

Canada

2018

Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS)

Figures and Tables

To promote and protect the health of Canadians through leadership, partnership, innovation and action in public health, Public Health Agency of Canada

Working towards the preservation of effective antimicrobials for humans and animals, Canadian Integrated Program for Antimicrobial Resistance Surveillance

Également disponible en français sous le titre :

Programme intégré canadien de surveillance de la résistance aux antimicrobiens (PICRA) de 2018 : Figures et tableaux

To obtain additional information, please contact: Dolly Kambo Public Health Agency of Canada Executive Assistant 370 Speedvale Avenue West, Guelph, ON N1H 7M7 Tel.: 519-826-2174 Fax: 519-826-2255 E-mail: phac.cipars-picra.aspc@canada.ca

This publication can be made available in alternative formats upon request.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health, 2020

Publication date: March 2020

This publication may be reproduced for personal or internal use only without permission provided the source is fully acknowledged.

Cat.: HP2-4/2018E-4-PDF

ISBN: 978-0-660-34105-7

Pub.: 190588

Suggested Citation:

Government of Canada. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2018: Figures and tables. Public Health Agency of Canada, Guelph, Ontario, 2020.

Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) 2018

Figures and Tables

Table of Contents

Contributors to CIPARS	i
What's new for CIPARS in 2018	vi
Antimicrobial use in animals Antimicrobial resistance	vi vi
Chapter 1 Animal health status and farm information	1
Broiler chickens Grower-finisher pigs	1 5
Turkeys	15
Chapter 2 Antimicrobial use in animals	18
Quantities of antimicrobials distributed for sale for use in animals	18
National-level antimicrobial distribution data Provincial-level antimicrobial distribution data Distribution by animal type Distribution by route of administration International data Antimicrobial distribution data and animal biomass: detailed denominator for population correction u time.	
Farm Surveillance in broiler chickens	35
Summary of antimicrobial use by routes of administration Antimicrobial use in feed by frequency Antimicrobials use in feed by quantitative indicators Antimicrobial use in water by frequency Antimicrobials use in water by quantitative indicators Antimicrobial use <i>in ovo</i> or subcutaneous injection by frequency Antimicrobial use <i>in ovo</i> or subcutaneous injection by quantitative indicators Coccidiostat use in feed by frequency	
Farm Surveillance in grower-finisher pigs	59
Summary of antimicrobial use by route of administration Antimicrobial use in feed by frequency Antimicrobial use in water by frequency Antimicrobial use in water by quantitative indicators Antimicrobial use in water by quantitative indicators Antimicrobial use by injection by frequency Antimicrobial use by injection by frequency Coccidiostat use in feed by frequency Coccidiostat use in feed by quantitative indicators	
Farm Surveillance in turkeys	83
Summary of antimicrobials use by all routes of administration Antimicrobial use in feed by frequency Antimicrobial use in feed by quantitative indicators Antimicrobial use in water by frequency Antimicrobial use in ovo or subcutaneous injection by frequency Antimicrobial use <i>in ovo</i> or subcutaneous injection by guantitative indicators	

Coccidiostat and antiprotozoal use in feed by frequency	
Marine and freshwater finfish	
Summary of antimicrobials use by all routes of administration	
Chapter 3 Antimicrobial resistance	107
Human Surveillance	
Serovar distribution Multiclass resistance Temporal antimicrobial resistance summary	
Retail Meat Surveillance	
Multiclass resistance Temporal antimicrobial resistance summary Recovery results	119 125 132
Abattoir Surveillance	
Multiclass resistance Temporal antimicrobial resistance summary Recovery results	
Farm Surveillance	
Multiclass resistance Temporal antimicrobial resistance summary Recovery results	
Surveillance of Animal Clinical Isolates	
Multiclass resistance	
Surveillance of Feed and Feed Ingredients	
Multiclass resistance	
Appendix	178
Abbreviations	
Canadian provinces, territories, and regions Antimicrobials Other abbreviations	178 178 179

Contributors to CIPARS

Program coordinators in 2018

Rebecca Irwin¹, Richard Reid-Smith¹, and Michael Mulvey²

Surveillance component leads

- Surveillance of Human Clinical Isolates: Brent Avery, Michael Mulvey, Colleen Murphy
- Retail Meat Surveillance: Brent Avery
- Abattoir Surveillance: Anne Deckert
- Farm Surveillance: Agnes Agunos, Anne Deckert, Sheryl Gow, and David Léger
- Surveillance of Animal Clinical Isolates: Brent Avery and Colleen Murphy
- Quantities of Antimicrobials Distributed for Sale for Use in Animals, Crops, and Marine and Freshwater Finfish Aquaculture: Carolee Carson

Antimicrobial resistance data management and analysis leads

Brent Avery

Antimicrobial use data management and analysis leads

Agnes Agunos, Carolee Carson, Anne Deckert, Sheryl Gow, and David Léger

Authors/analysts

Antimicrobial resistance

Agnes Agunos, Brent Avery, Anne Deckert, Sheryl Gow, and Colleen Murphy

Antimicrobial use

Agnes Agunos, Carolee Carson, Anne Deckert, Sheryl Gow, and David Léger

Communications and report production

Brent Avery, Carolee Carson, Dolly Kambo, Colleen Murphy, Courtney Primeau, Mark Reist, Michelle Tessier, and Virginia Young

Laboratory component leads

National Microbiology Laboratory @ Winnipeg

Reference Services Unit: Sara Christianson

¹ Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada (PHAC).

² National Microbiology Laboratory, Winnipeg, PHAC.

• Antimicrobial Susceptibility Testing: Amrita Bharat and Stacie Langner

National Microbiology Laboratory @ Guelph

- Salmonella Typing: Gitanjali Arya, Kim Ziebell, and Bob Holtslander
- Antimicrobial Susceptibility Testing: Andrea Desruisseau and Chad Gill

National Microbiology Laboratory @ Saint-Hyacinthe

- Antimicrobial Susceptibility Testing: Danielle Daignault, Manon Caron, and Sophia Sheriff
- Primary Isolation: Louise Beausoleil, Sindy Cleary, Marie-Claude Deshaies, Julie Roy, and Lien Mi Tien.

Provincial public health laboratories

We gratefully acknowledge the provincial public health laboratories for their longstanding support and for providing data and bacterial isolates for CIPARS:

- British Columbia Public Health Microbiology and Reference Laboratory, Provincial Health Services Authority, British Columbia (Linda Hoang)
- Provincial Laboratory for Public Health, Alberta (Marie Louie)
- Saskatchewan Laboratory and Disease Control Services (Greg Horsman)
- Cadham Provincial Laboratory, Manitoba (John Wylie)
- Public Health Ontario Laboratory, Public Health Ontario (Vanessa Allen)
- Laboratoire de santé publique du Québec de l'Institut national de santé publique du Québec (Sadjia Bekal)
- New Brunswick Enteric Reference Centre (Sameh El Bailey)
- Microbiology Laboratory, Queen Elizabeth II Health Sciences Centre, Nova Scotia (David Haldane)
- Laboratory Services, Queen Elizabeth Hospital, Prince Edward Island (Greg German)
- Newfoundland Public Health Laboratory (George Zahariadis)

Retail meat surveillance

We would like to extend our thanks to the following organizations for their participation in CIPARS Retail Meat Surveillance:

- Centre for Coastal Health (Carl Ribble and Stefan Iwasawa)
- Agriculture and Agri-Food Canada (Mueen Aslam, Tineke Jones, Cara Service, and Tim McAllister)

We also thank the following health unit managers, public health inspectors, and environmental health officers: Bob Bell, Tanya Musgrave, Torsten Schulz, and Lee Siewerda.

Abattoir surveillance

We would like to thank the abattoir operators and the Canadian Food Inspection Agency's regional directors, inspection managers, and on-site staff, for their extensive voluntary participation in CIPARS Abattoir Surveillance.

Farm surveillance

We are grateful for the support of the Canadian Poultry Research Council, the Ontario Ministry of Agriculture, Food and Rural Affairs, and the Saskatchewan Ministry of Agriculture, as well as the sentinel veterinarians and the producers who participated in Farm Surveillance by providing data and enabling collection of samples for bacterial culture.

We would like to acknowledge the following organizations for their contribution to the CIPARS Farm Surveillance components:

- Alberta Chicken Producers
- British Columbia Chicken Marketing Board
- British Columbia Turkey Farmers
- Canadian Hatcheries Federation
- Canadian Pork Council and Provincial Pork Boards
- Canadian Poultry and Egg Processors Council
- Chicken Farmers of Canada
- Chicken Farmers of Ontario
- CIPARS Farm Broiler Chicken Industry Antimicrobial Use/Resistance Working Group
- CIPARS Farm Swine Advisory Committees
- Les Éleveurs de volailles du Québec
- Turkey Farmers of Ontario
- Turkey Farmers of Canada

Provincial animal health laboratories

We gratefully acknowledge the provincial animal health laboratories for their longstanding support and for providing data and bacterial isolates for CIPARS:

- Animal Health Centre, British Columbia Ministry of Agriculture (Erin Zabek)
- Prairie Diagnostic Services, Saskatoon (Kathy Dielschneider and Musangu Ngeleka)
- Veterinary Services Branch Laboratory, Manitoba (Neil Pople)
- The Animal Health Laboratory, University of Guelph, Ontario (Durda Slavic)
- IDEXX Laboratories, Ontario (Hani Dick)
- Laboratoire d'épidémiosurveillance animale du Québec (Julie-Helene Fairbrother)
- Provincial Veterinary Laboratory, Department of Agriculture, Fisheries, and Aquaculture, New Brunswick (Jim Goltz)
- Veterinary Pathology Laboratory, Nova Scotia (Catherine Graham)
- Diagnostic Services, Atlantic Veterinary College, Prince Edward Island (Jan Giles)
- Animal Health Laboratory, Department of Fisheries, Forestry and Agrifoods, Newfoundland and Labrador (Laura Rogers)
- Department of Fisheries and Agriculture (Jeannie Tucker)

Quantities of antimicrobials distributed for sale for use in animals

We would like to sincerely thank the Canadian Animal Health Institute (CAHI), its President Jean Szkotnicki and their member companies for voluntarily providing the quantities of antimicrobials distributed for sale for use in animals in Canada. We would also like to thank Impact Vet for collating the data.

CIPARS would also like to thank Stephanie Brault for her recent input to appropriate weights for the Canadian denominator.

CIPARS thanks the European Surveillance for Veterinary Antimicrobial Consumption, the Food and Drug Administration's Center for Veterinary Medicine of the United States, and the World Organization for Animal Health (OIE) for many long discussions on appropriate denominators for antimicrobial sales/distribution data.

CIPARS would also like to thank Fisheries and Oceans Canada (Ed Porter and John Martell) for providing interpretation and context to the data collected by Fisheries and Oceans Canada for marine finfish and landbased and freshwater fish data.

Other participants

We gratefully acknowledge the efforts of field workers, laboratory technicians, and data managers for their contributions. The careful collection of samples, processing of isolates, and recording of results are essential to the ongoing success of CIPARS.

We are grateful to the National Antimicrobial Resistance Monitoring System of the United States for sharing information and facilitating harmonization with CIPARS.

We would also like to thank the following individuals and organizations for their contribution to CIPARS in 2018:

Public Health Agency of Canada

Ashleigh Andrysiak, Louise Bellai, Mark Blenkinsop, Matthew Cook, Sindy Cleary, Ann-Marie Cochrane, Nina Dougherty, Marie-Claude Deshaies, George Golding, Dolly Kambo, Nicol Janecko, Suzanne Johnson, Stefanie Kadykalo, Jasmina Kircanski, Ora Kendall, Lisa Landry, Stacie Langner, Julie Légaré, Sarah Martz, Ryan McKarron, Ketna Mistry, Ali Moterassed, Manuel Navas, Linda Nedd-Gbedemah, Derek Ozunk, Frank Pollari, Julie Roy, Sophia Sheriff, Jayson Shurgold, Glenis Smith, Lien Mi Tien, Myrthi Viswanathan, Rama Viswanathan, Victoria Weaver, Betty Wilkie, and Irene Yong.

We are grateful for the support for antimicrobial use metrics development: Angelina Bosman, Daleen Loest, and Lucie Collineau.

Canadian Food Inspection Agency

Daniel Leclair, Debbie Roffe, and Marina Steele

Health Canada, Veterinary Drugs Directorate

Xian-Zhi Li and Manisha Mehrotra

Health Canada, Pest Management Regulatory Agency

Brian Belliveau

Canadian Meat Council

Independent contractors

John Ranson and Ron Templeman

What's new for CIPARS in 2018

At the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS), we are modernizing how we share our information with different audiences. We are currently transitioning to our new communication tools and formats for the 2019 data. In the meantime, CIPARS will continue to deliver the same information, but in a modified manner. For the 2018 data, we will be releasing 4 documents: 2018 Executive summary; 2018 Figures and Tables, which includes the traditional summarized information but little accompanying text; 2018 Design and Methods; and 2018 Integrated Findings.

Antimicrobial use in animals

- Data collected under legislation by Health Canada from veterinary pharmaceutical manufacturers, importers, and compounders for 2018 is currently being analyzed. Results will be released as a separate report in Spring of 2020.
- In 2018, grower-finisher pig quantitative antimicrobial use metrics were reported for the first time for antimicrobial use in water and injectables.
- As of 2018, the antimicrobial use metric nDDDvet/PCU was no longer be reported.

Antimicrobial resistance

- There was no placement broiler chicken sampling conducted in 2018.
- For farm surveillance, sampling in turkeys was initiated in Alberta.
- Only a partial year of retail sampling was conducted in Ontario and the Prairies, and no sampling occurred in the Atlantic region; therefore no temporal retail data from these regions are presented in 2018.

In addition to the changes described above, we launched two sentinel farm surveillance activities in feedlot and dairy cattle with our stakeholders.

Chapter 1 Animal health status and farm information

Broiler chickens

Figure 1. 1 Relative distribution of chick sources, 2018

Domestic = hatched within the province where the birds were raised. Domestic, other provinces = hatched in a different province from where the birds were raised. Imported = hatching eggs and/or chicks were sourced by the importing hatchery from the United States or other countries.

CIPARS 2018: Figures and Tables > 1

Number of broiler flocks, year, and province/region

Province/region	British Columbia					Prairies					Ontario					Québec				
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of flocks	29	25	32	30	29	37	38	38	38	45	42	49	40	39	40	33	23	26	30	27
Hatching egg and/or chick so	urces																			
Domestic	93%	96%	91%	80%	86%	95%	92%	76%	89%	87%	93%	98%	98%	92%	98%	97%	96%	92%	93%	85%
Domestic, other provinces	0%	0%	0%	0%	10%	0%	3%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Imported	10%	8%	22%	23%	24%	24%	26%	32%	18%	36%	12%	2%	5%	8%	5%	15%	13%	12%	17%	19%

Domestic = hatched from hatcheries located in the province where the birds were raised.

Domestic, other provinces = hatched from hatcheries located in provinces other than the province where the birds were raised.

Imported = hatching eggs and/or chicks were sourced by importing hatchery from the United States or other countries.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province/region		British Columbia				Prairies					Ontario						Québec			
Year	'14			'17		'14			'17		'14					'14			'17	'18
Number of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Diseases																				
Airsacculitis	3%	0%	0%	3%	7%	11%	5%	0%	5%	2%	7%	4%	8%	3%	10%	18%	22%	19%	0%	33%
Yolksacculitis	34%	28%	6%	17%	17%	27%	18%	16%	26%	36%	40%	33%	25%	15%	23%	12%	39%	19%	10%	33%
Septicemia	10%	12%	6%	10%	3%	19%	13%	3%	3%	2%	17%	22%	18%	13%	13%	6%	4%	15%	7%	11%
Necrotic enteritis (C. perfringens)	10%	4%	0%	3%	0%	0%	3%	0%	3%	2%	2%	4%	5%	3%	5%	0%	9%	0%	0%	11%
Osteoarthritis or osteomyelitis (Staphylococcus)	0%	0%	0%	0%	0%	3%	3%	3%	0%	0%	0%	2%	0%	0%	3%	3%	9%	4%	0%	7%
Vertebral osteomyelitis (E. cecorum)	3%	0%	0%	3%	0%	3%	3%	0%	0%	2%	10%	4%	3%	3%	0%	6%	4%	8%	0%	7%
Salmonellosis	3%	4%	6%	3%	7%	11%	3%	0%	5%	5%	5%	4%	8%	0%	10%	0%	9%	0%	0%	7%
Coccidiosis	3%	4%	3%	0%	0%	0%	3%	0%	8%	7%	10%	18%	18%	8%	8%	30%	26%	19%	17%	48%
Other bacterial or mixed bacterial diseases	3%	4%	6%	3%	7%	11%	3%	0%	5%	5%	7%	4%	8%	0%	10%	0%	9%	0%	0%	7%

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive" plus a response to any or combination of the following: clinical sign, post-mortem or laboratory testing to confirm the diagnosis. Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative". Data above was updated from previous year's data where only the flocks with confirmatory diagnosis were reported.

In 2018, other bacterial diseases reported were complex avian pathogenic *E. coli*-associated disease syndromes (septicemia-osteomyelitis and arthritis complex) and unspecified enteric disease (wet droppings but unknown etiology).

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 1. 4 Percentage of broiler flocks reporting the diagnosis of viral and miscellaneous diseases by province/region, 2014 to 2018

Number of broiler flocks, year, and province/region

Province/region	British Columbia				Prairies					Ontario					Québec					
Year	'14		'16	'17	'18	'14			'17	'18	'14		'16	'17	'18	'14		'16	'17	'18
Number of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Diseases																				
Chicken Anemia Virus	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	3%	4%	0%	0%	7%
Inclusion Body Hepatitis	0%	0%	6%	7%	13%	0%	3%	0%	0%	0%	0%	2%	0%	0%	5%	3%	4%	4%	3%	15%
Infectious Bronchitis Virus	0%	0%	0%	0%	0%	0%	0%	0%	3%	0%	2%	0%	0%	5%	5%	12%	13%	15%	0%	15%
Infectious Bursal Disease	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	10%	0%	0%	0%	0%	12%	17%	27%	0%	11%
Reovirus	3%	0%	0%	3%	10%	11%	3%	0%	5%	2%	7%	2%	3%	0%	10%	0%	4%	0%	0%	4%
Miscellaneous diseases	3%	0%	0%	3%	7%	11%	3%	0%	5%	2%	5%	2%	3%	0%	10%	0%	4%	0%	3%	4%

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive" plus a response to any or combination of the following: clinical sign, post-mortem or laboratory testing to confirm the diagnosis. Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative". Data above was updated from previous year's data where only the flocks with confirmatory diagnoses were reported.

In 2018, nicarbazine toxicity was reported (miscellaneous noninfectious disease).

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Grower-finisher pigs

0 disease reported
1 to 3 diseases reported
4 to 6 diseases reported
7 to 13 diseases reported

Number of diseases is tabulated based on the 13 diseases listed on the questionnaire.

All farms in Ontario reported at least 1 disease on the questionnaire.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

a) Bacterial diseases

🔶 APP 📥 Escherichia coli 📲 Erysipelas 🛑 Hemophilus parasuis 🚢 Lawsonia 🔶 Mycoplasma — Salmonella 🔶 Streptococcus suis

Province/region	Prairies							Ontario			Québec					
Year	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	
Disease/bacteria																
APP	17%	14%	14%	11%	12%	14%	10%	8%	10%	10%	18%	20%	19%	15%	14%	
Escherichia coli	50%	57%	58%	68%	67%	89%	79%	81%	90%	90%	56%	43%	52%	70%	82%	
Erysipelas	58%	51%	60%	51%	60%	68%	60%	71%	71%	77%	45%	41%	63%	80%	89%	
Hemophilus parasuis	NA	NA	73%	69%	66%	NA	NA	89%	89%	97%	NA	NA	61%	85%	90%	
Lawsonia	82%	83%	83%	76%	83%	75%	71%	81%	81%	90%	77%	62%	74%	90%	91%	
Mycoplasma	40%	41%	42%	38%	32%	73%	75%	70%	68%	61%	69%	71%	78%	70%	68%	
Salmonella	23%	21%	23%	11%	19%	50%	33%	44%	67%	57%	56%	52%	43%	68%	68%	
Streptococcus suis	72%	69%	80%	73%	77%	91%	91%	96%	95%	100%	85%	76%	65%	80%	86%	

APP = Actinobacillus pleuropneumoniae.

Hemophilus parasuis, added to the questionnaire in 2016. NA = not available.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

Health status of nurseries and sow herds supplying CIPARS grower-finisher pig herds is available upon request. The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

b) Viral diseases

Province/region			Prairies					Ontario			Québec					
Year	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	
Disease/virus																
PCVAD	87%	74%	66%	84%	79%	100%	96%	92%	91%	94%	83%	76%	70%	80%	82%	
Swine Influenza	45%	36%	47%	37%	49%	57%	67%	55%	74%	79%	60%	52%	65%	65%	77%	
PED	NA	NA	0%	0%	5%	NA	NA	0%	0%	0%	NA	NA	0%	0%	0%	
PRRS	41%	38%	41%	38%	36%	36%	52%	52%	45%	55%	52%	57%	39%	55%	45%	
TGE	0%	0%	3%	0%	0%	6%	0%	0%	0%	0%	0%	0%	0%	0%	0%	

PCVAD = Porcine Circovirus Associated Disease.

PED = Porcine Epidemic Diarrhea, added to the questionnaire in 2016. NA = not available.

PRRS = Porcine Reproductive and Respiratory Syndrome.

TGE = Transmissible Gastroenteritis.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

Health status of nurseries and sow herds supplying CIPARS grower-finisher herds is available upon request. The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 1. 7 Reported antimicrobial use for specific diseases in grower-finisher pig herds by province/region, 2014 to 2018

a) Bacterial diseases

See corresponding footnotes on next page.

Figure 1. 7 Reported antimicrobial use for specific diseases in grower-finisher pig herds by province/region, 2014 to 2018 (continued)

APP = Actinobacillus pleuropneumoniae. Hemophilus parasuis, added to the questionnaire in 2016.

PCVAD = Porcine Circovirus Associated Disease. PED = Porcine Epidemic Diarrhea, added to the questionnaire in 2016. PRRS = Porcine Reproductive and Respiratory Syndrome. TGE = Transmissible Gastroenteritis.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 1. 8 Reported antimicrobial use for specific diseases in nurseries supplying grower-finisher herds by province/region, 2014 to 2018

a) Bacterial diseases

b) Viral diseases

See corresponding footnotes on next page.

Figure 1. 8 Reported antimicrobial use for specific diseases in nurseries supplying grower-finisher herds by province/region, 2014 to 2018 (continued)

APP = Actinobacillus pleuropneumoniae. Hemophilus parasuis, added to the questionnaire in 2016. PCVAD = Porcine Circovirus Associated Disease. PED = Porcine Epidemic Diarrhea, added to the questionnaire in 2016. PRRS = Porcine Reproductive and Respiratory Syndrome. TGE = Transmissible Gastroenteritis.

Not all questionnaires were completed for all diseases listed.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

There are 3 primary stages of pig production: suckling pigs (pre-weaning, in sow herds), nursery pigs (weaning to 25 kg), and grower-finisher pigs (25 kg to market weight). Data on antimicrobial use in suckling and nursery pigs is required to understand total antimicrobial exposure.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 1. 9 Reported antimicrobial use for specific diseases in sow herds supplying grower-finisher pig herds by province/region, 2014 to 2018

a) Bacterial diseases

See corresponding footnotes on next page.

CIPARS 2018: Figures and Tables > 12

Figure 1. 9 Reported antimicrobial use for specific diseases in sow herds supplying grower-finisher pig herds by province/region, 2014 to 2018 (continued)

APP = Actinobacillus pleuropneumoniae. Hemophilus parasuis, added to the questionnaire in 2016. PCVAD = Porcine Circovirus Associated Disease. PED = Porcine Epidemic Diarrhea, added to the questionnaire in 2016. PRRS = Porcine Reproductive and Respiratory Syndrome. Transmissible Gastroenteritis (TGE) was not included in the sow herd survey.

Not all questionnaires were completed for all diseases listed.

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive". Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative".

There are 3 primary stages of pig production: suckling pigs (pre-weaning, in sow herds), nursery pigs (weaning to 25 kg), and grower-finisher pigs (25 kg to market weight). Data on antimicrobial use in suckling and nursery pigs is required in order to understand total antimicrobial exposure.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Figure 1. 10 Demographics of grower-finisher pig herds by province/region (n = 97), 2018

Capacity indicates the maximum number of pigs that the barn is designed to house.

Participating herds may have additional barns that were not sampled for the CIPARS program therefore this barn capacity is not necessarily equivalent to grower-finisher herd size.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

Turkeys

Figure 1. 11 Relative distribution of turkey poult sources, 2018

Domestic = hatching eggs originated and/or poults hatched from hatcheries located in the province where the birds were raised.

Domestic, other provinces = hatching eggs originated and/or poults hatched from hatcheries located in provinces other than the province where the birds were raised

Imported = hatching eggs/poults were sourced by the importing hatchery from the United States or other countries; there were hatching eggs from domestic breeders hatched in United States hatcheries and then delivered/reared in Canadian turkey farms.

CIPARS 2018: Figures and Tables > 15

Number of turkey flocks, year, and province

Province		Briti	ish Colur	nbia		Alberta		Ontario		Québec			
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18	
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25	
Hatching egg and/or poult sources													
Domestic	34%	20%	30%	52%	43%	20%	73%	87%	83%	100%	100%	84%	
Domestic, other provinces	41%	63%	43%	15%	30%	20%	0%	0%	0%	0%	6%	8%	
Imported	45%	30%	63%	44%	37%	90%	27%	6%	17%	0%	0%	12%	

Domestic = hatched from hatcheries located in the province where the birds were raised.

Domestic, other provinces = hatched from hatcheries located in provinces other than the province where the birds were raised.

Imported = hatching eggs and/or poults were sourced by importing hatchery from the United States or other countries.

