cr  (which do not vary over ).i  

Figure 3.1 gives contour plots of (3.1) for =  0.3 and =  0.7. The x- and y-axes of the plots, 

representing the values of Dr  and ,Cr  range from 0.1 to 10, and are shown with log scaling. We need not 

set Cr  for these comparisons because MSE F  and MSE S  do not depend on .C  The results in the plots are 

easy to summarize: the percentage differences are all positive, favoring the SME model which here is 

assumed to be true, and the differences increase with both Dr  and ,Cr  so that the more sampling or 

measurement error is present, the larger is the advantage to use of the SME predictor. When either Dr  or Cr  

is small, say generally below 1, the MSE percentage differences are small, which is why no contours show 

up plotted in this area, and choice of model has little effect on prediction accuracy. In fact, when both Dr  

and Cr  are sufficiently small the FME and SME predictors are both close to the direct estimator ,iY  leading 

to small MSE differences, a pattern repeated in subsequent graphs. Towards the upper right corner the MSE 

percentage differences become substantial in both graphs, larger for =  0.7. Analysis of the formula for 

MSE MSEF S  reveals that, for given values of Cr  and ,Dr  the MSE percent differences increase with 
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> 0  to the point where    
0.5

= 1 1 1 ,C C Dr r r


      and then they decline to 0 as   increases 

to 1. Over the range of values  1, 10  for Cr  and ,Dr  this maximum point varies from about =  0.57 to 

=  0.91. Note that the results for   and for   would be the same since the MSEs actually depend 

on 2 .  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Contours of  100 MSE MSE 1F S   for two values of   when the SME model is true. 

 
For the other MSE comparisons, which are shown in Figures 3.2-3.4, the percentage differences depend 

on all four quantities in (3.2). To get a general idea of how the comparisons vary, we take =  0.7 as a 

representative value, and examine contour plots for =Cr  0.1, 1, and 10. It is worth noting that the analogous 

plots done for =  0.3, 0.5, and 0.9, not shown here, present similar patterns, though with the patterns 

generally shifted somewhat in location on the plots, and typically with contours representing lower or higher 

percentage differences. 

Figure 3.2 shows contour plots of  100 MSE MSE 1 ,N F   comparing MSEs for the naïve and FME 

predictors. In these plots we see both positive and negative contours, indicating regions where the FME 

predictor does better, and other parts where the naïve FH predictor does better. The patterns in these plots 

can be understood by keeping in mind that (i) for small values of Cr  the FME predictor acts like the SME 

predictor, which here is optimal, so the FME predictor performs well, and (ii) for Cr  close to Cr  the naïve 

FH predictor acts like the SME predictor and so performs well. Thus, in the plot for =Cr  0.1, both the FME 

and naïve FH predictors perform similarly to the optimal SME predictor for small values of ,Cr  so there is 

little difference in their MSEs. Apart from this case where both perform well, the naïve FH predictor 

performs better when Cr  is sufficiently close to ,Cr  where the meaning of “sufficiently close” depends on 

the values of Cr  and .Dr  
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Figure 3.2 Contours of  100 MSE MSE 1N F   for =  0.7 and =Cr  0.1, 1, and 10 when the SME model is 
true.  

 

The results in Figure 3.2 showing that for certain regions the naïve FH predictor has lower prediction 

MSE than the FME predictor may at first seem surprising given that, when the SME model is true, the naïve 

model is misspecified since it ignores the measurement error in .iX  In contrast, the FME model accounts 

for the measurement error in iX  and, since it makes no assumptions about the ,ix  it is not inconsistent with 

the true SME model. In fact, as we move towards larger amounts of measurement error overall (larger values 

of ),Cr  the MSE advantages of the naïve FH predictor become more substantial and cover larger ranges of 

the Cr  and Dr  values. The general explanation for this is that, when measurement error is substantial, the 

FME model’s avoidance of any modeling assumptions about the ix  can lead to rather inefficient use of the 

data ,iX  while the naïve FH predictor makes suboptimal but better use of the iX  unless Cr  is very different 

from Cr  (equivalently, iC  is very different from ).C  

Figure 3.3 gives contour plots of  100 MSE MSE 1 ,N S   comparing MSEs for the naïve and SME 

predictors. Since the SME model is assumed true for the purposes of these computations, all the contours 

shown are positive, with the exception of a zero line in each plot (represented here by the contour plotting 

function of R (R core team, 2016) as a set of “0” labels not joined by a line). These zero contours occur as 

horizontal lines for =Cr  0.1, 1, and 10 on the three plots, these being where = ,C Cr r  implying = ,iC C  

which is when the naïve FH and SME predictors agree. Apart from this, the plots for =Cr  0.1 and 1 show 

substantial positive contours for large values of Cr  that also increase with ,Dr  while for =Cr  10 the 

substantial positive contours occur for small Cr  as Dr  grows large. 

 
 

 

 

 

 

 

 

Figure 3.3 Contours of  100 MSE MSE 1N S   for =  0.7 and =Cr  0.1, 1, and 10 when the SME model is 
true.  
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Figure 3.4 Contours of  100 MSE MSE 1N N   for =  0.7 and =Cr  0.1, 1, and 10 when the SME model is 
true.  

 
Figure 3.4 gives contour plots of  100 MSE MSE 1 ,N N   comparing the reported and actual MSEs 

for the naïve FH predictor. As with Figure 3.3, the three plots should show zero contours at the values 

=Cr  0.1, 1, and 10, respectively (which are poorly represented in the first two plots, and absent from the 

third). In these plots the regions above the zero contours have negative values that reflect understatement of 

the true MSE by the reported MSE, while the regions below the zero contours have positive values that 

reflect overstatement of the true MSE. The first two plots show regions for >C Cr r  with significant 

understatement of the true MSE, while the second two reflect at most very minor overstatement of the true 

MSE when < .C Cr r  This pattern remains when the axis ranges are expanded to include larger values of Dr  

and .Cr  While further extrapolation of these results to more general cases than those considered here is 

questionable, they nonetheless suggest that understatement of MSE by the naïve FH model may be a 

potentially more serious problem than overstatement. 

 
4  SAIPE illustration 
 

The previous section compared the performance of the three alternative model predictors across a range 

of values for the model parameters and the iD  and iC  values for a true SME model. Here we take a model 

developed for an important small area application – modeling county poverty rates of school-age children 

for U.S. counties – to determine realistic values of the model parameters and the iD  and iC  values. We 

take the fitted model as a true model, and then use the theoretical formulas from Section 2 to compare small 

area prediction MSEs for the three alternative model predictors. We do this using the fitted SME model as 

truth, and then repeat the exercise using the corresponding FME model as truth. For the latter we simulate 

the true covariate values ix  from the fitted SME model, since the prediction biases and MSEs depend on 

these values which are not observed. We emphasize that our objective here is not in producing county 

poverty estimates; we use the poverty rate data merely to get a realistic model for illustrating the results 

from Section 2. 

We fit the SME model to estimates of poverty rates of school-age children for U.S. counties from the 

American Community Survey, or ACS (U.S. Census Bureau, 2014), the largest U.S. household survey. ACS 
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produces annual estimates based on one year or five years of data collection. Here, we use 2010 ACS one-

year estimates of county poverty rates of school-age children as the primary response variable .iY  We center 

the analogous 2005-2009 ACS five-year estimates, and treat them as a covariate iX  which is subject to 

measurement error. We also use covariates from administrative records as the covariates iz  not subject to 

measurement error. These are drawn from two sources – tabulations of income tax records obtained under 

an agreement with the U.S. Internal Revenue Service, as well as recipient counts from the Supplemental 

Nutrition Assistance Program, a program that provides food subsidies to low income households. The 

specific covariates used are the same as those of Arima et al. (2017), though that paper jointly modeled two 

years of poverty rates using a multivariate FME model. All covariates used here are centered about their 

means. The model we use here is similar to models applied to such data by Bell, Basel, Cruse, Dalzell, 

Maples, O’Hara and Powers (2007), and is related to the county production model used by the SAIPE 

Program. SAIPE produces poverty estimates at the state, county, and school district level for different age 

groups, including the school-age group 5-17. For more information about SAIPE, see Bell, Basel and 

Maples (2016) or the SAIPE web page at https://www.census.gov/programs-surveys/saipe.html/. 

We fitted the SME model to the poverty rate data via maximum likelihood using R (R core team, 2016) 

to obtain values of the parameters defining our “true model”. This yielded 2ˆ =u  0.0012, 2ˆ =x  0.0064, and 
ˆ =  0.407. These parameter values imply that   0.5

2 2 2 2ˆ ˆˆ ˆ ˆ ˆ= x u x         (see Appendix) is about 0.7. 

We omit the estimates of the other model parameters since they do not affect the first order MSE calculations 

done here. 

For the iD  and iC  values we used estimates from a Generalized Variance Function (GVF, see Wolter, 

1985) developed for the sampling variances of the 2010 one-year and 2005-2009 five-year ACS county 

school-age poverty rate estimates, respectively. The specifics of the GVF are described in Franco and Bell 

(2013). After the SME model fitting, but for use when computing the MSEs, the iD  and iC  values were 

altered to protect against their disclosure by adding zero mean bivariate normal noise to the  log iD  and 

 log iC  values, and exponentiating the results. The noise terms added to the iD  and iC  had a correlation 

of 0.5 and variances of 2 in  and 2 5 ,in  respectively, where the in  are the 2010 one-year ACS county 

sample sizes. Thus, more noise was added to the  log iD  than to the  log ,iC  and more noise was added 

for counties with smaller sample sizes. The resulting iD  values range from about 0.00005 to 0.12 with a 

median of 0.0046, while iC  ranges from 67 10  to 0.013 with a median of 0.0009. Resulting values of 

the ratios 2ˆ=D i ur D   range from about 0.04 to 100 with a median of about 4, and values of 2ˆ=C i xr C   

range from about 0.001 to 2 with a median of about 0.14. The noise altered values still provide a practically 

plausible range of values for the iD  and ,iC  and the general appearance of the plots that follow was not 

materially changed by the noise infusion. 

Figure 4.1 panels (a)-(c) display ratios comparing first order approximations of the three model 

predictors’ MSEs plotted against iC  on the log scale, with a vertical line at =C  0.0014 shown for 

reference. Panel (a) shows the ratios of MSEs for the SME and naïve predictors. We note that, due to their 

optimality under the assumed SME model, the SME model predictors always have lower prediction MSEs 
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than the naïve model predictors. Because the ’siC  are strongly related to the ’siD  (with a correlation of 

about 0.9), for small ’siC  the ’siD  are also likely to be small, and all three model predictors are then 

approximately equal to the direct estimators, so that the MSEs of the naïve and SME predictors are similar. 

We will see this trend in all four panels of Figure 4.1. In panel (a), the ratio reaches its maximum of 

approximately one when .iC C  This agrees with a result given in Remark 3 of Section 2.2, where we 

noted that the two predictors are equivalent at this point. For >iC C  the ratios decline rapidly to values 

approaching 30% larger MSEs for the naïve predictors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 First order approximations of MSE ratios plotted against iC  for the U.S. county school-age children 
in poverty model when the SME model is true. For panels (a)-(c), the ratios are of the true MSEs of 
the SME and naïve, SME and FME, and FME and naïve models, respectively. Panel (d) shows the 
ratios of the reported MSEs and the true MSEs of the naïve model. The vertical lines mark .C  
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Panel (b) shows the ratios of the SME and FME predictors’ MSEs. Again, the SME predictor performs 

best since we are assuming the SME model is true. For <iC C  the MSE differences are small, but the 

differences become pronounced for high values of ,iC  with the FME predictor MSEs up to 40% or more 

higher than those for the SME predictor. 

Panel (c) shows the corresponding MSE ratios for the FME and naïve FH predictors. The naïve predictor 

has slightly higher MSEs than the FME predictor for small iC  but lower MSEs for large ’s,iC  a pattern 

expected from the results in panels (a) and (b). The two predictors’ MSEs are approximately equal at some 

value of < .iC C  The FME predictor’s MSEs are larger by about 20% or more than the naïve predictor’s 

MSEs for the largest iC  values. 

Note that the MSE that is obtained for the FME predictor when the SME model is actually true is still 

correct to the first order, though the FME predictor is not optimal. However, the MSE obtained assuming 

the naïve model is true, what we call the “reported” MSE, differs from the naïve model predictor’s true 

MSE. Panel (d) plots the ratios of the first order approximations of the reported and true MSEs of the naïve 

model predictor when the SME model is true. As noted in Section 2.2, the naïve model overstates the MSEs 

for small ’siC  and understates them for large ’s,iC  while correctly estimating the MSE at = .iC C  The 

overstatement for <iC C  is relatively small, less than 10%, while the understatement for >iC C  becomes 

large, increasing with increasing iC  to more than 40%. 

One might argue that the SME model is more reasonable than the FME model for this application, 

because if one is willing to assume a model for the true poverty rates as measured by the ACS 2010 

estimates, why not assume a model for the true five-year average poverty rates as essentially measured by 

the ACS 2005–2009 estimates? Still, it is of interest to investigate the performance of each of the predictors 

when the FME model holds. This presents a further challenge because the true ’six  are not known. For this 

illustration, we generate them as  iid 2ˆ0, ,i xx N   and then treat these as the true values. (Recall that we 

centered the iX  values so that ˆ( ) = = 0.)iE x X  For the FME model parameters we used the estimates 

obtained from fitting the SME model since the parameter estimators we developed in (2.3) agree for the 

FME and SME models. While we have no explicit proof, we expect the ML parameter estimators used in 

this illustration would converge for m    to the same quantities for both the FME and SME models. 

Figure 4.2 panels (a)-(d) are analogous to Figure 4.1, but assume for the first order approximations that 

the FME model is true. Panel (a) plots the ratios of the SME and FME predictor MSEs. Although our 

assumption that the FME model is true makes the FME predictor “optimal”, for many counties it actually 

performs worse than the SME predictor with respect to the MSE. This is because the FME predictor’s 

optimality is in the class of unbiased predictors, and both the SME and the naïve predictors are biased, so 

there is no mathematical contradiction. The difference in MSEs can be up to about 50% in either direction. 

However, there are relatively few points for which the SME MSE is more than 20% higher than the FME 

MSE, while there are a substantial number where the SME MSE is more than 20% lower than the FME 

MSE. Computing the bias and variance terms of the MSE separately reveals that for this application when 

the SME predictor performs worse than the FME predictor in panel (a) it is due to the bias of the former. 
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Figure 4.2 First order approximations of MSE and bias squared ratios for the U.S. county school-age children 

in poverty model when the FME model is true, plotted against iC  or .ix  Panels (a)-(c) show the 
ratios of the true MSEs of the SME and FME, SME and naïve, and FME and naïve models, 
respectively. Panel (d) shows the ratios of the reported MSEs and the true MSEs of the naïve model. 
Panel (e) shows the ratios of the biases squared of the SME and naïve models. All panels plot the 
ratios against iC  except panel (f), which plots the ratio of the true MSEs of the SME and naïve 
models against .ix  The vertical lines mark C  or ,x  as appropriate. 

 
Panel (b) of Figure 4.2 plots ratios of the MSEs of the SME and naïve predictors against .iC  It shows 

that when the FME model is true, the SME predictor sometimes performs better and sometimes performs 

worse than the naïve predictor in terms of MSE. The same statement can be made about the functional and 

naïve predictors based on panel (c), which shows the ratios of the FME and naïve MSEs plotted against .iC  

However, as iC  increases beyond C  the FME MSE is almost always higher than the naïve predictor’s 

MSE. 
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Panel (d), which plots the ratio of reported to true MSE of the naïve predictor, reminds us that the naïve 

model will misstate the mean squared error, sometimes overstating it and sometimes understating it. The 

overstatement is small, up to about 10%, but the understatement is more considerable, up to and beyond 

40%. Overstatement is most likely for <iC C  and understatement for > ,iC C  though these tendencies 

do not hold for every county (as they do for the SME model) due to the variations in the squared bias terms 

under the FME model. 

Since both the SME and naïve predictors are biased under the FME model, we can analyze the 

relationship between their respective biases. Panel (e) of Figure 4.2 shows the ratio of the bias squared of 

the SME predictors and the naïve predictors. It shows that the SME predictor has lower squared bias for 

< ,iC C  and higher squared bias for > ,iC C  with equality when = ,iC C  where the two predictors are 

equal. This suggests that the extreme points in the top right quadrant in panel (b) are due to the bias. The 

specific realization of ix  in our generation of the data will also influence these extreme points. Panel (f) 

plots the ratio of the SME and naïve true MSEs plotted against .ix  The vertical line represents the mean of 

,ix  which is approximately 0 due to how the ’six  were generated. Note that the extreme points in the top 

quadrants have high deviations of ix  from its mean. On the other hand, the most extreme points in the 

bottom quadrants correspond to values where ix  is close to .x  This suggests large deviations of ’six  from 

x  will have more impact on the true MSEs of the SME predictors than on those of the naïve predictors. For 

the majority of points, however, the SME model’s MSEs are lower than those of the naïve model based on 

our first order approximations. 

 
5  Conclusions 
 

This paper considered three models proposed for small area estimation when one or more regression 

covariates are measured with error: the functional and structural measurement error models (FME and 

SME), and the naïve Fay-Herriot model. Section 2 established certain theoretical results for these models 

about parameter estimation, their small area predictions, and their corresponding prediction biases, error 

variances, and MSEs. This led to several observations relating the models including (i) the naïve and SME 

model predictions and MSEs agree, at least asymptotically, for areas with = ,iC C  (ii) SME prediction 

results converge to FME prediction results as 2 ,x    and (iii) in the presence of measurement error the 

naïve model is misspecified, so it will misstate the prediction MSE except for areas with = .iC C  

Section 3 made prediction MSE comparisons between the three models over ranges of the true model’s 

parameter values for the case when the true model was the SME. Section 4 made such comparisons taking 

as truth a particular SME model obtained by fitting it to data on poverty rates of school-age children for 

U.S. counties. This model is very similar to models used by the Census Bureau’s SAIPE program, so its use 

provided results for a realistic case of a true SME model. MSE comparisons were also obtained for an 

analogous FME model by simulating values of the unobserved true covariate values .ix  

The MSE comparisons of Sections 3 and 4 tended to favor the SME model overall. Comparisons to the 

naïve model showed that the naïve predictor can fare poorly for iC  not near ,C  with substantial MSE 
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increases compared to the SME model predictor. Regarding the naïve model’s additional problem of 

misstatement of MSE for iC  not near ,C  understatement of MSE when >iC C  appeared more serious 

than overstatement of MSE for < .iC C  

From the comparisons of the SME and FME models, it was noted that when the SME model is true the 

FME predictor can have substantially higher prediction MSE when sampling and measurement error are 

large ( iD  and iC  are large). While the FME predictor can be best when the FME model is true, it was also 

not unusual in this case for the SME and naïve FH predictors to actually have lower MSEs than the “optimal” 

FME predictor. This is because the optimality of the FME predictor for the FME model is among the class 

of unbiased predictors given fixed ,ix  while the SME and naïve FH predictors, being biased, fall outside 

this class and so can and sometimes do have lower MSE. Though more research is needed on this point, it 

appears that while the avoidance of modeling assumptions for the ix  gives the FME model some potential 

for robustness, this can come at a significant cost in terms of higher prediction error variances for some 

areas. 

A practical consideration related to this last point is that, in small area estimation, the most likely 

candidates for useful covariates with quantified measurement error (the iC  being known, or actually 

estimated) are other survey estimates iX  of population quantities ix  thought to be related to the population 

quantities i  whose direct estimates iY  we seek to improve with our model. This leads to the question of 

why, if we believe we can adequately model i  through ,iY  we would choose the FME model over the 

SME model to avoid modeling ix  through ?iX  
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Appendix 
 
Re-expression of MSE formulas for doing contour plots 
 

We illustrate by showing how we re-express 2MSE S u  in terms of 2= ,D i ur D  2= ,C i xr C   and .  

Given the result from Table 2.2 that  2 2 *MSE = ,S i i x i iD D C F   we start by re-expressing :iF   
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From (1.7), noting that for our simplified model 2 2= ,v x   we have 



Survey Methodology, 2019 (special issue) 79 
 

 
Statistics Canada, Catalogue No. 12-001-X 

                                          

 
 

2 4 2 2
22

2 2 2 2 2 2 2

2 2 2

2 2

= corr , = =

:= =
1

x x
i i

u x x u x

x

u

x

r

   
 

      

  
 

 




  

which implies that     * 2 2= 1 1 .i u x D C CF r r r r      Then 

                                    

   
    

 
   

2 2 2
2

2 2 2

2

2

1
MSE =

1 1

MSE 1
= .

1 1

i u i x i
S u

u u x D C C

S D C
D

u D C C

D D C

r r r r

r r
r

r r r r





 


  



 
 

   


 

  

  

 
References 

 

Arima, S., Bell, W.R., Datta, G.S., Franco, C. and Liseo, B. (2017). Multivariate Fay-Herriot Bayesian 
estimation of small area means under functional measurement error. Journal of the Royal Statistical 
Society A, 180, 1191-1209, DOI:10.1111/rssa.12321. 

 

Arima, S., Datta, G.S. and Liseo, B. (2012). Objective Bayesian analysis of a measurement error small area 
model. Bayesian Analysis, 7, 363-384. 

 

Arima, S., Datta, G.S. and Liseo, B. (2015). Bayesian estimators for small area models when auxiliary 
information is measured with error. Scandinavian Journal of Statistics, 42, 518-529. 

 

Arima, S., Datta, G.S. and Liseo, B. (2016). Accounting for measurement error in covariates in SAE: An 
overview. Analysis of Poverty Data by Small Area Estimation, (Ed., M. Pratesi), West Sussex, UK: 
Wiley, Chapter 8, 151-170. 

 

Bell, W.R., Basel, W.W., Cruse, C., Dalzell, L., Maples, J.J., O’Hara, B. and Powers, D. (2007). Use of 
ACS data to produce SAIPE model-based estimates of poverty for counties. Unpublished technical paper 
available at https://www.census.gov/library/working-papers/2007/demo/bell-01.html. 

 

Bell, W.R., Basel, W.W. and Maples, J.J. (2016). An overview of the U.S. Census Bureau’s small area 
income and poverty estimates program. Analysis of Poverty Data by Small Area Estimation, (Ed., 
M. Pratesi), West Sussex, UK: Wiley, Chapter 19, 349-378. 

 

Bell, W.R., Chung, H.C., Datta, G. and Franco, C. (2018). Measurement error in small area estimation: 
Functional versus structural versus naïve models. Research Report RRS2018-06, Center for Statistical 
Research and Methodology, U.S. Census Bureau, available at https://www.census.gov/srd/ 
papers/pdf/RRS2018-06.pdf. 

 

Buonaccorsi, J.P. (2010). Measurement Error: Models, Methods, and Applications. Boca Raton: Chapman 
and Hall/CRC Press. 

 

Datta, G.S., Delaigle, A., Hall, P. and Wang, L. (2018). Semi-parametric prediction intervals in small areas 
when auxiliary data are measured with error. Statistica Sinica, 28, 2309-2335, DOI: 
10.5705/ss.202016.0416. 

 



80 Bell et al.: Measurement error in small area estimation: Functional versus structural versus naïve models 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Datta, G.S., Rao, J.N.K. and Torabi, M. (2010). Pseudo-empirical Bayes estimation of small area means 
under a nested error linear regression model with functional measurement errors. Journal of Statistical 
Planning and Inference, 250, 2952-2962. 

 
Fay, R.E., and Herriot, R.A. (1979). Estimates of income for small places: An application of James-Stein 

procedure to census data. Journal of the American Statistical Association, 74, 269-277. 
 
Franco, C., and Bell, W.R. (2013). Applying bivariate binomial/logit normal models to small area 

estimation. Proceedings of the American Statistical Association, Section on Survey Research Methods, 
690-702, URL http://ww2.amstat.org/sections/srms/Proceedings/. 

 
Fuller, W.A. (1987). Measurement Error Models. New York: John Wiley & Sons, Inc. 
 
Ghosh, M., and Sinha, K. (2007). Empirical Bayes estimation in finite population sampling under functional 

measurement error models. Journal of Statistical Planning and Inference, 137, 2759-2773. 
 
Ghosh, M., Sinha, K. and Kim, D. (2006). Empirical and hierarchical Bayesian estimation in finite 

population sampling under structural measurement error models. Scandinavian Journal of Statistics, 33, 
591-608. 

 
Huang, E.T., and Bell, W.R. (2012). An empirical study on using previous American Community Survey 

data versus Census 2000 data in SAIPE models for poverty estimates. Research Report Number 
RRS2012-4, Center for Statistical Research and Methodology, U.S. Census Bureau, URL 
https://www.census.gov/srd/papers/pdf/rrs2012-04.pdf. 

 
R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for 

Statistical Computing. URL https://www.R-project.org/. 
 
Theil, H. (1971). Principles of Econometrics. New York: John Wiley & Sons, Inc. 
 
Torabi, M., Datta, G.S. and Rao, J.N.K. (2009). Empirical Bayes estimation of small area means under 

nested error linear regression model with measurement errors in the covariates. Scandinavian Journal of 
Statistics, 36, 355-368. 

 
U.S. Census Bureau (2014). American Community Survey Design and Methodology (version 2.0, January 

2014), URL https://www.census.gov/programs-surveys/acs/methodology.html. 
 
Wolter, K.M. (1985). Introduction to Variance Estimation. New York: Springer-Verlag. 
 
Ybarra, L.M.R., and Lohr, S.L. (2008). Small area estimation when auxiliary information is measured with 

error. Biometrika, 95, 919-931. 



Survey Methodology, 2019 (special issue) 81 
Vol. 45, No. 1, pp. 81-99 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Zhanshou Chen, School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, P.R. China. E-mail: 

chenzhanshou@126.com; Jiahua Chen and Qiong Zhang, Department of Statistics, University of British Columbia, Vancouver, BC, Canada.  

 

Small area quantile estimation via spline regression and 
empirical likelihood 
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Abstract 

This paper studies small area quantile estimation under a unit level non-parametric nested-error regression model. 
We assume the small area specific error distributions satisfy a semi-parametric density ratio model. We fit the 
non-parametric model via the penalized spline regression method of Opsomer, Claeskens, Ranalli, Kauermann 
and Breidt (2008). Empirical likelihood is then applied to estimate the parameters in the density ratio model based 
on the residuals. This leads to natural area-specific estimates of error distributions. A kernel method is then 
applied to obtain smoothed error distribution estimates. These estimates are then used for quantile estimation in 
two situations: one is where we only have knowledge of covariate power means at the population level, the other 
is where we have covariate values of all sample units in the population. Simulation experiments indicate that the 
proposed methods for small area quantiles estimation work well for quantiles around the median in the first 
situation, and for a broad range of the quantiles in the second situation. A bootstrap mean square error estimator 
of the proposed estimators is also investigated. An empirical example based on Canadian income data is included. 

 
Key Words: Small area quantile; Penalized spline; Empirical likelihood; Density ratio model; Nested-error regression 

model. 

 
 

1  Introduction 
 

Sample surveys are widely used to obtain information about totals, means, medians and other quantities 

of finite populations. Likewise, similar information on sub-populations such as individuals in specific areas 

and socio-demographic groups are also of interest. Often, a survey is designed to collect information of 

interest at the population level but leads to insufficient direct information on sub-populations. Because of 

this, estimating sub-population parameters with satisfactory precision and evaluating their accuracy pose 

serious challenges to statisticians. Statisticians must resort to suitable models to pool the information across 

small areas in order to properly estimate parameters for small areas when only small samples or no samples 

in these areas are available from the sample survey. 

Research on small area estimation has received increased attention from both public and private sectors. 

As historical remarks, we refer to Fay and Herriot (1979), Battese, Harter and Fuller (1988), Prasad and Rao 

(1990), and Lahiri and Rao (1995) among many others. For a general review of the developments in small 

area estimation, we refer to Pfeffermann (2002) and Pfeffermann (2013) and the books of Rao (2003) and 

Rao and Molina (2015). See also Jiang and Lahiri (2006a), Jiang and Lahiri (2006b) and Jiang (2010) for 

recent publications. 

Compared to quantiles, there are relatively more research activities on estimating small area means. 

Studies on small area quantile estimation are gaining ground. The M-quantile approach of Chambers and 

Tzavidis (2006) has achieved substantial success. This approach uses the M-quantile approach to 
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characterize the conditional distributions of the response variable y  given covariates .x  This information 

is then used to predict unobserved response values based on which the small area population distributions 

are estimated. Small area quantile estimation is a natural and welcome side-benefit. See Tzavidis and 

Chambers (2005), Pratesi, Ranalli and Salvati (2008), Tzavidis, Salvati and Pratesi (2008), and Salvati, 

Tzavidis and Pratesi (2012) for these developments. 

Another approach for small area quantile estimation is proposed by Molina (2010). Let s  and r  be the 

sets of sampled and non-sampled units in a survey and sy  and ry  be vectors of corresponding response 

values. Under a parametric assumption on the joint distribution of sy  and ry  (or the transformed responses) 

they proposed to work out the conditional distribution of ry  given sy  (and other information). After having 

the joint distribution and therefore the conditional distribution properly estimated, they suggested sampling 

from the estimated conditional distribution to create an artificial but complete population with unobserved 

ry  filled up. The population distribution is estimated based on the completed population. This approach 

works well for estimating small area means and quantiles. Other methods we are aware of include Tzavidis, 

Marchetti and Chambers (2010), Chaudhuri and Ghosh (2011) and Chen and Liu (2018). Tzavidis et al. 

(2010) proposed a general framework for robust small area estimation, based on representing a small area 

estimator as a function of a predictor of this small area cumulative distribution function. Chaudhuri and 

Ghosh (2011) proposed an empirical likelihood based Bayesian method. Chen and Liu (2018) proposed an 

approach for populations admitting a nested-error linear regression model combined with error distributions 

satisfying a semi-parametric density ratio model (DRM). Simulations indicate that the DRM-based method 

stands out when the error distributions are skewed. 

In this paper, we are interested in the situation where the regression function is not linear, although the 

nested-error regression model remains appropriate similar to Opsomer et al. (2008). Clearly, methods 

derived under linear models may lead to substantial bias if the linearity assumption is violated. To reduce 

the potential risk of serious bias, Opsomer et al. (2008) proposed an Empirical Best Linear Unbiased 

Prediction (EBLUP) for the small area means under a non-parametric regression model via penalized splines 

(P-splines); Jiang, Ngueyen and Rao (2010) developed an adaptive fence approach employing a non-

parametric model selection technique; Sperlich and José Lombardía (2010) used the local polynomial 

inference method in the context of small area estimation; Rao, Sinha and Dumitrescu (2014) proposed a 

robust EBLUP under a P-splines approximated mixed model; Torabi and Shokoohi (2015) proposed a 

unified analysis of both discrete and continuous responses under P-spline regression models. 

We follow their lead and extend their results to allow non-normal error distributions in the nested-error 

non-parametric regression model. More specifically, we assume the nested-error non-parametric regression 

model but relax the small area error distribution assumption from normal to a flexible semi-parametric 

DRM. We use the P-splines regression approach of Opsomer et al. (2008) to fit the nonlinear regression. 

Empirical likelihood is then applied to estimate the parameters in the DRM based on the residuals. This 

leads to natural area specific error distribution estimation. A kernel method is then applied to obtain 
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smoothed estimates of error distributions and small area quantiles. We construct quantile estimates in two 

situations: one is where we have knowledge of only covariate power means at the population level, the other 

is where we have covariate values of all sample units in the population. Our approach should inherit the 

merits of working under a non-parametric regression model, and gain from avoiding a parametric error 

distribution assumption. The resulting small area quantile estimates are hence more robust. Simulations 

indicate that when the regression function is approximately linear, the performance of the proposed 

approach is competitive. The proposed approach outperforms when the regression relationship is quadratic 

or exponential. 

The rest of the paper is organized as follows. Section 2 introduces the model and assumptions. Section 3 

presents the proposed approach. Section 4 proposes a bootstrap procedure for estimating mean squared 

errors. In Section 5, we use Monte Carlo methods to evaluate the performance of the proposed method and 

compare it with some existing methods. An application example is reported in Section 6. Section 7 contains 

some concluding remarks. 

 
2  Model and assumptions 
 

Consider a finite population containing 
=0

=
m

ii
N N  sample units partitioned into 1m   small areas 

  , : = 1, 2, , ,ij ij ix y j N = 0, 1, , .i m  Consider a nested-error non-parametric regression model 

with one covariate:  

  0= ,ij ij i ijy m x v    (2.1) 

where ijx  is an auxiliary variable, iv  denotes an area-specific random effect and ij  are random errors. The 

regression function  0m   is unspecified, but can be approximated sufficiently well by a spline function  

    0 0 1
=1

; , = .
K

pp
p k k

k

m x x x x         β γ   (2.2) 

Here p  is the degree of the spline, =p px x  when > 0x  and 0 otherwise, , = 1, ,k k K   are a set of 

fixed constants called knots,  0= , , p  β   is a coefficient vector of the parametric portion of the 

model, and  1= , , K  γ   is the vector of spline coefficients, K  is the number of spline knots. If knot 

locations cover the range of x  and K  is sufficiently large, the class of P-spline (2.2) can approximate any 

smooth function  0m   with a high degree of accuracy, even with a small p  (Boor, 2001). Ruppert, Wand 

and Carroll (2003) recommended using the number of spline knots K  as the minimum of 40 and the number 

of unique ’sx  divided by 4. 

We assume that a random sample from the population is obtained under an uninformative sampling plan 

such that (2.1) remains valid for the sampled units. Our immediate task is to fit this model based on the 

sampled data and we follow the approach of Opsomer et al. (2008). For ease of presentation, we first 

introduce some matrix notation. Let in  be the number of units sampled from small area .i  The response 
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values from the thi  area will be denoted as  1 2= , , , .
ii i i iny y y y   We then pile them up to form the 

response vector of length :n  0 1= , , , .n m   Y y y y  We similarly define i  and n  for error term. We use 

 0= , , mv v v   for area specific random effects and create a matrix D  such that  

 
0 10 1= ( , , , )

mn n m nv v v  Dv 1 1 1   

with k1  being a length k  vector of 1’s.  We further construct matrices nX  and nZ  so that their rows are 

made up of  

       1= 1, , , , = , ,
p pp

ij ij ij ij ij ij Kx x x x 
 

   x z    

in a proper order. With these matrices and vectors, the data in the sample under model (2.1) are connected 

by  

 = .n n n n  Y X β Z γ Dv   (2.3) 

Opsomer et al. (2008) fitted this model under the assumption that the components of ,γ  of v  and   are 

all independent and identically normally distributed with variances 2 , 2
v  and 2   respectively. The 

solutions to the fit are given by  

                                                              
 

   
 

1

1
1 1

1

ˆ ˆ ˆ= ,

ˆˆ ˆˆ = ,

ˆ ˆ ˆ= ,

ˆˆ ˆˆ =

n n v

v n n

n n n n

n n n

 






 



  

 

 

 

V Z Σ Z DΣ D Σ

v Σ D V Y X β

β X V X X V Y

γ Σ Z V Y X β

  

where ˆ ˆ ˆ, ,v Σ Σ Σ  are restricted maximum likelihood estimates of the covariance matrices of ,γ v  and ,  

and V̂  is the estimate of  var .nV Y  

Opsomer et al. (2008) then gave the empirical best linear unbiased predictor of the small area mean:  

 0 1
ˆ ˆ ˆ ˆ ˆ ˆ= ,p

i i p i i iY X X v      z γ  (2.4) 

where , , p
i iX X  are the means of the powers of population units ijx  in area ,i  i.e., 1

=1
= iN

s s
i i ijj

X N x   

for = 1, , ,s p  and ˆiz γ  stands for the true means of the spline basis functions over the small area .i  

Clearly, the above discussion easily extends to non-parametric additive models with two or more covariates 

(Lin and Zhang (1999), Ruppert et al. (2003) and Wood (2006)). 

In this paper, we follow Opsomer et al. (2008) to get all the fitted values. For small area quantile 

estimation, we remove the normality assumption on .ij  Instead, we assume that their distributions  iG u  

satisfy a DRM so that for = 1, , ,i m  

       0log = ,i idG u dG u u q  (2.5) 
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with a pre-specified basis function  uq  and an area-specific tilting parameter .i  One may include = 0i  

in the above equation by setting 0 = 0.  We require the first element of  uq  to be one, so that the first 

element of i  is a normalization parameter. The DRM includes normal, Gamma, and many other 

distribution families as special cases. Discussions about DRM can be found in Anderson (1979), Qin and 

Zhang (1997), Kezioua and Leoni-Aubina (2008) and Chen and Liu (2013). 

Equations (2.1), (2.2) and (2.5) together form the platform of this paper for small area quantile 

estimation. Our work differs from Opsomer et al. (2008) in that we focus on small area quantile estimation 

without a normality assumption on   .iG   At the same time, this paper differs from Chen and Liu (2018) 

by postulating a non-parametric regression relationship between ijy  and ijx  instead of a linear one. 

 
3  Proposed approach 
 

For any  0, 1 ,   the th  quantile of a distribution F  is defined to be  

                                                                   = inf : .u F u    

If  F̂ u  is an estimate of   ,F u  its - quantile is naturally estimated by  

   ˆ ˆ= inf : .u F u   (3.1) 

Under the distributional assumption on ,ij  we have  

                                                  
     

   
0

0

= ,

= .

ij ij ij i ij i

i ij i

P y u P u m x v x v

G u m x v

   

 




  

Hence, the population distribution of the thi  small area is given by  

                                                                1
0

=1

= .
iN

i i i ij i
j

F u N G u m x v     

Once iG  and  0m   are suitably estimated, so will be the small area quantiles. 

We follow the empirical likelihood idea of Chen and Liu (2018) for estimating   .iG   Suppose the 

values of ij  in the sample are known. Consider a candidate 0G  of the form  

                                                              0
,

= ,ij ij
i j

G u p I u    

where  I   is an indicator function and 
, =0 =1

= .im n

i j i j    We hence have  0=ij ijp dG   and under 

DRM     = expi st st i stdG p θ q  for = 0, 1, ,i m  which implies  

                                                                  
,

= exp .i st i st st
s t

G u p I u   θ q  (3.2) 

By Owen (2001), we obtain the empirical likelihood function  
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       0 1
, , ,

, , , = = exp ,n m i ij ij i ij
i j i j i j

L G G G dG p          
   θ q   

where the parameter θ  and ’sijp  satisfy 0,ijp   and for = 0, 1, , ,s m  

   
,

exp = 1.ij s ij
i j

p  θ q  (3.3) 

Note that we have used the convention 0 = 0θ  for simpler presentation. Because 1 , , mG G  are fully 

determined by  1= , , m  θ θ θ  and 0 ,G  we write the empirical log-likelihood as  

      0
,

, = log .n ij i ij
i j ij

G p   θ θ q   

Maximizing  0, Gθ  with respect to 0G  under the constraints (3.3) results in fitted probabilities  

    1

1

=1

ˆ = 1 exp ( ) 1
m

ij s s ij
s

p n  


       θ q  (3.4) 

and the profile log EL  

        
, =1 ,

= log 1 exp 1
m

n s s ij i ij
i j s i j

            θ θ q θ q   

with  1 , , m   being the solution to  

 
  

  ,
=1

exp 1
= 0.

1 exp 1

i st

m
s t

l l stl



 

 

     



θ q

θ q
  

Since the values of ij  are not available, we replace them by the residuals obtained from fitting model 

(2.1) under assumption (2.2): 

                                                      0
ˆˆ ˆˆ ˆ= ; ,ij ij ij iy m x v  β γ   

where  

  0 0 1
=1

ˆ ˆ ˆˆ ˆˆˆ ( ; , ) = .
K

pp
p k k

k

m x x x x         β γ   (3.5) 

Let  ˆ
n θ  be the log EL function  n θ  after ij  are replaced by ˆ .ij  We define the maximum EL 

estimator of θ  by  ˆ ˆ= argmax nθ θ  and estimate  iG u  by  

       
,

ˆ ˆ ˆˆ= expi st i st st
s t

G u p I u   θ q  (3.6) 

with  
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       1

1

=1

ˆˆ = 1 exp 1
m

st l l st
l

p n n n 


       θ q   

and 0
ˆ = 0.θ  The R package drmdel can be used to compute θ̂  and ˆ ijp  which has 11 choices of basis 

function   .uq  

Because  iG u  is discrete, the following kernel smoothed distribution  ˆ
iG u  leads to better quantile 

estimation:  

  
=1

ˆ
ˆ ˆ= ,

in
ij

i ij
j

u
G u w

b

   
 

  (3.7) 

where the weights are chosen to be    ˆ ˆˆ = ,ij i ij i ijw G G b     is a bandwidth parameter, and     is the 

distribution function of standard normal. As suggested by Chen and Liu (2013), we choose 

 1/5 ˆˆ= 1.06 min , 1.34b n Q  where ̂  is the standard deviation of the distribution ˆ
iG  and Q̂  is its 

interquartile range. 

In some applications, only population power means of covariates are known and can be used for 

statistical inference. In other applications, covariates of all members of the population are known. This leads 

two possible quantile estimates. In the first case, we estimate iF  by  

                                             1
0 0

=1

ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ= ; , ; , ,
in

a
i i i i ij i

j

F u n G u Y m x m x    β γ β γ  (3.8) 

where we use  0
ˆ ˆˆ ; ,im x β γ  specified in (3.5). 

When the census information about x  is available, we estimate iF  by  

         1
0

ˆˆ ˆ ˆ= ,
i i

b
i i ij i ij i

j s j r

F u N I y u G u m x v

 

     
 
   (3.9) 

where is  and ir  are sets of observed and unobserved units in small area .i  The rest of the specifications are 

the same as in (3.8). 

The proposed estimates resemble those of Chen and Liu (2018) but we use a non-parametric regression. 

Because collecting population power means of covariates is easier than collecting covariates values of all 

units in the population    ˆ a
iF u  is more broadly applicable than    ˆ .b

iF u  It is also computationally more 

efficient. Because    ˆ b
iF u  uses covariate values of all units in the population, it should statistically 

outperform when both are applicable. 

 
4  Bootstrap estimation of the mean squared errors 
 

The proposed small area quantile estimators are assembled with many intermediate steps. It is difficult 

to analytically evaluate the variances or mean squared error (MSE) of such estimators. We follow others 
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(Sinha and Rao (2009), Tzavidis et al. (2010) and Chen and Liu (2018)) to develop a bootstrap procedure 

as follows: 
 

Step 1 Obtain estimates 2ˆ ˆ ˆ, , vβ γ  and  0
ˆ ˆˆ , ,m x β γ  based on Model (2.1), and calculate  ˆ

iG u  as 

in (3.7). 

Step 2 Generate a bootstrap finite population  * *= , , = 0, , , = 1, ,ij ij iH y x i m j N   with  

               * * *
0

ˆ ˆˆ= , , ,ij ij i ijy m x v  β γ   

where the bootstrap residuals *
ij  are sampled from CDF  ˆ

iG u , and *
iv  are generated from 

 2ˆ0, .vN   

Step 3 From the bootstrap population * ,H  we select * =i in n  sample units from small area i  by 

simple random sampling without replacement, and repeat it L  times to get * , = 1, , .lh l L  

For each sample * ,lh  compute the estimates    *ˆ a l
iF u  and    *ˆ b l

iF u  as in (3.8) and (3.9) 

respectively. 

Step 4 Compute the empirical MSE estimator of ̂  as  

                  2* 1 * *

=1

ˆmse = ,
L

l

l

L      

where   * *ˆˆ =l lF u   denotes any functional of    *ˆ a lF u  or  *ˆ b lF  and   * *= F u   

with  *F u  being the known CDF of the bootstrap populations. 

Step 5 Repeat Steps 2 to 4, B times, and define the bootstrap MSE estimate as  

               1 *

=1

mse ,
B

b
b

B     

where  *mse b  is the  *mse   calculated in the thb  repetition.  

 

The performance of the bootstrap MSE estimator will be examined and reported in the simulation 

section. 

 
5  Monte Carlo simulations 
 

In this section, we use simulation to evaluate the performances of the proposed penalized spline 

regression model based empirical likelihood estimators (PEL) and their MSE estimates. When only the 

covariate population means are known the proposed estimators are compared with only the nested-error 

linear regression model based empirical likelihood estimator (LEL) of Chen and Liu (2018), and the direct 

estimator (DE). When covariate values are known for all sample units, the comparison is extended to also 

include six estimators of Tzavidis et al. (2010), denoted as EBLUP/naïve, EBLUP/CD, EBLUP/RKM, 

M-quantile/naïve, M-quantile/CD and M-quantile/RKM. Here, EBLUP/CD and M-quantile/CD denote the 

EBLUP and M-quantile estimator are obtained based on the CDF proposed by Chambers and Dunstan 
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(1986), and corresponding estimators based on the CDF proposed by Rao, Kovar and Mantel (1990) write 

as RKM. 

Similar to Chen and Liu (2018), we must choose  uq  in the DRM. Two candidates are    1 = 1,u u q  

and     2 = 1, sign .u u u q  Some preliminary simulation results indicate that    1 = 1,u u q  works 

well for the P-splines fitted non-parametric regression model, but  2 uq  does not. Instead, the choice of 

   * 2
2 = 1, ,u u u q  leads to competitive performance. So, we use  1 uq  and  *

2 uq  in our simulation. 

Following Rao et al. (2014) and Torabi and Shokoohi (2015), we generated data from the following three 

models:  

 

 

2

A : = 1 ,

B: = 1 ,

C: = 1 0.5 exp .

ij ij i ij

ij ij ij i ij

ij ij ij i ij

y x v

y x x v

y x x v







  

   

   

  

They lead to linear, quadratic and exponential regression functions respectively. We set the number of small 

areas to be 30 and area population sizes  = 500 1 , = 0, 1, , 29.iN i i   We generated covariate ijx  

from  0, 1 .N  Once ijx  are generated, we treated them as fixed in the simulation. The area-specific random 

effect iv  were generated from  0, 1 ,N  and the errors ij  were generated from the following four 

distributions.  

              

   

   

     

     2

i : 0, 1 ,

ii : 3 ,

iii : normal mixture 0.5 1, 1 0.5 1, 1 ,

iv : 0, , with 0.5, 2 , = 0, , 29.i i

N

t

N N

N U i 

 



  

Distribution (ii) has a heavy tail, distributions (ii) and (iii) are symmetric, and distribution (iv) is 

heteroscedastic. 

We used = 1,000R  repetitions in the simulation and drew random samples of size = 500n  without 

replacement from the population in each repetition. To avoid the possibility that some small areas have too 

few sample units, we drew 60n   units at the population level and allocated an additional 2 units in each 

small area. We used R package mgcv for the REML method with default options for values of p  and K  

when fitting the P-spline function (2.4). We calculated estimates of the 5%, 25%, 50%, 75%, and 95% small 

area quantiles denoted as DE, LEL1, LEL2, PEL1, PEL2, for direct estimator, estimators of Chen and Liu 

(2018) and the proposed estimators using  1 q  and  2 .q  We report their average mean squared error 

(AMSE) and absolute biases (ABIAS) defined below:  

 

       

     

21

=0 =1

1 1 1

=0 =1 =1

ˆAMSE = 1 ,

ˆABIAS = 1 ,

m R
r r

i i
i r

m R R
r r

i i
i r r

R m

m R R
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where  ˆ r
i  is either one of the quantile estimates of for the thi  small area in the thr  repetition. The results 

under Models A, B, and C are given in Tables 5.1-5.3 respectively. Both PEL and LEL are based on  ˆ a
iF  

and its mirror version in Chen and Liu (2018). 

Under Model A, the linear model is valid. Hence, we expect LEL to be superior. According to Table 5.1, 

two methods are similar for the 25%, 50% and 75% quantiles. LELs outperform PELs for the 5% quantile 

while the comparison reverses for the 95% quantile. Both PEL and LEL outperform DE for the 25%, 50% 

and 75% quantiles with big margins. An overall impression is that the proposed methods still work 

satisfactorily. 

Under Model B, the linear model breaks down mildly. Results in Table 5.2 show that the PEL estimators 

have lower AMSE for lower quantiles. The LELs still have low AMSE in spite of have higher ABIAS. The 

advantage of the proposed PEL under the non-parametric nested-error regression models focus for quantiles 

in middle levels. With fewer observations near extreme quantiles, the non-parametric model is hard to fit. 

The linearity is seriously violated under Model C. LEL is expected to have poor performance and this is 

evident as shown in Table 5.3. At the same time, PELs work well for the 25%, 50% and 75% quantiles. The 

choice of  *
2 uq  also helps in general. For extreme quantiles, PELs remain unworth the trouble compared 

with DE. 

 
 
Table 5.1 
AMSE and ABIAS of small area quantile estimators under Model A 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.470 0.120 0.142 0.121 0.162 0.346 0.022 0.028 0.024 0.032 
25% 0.219 0.074 0.080 0.074 0.082 0.081 0.006 0.006 0.006 0.006 
50% 0.187 0.067 0.067 0.067 0.068 0.011 0.005 0.005 0.006 0.006 
75% 0.218 0.074 0.079 0.074 0.082 0.081 0.007 0.005 0.008 0.006 
95% 0.470 0.121 0.142 0.123 0.165 0.340 0.024 0.031 0.023 0.033 

Error distribution (ii) 5% 1.287 0.249 0.786 0.276 1.726 0.352 0.011 0.023 0.011 0.089 
25% 0.297 0.196 0.217 0.178 0.186 0.084 0.022 0.036 0.021 0.031 
50% 0.238 0.187 0.182 0.167 0.154 0.011 0.010 0.010 0.010 0.009 
75% 0.304 0.197 0.233 0.179 0.189 0.081 0.023 0.038 0.023 0.032 
95% 1.344 0.249 1.919 0.319 2.297 0.349 0.013 0.034 0.015 0.100 

Error distribution (iii) 5% 0.636 0.165 0.199 0.163 0.234 0.408 0.008 0.013 0.008 0.019 
25% 0.340 0.132 0.147 0.133 0.152 0.109 0.010 0.007 0.011 0.008 
50% 0.306 0.128 0.128 0.130 0.132 0.014 0.007 0.007 0.007 0.007 
75% 0.340 0.133 0.151 0.134 0.156 0.108 0.011 0.009 0.012 0.008 
95% 0.651 0.168 0.205 0.166 0.243 0.410 0.010 0.016 0.010 0.022 

Error distribution (iv) 5% 1.225 2.589 0.787 2.679 0.651 0.504 0.220 0.028 0.222 0.071 

25% 0.574 0.681 0.380 0.652 0.349 0.114 0.174 0.047 0.157 0.017 

50% 0.488 0.273 0.277 0.241 0.291 0.017 0.010 0.010 0.009 0.010 

75% 0.571 0.700 0.383 0.670 0.349 0.121 0.183 0.057 0.166 0.012 

95% 1.251 2.611 0.795 2.709 0.655 0.519 0.207 0.037 0.210 0.082 
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Table 5.2 
AMSE and ABIAS of small area quantile estimators under Model B 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.524 2.998 2.991 0.404 0.439 0.382 1.520 1.502 0.017 0.019 
 25% 0.474 0.182 0.183 0.259 0.262 0.177 0.118 0.123 0.018 0.017 
 50% 0.865 0.907 0.951 0.215 0.219 0.092 0.785 0.791 0.031 0.031 
 75% 1.963 0.985 1.170 0.817 0.825 0.132 0.602 0.616 0.021 0.021 
 95% 7.850 3.083 3.783 9.163 9.193 1.200 1.159 1.185 0.251 0.251 

Error distribution (ii) 5% 1.227 2.768 3.065 0.492 1.691 0.352 1.430 1.423 0.067 0.143 
 25% 0.562 0.280 0.268 0.331 0.327 0.189 0.087 0.087 0.027 0.024 
 50% 0.976 0.924 0.957 0.287 0.281 0.098 0.728 0.733 0.046 0.046 
 75% 2.119 1.023 1.231 0.817 0.854 0.129 0.557 0.572 0.034 0.034 
 95% 8.392 2.989 4.864 8.405 9.180 1.250 1.140 1.147 0.112 0.119 

Error distribution (iii) 5% 0.842 2.171 2.207 0.425 0.491 0.500 1.252 1.238 0.013 0.014 
 25% 0.657 0.209 0.209 0.292 0.296 0.176 0.076 0.077 0.010 0.011 
 50% 0.935 0.791 0.805 0.244 0.249 0.082 0.679 0.682 0.026 0.027 
 75% 1.983 0.981 1.086 0.739 0.752 0.131 0.588 0.597 0.024 0.024 
 95% 8.020 2.782 3.251 8.344 8.385 1.219 1.059 1.078 0.144 0.145 

Error distribution (iv) 5% 1.458 3.913 3.066 2.414 0.814 0.557 1.195 1.172 0.226 0.053 
 25% 0.919 0.460 0.397 0.474 0.472 0.206 0.154 0.137 0.058 0.017 
 50% 1.183 0.913 0.920 0.398 0.416 0.071 0.629 0.640 0.048 0.023 
 75% 2.195 1.223 1.209 1.022 0.902 0.163 0.471 0.511 0.033 0.031 
 95% 8.043 2.954 3.420 7.476 7.639 1.268 0.975 1.042 0.104 0.115 

 
 

Table 5.3 
AMSE and ABIAS of small area quantile estimators under Model C 
 

  AMSE ABIAS 

   DE LEL1 LEL2 PEL1 PEL2 DE LEL1 LEL2 PEL1 PEL2 

Error distribution (i) 5% 0.279 1.340 1.258 0.092 0.151 0.267 0.997 0.978 0.051 0.031 
25% 0.146 0.316 0.263 0.087 0.098 0.068 0.282 0.280 0.035 0.046 
50% 0.152 0.326 0.403 0.094 0.096 0.011 0.215 0.227 0.019 0.015 
75% 0.335 0.868 1.368 0.225 0.244 0.029 0.665 0.700 0.043 0.044 
95% 7.011 0.890 6.818 27.97 27.81 0.291 0.206 0.301 1.398 1.384 

Error distribution (ii) 5% 1.180 1.181 1.355 0.278 1.776 0.286 0.849 0.836 0.090 0.174 
25% 0.205 0.461 0.395 0.201 0.208 0.063 0.317 0.327 0.085 0.098 
50% 0.201 0.450 0.502 0.201 0.191 0.024 0.226 0.235 0.013 0.012 
75% 0.528 0.943 1.422 0.390 0.422 0.017 0.641 0.681 0.096 0.104 
95% 7.478 0.890 6.306 23.33 25.01 0.479 0.089 0.107 1.055 1.084 

Error distribution (iii) 5% 0.438 1.063 1.004 0.157 0.240 0.349 0.826 0.803 0.065 0.034 
25% 0.299 0.328 0.289 0.158 0.181 0.120 0.158 0.161 0.009 0.020 
50% 0.305 0.364 0.409 0.174 0.179 0.013 0.151 0.157 0.035 0.029 
75% 0.428 0.709 1.035 0.275 0.308 0.077 0.499 0.524 0.015 0.017 
95% 6.718 0.974 4.704 24.79 25.04 0.232 0.321 0.378 1.336 1.325 

Error distribution (iv) 5% 1.078 4.146 2.303 3.378 0.685 0.444 0.918 0.803 0.409 0.035 
25% 0.530 0.829 0.531 0.668 0.380 0.107 0.105 0.156 0.147 0.071 
50% 0.490 0.526 0.565 0.297 0.344 0.021 0.177 0.188 0.054 0.017 
75% 0.718 1.454 1.412 1.149 0.542 0.076 0.438 0.542 0.061 0.048 
95% 6.430 2.492 4.002 22.54 21.92 0.462 0.364 0.242 1.258 1.042 
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Next, we study estimators applicable when covariate values are known for all sample units. The 

simulation includes EB0, EB1, EB2, MQ0, MQ1 and MQ2 stand for EBLUP/naïve, EBLUP/CD, 

EBLUP/RKM, M-quantile/naïve, M-quantile/CD and M-quantile/RKM respectively. We set relatively 

small population sizes = 500iN  to save some computation. Table 5.4 contains the AMSE of these 

estimators under Models A, B and C with  0, 1N  error distribution. To save space, we do not present the 

corresponding bias results. The simulation results show that the proposed method has lower AMSE and 

ABIAS (not presented) in general. It works well even for quantiles at rather extreme levels. 

To save space, we pool the AMSE results for all 5 levels of quantiles in Table 5.5. The entry 

corresponding to iA  is the average AMSE for estimating quantiles at levels 5%, 25%, 50%, 75%, and 95% 

when data are generated from Model A with error distribution (i). We notice that with more detailed 

information on covariates, the LEL and PEL estimators are substantially more accurate compared to results 

in Tables 5.1-5.3. From Model A to Model C, the regression line becomes less linear. Correspondingly, the 

proposed quantile estimators have greater advantages against other estimators. 

Now we evaluate the bootstrap MSE estimator proposed in Section 4. Because this method involves 

heavy computation, we confined the simulation to the estimator based on    ˆ b
iF u  with basis function 

   1 = 1,u u q  and put = 100, = 100.B L  We report the average ratios of the estimated MSEs and the 

simulated MSEs across all the small areas. The closer the ratio to one, more accurate the bootstrap MSE 

estimate. From Table 5.6 we can see that the average ratios close to one in majority situations except for 

error distribution (iv) on extreme levels of quantiles. We conclude that the bootstrap MSE estimator is 

generally satisfactory. 

 
Table 5.4 
AMSE of 10 quantile estimators when all covariance values are known with N(0, 1) error distribution 
 

   EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

Model A 5% 0.477 0.123 0.501 0.536 0.127 0.499 0.128 0.146 0.078 0.110 
25% 0.139 0.073 0.154 0.198 0.074 0.154 0.073 0.078 0.065 0.073 
50% 0.061 0.066 0.124 0.119 0.066 0.124 0.066 0.066 0.064 0.064 
75% 0.145 0.074 0.149 0.204 0.074 0.149 0.074 0.080 0.066 0.073 
95% 0.491 0.125 0.394 0.552 0.129 0.395 0.126 0.146 0.079 0.113 

Model B 5% 1.270 2.500 0.928 1.682 2.575 0.946 2.965 2.949 0.079 0.110 
25% 0.351 0.152 0.239 0.262 0.149 0.239 0.193 0.193 0.069 0.069 
50% 0.834 0.723 0.285 0.631 0.722 0.284 0.899 0.944 0.071 0.073 
75% 0.314 0.634 0.532 0.257 0.644 0.530 0.986 1.160 0.082 0.084 
95% 3.710 2.095 3.690 4.209 2.059 3.685 3.235 3.900 0.154 0.156 

Model C 5% 0.346 0.830 0.415 0.708 0.307 0.351 1.087 1.028 0.075 0.130 
25% 0.345 0.173 0.169 0.388 0.110 0.154 0.263 0.224 0.066 0.075 

50% 0.340 0.170 0.142 0.207 0.150 0.136 0.291 0.349 0.065 0.067 

75% 0.288 0.577 0.211 0.191 0.376 0.227 0.731 1.088 0.068 0.087 

95% 2.578 11.47 8.087 5.194 14.64 11.96 0.868 4.215 0.148 0.156 
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Table 5.5 
Average AMSE over 5 quantiles when all covariate values are known 
 

Model EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

iA  0.263 0.092 0.264 0.322 0.094 0.264 0.093 0.103 0.070 0.087 

iiA  0.810 1.379 1.822 0.810 1.381 1.796 0.217 0.370 0.203 0.744 

iiiA  0.754 0.183 0.408 0.819 0.183 0.407 0.149 0.168 0.135 0.168 

ivA  0.687 0.186 0.399 0.746 0.188 0.399 0.281 0.196 0.256 0.164 

iB  1.296 1.221 1.135 1.408 1.230 1.138 1.832 1.829 0.091 0.098 

iiB  1.442 1.714 2.348 1.496 1.718 2.343 1.596 1.812 0.230 0.504 

iiiB  1.270 1.081 1.357 1.348 1.088 1.351 1.399 1.521 0.163 0.179 

ivB  1.346 1.177 1.315 1.436 1.183 1.317 1.565 1.701 0.205 0.166 

iC  0.799 2.645 1.805 1.339 3.117 2.566 0.648 1.381 0.084 0.103 

iiC  1.441 3.439 3.368 2.232 3.967 3.898 0.725 1.168 0.241 0.377 

iiiC  1.141 2.516 1.898 1.834 2.937 2.572 0.595 1.133 0.153 0.186 

ivC  1.149 2.499 1.909 1.821 2.933 2.639 0.767 1.176 0.280 0.179 

 
Table 5.6 
Average ratios of bootstrap MSEs and simulated MSEs 
 

  iA  iiA  iiiA  ivA  iB  iiB  iiiB  ivB  iC  iiC  iiiC  ivC  

5% 1.01 1.03 1.05 0.36 1.05 0.98 1.01 0.39 0.99 1.19 1.10 0.27 

25% 1.00 0.99 1.05 0.74 1.03 0.99 0.95 1.03 1.03 0.97 0.99 0.73 

50% 1.06 1.04 0.97 1.10 1.01 1.03 0.96 0.99 1.09 0.96 0.97 1.03 

75% 1.01 0.99 1.06 0.76 1.10 1.01 0.98 0.90 1.06 0.96 1.03 0.52 

95% 1.04 1.20 1.10 0.33 0.89 1.02 1.13 1.02 0.95 1.37 1.13 0.69 

 
6  Empirical application 
 

We now illustrate the proposed estimators based on the data set Survey of Labour and Income Dynamics 

(SLID) provided by Statistics Canada (2014) downloaded from University of British Columbia library data 

centre. The data contain 147 variables and 47,705 sample units. We are grateful to Statistics Canada for 

making the data set available, but we do not address the original goal of the survey here. Instead, we use it 

as a superpopulation to study the effectiveness of the proposed small area quantile estimator. 