Number of turkey flocks, year, and province

Province	British Columbia							Ontario		Québec		
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Bacterial, viral, and protozoal diseases												
Airsacculitis	0%	3%	0%	0%	0%	10%	3%	3%	10%	25%	6%	0%
Yolksacculitis	0%	7%	7%	7%	17%	20%	3%	0%	0%	25%	6%	4%
Septicemia	3%	10%	7%	11%	20%	0%	17%	13%	10%	17%	13%	4%
Necrotic enteritis (C. perfringens)	0%	0%	0%	0%	0%	10%	3%	10%	3%	25%	0%	4%
Osteoarthritis or osteomyelitis (Staphylococcus)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Blackhead	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Hemorrhagic enteritis virus infection	0%	0%	0%	0%	0%	0%	0%	0%	3%	8%	0%	0%
Coccidiosis	0%	0%	0%	0%	0%	0%	0%	0%	0%	25%	6%	0%
Other bacterial or mixed bacterial diseases	0%	3%	0%	0%	3%	0%	3%	6%	0%	17%	0%	0%

Health status was considered to be positive if the questionnaire response was "Confirmed positive" or "Likely positive" plus a response to any or combination of the following: clinical sign, post-mortem or laboratory testing to confirm the diagnosis. Health status was considered to be negative if the questionnaire response was "Confirmed negative" or "Likely negative". Data above was updated from previous year's data where only the flocks with confirmatory diagnosis were reported.

In 2018, other bacterial diseases reported were unspecified *E. coli*-associated disease syndromes and *Ornithobacterium rhinotracheale*.

Chapter 2 Antimicrobial use in animals

Quantities of antimicrobials distributed for sale for use in animals

National-level antimicrobial distribution data

Table 2. 1 Quantity of antimicrobials (kg) distributed in Canada for sale for use in animals, 2009 to 2018

Antimicrobial class				Quar	tity of active	ingredient (k	g)				Change (%)	Change (%)
aggregation	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	from 2009 to f 2018	rom 2017 to 2018
Aminoglycosides											NA	NA
Aminoglycosides	4,652	3,961									NA	NA
Aminoglycosides			12,242	10,372	10,785						NA	NA
Aminoglycosides						13,276	13,718	13,213	11,477	13,709	NA	19%
Amphenicols	4,001	4,391									NA	NA
β-Lactams (penicillins)											NA	NA
β-Lactams (penicillins)	118,109	201,934									NA	NA
β-Lactams (penicillins)			147,853								NA	NA
β-Lactams (penicillins)				136,611							NA	NA
β-Lactams (penicillins)					134,838	139,278	139,565	110,818			NA	NA
β-Lactams (penicillins)									107,548	113,653	NA	6%
Cephalosporins	NA	NA									NA	NA
Cephalosporins			6,716	6,388	2,403	6,812	6,795	6,581	6,795	6,698	NA	-1%
Fluoroquinolones	377	381	519	406	469	782	860	575	640	677	79%	6%
Lincosamides	44,137	46,373	43,256	51,027	54,784	60,006	65,646	48,052	50,225	47,228	7%	-6%
Macrolides and pleuromutilins											NA	NA
Macrolides, pleuromutilins, and												
bacitracins	204,169	170,154									NA	NA
Macrolides	NA	NA	108,858	98,622	93,870	112,340	114,186	96,653			NA	NA
Macrolides									89,986	87,221	NA	-3%
Other antimicrobials											NA	NA
Other antimicrobials	21,339	26,757									NA	NA
Other antimicrobials			130,899								NA	NA
Other antimicrobials				129,614							NA	NA
Other antimicrobials					125,511						NA	NA
Other antimicrobials						125,178	128,144	121,634			NA	NA
Other antimicrobials									118,971	116,700	NA	-2%
Tetracyclines	686,832	535,142	600,918	635,435	635,675	599,540	659,784	596,823			NA	NA
Tetracyclines									501,582	560,643	NA	12%
Trimethoprim and sulfonamides	57,596	48,221	70,454	58,716							NA	NA
Trimethoprim and sulfonamides					63,367	69,255	72,564	68,878			NA	NA
Trimethoprim and sulfonamides									61,392	57,865	NA	-6%
Total	1,141,213	1,037,313	1,121,715	1,127,191	1,121,702	1,126,467	1,201,263	1,063,227	948,615	1,004,392	-12%	6%

See corresponding footnotes on next pages.

Table 2. 1 Quantity of antimicrobials (kg) distributed in Canada for sale for use in animals, 2009 to 2018 (continued)

NA = not available or not applicable.

Changes in percentage over time from 2009 to 2018 are relative to the quantities reported in 2009. Changes in percentage over time from 2017 to 2018 are relative to the quantities reported in 2017.

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

CAHI provides the information according to a "3 company accounting rule" established by CAHI to comply with the European Union and the United States' anticompetition regulations. CAHI added in some cases a "90% rule" to be sure not to infringe the regulations in the United States. These accounting rules can result in changes to the categorization of specific antimicrobials over time; hence within an antimicrobial category, columns with different colours should not be compared.

Figure 2. 1 Percentages of the quantities (kg of active ingredient) of antimicrobials distributed in Canada for sale for use in animals, 2018

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

Provincial-level antimicrobial distribution data

Year	Province	Aninghoogis	BL actions locality	Capital Capita	Fluorogui.	Li _{ncosa} nides	Macrolides	Other ^{Antim} ictobis,	^{Terracyclines}	Trimenoprim Sufonaniqorim Bufonaniqes and	Total
2018	BC	3,228	7,327	903	60	96	252	16,909	15,463	2,328	46,567
	AB	322	14,562	1,031	275	6,017	37,302	18,831	138,613	10,270	227,223
	SK	654	3,653	255	11	1,479	2,889	3,547	20,202	4,055	36,745
	MB	974	15,723	361	26	7,027	12,974	10,151	89,988	6,577	143,801
	ON	4,801	47,868	2,319	244	17,196	20,882	34,802	140,868	25,280	294,258
	QC	3,607	23,080	1,412	49	15,387	12,779	30,658	151,140	8,716	246,828
	NS	37	508	197	6	12	114	1,592	1,059	243	3,768
	NB	59	556	127	3	9	14	80	3,125	225	4,200
	PE	7	222	37	2	2	10	55	159	140	634
	NL	20	154	54	2	3	6	75	24	30	368
Total		13,709	113,653	6,698	677	47,228	87,221	116,700	560,643	57,865	1,004,392
2017	BC	1,070	6,781	907	63	101	442	14,022	7,770	2,098	33,254
	AB	811	11,542	1,012	181	6,684	36,284	18,059	109,588	10,167	194,330
	SK	342	2,854	245	13	1,863	3,125	4,051	19,690	2,798	34,982
	MB	1,488	19,859	325	24	8,401	11,878	10,851	76,831	6,780	136,438
	ON	3,509	39,530	2,403	275	16,021	20,030	37,645	126,545	23,548	269,505
	QC	4,159	25,573	1,488	68	17,129	18,000	33,007	149,541	14,914	263,879
	NS	54	549	194	7	14	200	1,119	10,976	351	13,463
	NB	28	500	121	4	6	12	97	440	543	1,752
	PE	5	212	38	2	2	10	59	180	161	670
	NL	12	146	61	2	4	4	62	20	33	343
Total		11,477	107,548	6,795	640	50,225	89,986	118,971	501,582	61,392	948,616

Table 2. 2 Quantity of antimicrobials (kg of active ingredient) distributed for salefor use in animals by province, 2017 to 2018

Province abbreviations are defined in the Appendix.

CAHI accounting rules can result in changes of antimicrobial categorizations over time. Please consult the CIPARS 2018: Design and methods to determine whether an appropriate comparison across years can be made for that antimicrobial class.

There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics.

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

Figure 2. 2 Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals by province, 2014 to 2018

This figure does not account for provincial differences in numbers or types of animals.

Province abbreviations are defined in the Appendix.

There may be subsequent distribution of antimicrobials across provincial borders after being distributed to the veterinary clinics.

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

Distribution by animal type

Table 2. 3 Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in animals by province and animal type, 2018

Animal type / province	4ninogycosia	B.Lactans loenicilins	Cebhahospar.	Fluoroqui	Lin _{Cosa} nides	Macrolides	Other ^{antimicrobi}	Tetracyclines	Trinethopin and	ð 7 Total
Production animal										
BC	3,225	6,641	138	33	31	252	16,894	15,448	1,993	44,657
AB	320	13,991	489	255	5,969	37,302	18,823	138,598	9,772	225,519
SK	653	3,516	109	8	1,473	2,889	3,544	20,201	3,978	36,371
MB	974	15,546	208	20	7,018	12,974	10,149	89,981	6,248	143,118
ON	4,795	46,218	499	166	17,084	20,882	34,778	140,793	23,475	288,690
QC	3,604	22,353	513	23	15,360	12,779	30,633	151,112	8,381	244,758
NS	37	365	24	1	6	114	1,587	1,049	150	3,334
NB	58	445	17	0	4	14	78	3,123	165	3,906
PE	7	204	16	1	1	10	54	159	87	539
NL	19	98	10	0	0	6	74	23	27	259
Total	13,693	109,378	2,026	508	46,947	87,221	116,614	560,487	54,276	991,150
Companion animal										
BC	2	686	765	28	64	0	14	15	335	1,909
AB	2	572	542	20	48	0	8	15	498	1,704
SK	1	136	146	2	7	0	3	2	77	375
MB	1	176	153	6	9	0	2	7	329	683
ON	6	1,650	1,819	77	112	0	24	76	1,805	5,569
QC	3	728	899	25	27	0	25	28	335	2,070
NS	1	142	173	5	6	0	5	10	93	434
NB	1	111	110	3	5	0	2	3	61	294
PE	0	18	21	1	1	0	0	0	53	95
NL	0	56	44	2	3	0	2	1	3	109
Total	16	4,275	4,671	169	281	0	85	155	3,589	13,242
Total (animal types combined)										
	13,709	113,653	6,698	677	47,228	87,221	116,700	560,643	57,865	1,004,392

Production animals include horses.

Province abbreviations are defined in the Appendix.

The attribution of antimicrobials sold in each province to the type of animal (companion animals vs. production animals) was based on multiplying a national average percentage of the antimicrobial sold for companion animals/production animals by the total quantities reported for that province by the manufacturers.

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

Figure 2. 3 Quantity of antimicrobials (kg of active ingredient) distributed for sale for use in companion animals over time and in 2018

b) 2018

Antimicrobial sales were assigned to animal type according to label claim and in the situation where mixed species was indicated on the label, the manufacturer assigned the kg to either "Companion animal" or "Production animal". Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used. "Other antimicrobials" for 2018 included: avilamycin, bacitracins, bambermycin, chloramphenicol, chlorhexidine gluconate, florfenicol, fusidic acid, novobiocin, polymyxin B, tiamulin, and virginiamycin.

b) 2018

Note the differences in scale of the vertical axes between the companion animal figure (Figure 2. 3a) and the production animal figure. Production animals include horses.

Antimicrobial sales were assigned to animal type according to label claim and in the situation where mixed species was indicated on the label, the manufacturer assigned the kg to either "Companion animal" or "Production animal". Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used. "Other antimicrobials" for 2018 included: avilamycin, bacitracins, bambermycin, chloramphenicol, chlorhexidine gluconate, florfenicol, fusidic acid, novobiocin, polymyxin B, tiamulin, and virginiamycin.
Distribution by route of administration

Figure 2. 5 Quantity of antimicrobials (% of total kg and kg of active ingredient) distributed for sale for use in animals, by route of administration and antimicrobial class, 2018

a) Route of administration

b) Antimicrobial class

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used. "Other antimicrobials" for 2018 included: avilamycin, bacitracins, bambermycin, chloramphenicol, chlorhexidine gluconate, florfenicol, fusidic acid, novobiocin, polymixin B, tiamulin, and virginiamycin.

Figure 2. 6 Quantity of antimicrobials (% of total kg) distributed for sale for use in animals, by route of administration (feed, water, injection, oral or topical, and intra-mammary), 2018

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

"Other antimicrobials" for 2018 included: avilamycin, bacitracins, bambermycin, chloramphenicol, chlorhexidine gluconate, florfenicol, fusidic acid, novobiocin, polymyxin B, tiamulin, and virginiamycin.

CIPARS 2018: Figures and Tables > 27

Figure 2. 7 Biomass as measured by the population correction unit (PCU in 1,000 tonnes) over time; using European Surveillance of Veterinary Antimicrobial Consumption production classes and European weights or proposed Canadian weights, 2009 to 2018

a) European weights

See corresponding footnotes on next page.

Figure 2. 7 Biomass as measured by the population correction unit (PCU in 1,000 tonnes) over time; using European Surveillance of Veterinary Antimicrobial Consumption production classes and European weights or proposed Canadian weights, 2009 to 2018 (continued)

The data used for live horses was from 2010; more recent data were unavailable at the time of writing. Acknowledging the underlying sources of data structure the information differently, the PCU denominator was harmonized to the greatest extent possible with the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)³. ESVAC denominator does not include beef cows, whereas in Canada beef cows are a significant population and are included in both figures.

Figure 2. 8 Antimicrobials distributed for sale for use in animals over time (kg of active ingredient and mg/PCU), 2009 to 2018

PCU = population correction unit.

The data used for live horses was from 2010; more recent data were unavailable at the time of writing. Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

* Indicates data excluded antimicrobials sold for use in companion animals.

³ European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption. ESVAC Population Correction Unit Template. Available at:

http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000302.js p. Accessed Oct. 11, 2017.

International data

Figure 2. 9 Sales of antimicrobials (adjusted by populations and weights) for Canada (2018) and countries participating in the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) network (2017)

PCU = population correction unit.

The Canadian data used for live horses was from 2010; more recent data were unavailable at the time of writing. Animal distribution data do not include antimicrobials imported under the "own use" provision or importd as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used. The PCU denominator was harmonized to the greatest extent possible with the European Surveillance of Veterinary Antimicrobial Consumption (ESVAC)⁴. ESVAC denominator does not include beef cows, whereas in Canada beef cows are a significant population and are included. The ESVAC approach excludes companion animal data from the numerator.

⁴ European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption, 2019. 'Sales of veterinary antimicrobial agents in 31 European countries in 2017'. (EMA/294674/2019). Available at: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2017_en.pdf. Accessed October 17, 2019.

Antimicrobial distribution data and animal biomass: detailed denominator for population correction unit (PCU) over time

Table 2. 4 Detailed information on population numbers, 2018

Animal species	Animal class/production class	Production stage	Number of animals	ESVAC average weight at treatment or standard weight for import/export (kg) ^a	PCU _{ESVAC} (1,000 tonnes)	Canadian average weight at treatment or standard weight for import/export (kg) ^a	PCU _{CAN} (1,000 tonnes)
			n	W ₁	(n*w ₁)/(1,000 *1,000) (imports subtracted)	W ₂	(n*w ₂)/(1,000 *1,000) (imports subtracted)
Cattle							
	Cattle	Slaughter	3,159,093				
	Cows	Slaughter	529,986	425	225	578	306
	Heifers	Slaughter	933,314	200	187	200	187
	Steers and bulls	Slaughter	1,695,794	425	721	425	/21
	Calves	Staughter	227,373	140	32	249	57
	Calves	Live cattle and calf international import for feeding	-100.069	423	-23	. 425 7 249	-47
	Caives	or slaughter ^d	-130,003	140	-21	243	-47
	Feeder cattle and calves	Export for feeding to US ^c	194 146	140	27	7 249	48
	Beef cow s t	On farme	3.674.800	425	1.562	2 520	1.912
	Dairy cows ¹	On farm ^e	972.300	425	413	3 635	617
	Total		8,465,165		3,322	2	3,982
Swine							
	Finishers	Slaughter ^f	21,401,418	65	1,391	65	1,391
	All swine	International import ^g	-3,400	65	() 65	0
	Swine	Export for feeding to US ^c	4,307,268	25	108	3° 3°	13
	Swine	Export for slaughter to the US ^c	792,660	65	52	2 65	52
	Sow s and gilts (6 months	On farm ^h	1,240,400	240	298	3 240	298
	and over)						
	Total		27,738,346		1,848	}	1,753
Poultry							
	Chickens (categories < 1.4 kg, 1.4 and < 2.7 kg, >2.7 kg)	Slaughter')	730,039,980	1	730) 1.2	876
	Turkey (categories < 6.2 kg, > 6.2 but not > 8.5 kg, > 8.5 kg but not > 10.8 kg, > 10.8 kg but not > 13.3 kg, > 13.3	Slaughter ⁱ	20,210,579	6.5	131	6.5	131
	kg, mature turkeys)						
	Poultry (< 185 g)	Live poutry for import	-40,656,530	1	-41	0.2	-8
	Poultry (> 185 g)	Live poutry for import	-85,241	1	() 2	0
	Poultry (< 185 g)	Export	15,844,963	1	16	i 0.2	3
	Poultry (> 185 g)	Export	2,139,252	1	2	2	4
0	Iotal		727,493,003		839)	1,007
Sneep and g	Shoop and lamb	Sloughtor ^k	704 000	20	1.	1 20	14
	Goate	Slaughter	80.420	20	-	20	14
	Sheep and lamb	International import ^k	-200	20	4	. 20	2
	Sheep and lamb	International export ^c	5 832	20	() 20	0
	Ewes	On farm ^m	512 900	20	34	3 75	38
	Total	onnami	1.302.952	10	54	1	54
Horses	Horses	Livina ⁿ	963,500	400	385	500	482
Fish		5					
	Finfish	Production (kg)°	149,418,000	N/A	149) N/A	149
	Shellfish	Production (kg)°	41,841,000	N/A	42	2 N/A	42
	Total		191,259,000		191		191
Rabbits		Slaughter ^P	522,741	1.4		1.4	1
Total PCU pr	oduction animals				6,640)	7,469
Cats	N/A	N/A ^{q, r}	8,300,000	4	33.2	2 4	33
Dogs	N/A	N/A ^{q, r}	8,200,000	15	123	3 15	123
Total PCU co	mpanion animals				156	j	156

See corresponding footnotes on next pages.

Table 2. 4 Detailed information on population numbers, 2018 (continued)

For horses, data on number of horses on farm were only reported for 2006 and 2010.

N/A = Not applicable.

- ^a As per European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), unless otherwise specified. ESVAC does not include beef cows. Beef cows are included here because they are a significant animal population in Canada.
- ^b Data from federal and provincial slaughter plants. Available at: http://aimis-simia.agr.gc.ca/rp/indexeng.cfm?action=pR&pdctc=&r=105 and http://aimis-simia.agr.gc.ca/rp/indexeng.cfm?action=pR&pdctc=&r=111. Accessed September 18, 2019. These data were parsed into various animal categories (cows, heifers, steers and bulls) according to the percentage of these animals slaughtered at the federal level. Available at: http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=pR&pdctc=&r=109. Accessed September 18, 2019. This makes the assumption that the percentages of each animal category slaughtered at the provincial level are the same as at the federal level.
- ^c Cattle, swine, and sheep export numbers for feeding and slaughter. Sheep export numbers for feeding and slaughter were combined as they have the same standard weight in ESVAC. Available at: http://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=pR&pdctc=&r=191. Accessed September 18, 2019.
- ^d Supply comparison by species between Canada and the United States. Table 3 Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sector-intelligence/red-meat-and-livestock
- ^e Table 003-0032 On all cattle operations. Data for January 1st. https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210013001. Accessed September 18, 2019.
- ^f Slaughtered pigs federal and provincial. Available at: https://aimis-simia.agr.gc.ca/rp/indexeng.cfm?action=rR&promptLevel=2&pdctc=&r=53&debugcodes=0&p_71=128932&p_72=137777&report_format _type_code=45&p_60=WK&p_70=23094&btnNext=Next#wb-cont. Accessed: September 18, 2019.
- ⁹ Added for Periods I and II. Statistics Canada. Hogs statistics, supply and disposition of hogs, semi-annual (x 1,000). Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210020001. Accessed September 18, 2019.
- ^h Number of animals recorded for January 1 (Sows and gilts, 6 months and over). Statistics Canada. Table 32-10-0160-01 Hogs statistics, number of hogs on farms at end of semi-annual period (x 1,000). Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210016001. Accessed September 18, 2019.
- ⁱ Live weight. For turkeys, mature birds were in a separate designated category and were included. Agriculture and Agri-Food Canada (Poultry Slaughter Report 001). Available at: https://aimis-simia.agr.gc.ca/rp/index-eng.cfm?action=pR&pdctc=&r=1. Accessed September 18, 2019.
- ^j Included all poultry total live birds. Agriculture and Agri-Food Canada (Poultry and Egg Trade Balance Report). Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sectorintelligence/poultry-and-eggs/poultry-and-egg-market-information/imports-and-exports/statistics-canadapoultry-and-egg-trade-reports/?id=1384971854405. Accessed September 18, 2019.
- ^k Statistics Canada. Table 32-10-0126-01 Hogs, sheep and lambs, farm and meat production (x 1,000). Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210012601. Accessed September 18, 2019.
- ¹ Added numbers from federally and provincially inspected establishments. Agriculture and Agri-Food Canada (Annual Goats Slaughtered in Federally and Provincially Inspected Establishments in Canada). Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sector-intelligence/red-meat-andlivestock/red-meat-and-livestock-market-information/slaughter/goat-slaughtered-incanada/?id=1415860000044#2014. Accessed September 18, 2019.
- ^m Number of animals recorded on January 1st. Statistics Canada. Table 32-10-0129-01 Number of sheep and lambs on farms (x 1,000). Available at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210012901. Accessed September 18, 2019.

CIPARS 2018: Figures and Tables > 32

Table 2. 4 Detailed information on population numbers, 2018 (continued)

- ⁿ 2010 Canadian Equine Industry Profile Study. Available at: https://www.equestrian.ca/cdn/storage/resources_v2/wf9c32LH4uErLanMs/original/wf9c32LH4uErLanMs.pdf. Accessed September 18, 2019.
- Statistics Canada. Table 32-10-0107-01 Aquaculture, production and value. Available at: www5.statcan.gc.ca/cansim/a26?lang=eng&retrLang=eng&id=0030001&pattern=aquaculture&tabMode=dataTab le&srchLan=-1&p1=1&p2=49. Accessed October 31, 2019.
- P Federal and provincial slaughter. Available at: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadianagri-food-sector-intelligence/red-meat-and-livestock/red-meat-and-livestock-market-information/supply-sheetsby-species/rabbit-industry-at-a-glance/?id=1415860000120. Accessed September 18, 2019.
- ^q Companion Animal Health. Canadian Animal Health Institute. Available at: https://www.cahi-icsa.ca/pressreleases/latest-canadian-pet-population-figures-released. Accessed September 18, 2019.
- ^r Average weights for cats and dogs from French Agency for Food, Environmental and Occupational Health & Safety (ANSES) - French Agency for Veterinary Medicinal Products (ANMV). Sales survey of Veterinary Medicinal Products containing Antimicrobials in France - 2014. Volumes and estimated exposure of animals to antimicrobials. Available at: https://www.anses.fr/en/system/files/ANMV-Ra-Antibiotiques2014EN.pdf. Accessed on May 24, 2016.
- ^s Per 2015 and 2016 discussion with Québec swine expert the Canadian average weight of treatment of exported weaner pigs was changed to 3 kg.
- ^t Per 2018 and 2019 discussions, the average Canadian weights of beef and dairy cows were updated. For beef cows, the new weight was based on the average mature beef cow 5 years and older in National Animal Health Monitoring System (NAHMS). Beef 2007–08 Part IV: Reference of Beef Cow-calf Management Practices in the United States, 2007–08. For dairy cows, the new weight was based on a 1400 lb mature cow as per an American Bovine Alliance on Management and Nutrition (BAMN) Publication Heifer Growth and Economics: Target Growth. This also resulted in a change to the average weight of cows slaughtered (it became the average weight of beef cows and dairy cows).

Table 2. 5 Quantity of ionophores and chemical coccidiostats (kg) distributed for sale for use in animals, 2009 to 2018

Antimicrobial class			(Change (%) from	Change (%) from						
aggregation	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2009 to 2018	2017 to 2018
lonophores, chemical												
anticoccidials, and arsenicals ^a												
lonophores, chemical												
coccidiostats, arsenicals, and												
nitroimidazoles ^a	491,152	490,355										
Chemical coccidiostats ^a			22,372									
				18,471								
					45,138	104,332	104,067	85,564				
									102,187	98,846	NA	-3%
lonophores ^a			433,332									
				473,595								
					311,652	462,476	466,888	487,113	496,533	529,842	NA	7%
Total	491,152	490,355	455,704	492,066	356,790	566,808	570,955	572,677	598,721	628,688	NA	5%

NA = not available or not applicable.

Changes in percentage over time from 2009 to 2018 are relative to the quantities reported in 2009. Changes in percentage over time from 2017 to 2018 are relative to the quantities reported in 2017.

Animal distribution data do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutical ingredients intended for further compounding; hence, are underestimates of total quantities used.

CAHI provides the information according to a "3 company accounting rule" established by CAHI to comply with the European Union and the United States' anti-competition regulations. CAHI added in some cases a "90% rule" to be sure not to infringe the regulations in the United States. These accounting rules can result in changes to the categorization of specific antimicrobials over time; hence within an antimicrobial category, columns with different colours should not be compared.

Farm Surveillance in broiler chickens

Summary of antimicrobial use by routes of administration

Table 2. 6 Number of broiler flocks with reported antimicrobial use by route of administration, 2018

Antimicrobiol upo		Route of administration											
Antimicrobial use	Any route ^a	<i>In ov</i> o/subcutaneous	Feed	Water									
	n (%)	n (%)	n (%)	n (%)									
Any antimicrobial use	110 (78)	25 (18)	106 (75)	14 (10)									
No antimicrobial use ^b	31 (22)	116 (82)	35(25)	127 (90)									
Total flocks	141 (100)	141 (100)	141 (100)	141 (100)									

^a Flocks with reported use of an antimicrobial class by feed, water, *in ovo*/subcutaneous, or any combination of these routes are included in each count.