In this study, we singled out 9 of the 147 variables. They are ttin, gender, spouse, edu, age, 

yrx, tweek, jobdur and tpaid, standing respectively for: total income, gender, whether living with the 

spouse, the highest level of education, age, years of experience, number of weeks employed, education level, 

months of duration of current job and total hours paid at this job. After removing units containing missing 

values in these 9 variables as well as those with ttin 0,  we obtained a data set containing 28,302 sample 

units. The covariates power means at the population level are still calculated based on all available 

observations. We created 28 sub-populations (namely small areas) labeled as  4 1 ,k i  = 1, 2, , 7,k   
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= 1, 2, 3, 4i  based on gender-spouse-edu combinations. Here k  denotes education level and = 1, 2, 3, 4i  

denote male living with the spouse, female living with spouse, male not living with spouse and female not 

living with spouse respectively. The education levels are given as follows.  

 

 

  

No more than 10 years elementary and secondary school

11-13 years of elementary and secondary school but did not graduate

Graduated high school

Some u

1

2

3

4 niversity or non-universi

k Highest education level

ty postsecondary with no certificate

Non-university postsecondary or university certificate below Bachelor’s

Bachelor’s degree

University certificate above Bachel

5

6

7 or’s

  

We regarded  log ttin  as the response variable and fitted linear and additive non-parametric 

regressions with respect to other 5 variables. Based on the whole data, the adjusted R-square of the non-

parametric fit is 0.482 which is much larger than 0.370 obtained by fitting the linear regression. This 

suggests that a non-parametric mixed model is a good choice. Figure 6.1 shows the fitted curves of 

log(ttin) with respect to these two covariates. Also, the R-square is as high as 0.483 even if the model 

includes only covariates age and tpaid and a random effect. These exploratory analyses prompt us to use 

only these two covariates in our simulation. We carried the simulation with sample sizes = 200; 500n  and 

1,000. To make sampling proportions in small areas close to their sizes, we let = 2, = 1, , 28i in a i   

with ia  generated from the multinomial distribution with = .i ip N N  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1  Fitted curves of log(ttin) with respect to age and tpaid. 
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The simulated AMSE of 10 estimators based on 1,000 repetitions are reported in Table 6.1. We first 

notice that both our PEL estimators outperform the other estimators, in general, indicating the advantage of 

our non-parametric DRM based small area estimation technique. The PEL1 compared to PEL2 has the lower 

AMSE for 5%, 25%, and 50% quantiles, but slightly higher AMSE for 75% and 95% quantiles indicating 

the heteroscedasticity of data is not serious. Regardless the PEL estimators, we notice the LEL estimators 

outperform other estimators for 5% quantile, and have similar performance for other quantiles. Increasing 

the sample size reduces the AMSE of all estimators. Clearly, it is hard to estimate the 5% quantile with a 

good precision because the data are skewed toward the left so there are few observations for estimating the 

lower quantiles. Interestingly, LEL1 is not affected as much by the skewness. We feel that the kernel 

smoothing step (3.7) is helpful here. Without this smoothing step, LEL1 would perform much worse. 

Unreported simulations show that the ABIAS of all estimators decreases in general as the sample size 

increases and this is most apparent for DE. 

To check the performance of the proposed first estimator which using only covariate average 

information. In Figures 6.2, we depict the 2.5%, 50%, and 97.5% quantiles of 1,000 small area median 

estimates by the DE, LEL1, LEL2, PEL1, PEL2 with sample size = 200n  with the true medians marked 

by dots. The y-axis is the total income and x-axis is the education level. It is seen that the PEL2 boxes are 

the shortest for most small areas. 

Table 6.2 reports the bootstrap MSE estimates as well as the average ratios of bootstrap and simulated 

MSEs of the small area median estimators based on    ˆ a
iF u  and    ˆ b

iF u  with sample size = 200.n  The 

number of simulation repetition is 500 with basis function    1 = 1,u u q  and = 100, = 100.B L  We can 

see the estimator    ˆ a
iF u  has higher MSE than    ˆ ,b

iF u  and most average ratios close to one. 

 
Table 6.1 
AMSE of small area quantile estimators based on real data 
 

   EB0 EB1 EB2 MQ0 MQ1 MQ2 LEL1 LEL2 PEL1 PEL2 

n = 200 5% 0.784 0.769 0.901 0.714 0.763 0.885 0.245 0.421 0.242 0.336 

25% 0.107 0.256 0.488 0.102 0.261 0.467 0.115 0.131 0.097 0.152 

50% 0.080 0.119 0.236 0.064 0.116 0.223 0.076 0.095 0.056 0.102 

75% 0.122 0.100 0.142 0.085 0.102 0.138 0.085 0.076 0.069 0.068 

95% 0.233 0.190 0.280 0.141 0.138 0.266 0.217 0.179 0.117 0.096 

n = 500 5% 0.793 0.603 0.826 0.710 0.579 0.805 0.173 0.345 0.210 0.301 

25% 0.072 0.110 0.207 0.076 0.119 0.197 0.069 0.127 0.063 0.091 

50% 0.049 0.050 0.074 0.036 0.050 0.072 0.053 0.076 0.040 0.043 

75% 0.108 0.044 0.060 0.055 0.046 0.058 0.054 0.047 0.046 0.043 

95% 0.257 0.128 0.152 0.109 0.058 0.148 0.138 0.125 0.086 0.077 

n = 1,000 5% 0.792 0.397 0.542 0.706 0.377 0.528 0.078 0.130 0.095 0.144 

25% 0.054 0.056 0.098 0.066 0.067 0.095 0.041 0.043 0.038 0.056 

50% 0.034 0.026 0.032 0.027 0.026 0.031 0.019 0.028 0.018 0.024 

75% 0.102 0.024 0.030 0.043 0.026 0.030 0.037 0.033 0.019 0.023 

95% 0.270 0.088 0.090 0.095 0.114 0.090 0.074 0.067 0.053 0.057 
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Table 6.2 
Bootstrap MSE estimates and average ratios of the estimated and simulated MSEs 
 

     ˆ a
iF u     ˆ b

iF u  

 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 
MSE  0.542 0.196 0.117 0.098 0.165 0.204 0.093 0.068 0.062 0.102 
Ratio  0.843 0.959 1.014 0.988 0.871 0.969 0.994 1.003 0.996 0.975 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2 The bottom, middle and top lines of each bar denote 2.5%, 50% and 97.5% quantiles of 1,000 small 
area estimates of the total income. The dot in each bar denotes true small area median. Five bars in 
each cluster are formed by DE, LEL1, LEL2, PEL1, PEL2 estimates. Top two plots: male living 
(left) and not living (right) with spouse; Bottom two plots: female living (left) and not living (right) 
with spouse. Seven clusters in each plot correspond to 7 education levels. 
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7  Conclusion 
 

We studied the small area quantile estimation under the nested-error non-parametric regression model 

and a semi-parametric DRM assumption on error distributions. We proposed two quantile estimators based 

on P-splines and empirical likelihood approach. Simulation results show that the proposed estimators are 

robust and have respectable efficiency under both linear and non-parametric regression functions for mid-

range quantiles. The proposed approach can be extended to non-parametric regression models with multiple 

covariates in principle, though it will lead to many more parameters to be estimated. This problem will be 

investigated in a future work. 
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Development of a small area estimation  
system at Statistics Canada 

Michel A. Hidiroglou, Jean-François Beaumont and Wesley Yung1 

Abstract 

The demand for small area estimates by users of Statistics Canada’s data has been steadily increasing over recent 
years. In this paper, we provide a summary of procedures that have been incorporated into a SAS based 
production system for producing official small area estimates at Statistics Canada. This system includes: 
procedures based on unit or area level models; the incorporation of the sampling design; the ability to smooth the 
design variance for each small area if an area level model is used; the ability to ensure that the small area estimates 
add up to reliable higher level estimates; and the development of diagnostic tools to test the adequacy of the 
model. The production system has been used to produce small area estimates on an experimental basis for several 
surveys at Statistics Canada that include: the estimation of health characteristics, the estimation of under-
coverage in the census, the estimation of manufacturing sales and the estimation of unemployment rates and 
employment counts for the Labour Force Survey. Some of the diagnostics implemented in the system are 
illustrated using Labour Force Survey data along with administrative auxiliary data. 

 
Key Words: Small area estimation; Area level model; Unit level model; EBLUP; Hierarchical Bayes methods; Official 

Statistics. 

 
 

1  Introduction 
 

Today’s data users are becoming more and more sophisticated and are asking for more data and at more 

detailed levels. For National Statistical Offices (NSOs) facing declining response rates, producing data at 

finer levels of detail is a particularly daunting challenge. Small area estimation techniques are one way that 

can be considered to meet this demand to produce estimates for specified sub-populations or small areas. A 

small area refers to a subgroup of the population for which the sample size is so small that direct estimates 

are not reliable enough to be published. Examples of small areas include a geographical region (e.g., a 

province, county, municipality, etc.), a demographic group (e.g., age by sex), a demographic group within 

a geographic region or a detailed industry group. The demand for small area data has been recognized for 

years (see Brackstone, 1987), but recently, it has greatly increased as noted in the spring 2014 report of the 

Auditor General of Canada.  

The study of small area estimation procedures has a long history at Statistics Canada, beginning in the 

seventies with Singh and Tessier (1976) and Ghangurde and Singh (1977). Drew, Singh and Choudhry 

(1982) proposed a sample dependent procedure to estimate employment characteristics below the provincial 

level. Dick (1995) modeled net undercoverage for the 1991 Canadian Census of Population. The 

development of a small area estimation system suited to Statistics Canada surveys is well-timed, as there is 

now a great deal of literature written on the subject, including the books by Rao (2003) and Rao and Molina 

(2015). 
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Four papers that have had a great impact in small area estimation (SAE) are Gonzalez and Hoza (1978), 

Fay and Herriot (1979), Battese, Harter and Fuller (1988), and Prasad and Rao (1990). Gonzalez and Hoza 

(1978) were among the first to propose small area estimation procedures (mainly synthetic estimation). Fay 

and Herriot (1979) developed procedures to estimate income for small areas using the long form Census 

Data. This method and its variants are among the most widely used procedures for producing small area 

estimates through the integration of auxiliary data with direct survey estimates. Battese et al. (1988) 

developed a small area procedure to estimate crop areas using survey and satellite data available for 

individual units. Finally, Prasad and Rao (1990) derived a nearly unbiased estimator of the model-based 

mean squared error for both the Fay-Herriot and Battese-Harter-Fuller estimators. 

The statistical theory of model-based SAE is rather complex and much of the software available at 

National Statistical Offices has been programmed on a one-time basis and, as such, is not appropriate in a 

production environment. It was therefore decided to develop a system as it would be beneficial as a 

production tool, as well as a learning tool for employees. At the time that this was decided, around 2006, 

there existed computer programs developed by the EURAREA (2004) project for small area estimation. 

However, this set of programs was no longer in development mode and did not represent the latest advances 

in small area estimation. Therefore, a flexible small area estimation system that would address the needs of 

producing small area estimates in production was developed at Statistics Canada. Some of the basic 

requirements of this small area system included: allowing for both area and unit level models; incorporating 

the sampling design in the estimation of the parameters of interest and the mean squared error; ensuring that 

the small area estimates would add up to reliable higher level estimates (i.e., totals), and developing 

diagnostic tools to test the adequacy of the models used for small area estimation. A prototype system, 

written in SAS, was therefore developed by Estevao, Hidiroglou and You (2015) to reflect these 

requirements. This prototype has been transformed into a production system that is currently used by 

Statistics Canada. 

The paper is organized as follows. Section 2 introduces the notation used in the article. Section 3 

discusses the options available in the production system for the area level model and Empirical Best Linear 

Unbiased Prediction (EBLUP) methods. The options for the unit level model with EBLUP methods are 

presented in Section 4. The Hierarchical Bayes approach is presented in Section 5 for the area level model. 

Section 6 illustrates the production system using Statistics Canada’s Labour Force Survey. Finally, some 

conclusions are given in Section 7. 

 
2  Core notation and background 
 

We first introduce some notation that will define the various small area estimators included in the 

production system. Let U  denote a population of size .N  This population is partitioned into M  mutually 

exclusive and exhaustive areas, where each area , 1, ,iU U i M    has iN  observations. A sample, 

,s  of size n  is drawn from the population using a well-defined probability mechanism  p s  and the 

resulting sample is split into areas , 1, , .i i is Ms U    Note that, for some of the areas, the realized 
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sample size in  may be zero. The set of  m m M  areas, where in  is strictly greater than 0, will be denoted 

as .A  The set of the remaining areas, where in  is equal than 0, will be denoted as .A  

Let  
 :

, ,j s j s
jp s U


   be the inclusion probabilities where  :s j s  denotes summation over 

all samples s  containing unit .j  We denote the sampling weight for unit j  as ,jd  where 1.j jd    The 

final weight associated with unit j  will be denoted as .jw  This weight will normally be the product of the 

original design weight  jd  times an adjustment factor that reflects the incorporation of available auxiliary 

data (via regression or calibration), as well as non-response adjustments. Note that the auxiliary data used 

in the adjustment factor may not necessarily be the same as those used for small area estimation.  

The objective of a small area estimation system is to estimate a population parameter i  (e.g., a mean 

or a total) for each area i  for a given variable of interest y  when some area sample sizes in  are too small 

to use direct estimation procedures. A direct estimator of i  is one that uses values of the variable of 

interest, ,y  strictly from the sample units in area .i  However, a major disadvantage of such estimators is 

that unacceptably large standard errors may result: this is especially true if the area sample size is small. 

Small area procedures use indirect estimators that borrow strength across areas, by using models which link 

all areas through some common parameters. Indirect estimators will be efficient (i.e., increase the effective 

sample size and thus decrease the standard error) if the model holds for each area. Departures from the 

model will result in reduced accuracy. There is a wide variety of indirect estimators available and a good 

summary is provided in Rao and Molina (2015).  

Small area estimators are classified as area or unit level depending on the level at which the modeling is 

performed. Area level small area estimators are based on models linking a given parameter of interest to 

area-specific auxiliary variables. Unit level small area estimators are based on models linking the variable 

of interest to unit-specific auxiliary variables. Area level small area estimators are computed if the unit level 

area data are not available. They can also be computed if the unit level data are available by aggregating 

them to the appropriate area level. This might be useful in practice because the area level small area 

estimators may be less prone to outliers than their unit level counterpart. 

 
3  Area level model 
 

The area level small area estimator first appeared in the seminal paper of Fay and Herriot (1979). 

Following that paper, let the parameter of interest be ;i  common examples are totals, ,
i

i jj U
Y y


   or 

means, .i i iY Y N  As noted above, the vector of auxiliary variables may differ from the one used in 

direct estimation and is denoted as .z  The area level model can be expressed as two equations.  

The first equation, commonly known as the sampling model, is given by  

 î i ie    (3.1) 

and expresses the direct estimate î  in terms of the unknown parameter i  plus a random error ie  due to 

sampling. The sampling errors ie  are independently and identically distributed with mean 0 and variance 
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:i  that is   0p i iE e    and   ,p i i iV e    where p  denotes expectation in terms of the sample 

design. Note that i  is also the design variance of î  and is typically unknown.  

The second equation, known as the linking model, is given by  

 T
i i i ib v  z β  (3.2) 

and expresses the parameter i  as a fixed effect T
iz β  plus a random effect iv  multiplied by .ib  In the 

production system, the ib  term has a default value of one but can be specified by the user to control 

heteroscedastic errors or the impact of influential observations. The random effects iv  are independently 

and identically distributed with mean 0 and unknown model variance 2 ,v  that is   0m iE v   and 

  2
m i vV v   where mE  denotes the model expectation and mV  the model variance. The random errors ie  

are independent of the random effects .iv  The combination of the sampling model and linking model results 

in a single generalized linear mixed model (GLMM) given by 

 ˆ .T
i i i i ib v e   z β  (3.3) 

From the Fay-Herriot model (3.3), we observe that  ˆ T
mp i iE   z β  and   2 2ˆ ,mp i i v iV b      where 

 i m iE   is the smoothed design variance of ˆ .i  In general, we cannot treat i  as fixed, as it is not 

strictly a function of auxiliary data. If the 2 ’sv  and ’si  are known, the solution to the GLMM yields the 

Best Linear Unbiased Predictor (BLUP), BLUP
i  

 
 

BLUP

ˆ 1 for

for

T
i i i i

i
T
i

i A

i A

  


    


z β

z β




 
 (3.4) 

where    2 2 2 2
i i v i i vb b      and     

1
2 2 2 2ˆ .T

i i i i v i i i i vi A i A
b b    



 
   β z z z    

There are four recursive procedures for estimating 2
v  and β  in the production system. The first three 

assume that i  is known, or that a smoothed version of it is available (see the following section for details). 

Under this assumption, the variance components can be computed via the Fay-Herriot procedure (FH) as 

outlined in Fay and Herriot (1979), the restricted maximum likelihood (REML), or the Adjusted Density 

Maximization (ADM) due to Li and Lahiri (2010). The fourth procedure, WF, due to Wang and Fuller 

(2003) assumes that i  is estimated by ˆ i  given that 2.in   The WF procedure does not require any 

smoothing of the estimated ˆ i  values before estimating 2 .v  Wang and Fuller (2003) carried out simulations 

with in  ranging from 9 to 36 and found that their procedure yielded reasonable estimates of i  and its 

estimated mean squared error. 

The main difference between these four procedures is how the 2 ’sv  are computed. They are all based 

on an iterative scoring algorithm that obtains 2ˆ v  as an estimate of the model variance 2 .v  The FH, REML, 

and WF procedures may yield 2ˆ ’sv  that are smaller than zero. If this occurs, the 2ˆ ’sv  are set to zero for 

both the FH and REML procedures. A drawback of truncating the estimated 2
v  to zero is that the resulting 

small area estimator will be synthetic for all areas. Li and Lahiri (2010) suggested the ADM as a way to 
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address the problem of obtaining negative 2ˆ v  by maximizing an adjusted likelihood defined as a product 

of the model variance and a standard likelihood. Although the ADM method always gives a positive solution 

for 2 ,v  it should be used cautiously because it overestimates the model variance. The REML, FH and ADM 

procedures use the smoothed values of the estimated ˆ i  values obtained from the sample or some estimate 

provided by the user. For the WF procedure, if 2ˆ 0,v   Wang and Fuller (2003) suggested to set 2ˆ v  to 

 2ˆ ˆ0.5  ,vV   where  

    
 
 

2
22 2 2 2

ˆˆ ˆˆ ˆ2
1

i
v i i i v

i A i

V b
n
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1
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Plugging 2ˆ v  and an estimate of ’si  into the BLUP ,i  defined by equation (3.4), yields the Empirical 

Best Linear Unbiased Predictor (EBLUP), EBLUPˆ .i  It is given by 

 
 

EBLUP

ˆ ˆˆ ˆ1 for ˆ
ˆ for 

T
i i i i

i
T
i

i A

i A

  


    


z β

z β
  

where    2 2 2 2ˆ ˆ ˆ ,i i v i i vb b         
1

2 2 DIR 2 2ˆˆ ˆ ˆ ,T
i i i i v i i i i vi A i A

b b    


 
   β z z z   and i  is 

chosen according to the procedure used. For the REML, FH and ADM procedures the ’si  are the smoothed 

values of the estimated ˆ i  values obtained from the sample or some estimate provided by the user. For the 

WF procedure, we have that ˆ .i i   If the estimated model variance 2 2ˆi vb   is relatively small compared 

with ,i  then ˆi  will be small and more weight will be attached to the synthetic estimator ˆ .T
iz β  Similarly, 

more weight is attached to the direct estimator, ˆ ,i  if the design variance i  is relatively small.  

Details of the required computations can be found in the methodology specifications for the production 

system in Estevao et al. (2015). 

 
3.1  Estimation of the smooth design variance 
 

The design variance, ,i  could be used as an estimator of the smooth design variance  i m iE   if 

it were known. In most cases, it is unknown. To get around this difficulty, a design-unbiased variance 

estimator ˆ i  of i  is assumed to be available; i.e.,  ˆ .p i iE    Under this assumption, we have that 

    ˆ .mp i m i iE E       
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A simple unbiased estimator of the smooth design variance i  is ˆ .i  However, ˆ i  may be quite 

unstable when the sample size in domain i  is small. A more efficient estimator is obtained by modelling 

ˆ i  given .iz  Dick (1995) and Rivest and Belmonte (2000) considered smoothing models given by  

  ˆlog ,T
i i i  x α   

where ix  is a vector of explanatory variables that are functions of ,iz α  is a vector of unknown model 

parameters to be estimated, and i  is a random error with   0mp iE    and constant variance 

 2 .mp iV   We also assume that the errors i  are identically distributed conditionally on ,iz  

1, , .i m   From the above model, we observe that 

    ˆ exp ,T
i mp i iE   x α   

where   exp .mp iE    Dick (1995) estimated i  by omitting the factor .  Rivest and Belmonte (2000) 

estimated   by assuming that the errors i  are normally distributed. However, we observed empirically 

that the resulting estimator of   is sensitive to deviations from the normality assumption. This assumption 

is avoided by using a method of moments (see Beaumont and Bocci, 2016). This leads to the unbiased 

estimator of   given by 

  
 

1

1

ˆ
ˆ .

exp

m

ii
m

T
ii






  


α
x α

  

An estimator α̂  of the vector of unknown model parameters α  is necessary to estimate .i  It is obtained 

using the ordinary least squares method as 

  
1

1 1

ˆˆ log .
m m

T
i i i i

i i




 

  
 
 α x x x   

The estimator ˆ
i  of i  is then given by 

    ˆˆ ˆ ˆexp .T
i i  x α α   

A nice property of ˆ
i  is that the average of the smooth design variance estimator, ˆ ,i  is equal to the 

average of the direct variance estimator, ˆ ;i  i.e., 

 1 1
ˆ ˆ

.

m m

i ii i

m m

 
  

  

This ensures that ˆ
i  does not systematically overestimate or underestimate  ˆ .i mp iE   

 
3.2  Benchmarking 
 

If the parameter of interest i  is a total   ,i iY   the user may wish to have the sum of the small area 

estimates, EBLUPˆ ˆ ,ii A A
 

 
   agree with the estimated totals ˆ

îi A
Y Y


   at the overall sample level ;s  
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i.e., ˆ ˆ.Y   In the case of a mean, ,i iY   this benchmarking condition becomes EBLUPˆ
i ii A A

N 
 

  
ˆ ,i ii A

N 
  where ˆˆ .i iY   

Two methods are available in the production system to ensure benchmarking for area based small area 

estimates. The first one is based on a difference adjustment and the second one is based on an augmented 

vector. They are valid for any method used to compute EBLUP
î  or whether the variance estimate i  has 

been smoothed or not. The benchmarking based on a difference adjustment is an adaptation of the 

benchmarking given in Battese et al. (1988). The benchmarking based on an augmented vector is due to 

Wang, Fuller and Qu (2008). 

Difference adjustment: For this method, the EBLUP
î  estimator is adjusted only for those areas where the 

realized sample size 1,in i A   and the synthetic estimates ˆT
iz β  for i A  are left as is. The resulting 

benchmarked estimator is given by EBLUP,ˆ b
i  and is defined as follows 

 
EBLUPEBLUP *

EBLUP,
ˆ ˆ ˆ for

ˆ

ˆ for

i i d db
d Ai

T
i

i A

i A

    
 

       
 


z β

  

where     
1

2 2 2 2 2ˆ ˆ
A

i i i i v i i i vi U
b b      




       for ,i A 1,i   if the benchmarking is to a 

total, and ,i iN N   if the benchmarking is for the mean. The estimator *̂  is a value provided by the 

user that represents the total or mean of the y -values of population .U  The benchmarking ensures that 
EBLUP, *ˆ ˆ .b

i ii A A
  

 
  

Augmented vector: The vector T
iz  is augmented with ,i i  to form  * ,T T

i i i iz z   with i  and i  as 

previously defined. The resulting augmented generalized linear mixed model (GLMM) equation is given by 

 * * *ˆ T
i i i i ib v e   z β   (3.5) 

where  * 0m iE v   and  * *2 .m i vV v   The estimates for *β  and *2
v  are once more solved recursively 

for the four EBLUP procedures that we denote as EBLUP*ˆ .i  

The resulting benchmarked estimator EBLUP*,ˆ b
i  is given by 

 
 *

*
* EBLUP * * *

EBLUP ,

* *

ˆ ˆˆ ˆ1 forˆ
ˆ for

T
i i i ib

i
T

i

i A

i A

  


    


z β

z β
  

where    * 2 *2 2 *2ˆ ˆ ˆ ,i i v i i vb b      and     
1

* * * 2 *2 * 2 *2ˆˆ ˆ ˆ .T
i i i i v i i i i vi A i A

b b    


 
   β z z z   

All the components of 
*EBLUP ,ˆ b

i  are computed using the augmented model given by (3.5). It can be 

shown that 
*EBLUP ,ˆ ˆ ,b

i i i ii A A i A
   

  
   and hence the benchmarking holds. 

The difference adjustment and augmented vector methods are two ways that benchmarking can be 

satisfied. Wang et al. (2008) suggested other procedures that can be used. Specifically, they adapted the 

self-calibrated estimator You and Rao (2002) developed in the context of the unit level model to the area 
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level model. You, Rao and Hidiroglou (2013) obtained an estimator of the mean squared prediction error 

and its bias under a misspecified model. 

 
3.3  Mean squared error estimation 
 

The reliability of the EBLUP estimators is obtained as     2
EBLUP EBLUPˆ ˆMSE .i i iE     The 

expectation is with respect to models (3.3) for the non-benchmarked estimator, and (3.5) for the 

benchmarked estimator. 

The estimated Mean Squared Errors (MSEs) of the area level estimators are given in Table 3.1. The 

specific form of the g  terms and the estimated variances can be found in Rao and Molina (2015) or in 

Estevao et al. (2015). For the benchmarked estimators, the estimated MSE for the difference adjustment 

approach uses the non-benchmarked MSE formulas. For the case of the augmented vector approach, the 

MSE is based on augmenting the vector T
iz  with .i i  

 
Table 3.1 
MSE estimates (mse) for the area level estimators 
 

Estimator       mse 

Fay-Herriot         
0 1 2 3

FH

2 2

2 for
ˆmse ˆ ˆvar  for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

ADM         
0 1 2 3

ADM

2 2

2 for
ˆmse ˆ ˆvar   for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

REML         
1 2 3

REML

2 2

2 for
ˆmse ˆ ˆvar  for

i i i

i T
i i i v

g g g i A

b i A




   
 z β z

 

WF         
1 2 3 4

WF 

2 2

2 for
ˆmse ˆ ˆvar for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

 
The various g  terms in Table 3.1 can be interpreted as follows. The 0ig  is a bias correction term for 

FH and ADM. The 1ig  term given by 1 ˆ ,i i ig     accounts for most of the MSE if the number of areas is 

large. The 2ig  term accounts for the estimation of ,β  and 32 ig  accounts for the estimation of 2 .v  The 4ig  

term in the WF procedure reflects that the estimated value of ,i ˆ ,i  has been used. The estimated variance 

of ˆ ,β  given by    2 2

1

ˆ
ˆvar

T
i i

i vibi A  




  z zβ   is dependent on the particular procedure used to estimate 2 .v  

 
4  Unit level model  
 

The original unit level model was proposed by Battese et al. (1988). They assumed the following nested 

error model 
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 for 1, , andT
ij ij i ij iy v e i m j U    z β   (4.1) 

where  ind
20,i vv   are the random effects and are independent of the random errors, ,i je  with 

 ind
20, .i j ee   The production system includes a slight modification to the error structure of the random 

errors. That is,  ind
20, ,ij e ije a  where 0i ja   are positive constants that account for heteroscedasticity.  

The production system computes small area estimates for means  
i i

ic ij ij ijj U j U
Y c y c

 
    and 

totals   .
i

ic ij ij U
Y c Y


   The ijc  values are fixed positive constants known for all population units. The 

addition of ijc  was necessary to allow the use of the system by some business surveys conducted at Statistics 

Canada (see Rubin-Bleuer, Jang and Godbout, 2016). The available auxiliary data are either totals 

,
i

ic ij ijj U
c


 Z z  or means .

i i
ic ij ij ijj U j U

c c
 

  Z z  

In what follows, we provide the estimators of the population means ,icY  say SAEˆ ,i  where 1, , .i M   

Estimates of the corresponding totals ,icY  are obtained by multiplying SAE
î  by 

1
.iN

ijj
c

  

The design weighted sample mean of the ’sy  and ’sz  are respectively 

       1

i i

iwc ij ij ij ij ij
j s j s

y w c w c y


 
     

and 

        1
.

i i

iwc ij ij ij ij ij
j s j s

w c w c


 
  z z   

The model based weighted means are  

    1

i i

ia ij ij ij
j s j s

y a a y


 
     

and  

     1
.

i i

ia ij ij ij
j s j s

a a


 
  z z   

Battese et al. (1988) did not include survey design weights in their procedure, thereby forsaking design 

consistency unless the design was self-weighting. We refer to this estimator as EBLUP  EBLUPˆ .i  However, 

EBLUP is the most efficient estimator under model (4.1), with error structure  ind
20, ,ij e i je a  and this 

is the reason that it is included in the production system.  

Kott (1989), Prasad and Rao (1999), and You and Rao (2002) proposed the use of design-consistent 

model based estimators for the area means by including the survey weight. The You and Rao (2002) 

procedure was suitably modified to reflect the heteroscedastic residuals and the ’s.ijc  The resulting Pseudo-

EBLUP estimator, denoted as PEBLUP  PEBLUPˆ ,i  was included in the production system as it is design 

consistent. 

The EBLUP estimator is defined as  

 
  EBLUP

EBLUP

EBLUP

ˆˆ ˆ ifˆ
ˆ if

T

ia ia ic ia ia
i

T
ic

y i A

i A

 


    


Z z β

Z β
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where   1
2 2 2ˆ ˆ ˆ ˆ .

i
ia v e ij vj s

a   



    The terms iay  and ,iaz  are the previously defined model based 

weighted means for y  and z  respectively. The regression vector β  is estimated as 

    
1

EBLUP

1 1

ˆ ˆ ˆ .
i i

m m
T

ij ij ij iac iac ij ij ij ij iac iac ij
i j s i j s

a c a c y 


   

  
 
 β z z z z z   

The PEBLUP estimator, PEBLUPˆ ,i  is given by  

                         
  PEBLUP

PEBLUP

PEBLUP

ˆˆ ˆ ifˆ
ˆ if

T

iwc iwc ic iwc iwc
i

T
ic

y i A

i A

 


    


Z z β

Z β
  

where    12 2 2 2ˆ ˆ ˆ ˆ ,iwc v e iwc v       and     2 2
2 .

i i
iwc ij ij ij ij ijj s j s

w c w c a


 
    The terms iwcy  and 

,iwcz  are the previously defined design based weighted means for y  and z  respectively. The regression 

vector β  is estimated as 

                            
1

PEBLUP

1 1

ˆ ˆ ˆ
i i

m m
T

ij ij ij iwa iwa ij ij ij ij iwa iwa ij
i j s i j s

w a w a y 


   

  
 
 β z z z z z   

where   1
,

i i
iwa ij ij ij ij ijj s j s

w a w a


 
  z z   12 2 2 2ˆ ˆ ˆ ˆiwa v e iwa v       and with 2

iwa  computed as 

    2 22 .
i i

iwa ij ij ij ij ijj s j s
w a w a a 

 
    

The components of variance, 2
e  and 2 ,v  are estimated using the fitting-of-constants (not weighted by 

the survey weights) method, as given by Battese et al. (1988) or Rao (2003). The resulting estimators of 2
e  

are always greater than or equal to zero, but the estimator of 2
v  may be negative. If 2 0,v   it is set to 

zero, implying that there are no area effects. The associated estimated MSEs are obtained by extending You 

and Rao (2002) and Stukel and Rao (1997). 

Note that if the sample s  is selected from the universe ,U  the realized sampling fraction, ,i i if n N  

could be non-negligible. For estimating a population mean, ,iY  Rao and Molina (2015), accounted for non-

negligible sampling fractions by expressing it as  

  1i i is i isY f y f y     

where isy  is the sample mean of the thi  sampled area and isy  is the sample mean of the non-sampled units 

within that area. They predicted isy  using the unit level model given by equation (4.1). Their expressions 

correspond to the case when 1.ijc   This estimator was extended by Rubin-Bleuer (2014) to include the 

EBLUP and PEBLUP estimators for the case that ijc  is arbitrary. Specific details that also account for MSE 

estimation can be found in Estevao et al. (2015). 

 
4.1  Benchmarking 
 

The current production system does not have a procedure to benchmark the estimates obtained via the 

unit level model. However, the difference adjustment approach can be suitably modified to allow this. The 

EBLUP and PEBLUP estimators are of the form 
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* * * * SAE

SAE

SAE

ˆˆ ˆ( ) if 
ˆ

ˆ if 

T
i i ic i i

i
T
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y i A

i A

 


    


Z z β

Z β
  

where *ˆ ,i * ,iy * ,iz  and SAEβ̂  correspond to the terms defined previously: *ˆi  is equal to ˆia  for EBLUP, 

and to ˆiwc  for PEBLUP; *
iy  is equal to iay  for EBLUP, and to iwcy  for PEBLUP; *

iz  is equal to iaz  for 

EBLUP, and to iwcz  for PEBLUP; and, SAEβ̂  is equal to EBLUPβ̂  for EBLUP, and to PEBLUPβ̂  for PEBLUP. 

Suppose that SAE
î  needs to be benchmarked to *ˆ .  The corresponding benchmarked estimator is 

  
SAESAE *

SAE,

SAE

ˆ ˆ if
ˆ

ˆ if

i i d db
d Ai

T
ic

i A

i A

    
 

       
 


Z β

  

where    
1

2 .i d d i id A
    




   The i  term is defined as follows: 1i   if the benchmarking is to a 

total and i iN N   if the benchmarking is for the mean. Possible choices of the ’si  are 2 2 2ˆ ˆ ,v e ia    

  1
2

1
,in

ia ijj
a




   for EBLUP, and 2 2 2ˆ ˆv e iwc    for PEBLUP. 

 
4.2  Mean squared error estimation 
 

The mean squared error estimates of the unit level estimators are based on estimating its mean squared 

error, given model (4.1) and error structure  ind
20, .ij e ije a  Table 4.1 displays these estimated MSE’s. 

 
Table 4.1 
MSE estimates for the unit level estimators 
 

Estimator  mse 

EBLUP    
1 2 3

EBLUP

EBLUP 2

2 for  
ˆmse ˆ ˆvar for  

ia ia ia

i T
i i v

g g g i A

i A




   
 Z β Z

 

PEBLUP    
1 2 3

PEBLUP
PEBLUP 2

2 for
ˆmse ˆ ˆvar for

iw iw iw

i T
i i v

g g g i A

i A




   
 Z β Z

 

 
The various g  terms in Table 4.1 can be interpreted in a similar way to those associated with the area 

level MSE’s. The 1 ’sig  are denoted as 1iag  for EBLUP, and 1iwg  for PEBLUP account for most of the 

MSE if the number of areas is large. The 2 ’sig  account for the estimation of ,β  and the 32 ’sig  account for 

the estimation of 2
v  and 2 .e  

The estimated variances of EBLUPβ̂  and PEBLUPβ̂  are respectively given by  

    
1

EBLUP 2ˆ ˆˆvar
i

T
e ij ij ia ia ij

i A j s

a 


 

  
 
β z x z   

and 
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1 1

PEBLUP 2 * * * * * *ˆ ˆvar
i i i

T T T
e ij ij ij ij ij ij ij

i A j s i A j s i A j s

a
 

     

         
    
  β z z z z z z   

where  * ˆ .ij ij ij ij iwa iwaw a  z z z  

The specific form of the g  terms and the estimated variances can be found in Estevao et al. (2015). 

 
5  Hierarchical Bayes (HB) method 
 

The basic Fay-Herriot area level model includes a linear sampling model for direct survey estimates and 

a linear linking model for the parameters of interest. Such models are matched because i  appears as a 

linear function in both the sampling and linking models. There are instances when these equations are not 

matched such as when a function,   ,ih   is modelled as a linear function of explanatory variables instead 

of .i  The sampling model and linking model pair is 

 î i ie    (5.1) 

and 

   T
i i i ih b v  z β  (5.2) 

where  ind
0,i ie N   and  ind

20, .i vv N   

The model pair given by (5.1) and (5.2) is referred to as an unmatched model. Nonlinear linking models 

are often needed in practice to provide a better model fit to the data. For example, if the parameter of interest 

is a probability or a rate within the range of 0 and 1, a linear linking model with normal random effects may 

not be appropriate. A linking model, in this case, could be a logistic or log-linear model. Such a model was 

used to adjust counts for detailed levels for the 2011 Census of Canada. A good description of what is 

involved to carry out such an adjustment can be found in Dick (1995) and You, Rao and Dick (2004). 

The production system includes the following choices of  ih   

  

 

 

  

Matched Fay-Herriot FH  model

Unmatched log-linear model

Unmatched log cen

:  

log :  

lo sus undercount modg :  el.

i

i i

i i i

h

C



 

 




 




 (5.3) 

The inclusion of  i ih    corresponds to the matched model represented by equations (3.1) and (3.2). 

An advantage of choosing the Hierarchical Bayes method is that the estimated 2
v  cannot be negative. The 

function  log ,i  where i  is equal to the population mean ,iY  was used in Fay and Herriot (1979). Their 

context was to estimate per capita income (PCI) for small places in the United States with a population less 

than 1,000. The function   ,ih    log ,i i iC    was included to support the methodology to estimate 

the net undercoverage in Canadian Censuses. In this model, i  represents the number of individuals not 

counted in the census, while iC  is the known census count. As a result,  i i iC    is the proportion of 

individuals undercounted by the Census. 
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The sampling variances, ,i  are assumed known for all the linking models represented by (5.2). The 

variances are assumed to be estimated for the first two functions (the matched Fay-Herriot and unmatched 

log-linear model) given in (5.3). If the sampling variances, ,i  are assumed known, then the unknown 

parameters in the sampling model (5.1) and the linking model (5.2) can be presented in a hierarchical Bayes 

(HB) framework as follows  

  ˆ , , 1, ,i i i iN i m          

and 

     2 2 2, , .T
i v i i vh N b   z β   

If the sampling variances are unknown, they are estimated by adding  

   2
ii i i i dd        

where 2
id  follows a chi-square distribution with  1i id n   degrees of freedom. 

The model parameters ,β 2
v  and i  (when it is unknown) are assumed to obey prior distributions. The 

distributions used in the production system for β  and 2
v  are the flat prior,   1, β  and 

    1 22 2 .v v     If i  is estimated, the prior     1 2
i i     is added to the Bayesian model. These 

prior distributions are multiplied by the density functions of the distributions associated with the sampling 

and linking models. This yields a joint likelihood function in terms of the model parameters. This function 

is used to obtain a full conditional (posterior) distribution for each of the unknown parameters. For some of 

these, the resulting distribution has a tractable or well-known form. For others, the resulting distribution is 

a product of density functions with no known form. All HB methods involve estimation of the model 

parameters through repeated sampling of their respective full conditional distributions.  

Markov Chain Monte Carlo (MCMC) methods are used to obtain estimates from the full conditional 

distribution of each parameter. Gibbs sampling is used repeatedly to sample from the full conditional 

distributions. The Gibbs sampling method (Gelfand and Smith, 1990) with the Metropolis-Hastings 

algorithm (Chib and Greenberg, 1995) are used to find the posterior means and posterior variances; see 

Estevao et al. (2015) for details. The various estimators of i  resulting from (5.3) are denoted as HBˆ .i  

 
5.1  Benchmarked HB estimator 
 

Benchmarking of the estimators uses the difference adjustment method described in Section 3.2. That is, 

the benchmarked estimators HB
î  are computed as 

 
 HBHB *

HB,
ˆ ˆ ˆ forˆ

ˆ for

i i d db d A
i

T
i

i A

i A

    
 

    



z β

  

where     
1

2 2 2HB 2 2HBˆ ˆi i i i v i i i vi A
b b      




       for ,i A  and *̂  is the benchmark value. The 

terms i  are defined as follows: 1i   if the benchmarking is to a total, and i iN N   if the 
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benchmarking is for the mean. The ’si  are either known or unknown. The *̂  can be a value provided by 

the user that represents the total or mean of the y -values of population .U  The benchmarking ensures that 
HB, *ˆ ˆ .b

i ii A A
  

 
  

 
6  Application to Labour Force Survey (LFS) data 
 

Statistics Canada’s LFS is a monthly survey with a stratified two-stage design. It is designed to produce 

reliable unemployment rate estimates for the 55 Employment Insurance Economic Regions (EIER) in 

Canada. The unemployment rate in any given area i  is defined as the ratio 

 
1

2

,i

i

jj U

i
jj U

y

y
 







  

where 1 jy  is a binary variable indicating whether person j  is unemployed  1 1jy   or not  1 0 ,jy   and 

2 jy  is a binary variable indicating whether person j  is in the labour force  2 1jy   or not  2 0 .jy   The 

direct estimator of i  is the calibration composite estimator described in Fuller and Rao (2001). See also 

Singh, Kennedy and Wu (2001) and Gambino, Kennedy and Singh (2001). It can be written in the weighted 

form 

    
1

2

ˆ ,i

i

j jj s
i

j jj s

w y

w y
 







  

where jw  is a calibration composite weight for person .j  

As mentioned above, the calibration composite estimator is reliable for the estimation of the 

unemployment rate for the 55 EIERs. There is also interest in obtaining reliable estimates for 149 areas 

(cities) in Canada. Among them, there are 34 Census Metropolitan Areas (CMA) and 115 Census Areas 

(CA). The CMAs are the largest cities in terms of population size and they usually have a large sample size 

as well. Some of the CAs have a very small sample size, sometimes even 0. For those CAs and other larger 

CAs, the sample size is not large enough to produce sufficiently reliable direct estimates of the monthly 

unemployment rate. Our objective was to investigate whether the Fay-Herriot model could be used to obtain 

monthly estimates that would be reliable enough to be published.  

We constructed an auxiliary variable 1 ,iz  for area ,i  given by EIB 15
1 ,i i iz N N   where EIB

iN  is the 

number of employment insurance beneficiaries in area i  and 15
iN   is the number of persons aged 15 years 

or older in area .i  The numerator is obtained from an administrative source, whereas the denominator is a 

Census projection computed by Statistics Canada. We used the vector  11, ,T
i izz  along with 1,ib   

1, , ,i m   to obtain SAE estimates. We used May 2016 data in this investigation to allow the comparison 

of direct and SAE estimates with 2016 Census estimates. 

Some of the 149 areas of interest had a very small sample size in the LFS: they were not used in the Fay-

Herriot and smoothing models. As a rule of thumb, we excluded from the models, areas where the number 
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of sampled persons in the labour force was smaller than 10. There were 9 such areas; among them, six had 

no sampled person in the labour force. Also, there were 9 other areas where the direct unemployment rate 

estimate, ˆ ,i  and its direct variance estimate, ˆ ,i  were both equal to 0. As these direct estimates were not 

deemed to be reliable enough, their associated areas were excluded from the models. This resulted in using 

only 131 areas in the models. For those areas, the small area estimates are EBLUP estimates, with the 

remaining 18 being synthetic estimates. 

The estimator ˆ i  of the direct variance i  was obtained via the Rao-Wu bootstrap. The estimates of the 

smooth design variances were then obtained by using       15
1 11, log , log 1 , log .T

i i i iz z N  x  A 

graph of the residuals of the smoothing model,  ˆ ˆlog ,i i  x α  versus the predicted values, ˆ ,ix α  did not 

reveal any obvious model misspecification. Figure 6.1 shows a graph of direct variances estimates, ˆ ,i  

versus smooth variance estimates, ˆ .i  The red line is the identity line. If the smoothing model is 

appropriate, for any value of ˆ ,i  the average of direct variance estimates for areas around area i  should be 

roughly equal to ˆ .i  This means that the red line should pass roughly through the middle of the points 

everywhere. From a quick inspection of Figure 6.1, we observe that the red line is close to the middle of the 

points although probably slightly above the middle due to some extreme values of ˆ .i  This may result in a 

slight overestimation of the true smooth variance  ˆ .i mp iE   A slight overestimation is not a major 

issue. What has to be avoided is an underestimation of ,i  as it typically leads to underestimating the MSE 

of the SAE estimate. This would provide the user with a false impression of precision. 

Overall, we were satisfied with our smoothed variance estimates. However, for areas with large sample 

sizes, we set ˆ ˆi i   as our estimate of .i  We assumed that direct variance estimates were stable enough 

when the sample size is large. As a rule of thumb, we set ˆ ˆi i   when the number of sampled persons in 

the labour force was greater than 400. This replacement occurred for 35 areas. The strategy was used to 

avoid possible small model biases in ˆ
i  for the largest areas, which could result in EBLUP estimates that 

become significantly different from the direct estimates. This is not a desirable property for areas with a 

large sample size.  

The smooth variance estimates were then used to obtain small area estimates for the 149 areas of interest. 

Figure 6.2 shows a graph of small area and direct estimates as a function of sample size (number of sampled 

persons in the labour force). The small area estimates are much less volatile than direct estimates, especially 

for the areas with the smallest sample sizes. For the largest areas, as expected, both estimates are similar. 

We first evaluated the quality of the underlying Fay-Herriot model before looking at the MSE estimates. 

Figure 6.3 shows the graph of direct estimates, ˆ ,i  versus predicted values, ˆ .T
iz β  The red line is the identity 

line and the blue line is a nonparametric smoothing spline curve. If the linearity assumption holds, the blue 

line should be close to the red line and the latter should pass roughly through the middle of the points 

everywhere. Figure 6.3 does not give any indication that the linearity assumption of the Fay-Herriot model 

is questionable.  
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Figure 6.1  Graph of direct variance estimates, ˆ ,i  versus smooth variance estimates, ˆ .i  

 

 
 

 

 

 

 

 

 

 

 

Figure 6.2  Graph of small area estimates and direct estimates as a function of sample size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3  Graph of direct estimates versus model predicted values. 
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It is also informative to compute a measure that indicates the strength of iz  for the prediction of .i  To 

this end, we developed and implemented a coefficient of determination, or 2R  value, associated with the 

linking model .T
i i i ib v  z β  Note that the coefficient of determination associated with the combined 

model, ˆ ,T
i i i i ib v e   z β  is not of interest as the objective is not the prediction of î  but the prediction 

of .i  Our coefficient of determination is given by 

  
 

 

2
2

2 2

ˆ
1 ,

ˆˆ
1

v

v

R
m q

S
m




 





β

  

where q  is the dimension of iz  and  2 ˆS β  is the sample variance of ˆT
i ibz β  (see equation (A.6) for the 

exact definition of the function 2 ( )).S   The details of the derivation of the above coefficient of 

determination are provided in the Appendix. Figure 6.3 indicates that the 2R  value is 0.63. The linking 

model is thus neither weak nor extremely strong but, hopefully, strong enough to achieve efficiency gains 

over the direct estimator. The system also produces estimates of the parameters of the Fay-Herriot model 

along with their standard errors. From this output, we found out that estimates of both the intercept and 

slope parameters of the Fay-Herriot model were significantly different from 0 using a standard Wald test at 

the 0.05 significance level. 

Figure 6.4 shows a graph of standardized residuals,   2 2ˆ ˆ ˆˆ ,T
i i i v ib   z β   versus standardized 

predicted values, 2 2ˆ ˆˆ .T
i i v ib  z β   The red line is a horizontal line at zero and the blue line is a 

nonparametric smoothing spline curve. Similarly to Figure 6.3, the blue line should be close to the red line 

under linearity and the latter should pass roughly through the middle of the points everywhere. Again, 

Figure 6.4 does not indicate any obvious failure of the linearity assumption underlying the Fay-Herriot 

model.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  Graph of standardized residuals versus standardized predicted values. 
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Figure 6.5 shows a graph of squared standardized residuals versus standardized predicted values. The 

red line is a horizontal line at one and the blue line is again a nonparametric smoothing spline curve. This 

graph is used to check the homoscedasticity assumption; i.e., the assumption that the model variance 2
v  is 

constant. Under homoscedasticity, the blue line should be close to the red line everywhere. The graph does 

not reveal any obvious presence of heteroscedasticity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5  Graph of square standardized residuals versus standardized predicted values. 

 
Figure 6.6 shows a QQ-plot of standardized residual quantiles versus standard normal quantiles. It is 

used to verify the normality assumption of the errors i ib v  and .ie  The graph does indicate a modest 

departure from normality. However, Rao and Molina (2015, page 138) argued that EBLUP estimates and 

their corresponding MSE estimates are generally robust to deviations from normality. 

The system also computes Cook’s distances to identify areas that could have a significant influence on 

the estimate ˆ .β  The Cook distance for area i  is given by 
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where  ˆ iβ  is the estimate of β  obtained after deleting area .i  A plot of the influences iD  is provided in 

Figure 6.7. One area seems to have a relatively large influence compared with other areas  1.2851 .iD   

This area has the largest standardized predicted value and the second largest predicted value. Its standardized 

residual is -1.88, which is not extreme, although not very small either. Its sample size is large (number of 

sampled persons in the labour force close to 500) and its smooth variance estimate, ˆ ,i  is relatively small 

compared with other areas. All these reasons explain why this area was detected as being influential. In this 

application, we decided to keep this area in the model as its influence was not large enough to make a big 

difference in the SAE estimates and their corresponding MSE estimates. 
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Figure 6.6  QQ-plot of standardized residual quantiles versus standard normal quantiles. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Plot of Cook’s distances. 

 
Since the Fay-Herriot model and smoothing model were both reasonable, we computed MSE estimates 

to evaluate the magnitude of the efficiency gains, if any, obtained by using the Fay-Herriot model. Figure 6.8 

shows the estimated direct Coefficient of Variation (CV), defined as ˆˆ ,i i   and the estimated SAE 

Relative Root Mean Square Error (RRMSE), defined as SAEˆ ˆ ,i i   where î  is an estimate of the MSE, 

  2
SAEˆ ,mp i iE    and SAE

î  is the small area estimate (EBLUP or synthetic estimate) of .i  The sample 

size (number of sampled persons in the labour force) is given on the horizontal axis. The estimated direct 

CVs are in general much larger than the estimated SAE RRMSEs, especially for the areas with the smallest 

sample sizes. The estimated SAE RRMSEs are never above 20% whereas the estimated direct CV is over 
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Area with maximum value                                         123 
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300% for one area. The estimated SAE RRMSEs are also very stable as a function of the sample size unlike 

the erratic behavior of the estimated direct CVs. For the areas with the largest sample sizes, both estimates 

are very similar, as expected. This indicates that SAE methods can lead to a substantial increase of precision 

over direct estimation methods, particularly for the smallest areas. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8  Graph of estimated direct CVs and SAE RRMSEs as a function of sample size. 

 
For the month of May 2016, we had the luxury of having a very reliable source for the estimation of the 

unemployment rates: the 2016 long form Census administered to roughly one-fourth of the households 

throughout Canada. The Census sample size is much larger than the LFS sample size in all the areas of 

interest. Therefore, we used the 2016 Census direct estimates, denoted by Censusˆ ,i  as a gold standard for 

evaluating the accuracy of both the LFS direct estimates and SAE estimates. We computed Absolute 

Relative Differences (ARD) between LFS direct estimates and Census estimates, Census Censusˆ ˆ ˆ ,i i i    

as well as ARDs between SAE estimates and Census estimates, SAE Census Censusˆ ˆ ˆ .i i i    These ARDs 

were then averaged within 5 different homogeneous subgroups with respect to sample size. Table 6.1 

summarizes the results.  

 
Table 6.1 
Average ARD of SAE estimates and LFS direct estimates expressed in percentage 
 

Sample size Average ARD between LFS 
direct estimates and Census 

estimates 

Average ARD between 
SAE estimates and Census 

estimates 

Average ARD between HB 
estimates and Census 

estimates 
28 smallest areas 70.4% 17.7% 18.3% 
Next 28 smallest areas 38.7% 18.9% 19.0% 
Next 28 smallest areas 26.2% 13.8% 14.1% 
Next 28 smallest areas 20.9% 12.7% 13.0% 
28 largest areas 13.2% 10.2% 10.3% 
Overall 33.9% 14.7% 14.9% 
Note: Out of the 149 areas of interest in the LFS, 9 were excluded from this table: six where the LFS number of sampled persons in the labour 

force was 0 and three that were no longer in the list of CMAs /CAs after the 2016 Census. 
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As expected, the ARD between the LFS and Census direct estimates decreases as the sample size 

increases. This may suggest that the conceptual differences between these two surveys and nonsampling 

errors are reasonably small compared with the sampling error, especially for the smallest areas where the 

sampling error may be the main contributor to the ARD. The SAE estimates are much closer to the Census 

estimates than the LFS direct estimates, particularly for the smallest areas where improvement is most 

needed. This confirms that our underlying models are reasonable in this application. 

For comparison purposes, we also computed HB estimates, HBˆ ,i  based on the matched Fay-Herriot 

model with the noninformative priors for ,β 2
v  and i  provided in Section 5. We then computed ARDs 

between HB estimates and Census estimates, HB Census Censusˆ ˆ ˆ .i i i    Results are given in the last column 

of Table 6.1. The averaged ARDs of the HB estimates are close to those of the EBLUP estimates. 

 
7  Conclusion 
 

A frequent demand from users of data from NSOs is for more granularity for use in planning and policy 

research purposes. NSOs can no longer simply increase the sample sizes of their surveys to obtain reliable 

estimates at the requested level of detail. Reasons for this include the high costs of doing so, response burden 

concerns, as well as the difficult task of obtaining responses from sampled units. An alternative being 

investigated by many NSOs is the use of small area estimation techniques that provide a way to address the 

demand for more granular data. With this in mind, Statistics Canada began the development of an SAE 

production system in the early 2000s and now have such a system available to their statistical programs. 

The production system handles area and unit level models, with multiple options such as different methods 

to estimate the variance components, different linking models and both the EBLUP and HB estimation 

methods. It is currently being used to produce experimental estimates for several Statistics Canada statistical 

programs and it is expected that the first published small area estimates will be available in 2019. 

As it was mentioned in the introduction, the only existing software in 2006 that would produce small 

area estimates and their associated mean squared estimates was sponsored by the EURAREA (2004) project. 

The current production system developed at Statistics Canada is written in SAS, with its methodology 

closely following Rao (2003) and includes some recent advances. As it stands, it satisfies the existing 

requirements for small area estimation at Statistics Canada. However, as the use of small area estimation 

becomes more common within Statistics Canada, there will be a need to add functionality to the system to 

meet this demand. The recent book authored by Rao and Molina (2015) provides an idea of how much 

development has taken place in small area estimation during recent years. The incorporation of all this 

development into the production system would be extremely time consuming, expensive, and may not be 

directly applicable to the needs of Statistics Canada. It, therefore, follows that options other than 

programming these new functionalities in the current SAS production system should be considered. One 

option would be to investigate how packages developed elsewhere, such as those written in ,R  can be 

integrated into it. Notable packages written in R include sae (Molina and Marhuenda, 2015), mme 
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(Lopez-Vizcaino, Lombardia and Morales, 2014), saery (Esteban, Morales and Perez, 2014) and sae2 (Fay 

and Diallo, 2015). These packages include small area procedures that are not in the present system such as 

multinomial linear mixed models, area level models with time effects and time series area level models 

supporting univariate and multivariate applications. The existing SAS production system meets the needs 

of Statistics Canada at this point in time, and there are no concrete plans to add functionality to it. 
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Appendix 
 
Justification of the coefficient of determination 
 

In order to determine a coefficient of determination associated with the linking model, ,T
i i i ib v  z β  

we first rewrite it as  

 ,T
i i iv  z β    

where i i ib   and .i i ibz z  We assume that an intercept is implicitly or explicitly included in ;iz  

i.e., there exists a vector λ  such that 1.T
i λ z  In other words, we assume that there exists a vector λ  such 

that .T
i ib  λ z  If ,i 1, , ,i m   were known, we could estimate the unknown vector of model 

parameters β  by the least squares estimator 
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and the unknown model variance 2
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The well-known adjusted coefficient of determination is  
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where 1
1

.
m

ii
m 


    It is an ideal coefficient of determination because it cannot be computed (since i  

is unknown) but this is the target we would like to estimate. Simply replacing i  with î  does not solve 

the problem as î  reflects the combined model and not just the linking model. The resulting coefficient of 
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determination would typically be too small. To obtain a better estimate of 2
ideal ,R  we first decompose 
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Assuming that an intercept is implicitly or explicitly included in iz  and from the expression for *
ˆ ,β  we 

have that  
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From (A.4), we can rewrite   as *
ˆ ,T  z β   where 1

1
.
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 z z   As a result, the cross product term 

in (A.2) vanishes and equation (A.2) reduces to 
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From (A.5), it follows that the ideal coefficient of determination (A.1) can be rewritten as 
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The only unknown quantities in (A.7) are *β̂  and 2
*ˆ .v  A computable coefficient of determination can 

thus be obtained by replacing *β̂  and 2
*ˆ v  in (A.7) with β̂  and 2ˆ ,v  the consistent estimators of β  and 2

v  

implemented in the SAE system and described in Section 3. The resulting coefficient of determination can 

be expressed as  2 2ˆ ˆ, ,vR f  β  with the function  ,f    defined in (A.7), and is a consistent estimator 

of the ideal coefficient of determination 2
ideal .R  

 
References 

 

Battese, G.E., Harter, R.M. and Fuller, W.A. (1988). An error-components model for prediction of crop 
areas using survey and satellite data. Journal of the American Statistical Association, 83, 28-36. 

 



124 Hidiroglou et al.: Development of a small area estimation system at Statistics Canada 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Beaumont, J.-F., and Bocci, C. (2016). Small area estimation in the Labour Force Survey. Paper presented 
at the Advisory Committee on Statistical Methods, May 2016, Statistics Canada. 

 

Brackstone, G.J. (1987). Small area data: Policy issues and technical challenges. In Small Area Statistics, (Eds., 
R. Platek, J.N.K. Rao, C.-E. Särndal and M.P. Singh), New York: John Wiley & Sons, Inc., 3-20. 

 

Chib, S., and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. American 
Statistician, 49, 327-335. 

 

Dick, P. (1995). Modelling net undercoverage in the 1991 Canadian Census. Survey Methodology, 21, 1, 
45-54. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1995001/article/14411-
eng.pdf. 

 

Drew, D., Singh, M.P. and Choudhry, G.H. (1982). Evaluation of small area estimation techniques for the 
Canadian Labour Force Survey. Survey Methodology, 8, 1, 17-47. Paper available at 
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1982001/article/14328-eng.pdf. 

 

Esteban, M.D., Morales, D. and Perez, A. (2014). saery: Small Area Estimation for Rao and Yu Model. 
URL http://CRAN.R-project.org/package=saery. R package version 1.0. 

 

Estevao, V., Hidiroglou, M.A. and You, Y. (2015). Area Level Model, Unit Level, and Hierarchical Bayes 
Methodology Specifications. Internal document, Statistics Canada. 

 

EURAREA (2004). Enhancing Small Area Estimation Techniques to meet European Needs. 
https://cordis.europa.eu/project/rcn/58374_en.html. 

 

Fay, R.E., and Diallo, M. (2015). sae2: Small Area Estimation: Time-Series Models. URL 
http://CRAN.Rproject.org/package=sae2. R package version 0.1-1. 

 

Fay, R.E., and Herriot, R.A. (1979). Estimation of income for small places: An application of James-Stein 
procedures to Census data. Journal of the American Statistical Association, 74, 269-277. 

 

Fuller, W.A., and Rao, J.N.K. (2001). A regression composite estimator with application to the Canadian 
Labour Force Survey. Survey Methodology, 27, 1, 45-51. Paper available at 
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2001001/article/5853-eng.pdf. 

 

Gambino, J., Kennedy, B. and Singh, M.P. (2001). Regression composite estimation for the Canadian 
Labour Force Survey: Evaluation and implementation. Survey Methodology, 27, 1, 65-74. Paper available 
at https://www150.statcan.gc.ca/n1/pub/12-001-x/2001001/article/5855-eng.pdf. 

 

Gelfand, A.E., and Smith, A.F.M. (1990). Sample-based approaches to calculating marginal densities. 
Journal of the American Statistical Association, 85, 972-985. 

 

Ghangurde, P.D., and Singh, M.P. (1977). Synthetic estimation in periodic household surveys. Survey 
Methodology, 3, 2, 152-181. 

 

Gonzalez, M.E., and Hoza, C. (1978). Small-area estimation with application to unemployment and housing 
estimates. Journal of the American Statistical Association, 73, 7-15. 