^b These were flocks not medicated with any of the antimicrobials listed in Table 2. 7 (next page).

						Quantity of antimic	crobial active ingredient ^c
Route of		Fleeke	Detion	Days exposed	Level of drug		nDDDvetCA/
administration	Antimicrobial	FIOCKS	ration	median	median	mg/PCU	1,000 Broiler chicken-
		11 (70)	11 (70)	(min. ; max.) ^a	(min. ; max.) ^b		days at risk
Feed					g/tonne		
	Tylosin	20 (14)	56 (11)	7 (2 ; 16)	22 (22 ; 22)	5	6
Ш	Penicillin G procaine	21 (15)	46 (9)	8 (4 : 14)	55 (31 ; 110)	20	110
п	Virginiamycin	22 (16)	51 (10)	8 (1 ; 18)	22 (11 ;22)	6	63
	Trimethoprim sulfadiazine	6 (4)	9 (2)	4 (1 ; 9)	300 (200 ; 300)	11	49
III	Bacitracin	67 (48)	189 (36)	9 (1 ; 28)	55 (55 ; 110)	65	190
	Oxytetracycline	2 (1)	2 (< 1)	9 (7 ; 10)	440 (440 ; 440)	4	7
IV	Bambermycin	2 (1)	8 (2)	8 (5 ; 11)	2 (2 ; 2)	0.1	
N/A	Avilamycin	21 (15)	40 (8)	9 (3 ; 15)	20 (15 ;30)	6	58
	No AMU in feed	35 (25)	127 (24)				
Total feed, med	licated	113 (80)	401 (76)			116	483
Water			Treatment (n)		g/Liter (median)		
1	Enrofloxacin	1 (1)	1	4 (4 ; 4)	< 0.01	< 0.1	< 0.1
	Amoxicillin	3 (2)	3	5 (5 ;5)	0.02	0.4	1
Ш	Lincomycin	1 (1	1	4 (3 ; 5)	0.16	0.2	1
п	Penicillin	1 (1)	1	4 (4 ; 4)	0.92	6.1	4.4
	Penicillin-streptomycin	4 (3)	4	4 (3 ; 5)	0.11	0.6	1
ш	Sulfamethazine	1 (1)	1	3 (3 ; 3)	0.98	1	0.1
	Tetracycline-neomycin	1 (1)	1	4 (5 ; 5)	0.45	1.2	1.6
	No AMU in water	127 (90)					
Total water, me	dicated	14 (10)	12			9	10
Injection					mg/egg or chick		
Ш	Gentamicin	2 (1)			0.2	< 0.1	0.01
	Lincomycin-spectinomycin	18 (13)			0.75	0.2	0.5
	No AMU via injection	116 (82)				0.16	
Total injection		20 (14)				0.2	0.5
		106 (75)				126	103

Table 2. 7 Frequency and quantity of antimicrobial use in broiler chickens, 2018

See corresponding page for footnotes.

Table 2. 7 Frequency and quantity of antimicrobial use in broiler chickens, 2018 (continued)

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A = not applicable (no classification available at the time of writing of this report).

ESVAC = European Surveillance of Veterinary Antimicrobial Consumption.

AMU = antimicrobial use.

Combination antimicrobials include the values for both antimicrobial components.

Grey shaded cells = no data or calculations/values are not applicable for broilers.

mg/PCU = milligrams/population correction unit.

 $DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligrams per kilogram broiler chicken per day (mg_{drug}/kg_{animal}/day); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.$

nDDDvetCA/1,000 broiler chicken-days at risk = number of DDDvetCA/1,000 broiler chicken-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

^a Days exposed are by ration (not full grow-out) or 1 course of water treatment.

^b Level of drug is in grams/tonne of feed or grams/liter drinking water. In water, "grams" is the inclusion rate multiplied by the concentration of the drug in that product. In chicks or hatching eggs, level of drug is in milligrams per chick or hatching egg, as reported by the veterinarian/producer.

^c Total quantity of antimicrobials were calculated based on feed or water consumed (feed and water were estimated based on breed standards).

^d The final mg/PCU and nDDDvetCA/1,000 broiler chicken-days at risk exclude coccidiostats. Flavophospholipids was included only in the mg/PCU.

Table 2. 8 Production	, biomass and quantity o	f antimicrobials used	by province/region,	2014 to 2018
-----------------------	--------------------------	-----------------------	---------------------	--------------

Province/	Year	Number of flocks	Pre-harvest weight	Age sampled	Active ingredient	Broiler weights	m	ig/PCU	nDDDvetCA/1,000 b days at	roiler chicken- risk
region		nooks	mean (kg)	mean (days)	(mg)	(kg) ^a	Total	%change ^b	Total	%change ^b
British Columbia	2014	29	1.9	33	67,614,063	650,756	104		380	
	2015	25	2.0	33	54,624,132	592,652	92	-11	403	6
	2016	32	2.0	33	73,638,017	765,987	96	4	493	22
	2017	30	2.0	34	72,240,003	732,417	99	3	431	-13
	2018	30	1.9	33	119,718,451	1,048,356	114	16	549	28
Prairies	2014	37	1.9	34	153,610,926	910,594	169		448	
	2015	38	1.9	34	95,949,044	746,106	129	-24	424	-5
	2016	38	1.9	34	137,537,699	857,215	160	25	606	43
	2017	38	1.9	34	123,570,847	790,810	156	-3	561	-7
	2018	44	2.0	34	145,557,865	1,115,016	131	-16	420	-25
Ontario	2014	42	2.2	36	172,601,948	999,661	173		630	
	2015	49	2.4	38	228,041,059	1,204,851	189	10	679	8
	2016	40	2.2	36	111,939,019	884,702	127	-33	603	-11
	2017	39	2.3	36	140,657,325	987,244	142	13	613	2
	2018	40	2.3	36	135,093,591	937,408	144	1	512	-17
Québec	2014	33	2.0	33	110,056,642	739,406	149		594	
	2015	23	1.8	33	69,081,483	491,834	140	-6	470	-21
	2016	26	1.9	33	72,813,677	544,595	134	-5	599	28
	2017	30	1.9	32	70,767,692	702,314	101	-25	470	-21
	2018	27	1.9	33	69,077,509	631,377	109	9	498	6
National ^c	2014	141	2.0	34	424,631,048	3,300,417	153		524	
	2015	135	2.1	35	403,955,939	3,035,442	147	-3	535	2
	2016	136	2.0	34	378,633,975	3,052,498	130	-12	576	8
	2017	137	2.0	34	384,264,405	3,212,784	127	-2	529	-8
	2018	141	2.0	34	434,662,953	3,732,157	126	-1	493	-7

Some values presented in this report slightly differ from the previous year's reports due to flock size corrections, improvement to the database and methodology refinements.

mg/PCU = milligrams/population correction unit.

ESVAC = European Surveillance of Veterinary Antimicrobial Consumption.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligrams per kilogram broiler chicken per day (mg_{drug}/kg_{animal}/day); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = number of DDDvetCA/1,000 broiler chicken-days at risk.

For detailed indicator descriptions, please refer to the 2018 CIPARS: Design and methods document.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

^a Population correction unit (PCU) or biomass, European weight (total flock population x ESVAC standard weight of 1 kg bird).

^b Percent change = [(current surveillance year – previous surveillance year)/previous surveillance year] x 100.

^c Includes only the provinces/regions surveyed and combines the quantity of antimicrobials used in feed, water and injection excluding coccidiostats, antiprotozoals and flavophospholipids.

Figure 2. 10 Quantity of antimicrobial use in all routes of administration, adjusted for population and broiler weight (mg/PCU), 2013 to 2018

Number of broiler flocks and year

Yea		2013	2014	2015	2016	2017	2018
Nur	nber of flocks	99	143	136	136	138	141
Ant	imicrobial class						
	Fluoroquinolones	< 0.1	0	0	0	0	< 0.1
	Third-generation cephalosporins	< 0.1	< 0.1	0	0	0	0
	Aminoglycosides	< 0.1	2	1	0.5	1	1
	Lincosamides-aminocyclitols	0.1	0.1	0.2	0.1	0.1	0.3
	Macrolides	7	11	7	3	1	5
	Penicillins	11	19	14	5	8	27
	Streptogramins	24	8	6	14	13	6
	Trimethoprim and sulfonamides	20	24	26	14	16	11
	Bacitracins	75	79	74	82	77	65
	Tetracyclines	5	3	8	0	2	5
IV	Flavophospholipids	0.2	0	0.3	< 0.1	0.1	0.1
N/A	Orthosomycins	0	7	10	11	8	6
Tot	al	142	153	147	130	127	126

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 11 Quantity of antimicrobials, adjusted for population and broiler weight (mg/PCU), in 2018 and by province/region, 2014 to 2018

a) 2018

b) by province/region

Province/region		British Columbia				Prairies				Ontario					Québec					
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
oute of administration																				
Feed	82	88	95	94	112	130	120	146	156	124	147	176	125	132	119	143	103	130	88	106
Water	22	4	1	4	2	38	8	15	0	7	26	13	2	10	25	5	37	3	13	2
In ovo and subcutaneous injection	0.1	0.3	0.03	0.1	0.02	0.03	0.1	0.04	0.1	0.04	0.1	0.2	0.05	0.03	0	0.6	0.6	0.7	0.5	0.9
Total	104	92	96	99	114	169	129	160	156	131	173	189	127	142	144	149	140	134	101	109

See corresponding footnotes on next page.

Figure 2. 11 Quantity of antimicrobials, adjusted for population and broiler weight (mg/PCU), in 2018 and by province/region, 2014 to 2018 (continued)

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document. The Prairies is a region including the provinces of Alberta and Saskatchewan.

CIPARS 2018: Figures and tables > 41

Year	2014	2015	2016	2017	2018
Number of flocks	95	85	91	82	97
Province/region					
Prairies	308	268	217	177	193
Ontario	294	325	200	259	192
Québec	255	268	164	130	94
National	290	281	202	178	171

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = Number of DDDvetCA/1,000 broiler chicken-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Yea		2013	2014	2015	2016	2017	2018
Num	ber of flocks	99	143	136	136	138	141
Anti	microbial class						
	Fluoroquinolones	< 0.1	0	0	0	0	< 0.1
	Third-generation cephalosporins	1	0.1	0	0	0	0
	Aminoglycosides	< 0.1	2	2	1	1	1
	Lincosamides-aminocyclitols	1	1	1	0.5	0.5	2
	Macrolides	8	12	7	3	1	6
	Penicillins	34	33	47	25	31	116
	Streptogramins	237	83	63	139	128	63
	Trimethoprim and sulfonamides	85	85	89	50	61	49
	Bacitracins	217	232	213	239	224	190
	Tetracyclines	9	4	15	1	4	8
N/A	Orthosomycins	0	72	98	117	79	58
Tota	1	591	524	535	576	529	493

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = Number of DDDvetCA/1,000 broiler chicken-days at risk. For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobial use in feed by frequency

Year		2013	2014	2015	2016	2017	2018
Num	ber of flocks	97	141	135	136	137	141
Anti	microbial						
	Tylosin	7%	20%	15%	7%	4%	14%
	Penicillin G potassium	0%	4%	4%	0%	0%	0%
- 11	Penicillin G procaine	12%	9%	10%	9%	9%	15%
	Virginiamycin	46%	20%	16%	29%	25%	16%
	Trimethoprim-sulfadiazine	15%	12%	11%	8%	5%	4%
	Bacitracin	48%	58%	51%	60%	53%	48%
Ш	Chlortetracycline	0%	0%	0%	0%	0%	0%
	Oxytetracycline	1%	1%	1%	0%	1%	1%
IV	Bambermycin	1%	0%	5%	1%	4%	1%
N/A	Avilamycin	0%	23%	34%	35%	27%	15%
	No antimicrobials used in feed	7%	11%	10%	8%	18%	25%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories II to IV and avilamycin).

Figure 2. 15 Percentage of broiler flocks reporting antimicrobial use in feed by province/region, 2014 to 2018

Province/region British Columbia					Prairies					Ontario					Quebec						
Yea		'14					'14				'18	'14				'18	'14				'18
Num	ber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Anti	microbial																				
	Tylosin	0%	0%	0%	0%	0%	16%	24%	13%	3%	11%	29%	18%	10%	3%	13%	30%	9%	4%	13%	37%
	Penicillin G potassium	17%	20%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Ш	Penicillin G procaine	7%	24%	31%	30%	53%	0%	0%	0%	0%	0%	2%	10%	3%	0%	0%	27%	9%	4%	13%	19%
	Virginiamycin	34%	36%	41%	23%	7%	14%	11%	26%	26%	11%	14%	14%	23%	28%	30%	21%	9%	27%	20%	11%
	Trimethoprim-sulfadiazine	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	21%	22%	15%	15%	5%	24%	17%	19%	3%	22%
	Bacitracin	45%	36%	50%	50%	40%	84%	68%	66%	76%	64%	55%	55%	60%	49%	53%	45%	30%	65%	33%	22%
Ш	Chlortetracycline	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Oxytetracycline	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	4%	0%	3%	5%	0%	0%	0%	0%	0%
IV	Bambermycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	30%	4%	17%	7%
NA	Avilamycin	7%	12%	16%	23%	3%	5%	16%	26%	16%	5%	43%	63%	58%	41%	25%	33%	26%	35%	27%	30%
	No antimicrobials used in feed	34%	24%	25%	37%	40%	8%	5%	0%	0%	18%	2%	4%	3%	15%	18%	3%	17%	8%	27%	30%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses within province/region, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories II to IV and avilamycin), some flocks have used coccidiostats; previous years' data were updated.

Antimicrobials use in feed by quantitative indicators

Number of broiler flocks, year, and province/region

Pr	ovince/region		Briti	sh Colu	mbia				Prairies					Ontaric					Québec		
Ye	ar	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18
Nu	Imber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
An	timicrobial class																				
	Macrolides	0	0	0	0	0	11	17	6	1	7	15	6	3	1	4	15	1	1	3	13
	Penicillins	10	9	15	17	68	0	0	0	0	0	2	13	0	0	0	11	4	3	5	5
1"	Streptogramins	13	11	15	12	3	7	6	14	9	5	9	7	15	17	13	4	1	8	12	4
	Trimethoprim and sulfonamides	0	0	0	0	0	0	0	0	0	0	40	35	23	31	9	26	36	23	19	50
	Bacitracins	55	62	57	62	39	112	92	116	141	109	68	79	67	65	67	76	52	84	39	25
	Tetracyclines	0	0	0	0	0	0	0	0	0	0	2	20	0	7	15	0	0	0	0	0
IV	Flavophospholipids	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0
N//	AOrthosomycins	4	7	7	4	2	1	6	9	5	3	11	15	17	12	11	11	7	12	8	9
То	tal	82	88	95	94	112	130	120	146	156	124	147	176	125	132	119	143	103	130	88	106

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 17 Number of Canadian Defined Daily Doses for animals per 1,000 broiler chicken-days at risk (nDDDvetCA/1,000 broiler chicken-days at risk) for antimicrobials administered in feed, 2014 to 2018

Pro	ovince/region		Britis	sh Colu	mbia				Prairies					Ontaric					Québec		
Yea	ar	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17		'14		'16	'17	'18
Nu	mber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
An	timicrobial class																				
	Macrolides	0	0	0	0	0	12	19	7	1	9	17	7	4	1	5	17	1	1	3	15
	Penicillins	20	33	84	90	377	0	0	0	0	0	8	66	2	0	0	62	20	14	30	26
	Streptogramins	139	109	161	116	28	68	60	148	91	50	91	62	143	163	131	41	10	86	130	41
	Trimethoprim and sulfonamides	0	0	0	0	0	0	0	0	0	0	177	146	100	132	40	120	171	107	92	232
	Bacitracins	167	182	169	176	116	327	273	348	415	323	192	213	188	179	189	229	158	257	121	77
	Tetracyclines	0	0	0	0	0	0	0	0	0	0	3	33	0	12	26	0	0	0	0	0
N//	A Orthosomycins	38	68	77	40	19	14	61	96	53	32	113	141	163	118	104	117	77	129	91	98
Tot	al	365	393	490	422	540	421	413	599	560	414	601	668	600	604	494	586	436	593	467	489

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = number of DDDvetCA/1,000 broiler chicken-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobial use in water by frequency

Number of broiler flocks and year

Year	2013	2014	2015	2016	2017	2018
Number of flocks	97	141	135	136	137	141
Antimicrobial						
I Enrofloxacin	2%	0%	0%	0%	0%	1%
Apramycin	0%	1%	0%	0%	0%	0%
Amoxicillin	0%	1%	2%	1%	1%	2%
II Lincomycin	0%	0%	0%	0%	0%	1%
Penicillin G potassium	4%	6%	2%	3%	1%	1%
Penicillin-streptomycin	0%	0%	4%	1%	4%	3%
Sulfamethazine	0%	1%	2%	1%	1%	1%
Sulfaquinoxaline	1%	4%	1%	2%	0%	0%
Sulfaquinoxaline-pyrimethamine	2%	1%	1%	1%	0%	0%
Oxytetracycline-neomycin	0%	0%	1%	0%	0%	0%
Tetracycline	0%	0%	1%	0%	1%	0%
Tetracycline-neomycin	0%	3%	0%	1%	1%	1%
No antimicrobials used in water	93%	86%	84%	89%	93%	92%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% as some flocks have used an antimicrobial more than once or used multiple antimicrobials throughout the growing period.

For the temporal analyses, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in the first and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Number of broiler flocks, year, and province/region

Province/region		Britis	sh Colu	mbia				Prairies					Ontaric					Québec		
Year	'14			'17		'14		'16	'17	'18	'14			'17	'18	'14			'17	'18
Number of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Antimicrobial																				
Enrofloxacin	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Apramycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Amoxicillin	0%	4%	0%	3%	0%	0%	3%	0%	0%	0%	5%	0%	3%	0%	5%	0%	4%	4%	0%	4%
Lincomycin	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Penicillin G potassium	3%	0%	0%	0%	0%	11%	0%	0%	0%	0%	7%	6%	5%	3%	3%	3%	0%	8%	0%	0%
Penicillin-streptomycin	0%	4%	3%	7%	7%	0%	8%	0%	0%	2%	0%	0%	0%	8%	3%	0%	9%	4%	0%	0%
Sulfamethazine	0%	0%	0%	0%	0%	3%	3%	5%	0%	2%	0%	0%	0%	0%	0%	0%	9%	0%	7%	0%
III Sulfaquinoxaline	3%	0%	3%	0%	0%	11%	3%	5%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%
Sulfaquinoxaline-pyrimethamine	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	2%	3%	0%	0%	3%	4%	0%	0%	0%
Oxytetracycline-neomycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%
IV Tetracycline	0%	0%	0%	3%	0%	0%	0%	0%	3%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%
Tetracycline-neomycin	0%	0%	0%	0%	0%	8%	0%	5%	0%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%
No antimicrobials used in water	93%	92%	94%	90%	90%	68%	84%	84%	97%	93%	88%	86%	90%	90%	90%	97%	74%	88%	93%	96%

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% as some flocks have used an antimicrobial more than once or used multiple antimicrobials throughout the growing period.

For the temporal analyses within province/region, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Antimicrobials use in water by quantitative indicators

Figure 2. 20 Quantity of antimicrobial use in water adjusted for population and broiler weight (mg/PCU), 2014 to 2018

Prov	/ince/region		Britis	sh Colu	mbia				Prairies					Ontario					Québeo		
Year		'14		'16	'17		'14		'16	'17		'14		'16	'17		'14		'16	'17	
Num	ber of flocks	29	25	32	30	30	37	38	38	38	44	42		40	39	40	33	23	26	30	27
Antii	nicrobial class																				
Ι	Fluoroquinolones	0	0	0	0	< 0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Aminoglycosides	0	2	1	2	1	3	1	1	0	1	3	0.4	0	1	0	0	2	0	0	0
Ш	Lincosamides	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Penicillins	17	1	0	2	0.3	13	3	0	0	0	20	10	1	9	25	4	8	3	0	2
	Sulfonamides	5	0	1	0	0	18	4	12	0	2	0	2	0	0	0	1	27	0	13	0
	Tetracyclines	0	0	0	1	0	5	0	2	0	3	3	1	0	0	0	0	0	0	0	0
Tota		22	4	1	4	2	38	8	15	0	7	26	13	2	10	25	5	37	3	13	2

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 21 Number of Canadian Defined Daily Doses for animals per 1,000 broiler chicken-days at risk (nDDDvetCA/1,000 broiler chicken-days at risk) for antimicrobials administered in water, 2014 to 2018

Pr	ovince/region		Briti	sh Colu	mbia				Prairies					Ontario					Québeo		
Ye	ar	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Nu	mber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
An	timicrobial class																				
Ι	Fluoroquinolones	0	0	0	0	< 0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Aminoglycosides	0	4	1	3	2	4	1	1	0	1	4	0.4	0	1	0.1	0	4	0.5	0	0
Ш	Lincosamides	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Penicillins	13	6	1	5	2	9	9	0	0	0.3	21	6	2	8	17	3	22	3	0	6
	Sulfonamides	2	0	0	0	0	6	1	3	0	0	0	2	1	0	0	3	5	0	2	0
	Tetracyclines	0	0	0	1	0	6	0	2	1	4	4	1	0	0	0	0	0	0	0	0
То	tal	15	10	2	9	9	26	11	6	1	6	29	10	3	9	18	6	31	3	2	6

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = number of DDDvetCA/1,000 broiler chicken-days at risk .

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobial use in ovo or subcutaneous injection by frequency

Number of broiler flocks and year

Ye		2013	2014	2015	2016	2017	2018
Νι	Imber of flocks	99	143	136	136	138	141
Ar	timicrobial						
Ι	Ceftiofur	31%	6%	0%	0%	0%	0%
	Gentamicin	3%	5%	10%	3%	6%	1%
"	Lincomycin-spectinomycin	24%	24%	30%	20%	20%	16%
	No antimicrobials used at the hatchery	42%	64%	60%	77%	73%	82%

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% due to rounding or batches of chicks (hatched at the same time to supply 1 barn) may have used more than one antimicrobial.

Data represent flocks medicated at the hatchery at day 18 of incubation or upon hatch.

For the temporal analyses, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in the first and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Figure 2. 23 Percentage of broiler flocks reporting antimicrobials used *in ovo* or subcutaneous injection at the hatchery level by province/region, 2014 to 2018

Province/region		Britis	sh Colu	mbia				Prairies					Ontario					Québec		
Year	'14			'17	'18	'14			'17	'18	'14			'17	'18	'14			'17	'18
Number of flocks	30	25	32	30	29	37	38	38	38	45	42	49	40	39	40	34	24	26	31	27
Antimicrobial																				
I Ceftiofur	7%	0%	0%	0%	0%	11%	0%	0%	0%	0%	0%	0%	0%	0%	0%	9%	0%	0%	0%	0%
Gentamicin	20%	40%	6%	17%	3%	3%	8%	3%	8%	2%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%
Lincomycin-spectinomycin	0%	20%	3%	7%	3%	0%	5%	3%	8%	7%	14%	29%	5%	3%	0%	82%	83%	88%	68%	70%
No optimizachiele used ot the hotehery	-	100/	0404	==0/	0.00/	0.00/	070/	0 50/	0.40/	0404	000/	74.04	000/		4000/	00/	4 70/	1001	000/	0.00/

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% due to rounding or batches of chicks (hatched at the same time to supply 1 barn) may have used more than one antimicrobial.

Data represent flocks medicated at the hatchery at day 18 of incubation or upon hatch.

For the temporal analyses within province/region, the proportion (%) of flocks using antimicrobial over the current year has been compared to the proportion (%) of flocks using the same antimicrobial during the first and the previous surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Antimicrobial use *in ovo* or subcutaneous injection by quantitative indicators

Figure 2. 24 Quantity of antimicrobial use *in ovo* or subcutaneous injections, adjusted for population and broiler weight (mg/PCU), 2014 to 2018

Number of broiler flocks, year and province/region

Pro	vince/region		Britis	sh Colu	mbia			F	Prairies					Ontaric)			(Québec	:	
Yea	ar	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18
Nur	nber of flocks	30	25	32	30	30	37	38	38	38	44	42	49	40	39	40	34	24	26	31	27
Ant	imicrobial																				
Ι	Ceftiofur	0.01	0	0	0	0	0.03	0	0	0	0	0	0	0	0	0	0.01	0	0	0	0
=	Gentamicin	0.06	0.08	0.01	0.03	0.002	0.004	0.02	0.01	0.02	0.01	0	0	0.01	0	0	0	0	0	0	0
	Lincomycin-spectinomycin	0	0.2	0.02	0.04	0.02	0	0.04	0.03	0.05	0.02	0.07	0.23	0.04	0.03	0	0.63	0.64	0.65	0.52	0.91
	Total	0.06	0.3	0.03	0.07	0.02	0.03	0.06	0.04	0.07	0.04	0.07	0.23	0.05	0.03	0	0.64	0.64	0.65	0.52	0.91

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Total milligrams active ingredient was calculated using the final dose (in milligrams per hatching egg or chick) suggested by the manufacturer and expert opinion based on milligrams per body weight or residue avoidance information.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Number of broiler flocks, year and province/region

Province/region		Britis	sh Colu	mbia				Prairies	;				Ontario)				Québec	;	
Year	'14		'16	'17	'18	'14		'16	'17		'14		'16	'17		'14		'16	'17	'18
Number of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Antimicrobial																				
I Ceftiofur	0.11	0	0	0	0	0.30	0	0	0	0	0	0	0	0	0	0.13	0	0	0	0
Gentamicin	0.16	0.21	0.02	0.07	0.005	0.01	0.05	0.03	0.07	0.01	0	0	0	0	0	0	0	0	0	0
Lincomycin-spectinomycin	0	0.67	0.06	0.14	0.06	0	0.13	0.11	0.16	0.11	0.21	0.68	0.14	0.10	0	2.11	2.17	2.23	1.80	3.08
Total	0.27	0.88	0.09	0.21	0.06	0.31	0.18	0.13	0.23	0.12	0.21	0.68	0.15	0.10	0	2.24	2.17	2.23	1.80	3.08

Roman numerals I to II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = number of DDDvetCA/1,000 broiler chicken-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Coccidiostat use in feed by frequency

Figure 2. 26 Percentage of broiler flocks reporting coccidiostat use in feed, 2014 to 2018

Number of broiler flocks, year, and coccidiostats

Ye	ar	2014	2015	2016	2017	2018
Nu	mber of flocks	141	135	136	137	141
Co	ccidiostat					
	Lasalocid	3%	1%	4%	4%	0%
	Maduramicin	7%	1%	0%	1%	1%
	Monensin	32%	29%	26%	23%	30%
IV	Narasin	22%	16%	21%	18%	18%
	Narasin-nicarbazin	26%	35%	45%	28%	28%
	Salinomycin	35%	41%	34%	32%	19%
	Overall ionophore use	88%	87%	90%	76%	70%
	Amprolium	0%	0%	0%	2%	2%
	Clopidol	5%	6%	3%	4%	4%
	Decoquinoate	17%	3%	4%	8%	6%
N/	Diclazuril	0%	1%	1%	4%	3%
1 1/7	Nicarbazine	28%	35%	28%	15%	17%
	Robenidine	1%	2%	2%	12%	1%
	Zoalene	2%	2%	3%	3%	3%
	Overall chemical coccidiostat use	46%	46%	39%	39%	33%

Roman numeral IV indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

For the temporal analyses, the proportion (%) of flocks using a specific coccidiostat in the current year has been compared to the proportion (%) of flocks using the same coccidiostat in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given coccidiostat.

Pro	vince/region		Britis	sh Colu	mbia				Prairies					Ontario					Quebec		
Yea		'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18	'14		'16	'17	'18
Nur	nber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Coc	cidiostat																				
	Lasalocid	10%	0%	9%	10%	0%	0%	3%	5%	3%	0%	0%	0%	0%	3%	0%	3%	0%	0%	3%	0%
	Maduramicin	31%	4%	0%	7%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%
	Monensin	24%	8%	13%	17%	20%	35%	47%	24%	24%	34%	50%	27%	30%	26%	40%	12%	26%	38%	23%	19%
IV	Narasin	0%	4%	13%	3%	3%	8%	11%	8%	8%	14%	36%	20%	33%	38%	23%	39%	30%	31%	20%	33%
	Narasin-nicarbazin	10%	56%	56%	20%	33%	24%	32%	42%	29%	25%	31%	22%	48%	44%	25%	36%	43%	31%	17%	30%
	Salinomycin	0%	20%	16%	27%	10%	59%	45%	50%	50%	20%	38%	59%	35%	33%	28%	36%	22%	31%	13%	15%
	Overall ionophores use	59%	76%	75%	53%	47%	97%	92%	97%	100%	77%	93%	92%	93%	82%	83%	97%	78%	92%	60%	67%

Roman numeral IV indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

For the temporal analyses within province/region, the proportion (%) of flocks using a specific ionophore in the current year has been compared to the proportion (%) of flocks using the same ionophore in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given ionophore. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given ionophore within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given ionophore.

Number of broiler flocks, year, and province/region

Province/region British Columbia					Prairies					Ontario				Québec							
Yea	r	'14			'17	'18	'14			'17	'18	'14		'16	'17		'14		'16	'17	'18
Nur	nber of flocks	29	25	32	30	30	37	38	38	38	44	42	49	40	39	40	33	23	26	30	27
Coccidiostat																					
	Amprolium	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	10%	7%
	Clopidol	14%	0%	3%	7%	7%	0%	0%	0%	0%	0%	7%	8%	0%	5%	8%	0%	17%	12%	7%	4%
	Decoquinoate	28%	8%	6%	10%	17%	0%	3%	3%	5%	5%	5%	2%	0%	0%	0%	42%	0%	8%	20%	7%
NI/A	Diclazuril	0%	0%	0%	0%	0%	0%	0%	0%	3%	2%	0%	4%	5%	0%	8%	0%	0%	0%	13%	0%
IN/P	Nicarbazine 419 Robenidine 3%		56%	38%	13%	13%	8%	5%	5%	0%	2%	48%	55%	38%	23%	40%	15%	17%	35%	27%	11%
			12%	3%	30%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	8%	23%	0%
	Zoalene	0%	0%	3%	0%	3%	0%	0%	0%	0%	7%	0%	4%	5%	5%	0%	9%	4%	4%	7%	0%
	Overall chemical coccidiostat use	52%	64%	47%	53%	40%	8%	8%	8%	8%	16%	60%	69%	45%	33%	55%	67%	39%	65%	70%	22%

N/A = not applicable (no classification at the time of writing of this report).

For the temporal analyses within province/region, the proportion (%) of flocks using a specific chemical coccidiostat in the current year has been compared to the proportion (%) of flocks using the same chemical coccidiostat in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given chemical coccidiostat. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given chemical coccidiostat within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given chemical coccidiostat. The Prairies is a region including the provinces of Alberta and Saskatchewan.

Farm Surveillance in grower-finisher pigs

Summary of antimicrobial use by route of administration

Table 2. 9 Number of grower-finisher pig herds with reported antimicrobial use byroute of administration, 2018

Data available upon request.

								Quantity of antimicrobial active ingredient ^e		
Route of administration	Antimicrobial	Herds n (%) Total n = 97	Rations n (%) *Total n = 432	Ration days exposed ^a median (min. ; max.)	Percent of herd exposed median (min. ; max.)	Weight at exposure median ^b (min. ; max.) ^c	Level of drug g/tonne ^d median (min. ; max.)	mg/PCU	nDDDvetCA / 1,000 GF pig- days at risk	
Feed										
	Lincomycin	24 (25)	41 (9)	25 (3; 70)	100 (50; 100)	75 (23; 130)	44 (22; 110)	24	46	
	Lincomycin (combination with spectinomycin)	(0)	(0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0	0	
	Tilmicosin	0 (0)	(0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0	0	
I	Tylosin	16 (16)	28 (6)	28 (4; 63)	100 (50; 100)	68 (20; 135)	44 (22; 110)	13	36	
	Tylvalosin	7 (7)	8 (2)	21 (11; 28)	100 (100; 100)	55 (25; 90)	43 (43; 85)	2	11	
	Penicillin	5 (5)	5 (1)	21 (6; 35)	100 (100; 100)	38 (23; 58)	55 (55; 312)	2	11	
	Virginiamycin	1 (1)	3 (1)	14 (14; 70)	100 (100; 100)	45 (27; 122)	11 (11; 11)	1	2	
	Spectinomycin (combination with lincomycin)	0 (0)	(0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0	0	
	Bacitracin	0 (0)	(0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0 (0; 0)	0	0	
ш	Tiamulin	7 (7)	11 (3)	28 (5; 35)	100 (100; 100)	44 (20; 100)	31 (9; 39)	3	4	
	Sulfamethazine	4 (4)	4 (1)	28 (6; 35)	100 (100; 100)	38 (23; 58)	110 (110; 625)	3	6	
	Chlortetracycline	18 (19)	26 (6)	21 (3; 49)	100 (50; 100)	39 (22; 100)	330 (110; 625)	62	52	
	Oxytetracycline	1 (1)	1 (0)	15 (15; 15)	100 (100; 100)	36 (25; 47)	220 (220; 220)	2	2	
IV	Bambermycin	2 (2)	5 (1)	28 (21; 56)	100 (100; 100)	55 (25; 125)	2 (2; 2)	0.16		
Medicated feed		57 (59)	132 (31)	21 (3;70)	100 (50; 100)	55 (20; 135)	44 (2;625)	110	171	
No AMU in feed		40 (41)	223 (52)	28 (3; 70)	100 (50; 100)	77 (20; 284)	0 (0; 0)			

Table 2. 10 Frequency and quantity of antimicrobial use in feed in grower-finisher pigs, excluding ionophores, 2018

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Grey shaded cells = no data or calculations/values are not applicable for grower-finisher pigs.

mg/PCU = milligrams/population correction unit.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day (mg_{drug}/kg_{animal}/day); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

^a Ration days exposed = for rations medicated with the specific antimicrobial and do not reflect the full grow-out period.

^b Median weight at exposure = the median of all average weights of pigs exposed to a ration containing a specific antimicrobial [(Ration Start Weight + Ration End Weight)/2].

^c Minimum (min.) and maximum (max.) pig weight at exposure = the lowest start weight and the highest end weight reported for all rations containing the specific antimicrobial, respectively.

^d Level of drug is in grams/tonne of feed.

^e Quantitative antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake⁵, adjusted for herd average daily gain; only rations medicated with the specific antimicrobial were included in this analysis; the final mg/PCU and nDDDvetCA/1,000 GF pig-days at risk exclude coccidiostats and pyrimethamine. Flavophospholipids was included only in the mg/PCU.

⁵ National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

Province/ region	Year	Number of herds	Number of rations	Proportion of rations medicated	Average weight at exposure median (min ; max)	Average grow-finish period	Active ingredient	Grower- finisher pig weights ^a	mç)/PCU	nDDDvetCA / 1,000 GF pig-days at risk		
		Total	Total	%	(kg)	(Days)	(mg)	(kg)	Total	%change ^b	Total	%change ^b	
Prairies	2014	43	205	61	68 (25; 118)	109	842,082,712	5,075,220	166		308		
	2015	39	165	53	70 (25; 121)	111	854,877,885	5,493,810	156	-6	268	-13	
	2016	40	176	49	69 (28; 136)	112	548,609,650	5,438,142	101	-35	217	-19	
	2017	40	151	29	68 (23; 215)	111	562,073,067	5,359,508	105	4	177	-18	
	2018	44	189	35	68 (28; 194)	112	747,148,116	5,523,828	135	29	193	9	
Ontario	2014	26	109	54	70 (27; 125)	110	358,536,769	2,378,448	151		294		
	2015	25	96	51	70 (27; 125)	114	454,971,382	2,306,070	197	31	325	10	
	2016	27	95	51	63 (28; 125)	114	298,836,760	2,422,905	123	-37	200	-39	
	2017	22	87	54	70 (30; 125)	110	189,631,838	1,333,670	142	15	259	30	
	2018	31	111	39	70 (30; 135)	112	225,663,425	2,152,361	105	-26	192	-26	
Québec	2014	26	79	73	63 (25; 118)	121	393,818,303	2,232,588	176		255		
	2015	21	67	75	58 (22; 119)	115	393,836,556	1,864,200	211	20	268	5	
	2016	24	52	48	59 (25; 120)	117	262,132,293	1,744,568	150	-29	164	-39	
	2017	20	59	39	63 (30; 123)	125	135,113,791	1,809,600	75	-50	130	-21	
	2018	22	56	41	61 (30; 120)	121	99,341,402	2,052,375	48	-35	94	-27	
National ^c	2014	95	393	62	68 (25; 125)	112	1,594,437,784	9,686,255	165		290		
	2015	85	328	57	67 (22; 125)	113	1,703,685,823	9,664,080	176	7	281	-3	
	2016	91	323	49	67 (25; 136)	114	1,109,578,703	9,605,614	116	-34	202	-28	
	2017	82	297	38	68 (23; 215)	114	886,818,695	8,502,778	104	-10	178	-12	
	2018	97	356	37	68 (28; 194)	114	1,072,152,942	9,728,564	110	6	171	-4	

Table 2. 11 Production, biomass and quantity of antimicrobials used in feed in grower-finisher pigs by province/region, 2014 to 2018

This analysis excludes ionophores.

mg/PCU = milligrams/population correction unit.

ESVAC = European Surveillance of Veterinary Antimicrobial Consumption.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

The Prairies is a region including the provinces of Alberta, Saskatchewan, and Manitoba.

^a Population correction unit (PCU) or biomass, European weight (total herd population x ESVAC standard weight of 65 kg pig).

^b Percent change = [(current surveillance year – previous surveillance year)/previous surveillance year] x 100.

^c Includes only the provinces/regions surveyed and includes only the quantity of antimicrobials used in feed, excluding ionophores.
Table 2. 12 Frequency and quantity of ionophore coccidiostats use in feed ingrower-finisher pigs, 2018

Route of administration	Antimicrobial	Herds n (%) Total n = 97	Rations n (%) *Total n = 432	Ration days exposed ^a median (min. ; max.)	Percent of herd exposed median (min. ; max.)	Weight at exposure median ^b (min. ; max.) ^c	Level of drug g/tonne ^d median (min. ; max.)	Quantity of antimicrobial active ingredient ^e (mg/PCU)
Feed								
N/	Narasin	10 (10)	31 (7)	28 (7; 56)	100 (100; 100)	55 (20; 132)	15 (15; 150)	9
IV	Salinomycin	14 (14)	46 (11)	28 (7; 56)	100 (50; 100)	74 (20; 140)	25 (15; 60)	16
All ionophore us	se	24 (24)	77 (18)	28 (7; 56)	100 (50; 100)	69 (20; 140)	25 (15; 150)	26

Roman numeral IV indicates the ranking of antimicrobials based on importance to human medicine as outlined by the Veterinary Drugs Directorate.

Grey shaded cells = No data or calculations/values are not applicable for grower-finisher pigs.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

^a Ration days exposed = for rations medicated with the specific antimicrobial and do not reflect the full grow-out period.

^b Median weight at exposure = the median of all average weights of pigs exposed to a ration containing a specific antimicrobial [(Ration Start Weight + Ration End Weight)/2].

^c Minimum (min.) and maximum (max.) pig weight at exposure = the lowest start weight and the highest end weight reported for all rations containing the specific antimicrobial, respectively.

^d Level of drug is in grams/tonne of feed.

^e Quantitative antimicrobial consumption estimates were calculated using reported ration days fed and predicted feed intake⁶, adjusted for herd average daily gain; only rations medicated with the specific antimicrobial were included in this analysis.

⁶ National Research Council. 2012. Nutrient Requirements of Swine, Eleventh Edition. Washington, DC: National Academy Press.

Province/ region	Year	Proportion of herds using ionophores	Proportion of rations med. with ionophores	Duration of exposure Mean (min ; max)	Average weight at exposure Median (min ; max)	Active ingredient	Average grow-finish period	Grower- finisher pig weights ^ª	mg	/PCU
		n (%)	n (%)	(Days)	(kg)	(mg)	(Days)	(kg)	Total	%change ^b
Prairies	2014	9 (21)	26 (11)	26 (14 ; 35)	69 (20 ; 120)	68,166,364	109	5,075,220	13	
	2015	10 (26)	39 (19)	30 (7 ; 56)	69 (23 ; 120)	95,423,770	109	5,493,810	17*	29*
	2016	6 (15)	25 (12)	29 (7 ; 42)	70 (27 ; 120)	99,004,624	111	5,438,142	18	5
	2017	7 (18)	28 (16)	33 (7 ; 42)	74 (27 ; 120)	127,822,238	112	5,359,508	24	31
	2018	7 (16)	25 (12)	31 (7 ; 56)	69 (27 ; 132)	137,302,834	111	5,523,828	25	4
Ontario	2014	0 (0)	0 (0)	0 (0 ; 0)	0 (0 ; 0)	0	108	2,378,448	0	
	2015	3 (12)	9 (9)	26 (21 ; 32)	77 (30 ; 120)	16,760,072	110	2,306,070	7	0
	2016	4 (15)	10 (10)	33 (14 ; 84)	72 (30 ; 121)	24,535,301	114	2,422,905	10	
	2017	2 (9)	5 (5)	37 (22 ; 84)	83 (43 ; 130)	11,309,951	114	1,333,670	8	-16
	2018	4 (13)	12 (10)	29 (14 ; 56)	75 (25 ; 130)	31,120,045	110	2,152,361	14	70
Québec	2014	13 (50)	37 (32)	32 (14 ; 56)	72 (25 ; 140)	88,321,296	113	2,232,588	40	
	2015	8 (38)	25 (27)	32 (7 ; 56)	79 (25 ; 130)	89,069,930	121	1,864,200	48	21
	2016	14 (58)	44 (46)	32 (7 ; 56)	79 (25 ; 136)	108,368,724	115	1,744,568	62	30
	2017	9 (45)	31 (34)	31 (11 ; 63)	75 (21 ; 135)	43,375,641	117	1,809,600	24	-61
	2018	11 (50)	40 (42)	31 (7 ; 56)	72 (20 ; 140)	82,197,249	125	2,052,375	40	67
National ^c	2014	22 (23)	63 (14)	29 (14 ; 56)	71 (20 ; 140)	156,487,660	110	9,686,255	16	
	2015	21 (25)	73 (18)	30 (7 ; 56)	74 (23 ; 130)	201,253,771	112	9,664,080	21*	29*
	2016	24 (26)	79 (20)	31 (7 ; 84)	75 (25 ; 136)	231,908,649	113	9,605,614	24	16
	2017	18 (22)	64 (18)	33 (7 ; 84)	76 (21 ; 135)	182,507,830	114	8,502,778	21	-11
	2018	22 (23)	77 (18)	30 (7 ; 56)	71 (20 ; 140)	250,620,128	114	9,728,564	26	20

Table 2. 13 Production,	biomass and quantity	of ionophore	coccidiostats	used in feed	in grower-finisher
pigs by province/region	n, 2014 to 2018				

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018 Design and methods document.

The Prairies is a region and includes the provinces of Alberta, Saskatchewan, and Manitoba.

* An extreme outlier value for "Active Ingredient (mg)" consumed was removed - this extreme increase in salinomycin use was validated and attributed to a use in one herd in 2015 only.

^a Population correction unit (PCU) or biomass, European weight (total herd population x ESVAC standard pig weight of 65 kilograms).

^b Percent change = [(current surveillance year – previous surveillance year)/previous surveillance year] x 100.

^c Includes only the provinces/regions surveyed and includes only the quantity of ionophores used in feed, excluding other antimicrobials.

Antimicrobial use in feed by frequency

Ye	ar	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
N	umber of herds	95	90	93	87	89	95	85	91	82	97
Aı	ntimicrobial										
	Lincomycin	28%	24%	25%	29%	34%	37%	31%	27%	29%	25%
l	Penicillin G	5%	8%	5%	6%	8%	9%	8%	9%	6%	5%
"	Tylosin	41%	41%	37%	34%	31%	34%	25%	20%	13%	16%
	Tylvalosin	0%	0%	0%	0%	0%	3%	5%	1%	2%	7%
	Chlortetracycline	29%	39%	39%	36%	30%	32%	35%	24%	18%	19%
Ш	Sulfamethazine	3%	2%	3%	2%	3%	4%	6%	5%	5%	4%
	Tiamulin	2%	4%	6%	8%	8%	8%	6%	7%	6%	7%
	No antimicrobials used in feed	24%	26%	20%	18%	27%	18%	22%	29%	45%	41%

Number of grower-finisher pig herds and year

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year within any province/region are depicted in this figure. Antimicrobial use in feed reported by fewer than 5% of herds included Category II: tilmicosin, virginiamycin; Category III: bacitracin, neomycin, oxytetracycline, spectinomycin; Category IV: bambermycin.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Pr	ovince/region	Prairies						Ontaric)		Québec					
Ye	ar	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Nu	mber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
An	timicrobial															
	Lincomycin	47%	36%	33%	20%	25%	35%	28%	26%	41%	23%	23%	24%	21%	35%	27%
	Penicillin	14%	15%	18%	10%	11%	12%	4%	4%	5%	0%	0%	0%	0%	0%	0%
Ш	Tylosin	28%	23%	25%	10%	11%	35%	16%	19%	14%	23%	42%	38%	13%	20%	18%
	Tylvalosin	5%	3%	3%	0%	2%	0%	4%	0%	0%	6%	4%	10%	0%	10%	18%
	Virginiamycin	0%	0%	0%	0%	0%	0%	4%	4%	5%	3%	8%	0%	0%	0%	0%
	Chlortetracycline	28%	23%	20%	20%	25%	23%	36%	30%	23%	19%	46%	57%	25%	10%	5%
III	Sulfamethazine	9%	13%	13%	8%	9%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%
	Tiamulin	16%	10%	10%	8%	14%	4%	4%	4%	5%	3%	0%	0%	4%	5%	0%
١V	Bambermycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	8%	19%	17%	10%	9%
	No antimicrobials used in feed	23%	26%	33%	58%	48%	19%	28%	33%	32%	42%	8%	10%	17%	35%	27%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year within any province/region are depicted in this figure. Antimicrobial use in feed reported by fewer than 5% of herds included Category II: tilmicosin; Category III: bacitracin, neomycin, oxytetracycline, and spectinomycin.

For the temporal analyses within province/region, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first year and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Antimicrobial use in feed by quantitative indicators

Year	2014	2015	2016	2017	2018
Province/region					
Prairies	166	156	101	105	135
Ontario	151	197	123	142	105
Québec	176	211	149	75	48
National	165	176	115	104	110

Excluded from this analysis were antimicrobials used for growth promotion and have doses lower than preventive and treatment dosage: bambermycin, narasin and salinomycin.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to CIPARS 2018: Design and methods.

Figure 2. 32 Quantity of antimicrobial use in feed, adjusted for population and pig weight (mg/PCU), 2009 to 2018

Number of grower-finisher pig herds and year

Ye	ar	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Nu	umber of herds	95	90	93	87	89	95	85	91	82	97
A	ntimicrobial class										
	Lincosamides	28.0	20.1	25.1	23.2	31.3	31.1	31.9	28.1	32.6	23.5
	Macrolides	35.9	43.7	44.2	43.3	36.8	33.2	27.3	27.0	12.5	14.8
	Penicillins	2.0	2.5	1.2	0.8	4.9	4.9	3.0	2.9	3.7	1.6
	Streptogramins	< 0.1	< 0.1	< 0.1	2.6	0.8	1.3	9.0	0.4	1.6	0.7
	Aminogylcosides	0.2	0.1	0.4	0.0	0.0	0.6	0.4	0.0	0.0	0.0
	Bacitracins	0.0	0.8	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0
III	Pleuromutilins	< 0.1	1.7	1.8	2.1	3.2	6.0	4.7	1.9	1.5	2.9
	Sulfonamides	3.3	0.8	0.9	0.5	2.3	2.7	2.7	3.5	7.3	3.2
	Tetracyclines	87.5	73.0	83.6	83.1	66.3	84.7	97.0	51.6	44.9	63.4
I۷	/ Flavophospholipids	0.1	0.1	< 0.1	0.1	< 0.1	< 0.1	0.1	0.2	0.2	0.2
Тс	otal	157.1	142.9	157.2	155.7	146.4	164.6	176.3	115.5	104.3	110.2

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to CIPARS 2018: Design and methods.

CIPARS 2018: Figures and tables > 67

Figure 2. 33 Quantity of antimicrobial use in feed, adjusted for population and pig weight (mg/PCU) by province/region, 2014 to 2018

Pr	ovince/region			Prairies	;				Ontario)		Québec				
Ye	ar	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Nu	Imber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
Antimicrobial class																
	Lincosamides	38	43	29	28	25	31	22	21	48	17	16	13	35	34	27
	Macrolides	34	28	32	8	8	27	22	31	20	36	37	31	5	22	12
	Penicillins	4	4	4	5	3	12	3	2	3	0	0	0	0	0	0
	Streptogramins	0	0	0	0	0	0	38	2	10	3	6	0	0	0	0
	Aminogylcosides	0	0	0	0	0	0	0	0	0	0	3	2	0	0	0
	Pleuromutilins	11	3	2	1	5	0	13	1	2	1	0	0	2	2	0
	Sulfonamides	5	5	6	10	6	0	0	0	7	0	0	0	0	0	0
	Tetracyclines	74	73	27	53	90	80	100	66	53	47	114	165	108	17	9
IV	Flavophospholipids	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
То	tal	I 166 156 101 105 135 151 197 123 142 105 176 211 150 75				48										

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Year	2014	2015	2016	2017	2018
Number of herds	95	85	91	82	97
Province/region					
Prairies	308	268	217	177	193
Ontario	294	325	200	259	192
Québec	255	268	164	130	94
National	290	281	202	178	171

Excluded from this analysis were the ionophores, narasin and slainomycin.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/ 1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 35 Number of Canadian Defined Daily Doses for animals per 1,000 grower-finisher pig-days at risk (nDDDvetCA/1,000 GF pig-days at risk) for antimicrobials administered in feed, 2009 to 2018

Number	of	grower-finisher	pig	herds and year
--------	----	-----------------	-----	----------------

Year		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Num	ber of herds	95	90	93	87	89	95	85	91	82	97
Antir	nicrobial class										
	Lincosamides	59	47	49	49	79	68	60	49	57	46
п	Macrolides	104	122	129	122	103	92	76	78	37	47
	Penicillins	14	17	8	5	35	34	21	20	25	11
	Streptogramins	0	0	0	7	2	4	24	1	4	2
	Aminocyclitols	2	1	4	0	0	6	4	0	0	0
	Bacitracins	0	2	0	0	2	0	0	0	0	0
III	Pleuromutilins	0	3	3	3	5	9	7	3	2	4
	Sulfonamides	7	2	2	1	5	5	5	7	15	6
	Tetracyclines	87	64	73	72	58	72	82	44	38	54
Tota		274	257	269	259	289	290	281	202	178	171

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/ 1,000 grower-finisher pig-days at risk. For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Pı	ovince/region	Prairies							Ontario	•		Québec				
Ye	ear	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
N	umber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
Aı	ntimicrobial class															
	Lincosamides	83	77	52	52	53	57	38	38	87	31	47	41	60	54	44
	Macrolides	105	85	96	22	24	80	63	89	58	110	78	67	13	61	43
	Penicillins	26	29	30	35	20	86	19	11	23	0	0	0	0	0	0
	Streptogramins	0	0	0	0	0	0	100	4	28	9	15	0	0	0	0
	Aminocyclitols	0	0	0	0	0	0	0	0	0	0	25	23	0	0	0
	Pleuromutilins	18	4	3	2	7	0	21	2	3	2	0	0	3	3	0
	Sulfonamides	11	10	12	20	11	0	0	0	13	0	0	0	0	0	0
	Tetracyclines	65	63	23	46	78	70	84	56	46	40	91	137	89	13	7
Тс	otal	308	268	217	177	193	294	325	200	259	192	255	268	164	130	94

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/ 1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobial use in water by frequency

Number of grower-finisher pig herds and year

Ye	ar	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Nu	Imber of herds	95	90	93	87	89	95	85	91	82	97
A	timicrobial										
	Penicillin	21%	13%	9%	18%	10%	19%	12%	12%	11%	9%
Ш	Streptomycin	3%	6%	1%	10%	4%	9%	6%	3%	0%	4%
	Trimethoprim-sulfadoxine	2%	9%	6%	1%	8%	6%	4%	7%	5%	4%
	No antimicrobials used in water	74%	72%	82%	71%	73%	72%	81%	79%	83%	84%

Roman numerals II indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in water reported by fewer than 5% of herds included Category II: lincomycin; Category III: neomycin, spectinomycin, sulfonamides, and tetracycline.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Figure 2. 38 Percentage of grower-finisher pig herds reporting antimicrobial use in water by province/region, 2014 to 2018

P	'ovince/region			Prairies	5				Ontario)				Quebec	;	
Ye	ar	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Νι	umber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
A	ntimicrobial															
	Lincomycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	14%	8%	0%	0%
	Penicillin	9%	8%	13%	5%	9%	27%	8%	7%	5%	10%	27%	24%	17%	30%	9%
"	Streptomycin	9%	8%	3%	0%	7%	12%	4%	4%	0%	3%	8%	5%	4%	0%	0%
	Trimethoprim-sulfadoxine	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	23%	14%	25%	20%	18%
	Neomycin	0%	0%	0%	0%	0%	8%	4%	4%	0%	3%	12%	5%	4%	0%	0%
	Sulfonamide	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	8%	5%	13%	0%	0%
	No antimicrobial use in water	88%	90%	88%	90%	84%	73%	88%	93%	95%	90%	42%	57%	50%	55%	73%

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use in water reported by fewer than 5% of herds included Category III: spectinomycin and tetracycline.