 



Survey Methodology, 2019 (special issue) 125 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Kott, P. (1989). Robust small domain estimation using random effects modeling. Survey Methodology, 15, 
1, 3-12. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/1989001/article/14581-
eng.pdf. 

 

Li, H., and Lahiri, P. (2010). Adjusted maximum method in the small area estimation problem. Journal of 
Multivariate Analysis, 101, 882-892. 

 

Lopez-Vizcaino, E., Lombardia, M.J. and Morales, D. (2014). mme: Multinomial Mixed Effects Models, 
2014. URL http://CRAN.R-project.org/package=mme. R package version 0.1-5. 

 

Molina, I., and Marhuenda, Y. (2015). sae: An R package for small area estimation. The R Journal, 7, 1, 
81-98. 

 

Prasad, N.G.N., and Rao, J.N.K. (1990). The estimation of the mean squared error of small-area estimators. 
Journal of the American Statistical Association, 85, 163-171. 

 

Prasad, N.G.N., and Rao, J.N.K. (1999). On robust small area estimation using a simple random effects 
model. Survey Methodology, 25, 1, 67-72. Paper available at https://www150.statcan.gc.ca/n1/pub/12-
001-x/1999001/article/4713-eng.pdf. 

 

Rao, J.N.K. (2003). Small Area Estimation. New York: John Wiley & Sons, Inc. 
 

Rao, J.N.K., and Molina, I. (2015). Small Area Estimation. New York: John Wiley & Sons, Inc. 
 

Rivest, L.-P., and Belmonte, E. (2000). A conditional mean squared error of small area estimators. Survey 
Methodology, 26, 1, 67-78. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-
x/2000001/article/5179-eng.pdf. 

 

Rubin-Bleuer, S. (2014). Specifications for EBLUP and Pseudo-EBLUP Estimators with Nonnegligible 
Sampling Fractions. Statistics Canada document. 

 

Rubin-Bleuer, S., Jang, L. and Godbout, S. (2016). The Pseudo-EBLUP estimator for a weighted average 
with an application to the Canadian Survey of Employment, Payrolls and Hours. Journal of Survey 
Statistics and Methodology, 4, 417-435. 

 

Singh, M.P., and Tessier, R. (1976). Some estimators for domain totals. Journal of the American Statistical 
Association, 71, 322-325. 

 

Singh, A.C., Kennedy, B. and Wu, S. (2001). Regression composite estimation for the Canadian Labour 
Force Survey with a rotating panel design. Survey Methodology, 27, 1, 33-44. Paper available at 
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2001001/article/5852-eng.pdf. 

 

Stukel, D., and Rao, J.N.K. (1997). Small-area estimation under two-fold nested error regression model. 
Journal of Statistical Planning and Inference, 78, 131-147. 

 

Wang, J., and Fuller, W.A. (2003). The mean square error of small area estimators constructed with 
estimated area variances. Journal of American Statistical Association, 98, 716-723. 

 

Wang, J., Fuller, W.A. and Qu, Y. (2008). Small area estimation under a restriction. Survey Methodology, 
34, 1, 29-36. Paper available at https://www150.statcan.gc.ca/n1/pub/12-001-x/2008001/article/10619-
eng.pdf. 

 



126 Hidiroglou et al.: Development of a small area estimation system at Statistics Canada 
 

 
Statistics Canada, Catalogue No. 12-001-X 

You, Y., and Rao, J.N.K. (2002). A pseudo empirical best linear unbiased prediction approach to small area 
estimation using survey weights. The Canadian Journal of Statistics, 30, 431-439. 

 

You, Y., Rao, J.N.K. and Dick, P. (2004). Benchmarking hierarchical Bayes small area estimators in the 
Canadian census undercoverage estimation. Statistics in Transition, 6, 631-640. 

 

You, Y., Rao, J.N.K. and Hidiroglou, M. (2013). On the performance of self benchmarked small area 
estimators under the Fay-Herriot area level model. Survey Methodology, 39, 1, 217-229. Paper available 
at https://www150.statcan.gc.ca/n1/pub/12-001-x/2013001/article/11830-eng.pdf. 



Survey Methodology, 2019 (special issue) 127 
Vol. 45, No. 1, pp. 127-144 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Chithran Vasudevan, Department of Mathematics and Statistics, Memorial University, St.John’s, NL A1C 5S7. E-mail: chithran@mun.ca; 

Asokan Mulayath Variyath, Department of Mathematics and Statistics, Memorial University, St.John’s, NL A1C 5S7. E-mail: variyath@mun.ca; 
Zhaozhi Fan, Department of Mathematics and Statistics, Memorial University, St.John’s, NL A1C 5S7. E-mail: zhaozhi@mun.ca. 

 

Weighted censored quantile regression 

Chithran Vasudevan, Asokan Mulayath Variyath and Zhaozhi Fan1 

Abstract 

In this paper, we make use of auxiliary information to improve the efficiency of the estimates of the censored 
quantile regression parameters. Utilizing the information available from previous studies, we computed empirical 
likelihood probabilities as weights and proposed weighted censored quantile regression. Theoretical properties 
of the proposed method are derived. Our simulation studies shown that our proposed method has advantages 
compared to standard censored quantile regression. 

 
Key Words: Empirical Likelihood; Right censoring; Kaplan-Meier Estimator. 

 
 

1  Introduction 
 

In quantile regression (Koenker, 2005), the conditional quantiles of the response variable for a given set 

of predictor variables are modelled. The regression parameters are estimated by minimizing a check loss 

function at a specific quantile, ,  instead of the square loss function as in the standard linear regression. A 

quantile regression model based on properly selected quantiles could provide a global assessment of the 

covariate effects on the response, which is often ignored by the standard linear regression model. Recently, 

censored quantile regression has been studied extensively. Powell (1984) introduced the least absolute 

deviation (LAD) estimator, also called the median regression model for the left censored survival data, using 

the censored Tobit model (Tobin, 1958). Powell (1986) generalized the LAD estimation to any quantile.  

Portnoy (2003) introduced a censored quantile regression model under random censoring as a 

generalization of the Kaplan-Meier estimator recursively using the Kaplan-Meier estimator (Kaplan and 

Meier, 1958). Peng and Huang (2008) developed a censored quantile regression model based on the Nelson-

Aalen estimator using counting processes and martingale theory. In survival analysis setup, for the thi  

 1, 2, ,i n   subject, let iT  be the logarithm of the failure time, iC  the logarithm of right censoring 

time, iX  the p -vector covariate and let  min ,i i iY T C  be the logarithm of the survival time. For a 

given quantile, ,  the regression coefficients,   ,β  can be estimated as  

     
1

ˆ arg min min , ,
p

n

i i i
i

Y C


 
 

 β X β
R

Τ  (1.1) 

where     0 ,u u u     is the check loss function. 

In many studies, we may have some information about the target population from previous studies. This 

is common in survey sampling since surveys are carried out repeatedly with similar objectives. For example, 

in survey sampling, information about the population mean and variance could be available from previous 

surveys or records. The information of the parameters as well as type of relationship, distributional 
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assumptions, etc. also could be considered as auxiliary information available for analysis. The auxiliary 

information could be effectively used to improve the efficiency of the statistical inference (Kuk and Mak, 

1989; Rao, Kovar and Mantel, 1990; Chen and Qin, 1993). The idea used in this paper can be easily 

extendable in survey sampling to arrive efficient parameter estimates by making use of the information 

available from previous surveys. 

Consider a known relationship between the survival time, Y  (or the failure time, )T  and a set of 

covariates ,X  as  ; ,Y f X θ  where θ  is the parameter of interest. The knowledge about this 

relationship can be treated as auxiliary information. In a more general case, the auxiliary information can 

be expressed as   ; 0E g Z θ  for some d -dimensional parameter, ,dRθ  where Z  is the observed 

data from the present study and  ; ,qg RZ θ  some function with .q d  The parameter, θ  could be 

unknown, but can be estimated using the information available from previous studies.  

Chen and Qin (1993) introduced the use of auxiliary information to improve the efficiency of estimators 

in the context of survey sampling using empirical likelihood (Owen, 1988, 2001). Li and Wang (2003) 

accommodated the auxiliary information to the censored linear regression model using empirical likelihood 

by defining a synthetic variable (Koul, Susarla and Ryzin, 1981). Fang, Li, Lu and Qin (2013) proposed the 

effective use of auxiliary information in the linear regression model with right censored data using empirical 

likelihood, by utilizing the Buckley-James (Buckley and James, 1979) estimating equation. Tang and Leng 

(2012) introduced an empirical likelihood based linear quantile regression model using auxiliary 

information.  

In this paper, we propose an empirical likelihood (EL) based approach to accommodate auxiliary 

information to the censored quantile regression. EL is a non-parametric likelihood approach proposed by 

Owen (1988, 2001), which has similar properties of parametric likelihood. We utilize the EL based data 

driven probabilities as the weights by using the estimating function,  ;g Z θ  and incorporate those weights 

into the censored quantile regression model. The resulted weighted censored quantile regression parameter 

    can be estimated as 

     
1

ˆ arg min min , ,
p

n

i i i i
i

Y C


  
 

 β X β
R

Τ  (1.2) 

where ’si  are the weights. We propose to use the EL based data driven probabilities as the weights. Our 

simulation results show that the EL based weighted censored quantile regression performs more efficiently 

than the standard linear censored quantile regression. 

The rest of the paper is organized as follows. In Section 2, we present the estimation procedure of the 

EL based data driven probabilities. In Section 3, we introduce the EL based weighted censored quantile 

regression and investigate the asymptotic properties of the estimators. In Section 4, performance analysis of 

the proposed method is conducted using the simulations. The application to the north central cancer 

treatment lung cancer data is also presented as an illustration. Our conclusions are given in Section 5. 
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2  Estimation of weights using empirical likelihood 
 

We develop a method that converts the auxiliary information to the EL based data driven probabilities, 

which are further used in the weighted censored quantile regression as the weights. Qin and Lawless (1994) 

developed the EL approach based on a set of estimating equations. Let   1

n
i iZ  be the observed data and the 

available auxiliary information is represented by the estimating function  ;ig Z θ  with parameter, θ  which 

is known. Then, the maximum empirical likelihood is given by 

     EL
1 1 1

sup : 0, 1, ; 0 ,
n n n

i i i i i
i i i

L P P P P g
  

     θ Z θ  (2.1) 

where  Pri i iP Z z   and θ  is the parameter in the auxiliary information which can be assumed to be 

known. The parameter, θ  could be any parametric information available from the previous studies which 

has an influence on the model parameter,   .β  For a given  ; ,ig Z θ θ  should satisfy   ; 0iE g Z θ  

to avoid the non-existence of solutions due to convex hull issues. This is the scenario for when zero is not 

an inner point of the convex hull of the  ; , 1, 2, , ,ig i nZ θ   which will fail to provide positive ’s.iP  

For a given value of 0 ,θ θ  using the Lagrange multiplier method,  EL 0L θ  attains its maximum at  

  
  

0

0

0

1
, 1, 2, , .

1 ;i

i

P i n
n g

 


θ
Z θ


Τ

 (2.2) 

The Lagrange multiplier, 
0

  is the solution to the equation 

 
 

  
0

0

1 0

;
0.

1 ;

n
i

i i

g

n g



Z θ

Z θΤ
  

The estimated  ’siP   are used as the weights  i  in (1.2) for the weighted censored quantile 

regression. In some cases, θ  may not be available and in such situations, we can use an estimate of ,θ  say 
ˆ

Aθ  obtained from previous studies. Chen and Qin (1993) showed that for a random sample, ,iY  and  ’siP   

are estimated using (2.2),    
1

n

n i ii
F y P Y y


    has smaller variance than the empirical distribution 

function,    1
1

ˆ .
n

n in i
F y Y y


    As a result, with Bahadur representation (Bahadur, 1966), for a given 

 0 1 ,    the quantile estimate,  1
nF   has smaller variance than  1ˆ

nF   (See Kuk and Mak, 1989; 

Rao et al., 1990). Hence our proposed method is expected to be more efficient than the ordinary censored 

quantile regression. 

 
3  Estimation of weighted censored quantile regression parameters 
 

Define the distribution function of iT  conditional on the p -vector covariate, iX  as  
iT iF t X  

 Pr .i iT t X  Let         log 1 Pr , , 1 ,
iT i i i i i it T t N t Y t        X X   and  iM t   

    .
ii T i iN t t Y   X  Here  

iT i  X  is the cumulative hazard function conditional on  ,i iN tX  is 

the counting process and  iM t  is the martingale process associated with  iN t  (Fleming and Harrington, 

2011). We consider an extension of censored quantile regression estimation procedure proposed by Peng 

and Huang (2008), incorporating the ’siP  as known weights arrived based on the auxiliary information 
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available through the known parameter .  Note that   and  β  are distinct parameters and estimating 

function  :g z   used for computing ’siP  are different from the estimating functions used for quantile 

regression parameters in (1.1). Since ’siP  are independent of   ,    i i iE P M t X 0  (by the 

martingale property) for 0,t   we have  

        0 0

1

,i i

n

i i i T i i
i

E n P N e e Y 



    X β X βX X 0Τ Τ  (3.1) 

where  0 β  denotes the true   ,β  in (1.2) for a given quantile, .  

Since   , 1, 2, ,
iT i i n  X   are unknown functions, Peng and Huang (2008) derived the 

relationship between   0i
T i ie Y X β XΤ  and  0 β  to use (3.1) to estimate  0 .β  Using the fact that 

  0i u
iF e X β XF

Τ  and utilizing the monotonicity of  0
T
iX    in ,  they showed that 

       0

0
,i i u

T i i ie Y Y e dH u


   X β X βX Τ Τ  where    log 1H u u    for 0 1.u   

So, our weighted censored quantile regression estimating equation is 

  , ,nn S  β 0  (3.2) 

where  

           0
1

, .i i

n
u

n i i i i
i

S P e Y e dH u





   X β X ββ X Τ Τ   

Here ’siP  are defined in (2.2). Let     , ,ns E S β β  and the martingale property of    gives 

 0 , .s  β 0  For a particular quantile, k  and an estimator of    0
ˆ,k k β β  is a right-continuous step 

function which jumps only on a grid,  0 10 1 .L L U           Here L  depends on the 

sample size, .n  The size of L  is defined as  1max .L k kk
     

For different quantiles,  0 1 0 1, , , 0 1 ,L L            based on (3.2), we can obtain 

   ˆ 1, 2, ,k k L β   by recursively solving the following monotone estimating equation for   :kβ  

            1
ˆ

1
1 0

.k ri i

n k

i i i i r r
i r

n P e Y e H H   



 

    X β X βX 0Τ Τ  (3.3) 

We define the estimators,  ˆ
kβ  as the generalized solutions (Fygenson and Ritov, 1994) because equation 

(3.3) is not continuous and the solution may not be unique.  

 
3.1  Asymptotic theory 
 

We derived the asymptotic properties of the EL based weighted censored quantile regression estimators 

using the approach of Peng and Huang (2008). Now we prove the uniform consistency and weak Gaussian 

convergence of the proposed weighted censored quantile regression estimator,  ˆ .β  

Define    Pr ,F t Y t X X    Pr ,F t Y t X X    Pr , 1 ,F t Y t   X X  f y X  

   f y dF y dy  X X  and     .f y dF y dyX X   (For a vector ,h  2 th, lTh hh h l    

component of ,h h  is the Euclidean norm of .)h  
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Define  
0 0; ,i i igW Z θ XΤ 1, 2, ,i n   as a p -vector. 

 

Regularity conditions: 
 

R.1:  The observations, , 1, 2, ,i i nZ   are iid observations from some distribution. Without 

loss of generality, we assume that  , ,i i i iY  X ZΤΤ  for all 1, 2, , .i n   

R.2:  There exists 0θ  such that   0; 0,iE g Z θ  the matrix       0 0 0; ;i iE g gΣ θ Z θ Z θ Τ  

is positive definite,  ;g

z θ
θ  is continuous in the neighborhood of 0 .θ  The matrix   ;gE 


Z θ
θ  

is of full rank. 

R.3:  There exist functions  ljH z  such that for θ  in the neighborhood of 0 ,θ    ; ,l

j

g
ljH


 z θ z  

where for a constant   2, ljC E H C  Z  for 1, ,l q   and 1, , .j d   

R.4:  sup i
i

 X  and sup .i i
i

 X Y  

R.5: (a) Each component of    0E e X βX Τ  is a Lipschitz function of .  

 (b)  f t x  and  f t x  are bounded above uniformly in t  and .x  

R.6: (a)   0f e X b X Τ  for all 0( ),db B  where  
 

     00,
: inf

U

pd d
 




   b μ b μ βB R  

for 0,d   and      ,E e X bμ b X Τ  is a neighbourhood containing 

    0 , 0, .U  β  

 (b) To have the positive definiteness,  2 0.E  X  

 (c) Each component of       1
2 2E f e e E f e e


    X b X b X b X bX X X XΤ Τ Τ Τ  is 

uniformly bounded in    0 0; .d db B B  

R.7:  For any  
 ,

0, , inf
U

U v
v

 



  eigmin     0 02 0,E f e e    X β X βX X Τ Τ  where eigmin    

denotes the minimum eigenvalue of a matrix. 
 

Theorem 1. Assuming that the regularity conditions R.1-R.7 hold, if lim 0,Ln
  then 

 
   0

,

ˆsup 0,
U

p
v 

 


 β β  where 0 .Uv    
 

Theorem 2. Assuming that the regularity conditions R.1-R.7 hold, if 1 2lim 0,Ln
n


  then 

    1 2
0

ˆn  β β  weakly converges to a zero-mean Gaussian process for  , ,Uv   where 

0 .Uv    
 

To prove Theorems 1 and 2, we need to show that    
0 01

max ; 1 .i pi n
g o 

Z θΤ  We consider two 

different types of  ; .ig Z θ  First,  ;ig Z θ  does not contain the censored observations, as given in (4.1). 

The second,  ; ,ig Z θ  contains the censored observations, as given in (4.5). 

In the case of uncensored observations, by Owen (1991) and Lemma 11.2 of Owen (2001), we have 

   01
max ; .i pi n

g o n
 

Z θ  By Lemma 1 of Tang and Leng (2012), we have under the regularity 

conditions R.2, R.3; the 
0

  in (2.2) satisfies  
0

1 .p n
O   So, 

      
0 01

1
max ; 1 .i p p pi n

g O o n o
n 

  
 

Z θΤ  (3.4) 
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Under the condition R.4; Qin and Jing (2001) proved    
0 01

max ; 1i pi n
g o 

Z θΤ  for the  g   with 

censored observations. 

Now following Owen (2001), using Taylor’s series expansion of the weights, ’siP  defined in (2.2) can 

be rewritten as,  

              

 
  

    

 

0

0

0

0

0

0

0

1

1 ;

1
1 ; 1 1

1 1
1 ; ; 1, 2, , .

i

i

i p

i p

P
n g

g o
n

g o i n
n n
















    

         

θ
Z θ

Z θ

Z θ 

Τ

Τ

Τ

  

Now we rewrite the  ,nS β  as 
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0 0
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0
1
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1
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 X β X βΤ Τ

  

Asymptotically, by (3.4) we have  1 ; 1, 2, , .i po i n W   So,  

                       0
1

1 1
, .i i

n
u

n i i i p
i

S e Y e dH u o
n n






     
 

 X β X ββ X Τ Τ   

Asymptotically this estimating function,  ,nS β  is equivalent to that in Peng and Huang (2008). 

Following the similar arguments of Peng and Huang (2008), we complete the proofs of Theorems 1 and 2. 

As indicated in Peng and Huang (2008), the estimation of asymptotic variance of the quantile regression 

estimates is not easy since the covariance matrix of the limiting process of     0
ˆn      involves 

unknown density function  f y X  and   .f y X  Instead of using a smoothing or other numerical 

approximations, we suggest a simple bootstrap approach to estimate the standard errors of the regression 

estimates. This approach is used in our performance analysis discussed in next section. 
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4  Performance analysis 
 

We conduct extensive simulation studies to compare the performance between our proposed EL based 

weighted censored quantile regression estimator and the standard censored quantile regression estimator. 

For our simulation, we use the models discussed in Tang and Leng (2012).  

The simulation models used to generate the logarithmic event time  rT  and logarithmic censoring time 

 rC  for the thr  1, 2, ,r N   subject are given in Table 4.1 under four Cases (i)-(iv). 

 

Table 4.1 
Four simulation models to generate event and censoring times 
 

Cases Models Error Distribution 
(i) 

0 1 1 2 2 ,r r r rT x x u       

0 1 1 2 2 .r r r rC x x v       
 , 0, 1r ru v N~  

(ii) 
0 1 1 2 2 ,r r r rT x x u       

0 1 1 2 2 .r r r rC x x v       
 , 3r ru v t~  

(iii)  0 1 1 2 2 0 0 1 2 2 ,r r r r r rT x x x x u            

 0 1 1 2 2 0 0 1 2 2 .r r r r r rC x x x x v            
 , 0, 1r ru v N~  

(iv)  0 1 1 2 2 0 0 1 2 2 ,r r r r r rT x x x x u            

 0 1 1 2 2 0 0 1 2 2 .r r r r r rC x x x x v            
 , 3r ru v t~  

 
In Cases (i) and (ii), event times and censoring times are generated from the homoscedastic models and 

in Cases (iii) and (iv), we considered heteroscedastic models to examine the efficiency gain of our proposed 

method over the standard censored quantile regression. We set the parameter values as θ Τ  

   0, 1, 0.2 , 0.3, 0.1, 0.1  π Τ  and selected γ Τ  to maintain approximately 30% of the censoring 

proportion in each case. We generated explanatory variables from zero mean bivariate normal distribution 

with covariance,  

 
1 2

1 2

,

,

1
.

1

x x

x x





 
  
  

  

We considered two different ways to compute the EL based probability weights. In numerical study -I, we 

compute ’siP  based on the auxiliary information related to the failure time, ,iT  whereas in numerical study 

-II, ’siP  are computed using the observed survival time,  min , .i i iY T C  In numerical study -II, we 

employ the synthetic variable approach (Koul et al., 1981; Qin and Jing, 2001; Li and Wang, 2003) to 

compute the EL based data driven probability weights.  

 

4.1  Numerical study -I 
 

To compute ’s,iP  first we need to have a known population parameter, ,θ  or its estimate. We considered 

a linear relation between T  and  1 2,X XX  with slopes 1(  and 2 )  and intercept  0  as the auxiliary 

information. We estimated θ  using the standard linear regression (least square) based on a large, finite 
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population with size, N   10,000. We need to generate censoring times as well to compute the event 

indicator,  i i iT C    and survival time,  min ,i i iY T C  to estimate the censored quantile 

regression parameters. To fit the weighted censored quantile regression model given in (1.2), we generated 

another n  observations   1, n
i i iy x  with ,n N  using the same models given in Table 4.1. We considered 

the sample sizes, n   100 and 200 and three quantiles,    0.25, 0.50, 0.75. For our proposed method, we 

estimated ’siP  using the estimating function,  , ;i ig t x θ  defined based on the normal equations of the 

linear least squares method as,  

      ˆ; , ; , 1, 2, , .i i i i i i ig g t t i n   z θ x θ x x θ Τ  (4.1) 

For a given quantile, ,  the true value of the censored quantile regression parameters  0 β  are estimated 

from the population of size, N   10,000. In general, under a linear model assumption, the true value of the 

censored quantile regression slope parameters are the same as the θ  (i.e.,    1 1 2 2, ).        But 

for the intercept, it is    1
0 0 ,F      where F  is the error distribution. We conducted 1,000 

simulations and computed mean bias, standard error (SE) and 95% coverage probability (CP) of the model 

parameter estimates for different sample sizes using 250 bootstrap samples. We compared the performance 

of our proposed method (CQR-EL1) with the standard censored quantile regression (CQR) model. We 

present the simulation results in Tables 4.2 to 4.5 respectively for Cases (i)-(iv) with 
1 2, 0.x x   

 
Table 4.2 
Bias, SE and CP of regression parameters for Case (i) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0042 0.0170 0.0647 0.0027 0.0180 0.0771 

1  0.0029 0.0035 0.0094 -0.0014 -0.0048 0.0030 

2  -0.0049 -0.0141 -0.0100 -0.0047 -0.0124 -0.0171 

200 0  0.0218 0.0298 0.0501 0.0199 0.0322 0.0635 

1  0.0016 0.0026 0.0057 0.0008 0.0028 0.0048 

2  -0.0020 -0.0032 -0.0078 -0.0010 0.0001 -0.0071 

SE 100 0  0.1449 0.1404 0.2268 0.1103 0.1086 0.2110 

1  0.1533 0.1515 0.2141 0.1159 0.1109 0.2000 

2  0.1519 0.1525 0.2198 0.1149 0.1109 0.2082 

200 0  0.0973 0.0929 0.1292 0.0720 0.0703 0.1221 

1  0.1040 0.1029 0.1341 0.0746 0.0718 0.1173 

2  0.1041 0.1027 0.1354 0.0752 0.0717 0.1177 

CP 100 0  93.3 93.4 95.7 95.8 96.6 97.0 

1  94.7 95.8 96.5 95.1 96.2 97.9 

2  96.0 96.3 96.4 96.4 96.4 96.9 

200 0  92.3 91.9 92.7 92.7 92.5 94.8 

1  94.5 96.2 95.0 95.0 95.5 96.9 

2  93.6 95.0 95.2 94.2 94.9 95.8 
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Table 4.3 
Bias, SE and CP of regression parameters for Case (ii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0105 0.0288 0.1088 0.0119 0.0270 0.1062 

1  0.0063 0.0214 0.0169 0.0005 0.0102 0.0066 

2  0.0164 0.0096 -0.0170 0.0152 0.0079 -0.0184 

200 0  0.0267 0.0355 0.0821 0.0276 0.0340 0.0760 

1  0.0006 -0.0032 0.0050 0.0042 0.0032 0.0024 

2  0.0112 0.0025 0.0051 0.0029 -0.0038 -0.0057 

SE 100 0  0.1871 0.1538 0.2980 0.1522 0.1304 0.2914 

1  0.1946 0.1664 0.2698 0.1555 0.1318 0.2480 

2  0.1955 0.1676 0.2733 0.1556 0.1327 0.2543 

200 0  0.1235 0.1029 0.1621 0.0998 0.0871 0.1556 

1  0.1301 0.1146 0.1663 0.1010 0.0893 0.1473 

2  0.1315 0.1149 0.1671 0.1023 0.0897 0.1465 

CP 100 0  95.5 93.1 94.7 96.2 94.8 97.2 

1  95.6 93.5 96.4 95.7 95.6 97.8 

2  95.9 95.4 96.4 96.0 95.0 97.2 

200 0  93.1 91.2 94.0 93.0 93.8 95.7 

1  95.0 95.5 95.4 94.8 95.5 96.2 

2  95.5 95.7 95.5 95.0 95.2 96.3 

 
 
Table 4.4 
Bias, SE and CP of regression parameters for Case (iii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0062 0.0088 0.0224 0.0055 0.0085 0.0254 

1  0.0042 0.0051 0.0076 0.0034 0.0016 0.0057 

2  -0.0038 -0.0039 -0.0069 -0.0013 0.0003 -0.0010 

200 0  0.0064 0.0072 0.0167 0.0064 0.0089 0.0195 

1  0.0012 0.0038 0.0033 -0.0006 -0.0003 -0.0014 

2  -0.0015 -0.0031 -0.0017 -0.0004 0.0002 0.0023 

SE 100 0  0.0472 0.0466 0.0767 0.0349 0.0338 0.0737 

1  0.0566 0.0570 0.0796 0.0424 0.0411 0.0708 

2  0.0567 0.0575 0.0807 0.0425 0.0418 0.0720 

200 0  0.0313 0.0301 0.0402 0.0225 0.0213 0.0345 

1  0.0371 0.0377 0.0489 0.0276 0.0267 0.0402 

2  0.0367 0.0376 0.0488 0.0270 0.0267 0.0401 

CP 100 0  94.4 95.0 96.1 94.3 96.0 97.1 

1  95.0 95.2 95.5 95.2 95.3 97.4 

2  96.6 96.7 97.3 95.4 96.6 98.0 

200 0  94.1 93.4 94.9 93.2 94.0 94.1 

1  94.0 94.9 96.0 93.0 95.1 95.9 

2  94.6 95.0 95.3 94.4 95.3 94.8 
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Table 4.5 
Bias, SE and CP of regression parameters for Case (iv) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL1 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0066 0.0097 0.0364 0.0048 0.0076 0.0273 

1  0.0031 0.0039 0.0041 0.0026 0.0043 0.0036 

2  0.0008 -0.0009 -0.0018 0.0008 -0.0035 -0.0028 

200 0  0.0083 0.0089 0.0243 0.0100 0.0103 0.0258 

1  -0.0020 0.0016 0.0017 -0.0022 -0.0008 -0.0018 

2  0.0008 -0.0012 -0.0031 0.0026 0.0012 0.0004 

SE 100 0  0.0600 0.0507 0.1103 0.0466 0.0407 0.1038 

1  0.0667 0.0592 0.0993 0.0514 0.0468 0.0885 

2  0.0677 0.0600 0.1014 0.0525 0.0470 0.0921 

200 0  0.0395 0.0327 0.0521 0.0305 0.0260 0.0464 

1  0.0429 0.0386 0.0568 0.0331 0.0298 0.0491 

2  0.0429 0.0389 0.0580 0.0331 0.0301 0.0501 

CP 100 0  93.5 95.0 97.7 94.7 95.5 97.8 

1  95.6 96.6 97.0 96.0 96.3 97.3 

2  96.0 96.2 97.3 95.8 96.7 97.0 

200 0  93.0 93.9 94.9 93.5 93.4 94.1 

1  95.6 95.8 94.7 94.5 95.2 95.4 

2  94.5 95.9 95.5 94.5 96.0 95.2 

 
 

From Tables 4.2-4.5, we see that our proposed estimator has approximately zero bias. A comparison of 

SE of CQR-EL1 with CQR indicates that the SE of CQR-EL1 reduces remarkably for all the parameters 

irrespective of any quantile. For example, we consider the scenario of n   100 and    0.25 for 

comparison purposes throughout this paper. From Table 4.2, for CQR, SE of 1̂  is 0.1533 and for CQR-

EL1, SE of 1̂  is reduced to 0.1159. When the sample size is increased to 200, SE of 1̂  of our proposed 

method further is reduced to 0.0746. If we compare the CP of our proposed method with the nominal level 

of 95%, CQR-EL1 provides approximately 95% coverage and becomes more stable when the sample size 

increases. Similar conclusions can be reached for Case (ii) (results are in Table 4.3) even though we 

considered heavy tailed distribution for the failure time compared to Case (i). For example, SE of 1̂  using 

CQR is 0.1946, whereas it is only 0.1555 for the CQR-EL1 based estimate. We also observed that SE is 

comparatively high in Case (ii) compared to Case (i). 