For the temporal analyses within province/region, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first year and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Antimicrobial use in water by quantitative indicators

Number of Canadian Defined Daily Doses for animals per 1,000 grower-finisher pig-days at risk (nDDDvetCA/1,000 GF pig-days at risk) for antimicrobials administered in water, 2017 to 2018

Data available upon request.

Antimicrobial use by injection by frequency

Number of grower-finisher pig herds and year

Ye	ear	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
N	umber of herds	95	90	93	87	89	95	85	91	82	97
A	ntimicrobial										
1	Ceftiofur	20%	24%	24%	18%	18%	19%	20%	22%	9%	13%
	Ampicillin	4%	4%	3%	5%	4%	3%	5%	5%	2%	5%
	Lincomycin	8%	9%	10%	8%	11%	4%	8%	12%	7%	11%
	Penicillin	41%	51%	46%	45%	53%	44%	33%	31%	20%	24%
	Trimethoprim-sulfadoxine	9%	13%	9%	3%	4%	7%	9%	5%	9%	6%
	Tulathromycin	8%	10%	6%	8%	10%	14%	7%	10%	10%	11%
	Tylosin	5%	4%	8%	5%	3%	5%	2%	4%	5%	2%
	Florfenicol	1%	6%	3%	5%	7%	13%	12%	8%	9%	1%
1.0	Oxytetracycline	4%	6%	9%	7%	9%	9%	8%	10%	4%	1%
	No antimicrobials used by injection	47%	40%	40%	36%	34%	38%	49%	45%	62%	56%

See corresponding footnotes on next page.

Figure 2. 39 Percentage of grower-finisher pig herds reporting antimicrobial use by injection, 2009 to 2018 (continued)

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year are depicted in this figure. Antimicrobial use by injection reported by fewer than 5% of herds included Category II: erythromycin; Category III: spectinomycin and tiamulin.

For the temporal analyses, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Pre	ovince/region			Prairies					Ontario					Québec		
Ye	ar	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Nu	mber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
An	timicrobial															
-	Ceftiofur	19%	23%	28%	15%	18%	0%	0%	4%	0%	0%	38%	38%	33%	20%	23%
	Ampicillin	5%	5%	8%	3%	7%	0%	4%	7%	0%	0%	4%	5%	0%	5%	9%
	Lincomycin	7%	8%	18%	8%	18%	4%	16%	7%	9%	6%	0%	0%	8%	0%	5%
п	Penicillin	30%	23%	23%	13%	16%	69%	48%	33%	23%	23%	42%	33%	42%	45%	41%
	Trimethoprim-sulfadoxine	9%	10%	8%	15%	7%	0%	4%	0%	0%	0%	12%	14%	8%	10%	14%
	Tulathromycin	14%	10%	15%	13%	14%	0%	0%	0%	0%	0%	27%	10%	13%	20%	23%
	Tylosin	7%	3%	3%	3%	0%	4%	4%	11%	14%	6%	4%	0%	0%	0%	0%
	Florfenicol	5%	3%	0%	0%	0%	15%	16%	4%	9%	10%	23%	24%	25%	45%	32%
	Oxytetracycline	5%	3%	5%	3%	0%	27%	24%	26%	9%	3%	0%	0%	0%	0%	0%
	No antimicrobials used by injection	51%	56%	53%	63%	57%	27%	44%	41%	64%	68%	27%	43%	38%	30%	36%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Only antimicrobials used by 5% of herds or more in a given year within any province/region are depicted in this figure. Antimicrobial use by injection reported by fewer than 5% of herds included Category II: erythromycin; Category III: spectinomycin and tiamulin.

For the temporal analyses within province/region, the proportion (%) of herds using a specific antimicrobial in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first year and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given antimicrobial. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given antimicrobial.

Antimicrobial use by injection by quantitative indicators

Figure 2. 41 Number of Canadian Defined Daily Doses for animals per 1,000 grower-finisher pig-days at risk (nDDDvetCA/1,000 GF pig-days at risk) for antimicrobials administered by injection, 2017 to 2018

Teal	2017	2010
Number of herds	82	97
Antimicrobial class		
Extended-spectrum cephalosporins	0.000594	0.001909
Fluoroquinolones	0.000050	0.000000
Trimethoprim-sulfadoxine	0.002575	0.000446
Lincosamides	0.000550	0.000772
Macrolides	0.001560	0.001352
Penicillins	0.002155	0.003253
Phenicols	0.000979	0.001628
III Pleuromutilins	0.000019	0.000009
Tetracyclines	0.000531	0.000379
Total	0.008995	0.009739

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/ 1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 42 Number of Canadian Defined Daily Doses for animals per 1,000 grower-finisher pig-days at risk (nDDDvetCA/1,000 GF pig-days at risk) for antimicrobials administered by injection, by province/region, 2017 to 2018

Number of grower-finisher pig herds, year, and province/region

Pr	ovince/region	Prai	ries	Ont	ario	Québec		
Ye	ar	2017	2018	2017	2018	2017	2018	
Nu	mber of herds	40	44	22	31	20	22	
Ar	timicrobial class							
	Extended-spectrum cephalosporins	0.000846	0.000682	0.000000	0.000000	0.005987	0.034203	
	Fluoroquinolones	0.000000	0.000000	0.000891	0.000000	0.000249	0.000000	
	Trimethoprim-sulfadoxine	0.007475	0.001186	0.000000	0.000000	0.005916	0.002868	
	Lincosamides	0.000629	0.002518	0.008915	0.001745	0.000000	0.000260	
	Macrolides	0.001467	0.003260	0.011875	0.002239	0.011227	0.007315	
	Penicillins	0.003056	0.003829	0.008152	0.008982	0.015975	0.032685	
	Phenicols	0.000000	0.000000	0.007489	0.004344	0.011854	0.026113	
Ш	Pleuromutilins	0.000000	0.000000	0.000477	0.000128	0.000000	0.000000	
	Tetracyclines	0.001206	0.000000	0.004185	0.005458	0.000000	0.000000	
То	tal	0.014679	0.011474	0.041507	0.022768	0.051208	0.103445	

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses (average labelled dose) in milligrams per kilogram grower-finisher pig weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 2 for the list of standards.

nDDDvetCA/1,000 GF pig-days at risk = number of DDDvetCA/ 1,000 grower-finisher pig-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Coccidiostat use in feed by frequency

Number of grower-finisher pig herds and year

Ye	ar	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Nu	mber of herds	95	90	93	87	89	95	85	91	82	97
An	timicrobial										
N7	Narasin	0%	0%	0%	0%	0%	0%	2%	3%	10%	10%
IV	Salinomycin	14%	11%	17%	20%	20%	23%	22%	23%	12%	14%
	No ionophore use in feed	86%	89%	83%	81%	80%	77%	75%	74%	78%	77%

Roman numeral IV indicates the ranking of antimicrobials based on importance to human medicine as outlined by the Veterinary Drugs Directorate.

For the temporal analyses, the proportion (%) of herds using a specific ionophore in the current year has been compared to the proportion (%) of herds using the same ionophore in the first and the previous surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given ionophore.

Figure 2. 44 Percentage of grower-finisher pig herds reporting ionophore coccidiostat use in feed, by province/region, 2014 to 2018

Number of grower-finisher pig herds, year, and province/region

Pr	ovince/region			Prairies	5				Ontaric)				Québeo	;	
Ye	ar	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Nu	umber of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
С	occidiostat															
N	Narasin	0%	3%	3%	5%	9%	0%	0%	0%	0%	0%	0%	5%	8%	30%	27%
IV	Salinomycin	21%	23%	13%	13%	7%	0%	12%	15%	9%	13%	50%	33%	50%	15%	32%
	No ionophore use in feed	79%	74%	85%	83%	84%	100%	88%	85%	91%	87%	50%	62%	42%	55%	50%

Roman numeral IV indicates the ranking of antimicrobials based on importance to human medicine as outlined by the Veterinary Drugs Directorate.

For the temporal analyses within province/region, the proportion (%) of herds using a specific ionophore in the current year has been compared to the proportion (%) of herds using the same antimicrobial in the first year and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province/region ($P \le 0.05$) for a given ionophore. The presence of red areas indicates significant provincial/regional differences ($P \le 0.05$) for a given ionophore within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given ionophore.

Coccidiostat use in feed by quantitative indicators

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of herds	95	90	93	87	89	95	85	91	82	97
Coccidiostat										
Narasin	0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.9	7.2	9.3
Salinomycin	8.7	8.0	17.3	23.3	18.2	16.2	20.1	22.2	14.2	16.5
Total	8.7	8.0	17.3	23.3	18.2	16.2	20.8	24.1	21.5	25.8

Roman numerals IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to CIPARS 2018: Design and methods.

Province/region			Prairies	5				Ontario	•				Québeo	;	
Year	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018	2014	2015	2016	2017	2018
Number of herds	43	39	40	40	44	26	25	27	22	31	26	21	24	20	22
Coccidiostat															
Narasin	0	1	1	6	12	0	0	0	0	0	0	2	7	17	12
Salinomycin	13	17	17	18	13	0	7	10	8	14	40	46	55	7	28
Total	13	17	18	24	25	0	7	10	8	14	40	48	62	24	40

Roman numerals IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to CIPARS 2018: Design and methods.

Farm Surveillance in turkeys

Summary of antimicrobials use by all routes of administration

Table 2. 14 Number of turkey flocks with reported antimicrobial use by route of administration, 2018

Antimicrobial use	Route of administration											
Antimiciopial use	Any route ^a	In ovo/subcutaneous	Feed	Water								
	n (%)	n (%)	n (%)	n (%)								
Any antimicrobial use	34 (36)	8 (8)	34 (36)	19 (20)								
No antimicrobial use ^b	61 (64)	87 (92)	61 (64)	76 (80)								
Total flocks	95 (100)	95 (100)	95 (100)	95 (100)								

^a Flocks with reported use of an antimicrobial class by feed, water, *in ovo*/subcutaneous, or any combination of these routes are included in each count.

^b These were flocks that were not medicated with any of the antimicrobials listed in Table 2. 15 (next page).

						Quantity of	antimicrobial active ingredient ^c
Route of administration	Antimicrobial	Flocks n (%)	Ration n (%)	Days exposed median (min. ; max.) ^a	Level of drug median (min. ; max.) ^b	mg/PCU	nDDDvetCA/ 1,000 turkey-days at risk
Feed					g/tonne		
	Penicillin G procaine	3 (3)	4 (1)	25 (14 ; 28)	44 (33 ; 55)	1	2
II	Virginiamycin	35 (37)	159 (34)	14 (5 ; 55)	22 (17 ; 44)	15	60
	Trimethoprim sulfadiazine	4 (4)	4 (1)	7 (4 ; 21)	300 (200 ; 300)	4	7
ш	Bacitracin	26 (27)	113 (24)	14 (6 ; 33)	55 (55 ; 110)	30	35
	Chlortetracycline	2 (2)	2 (< 1)	8 (7 ; 8)	440 (440 ; 440)	1	1
IV	Bambermycin	4 (4)	15 (< 3)	14 (5 ; 28)	2 (2 ; 2)	0.1	
N/A	Avilamycin	3 (3)	7 (1)	10 (4 ; 35)	15 (15 ; 15)	1	2
No AMU in feed		34 (36)	163 (35)				
Total feed, medica	ited	59 (64)	285 (68)			52	106
Water		Т	reatment (n)	g/Liter		
<u> </u>	Enrofloxacin	1 (1)	1	4 (4 ; 4)	0.03 (0.3 ; 0.3)	< 0.1	0.13
	Amoxicillin	1 91)	1	4 (4 ; 4)	0.1 (0.1 ; 0.1)	< 0.1	< 0.1
II	Penicillin	7 (7)	10	6 (4 ; 9)	0.2 (0.1 ; 0.2)	1	2
	Penicillin-streptomycin	2 (2)	2	3 (1 ; 4)	0.1 (0.02 ; 0.1)	0.1	0.1
ш	Tetracycline	3 (3)	5	11 (7 ; 14)	0.9 (0.9 ; 0.9)	3.9	0.3
	Tetracycline-neomycin	1 (1)	2	4 (4 ; 5)	0.1 (0.1 ;0.2)	0.1	26
No AMU in water		76 (80)					
Total water, medic	cated	19 (20)	21			5.0	27.8
Injection					mg/egg or poult		
11	Gentamicin	8 (8)			1	0.02	0.02
No AMU via injectio	on	87 (92)					
Total injection		8 (8)				0.02	0.0
All routes ^d		59 (64)				57	134

Table 2. 15 Frequency and quantity of antimicrobial use in turkeys, 2018

See corresponding footnotes on next page.

Table 2. 15 Frequency and quantity of antimicrobial use in turkeys, 2018 (continued)

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

AMU = antimicrobial use.

Combination antimicrobials include the values for both antimicrobial components. Grey shaded cells = no data or calculations/values are not applicable for turkeys.

mg/PCU = milligrams/population correction unit.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligrams per kilogram turkey per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 turkey-days at risk = number of DDDvetCA/1,000 turkey-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

^a Days exposed are by ration (not full grow-out) or 1 course of water treatment.

^b Level of drug is in grams/tonne of feed or grams/liter drinking water. In water, "grams" is the inclusion rate multiplied by the concentration of the drug in that product. In poults or hatching eggs, level of drug is in milligrams per poult or hatching egg, as reported by the veterinarian/producer.

^c Total quantity of antimicrobials were calculated based on feed or water consumed (feed and water were estimated based on breed standards).

^d The final mg/PCU and nDDDvetCA/1,000 turkey-days at risk exclude coccidiostats. Flavophospholipids was included only in the mg/PCU.

Province	Year	Number of	Pre-harvest weight	Age sampled	Active ingredient	Turkey weights ^a	m	g/PCU	nDDDvetCA days	v1,000 turkey- at risk
		HOCKS	Mean (kg)	Mean (days)	(mg)	(kg)	Total	%change ^b	Total	%change ^b
British Columbia	2014	29	9	87	120,484,974	1,759,872	68		115	
	2015	30	9	88	74,654,795	1,736,982	43	-37	136	18
	2016	30	9	88	96,093,296	1,973,663	49	13	88	-35
	2017	27	9	89	125,474,395	1,599,299	78	61	122	39
	2018	29	9	88	92,441,570	1,555,057	59	-24	186	53
Alberta	2018	11	9	86	31,830,633	526,087	61	N/A	113	N/A
Ontario	2016	30	10	91	102,916,844	1,170,514	88		143	
	2017	31	10	89	80,060,464	1,353,274	59	-33	111	-22
	2018	30	9	84	67,659,485	1,003,483	67	14	107	-4
Québec	2016	12	12	96	21,102,933	485,394	43		74	-31
	2017	16	11	90	20,387,058	626,239	33	-25	65	-12
	2018	25	11	90	33,539,890	873,834	38	18	81	25
National ^c	2016	72	10	90	220,091,068	3,629,571	61		104	
	2017	74	10	89	225,845,525	3,578,812	63	4	108	4
	2018	95	10	87	225,471,578	3,958,461	57	-10	134	24

Table 2. 16 Production, biomass and quantity of antimicrobials used, by province, 2014 to 2018

Some values presented in this report slightly differ from the previous year's reports due to flock size corrections, improvement to the database and methodology refinements.

mg/PCU = milligrams/population correction unit.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligrams per kilogram turkey per day (mg_{drug}/kg_{animal}/day); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 turkey-days at risk = number of DDDvetCA/1,000 turkey-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

^a Population correction unit (PCU) or biomass, European weight (total flock population x ESVAC standard weight of 6.5 kg bird).

^b Percent change = [(current surveillance year – previous surveillance year)/previous surveillance year] x 100.

^c Includes only the provinces/regions surveyed and combines the quantity of antimicrobials used in feed, water and injection excluding coccidiostats, antiprotozoals, arsenicals and flavophospholipids.

Yea	r	2013	2014	2015	2016	2017	2018
Nun	ber of flocks	29	29	30	72	74	95
Anti	microbial class						
	Fluoroquinolones	0	0	0	0	< 0.1	< 0.1
	Third-generation cephalosporins	< 0.1	0	0	0	0	0
	Aminoglycosides	5	0.3	0.1	0.4	0.2	2
	Macrolides	0	0	0	3	7	0
Ш	Penicillins	0.2	3	4	1	1	2
	Streptogramins	4	13	22	12	13	15
	Trimethoprim and sulfonamides	0	0	0	2	8	4
m	Bacitracins	69	49	17	37	33	30
	Tetracyclines	12	3	0	5	1	3
IV	Flavophospholipids	0	0	0	0.1	0.7	0.1
N/A	Orthosomycins	0	0	0	0	0	1
Tota	al	91	68	43	61	63	57

Roman numerals I to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

N/A = not applicable (no classification available at the time of writing of this report).

mg/PCU = milligrams/population correction unit.

2013 to 2015 data pertains to British Columbia.

Figure 2. 48 Quantity of antimicrobials, adjusted for population and turkey weight (mg/PCU), in 2018 and by province, 2014 to 2018

a) 2018

Province		British Columbia				Alberta		Ontario		Québec		
Year	'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Route of administration												
Feed	68	39	48	78	49	59	87	57	67	43	32	36
Water	0.2	4	0.4	0	11	2	1	2	0	0	1	3
In ovo and subcutaneous injection	0.1	0.1	0.13	0.1	< 0.1	< 0.1	0.13	0.1	< 0.1	0.1	0.1	< 0.1
Total	68	43	49	78	59	61	88	59	67	43	33	38

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document. Data in figure pertains to the current year (pie) and data in table includes 1 to 5 years.

Year	2016	2017	2018
Number of flocks	217	82	95
Province			
British Columbia	86	125	186
Alberta			119
Ontario	152	143	110
Québec	66	117	89
National	104	131	137

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = Number of DDDvetCA/1,000 broiler chicken-days at risk. For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

CIPARS 2018: Figures and tables > 89

Yea	r	2013	2014	2015	2016	2017	2018
Nun	ber of flocks	29	29	30	69	77	95
Anti	microbial class						
	Fluoroquinolones	0	0	0	0	< 0.1	0.1
-	Third-generation cephalosporins	< 0.1	0	0	0	0	0
	Aminoglycosides	14.7	1	0.1	1	0.3	13
	Macrolides	0	0	0	1	3	0
Ш	Penicillins	4	7	29	2	1	3
	Streptogramins	16	51	87	48	52	60
	Trimethoprim and sulfonamides	0	0	0	5	13	7
ш	Bacitracins	78	54	19	43	38	35
	Tetracyclines	10	2	0	4	0.4	14
N/A	Orthosomycins	0	0	0	0	0	2
Tota	al	122	115	136	104	108	134

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram broiler weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 broiler chicken-days at risk = Number of DDDvetCA/1,000 broiler chicken-days at risk. For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document. 2013 to 2015 data pertains to British Columbia.

Antimicrobial use in feed by frequency

Yea	r	2013	2014	2015	2016	2017	2018
Nur	nber of flocks	29	29	30	72	74	95
Ant	imicrobial						
	Tylosin	0%	0%	0%	7%	5%	0%
	Penicillin G potassium	0%	0%	3%	0%	0%	0%
Ш	Penicillin G procaine	0%	21%	0%	7%	1%	3%
	Virginiamycin	17%	38%	67%	38%	36%	37%
	Trimethoprim-sulfadiazine	0%	0%	0%	6%	9%	4%
	Bacitracin	69%	55%	23%	36%	38%	27%
Ш	Chlortetracycline	3%	3%	0%	3%	3%	2%
	Oxytetracycline	0%	0%	0%	3%	0%	0%
IV	Bambermycin	0%	0%	0%	4%	16%	4%
N/A	Avilamycin	0%	0%	0%	0%	0%	3%
	No antimicrobials used in feed	24%	10%	17%	19%	20%	36%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (program started at the national level) and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories II to IV and avilamycin).

2013 to 2015 data pertains to British Columbia.

Figure 2. 52 Percentage of turkey flocks reporting antimicrobial use in feed by province, 2014 to 2018

Pro	vince		Br	itish Columl	bia		Alberta		Ontario		Québec		
Yea		'14		'16	'17		'18	'16	'17	'18	'16	'17	'18
Nur	nber of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Ant	imicrobial												
	Tylosin	0%	0%	0%	7%	0%	0%	7%	0%	0%	25%	13%	0%
	Penicillin G potassium	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Ш	Penicillin G procaine	21%	0%	3%	0%	10%	0%	0%	0%	0%	33%	6%	0%
	Virginiamycin	38%	67%	33%	44%	67%	40%	40%	35%	27%	42%	25%	12%
	Trimethoprim-sulfadiazine	0%	0%	0%	4%	0%	0%	10%	10%	3%	8%	19%	12%
	Bacitracin	55%	23%	57%	52%	23%	50%	30%	42%	27%	0%	6%	24%
Ш	Chlortetracycline	3%	0%	0%	4%	0%	0%	7%	3%	7%	0%	0%	0%
	Oxytetracycline	0%	0%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%
IV	Bambermycin	0%	0%	0%	0%	0%	0%	10%	13%	3%	0%	50%	12%
N/A	Avilamycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	12%
	No antimicrobials used in feed	10%	17%	13%	11%	13%	40%	23%	29%	43%	25%	19%	52%

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

Numbers per column may not add up to 100% as some flocks may have used an antimicrobial more than once or used multiple antimicrobials throughout the grow-out period.

For the temporal analyses within province, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (program started at the national level) and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) within province for a given antimicrobial. The presence of red areas indicates significant provincial differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories II to IV and avilamycin).

Antimicrobial use in feed by quantitative indicators

Figure 2. 53 Quantity of antimicrobial use in feed adjusted for population and turkey weight (mg/PCU), 2014 to 2018

Number of turkey flocks, year and province

Pr	ovince		Bri	itish Colum	bia		Alberta		Ontario			Québec	
Ye	ar	'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Nι	Imber of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Ar	timicrobial class												
	Macrolides	0	0	0	15	0	0	2.1	0	0	14	1	0
l II	Penicillins	3	< 0.1	0.4	0	2	0	0	0	0	2	0.1	0
1	Streptogramins	13	22	11	17	26	17	14	13	10	11	5	5
	Trimethoprim and sulfonamides	0	0	0	4	0	0	5	5	1	6	22	16
	Bacitracins	49	17	37	43	26	42	54	37	51	0	1	12
	Tetracyclines	3	0	0	0.4	0	0	11	1	6	10	0	0
IV	Flavophospholipids	0	0	0	0	0	0	0	0	0.0	0	0	0.4
N/J	AOrthosomycins	0	0	0	0	0	0	0	0	0	0	0	3
То	tal	68	39	48	78	54	59	86	56	67	43	30	36

Roman numerals II to IV indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Province			Bri	itish Colum	bia		Alberta		Ontario			Québec	
Year		'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks		29	30	30	27	29	11	30	31	30	12	16	25
Antimicrobial class													
Macrolides		0	0	0	6	0	0	0.9	0	0	6	1	0
" Penicillins		7	< 0.1	0.9	0	4	0	0	0	0	5	0.3	0
Streptogramins		51	87	44	62	97	64	56	53	42	45	20	19
Trimethoprim and sulfon	amides	0	0	0	6	0	0	13	10	2	10	41	30
Bacitracins		54	19	42	47	29	46	61	43	60	0	2	14
Tetracyclines		2	0	0	0.3	0	0	8	1	4	7	0	0
N/A Orthosomycins		0	0	0	0	0	0	0	0	0	0	0	12
Total		115	107	86	121	130	110	139	107	107	74	64	75

Roman numerals II to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification available at the time of writing of this report).