In Cases (iii) and (iv), the error depends on the covariates. Simulation results for these Cases (Tables 4.4 

and 4.5) are almost similar to the cases where error is independent of covariates. For example, in Case (iii) 

(Table 4.4), SE of 1̂  is 0.0566 and 0.0424 for CQR and CQR-EL1 respectively. Similarly, in Case (iv) 

(Table 4.5), SE of 1̂  is 0.0667 and 0.0514 for CQR and CQR-EL1 respectively. Here, we could also see a 

slight increase in the SE of estimates for Case (iv) because of the heavy tailed distribution assumption for 

the failure time compared to Case (iii). 
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4.2  Numerical study -II 
 

In most of the survival data with random right censoring, the observed data are the triplet 

  min , , , .Y T C  X  We consider a linear relationship between the survival time  Y  and the 

covariates as the auxiliary information. Here we cannot use the EL estimating function,  g   defined in 

(4.1) because of the censoring. There are other methods available in the literature which take care of the 

right censoring in the linear regression. 

Koul et al. (1981) introduced a synthetic data approach by transforming the survival time, rY  to a 

synthetic variable, rY  as  

 
 

; 1, 2, , ,
1

r r
r

r

Y
Y r N

G Y


 


   (4.2) 

where r  is the censoring indicator and  G   is the distribution of the censoring time.    E Y E YX X  

if C  is independent of both X  and .Y  When  G   is unknown, we can replace it with its Kaplan-Meier 

estimator. The estimator of  G   using the Kaplan-Meier (Kaplan and Meier, 1958) estimator is  

  
    , 0

1

ˆ1 ,
1

r rY tN

N
r

N r
G t

N r

 



      




 (4.3) 

where   ’srY  are ordered and the corresponding censoring indicator is   .r  We can estimate θ  as  

   1 .rYθ X X X Τ Τ  (4.4) 

Qin and Jing (2001) and Li and Wang (2003) independently provided the estimating function to compute 

the EL based data driven probabilities as 

      ; , , ; , 1, 2, , .i i i i i i i ig g y y i n   z θ x θ x x θ    Τ  (4.5) 

We can compute the iy  and  ˆ
nG t  using the sample analogues of (4.2) and (4.3) respectively.  

To compute ’s,iP  we consider a linear relation between Y  and  1 2,X XX  with slopes 1(  and 2 )  

and intercept  0 .  We estimate θ  using (4.4) based on a large, finite population with size, N   10,000. 

To fit the weighted censored quantile regression model given in (1.2), we generate another n  observations 

  1, n
i i iy x  with n N  using the same models given in Table 4.1. For our proposed method, we estimate 

’siP  using the estimating function,  , , ;i i ig y x θ  given in (4.5). 

Similar to numerical study -I, we present the results based on 1,000 simulations and report the bias, 

standard error (SE) and empirical coverage probability (CP) for the nominal level of 95% based on 250 

bootstrap samples. We provide the summary of the simulation results for this study in Tables 4.6-4.9. 

Similar to the population information related to T  (numerical study -I), conclusions are almost similar 

for uncorrelated covariates. From Tables 4.6-4.9 we see that our proposed method (CQR-EL2) provides 

unbiased estimates irrespective of any sample size and quantile. If we consider the coverage probability, 
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both CQR and CQR-EL2 provide approximately 95% coverage. For any quantile, there is a reduction in the 

standard error of CQR-EL2 parameter estimates compared to CQR parameter estimates. If we consider Case 

(i) as a basic model, CQR-EL2 with Case (ii) has reasonably higher SE along with CQR because of the 

heavy tailed distribution of the observed survival time. When the error depended on the covariates (Cases 

(iii) & (iv)), the SE of CQR-EL2 reduced considerably.  

We also conducted large number of simulations with correlated covariates with 
1 2,x x   0.5 as well as 

constructed weights based on simple relationship with one covariate only for both numerical studies. The 

results of these simulations are not provided here to save the space. The conclusions arrived are almost 

similar to the uncorrelated covariate cases.  

In numerical study -I, we noticed that there is a slight reduction in SE of 2̂  using heteroscedastic models 

for CQR-EL1. But use of the estimating function,  1, , ;i i ig y x  θ  (CQR-EL2), does not reduce the SE of 

2̂  under heteroscedastic models. Since we utilized only partial population information in relation to 1 ,X  

the standard error of 0̂  and 1̂  reduced for CQR-EL2 compared to CQR. The standard error of 2̂  was 

not changed.  

Our simulation studies reveal that auxiliary information greatly enhances the efficiency of estimation, if 

the population information related to both 1X  and 2X  is available. If the population information is only 

related to 1 ,X  the efficiency gain is limited to 0  and 1  only. However, under heteroscedastic models, 

the efficiency of estimating 2  slightly improved in numerical study -I, but not in numerical study -II. 

 
Table 4.6 
Bias, SE and CP of regression parameters for Case (i) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0042 0.0170 0.0647 0.0217 0.0275 0.0720 

1  0.0029 0.0035 0.0094 -0.0491 -0.0411 -0.0090 

2  -0.0049 -0.0141 -0.0100 0.0116 -0.0029 -0.0194 

200 0  0.0218 0.0298 0.0501 0.0220 0.0323 0.0562 

1  0.0016 0.0026 0.0057 -0.0295 -0.0273 -0.0119 

2  -0.0020 -0.0032 -0.0078 0.0034 0.0053 -0.0011 

SE 100 0  0.1449 0.1404 0.2268 0.1273 0.1233 0.2160 

1  0.1533 0.1515 0.2141 0.1475 0.1416 0.2075 

2  0.1519 0.1525 0.2198 0.1416 0.1414 0.2162 

200 0  0.0973 0.0929 0.1292 0.0840 0.0798 0.1239 

1  0.1040 0.1029 0.1341 0.0970 0.0921 0.1278 

2  0.1041 0.1027 0.1354 0.0957 0.0936 0.1304 

CP 100 0  93.3 93.4 95.7 94.3 96.1 96.8 

1  94.7 95.8 96.5 94.6 96.1 96.9 

2  96.0 96.3 96.4 95.4 95.4 97.4 

200 0  92.3 91.9 92.7 92.9 92.3 94.3 

1  94.5 96.2 95.0 95.3 95.3 94.8 

2  93.6 95.0 95.2 93.5 94.9 95.9 
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Table 4.7 
Bias, SE and CP of regression parameters for Case (ii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0105 0.0288 0.1088 0.0306 0.0461 0.1139 

1  0.0063 0.0214 0.0169 -0.0841 -0.0503 -0.0216 

2  0.0164 0.0096 -0.0170 0.0329 0.0260 -0.0094 

200 0  0.0267 0.0355 0.0821 0.0419 0.0508 0.0921 

1  0.0006 -0.0032 0.0050 -0.0022 -0.0010 -0.0188 

2  0.0112 0.0025 0.0051 0.0251 0.0137 0.0133 

SE 100 0  0.1871 0.1538 0.2980 0.1619 0.1379 0.2768 

1  0.1946 0.1664 0.2698 0.1863 0.1595 0.2548 

2  0.1955 0.1676 0.2733 0.1787 0.1549 0.2632 

200 0  0.1235 0.1029 0.1621 0.1048 0.0900 0.1551 

1  0.1301 0.1146 0.1663 0.1214 0.1052 0.1575 

2  0.1315 0.1149 0.1671 0.1185 0.1044 0.1606 

CP 100 0  95.5 93.1 94.7 95.9 94.2 97.5 

1  95.6 93.5 96.4 94.8 93.3 96.7 

2  95.9 95.4 96.4 94.2 94.2 96.3 

200 0  93.1 91.2 94.0 93.5 93.0 94.7 

1  95.0 95.5 95.4 94.5 94.0 94.9 

2  95.5 95.7 95.5 94.8 94.5 95.4 

 
 
Table 4.8 
Bias, SE and CP of regression parameters for Case (iii) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0062 0.0088 0.0224 0.0127 0.0146 0.0302 

1  0.0042 0.0051 0.0076 -0.0071 -0.0043 0.0021 

2  -0.0038 -0.0039 -0.0069 0.0018 0.0017 -0.0040 

200 0  0.0064 0.0072 0.0167 0.0094 0.0105 0.0197 

1  0.0012 0.0038 0.0033 -0.0042 -0.0026 -0.0007 

2  -0.0015 -0.0031 -0.0017 0.0009 -0.0003 0.0015 

SE 100 0  0.0472 0.0466 0.0767 0.0448 0.0445 0.0801 

1  0.0566 0.0570 0.0796 0.0541 0.0549 0.0830 

2  0.0567 0.0575 0.0807 0.0538 0.0558 0.0833 

200 0  0.0313 0.0301 0.0402 0.0292 0.0283 0.0396 

1  0.0371 0.0377 0.0489 0.0348 0.0356 0.0484 

2  0.0367 0.0376 0.0488 0.0344 0.0359 0.0488 

CP 100 0  94.4 95.0 96.1 93.9 94.7 96.9 

1  95.0 95.2 95.5 94.6 94.7 96.3 

2  96.6 96.7 97.3 95.8 96.4 97.3 

200 0  94.1 93.4 94.9 93.9 93.8 94.9 

1  94.0 94.9 96.0 94.1 94.3 95.0 

2  94.6 95.0 95.3 94.0 95.4 94.3 
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Table 4.9 
Bias, SE and CP of regression parameters for Case (iv) model with independent covariates  

1 2, 0x x   
 

 n     

CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

Bias 100 0  0.0066 0.0097 0.0364 0.0189 0.0169 0.0419 

1  0.0031 0.0039 0.0041 -0.0138 -0.0073 -0.0000 

2  0.0008 -0.0009 -0.0018 0.0074 0.0060 0.0024 

200 0  0.0083 0.0089 0.0243 0.0124 0.0119 0.0273 

1  -0.0020 0.0016 0.0017 -0.0097 -0.0051 -0.0032 

2  0.0008 -0.0012 -0.0031 0.0019 0.0004 -0.0020 

SE 100 0  0.0600 0.0507 0.1103 0.0548 0.0486 0.1159 

1  0.0667 0.0592 0.0993 0.0618 0.0581 0.1018 

2  0.0677 0.0600 0.1014 0.0616 0.0578 0.1066 

200 0  0.0395 0.0327 0.0521 0.0359 0.0304 0.0516 

1  0.0429 0.0386 0.0568 0.0397 0.0364 0.0558 

2  0.0429 0.0389 0.0580 0.0397 0.0368 0.0579 

CP 100 0  93.5 95.0 97.7 92.9 95.2 97.6 

1  95.6 96.6 97.0 94.2 95.5 97.4 

2  96.0 96.2 97.3 96.3 97.0 97.6 

200 0  93.0 93.9 94.9 93.3 94.2 95.8 

1  95.6 95.8 94.7 94.0 95.5 95.2 

2  94.5 95.9 95.5 94.9 96.0 94.7 

 

Note that the value of the auxiliary parameter value plays a big role in the efficiency of the weighted 

censored quantile regression parameter estimates. If the estimate of   based present study data and previous 

study (or known   value) are very close, then all weights will be close to 1 n  and solutions to (1.1) and 

(1.2) remain the same. If data on previous studies are not available, we can make of the data available in the 

present study to estimate the value of .  In this case, if dimensions of   and estimating equation  ,g z   

are same, then all weights will be equal to 1 n  and solutions to (1.1) and (1.2) remain same. However, if 

the dimensions of  ,g z   is greater than that of ,  the weights  ˆp   is no longer equal to 1 n  and this 

scheme provides an efficiency gain over the conventional QR estimates (Tang and Leng, 2012). 

 

4.3  Case example 
 

The North Central Cancer Treatment Group (NCCTG) was initiated by a group of physicians from the 

north central region of the United States of America and the Mayo Clinic in Rochester, Minnesota. This 

study was conducted by NCCTG to determine whether the conclusions from the patient-completed 

questionnaire and those already obtained by the patient’s physician were independent or not (Loprinzi, 

Laurie, Wieand, Krook, Novotny, Kugler, Bartel, Law, Bateman and Klatt, 1994). They used the 

performance scores (ECOG and Karnofsky) to assess the patient’s daily activities. The dataset is available 

in the “survival” package of R software with readings of 228 patients. Because of the incompleteness of 

some of the variables, we had to limit the dataset to 167 observations. For the illustration of our proposed 

method, we changed our focus to identify the effect of following covariates over the observed survival time 

at different quantiles. We considered “age”, patient’s age in years; “sex”, (Male = 1 Female = 2); “ph.ecog”, 
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ECOG performance score measured by physician (0 = good 5 = dead); “meal.cal”, calories consumed at 

meals and “wt.loss”, weight loss in the last six months as the covariates. After removing the incomplete 

patient readings, the available ECOG scores were 0,1 and 2 only. We defined two dummy categorical 

variables for “ph.ecog” as follows. 

 

1, if ph.ecog 1
ecog1

0, otherwise

1, if ph.ecog 2
ecog2

0, otherwise.


 



 


  

To demonstrate the usefulness of our proposed method, we randomly selected a part (100 observations) 

of the complete data (167 observations) by considering it to be the data available from the previous study. 

We assumed that there exists a linear relation between the logarithm of the observed survival time and all 

the continuous explanatory variables (age, meal.cal and wt.loss) as the available auxiliary information. We 

estimated the  0 age meal wt, , ,   θ  by the least square method based on 100 observations where the 

response is the synthetic variable defined by (4.2). Then we computed the EL based data driven probability 

weights for the present study data points (67 observations). After computing the weights, we estimated the 

weighted censored quantile regression parameters using Peng and Huang (2008) method with all the 

covariates. For the present study data, the censoring proportion is 0.283. Interestingly, we estimated the 

regression parameters using CQR up to the th86  quantile, where as we could estimate to the th90  quantile 

using CQR-EL2. Along with the estimates for the quantiles,    0.25, 0.50, 0.75, we report standard error 

(SE) and 95% confidence limits using 250 bootstrap samples as well in Table 4.10. 

 
Table 4.10 
Estimates, SE and 95% CI for regression parameters of NCCTG lung cancer data 
 

     
CQR CQR-EL2 

0.25 0.50 0.75 0.25 0.50 0.75 

̂  Intercept 5.4777 4.2651 5.5380 4.7531 4.1729 6.4258 
Age -0.0168 0.0179 0.0040 -0.0047 0.0202 -0.0032 
Sex 0.7201 0.6180 0.4181 0.7606 0.6638 0.3651 

ECOG1 -0.7059 -0.5449 -0.2029 -0.5701 -0.5355 -0.2884 
ECOG2 -0.8677 -0.9402 -0.8336 -1.1584 -1.0612 -1.0192 
MealCal 0.0004 0.0001 0.0001 0.0004 0.0001 -0.0000 
WtLoss -0.0007 -0.0084 -0.0023 -0.0023 -0.0100 -0.0135 

SE Intercept 1.9235 1.4314 1.7494 1.6628 1.4149 1.4666 
Age 0.0277 0.0188 0.0225 0.0256 0.0184 0.0176 
Sex 0.5610 0.3389 0.3716 0.5374 0.3317 0.2809 

ECOG1 0.6521 0.3436 0.3375 0.6498 0.3493 0.2434 
ECOG2 1.0317 0.5410 0.6061 0.9336 0.5413 0.3879 
MealCal 0.0009 0.0006 0.0008 0.0009 0.0006 0.0005 
WtLoss 0.0181 0.0128 0.0231 0.0157 0.0124 0.0100 

CI Intercept (1.6, 9.14) (2.38, 8) (2.08, 8.94) (1.79, 8.31) (2.32, 7.87) (3.14, 8.89) 
Age (-0.07, 0.04) (-0.04, 0.04) (-0.04, 0.05) (-0.06, 0.04) (-0.03, 0.04) (-0.03, 0.04) 
Sex (-0.45, 1.74) (0, 1.33) (-0.13, 1.33) (-0.39, 1.71) (-0.04, 1.27) (-0.07, 1.03) 

ECOG1 (-1.75, 0.81) (-1.15, 0.2) (-0.97, 0.35) (-1.86, 0.69) (-1.18, 0.19) (-0.78, 0.18) 
ECOG2 (-2.88, 1.16) (-2, 0.12) (-2.11, 0.26) (-2.83, 0.83) (-2.13, -0.01) (-1.73, -0.21) 
WtLoss (-0.04, 0.03) (-0.03, 0.02) (-0.05, 0.04) (-0.04, 0.02) (-0.03, 0.01) (-0.04, 0) 
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From Table 4.10, we see that the standard error of the estimates of all the continuous variable parameters 

and the intercept reduced considerably because we considered the auxiliary information related to them. For 

the remaining variables, a reduction of standard error can also be seen, even though we did not consider any 

auxiliary information related to them. In the censored quantile regression with the EL based data driven 

probability weights, we see narrower 95% confidence limits for all the variables compared to those using 

the standard censored quantile regression. 

 
5  Conclusions 
 

We proposed a method which effectively use the auxiliary information to improve the efficiency of the 

censored quantile regression estimator. We developed a methodology to transform the population 

information available from previous clinical trials or from some existing facts into non-parametric empirical 

likelihood based data driven probabilities. We developed the EL based data driven probability computation 

for both known and unknown cases of prior information regarding population parameters. We applied these 

probabilities as the weights into Peng and Huang (2008) censored quantile regression model. Our proposed 

method is efficient compared to standard censored quantile regression and provides consistent estimators of 

regression coefficients with asymptotic normality. Our simulations studies showed that the standard error 

of the parameter estimates based on our proposed methods (CQR-EL1 and CQR-EL2) is lower than the 

standard method (CQR) when we use all the covariates for computing the EL based data driven probability 

weights. Our proposed weighted censored quantile regression method provides almost the same coverage 

probability compared to the nominal level. In the case of heteroscedastic models, even the use of the 

auxiliary information regarding a subset of population parameters improved the efficiency of the estimates 

of all the parameters by using CQR-EL1. But in CQR-EL2, the efficiency improvement was limited to the 

corresponding subset of variables and intercept. In homoscedastic models, the use of auxiliary information 

regarding a subset of population parameters improved the efficiency only for that particular subset of 

parameters and the intercept in both CQR-EL1 and CQR-EL2. In the real data analysis, we observed that 

our proposed method provides more efficient quantile estimates and narrower confidence limits compared 

to the standard censored quantile regression. 
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Empirical likelihood inference for missing survey data under 
unequal probability sampling 

Song Cai and J.N.K. Rao1 

Abstract 

Item nonresponse is frequently encountered in sample surveys. Hot-deck imputation is commonly used to fill in 
missing item values within homogeneous groups called imputation classes. We propose a fractional hot-deck 
imputation procedure and an associated empirical likelihood for inference on the population mean of a function 
of a variable of interest with missing data under probability proportional to size sampling with negligible 
sampling fractions. We derive the limiting distributions of the maximum empirical likelihood estimator and 
empirical likelihood ratio, and propose two related asymptotically valid bootstrap procedures to construct 
confidence intervals for the population mean. Simulation studies show that the proposed bootstrap procedures 
outperform the customary bootstrap procedures which are shown to be asymptotically incorrect when the number 
of random draws in the fractional imputation is fixed. Moreover, the proposed bootstrap procedure based on the 
empirical likelihood ratio is seen to perform significantly better than the method based on the limiting distribution 
of the maximum empirical likelihood estimator when the inclusion probabilities vary considerably or when the 
sample size is not large. 

 
Key Words: Asymptotic distribution; Bootstrap; Confidence interval; Empirical likelihood ratio; Imputation; PPS 

sampling. 

 
 

1  Introduction 
 

Item nonresponse is commonly seen in sample surveys. A popular method of handling item nonresponse 

is hot-deck imputation because (i) it preserves the distribution of item values as opposed to mean imputation 

which leads to a “spike” at the mean of respondent values, (ii) it provides a complete data file and allows 

the same survey weight to be used for all items, and (iii) results from different analyses based on imputed 

data are consistent with each other (Rao and Shao, 1992). 

Our focus is on fractional hot-deck imputation, where a few values are drawn randomly from the set of 

respondent values (donors) and the average or weighted average of the drawn values is used to fill in a 

missing value. For validity and accuracy of inference based on imputation, the observed sample is usually 

grouped into homogeneous classes, called imputation classes, according to auxiliary variables that are 

observed for all the sample units (Brick and Kalton, 1996). Haziza and Beaumont (2007) gave a 

comprehensive review on different methods of constructing imputation classes. Missing values are imputed 

using the donors within classes and independently across classes. 

We consider the case where imputation classes are formed according to a categorical variable z  with 

finite support  1, , K  and whose value is observed on all the units of a probability sample, denoted ,s  

of fixed size ,n  selected from a finite population U  of size .N  We shall focus on the probability 

proportional to size (PPS) sampling with replacement or without replacement with negligible sampling 

fractions in the paper, but our theory applies to any fixed-size unequal probability sampling design with 
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replacement. Let y  be a variable (or item) of interest with value iy  observed only for some but not all 

i s  due to nonresponse. Let i  be the response indicator for iy  taking the value 1 when the associated 

iy  is observed and 0 otherwise. The i  are assumed to be independent random variables across .i s  We 

assume that iy  is missing at random (MAR) with uniform response rate within each imputation class, that 

is, given the value of ,iz  the probability of response of unit i  does not depend on the value of .iy  More 

precisely, this means that, for = 1, , ,k K  

    = 1 , = = = 1 = =i i i i i kP y z k P z k P    

for all i s  such that = ,iz k  where  0, 1kP   is a constant. 

We aim to construct reliable confidence intervals (CIs) for the population mean   of a given function 

h  of ,y  i.e.,  

  
1

= .i
i U

h y
N



   

For example, taking   =h y y  yields the population mean of ,y  and taking    = ,h y y t1  where  1  

is the indicator function, gives the finite-population distribution function of y  at a given value .t  Note that 

  can be alternatively defined as the solution to the population-level estimating equation 

   = 0ii U
h y 


  in ,  and similarly, our theory can be readily extended to constructing CIs for a 

population parameter   defined by the solution to the equation  , = 0ii U
g y 

  for a general smooth 

estimating function  ,g y   in .  

The empirical likelihood (EL) method, proposed by Owen (1988) for independent and identically 

distributed (IID) complete data, has received much attention since it provides a non-parametric approach to 

constructing likelihood-ratio-type confidence intervals. The EL ratio intervals have several desirable 

properties: shape and orientation of these intervals are determined entirely by the data and the intervals are 

range preserving and transformation invariant (Owen, 2001). Qin and Lawless (1994) studied EL inference 

for parameters defined by smooth estimating equations. Wang and Chen (2009) used EL and imputation to 

handle IID data that are subject to a MAR assumption. Tang and Qin (2012) proposed an efficient EL 

estimator based on an inverse-probability-weighted imputation for IID MAR data. In the sample survey 

context, several variants of EL have been proposed. Chen and Sitter (1999) developed a pseudo EL for 

complex surveys with auxiliary information. Chen and Kim (2014) proposed a population EL. However, 

neither papers handles the case of missing data. Cai, Qin, Rao and Winiszewska (2019) proposed an EL 

method based on imputation for missing survey data under stratified random sampling. Our paper adapts 

the method of Cai et al. (2019) to accommodate unequal probability sampling designs. 

We define a fractionally imputed estimating function of the mean parameter   and propose an EL 

method based on this imputed estimating function for PPS sampling with negligible sampling fractions or 

with replacement. We derive the asymptotic distributions of the associated maximum EL estimator (MELE) 

and EL ratio. Based on these limiting distributions, we propose two asymptotically correct bootstrap 
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methods for constructing CIs on .  Additionally, we show that the usual bootstrap procedures lead to 

asymptotically incorrect coverage probabilities when the number of random draws in the fractional 

imputation is fixed. Simulation studies show that the proposed EL-ratio-based bootstrap interval clearly 

outperforms the proposed MELE-based bootstrap interval especially when the inclusion probabilities vary 

considerably or when the sample size is not too large. 

Section 2 introduces the proposed fractional imputation on a function of the population mean. Section 3 

presents an EL under imputation and its asymptotic properties. Section 4 gives the proposed bootstrap-EL 

procedures for constructing CIs. Section 5 presents results from simulation studies. Lengthy technical 

details and proofs are delegated to the Appendices. 

 
2  Fractional imputation 
 

Following the notation in Section 1, for inference about the population mean   of   ,h y  we first impute 

the missing iy  within imputation classes as follows. Let ,ip ,i U  be the probabilities induced by a 

positive size measure, according to which a PPS sample s  is selected. Define  = 1i id np  for all .i U  

We use id  as design weights in the paper. Define the donor set k  of class ,k = 1, , ,k K  as the set of 

pairs  ,i iy d  within class k  for which iy  are observed, that is,  

   = , : , = 1, = .k i i i iy d i s z k   

For an i s  with = ,iz k  if = 0,i  we select 1J   pairs of  ,i iy d  at random with replacement from 

k  and denote them as  * *,ij ijy d  for = 1, , .j J  We then define an imputed estimating function of   

for all i s  as  

            1 * *

=1 =1

= = 1 ,
K J

i i i i i i ij ij
k j

h z k d h y J d h y          
  1  (2.1) 

where  =iz k1  is an indicator function taking value 1 if =iz k  and 0 otherwise. This is essentially 

fractional imputation (Kalton and Kish, 1984) on the function   .i id h y   Note that the typical 

approach to imputing a missing value from an unequal probability sample, as proposed by Rao and Shao 

(1992), is to draw y  values from the donor set within imputation class k  with probabilities ,
k

i ii
d d

 
 

then use the drawn values as the imputed values for the missing observation. As oppose to that approach, 

we draw y  values from the donor set with equal probabilities and attach the corresponding design weights 

as factors to obtain imputed values. Our approach agrees with that of Platek and Gray (1983). 

The number of random draws J  in (2.1) is assumed to be a fixed integer that does not change with 

sample size .n  This is a typical setup that is used in most real-world applications. In fact, single random 

imputation with = 1J  is often used in practice. This setting distinguishes our study from most studies in 

the literature (such as Wang and Chen (2009)), where J  is assumed to increase with n  to infinity in 
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asymptotic studies. Note that, in the survey context, imputed values are reported along with the observed 

ones in data files. Having a small J  will keep the data file manageable, which is the primary reason that 

= 1J  is preferred in practice. Having a fixed J  also frees users from choosing appropriate J  for 

asymptotic validity. In addition, using a small J  lessens computation time, although not substantially with 

modern computers unless both the sample size and the proportion of missing are very large. 

 
3  EL inference under imputation 
 

Based on the imputed function  ih   for all ,i s  we now propose an EL method for inference about 

the population mean   of   .ih y  Define the EL under imputation (2.1) as   = ,n ii s
L q q

  where iq  

satisfy 0iq   for all ,i = 1,ii s
q

  and   = 0.i ii s
q h 

   The corresponding profile log-EL at a given 

value of   is defined as  

  
 

  = log : 0, = 1, = 0 .sup
i

n i i i i i
q i s i s i s

l q q q q h 
  

     (3.1) 

Note that although the above  nl   takes the same form as the EL of the mean for IID data (Owen, 2001), 

the design weights id  are in fact subsumed in the definition (2.1) of   ,ih   which makes  nl   suitable 

for survey data. Solving the above maximization problem using the method of Lagrange multipliers, we 

obtain  

                                                               
  

1
= ,

1i
i

q
n h     

where   is the solution to the equation     1 1 = 0 .i ii s
n h h  


    Consequently, we get  

     = log 1 .n i
i s

l h  


    (3.2) 

We then define the MELE of   as  

                                                                 ˆ = argmax .nl


    

It can be shown that the maximum of  nl   is attained when = 1iq n  for all .i s  Hence, by the third 

constraint in (3.1), the MELE ̂  is the solution to the equation  1 = 0,ii s
n h 

   which is given by  

 
        

    
1 * *

=1 =1

1 *
=1 =1

= 1
ˆ = .

= 1

K J

i i i i i ij iji s k j

K J

i i i i iji s k j

z k d h y J d h y

z k d J d

 


 







 

 

  
  

1

1
 (3.3) 

Our Theorem 1 below presents the asymptotic normality of the MELE ˆ.  For the asymptotic 

investigation, we consider the case where both the population size N  and the sample size n  increase to   

as an index   increases to ,  as assumed by Chen and Rao (2007). 
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Theorem 1. Assume that the regularity conditions (R.1)-(R.2) in Appendix A hold. Under PPS sampling 

with replacement,  

    1 ˆ 0, 1
d

N Nn N       

as ,n    where N  is the true parameter value and N  is a constant.  

An expression of N  is given in Appendix A and the proof of Theorem 1 is given in Appendix B. 

Theorem 1 also applies to PPS sampling without replacement with negligible sampling fractions, which is 

asymptotically equivalent to PPS sampling with replacement. Note that increasing J  reduces the asymptotic 

variance ,N  leading to a more efficient estimator. However, a larger J  does not necessarily imply better 

coverage probabilities of CIs, as shown in the simulation study in Section 5. 

Theorem 1 suggests that we can construct a Wald-type CI for N  if given a design-consistent estimator 

of .N  However, accurately estimating N  under an unequal probability sampling design is not an easy 

task, especially when N  has a complicated algebraic expression. An alternative approach is to construct a 

likelihood-ratio-like quantity as in parametric likelihood inference. Toward this end, we define an EL ratio 

as  

    = 2 .nR l   (3.4) 

The asymptotic distribution of  R   is given by Theorem 2.  
 

Theorem 2. Assume that the regularity conditions (R.1)-(R.3) in Appendix A hold. Under PPS sampling 

with replacement,  

   2
1

d

N NR c    

as ,n    where 2
1  is a chi-square random variable with 1 degree of freedom and Nc  is a constant 

depending on .N  

The proof of Theorem 2 is given in Appendix B. Again, Theorem 2 also applies to PPS sampling without 

replacement with negligible sampling fractions. The expression of the scaling constant Nc  is given in 

Appendix A. The value of Nc  is not 1 in general. Hence, to construct an EL ratio CI for ,N  we need to 

estimate an unknown constant as in the case of Wald-type test. A design-consistent estimator of Nc  is given 

in Appendix A, and we use it to construct an EL ratio CI in the simulation study in Section 5. To avoid 

estimating the scaling constant, we explore proper bootstrap procedures in Section 4. 

 
4  Bootstrap EL intervals 
 

We now propose two bootstrap procedures to construct EL CIs on the population mean of   .h y  First, 

draw a bootstrap sample of size n  using simple random sampling with replacement from the sample 

quadruples   , , , : ,i i i iy d z i s   and denote the bootstrap sample as   , , , ,, , , : = 1, , .b i b i b i b iy d z i n   

Second, perform the imputation introduced in Section 2 on the bootstrap sample. That is, if , = 0b i  for 
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some = 1, ,i n  and  , = 1, , ,b iz k K   select J  values at random with replacement from the 

bootstrap donor set of class ,k   , , , , ,= , : = 1, = , = 1, , ,b k b i b i b i b iy d z k i n   and denote these values 

as *
, ,b ijy = 1, , .j J  Then, similar to (2.1), define a bootstrap version of the imputed estimating function, 

denoted  , ,b ih   for all = 1, ,i n  as  

            1 * *
, , , , , , , ,

=1 =1

= = 1 .
K J

b i b i b i b i b i b i b ij b ij
k j

h z k d h y J d h y          
  1   

Finally, obtain a bootstrap version of the profile log-EL, denoted  , ,b nl   by replacing  ih   in (3.1) with 

 , ,b ih   and define the bootstrap MELE as  ,ˆ = argminb b nl   and the bootstrap EL ratio as 

   ,= 2 .b b nR l   

To construct bootstrap CIs for ,  we seek suitable bootstrap analogues of  ˆ Nn    and   .NR   

In particular, we propose asymptotically correct bootstrap quantities based on ˆ b  and  bR   that 

approximate the distributions of  ˆ Nn    and   .NR   We will further show that the usual bootstrap 

analogues  ˆ ˆbn    and  ˆ ,bR   suggested by Shao and Sitter (1996), are asymptotically incorrect for 

approximating the distributions of  ˆ Nn    and  NR   under fractional imputation with fixed .J  

The proposed bootstrap analogues of  ˆ Nn    and  NR   rely on a quantity which we call 

complete-data MELE as defined below. Let  = =k ii s
n z k

 1  and  = =k i ii s
r z k

 1  for 

= 1, , .k K  For all ,i s  define  

                                             
=1

= = .
K

k
i i i i i

k k

n
h z k d h y

r
  


1   

Note that  ih 


 does not involve imputation. Similar to (3.1), we define a profile log-EL based on   ,ih 


 

                                        
 

  = log : 0, = 1, = 0 .sup
i

n i i i i i
q i s i s i s

l q q q q h 
  

  
 

  

Again, the design weights id  are included in the definition of   ,ih 


 although  nl 


 does not explicitly 

depends on them. We then define the complete-data MELE as  = argmin .nl 
  As the profile log-EL 

defined in (3.1), the maximum of  nl 


 is attained when = 1 ,iq n  and, as a consequence,   is the 

solution to the equation  1 = 0,ii s
n h 




 which is simply given by  

 
     

   
=1

=1

=
= .

=

K

k k i i i ii s k
K

k k i i ii s k

n r z k d h y

n r z k d









 
 

 1

1
 (4.1) 

The complete-data MELE   plays an important role in constructing asymptotically correct bootstrap 

quantities, as shown by Theorem 3. 
 

Theorem 3. Let n  denote the sample data   , , : .i i iy z i s   Under the conditions of Theorem 2,  

        ˆ ˆsup 1b n N p
t

P n t P n t o           (4.2) 
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and  

        = 1 .sup b n N p
t

P R t P R t o      (4.3) 

The proof of Theorem 3 is given in Appendix B. 
 

Remark 1. The difference between the usual bootstrap quantity ˆ ˆ( )bn    (or ˆ( ))bR   and the proposed 

bootstrap quantity ˆ( )bn     (or ( ))bR   can be shown to be  1pO  instead of  1po  when J  is a 

fixed constant. This, together with Theorem 3, shows that the usual bootstrap quantities do not have the 

same limiting distributions as those of ˆ( )Nn    and ( ),NR   and will lead to asymptotically incorrect 

coverage of .N  If J  is allowed to increase to   as ,n    then the differences between the usual 

bootstrap quantities and the proposed quantities becomes  1po  and both are asymptotically correct.  
 

Two bootstrap approaches to constructing a  1 ,  0, 1 ,   level CI on   are suggested by 

Theorem 3. Independently generate = 1, ,b B  bootstrap samples, and obtain ˆ b  and  bR   for all .b  

The first approach is based on the bootstrap distribution of  ˆ .bn     Find the   th1 2  and   th2  

sample quantiles, ,1 2ˆ b    and , 2ˆ ,b  of  ˆ : = 1, , .b b B   An approximate  1   level CI for   is 

given by  

     ,1 2 , 2ˆ ˆ ˆ ˆ, .b b             

We call the above CI the bootstrap-EL percentile (BELP) interval. 

The second approach relies on the bootstrap distribution of the bootstrap EL ratio   .bR   Find the 

  th1   sample quantile, denoted  ,1 ,bR  
  of   : = 1, , .bR b B   Then an approximate  1   

level CI for   based on  bR   is given by the interval defined by  

     ,1: .bR R       

We call this CI the bootstrap-EL ratio (BELR) interval. 

 
5  Simulation study 
 

We carried out simulation studies to compare the performance of the proposed BELP and BELR intervals 

to that of the usual bootstrap intervals based on  ˆ ˆbn    and  ˆ .bR   We will refer to the proposed 

proper intervals as propBELP and propBELR, and refer to the usual naive ones as naiveBELP and 

naivBELR. We also report the results for EL ratio intervals (SELR) with estimated scaling constant Nc  

based on the limiting distribution of the EL ratio established in Theorem 2. 

To generate population data, we followed the simulation settings of Wu and Rao (2006) and used the 

model  

 0 1=i i iy x      (5.1) 
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for = 1, , ,i N  where 0 1= = 1,  ix  were generated from an exponential distribution with rate 1, and 

i  were generated from 2
1 1   distribution to have a zero mean. The ix  were used as the size measure for 

selecting PPS samples. The value of   was chosen so that the correlation  : ,y x   between the 

variable of interest y  and the size measure x  reaches a certain level. The finite populations so generated 

were held fixed under repeated independent simulation runs. In each particular case of the simulation study, 

the number of simulation runs was set to be 10,000, and the number of bootstrap replications in each 

simulation run was set to =B  3,000. In Sections 5.1 and 5.2, we focus on constructing 95% CIs for the 

population mean of ;y  in Section 5.3, we consider 95% CIs for the population distribution function of y  

evaluated at given values. 

 
5.1  Case 1: Single imputation class 
 

We first considered the simple case where there is only one imputation class for the entire population. 

We set the population size to be =N  5,000, and drew PPS samples with replacement from the population 

generated from model (5.1). The   value in model (5.1) was chosen such that =  0.3. The sample size 

was set to =n  80 and 250, and for each sample size, we examined two settings of response probability, 

=P  0.4 and 0.8. For each combination of n  and ,P  we used two settings for the number of draws in 

imputation, = 1J  and 5. Note that, unlike the original setting used by Wu and Rao (2006), where a constant 

was added to all the size measures to avoid extremely small values, we intentionally avoided adding any 

constant to the size measures to test the case where inclusion probabilities contain very small values and 

differ largely in size. 

The coverage probabilities and average lengths of the proposed and naive bootstrap-EL intervals for the 

population mean are shown in Table 5.1. When = 1,J  it is clear that in all the cases the proposed propBELR 

intervals have the most accurate coverage probabilities and shorter average lengths than the naiveBELR 

intervals. The naivBELR intervals show 1%-2% of over-coverage relative to the 95% nominal coverage. 

Both propBELP and naivBELP intervals perform much worse than the BELR intervals in terms of coverage 

probability, and show serious under-coverage. The propBELP intervals, however, have much better 

coverage probabilities than the naivBELP intervals. The naivBELP and propBELP intervals can be shown 

to have exactly the same lengths, so their lengths are shown in a single column titled “BELP” under 

“Average Length” in Table 5.1 and also in the other tables. Given that both the propBELP and naiveBELP 

intervals have notable under-coverage, their lengths are not comparable to those of the BELR intervals. 

Moreover, when sample size increases, all the BELP intervals show improved coverage probabilities, while 

the coverages of the BELR intervals are stable in terms of change in the sample size. The SELR intervals 

also show significant under-coverage, although they have slightly better coverage than the propBELP 

intervals. The average lengths of all the intervals decrease as the sample size increases. 
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Table 5.1 
95% CIs for the population mean: single imputation class case 
 

J  n  1P  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
1 80 0.4 0.880 0.785 0.832 0.965 0.951 3.094 3.081 4.416 4.199 

0.8 0.897 0.828 0.863 0.961 0.948 2.404 2.331 3.200 3.062 
250 0.4 0.900 0.827 0.886 0.966 0.951 2.161 2.069 2.832 2.646 

0.8 0.913 0.862 0.904 0.960 0.947 1.617 1.558 2.068 1.972 
5 80 0.4 0.874 0.804 0.816 0.946 0.944 3.317 2.864 4.339 4.277 

0.8 0.890 0.850 0.858 0.947 0.944 2.339 2.222 3.074 3.038 
250 0.4 0.901 0.864 0.877 0.947 0.945 2.286 1.925 2.792 2.742 

0.8 0.908 0.889 0.902 0.948 0.946 1.567 1.463 1.939 1.914 

 
When J  is increased to 5, the differences between the naivBELR and propBELR intervals, and those 

between the naivBELP and propBELP intervals, become nearly negligible. This observation agrees with 

our theoretical finding given in Remark 1, that is, as J  increases, the differences between the proposed 

intervals and naive intervals will diminish as .n    The average lengths of the propBELR intervals 

remain slightly shorter than those of the naivBELR intervals. The coverage probabilities of both the 

propBELR intervals and the SELR intervals do not change substantially as J  increases from 1 to 5. 

A striking observation is that the BELP intervals perform much worse than the BELR intervals. 

Unreported simulation studies suggest that this is likely due to the use of unequal probability sampling. 

When simple random sampling is used, the performance of the propBELP interval is found to be close to 

that of the propBELR interval, which is also observed by Cai et al. (2019). In addition, if a constant is added 

to the size measures to avoid extremely small values, we observed that the performance of the proposed 

propBELP interval increases greatly while that of the naivBELP increases slightly. This is further illustrated 

in the simulation study presented in Section 5.2. A clear advantage of the proposed BELR interval over the 

proposed BELP interval is that the performance of the BELR interval is not significantly affected by the 

variation in inclusion probabilities. 

The above simulation results show that the naivBELR intervals have similar performance to the 

propBELR intervals with a slight over-coverage. Does this imply that the naivBELR interval is also 

asymptotically correct? To answer this question, we conducted a large-sample simulation study. In this 

study, we set the population size to be =N  25,000, and considered sample sizes =n  500, 1,000, 1,500, 

2,000 and 3,000. The population data were generated from model (5.1) and PPS samples were drawn with 

replacement from the population repeatedly and independently. The response probability P  was fixed at 

0.8 and the number of random draws J  in the imputation was set to 1. 

The simulation results based on large samples are reported in Table 5.2. In all the cases, the coverage 

probabilities of the propBELR intervals are precisely 95%. However, the naivBELR intervals always exihbit 

1%-1.5% of over-coverage regardless of how large the sample size is. This shows that the naivBELR 

intervals are asymptotically biased. The coverage probabilities of the propBELP intervals improve as the 

sample size increases, and when n  is beyond 2,000, they are satisfactorily close to the nominal coverage of 

95%. The naivBELP intervals, however, have lower than 90% coverage probabilities in all the cases, 

implying that they are asymptotically incorrect. The SELR intervals also improve as the sample size n  
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increases. However, they improve slower than the propBELP intervals: when =n  250, the SELR intervals 

have slightly better coverage (Table 5.1), but when n  increases to 3,000, the coverage probability of the 

propBELP intervals becomes 94.5% while that of the SELR intervals is only 93.0%. 

 

Table 5.2 
Large-sample behaviour of the 95% CIs for the population mean: single imputation class case 
 

n  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
500 0.918 0.871 0.921 0.963 0.950 1.269 1.200 1.626 1.549 

1,000 0.922 0.886 0.933 0.963 0.951 0.965 0.909 1.222 1.164 
1,500 0.925 0.890 0.939 0.962 0.949 0.825 0.773 1.039 0.987 
2,000 0.926 0.892 0.943 0.964 0.950 0.741 0.693 0.939 0.894 
3,000 0.930 0.896 0.945 0.963 0.949 0.624 0.585 0.788 0.749 

 
5.2  Case 2: Multiple imputation classes 
 

We now turn to the case of multiple imputation classes, i.e., > 1.K  We still focus on constructing 95% 

CIs for the population mean of .y  We drew Rao-Sampford (Rao, 1965; Sampford, 1967) PPS samples 

without replacement from a finite population generated from model (5.1). In this study, we added the 

constant 1 to all the size measures generated from the standard exponential distribution to avoid extremely 

small values. We considered two settings of the sample size and population size combinations: (a) =n  150 

and =N  5,000, corresponding to a sampling fraction of 3%, and (b) =n  500 and =N  50,000, 

corresponding to a sampling fraction of 1%. The reason that we reduced the sampling fraction in setting (b) 

is that for the large sample size =n  500, the rejective Rao-Sampford PPS samples are difficult to generate 

when the sampling fraction is greater than 1%. For each sample size setting, we considered two levels of 

correlation between y  and the size measure, =  0.3 and 0.8. Under each of the above sample size and 

correlation setting, we tested three cases for the number of random draws in the imputation: =J  1, 3 and 5. 

We set the number of imputation classes to =K  3, and use the models considered by Fang, Hong and 

Shao (2009) to generate the class variable z  and response probabilities for different imputation classes. The 

class variable z  was generated with a proportional-odds model for all population units = 1, , ,i N  

 
 
 

log = for = 1, , 1
>

i i
i

i i

P z k y
k by k K

P z k y


    

with =b  -0.2. For each sampled unit ,i s  the response probability for iy  was generated according to the 

model  

  
 
 

exp 0.1
= =

1 exp -0.1

-
i i

k
P z k

k







 
  

with =  0.7, where = 1, , .k K  This model yields response probabilities 1 =P  0.646, 2 =P  0.786, and 

3 =P  0.881. 

The simulation results for the sample size =n  150 are reported in Table 5.3. In all the cases, the 

propBELR intervals have the most accurate coverage probabilities and shorter average lengths than the 
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naivBELR intervals. The naivBELR intervals show over-coverage when = 1,J  and their coverages 

improve as J  increases. The coverage probabilities of the propBELP intervals are lower than the nominal 

level, but are much improved compared to the serious under-coverage that we have observed in the 

simulation study of Section 5.1 where no constant was added to the size measures to avoid extremely small 

values. The SELR intervals exhibit slight under-coverage when =  0.3; they perform equally well as the 

propBELR intervals when =  0.8. The naivBELP intervals perform the worst with significant under-

coverage in all the cases. 

 

Table 5.3 
95% CIs for the population mean: multiple imputation classes case =n  150, =N  5,000 
 

  J  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
0.3 1 0.943 0.890 0.930 0.961 0.950 1.379 1.332 1.517 1.439 

3 0.945 0.916 0.930 0.954 0.951 1.335 1.281 1.426 1.397 
5 0.946 0.919 0.930 0.953 0.950 1.327 1.271 1.410 1.390 

0.8 1 0.953 0.899 0.946 0.967 0.952 0.471 0.465 0.502 0.474 
3 0.951 0.928 0.945 0.956 0.950 0.455 0.444 0.464 0.453 
5 0.951 0.935 0.945 0.956 0.952 0.447 0.440 0.455 0.449 

 
The simulation results for the larger sample size =n  500 are shown in Table 5.4. As in the case of the 

smaller sample size =n  150, the propBELR and propBELP intervals outperform their naive counterparts, 

and the propBELR intervals perform better than the propBELP intervals in terms of coverage probability. 

Under both sample sizes, 150 and 500, the coverage probabilities of the propBELR intervals are nearly 

identical to the nominal level, and those of the propBELP intervals improve as the sample size increases, 

suggesting that the proposed BELR and BELP intervals are asymptotically correct. However, the coverage 

probabilities of the naivBELR and naivBELP intervals do not improve as the sample size increases, 

indicating that they are asymptotically incorrect. The SELR intervals have approximately the same 

performance as the propBELR intervals in terms of both coverage probabilities and average lengths under 

the large sample size setting. 

 

Table 5.4 
95% CIs for the population mean: multiple imputation classes case =n  500, =N  50,000 
 

  J  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
0.3 1 0.949 0.895 0.939 0.960 0.948 0.747 0.734 0.795 0.754 

3 0.948 0.926 0.941 0.954 0.949 0.720 0.704 0.742 0.727 
5 0.949 0.933 0.942 0.952 0.950 0.719 0.698 0.731 0.721 

0.8 1 0.949 0.898 0.947 0.964 0.949 0.260 0.258 0.276 0.260 
3 0.949 0.931 0.949 0.957 0.952 0.248 0.246 0.254 0.248 
5 0.950 0.937 0.946 0.954 0.949 0.246 0.244 0.250 0.246 

 

 
It is worth noting that the average lengths of all the intervals are shorter when the correlation between 

y  and the size measure is higher. This agrees with the classical estimation theory of survey sampling that 
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using a size measure that is highly correlated with the variable of interest leads to small variance of the 

estimator. 

 
5.3  Case 3: CIs for population distribution function 
 

We now present the simulation results on 95% CIs of the finite-population distribution function of y  at 

a given value ,t    1= .N ii U
F t N y t


 1  As noted in the Introduction,  nF t  can be represented as 

the solution to the estimating equation    = 0ii U
h y 


  in   by taking    = .h y y t1  We took 

the same settings for data generation as used in simulation Case 2 in Section 5.2. For each   value, we 

considered three t  values fixed at the th25 , th50  and th75  percentiles of the data-generating distribution of 

y  implied by model (5.1). For =  0.3, these t  values are 0.81, 1.95 and 3.99, and for =  0.8, they are 

2.09, 2.68 and 3.56. The sample size was set to =n  80. 

The simulation results for the cases =  0.3 and =  0.8 are shown in Table 5.5 and 5.6, respectively. 

Consistent to what we have observed in simulation Case 2, the propBELR intervals still perform the best 

among the competitors. The SELR intervals show slight under-coverage compared to the propBELR 

intervals when =  0.3 at the th75  percentile ( =t  3.99); otherwise they perform similarly. The naivBELR 

intervals again exhibit approximately 1% of over-coverage when = 1J  and improve as J  increases. The 

propBELP intervals perform better than the naivBELP intervals, but both show significant under-coverage. 

 

Table 5.5 
95% CIs for distribution function  NF t  when =  0.3 
 

t  J  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
0.81 1 0.945 0.862 0.910 0.961 0.948 0.267 0.273 0.286 0.271 

3 0.948 0.898 0.912 0.953 0.947 0.257 0.261 0.263 0.257 
5 0.946 0.898 0.909 0.949 0.947 0.254 0.258 0.258 0.255 

1.95 1 0.950 0.887 0.934 0.966 0.952 0.285 0.292 0.303 0.287 
3 0.951 0.916 0.932 0.958 0.951 0.273 0.279 0.280 0.274 
5 0.952 0.923 0.933 0.956 0.953 0.270 0.277 0.274 0.271 

3.99 1 0.946 0.873 0.920 0.962 0.950 0.233 0.236 0.248 0.236 
3 0.947 0.907 0.922 0.955 0.950 0.225 0.227 0.231 0.227 
5 0.948 0.914 0.921 0.954 0.951 0.223 0.225 0.228 0.225 

 
Table 5.6 
95% CIs for distribution function  NF t  when =  0.8 
 

t  J  
Coverage probability Average length 

SELR naivBELP propBELP naivBELR propBELR SELR BELP naivBELR propBELR
2.09 1 0.942 0.860 0.905 0.958 0.944 0.277 0.283 0.295 0.279 

3 0.946 0.891 0.910 0.948 0.945 0.265 0.271 0.272 0.266 
5 0.947 0.900 0.910 0.947 0.946 0.263 0.269 0.267 0.263 

2.68 1 0.944 0.882 0.928 0.960 0.946 0.285 0.292 0.304 0.288 
3 0.946 0.913 0.931 0.951 0.945 0.273 0.280 0.280 0.274 
5 0.949 0.924 0.934 0.951 0.948 0.270 0.277 0.274 0.271 

3.56 1 0.943 0.878 0.919 0.957 0.945 0.215 0.217 0.228 0.217 
3 0.944 0.906 0.920 0.949 0.946 0.206 0.207 0.211 0.207 
5 0.944 0.912 0.922 0.947 0.946 0.204 0.206 0.208 0.205 
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6  Conclusion and future perspectives 
 

A fractional imputation is proposed and an associated EL is developed for making inference on the 

population mean   of a function of a variable of interest for survey data that are missing at random under 

PPS sampling with negligible sampling fractions or with replacement. Two bootstrap and EL based 

methods, BELP and BELR, are proposed for constructing CIs on ,  and are shown to be asymptotically 

correct. Simulation studies show that the proposed intervals perform better than their naive bootstrap 

counterparts under various sample size settings. In addition, the proposed BELR intervals are seen to have 

more accurate coverage probabilities than those of the proposed BELP intervals, particularly in two 

situations: (i) when the inclusion probabilities differ in size substantially, or (ii) when the sample size is not 

too large. Moreover, the proposed BELR intervals exhibit notably better coverage probabilities than the EL-

ratio intervals with estimated scaling constant (SELR intervals) in the above case (i). 

For parameters defined by smooth estimating equations under an IID setting, Tang and Qin (2012), using 

an inverse-probability-weighted fractional imputation, achieved two most desirable properties of EL 

inference with data missing at random: (1) the associated MELE attains the semi-parametric efficiency 

bound, and (2) the corresponding EL ratio follows a simple chi-square limiting distribution. However, their 

method requires both the observed and the missing data to be imputed, which is unlikely to be accepted in 

practice in survey studies. We are working on extending Tang and Qin (2012) to a survey setup while 

avoiding imputing observed data points. 

Our future work also includes extending the current methods to tackling missing data from stratified 

sampling and multistage sampling, as well as to the case where the sampling fraction is non-negligible. 
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Theorems 1-3 are established under the following regularity conditions. 

(R.1) ,kQ kH  and 2
kHS  converge to some constant limits as N    for all = 1, , ;k K 0kQ   

for all k  and 2 0
kHS   for at least one .k  

(R.2) There exists a constant > 0  such that (a)    21 = 1 ,i Ni U
N h y O 


   and (b) 

   1 = 1ii U
N d o 

   as .N    
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(R.3)     1 2= .max i s i i N pd h y o n   
 

Conditions (R.1) and (R.2) ensure that the population has regular behaviour when embedded in a 

asymptotic sequence. Condition (R.3) is a standard condition in EL inference as used by Chen and Sitter 

(1999). 

The constant N  in Theorem 1 is given by the positive square root of  

                                   1 2 22 1

=1

= 1 .
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N k k H k k
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The constant Nc  in Theorem 2 is given by  
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Design-consistent estimators of 2
N  and Nc  can be obtained by plugging in the following design-consistent 

estimators of ,kP ,kQ KH  and 2
kHS  for = 1, , :k K  
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Appendix B 
 

We now give proofs for Theorems 1-3. Let  E   and  Var   denote the expectation and variance 

operators with respect to the sampling design, respectively. We consider PPS sampling with replacement in 

the proofs. All results also apply to PPS sampling without replacement with negligible sampling fractions. 
 

Lemma 1. Under condition (R.1),  1= = 1 .k k k pn r P o  
 

Proof of Lemma 1. Recall that  = = ,k ii s
n z k

 1  so we have       1
E = = =k i ii U

n n z k nd


 1  

 = 1kQ O  by (R.1). Under PPS sampling with replacement, we have  

             1 21 2 1Var = = E = = 1 .k i i k k k
i U

n n n z k nd n n n Q Q o 



 1   

Therefore, by Markov’s inequality, we easily obtain      = E 1 = 1 .k k p k pn n n n o Q o   

Moreover, since  = = ,k i ii s
r z k

 1  by the MAR assumption, we have  E =kr n  

     E = E = E = .i i k k k k kz k n n P n n P Q  Similar to the case of ,kn n  we can show that 

   Var = 1 ,kr n o  so we have  = 1 .k k k pr n P Q o  
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We hence conclude that      1= = 1 .k k k k k pn r n n r n P o   
 

Lemma 2. Under conditions (R.1) and (R.2),  

    1 1 0, 1 .
d

N i N
i s

nN h N  



    

 
Proof of Lemma 2. The following decomposition holds: 
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with  
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We now work out the conditional limiting distributions of nU  given the sample data .n  Since the 

imputation is carried out independently across ,i s i  are conditionally independent random variables 

given .n  Note that i  have zero conditional mean,   = 0i nE    and common conditional variance for 

all .i s  Moreover, we have  
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By Lemma 1,  1= 1 ,k k k pn r P o   and in the proof of Lemma 1, we have shown 

 1 1= 1 .k k k pn r P Q o    Under condition (R.2)(a), we can show that  

              222
2

1
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By the Berry-Essen Theorem (Chow and Teicher, 1997, Section 9.1), we have  
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where  0,    and c

 are some constants that do not rely on ,n  and  
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We can further show that, under condition (R.2)(a),    1 2E = 1 ,i n pi s
n O  

    which implies that 

 2 = 1 .u po   Therefore,  

      = 1 .sup n u n p
t

P U ts t o    (B.3) 

We next find the limiting distribution of .nV  It can be shown that, for each = 1, , ,k K  
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Hence, by (B.1), we have  = 1 ,n
n i pn i s

V o


  where  
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i k k
i i i i N

k k k k

n H H
z k d h y
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Under sampling with replacement, ,i ,i s  are independent random variables. Moreover, we get 

 E = 0ii s


  and  

    1 2 22

=1

:= Var = .
k

K

v n k H k k
k

s V P S H Q   (B.4) 

Under condition (R.2)(a), the conditions of the Lyanunov central limit theorem are satisfied, so we have  

  1 0, 1 .
d

v ns V N   (B.5) 

By (B.3) and (B.5), and observing that v us s  converges to a constant limit under condition (R.1), all 

conditions of Theorem 2 of Chen and Rao (2007) are verified. Accordingly, we have  

      1 22 2 0, 1 .
d

u v n ns s U V N     

Noticing that  2 2 2= 1u v N ps s o   and  1= ,n n i Ni s
U V nN h 


    the claimed result is proved.  

 

Proof of Theorem 1. By (3.3) and (2.1), we have  

    1ˆ = ,N i N
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Note that, given the sample data ,n      1 1
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  1  By 

Lemma 1, we have  1= 1 .k k k pn r P o   Moreover, we can show that, under condition (R.2)(b),  
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In addition, it can be shown that given ,n    1 1= E 1 .n pN d N d o      The above results imply that  

  1 = 1 1 .pN d o   (B.7) 

Combining (B.6), (B.7) and Lemma 2, we obtain the desired result.  
 

Proof of Theorem 2. By (3.2) and (3.4), we have  

                                                 = 2 = 2 log 1 .N n N N i N
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where N  satisfies     1 1 = 0.i N N i Ni s
n h h  


    Using the same argument as used by Owen 

(2001, Section 11.2, Proof of Theorem 3.2), we can show that, under condition (R.3),  1 2=N pO n   and  
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By this expression of ,N  (B.8) and a Taylor’s expansion, we obtain  
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Theorem 2 is then proved by substituting the above expression into (B.9) and applying Theorem 1.  

For the proof of Theorem 3, we introduce the following Lemma.  

Lemma 3. Under conditions (R.1) and (R.2),  

         1 1
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n
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Proof of Lemma 3. Let ,b n  denote the bootstrap sample  , , , ,( , , , ) : = 1, , .b i b i b i b iy d z i n   We have the 

following decomposition:  

  1
,

=1

= ,
n

b i N n n
i

nN h        

where     1
, , ,=1

= E
n

n b i N b i N b ni
nN h h         and  

     1
, ,

=1

= E .
n

n b i N b n N
i

nN h h 


   


    

Similar to the proof of Lemma 2, we can show that  
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where us  is defined in (B.2). 

We next give the conditional limiting distribution of n  given .n  It can be shown that 
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We can show that the first term on the right hand side (RHS) equals  1 2
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where 2
vs  is defined in (B.4). By verifying the conditions of the Berry-Essen Theorem as in the proof of 

Lemma 2, we get  

      = 1 .sup n v n p
t

P ts t o     (B.11) 

By (B.10) and (B.11), and applying Theorem 2 of Chen and Rao (2007), we obtain the claimed results.  
 

Proof of Theorem 3. We first prove (4.2). By (3.3) and (2.1), we have  
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It is straightforward to show that  = 1b pd N d N o
  and  = 1 1pd N o


 under condition 

(R.2)(b). Therefore,  
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nN nN h h o    
  
    

Then, by Lemma 3, we have  

       1 ˆ = 1 .sup b N n p
t

P nN t t o          

This, combined with Theorem 1 and Polya’s Theorem, completes the proof of (4.2). 

The result (4.3) can be proved based on (4.2) and by following the same arguments as used in the proof 

of Theorem 2. 
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Improved Horvitz-Thompson estimator in survey sampling 

Xianpeng Zong, Rong Zhu and Guohua Zou1 

Abstract 

The Horvitz-Thompson (HT) estimator is widely used in survey sampling. However, the variance of the HT 
estimator becomes large when the inclusion probabilities are highly heterogeneous. To overcome this 
shortcoming, in this paper we propose a hard-threshold method for the first-order inclusion probabilities. 
Specifically, we carefully choose a threshold value, then replace the inclusion probabilities smaller than the 
threshold by the threshold. Through this shrinkage strategy, we construct a new estimator called the improved 
Horvitz-Thompson (IHT) estimator to estimate the population total. The IHT estimator increases the estimation 
accuracy much although it brings a bias which is relatively small. We derive the IHT estimator’s mean squared 
error and its unbiased estimator, and theoretically compare the IHT estimator with the HT estimator. We also 
apply our idea to construct an improved ratio estimator. We numerically analyze simulated and real data sets to 
illustrate that the proposed estimators are more efficient and robust than the classical estimators. 

 
Key Words: Horvitz-Thompson estimator; Inverse probability weighting; Hard-threshold; Robustness; Unequal 

probability sampling; Sampling without/with replacement; Ratio estimator. 

 
 

1  Introduction 
 

The Horvitz-Thompson (HT) estimator proposed by Horvitz and Thompson (1952) is widely used in 

survey sampling. It has also been applied to other fields such as functional data analysis (Cardot and 

Josserand, 2011) and the treatment effect (Rosenbaum, 2002). The HT estimator is an unbiased estimator 

constructed via inverse probability weighting. However, when the inclusion probabilities are highly 

heterogeneous, i.e., inclusion probabilities of some units are relatively tiny, the variance of the HT estimator 

becomes large due to inverse probability weighting. In this paper, we propose an improved Horvitz-

Thompson (IHT) estimator to address this problem. 