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram turkey weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 turkey-days at risk = number of DDDvetCA/1,000 turkey-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobial use in water by frequency

Figure 2. 55 Percentage of turkey flocks reporting antimicrobial use in water, 2013 to 2018

				-	-		
Ye	ar	2013	2014	2015	2016	2017	2018
Νι	mber of flocks	29	29	30	72	74	95
Ar	timicrobial						
Ι	Enrofloxacin	0%	0%	0%	0%	1%	1%
	Amoxicillin	0%	0%	0%	1%	1%	1%
	Penicillin	0%	0%	3%	4%	5%	7%
	Penicillin-streptomycin	3%	0%	0%	4%	1%	2%
	Neomycin	0%	0%	0%	1%	1%	0%
	Sulfaquinoxaline	0%	0%	0%	0%	3%	0%
	Sulfaquinoxaline-pyrimethamine	0%	0%	0%	0%	1%	0%
ш	Oxytetracycline-neomycin	0%	0%	0%	1%	0%	0%
	Tetracycline	0%	0%	0%	0%	0%	3%
	Tetracycline-neomycin	3%	7%	0%	1%	0%	1%
	No antimicrobials used in water	93%	93%	97%	89%	86%	80%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% as some flocks have used an antimicrobial more than once or used multiple antimicrobials throughout the growing period.

For the temporal analysis, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (program started at the national level) and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories I to III).

2013 to 2015 data pertains to British Columbia.

Figure 2. 56 Percentage of turkey flocks reporting antimicrobial use in water by province, 2014 to 2018

Province	British Columbia							Ontario		Québec		
Year	'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks	29	30	30	27	29	11	30		30	12	16	25
Antimicrobial												
I Enrofloxacin	0%	0%	0%	4%	3%	0%	0%	0%	0%	0%	0%	0%
Amoxicillin	0%	0%	0%	0%	3%	0%	3%	3%	0%	0%	0%	0%
II Penicillin	0%	0%	3%	0%	3%	9%	7%	13%	0%	0%	0%	20%
Penicillin-streptomycin	3%	0%	0%	4%	7%	0%	0%	0%	0%	0%	0%	0%
Neomycin	0%	0%	0%	0%	0%	0%	3%	3%	0%	0%	0%	0%
Sulfaquinoxaline	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	13%	0%
Sulfaquinoxaline-pyrimethamine	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%
Oxytetracycline-neomycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Tetracycline	0%	0%	0%	0%	0%	9%	0%	0%	0%	0%	0%	8%
Tetracycline-neomycin	3%	7%	0%	0%	7%	0%	3%	0%	0%	0%	0%	0%
No antimicrobials used in water	93%	93%	97%	93%	79%	82%	87%	81%	100%	100%	88%	72%

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% as some flocks have used an antimicrobial more than once or used multiple antimicrobials throughout the growing period.

For the temporal analysis within province, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (program started at the national level) and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) within province for a given antimicrobial. The presence of red areas indicates significant provincial differences ($P \le 0.05$) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories I to III).

Antimicrobial use in water by quantitative indicators

Figure 2. 57 Quantity of antimicrobial use in water adjusted for population and turkey weight (mg/PCU), 2014 to 2018

Province		British Columbia					Alberta	Ontario			Québec		
Year		'14	'15	'16	'17	'18	'18	'16	'17		'16	'17	'18
Number of flocks		29	30	30	27	29	11	30	31	30	12	16	25
Anti	microbial class												
Т	Fluoroquinolones	0	0	0	< 0.1	< 0.1	0	0	0	0	0	0	0
Ш	Aminoglycosides	0.2	0	0.2	< 0.1	5.1	0	0.3	0.2	0	0	0	0
	Penicillins	0	3.7	< 0.1	< 0.1	0.5	1	1	1.6	0	0	0	2.6
Ш	Sulfonamides	0	0	0	0	0	0	0	0	0	0	1	0
	Tetracyclines	0.1	0	0.2	0	5	0.5	< 0.1	0	0	0	0	0.2
Total		0.2	3.7	0.4	< 0.1	10.6	1.8	1.2	1.8	0	0	0.9	2.7

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

mg/PCU = milligrams/population correction unit

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Province		Brit	tish Colum	bia		Alberta		Ontario			Québec	
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Antimicrobial class												
I Fluoroquinolones	0	0	0	< 0.1	0.3	0	0	0	0	0	0	0
Aminoglycosides	0.5	0.0	0.5	< 0.1	31.8	0	0.9	0.4	0	0	0	0
" Penicillins	0	28.8	0.3	< 0.1	0.6	2	3	2.9	0	0	0	5.2
Ju Sulfonamides	0	0	0	0	0	0	0	0.1	0	0	1	0
Tetracyclines	0	0	0.3	0	32	1	0.1	0	0	0	0	0
Total	0.7	28.8	1.1	< 0.1	65.0	3.0	3.6	3.5	0	0	0.7	5.6

Roman numerals I to III indicate categories of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram turkey weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 turkey-days at risk = number of DDDvetCA/1,000 turkey-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Antimicrobials use in ovo or subcutaneous injection by frequency

Figure 2. 59 Percentage of turkey flocks reporting antimicrobial use *in ovo* or subcutaneous injection, 2013 to 2018

Number of turkey flocks and year

Ye	ar	2013	2014	2015	2016	2017	2018
Nu	Imber of flocks	29	29	30	69	77	95
Ar	timicrobial						
Ι	Ceftiofur	3%	0%	0%	0%	0%	0%
п	Gentamicin	76%	90%	73%	80%	73%	8%
	Lincomycin-spectinomycin	0%	0%	0%	0%	0%	0%
	No antimicrobials used at the hatchery	21%	10%	27%	20%	27%	92%

Roman numerals I and II indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% due to rounding or batches of chicks (hatched at the same time to supply 1 barn) may have used more than one antimicrobial.

Data represent flocks medicated at the hatchery at day 18 of incubation or upon hatch.

For the temporal analyses, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (national program started) and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories I and II).

2013 to 2015 data pertains to British Columbia.

Figure 2. 60 Percentage of turkey flocks reporting antimicrobial use *in ovo* or subcutaneous injection by province, 2014 to 2018

Number of turkey flocks, year, and province

Province		Br	itish Colum	bia		Alberta		Ontario			Québec	
Year	'14			'17		'18	'16	'17		'16	'17	'18
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Antimicrobial												
I Ceftiofur	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Gentamicin	90%	73%	83%	81%	7%	9%	74%	59%	7%	83%	88%	12%
Lincomycin-spectinomycin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
No antimicrobials used at the hatchery	10%	27%	17%	19%	93%	91%	26%	41%	93%	17%	13%	88%

Roman numerals I and II indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Numbers per column may not add up to 100% due to rounding or batches of chicks (hatched at the same time to supply 1 barn) may have used more than one antimicrobial.

Data represent flocks medicated at the hatchery at day 18 of incubation or upon hatch.

For the temporal analyses within province, the proportion (%) of flocks using a specific antimicrobial in the current year has been compared to the proportion (%) of flocks using the same antimicrobial in 2016 (national program started) and previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) within province for a given antimicrobial. The presence of red areas indicates significant province) for a given antimicrobial within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial differences ($P \le 0.05$) for a given antimicrobial.

Please note that the "no antimicrobials used" pertains to flocks that did not use any of the antimicrobial classes included in this figure (Categories I and II).

Antimicrobial use *in ovo* or subcutaneous injection by quantitative indicators

Figure 2. 61 Quantity of antimicrobial use *in ovo* or subcutaneous injection adjusted for population and turkey weight (mg/PCU), 2014 to 2018

	Number	of	turkey	flocks,	year	, and	province
--	--------	----	--------	---------	------	-------	----------

Province		Bri	itish Columl	bia		Alberta		Ontario			Québec	
Year	'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Antimicrobial												
II Gentamicin	0.14	0.12	0.13	0.14	0.02	0.01	0.13	0.09	0.01	0.11	0.11	0.02
Total	0.14	0.12	0.13	0.14	0.02	0.01	0.13	0.09	0.01	0.11	0.11	0.02

Roman numeral II indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

Total milligrams active ingredient was calculated using the final dose (in milligrams per hatching egg or poult) suggested by the manufacturer and expert opinion based on milligrams per body weight or residue avoidance information: gentamicin routine dose (1 mg/poult).

mg/PCU = milligrams/population correction unit.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Figure 2. 62 Number of Canadian Defined Daily Doses for animals per 1,000 turkey-days at risk (nDDDvetCA/1,000 turkey-days at risk) for antimicrobials administered *in ovo* or subcutaneous injection, 2014 to 2018

Number of turkey flocks, year, and province

Province		Brit	tish Colum	bia		Alberta		Ontario		Québec			
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18	
Number of flocks	29	30	30	27	29	11	30	31	30	12	16	25	
Antimicrobial													
II Gentamicin	0.15	0.13	0.14	0.14	0.01	0.01	0.14	0.10	0.01	0.12	0.12	0.03	
Total	0.15	0.13	0.14	0.14	0.01	0.01	0.14	0.10	0.01	0.12	0.12	0.03	

Roman numeral II indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

DDDvetCA = Canadian Defined Daily Doses for animals (average labelled dose) in milligram per kilogram turkey weight per day ($mg_{drug}/kg_{animal}/day$); please refer to Appendix: Supplemental data of the 2018 CIPARS Figures and Tables, Table A. 1 for the list of standards.

nDDDvetCA/1,000 turkey-days at risk = number of DDDvetCA/1,000 turkey-days at risk.

For detailed indicator descriptions, please refer to the CIPARS 2018: Design and methods document.

Coccidiostat and antiprotozoal use in feed by frequency

Number of turkey flocks, year and coccidiostats

Yea	ir	2014	2015	2016	2017	2018
Nu	mber of flocks	29	30	72	74	95
Co	ccidiostat					
	Lasalocid	0%	3%	47%	26%	22%
	Maduramicin	38%	7%	13%	1%	1%
	Monensin	41%	93%	28%	47%	37%
IV	Narasin	0%	0%	0%	0%	0%
	Narasin-nicarbazin	0%	0%	0%	0%	0%
	Salinomycin	0%	0%	0%	0%	1%
	Overall ionophore use	79%	97%	83%	72%	59%
	Amprolium	0%	0%	0%	1%	1%
	Clopidol	3%	7%	3%	0%	1%
	Decoquinoate	0%	0%	0%	0%	0%
	Diclazuril	55%	0%	1%	0%	1%
N/A	Nicarbazine	0%	0%	0%	0%	0%
	Robenidine	24%	3%	1%	1%	4%
	Zoalene	0%	0%	1%	3%	14%
	Overall chemical coccidiostat use	62%	10%	6%	4%	21%
	Arsenicals	24%	17%	4%	0%	0%

Roman numeral IV indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate. N/A = not applicable (no classification at the time of writing of this report).

For the temporal analyses, the proportion (%) of flocks using a specific coccidiostat in the current year has been compared to the proportion (%) of flocks using the same coccidiostat in 2016 (national program started) and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences ($P \le 0.05$) for a given coccidiostat.

Figure 2. 64 Percentage of turkey flocks reporting ionophore coccidiostat use in feed by province, 2014 to 2018

Pr	ovince		Br	itish Colum	bia		Alberta		Ontario			Québec	
Ye		'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Nu	mber of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Co	occidiostat												
	Lasalocid	0%	3%	43%	26%	27%	50%	47%	29%	17%	58%	19%	12%
	Maduramicin	38%	7%	23%	4%	3%	0%	7%	0%	0%	0%	0%	0%
	Monensin	41%	93%	37%	59%	57%	20%	17%	26%	27%	33%	69%	32%
١V	Narasin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Narasin-nicarbazin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Salinomycin	0%	0%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%
	Overall ionophores use	79%	97%	93%	85%	83%	70%	70%	55%	43%	92%	81%	44%

Roman numeral IV indicates category of importance to human medicine as outlined by the Veterinary Drugs Directorate.

For the temporal analyses within province, the proportion (%) of flocks using a specific ionophore in the current year has been compared to the proportion (%) of flocks using the same ionophore in 2016 (national program started) and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province ($P \le 0.05$) for a given ionophore. The presence of red areas indicates significant provincial differences ($P \le 0.05$) for a given ionophore within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial differences ($P \le 0.05$) for a given ionophore.

Pro	vince		Br	itish Colum	bia		Alberta		Ontario			Québec	
Yea	r	'14		'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Nun	nber of flocks	29	30	30	27	29	11	30	31	30	12	16	25
Coc	cidiostat												
	Amprolium	0%	0%	0%	4%	0%	10%	0%	0%	0%	0%	0%	0%
	Clopidol	3%	7%	7%	0%	0%	0%	0%	0%	3%	0%	0%	0%
	Decoquinoate	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Ν/Δ	Diclazuril	55%	0%	3%	0%	0%	10%	0%	0%	0%	0%	0%	0%
11/1	Nicarbazine	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Robenidine	24%	3%	3%	4%	0%	0%	0%	0%	13%	0%	0%	0%
	Zoalene	0%	0%	0%	4%	3%	0%	3%	0%	0%	0%	6%	48%
	Overall chemical coccidiostat use	62%	10%	10%	7%	3%	20%	3%	0%	17%	0%	6%	48%

N/A = not applicable (no classification at the time of writing of this report).

For the temporal analyses within province, the proportion (%) of flocks using a specific chemical coccidiostat in the current year has been compared to the proportion (%) of flocks using the same chemical coccidiostat in 2016 (national program started) and the previous surveillance year (grey areas). The presence of blue areas indicates significant temporal differences within province ($P \le 0.05$) for a given chemical coccidiostat. The presence of red areas indicates significant provincial differences ($P \le 0.05$) for a given chemical coccidiostat within the current year (Québec-referent province). The presence of purple areas (2018 surveillance year; Québec-referent province) indicates significant temporal and provincial/regional differences ($P \le 0.05$) for a given chemical coccidiostat.

Marine and freshwater finfish

Summary of antimicrobials use by all routes of administration

Figure 2. 66 Relative quantities (kg) of antimicrobials used in land-based and freshwater net pen facilities and marine finfish, 2017

Data sources: Fisheries and Oceans Canada (https://open.canada.ca/data/en/dataset/288b6dc4-16dc-43cc-80a4-2a45b1f93383 Marine Finfish Data 2017 and Land-based and Freshwater Data 2017). Accessed on June 15, 2019.

Chapter 3 Antimicrobial resistance

Human Surveillance

Serovar distribution

Figure 3. 1 Proportion of human *Salmonella* serovars from all sample sources, 2018

Serovars and number of isolates

Salmonella Paratyphi B does not include S. Paratyphi B var. L (+) tartrate (+), formerly called S. Paratyphi var. Java. The biotype of S. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Multiclass resistance

Table 3. 1 Number of antimicrobial classes in resistance patterns of Salmonella serovars, 2018

Number of isolates by Number of isolates resistant by antimicrobial class and antim	crobial
Number (%) number of antimicrobial Folate Folate	
Province or region/serovar of isolates classes in the resistance Aminoglycosides p-Lactams pathway Macrolides Phenico	Quinoiones Tetracycline
pattern	
U I 2-3 4-3 0-7 GEN STR AIMF AMOUNT FOR MEM 333 3A1 ALM UNL	CIF NAL TEI
Enteritriidie 89/342) 71 14 2 2 1 3 2 1 2	1 9 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 40
Newport $24(02)$ 17 1 2 4 4 4 7 7 6 6	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 10
Paratonia and B 20(77) 1 18 1 1	3 19
$4[5]12^{-1}$ $14(5\underline{4})$ 4 5 4 1 9 8 9 1 3	1 7
Heidelberg $6(23)$ 4 2 2	
Total 260 (100) 146 71 15 20 8 2 34 32 4 3 3 34 14 8 23	16 72 37
Alberta	
Enteritidis 113 (42.3) 96 14 3	2 13 7
Typhimurium 32 (12.0) 18 1 5 8 11 9 1 1 1 13 2 9	9
Newport 30 (11.2) 22 3 2 3 2 5 5 6 5 4 4	1 8
Other serovars 27 (10.1) 20 2 3 2 6 5 2 4 2 6 2 5	3 6
Typhi 23 (8.6) 4 15 3 1 4 1 1 1 1	7 19
4,[5],12:i:- 18 (6.7) 6 1 10 1 2 11 11 11 3 1	5 11
Heidelberg 17 (6.4) 7 8 1 1 8 2 2 2 1 1 1	3
Paratyphi A and B 7 (2.6) 1 6	2 6
<u>Total 267 (100) 174 45 17 25 6 5 45 33 5 7 5 38 14 4 21</u>	11 47 44
Saskatchewan	
Enteritidis 94 (62.2) 78 13 3 1 1 1	12 6
Typhimurium 26 (17.2) 9 3 14 14 17 1 14	2 15
Heidelberg 10 (6.6) 6 2 1 3 3 1 1 1	11
Other serovars 8 (5.3) 2 1 1 2 4 6 3 5 3 4 1 2	1 4 4
4,[5],12:i:- 7 (4.6) <u>2 5 1 4 4 1 5 2 3</u>	5
Newport 4 (2.6) 4	
Typhi 2 (1.3) 1 1	1
Total 151 (100) 102 17 8 23 1 3 25 28 4 7 4 28 5 19	1 19 31
Manitoba	
Enterthdis 126 (65.3) 90 31 4 1 1 1 3 2	3 30 11
Typhimurium 17 (8.8) 10 1 3 3 2 5 6 4 3	1 4
Uther servars 16 (8.3) 15 1 1 1 1 1	1 1
1 ypni 9(4.7) 7 2 2	9
4(0) 1 2 3 2 2 b b 7 2 3 Neurost 7 2 6 6 4 4 4 4 4 4	2 6
Newpoit $r(3,0)$ $\overline{0}$ 1 1 1 1 1 1 1 1 1 1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
Total 102 (100) 127 42 13 8 3 3 15 15 20 10 1 8	3 43 25
	J 4J 2J
Enteritidis 298/33.0) 201 85 7 5 1 7 6 7 1 1	3 88 13
Typhi 152 (16.8) 11 105 10 24 2 38 25 7 26 26 27	27 136 3
Typhinurium $120(133)$ 87 4 4 22 3 3 25 22 2 1 26 11 3 23	4 7 28
Heidelbera 93 (10.3) 66 17 10 5 21 8 5 5 7 2	1 1
Newport 80 (8.8) 77 1 2 2 2 3 3 3 2 3	3
Other serovars 83 (9.2) 43 2 7 17 14 12 31 33 18 34 14 1 14	16 38 36
4.[5],12::- 45 (5.0) 15 3 6 18 3 4 23 21 1 27 4 4 5	2 1 28
Paratyphi A and B 33 (3.6) 29 4 1 2 1	8 33 1

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Salmonella Paratyphi B does not include *S*. Paratyphi B var. L (+) tartrate (+), formerly called *S*. Paratyphi var. Java. The biotype of *S*. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

		Nu	mber	r of isolates by Number of isolates resistant by antimicrobial class and antimicrobial																
	Number (%)	num	ber of	f anti	micro	bial								Fol	ate					
Province or region/serovar	of isolates	class	ses in	the r	esista	ince	Aminogl	lycosides		β-	Lacta	ims		path	way	Macrolides	Phenicols	Quin	olones	Tetracyclines
			p	atteri	n 4-5	6-7	GEN	STP		AMC	CPO	FOX	MEM	ainini 222	SYT		СШ	CIP	NAL	TET
Québec		•		20	4 0	0-7	GEN	OII	<i>P</i>	Aire	One	TOX	III LIII	000	UX1	ALIN	OIL	011	TUAL	
Enteritidis	134(35.8)	97	34	3					2					1	1			3	36	2
Typhimurium	61 (16.3)	31	2	2	22	4	1	27	26		1			27	5		24	1	5	28
Heidelberg	49 (13.1)	38	6	5			2	8	5	2	2	2		2	1	1				1
4,[5],12:i:-	41 (11.0)	19	1	3	18		3	21	19					20	3		4		2	21
Newport	39 (10.4)	30		2	1	6		8	6					9	9	7	7		1	9
Other serovars	34 (9.1)	22		2	5	5	1	10	10	3	7	2		10	4		10	3	8	11
Typhi	14 (3.7)	4	9	1				2										1	9	
Paratyphi A and B	2 (0.5)		2																2	
Total	374 (100)	241	54	18	46	15	7	76	68	5	10	4		69	23	8	45	8	63	72
New Brunswick																				
Enteritidis	101 (62.4)	68	32		1				2			1				1	1	5	26	4
Heidelberg	19 (11.7)	9	5	3	2		3	7	4	1	1	1		4			1		1	3
Other serovars	19 (11.7)	15	2	1	1		1	1	2	1	1			2	1		1		2	1
Typhimurium	15 (9.3)		1		2	1		4	3					3			3		1	3
4,[5],12::-	6 (3.7)	2	2		1	1	1	2	2					2	1	1	1	1		4
Newport	2 (1.23)	2																		
I otal	162 (100)	107	42	4	1	2	5	14	13	2	2	2		11	2	2	1	6	30	15
Nova Scotla	100 (70.0)			-																
Enteritidis	120 (70.2)	- 89	25	5	1									2			1	2	23	11
Heidelberg	28 (16.4)		12	3	-		2	/	9	4	6	4		3	1		_			1
Typhimurium	11 (6.4)	5		1	5		1	6	5					6			5			6
Other serovars	10 (5.8)		1		2		1	2	1		1			2					2	2
4,[5],12::-	1 (0.6)	1																		
Newport	1 (0.6)		1						1											
Total	171 (100)	115	39	9	8		4	17	18	4	7	4		13	1		6	2	25	20
Prince Edward Island																				
Enteritidis	13 (56.5)	8	4		1			1	1					1				1	2	3
Heidelberg	4 (17.4)	2	2					1												1
4,[5],12:i:-	3 (13.0)				3			3	3					3						3
Typhimurium	2 (8.7)	1			1			1	1					1			1			1
Newport	1 (4.35)			1										1	1					1
Total	23 (100)	11	6	1	5			6	5					6	1		1	1	2	9
Newfoundland and Labrador																				
Enteritidis	45 (72.6)	38	7																7	
Other serovars	8 (12.9)	7			1			1						1	1		1		1	1
Heidelberg	3 (4.8)	1	1	1			1	2						1						
Typhimurium	3 (4.8)	2			1			1	1					1			1			1
4,[5],12:i:-	2 (3.2)				2			2	2					2						2
Newport	1 (1.6)	1																		
Total	62 (100)	49	8	1	4		1	6	3					5	1		2		8	4
National																				
Enteritidis	1,133 (44.1)	836	259	27	11		1	12	18			1		17	6	1	5	20	246	65
Typhimurium	307 (12.0)	182	10	20	85	10	6	101	95	5	4	4		110	26	5	90	7	16	105
Typhi	243 (9.5)	23	172	19	27	2		50	29		8			29	29		30	43	214	3
Heidelberg	235 (9.1)	148	58	25	4		14	60	34	15	17	15		20	5	1	2		2	12
Other serovars	249 (9.7)	169	7	14	36	23	18	59	62	11	38	8		64	24	1	37	22	62	67
Newport	189 (7.4)	159	1	8	5	16	2	20	19					27	26	20	21		2	29
4,[5],12:i:-	145 (5.7)	50	7	16	64	8	13	81	75		2			86	16	5	20	3	11	87
Paratyphi A and B	66 (2.6)	5	55	6			1	3	2					1			1	13	60	2
Total	2,567	1,572	569	135	232	59	55	386	334	31	69	28		354	132	33	206	108	613	370

Table 3. 1 Number of antimicrobial classes in resistance patterns of Salmonella serovars, 2018 (continued)

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Salmonella Paratyphi B does not include *S*. Paratyphi B var. L (+) tartrate (+), formerly called *S*. Paratyphi var. Java. The biotype of *S*. Paratyphi B included here is tartrate (-) and associated with severe typhoid-like fever. Salmonella Paratyphi B var. L (+) tartrate (+) is commonly associated with gastrointestinal illness.

Temporal antimicrobial resistance summary

Figure 3. 2 Temporal variations in resistance of non-typhoidal *Salmonella* from humans, 2009 to 2018

Year and number of isolates

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	3,180	2,821	2,681	3,645	2,940	2,544	2,360	2,405	2,080	2,191
Antimicrobial										
Ampicillin	11%	14%	15%	13%	14%	13%	14%	13%	13%	13%
Ceftriaxone	3%	5%	7%	6%	6%	6%	5%	4%	4%	3%
Gentamicin	1%	1%	1%	1%	1%	1%	2%	2%	2%	2%
Nalidixic acid	6%	5%	8%	6%	5%	9%	11%	16%	19%	15%
Streptomycin	9%	10%	10%	9%	11%	13%	15%	14%	18%	15%
Tetracycline	11%	12%	11%	11%	14%	11%	12%	13%	14%	16%
Trimethoprim-										
sulfamethoxazole	2%	3%	3%	3%	3%	2%	3%	3%	3%	5%

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	214	210	211	192	171	184	162	162	237	278
Antimicrobial										
Ampicillin	14%	14%	25%	13%	9%	14%	17%	17%	10%	11%
Ceftriaxone	0%	0%	0%	0%	0%	0%	1%	0%	0%	3%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Nalidixic acid	77%	80%	84%	84%	77%	82%	76%	84%	87%	88%
Streptomycin	12%	13%	24%	12%	8%	23%	27%	23%	16%	19%
Tetracycline	5%	3%	3%	0%	5%	1%	1%	2%	3%	1%
Trimethoprim-										
sulfamethoxazole	12%	14%	26%	14%	9%	15%	17%	19%	9%	10%

Figure 3. 4 Temporal variations in resistance of *Salmonella* Enteritidis from humans, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	1,092	1,007	977	1,209	741	1,218	1,188	1,165	1,043	1,108
Antimicrobial										
Ampicillin	2%	2%	4%	4%	2%	2%	4%	3%	2%	2%
Ceftriaxone	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Nalidixic acid	10%	10%	15%	12%	12%	15%	17%	27%	31%	22%
Streptomycin	2%	1%	2%	2%	1%	1%	2%	1%	2%	1%
Tetracycline	1%	2%	4%	3%	3%	1%	3%	4%	3%	6%
Trimethoprim-										
sulfamethoxazole	0%	1%	2%	1%	1%	1%	3%	2%	0%	1%

Year and number of isolates

Figure 3. 5 Temporal variations in resistance of *Salmonella* Heidelberg from humans, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	381	476	382	557	400	364	307	315	250	234
Antimicrobial										
Ampicillin	33%	32%	41%	33%	34%	32%	33%	19%	16%	15%
Ceftriaxone	14%	19%	33%	27%	32%	30%	27%	16%	12%	7%
Gentamicin	4%	1%	1%	1%	3%	1%	7%	8%	5%	6%
Nalidixic acid	1%	0%	0%	0%	1%	1%	2%	2%	1%	1%
Streptomycin	7%	6%	4%	3%	6%	21%	32%	27%	42%	26%
Tetracycline	5%	3%	2%	3%	4%	2%	6%	4%	2%	5%
Trimethoprim-										
sulfamethoxazole	1%	0%	1%	2%	1%	1%	3%	2%	4%	2%

Year and number of isolates

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	136	139	193	149	172	201	229	185	139	189
Antimicrobial										
Ampicillin	2%	3%	7%	6%	8%	4%	5%	6%	9%	10%
Ceftriaxone	1%	3%	7%	6%	5%	3%	2%	3%	2%	0%
Gentamicin	0%	0%	0%	0%	2%	1%	2%	2%	1%	1%
Nalidixic acid	0%	1%	0%	2%	1%	0%	0%	2%	5%	1%
Streptomycin	3%	4%	7%	8%	7%	4%	6%	8%	12%	11%
Tetracycline	4%	6%	9%	9%	8%	4%	5%	9%	10%	15%
Trimethoprim-										
sulfamethoxazole	1%	0%	4%	3%	2%	1%	0%	4%	8%	14%

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	54	32	13	46	41	36	36	25	38	35
Antimicrobial										
Ampicillin	4%	3%	8%	0%	2%	0%	3%	0%	0%	6%
Ceftriaxone	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%
Nalidixic acid	74%	44%	46%	83%	71%	72%	69%	88%	82%	86%
Streptomycin	2%	3%	8%	0%	2%	14%	17%	0%	8%	6%
Tetracycline	2%	6%	8%	0%	7%	0%	0%	0%	3%	3%
Trimethoprim-										
sulfamethoxazole	0%	0%	0%	0%	5%	0%	0%	0%	0%	0%

Figure 3. 8 Temporal variations in resistance of Salmonella Typhi from humans, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	160	178	198	146	130	148	126	137	199	243
Antimicrobial										
Ampicillin	18%	16%	26%	16%	11%	17%	21%	20%	12%	12%
Ceftriaxone	1%	0%	0%	0%	0%	0%	0%	0%	1%	3%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Nalidixic acid	78%	87%	87%	84%	78%	84%	78%	83%	88%	88%
Streptomycin	16%	15%	25%	16%	10%	26%	30%	27%	18%	21%
Tetracycline	6%	2%	3%	0%	5%	1%	2%	3%	4%	1%
Trimethoprim-										
sulfamethoxazole	16%	17%	27%	18%	11%	18%	21%	22%	11%	12%

Figure 3. 9 Temporal variations in resistance of *Salmonella* Typhimurium from humans, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	417	453	364	378	381	358	294	323	321	299
Antimicrobial										
Ampicillin	24%	24%	24%	25%	24%	25%	24%	25%	29%	30%
Ceftriaxone	2%	1%	3%	2%	2%	2%	1%	3%	2%	1%
Gentamicin	1%	1%	2%	4%	1%	1%	2%	1%	1%	2%
Nalidixic acid	3%	2%	4%	2%	2%	2%	5%	5%	5%	5%
Streptomycin	26%	25%	27%	28%	27%	33%	31%	27%	36%	32%
Tetracycline	28%	25%	28%	29%	26%	29%	28%	29%	32%	34%
Trimethoprim-										
sulfamethoxazole	2%	4%	4%	7%	4%	4%	5%	6%	5%	8%

Year and number of isolates

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	186	163	127	131	166	138	140	155	142	138
Antimicrobial										
Ampicillin	22%	35%	33%	34%	51%	49%	51%	55%	56%	51%
Ceftriaxone	10%	9%	9%	2%	6%	4%	2%	4%	4%	1%
Gentamicin	2%	1%	0%	1%	2%	8%	4%	10%	6%	9%
Nalidixic acid	1%	1%	1%	2%	2%	2%	7%	5%	15%	8%
Streptomycin	12%	28%	22%	31%	47%	52%	55%	56%	63%	55%
Tetracycline	33%	40%	38%	43%	61%	69%	59%	59%	68%	61%
Trimethoprim-										
sulfamethoxazole	1%	2%	2%	4%	3%	7%	3%	5%	12%	12%

Retail Meat Surveillance

Multiclass resistance

Table 3. 2 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from beef, 2018

	Number (%)	Nu num	mber iber o	· of is of ant	olates imicro	i by obial			Number of isolate	es resista	ant by ar Folat	ntimicr e	obial class	and antimic	robial		
Province or region	of isolates	clas	ses iı	n the i	resist	ance	Aminog	lycosides	β-Lactams		pathw inhibito	ay M ors	lacrolides	Phenicols	Quino	lones	Tetracyclines
		0	1	2-3	4-5	6-7	GEN	STR		X MEM	<u>555 5</u>	хт —	Δ7M	CHI	CIP	ΝΔΙ	TET
British Columbia	35 (28 7)	31	2	2	- 0		OEN	2			2	1		OTIL	O II	1	2
Drairios	7 (5 7)	6	1	~				2			2					-	1
Plaines	7 (5.7)	0	1														1
Ontario	2 (1.6)	1			1			1	1		1	1		1			1
Québec	78 (63.9)	60	8	5	4	1	1	8	6		7	4	1	4		2	16
National	122 (100)	98	11	7	5	1	1	11	7		10	6	1	5		3	20

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

		Nu	mber	of iso	plates by			Nur	nber	of isc	olates resist	ant by anti Folate	nicrobial class	and antimic	crobial	
Province or region/serovar	Number (%)	nun	iber (of anti		Aminoal	vcosides		ß-	Lacta	ms	pathway	Macrolides	Phenicols	Quinolones	Tetracyclines
· · · · · · · · · · · · · · · · · · ·	of isolates	Class	562 II 1	natter	n							inhibitors				. et acyclinee
		0	1	2–3	 4–5 6–7	GEN	STR	AMP	AMC	CRO	FOX MEM	SSS SXT	AZM	CHL	CIP NAL	TET
British Columbia																
Enteritidis	17 (53.1)	17														
Kentucky	10 (31.3)			9	1	1	10	2	2	2	2	1				10
Schwarzengrund	2 (6.3)	2														
Uganda	2 (6.3)	2														
Rissen	1 (3.1)			1			1					1				1
Total	32 (100)	21		10	1	1	11	2	2	2	2	2				11
Prairies																
Enteritidis	2 (66.7)	1	1												1	
Infantis	1 (33.3)			1		1	1					1				
Total	3 (100)	1	1	1		1	1					1			1	
Québec																
Kentucky	33 (34.7)	1	1	31			31	5	5	5	5					32
Heidelberg	28 (29.5)	14	8	6		3	11	7	6	6	6	3 2		1		2
Enteritidis	12 (12.6)	12														
Hadar	5 (5.3)	2		3			3									3
Infantis	3 (3.2)	3														
Livingstone	2 (2.1)		2													2
Newport	2 (2.1)	2														
Schwarzengrund	2 (2.1)			2			2					2 1				2
Thompson	2 (2.1)	2														
Less common serovars	6 (6.3)	6														
Total	95 (100)	42	11	42		3	47	12	11	11	11	5 <mark>3</mark>		1		41
National																
Kentucky	43 (33.1)	1	1	40	1	1	41	7	7	7	7	1				42
Enteritidis	31 (23.8)	30	1												1	
Heidelberg	28 (21.5)	14	8	6		3	11	7	6	6	6	3 2		1		2
Hadar	5 (3.8)	2		3			3									3
Infantis	4 (3.1)	3		1		1	1					1				
Schwarzengrund	4 (3.1)	2		2			2					2 1				2
Less common serovars	15 (11.5)	12	2	1			1					1				3
Total	130 (100)	64	12	53	1	5	59	14	13	13	13	8 3		1	1	52

Table 3. 3 Number of antimicrobial classes in resistance patterns of Salmonella from chicken, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province or region	Number (%) of isolates	Nu nun clas	ımbeı nber ses i	r of is of ant n the i natter	olates imicro resist n	s by obial ance	Aminog	lycosides	Nun	nber β-	of iso Lacta	lates ms	resista	ant by Fola path inhibi	antim ate way itors	icrobial class Macrolides	and antimic Phenicols	crobial Quinolo	ones	Tetracyclines
		0	1	2–3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP I	NAL	TET
British Columbia	47 (26.1)	13	6	13	15		16	25	25	5	6	5		23	3		1		5	24
Prairies	9 (5.0)	2		5	2		3	3	4					5	1				1	5
Ontario	2 (1.1)			2			2	2						2						
Québec	122 (67.8)	25	10	64	23		35	78	38	6	6	6		76	38		10		2	58
National	180 (100)	40	16	84	40		56	108	67	11	12	11		106	42		11		8	87

Table 3. 4 Number of antimicrobial classes in resistance patterns of *Escherichia coli* from chicken, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

For Ontario and the Prairies in 2018, a partial year of retail sampling was conducted due to difficulties in staffing field personnel. As a result, the sampling target and subsequent isolate yields were not achieved and results should be interpreted with caution.

Table 3. 5 Number of antimicrobial classes in resistance patterns of Campylobacter from chicken, 2018

		Nu	mber	ofis	olates by	N	umber of isc	olates resistant b	y antimi	crobial	class and a	ntimicr	obial	
Province or region/species	Number (%) of isolates	nun clas	nber o ses in I	of anti n the r patter	imicrobial resistance n	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quinc	olones	Tetracyclines
				2–3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
British Columbia														
Campylobacter jejuni	29 (85.3)	15	8	6								9	9	11
Campylobacter coli	5 (14.7)	3	2									2	2	
Total	34 (100)	18	10	6								11	11	11
Prairies														
Campylobacter jejuni	5 (83.3)	3	1	1								1	1	2
Campylobacter coli	1 (16.7)		1											1
Total	6 (100)	3	2	1								1	1	3
Ontario														
Campylobacter spp.	1 (100)	1												
Total	1 (100)	1												
Québec														
Campylobacter jejuni	53 (85.5)	34	7	11	1		5	7	11	11		2	2	11
Campylobacter coli	5 (8.1)	2		3			1	3	3	3				
Campylobacter spp.	4 (6.5)	3	1											1
Total	62 (100)	39	8	14	1		6	10	14	14		2	2	12
National														
Campylobacter jejuni	87 (84.5)	52	16	18	1		5	7	11	11		12	12	24
Campylobacter coli	11 (10.7)	5	3	3			1	3	3	3		2	2	1
Campylobacter spp.	5 (4.9)	4	1											1
Total	103 (100)	61	20	21	1		6	10	14	14		14	14	26

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 3. 6 Number of antimicrobial classes in resistance patterns of *Escherichia coli* from pork, 2018

Province or region	Number (%) of isolates	Nu num clas	mber nber ses i	r of iso of ant n the i patter	olates imicro resist n	by bial ance	Aminog	lycosides	Nur	nber β·	of isc Lacta	lates ms	resista	ant by a Fola pathy inhibi	antim ate way tors	icrobial class Macrolides	and antimic Phenicols	crobial Quinc	olones	Tetracyclines
		0	1	2–3	4-5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	10 (19.6)	7	1	1	1			1	1	1	1	1		1				1	1	3
Prairies	1 (2.0)	1																		
Ontario	1 (2.0)				1			1	1					1						1
Québec	39 (76.5)	25		11	3		2	9	8	1		1		6	4		1		1	11
National	51 (100)	33	1	12	5		2	11	10	2	1	2		8	4		1	1	2	15

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

		Nu	mber	of is	plates by			Nur	nber	of isol	ates resi	istant by	antimi	icrobial class	and antimic	robial	
	Number (%)	num	nber d	of anti	imicrobial							Fol	ate				
Province or region/serovar	of isolates	clas	ses ir	n the I	resistance	Aminog	ycosides		β-	Lacta	ns	path	way	Macrolides	Phenicols	Quinolones	Tetracyclines
			F	oatter	n							inhib	itors				
		0	1	2–3	4–5 6–7	GEN	STR	AMP	AMC	CRO	FOX ME	M SSS	SXT	AZM	CHL	CIP NAL	TET
British Columbia																	
Reading	13 (38.2)	6	4	1	2		3	6				3					3
Enteritidis	8 (23.5)	8															
Hadar	4 (11.8)			4			4										4
Worthington	3 (8.8)	3															
Schwarzengrund	2 (5.9)	2															
Uganda	2 (5.9)	2															
Muenchen	1 (2.9)	1															
Thompson	1 (2.9)	1															
Total	34 (100)	23	4	5	2		7	6				3					7
Prairies																	
Reading	3 (100)	1	1		1		1	2				1					1
Total	3 (100)	1	1		1		1	2				1					1
Québec																	
Heidelberg	34 (44.7)	25	5	4		5	6	2	2	2	2	5	1				
Uganda	9 (11.8)	1		8			8					8					8
Reading	8 (10.5)	8															
Schwarzengrund	5 (6.6)	4		1			1					1					1
Agona	3 (3.9)	2	1														1
Albany	3 (3.9)	1	2			1	2										
Typhimurium	3 (3.9)	1		2			1					2					2
Enteritidis	2 (2.6)	2															
Muenchen	2 (2.6)	1		1			1					1					1
Less common serovars	7 (9.2)	3	2	2		2	2					1	1				2
Total	76 (100)	48	10	18		8	21	2	2	2	2	18	2				15
National																	
Heidelberg	34 (30.1)	25	5	4		5	6	2	2	2	2	5	1				
Reading	24 (21.2)	15	5	1	3		4	8				4					4
Uganda	11 (9.7)	3		8			8					8					8
Enteritidis	10 (8.8)	10															
Schwarzengrund	7 (6.2)	6		1			1					1					1
Hadar	4 (3.5)			4			4										4
Agona	3 (2.7)	2	1														1
Albany	3 (2.7)	1	2			1	2										
Muenchen	3 (2.7)	2		1			1					1					1
Typhimurium	3 (2.7)	1		2			1					2					2
Worthington	3 (2.7)	3															
Less common serovars	8 (7.1)	4	2	2		2	2					1	1				2
Total	113 (100)	72	15	23	3	8	29	10	2	2	2	22	2				23

Table 3. 7 Number of antimicrobial classes in resistance patterns of Salmonella from turkey, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Table 3. 8 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from turkey, 2018

Province or region	Number (%) of isolates	Nu nun clas	mber nber o ses in	of iso of anti of the r patter	olates imicro resist n	by bial ance	Aminog	lycosides	Nur	nber β-	of isc Lacta	lates ms	resista	ant by Fol path inhib	antim ate way itors	icrobial class Macrolides	and antimic Phenicols	Crobial Quinc	olones	Tetracyclines
		0	1	2–3	4-5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	49 (27.4)	15	10	18	6		5	16	14	1		1		13	6		1		1	31
Prairies	7 (3.9)	1	2	4			1	2	2					1						5
Ontario	2 (1.1)	1		1				1						1						1
Québec	121 (67.6)	47	28	33	12	1	15	38	33	4	5	3		28	7		6	1	3	53
National	179 (100)	64	40	56	18	1	21	57	49	5	5	4		43	13		7	1	4	90

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Temporal antimicrobial resistance summary

Province/region		Britis	h Colı	ımbia			P	rairie				C	Ontario	D			Q	uébe	С	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	43	45	59	59	35	97	86	48	13	7	121	53	68	64	2	85	79	82	82	78
Antimicrobial																				
Ampicillin	2%	9%	7%	2%	0%	2%	1%	0%	0%	0%	4%	8%	9%	13%	50%	5%	5%	1%	7%	8%
Ceftriaxone	2%	2%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Gentamicin	0%	0%	2%	2%	0%	1%	1%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	1%	1%
Nalidixic acid	0%	2%	2%	2%	3%	1%	2%	0%	0%	0%	2%	2%	1%	3%	0%	1%	1%	0%	0%	3%
Streptomycin	2%	4%	10%	2%	6%	9%	7%	4%	8%	0%	12%	23%	9%	13%	50%	11%	11%	6%	13%	10%
Tetracycline	9%	22%	12%	5%	6%	20%	8%	10%	15%	14%	17%	34%	15%	30%	50%	25%	27%	12%	17%	21%
Trimethoprim-																				
sulfamethoxazole	0%	0%	3%	2%	3%	2%	1%	0%	0%	0%	2%	6%	1%	2%	50%	8%	4%	1%	2%	5%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province/region		Britis	h Colı	ımbia			Р	rairie	s			C	Ontari	0			C	uébe	с	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	36	69	62	55	32	81	77	28	8	3	75	26	22	23	0	92	109	71	81	95
Antimicrobial																				
Ampicillin	6%	14%	5%	7%	6%	7%	13%	7%	0%	0%	27%	12%	5%	17%		27%	16%	10%	7%	13%
Ceftriaxone	6%	14%	5%	5%	6%	7%	9%	7%	0%	0%	27%	12%	5%	9%		27%	15%	8%	6%	12%
Gentamicin	0%	0%	2%	0%	3%	0%	3%	0%	0%	33%	8%	0%	5%	13%		2%	1%	6%	5%	3%
Nalidixic acid	0%	4%	0%	4%	0%	0%	1%	0%	0%	33%	0%	0%	0%	0%		0%	0%	0%	0%	0%
Streptomycin	17%	19%	19%	22%	34%	11%	16%	7%	13%	33%	29%	50%	27%	61%		30%	54%	65%	43%	49%
Tetracycline	14%	19%	18%	20%	34%	7%	13%	7%	13%	0%	27%	50%	27%	48%		28%	53%	61%	37%	43%
Trimethoprim-																				
sulfamethoxazole	0%	0%	2%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	4%		0%	2%	1%	1%	3%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 3. 13 Temporal variations in resistance of *Escherichia coli* isolates from chicken, 2014 to 2018

																			_	
Province/region		Britis	sh Colu	mbia				Prairie	s				Ontari	0			C	Québe	b j	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	65	62	82	77	47	109	107	36	15	9	144	69	75	76	2	128	127	118	125	122
Antimicrobial																				
Ampicillin	69%	68%	59%	55%	53%	39%	37%	39%	27%	44%	33%	32%	19%	25%	0%	43%	38%	41%	42%	31%
Ceftriaxone	48%	31%	17%	8%	13%	20%	18%	8%	0%	0%	11%	12%	4%	5%	0%	18%	12%	8%	7%	5%
Gentamicin	11%	11%	34%	14%	34%	10%	16%	28%	20%	33%	19%	22%	23%	24%	100%	29%	28%	41%	35%	29%
Nalidixic acid	5%	2%	12%	12%	11%	6%	5%	11%	13%	11%	3%	1%	0%	0%	0%	1%	3%	1%	1%	2%
Streptomycin	45%	61%	62%	45%	53%	35%	34%	42%	47%	33%	52%	38%	29%	39%	100%	61%	60%	66%	61%	64%
Tetracycline	35%	58%	60%	44%	51%	41%	47%	36%	53%	56%	56%	49%	37%	45%	0%	59%	57%	62%	57%	48%
Trimethoprim-																				
sulfamethoxazole	8%	15%	16%	4%	6%	7%	7%	3%	13%	11%	9%	9%	9%	13%	0%	21%	26%	27%	19%	31%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province/region		Britis	h Col	umbia	1		P	rairie	s			C	Ontari	0			G	luébe	с	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	43	46	65	74	34	67	65	16	10	6	76	39	46	29	1	54	49	49	52	62
Antimicrobial																				
Azithromycin	0%	2%	0%	0%	0%	0%	6%	0%	0%	0%	3%	3%	4%	0%	0%	13%	8%	2%	13%	23%
Ciprofloxacin	21%	41%	35%	32%	32%	12%	9%	6%	30%	17%	12%	15%	15%	3%	0%	4%	2%	6%	6%	3%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Telithromycin	0%	0%	0%	0%	0%	0%	6%	0%	0%	0%	1%	0%	0%	0%	0%	4%	0%	0%	2%	10%
Tetracycline	28%	48%	45%	43%	32%	54%	40%	44%	60%	50%	45%	46%	43%	41%	0%	48%	45%	49%	29%	19%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 3. 15 Temporal variations in resistance of *Escherichia coli* isolates from pork, 2014 to 2018

British Columbia Québec Province/region Prairies Ontario '14 '14 '14 '18 '14 '15 '17 '18 '15 '18 /ear '15 Number of isola Antim icrobial 24% 19% 21% 17% 33% 28% 36% 31% 30% 100% 20% Ampicillin 21% 8% 8% 10% 0% 0% 17% 14% 21% Ceftriaxone 10% 3% 3% 0% 10% 6% 2% 17% 0% 0% 2% 2% 2% 2% 0% 8% 0% 2% 3% 0% 0% 0% 4% 3% 5% Gentamicin 3% 0% 0% 0% 0% 0% 0% 0% 2% 0% 4% 0% 0% 0% 0% Nalidixic acid 0% 0% 0% 0% 10% 0% 0% 0% 0% 0% 2% 0% 2% 0% 0% 0% 0% 0% 3% 0% 21% 8% 0% 35% Streptomycin 34% 8% 10% 23% 26% 33% 0% 48% 35% 36% 1**00**% 27% 31% 26% 20% 23% 17% 41% 15% 38% 0% 57% 69% 100% 49% 40% Tetracycline 16% 30% 38% 33% 0% 53% 49% 47% 42% 28% Trimethoprim-10% 10% 0% 0% 0% 2% 2% 0% 0% 0% 10% 16% 6% 0% 10% sulfamethoxazole 16% 14% 10%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 3. 16 Temporal variations in resistance of *Salmonella* isolates from turkey, 2014 to 2018

Province/region		Britis	h Colu	umbia			P	rairie	s			C	Ontari	0			C	luébe	с	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	31	38	37	41	34	44	51	12	3	3	40	37	15	17	0	51	52	33	40	76
Antimicrobial																				
Ampicillin	13%	13%	24%	20%	18%	14%	31%	17%	0%	67%	15%	5%	0%	12%		29%	15%	18%	15%	3%
Ceftriaxone	10%	0%	3%	2%	0%	0%	4%	0%	0%	0%	8%	5%	0%	0%		22%	13%	12%	8%	3%
Gentamicin	6%	5%	3%	5%	0%	11%	10%	8%	0%	0%	18%	35%	40%	6%		16%	27%	24%	28%	11%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		0%	0%	0%	3%	0%
Streptomycin	19%	24%	30%	32%	21%	32%	39%	42%	0%	33%	33%	49%	33%	41%		33%	40%	33%	43%	28%
Tetracycline	23%	18%	27%	32%	21%	30%	39%	33%	0%	33%	25%	27%	20%	29%		41%	13%	9%	23%	20%
Trimethoprim-																				
sulfamethoxazole	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		2%	0%	0%	0%	3%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 3. 17 Temporal variations in resistance of *Escherichia coli* isolates from turkey, 2014 to 2018

Province/region		Britis	h Colı	umbia			P	rairie	s			C	Ontari	0			C	luébe	С	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	64	67	80	86	49	103	106	32	13	7	143	70	64	77	2	118	116	107	112	121
Antimicrobial																				
Ampicillin	34%	33%	34%	26%	29%	33%	28%	25%	31%	29%	33%	36%	23%	22%	0%	29%	29%	33%	34%	27%
Ceftriaxone	8%	7%	6%	3%	0%	3%	3%	6%	0%	0%	1%	4%	0%	0%	0%	5%	3%	7%	4%	4%
Gentamicin	17%	18%	26%	16%	10%	20%	20%	31%	8%	14%	20%	17%	13%	18%	0%	15%	18%	21%	20%	12%
Nalidixic acid	0%	0%	5%	0%	2%	2%	2%	0%	0%	0%	1%	4%	0%	3%	0%	3%	3%	3%	1%	2%
Streptomycin	44%	48%	56%	43%	33%	45%	45%	50%	46%	29%	43%	44%	38%	36%	50%	42%	43%	42%	36%	31%
Tetracycline	44%	51%	61%	50%	63%	59%	55%	66%	62%	71%	67%	69%	61%	47%	50%	59%	70%	52%	51%	44%
Trimethoprim-																				
sulfamethoxazole	8%	3%	6%	7%	12%	6%	11%	0%	0%	0%	10%	10%	13%	9%	0%	11%	15%	5%	16%	6%

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Recovery results

Table 3. 9 Retail Meat Surveillance recovery rates, 2003 to 2018

CIPARS Component /	Province /	Year	Percentage (%	6) of isolate	s recovered and	d number of	isolates recovei	ed / number	of samples s	ubmitted
Animal species	- region		Escherich	a coli	Salmon	ella	Campyloba	cter	Enteroco	ccus
Beef	British Columbia	2005	93%	27/29						
		2007	79%	49/62						
		2008	77%	88/115						
		2009	71%	79/112						
		2010	51%	64/125						
		2011	53%	57/107						
		2012	60%	76/126						
		2013	47%	40/85						
		2014	43%	43/100						
		2015	42%	45/108						
		2016	45%	59/130						
		2017	44%	59/135						
	Desisian	2018	47%	35/75						
	Prairies	2005	79%	120/151						
		2006	76%	123/101						
		2007	70%	10/101						
		2006	20%	134/177						
		2009	80%	107/13/						
		2010	75%	54/72						
		2011	75%	80/107						
		2012	53%	48/90						
		2013	53%	97/184						
		2014	46%	86/186						
		2015	62%	48/78						
		2017	42%	13/31						
		2018	35%	7/20						
	Ontario	2003	66%	101/154	2%	2/84	3%	2/76	91%	69/76
		2004	80%	190/237						
		2005	81%	184/227						
		2006	81%	189/235						
		2007	71%	184/227						
		2008	78%	185/236						
		2009	79%	195/248						
		2010	69%	123/177						
		2011	73%	161/222						
		2012	63%	110/176						
		2013	58%	104/180						
		2014	51%	121/236						
		2015	46%	53/116						
		2016	56%	68/122						
		2017	51%	64/126						
	Québee	2018	50%	2/4	09/	0/22	09/	0/22	80%	29/25
	Quebec	2003	57%	04/14/	0%	0/33	0%	0/33	0U %	20/35
		2004	56%	137/243						
		2005	50%	120/225						
		2000	50 % 68%	147/216						
		2008	59%	126/214						
		2000	54%	108/201						
		2010	46%	102/223						
		2011	45%	91/204						
		2012	51%	107/219						
		2013	42%	74/175						
		2014	41%	85/207						
		2015	39%	79/203						
		2016	43%	82/192						
		2017	39%	82/210						
		2018	36%	78/214						

See corresponding footnotes at the end of the table.