Our approach is to use a hard-threshold for the first-order inclusion probabilities. Specifically, we 

carefully choose an inclusion probability as the threshold. The inclusion probabilities that are smaller than 

the threshold are replaced by the threshold, while the others remain unchanged. In this way, we obtain the 

modified inclusion probabilities, and construct an estimator based on the modified inclusion probabilities 

through inverse probability weighting. We call this estimator the IHT estimator. This method looks very 

easy but is more efficient than the HT estimator. This hard-threshold approach can be explained as a 

shrinkage method. Shrinkage is very commonly used in statistics, such as ridge regression (Hoerl and 

Kennard, 1970) and high-dimensional statistics (Tibshirani, 1996). In this paper, we use it to reduce the 

negative effect of highly heterogeneous inclusion probabilities. Similar to other shrinkage methods, our 

approach introduces a bias, which is proved to be very small, but reduces the variance to a larger extent, so 

it improves the estimation efficiency. We will theoretically and numerically show the improvement from 

using the modified inclusion probabilities. In addition to the population total estimator, we also extend this 

strategy to the ratio estimator, and accordingly, an improved ratio estimator is obtained. 
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The remainder of the paper is organized as follows. Section 2 introduces the HT estimator and shows its 

drawback. Section 3 proposes our modified inclusion probabilities and the resultant IHT estimator. We also 

provide the IHT estimator’s properties, and theoretically compare it with the HT estimator in this section. 

Section 4 extends our idea to obtain an improved ratio estimator and shows that this modification is efficient. 

Section 5 presents numerical evidence from simulations and a real data analysis. Section 6 concludes. Proofs 

of theoretical results are given in the Appendix. 

 
2  HT estimator and its drawback 
 

Consider a finite population  1= , , NU U U  of size ,N  where kU  denotes the thk  unit. For 

simplicity, we write  = 1, , , , .U k N   For each unit ,k  suppose that the value ky  of the target 

characteristic Y  is measured. Our aim is to estimate the total, = ,y kU
t y  using a sample s  of size n  

which is randomly drawn from the population .U  We implement unequal probability sampling without 

replacement. Denote   =1

N
k k  as the first-order inclusion probabilities and  kl k l   as the second-order 

inclusion probabilities. 

Horvitz and Thompson (1952) proposed the HT estimator as follows  

 HT
ˆ = .k

k s k

y
t


   

The HT estimator HTt̂  is an unbiased estimator of yt  and its variance is  

 2
HT 2

ˆ( ) = ,kk kl
k l kU U

k lk k l

V t y y y
  

 
   (2.1) 

where 2=kk k k    for all k  and =kl kl k l     for all .k l  When the inclusion probabilities are 

highly imbalanced, i.e., some ’sk  are very small, the variance of the HT estimator may be very large. 

 
3  Improved HT estimator 
 

In this section, we improve the HT estimator in the sense of reducing its mean squared error (MSE). The 

resultant estimator is referenced as the IHT estimator. For doing this, we first propose the modified first-

order inclusion probabilities, where the hard-threshold method is used to reduce the effect of those inclusion 

probabilities with relatively tiny values.  

Definition 1. Let      1 2 N      be the ordered values of the first-oder inclusion probabilities 

 1 2, , , .N    Assume that there exists an integer 2K   such that     11 .K K    We define the 

modified first-order inclusion probabilities as follows  

 
 

   

*
> ,

= 1 .
,

k k K

k
kK K

k N
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From the definition, we partition the finite population into two parts:   1 = : >k KU k    with size 

,N K  and   2 = : k KU k    with size .K  For 1 ,U  the first-order inclusion probabilities remain 

unchanged, while all of first-order inclusion probabilities for 2U  are replaced by   .K  From this hard-

threshold, we get our modified first-order inclusion probabilities  *
=1 .N

k k  Obviously, the choice of K  is 

very important. In Section 3.2, we shall provide a simple way to choose .K  

Remark on existence of .K  The assumption in Definition 1 is quite weak. If    2 > 1 2 1 ,   then the 

sampling fraction 1 1
3 3> .Nf   However that situation that 1

3>f  rarely happens in practical surveys. 

Thus, the inequality that    2 1 2 1    generally holds. 

Instead of the original first-order inclusion probabilities   =1 ,N
k k  we use our defined modified first-

order inclusion probabilities  *
=1

N
k k  to construct an improved Horvitz-Thompson (IHT) estimator by 

inverse probability weighting.  

Definition 2. The IHT estimator is defined as  

 
*

ˆ = .k
IHT

k s k

y
t


   

Unlike the unbiased HT estimator, the IHT estimator is biased. However, this modification leads to much 

smaller MSE due to reducing the variance. It is worth pointing out that, although we focus on sampling 

without replacement in this paper, our modification idea is equally applicable to the Hansen-Hurwitz 

estimator (Hansen and Hurwitz, 1943) for sampling with replacement. 

 
3.1  Properties of the IHT estimator 
 

In this section, we derive the properties of the IHT estimator. We first provide the expressions of its bias, 

variance, MSE and an unbiased estimator of MSE in Theorem 1. Then we compare the IHT estimator with 

the HT estimator in Theorems 2 and 3. 
 

Theorem 1. The bias and variance of the IHT estimator ˆ
IHTt  are expressed as  

                                             
 

2

ˆ = 1 ,k
IHT kU

K

Bias t y




  

 
   

and  

   2
*2 * *

ˆ = ,kk kl
IHT k k lU U

k lk k l

Var t y y y
  

 
    

respectively, where  = 1 , =kk k k kl kl k l         k l  as defined before. Therefore, its MSE is 

given by  

  
 

2

2

2
*2 * *

ˆ = 1 .k kk kl
IHT k k k lU U U

k lk k lK

MSE t y y y y

   

    
   

  
    (3.1) 
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An unbiased estimator of the MSE is  

 

     
 

     
 

2 2

2

2
2 2

2
*2 * *

ˆ =

,

k k lK K K
IHT k k ls s

k klK Kk l

kk kl
k k ls s

k lk k l

MSE t y y y

y y y

     
   

  





  


 
 

 

 
    

where = , = ,kk kl

k klkk kl 
  

 
s  is the sample set, and 2 2= .s s U  

 

Proof. See Appendix A.1. 

To derive the properties of the IHT estimator, we need the following regularity conditions: 

Condition C.1. *
,> 0, > 0,min mini U i j Ui ij       and  

 < .lim sup max ij i j
i j UNarrow

n   
 

    

Condition C.2. max i U iy C   with C  a positive constant not depending on .N  

Condition C.1 is a common condition imposed on the first-order and second-order inclusion 

probabilities. The same conditions are used in Breidt and Opsomer (2000), where further comments on C.1 

are provided. Condition C.2 is also a common condition. 
 

Theorem 2. For the HT estimator ˆ
HTt  and the IHT estimator ˆ ,IHTt  under the Conditions C.1-C.2, we have  

      1 1 1ˆ ˆ= 0, = ;HT IHTBias N t Bias N t O n     

and  

        1 1 1 1ˆ ˆ= , = .HT IHTMSE N t O n MSE N t O n      

 

Proof. See Appendix A.2. 

From Theorem 2, the squared-bias of our IHT estimator is very small compared to its MSE. Although 

our IHT estimator brings a bias to reduce the variance, the price for this is relatively small. The following 

theorem theoretically compares the efficiency of the two estimators.  
 

Theorem 3. Under the Conditions C.1-C.2, we have  

      1 1 1ˆ ˆ .IHT HTMSE N t MSE N t o n     (3.2) 

Especially, for Poisson sampling, we obtain  

    1 1ˆ ˆ ,IHT HTMSE N t MSE N t    

where the strict inequality is true if there exist 2k l U   such that       .k k l lK Ky y       
 



Survey Methodology, 2019 (special issue) 169 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Proof. See Appendix A.3. 

Theorem 3 shows that, under some mild conditions, the proposed IHT estimator is asymptotically more 

efficient than the HT estimator. From the proof in Appendix A.3, the term  1o n   in equation (3.2) is due 

to the interaction term from the second-order inclusion probabilities. We theoretically bound the term as 

 1 .o n   For Poisson sampling, the term does not exist, so the MSE of the IHT estimator is uniformly not 

larger than that of the HT estimator. Empirically, we compare the IHT estimator with the HT estimator in 

Section 5. 

 
3.2  The choice of K  
 

The efficiency of the IHT estimator relies on the choice of ,K  which provides a control of the variance-

and-bias tradeoff. The choice of K  needs to satisfy the condition that    < 1 1K K   of Definition 1, 

since the modified inclusion probabilities would cause large bias when K  becomes large. On the other 

hand, the improvement of the IHT estimator would not be significant if K  is small. In the proofs of 

Theorem 3, equation (A.5) provides a lower bound of the main term of    1 1
HT IHT

ˆ ˆMSE MSE .N t N t   

The lower bound increases as  K  increases. Therefore, denoting the maximum value 

    * : 1 1= max ,ii iK     we choose *K  as the threshold. In practice, we propose the following 

algorithm to find the maximum value * .K  

        
 

 

   

1 2

=1

1 1
11 2

 

Step i Obtain the ordered inclusion probabilities by sorting

rom small to large.

Step ii Test and modify.

If satisfies and the modified first-order

, ,

f

i> ,  

, N

N
k k

j jj jj

  



   

Algorithm 1 The choice of


K

          1*

1

nclusion

probabilities are d

,

efin

,

ed as

an

, , , ,

d

= ,

= .

j j j j N

j

K j

    


π 

 

  

Note that the choice of *K  based on Algorithm 1 is not optimal in terms of MSE. However, we simulate 

an example in Section 5 where the performance of Algorithm 1 is very close to that of the theoretically ideal 

choice. 

 
4  Extension to the ratio estimator 
 

When an auxiliary variable is available, the ratio estimator is usually used to estimate the population 

total. In this section, we extend the IHT estimator to the case of ratio estimation. 
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4.1  Improved ratio estimator 
 

Denote the ratio between the population totals of Y  and Z  as  

 = ,y zR t t   

where yt  and zt  are the totals of the finite populations Y  and ,Z  respectively. Let ˆ = ,k

k

y
y s

t    

ˆ = ,k

k

z
z s

t   *
*ˆ = ,k

k

y
y s

t    and *
*ˆ = .k

k

z
z s

t    The classical estimator and our modified estimator of R  

are given by  

 * * *ˆ ˆˆ ˆ ˆ ˆ= , and = .y z y zR t t R t t      

We assume that the population total zt  is known. To estimate the population total yt  of ,Y  the classical 

ratio estimator is given by  

 ˆ ˆ ˆ= .R z y zY t t t    

Alternatively, our improved ratio estimator of yt  based on the modified inclusion probabilities is expressed 

as  

 * * *ˆ ˆ ˆ= .R z y zY t t t    

 
4.2  Properties of the improved ratio estimator 
 

To show theoretically that the improved ratio estimator *ˆ
RY  is more efficient than the classical ratio 

estimator ˆ ,RY  we need the following regularity conditions: 

Condition C.3. = ,lim n
N N c  where  0, 1c   is a constant. 

Condition C.4.    1= ,max i j k U ijk ij k O n   
     and  

    24 6 3 = .max ijkl ijk l ij k l i j k l
i j k l U

O n          
   

     

Condition C.3 is a common condition. The same condition is used in Breidt and Opsomer (2000). 

Condition C.4 is a mild assumption on the third-order and fourth-order inclusion probabilities. In 

Appendix A.5, we present some frequent examples which satisfy Condition C.4. 

Comparing our improved estimators with the classical estimators, we have the following result. 
 

Theorem 4. If Conditions C.1-C.4 are satisfied, and 1 2kc z c   for all k U  with 1c  and 2c  some 

positive constants, then  

      * 1ˆ ˆ .MSE R MSE R o n     

Furthermore,  

       1 * 1 1ˆ ˆ .R RMSE N Y MSE N Y o n      
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Proof. See Appendix A.4. 

Like Theorem 3, Theorem 4 shows that the proposed method improves the classical ratio estimators with 

a tolerance of order  1 .o n   

 
5  Numerical studies 
 

In this section, we assess the empirical performance of our IHT estimator using three synthetic examples 

and one real example. We consider the following two cases: the estimation of a population total and the 

estimation of a population ratio, where our IHT estimators are compared with the HT estimator. We measure 

the efficiency improvement in terms of 
HT IHT

HT

MSE MSE

MSERe = 100%,   where HTMSE  and IHTMSE  denote 

the MSE of the HT estimators and IHT estimators, respectively. We additionally compare the IHT estimator 

with the HT estimator in the sense of inference performance in the real example. 

 

5.1  Simulations 
 

Example 1: An illustrative example 

We generate a finite population Y  of size = 3,000,N  where the thk  unit value 0=k ky y  and 

 0 0, 1 .ky N  Our aim is to estimate the population mean 1= .kN U
Y y  We perform Poisson sampling 

according to the inclusion probabilities set as follows  

 1 1,000 1,001 2,000 2,001 3,000= = = 0.2, = = = 0.001, and = = = 0.08.          

In this example, the HT estimator is not efficient since one third of the inclusion probabilities are 0.001, tiny 

relative to 0.08 or 0.2. From our hard-threshold strategy, we replace these tiny probabilities with 0.08, so 

the modified inclusion probabilities are given by  

 * * * * * *
1 1,000 1,001 2,000 2,001 3,000= = = 0.2, = = = 0.08, and = = = 0.08.          

Note that the modified probabilities are not obtained according to Algorithm 1. It is an illustrative example 

to show that our hard-threshold can bring efficiency improvement. By setting the iteration time = 2,000,M  

we get the simulated biases, variances and MSEs of our IHT estimator and the HT estimator. The results 

are shown in Table 5.1. 

 
Table 5.1 
Performance of Example 1 
 

HTMSE  IHTMSE  HTBias  IHTBias   HTVar  IHTVar  Re   

0.1187  0.0751  5.374 610   0.0723  0.1187  0.0029  36.71%  

 
From the table, the variance of the HT estimator is much larger than that of the IHT estimator, so it loses 

its efficiency in terms of MSE compared to the IHT estimator although the HT estimator is unbiased. 

Furthermore, in order to show the variations of both estimators, we plot their values among 2,000 iterations 
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in Figure 5.1. It clearly displays that, although there is small bias for the IHT estimator, its variation is much 

less than that of the HT estimator. These observations empirically verify our theoretical results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  The plots of both estimators in Example 1. 
 

Example 2: ’si  depend on an auxiliary variable 

We generate the finite population Y  of size = 3,000N  as follows: = 3k ky x    
23 3 ,ke   where kx  and ke  are independently generated from  0, 2U  and  0, 1N  respectively, 

and 0 1   controling the correlation of Y  and .X  We consider three sampling methods: Poisson 

sampling, PPS sampling and PS  sampling. The sampling fraction = =n
Nf  0.02, 0.04, 0.06, 0.08, 0.10, 

0.15, 0.20, 0.30. We report the results in Figure 5.2, where =  0.8, and list the specific Re values of 

Figure 5.2 in Table 5.4. 

From these results, we get the same observations as Example 1. It indicates that our IHT estimator 

outperforms the HT estimator in terms of MSE and that the improvement is generally substantial. 

Comparing with Figures 5.2(a), 5.2(b), and 5.2(c), PS  sampling obtains the biggest advantage of the IHT 

estimator over the HT estimator, followed by PPS sampling and Poisson sampling. We also show the results 

for different   values under PS  sampling in Table 5.2, where the case of =f  0.08 is reported and other 

cases are ignored because of the similarity. It is observed from the table that, no matter what value   takes, 

the IHT estimator has uniformly much less MSE than the HT estimator.  
 

       0                             500                          1,000                      1,500                         2,000 
Replication 

V
ar

ie
d 

va
lu

e 
   

   
   

 0
.5

   
   

   
   

   
   

   
1.

0 
   

   
   

   
   

   
   

 1
.5

   
   

   
   

   
   

   
 2

.0
   

   
   

   
   

   
   

 2
.5

  

            True Value 
 
            HT 
 

            Improved HT 



Survey Methodology, 2019 (special issue) 173 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 5.2 
The performance of Example 2 for different   values, where = 0.08f  
 

  HTMSE  IHTMSE  HTBias  IHTBias  HTVar  IHTVar  Re  

0 3.45 210  1.36 210  3.43 510  5.82 410  3.45 210  1.30 210  60.70% 
0.1 2.51 210  1.38 210  1.16 510  8.25 410  2.51 210  1.30 210  44.91% 
0.3 2.43 210  1.24 210  4.65 610  8.86 410  2.43 210  1.15 210  48.97% 
0.5 2.38 210  1.07 210  9.83 610  8.44 410  2.38 210  9.88 310  54.92% 
0.8 9.38 310  5.22 310  3.04 710  3.16 410  9.38 310  4.91 310  44.33% 
0.9 4.75 310  2.65 310  7.98 610  2.64 410  4.74 310  2.38 310  44.27% 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The performance of our IHT estimator and the HT estimator in Example 2, where = 0.8.  From 

left to right: the MSE performance, the squared-bias performance, and the variance performance. 
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Example 2 (continued): The performance of Algorithm 1 and the effect of the outcome’s coefficient 

of variation 
 

Here we empirically investigate the performance of Algorithm 1 and the effect of the outcome’s 

coefficient of variation on our IHT estimator. We generate a finite population through a linear model with 

an intercept: 2= 3 3 3 ,k k ky x e         where kx  and ke  are the same as Example 2. We 

set = 1,000,N  and control the coefficient of variation of the outcome by varying the intercept term 

 = 10, 5, 0, 5, 10 .   Firstly, we study the performance of Algorithm 1. Note that the optimal choice 

optK  can be derived via minimizing equation (3.1). We compare the MSE values based on optK  and *K  

from Algorithm 1, and report the results of =f  0.03 in Table 5.3 and ignore other cases because of the 

similarity. From the table, the MSE values based on *K  are very close to those based on opt .K  It indicates 

that Algorithm 1 provides an efficient choice of .K  Secondly, we investigate the effect of the outcome’s 

coefficient of variation. From the table, the IHT estimator always performs much better than the HT 

estimator when   takes different values. It indicates that our IHT is robust to the outcome’s coefficient of 

variation. 

 
Table 5.3 
Performance of Algorithm 1, where = 0.03f  
 

  Y  *K  optK  HTMSE  *MSE
K

 optMSE  Re  

-10 -7.80 125 166 3.3928 1.4130 1.3448 58.35% 
-5 -2.81 125 174 0.7097 0.3073 0.2907 56.70% 
0 2.19 125 164 0.0623 0.0245 0.0237 60.67% 
5 7.20 125 160 1.4056 0.5884 0.5647 58.14% 

10 12.24 125 159 4.7510 1.9916 1.9121 58.08% 

 
Example 3: The estimation of population ratio 

We generate two populations Y  and Z  of size = 3,000:N 2
1 1 1= 12 3 3 ,k ky x e       and 

2
2 2 2= 12 3 3 ,k kz x e       where  0, 1 ,kx U  1 0, 1e N  and  2 0, 1 .e N  Our aim 

is to estimate the ratio = ,y zR t t  where 
=1

=
N

y kk
t y  and 

=1
= .

N

z kk
t z  We set  1 2,   as (0.3, 0.4) 

or (0.7, 0.8), and report the results of two cases in Figures 5.3(a) and 5.3(b), respectively. Similar to the 

estimation of the population total in examples given above, Figure 5.3 shows that our improved estimator 

outperforms the classical estimator. We also list the specific Re values of Figure 5.3 in Table 5.4, where the 

MSEs decrease by 27% to 47%. 

 
Table 5.4 
Some specific Re  values of Figures 5.2 and 5.3 
 

f  0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 
Figure 5.2(a) 12.73% 25.33% 45.52% 54.71% 18.15% 30.94% 18.96% 21.99% 
Figure 5.2(b) 57.92% 49.78% 49.48% 40.52% 33.81% 57.44% 36.45% 48.70% 
Figure 5.2(c) 58.98% 54.41% 70.42% 53.75% 36.05% 48.72% 52.05% 57.65% 
Figure 5.3(a) 35.09% 27.92% 35.16% 28.09% 31.50% 28.00% 29.07% 36.31% 
Figure 5.3(b) 38.57% 47.18% 42.76% 39.27% 37.49% 46.20% 44.14% 39.55% 



Survey Methodology, 2019 (special issue) 175 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Performance of Example 3. From left to right: the MSE performance, the squared-bias 
performance, and the variance performance. 

 
5.2  Real example 
 

We investigate the data set “Lucy” in the R package “TeachingSampling” (Gutierrez, 2009). This data 

set includes the variables of 2,396 firms: ID, Level, Income, Employees, and Taxes. Our aim is to estimate 

the Employees mean Y  of the 2,300 small or mid-sized firms  = 60.59 .Y  We set the Income as the size 

of the firm, and perform PS  sampling. The sample size n  is set among {46, 92, 138, 184, 230, 345, 460, 

690}. We list the results in Table 5.5, where the bias, variance, MSE and Re values are reported. We also 

present the number *K  chosen by Algorithm 1. From Table 5.5, our IHT estimator has much better 

performance than the HT estimator in terms of MSE. As the sampling fraction f  increases, the value of 
*K  decreases. It means that the number of the modified inclusion probabilities decreases as the sampling 

fraction increases. This makes sense since the effect of the small inclusion probabilities becomes weak when 

the sample size increases.  

In this real example, we additionally compare the IHT estimator with the HT estimator in the sense of 

inference performance. Since the squared bias of the IHT estimator is negligible as shown in Theorem 2, 

the confidence region with 95% coverage is constructed as follow:  

   ˆ ˆ1.96 MSE, 1.96 MSE ,t t   (5.1) 

where t̂  is the IHT estimator, and MSE  is its MSE estimator. 
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Table 5.5 
The performance of estimation for the real data set “Lucy” 
 

n  46 92 138 184 230 345 460 690 

HTMSE  42.60 20.80 26.87 9.30 6.97 8.01 6.40 2.99 

IHTMSE  28.27 14.05 10.18 7.75 5.70 3.77 2.85 1.76 

HTBias  0.0092 0.0002 0.0004 0.0020 0.0041 0.0001 0.0005 0.0112 

IHTBias  0.7520 0.3375 0.2562 0.1093 0.1253 0.0831 0.0539 0.0626 

HTVar  42.59 20.80 26.87 9.30 6.97 8.01 6.40 2.97 

IHTVar  27.52 13.71 9.92 7.64 5.57 3.68 2.79 1.70 

Re   33.64% 32.46% 62.13% 16.75% 18.31% 53.01% 55.49% 41.09% 

*K  166 100 72 59 49 36 29 21 

 
We iteratively simulate = 5,000M  times and calculate the mean and variance of MSE estimator, and 

the 95% coverage probabilities. The coverage probabilities (CP) are calculated as CP =  

  1
=1

M

mM m
I t A  where t  is the finite population mean and  mA  is the constructed 95% confidence 

region of the thm  iteration using equation (5.1). The inference performance is reported in Table 5.6. From 

the table, we have two observations. Firstly, our IHT estimator has smaller MSE than the HT estimator, but 

it attains almost the same coverage as the HT estimator. Thus, much narrower confidence intervals of the 

IHT estimator are constructed than those of the HT estimator. Secondly, for the HT estimator, the MSE 

estimator is much unstable due to the high heterogeneousness of the inclusion probabilities, while our IHT 

can efficiently overcome this problem. As a summary, our IHT estimator not only increases the estimation 

accuracy much at the expense of bringing a negligible bias, but also brings much more stable MSE estimator 

than the HT estimator. 

 
Table 5.6 
The inference performance of “Lucy” data set 
 

f  HT  IHT  

MSE   E MSE   Var MSE CP  MSE   E MSE   Var MSE  CP  
0.02 219 76.1 8.28 410  91% 48.9 48.4 1.37 310  90% 
0.04 109 173 2.90 710  92% 26.9 26.9 196 92% 
0.06 72.7 118 9.11 610  91% 18.4 18.2 117 91% 
0.08 54.3 67.5 1.94 610  93% 14.2 14.1 37.9 92% 
0.10 43.2 59.5 1.46 610  93% 11.4 11.2 22.8 93% 
0.15 28.5 27.2 2.40 510  93% 7.47 7.40 17.1 93% 

 
6  Concluding remarks 
 

In this paper, we have proposed a novel and simple method to improve the Horvitz-Thompson estimator 

in survey sampling. Compared with the HT estimator, the proposed IHT estimator improves the estimation 

accuracy at the expense of introducing a small bias. Empirical studies show that the improvement is 
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substantial. This new idea has also been used to construct an improved ratio estimator. Naturally, applying 

it to other estimators, such as the regression estimator and the treatment effect estimator, is of interest as 

well, and this warrants further study. 

The choice of the threshold K  is important in our method. Although we have suggested an easy 

algorithm for the choice and have numerically showed that our choice is very close to the optimal one in 

terms of MSE, it may not be optimal in terms of MSE. How to choose an optimal threshold is a meaningful 

topic for future research. 
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Appendix 
 
A.1  Proof of Theorem 1 
 

To obtain the MSE of the IHT estimator, we first define = 1kI  or 0, = 1, , ,k N  if the thk  unit is 

drawn or not, then  

                                        = , Var = , Cov , = for ,k k k kk k l klE I I I I k l      

where  = 1 , = .kk k k kl kl k l         So the bias of the IHT estimator is  

                              
 

2
IHT *

ˆBias = = 1 .k k
k k kU U U

k K

y
t E I y y


 


      

    (A.1) 

The variance of the IHT estimator is given by  
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(A.2)
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Combining (A.1) and (A.2), we obtain  
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(A.3)

 

It is directly verified that      IHT IHT
ˆ ˆMSE = MSE .E t t  Therefore, Theorem 1 is proved. 

 

A.2  Proof of Theorem 2 
 

Using Conditions C.1 and C.2, we see that   1k K      for each 2 ,k U  and 
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    Then, from equation (2.1), we have  
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Similarly, by the MSE of the IHT estimator given in (3.1), we observe  
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From Conditions C.1 and C.2, it is readily seen that  
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where the third and fourth steps are valid due to   1k K      for each 2k U  and  1= ,K N O n   

respectively. 
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A.3  Proof of Theorem 3 
 

From equation (2.1), since the HT estimator is unbiased, we have  

  
1 2

2 2
HT 3 42 2

ˆMSE = .kk kk kl
k k k lU U U

k lk k k l

Y y y y y F F
   

   
   

 
     (A.4) 

To illustrate the effectiveness of the new estimator, we compare equation (A.3) and equation (A.4). We 

prove 3 1F F  at first. It is clear that  

                          

   

   

    

   

1 2 2

2 2 2

2 2

2

2 2 2
3 1 2 2 2

2

2 2
2 2

2
2 2

2
2

= 1

= 1

1
= 1

.

kk kk kk k
k k k kU U U U

k k K K

kk kk k
k k kU U U

k K K

k kK k
k kU U

kK K

F F y y y y

y y y

y y

D C


   


  

   
  

             
    

   
    

  

    
   
  



   

  

 


  

Using the Cauchy-Schwarz inequality, we have  
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where the strict inequality holds if there exist 2k l U   such that       .k k l lK Ky y       

Further,  
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From Definition 1, we have     11k K K      for each 2 ,k U  thus 0.D E   So 

3 1 = 0F F D C D E      holds. 

For the terms 2F  and 4 ,F  we note that  
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Using Conditions C.1 and C.2, it is seen that  
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where the third and fourth steps are valid due to   1k K      for each 2 ,k U  1= ,K N O n   and 
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and  3
2

2= .N O n   

Thus, together with 3 1 ,F F  we have  

                                                      1 1 1
IHT HT

ˆ ˆMSE MSE .N t N t o n      

For the Poisson sampling case, we have 4 2= = 0.F F  Hence, for Poisson sampling, we obtain  

                                                    1 1
IHT HT

ˆ ˆMSE MSE .N t N t    

 

A.4  Proof of Theorem 4 
 

First note that  
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      2 2
2 * 2 1ˆ ˆ .u u u uN E t t N E t t o n        

Thus, for the terms I and II, we get  

      1I II .E E o n    (A.6) 

Now, we need to prove that the expectations of III and IV are negligible. Observe that,  

 

 
     

 

  

   

2

2 2

2

2 2

*
2

22
*

*
42

22
*

ˆ ˆ ˆ ˆ
III =

ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ,

z z z z y z

z z

z z z z y z

z z

z
z z y z

z

z
z z y z

z

t t t t t Rt
E E

t t

t t t t t Rt
E

t t

Z t
E t t t Rt

t Z

Z t
E t t E t Rt

t Z

   



   



  

  

  

  



  


  

  

where    *
*= , = .max mink k

k k

z zn n
k Uk UN NZ Z   Similarly,  

      
*

42
* * *

22
*

ˆ ˆ ˆIV ,z
z z y z

z

Z t
E E t t E t Rt

t Z   


  


   

where    * *
*

*= , = .max mink k

k k

z zn n
k Uk UN NZ Z 

   

Using Theorem 2 and Lemma 1, we see that  3 2(III) =E O n   and    3 2IV = .E O n   

Combining these and equation (A.6), we get  

      * 1ˆ ˆMSE MSE .R R o n     

It implies that      1 * 1 1ˆ ˆMSE MSE .R RN Y N Y o n     

 
A.5  Discussion on Condition C.4 
 

Case 1: Simple random sampling without replacement 

Under the simple random sampling without replacement, we have that = n
i N  for ,i U  
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where the last equality is from Condition C.3. We also obtain  
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where the last equality is from Condition C.3. Thus, Condition C.4 holds under the simple random sampling 

without replacement. 
 

Case 2: Poisson sampling 

From the independence of Poisson sampling, =ij i j    for ,i j U  =ijk i j k     for 

,i j k U    and =ijkl i j k l      for .i j k l U     Hence, = 0,ijk ij k    and ijkl   

4 6 3 = 0.ijk l ij k l i j k l           It follows that Poisson sampling satisfies Condition C.4. 

 

A.6  A lemma for proving Theorem 4 
 

Lemma 1. For the HT estimator ĤTt  and the IHT estimator ˆ ,IHTt  under the Conditions C.1-C.4, we have  
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For the first term I, using 1k    and 1k kI    for any ,k U  we get  
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For the terms II and III, we have  
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where the last step is from Conditions C.1 and C.4. It implies that    2IV = .E O n   For the last term V, 

we have that  
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where the last step is from Conditions C.1 and C.4. Thus,    
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Next we shall prove    
4

2
IHT

ˆ = .E t t O n   Noting that  

 
* *

IHT * * *

1 1 1ˆ = = ,k k k k k k
k k k

U U Uk k k

I I
t t y y y A

N N N

   
  
  

         

we have  
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From equation (A.8), we have that    2 1=E A O n   and    3 3 2= .E A O n   Meanwhile   = 0E A  and  
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Therefore, from equation (A.7), we prove that    
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2
IHT

ˆ = .E t t O n   
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