CIPARS Component /	Province / region	Year	Percentage (%)	of isolate	es recovered a	and number o	of isolates reco	vered / num	ber of samples	submitted
Animal species			Escherichia	coli	Salmo	onella	Campylo	bacter	Enteroc	occus
	Atlantic	2004	67%	16/24						
		2007	52%	16/31						
		2008	70%	39/56						
		2009	69%	137/200						
		2010	69%	126/183						
		2011	58%	110/191						
		2012 ^d	50%	24/48						
		2013	58%	83/143						
		2014	57%	118/207						
		2015 ^e								
		2016 ^e								
		2017 ^e								
		2018 ^e								
Chicken	British Columbia	2005	95%	19/20	13%	5/39	69%	27/39	100%	20/20
		2007	98%	42/43	22% [⊳]	18/81	35%	28/80	100%	34/34
		2008	90%	70/78	32%	47/145	34%	50/145	100%	78/78
		2009	95%	70/74	40%	59/146	53%	78/146	97%	72/74
		2010	89%	75/84	34%	56/166	42%	70/166		
		2011	96%	70/73	45%	64/143	50%	71/143		
		2012	99%	82/83	32%	53/166	44%	73/166		
		2013	95%	57/60	24%	28/118	42%	50/118		
		2014	98%	65/66	27%	36/133	32%	43/133		
		2015	91%	62/68	51%	69/136	35%	47/136		
		2016	94%	82/87	36%	62/173	38%	65/172		
		2017	89%	77/87	32%	55/173	43%	74/173		
		2018	94%	47/50	33%	32/97	35%	34/97		
	Prairies	2005	98%	81/83	14%	21/153	37%	53/145	98%	83/85
		2006	98%	85/86	16%	25/153	33%	51/155	98%	85/87
		2007	97%	75/77	31%	43/141	35%	49/141	100%	77/77
		2008	99%	91/92	40%	64/161	25%	41/161	100%	92/92
		2009	98%	90/92	47%	71/150	32%	48/150	100%	92/92
		2010	90%	71/79	32%	42/132	28%	37/132		
		2011	97%	38/39	40%	29/73	34%	25/73		
		2012	94%	67/71	33%	46/140	29%	40/140		
		2013	97%	58/60	32%	38/120	20%	24/120		
		2014	97%	109/112	36%	81/222	30%	67/222		
		2015	95%	107/113	35%	77/220	30%	65/220		
		2016	90%	36/40	37%	28/76	21%	10/70		
		2017	94%	0/10	24%	0/33 2/20	30%	10/33 6/20		
	Ontario	2018	90%	9/10	15%	27/167	30%	78/166	00%	1/12/1//
	Ontario	2003	95%	150/158	10%	54/315	47 %	1/3/315	100%	158/158
		2004	95%	1/5/153	9%	26/303	40%	120/303	99%	150/152
		2000	97%	152/156	12%	26/311	34%	10//311	98%	154/156
		2000	98%	157/161	54% ^b	172/320	37%	117/320	100%	161/161
		2008	96%	150/156	45%	139/311	39%	121/311	99%	154/156
		2000	95%	155/164	43%	142/328	31%	101/328	100%	164/164
		2010	86%	100/116	39%	90/232	28%	64/232		
		2011	93%	137/147	40%	119/294	24%	71/293		
		2012	92%	107/116	40%	102/232	39%	87/226		
		2013	93%	110/118	39%	89/231	35%	83/234		
		2014	92%	144/157	24%	75/312	25%	78/312		
		2015	91%	69/76	17%	26/151	26%	40/151		
		2016	93%	75/81	14%	22/160	29%	46/160		
		2017	93%	76/82	14%	23/164	18%	29/164		
		2018	100%	2/2	0%	0/4	25%	1/4		

Table 3. 9 Retail Meat Surveillance recovery rates, 2003 to 2018 (continued)

See corresponding footnotes at the end of the table.
CIPARS Component /	Province / region	Year	Percentage (%) of isolates	s recovered a	nd number of	isolates recov	vered / numb	er of samples	submitted
Animal species			Eschericl	nia coli	Salmo	nella	Campylo	bacter	Entero	coccus
	Québec	2003	89%	112/126	16%	29/171	55%	94/170	100%	125/125
		2004	96%	157/161	17%	53/320	50%	161/322	100%	161/161
		2005	95%	142/149	9%	26/300	34%	103/299	100%	150/150
		2006	94%	135/144	12%	33/288	35%	100/288	100%	144/144
		2007	90%	129/144	40% ^b	113/287	21%	59/287	99%	143/144
		2008	91%	131/144	42%	120/287	19%	54/287	100%	144/144
		2009	94%	126/134	39%	105/267	20%	52/266	99%	132/134
		2010	93%	138/148	39%	116/296	21%	63/296		
		2011	99%	134/136	37%	100/272	21%	57/272		
		2012	95%	133/140	38%	106/280	28%	78/274		
		2013	90%	105/117	37%	89/243	23%	55/243		
		2014	93%	129/138	33%	92/276	20%	54/276		
		2015	93%	127/136	40%	109/272	18%	49/272		
		2016	92%	118/128	28%	71/256	19%	49/254		
		2017	89%	125/140	29%	81/281	19%	52/281		
		2018	86%	122/142	33%	95/285	22%	62/285		
	Atlantic	2004	100%	13/13	4%	1/25	40%	10/25	100%	13/13
	, than the	2007°	91%	29/32	22% ^b	7/32	1070	10/20		10,10
		2008 ^c	68%	38/56	22%	12/56				
		2009 ^c	94%	187/199	49%	97/199	29%	57/199		
		2010	93%	176/190	41%	77/190	37%	70/190		
		2011	89%	171/192	28%	53/192	30%	57/192		
		2012 ^d	96%	46/48	23%	11/48	21%	10/48		
		2013	92%	133/144	31%	44/144	47%	67/144		
		2014	86%	179/207	31%	64/207	25%	52/206		
		2015°			0170	0 1/201	2070	02,200		
		2016 ^e								
		2017 ^e								
		2018 ^e								
Pork	British Columbia	2005	31%	10/32						
		2007	29%	23/79	1%	1/79				
		2008	30%	44/148	2%	3/148				
		2009	26%	38/145	1%	2/145				
		2010	19%	31/166	1%	2/167				
		2011	27%	49/180	2%	3/180				
		2012	25%	41/167	0%	0/167				
		2013	28%	33/118	0%	0/118				
		2014	22%	29/131	2%	2/132				
		2015	21%	29/136						
		2016	23%	40/172						
		2017	15%	25/172						
		2018	10%	10/98						
	Prairies	2005	30%	48/162						
		2006	30%	49/165	2%	3/134				
		2007	25%	38/154	2%	3/154				
		2008	23%	41/176	1%	1/176				
		2009	18%	29/164	0%	0/164				
		2010	12%	17/142	1%	1/142				
		2011 ^a	11%	10/90	1%	1/90				
		2012	19%	26/140	1%	2/141				
		2013	24%	28/119	3%	3/120				
		2014	22%	48/223	1%	3/223				
		2015	23%	50/220						
		2016	8%	6/78						
		2017	6%	2/31						
		2018	5%	1/20						

See corresponding footnotes at the end of the table.

CIPARS Component /	Province /	Year	Percentage (%) of isolates	s recovered ar	nd number of i	isolates recove	red / numbeı	of samples s	submitted
Animal species	. eg.en		Escherich	nia coli	Salmo	nella	Campyloba	acter	Enteroco	occus
	Ontario	2003	58%	90/154	1%	1/93	0%	0/76	87%	66/76
		2004	71%	198/279						
		2005	59%	179/303						
		2006	59%	182/311	< 1%	1/255				
		2007	54%	172/320	2%	6/319				
		2008	50%	155/312	2%	7/310				
		2009	41%	136/328	2%	8/327				
		2010	38%	84/224	0%	0/224				
		2011	42%	155/371	2%	6/370				
		2012	37%	86/231	2%	5/231				
		2013	43%	100/233	1%	3/232				
		2014	41%	127/312	2%	6/312				
		2015	42%	64/152						
		2016	32%	51/160						
		2017	32%	53/164						
		2018	25%	1/4						
	Québec	2003	42%	61/147	3%	1/32	9%	3/32	82%	28/34
		2004	38%	109/290						
		2005	26%	79/300						
		2006	20%	57/287	0%	0/232				
		2007	22%	64/287	1%	3/288				
		2008	21%	60/287	2%	5/286				
		2009	15%	41/268	1%	3/268				
		2010	16%	47/296	1%	4/296				
		2011	32%	122/387	4%	17/387				
		2012	16%	46/279	3%	8/279				
		2013	20%	48/239	<1%	1/239				
		2014	18%	49/276	<1%	2/276				
		2015	13%	36/272						
		2016	17%	43/256						
		2017	13%	35/280						
		2018	14%	39/284						
	Atlantic	2004	58%	14/24						
		2007	39%	13/31	3%	1/30				
		2008	30%	17/56	2%	1/56				
		2009	41%	82/200	3%	5/199				
		2010	39%	74/190	4%	8/190				
		2011	43%	95/223	3%	7/221				
		2012 ⁴	25%	12/48	0%	0/48				
		2013	40%	57/143	1%	2/142				
		2014	41%	86/209	6%	13/208				
		2015								
		2016								
		2017								
		2018 ^e								

See corresponding footnotes at the end of the table.

CIPARS Component /	Province / region	Year	Percentage (%) of isolates r	ecovered an	d number of i	isolates recov	/ered / number	of samples subm
Animal species			Escheric	nia coli	Salmoi	nella	Campylo	bacter	Enterococcus
Turkey	British Columbia	2011	97%	59/61	11%	8/71	24%	17/71	
		2012	97%	101/104	18%	27/153	22%	33/153	
		2013	98%	59/60	26%	30/115	22%	25/115	
		2014	97%	64/66	25%	31/122	23%	28/122	
		2015	99%	67/68	32%	38/118	20%	24/118	
		2016	94%	80/85	24%	36/152	7%	10/153	
		2017	99%	86/87	30%	41/139	13%	9/72	
		2018	96%	49/51	37%	34/91			
	Prairies	2011 ^a	100%	10/10	20%	2/10	10%	1/10	
		2012	91%	81/89	14%	18/128	5%	6/128	
		2013	90%	56/62	23%	25/107	4%	4/105	
		2014	93%	103/111	22%	44/196	7%	13/196	
		2015	99%	106/107	31%	51/165	7%	11/165	
		2016	97%	32/33	29%	12/41	7%	3/41	
		2017	100%	13/13	18%	3/17	8%	1/13	
		2018	88%	7/8	25%	3/12			
On	Ontario	2011	95%	162/171	14%	27/191	9%	18/191	
		2012	97%	152/156	20%	44/223	9%	20/223	
		2013	95%	115/121	12%	28/228	12%	27/227	
		2014	92%	143/156	13%	40/310	9%	28/310	
		2015	92%	70/76	24%	37/152	5%	8/152	
		2016	81%	64/79	9%	15/158	4%	6/158	
		2017	94%	77/82	11%	17/161	6%	5/88	
		2018	100%	2/2	0%	0/4			
	Québec	2011	91%	138/152	17%	27/163	10%	16/163	
		2012	96%	170/178	21%	51/246	6%	15/246	
		2013	89%	98/110	32%	57/177	9%	16/178	
		2014	86%	119/138	19%	51/262	2%	5/262	
		2015	86%	116/135	21%	52/247	4%	9/247	
		2016	84%	107/128	14%	33/238	3%	6/237	
		2017	80%	112/140	16%	40/247	5%	5/105	
		2018	85%	121/142	28%	77/271			
	Atlantic	2013	85%	107/126	19%	24/126	23%	29/124	
		2014	76%	143/187	12%	23/187	8%	15/185	
		2015 ^e	0						
		2016 ^e							
		2017 ^e							
		20188							

See corresponding footnotes at the end of the table.

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

The Prairies is a region including the provinces Alberta and Saskatchewan.

For Ontario and the Prairies in 2018, a partial year of retail sampling was conducted due to difficulties in staffing field personnel. As a result, the sampling target and subsequent isolate yields in this province were not achieved and results should be interpreted with caution.

The Atlantic region includes New Brunswick, Nova Scotia, and Prince Edward Island.

- ^a In 2011, due to an unforeseeable pause in retail sampling in Saskatchewan of approximately 3 months, the expected number of samples was not met and thus, results for the Prairies for this year should be interpreted with caution.
- ^b Enhancement to the *Salmonella* recovery method yielded higher recovery rates from retail chicken in 2007 than in prior years.
- ^c For the Atlantic region, recovery results are not presented for *Campylobacter* in 2007 and 2008 as well as for Enterococcus in 2007, 2008, and 2009 due to concerns regarding harmonization of laboratory methods.
- ^d Due to an unforeseeable pause in retail sampling in the Atlantic region from April through December in 2012, the expected number of samples was not achieved and thus, results for this region in 2012 are not representative and potentially lack the precision necessary to be included as regular surveillance data. For this reason, these data are not presented anywhere else in this chapter.

^e No retail sampling was conducted in the Atlantic region in 2015 to 2018.

Abattoir Surveillance

Multiclass resistance

Table 3. 10 Number of antimicrobial classes in resistance patterns of *Escherichia coli* from beef cattle, 2018

		Nu	mbei	ofiso	olates	bv			Numb	per of iso	lates resist	ant by antin	nicrobial class	and antimi	crobial	
Animal species	Number of isolates	number of antimicrobial classes in the resistance pattern		Aminogl	ycosides		β-Lacta	ms	Folate pathway inhibitors	Macrolides	Phenicols	Quinolones	Tetracyclines			
		0	1	2–3	4–5	6–7	GEN	STR	AMP A	MC CRO	FOX MEM	SSS SXT	AZM	CHL	CIP NAL	TET
Beef cattle	125	77	26	16	6			21	5		1	17 1		7	1	43

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3. 11 Number of antimicrobial classes in resistance patterns ofCampylobacter from beef cattle, 2018

Species	Number (%) of isolates	Nu num clas:	mber 1ber (ses il	of iso of anti n the r patter	blates by microbial esistance n	Nu Aminoglycosides	Imber of iso Ketolides	lates resistant by Lincosamides	y antimi Macro	crobial olides	class and and Phenicols	ntimicr Quinc	obial Jones	Tetracyclines
		0	1	2–3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter jejuni	77 (71.3)	23	40	14								15	15	53
Campylobacter coli	28 (25.9)	12	11	2	3		4	4	4	4		4	4	12
Campylobacter spp.	3 (2.8)			3									3	3
Total	108 (100)	35	51	19	3		4	4	4	4		19	22	68

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Table 3. 12 Number of antimicrobial classes in resistance patterns of Salmonella from chickens, 2018

	Number (%)	Nu num	mber 1ber (r of is of ant	olates imicr	s by obial			Nur	nber	of iso	lates	resista	ant by Fol	antim ate	icrobial class	and antimic	robial		
Serovar	of isolates	clas	ses i	n the i patter	resis: n	tance	Aminogiy	cosides/		β-	Lacta	ms		patr inhib	iway itors	Macrolides	Phenicols	Quino	biones	Tetracyclines
		0	1	2–3	4-5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
Kentucky	45 (38.1)	1	2	41	1		1	42	9	8	8	7							1	42
Enteritidis	32 (27.1)	30	2																2	
Heidelberg	9 (7.6)	4	4	1				1	3	2	2	2		2	2					
Livingstone	6 (5.1)		5	1				1												6
Infantis	5 (4.2)	5																		
Typhimurium	5 (4.2)			5										5						5
Less common serovars	16 (13.6)	13		3				3												3
Total	118 (100)	53	13	51	1		1	47	12	10	10	9		7	2				3	56

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3. 13 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from chickens, 2018

		Nu	mbe	r of isc	olates	by			Nur	nber	of iso	lates r	esista	ant by antin	nicrobial class	and antimic	robial		
Animal species N	Number of isolates	num class	nber ses i	of anti n the r patter	imicro esista n	obial ance	Aminog	ycosides		β-I	Lacta	ms		Folate pathway inhibitors	Macrolides	Phenicols	Quind	olones	Tetracyclines
		0	1	2–3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX I	MEM	SSS SXT	AZM	CHL	CIP	NAL	TET
Chickens	227	62	31	98	35	1	60	129	69	13	15	13		106 <mark>44</mark>	1	11	3	20	89

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3. 14 Number of antimicrobial classes in resistance patterns of*Campylobacter* from chickens, 2018

Species	Number (%) of isolates	Nu num class	mber Iber (ses il	of iso of anti of the i patter	olates by microbial resistance n	Nu Aminoglycosides	Imber of iso Ketolides	lates resistant by Lincosamides	/ antimi Macro	crobial olides	class and and Phenicols	ntimicr Quinc	obial blones	Tetracyclines
		0	1	2-3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter jejuni	171 (80.3)	92	48	31			4	2	5	5		34	34	69
Campylobacter coli	29 (13.6)	17	3	5	4		4	4	4	4		7	7	10
Campylobacter spp.	13 (6.1)	7	6									1	1	5
Total	213 (100)	116	57	36	4		8	6	9	9		42	42	84

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Table 3. 15 Number of antimicrobial classes in resistance patterns of Salmonella from pigs, 2018

		Nu	mbei	of is	plates by			Nur	nber	of iso	lates	resista	ant by	antim	icrobial class	and antimic	robial	
	Number (9/)	num	ber	of anti	imicrobial								Fol	ate				
Serovar	of isolatos	class	ses i	n the I	resistance	Aminogly	cosides		β-	Lacta	ms		path	way	Macrolides	Phenicols	Quinolones	Tetracyclines
	01 13010105			patter	n								inhib	itors				
		0	1	2–3	4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP NAL	TET
Derby	40 (21.7)	17	7	9	7		17	8	2	2	2		16					21
Infantis	15 (8.2)	12		2	1		2	1	1	1	1		1	1	1	1		3
Typhimurium	15 (8.2)	3	1	4	7	1	9	9	1	1	1		10	3		6		9
Brandenburg	13 (7.1)	7	5	1			1	2										4
4,[5],12:i:-	13 (7.1)		1		12	1	12	12					12	3	2	1		13
London	11 (6.0)	8	2		1	1	1	3	2	2	2		1					1
Schwarzengrund	11 (6.0)	10		1			1						1					1
Bovismorbificans	9 (4.9)	8			1		1	1					1					1
Mbandaka	8 (4.3)	4		4		3	4						4	1				3
Uganda	7 (3.8)	7																
Agona	5 (2.7)	4		1			1						1					1
Give	4 (2.2)	3		1									1	1				1
Worthington	4 (2.2)	2		1	1		2	1					2	2		2		1
Less common serovars	29 (15.8)	14	5	6	4	1	9	4					7	3		4		13
Total	184 (100)	99	21	30	34	7	60	41	6	6	6		57	14	3	14		72

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3. 16 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from pigs, 2018

		Nu	mbe	r of iso	plates by			Nur	nber	of iso	lates res	stant b	/ antim	icrobial class	and antimic	crobial		
Animal species	Number of isolates	num class	iber ses i	of anti n the r patter	imicrobia esistanc n	l _e Aminog	lycosides		β-I	₋acta	ms	Fo pat inhi	olate hway bitors	Macrolides	Phenicols	Quine	olones	Tetracyclines
		0	1	2–3	4-5 6-	7 GEN	STR	AMP	AMC	CRO	FOX ME	M SSS	SXT	AZM	CHL	CIP	NAL	TET
Pigs	157	42	41	56	18	1	61	51	5	4	6	42	12	2	18		1	87

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3. 17 Number of antimicrobial classes in resistance patterns of *Campylobacter* from pigs, 2018

		Nu	ımber	ofis	olates b	by 	Νι	umber of iso	lates resistant by	/ antimi	crobial	class and a	ntimicr	obial	
Species	Number (%) of isolates	clas	nber (ses il	of ant n the i patter	imicrob resistar 'n	nce	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quinc	olones	Tetracyclines
		0	1	2–3	4-5 6	6–7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter coli	231 (98.3)	71	72	43	45			63	67	71	71		24	24	138
Campylobacter spp.	4 (1.7)	1	2	1										1	3
Total	235 (100)	72	74	44	45			63	67	71	71		24	25	141

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Temporal antimicrobial resistance summary

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	119	77	139	165	64	141	149	133	148	125
Antimicrobial										
Ampicillin	2%	1%	1%	1%	6%	5%	3%	3%	5%	4%
Ceftriaxone	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Gentamicin	3%	0%	1%	1%	2%	0%	0%	0%	0%	0%
Nalidixic acid	0%	0%	0%	1%	3%	1%	0%	3%	1%	1%
Streptomycin	18%	5%	7%	7%	11%	13%	12%	18%	17%	17%
Tetracycline	30%	14%	28%	27%	27%	31%	34%	36%	34%	34%
Trimethoprim-										
sulfamethoxazole	1%	0%	0%	0%	5%	3%	0%	0%	1%	1%

Number	01	1301010-5	and year	

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	86	37	108	152	59	121	129	104	125	108
Antimicrobial										
Azithromycin	0%	0%	0%	0%	0%	1%	6%	5%	6%	4%
Ciprofloxacin	1%	3%	1%	5%	5%	7%	5%	14%	8%	18%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Telithromycin	0%	0%	0%	0%	0%	1%	7%	5%	6%	4%
Tetracycline	52%	51%	57%	63%	61%	54%	59%	69%	64%	63%

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	230	142	140	126	107	103	129	120	127	118
Antimicrobial										
Ampicillin	31%	37%	36%	24%	21%	12%	6%	9%	6%	10%
Ceftriaxone	23%	32%	31%	20%	19%	12%	6%	9%	6%	8%
Gentamicin	1%	1%	0%	0%	1%	0%	2%	5%	2%	1%
Nalidixic acid	0%	1%	0%	0%	0%	0%	1%	0%	0%	3%
Streptomycin	41%	30%	44%	39%	41%	30%	36%	45%	40%	40%
Tetracycline	37%	31%	44%	40%	39%	41%	43%	45%	44%	47%
Trimethoprim-										
sulfamethoxazole	0%	1%	1%	2%	2%	0%	0%	2%	2%	2%

Figure 3. 21 Temporal variations in resistance of *Escherichia coli* isolates from chicken, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	171	119	164	173	174	170	179	207	195	227
Antimicrobial										
Ampicillin	43%	53%	40%	39%	39%	39%	41%	37%	28%	30%
Ceftriaxone	31%	38%	21%	18%	21%	16%	16%	10%	5%	7%
Gentamicin	12%	10%	13%	13%	11%	16%	22%	19%	16%	26%
Nalidixic acid	5%	4%	5%	8%	4%	6%	5%	6%	6%	9%
Streptomycin	45%	50%	50%	50%	45%	57%	60%	58%	52%	57%
Tetracycline	44%	52%	52%	51%	49%	57%	54%	48%	41%	39%
Trimethoprim-										
sulfamethoxazole	9%	10%	15%	15%	18%	21%	20%	17%	18%	19%

Year	2010	2011	2012	2013	2014	2015	2016	2017	
Number of isolates	111	117	155	138	188	143	177	168	
Antimicrobial									
Azithromycin	6%	4%	6%	5%	5%	3%	4%	4%	
Ciprofloxacin	4%	9%	7%	14%	11%	20%	15%	23%	

0%

2%

41%

0%

3%

46%

0%

2%

42%

0%

3%

41%

0%

4%

39%

0%

2%

39%

0%

4%

47%

0%

5%

49%

> Gentamicin Telithromycin

Tetracycline

For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 10 years, 5 years, and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

4%

20%

0%

4%

39%

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	147	182	165	157	181	158	211	188	175	184
Antimicrobial										
Ampicillin	20%	24%	21%	22%	22%	23%	25%	18%	20%	22%
Ceftriaxone	0%	3%	1%	2%	3%	3%	5%	2%	5%	3%
Gentamicin	1%	2%	1%	1%	2%	2%	3%	2%	1%	4%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	39%	37%	38%	36%	33%	44%	40%	32%	30%	33%
Tetracycline	46%	48%	48%	45%	49%	50%	45%	40%	37%	39%
Trimethoprim-										
sulfamethoxazole	3%	6%	4%	6%	7%	4%	6%	7%	7%	8%

Figure 3. 24 Temporal variations in resistance of *Escherichia coli* isolates from pigs, 2009 to 2018

Year	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Number of isolates	160	199	190	184	170	161	192	182	164	157
Antimicrobial										
Ampicillin	33%	37%	37%	36%	39%	35%	35%	35%	38%	32%
Ceftriaxone	1%	2%	2%	2%	1%	2%	2%	3%	1%	3%
Gentamicin	2%	0%	1%	1%	3%	1%	2%	0%	1%	1%
Nalidixic acid	0%	0%	1%	0%	1%	0%	1%	1%	1%	1%
Streptomycin	47%	36%	30%	40%	41%	48%	47%	36%	44%	39%
Tetracycline	77%	72%	75%	84%	74%	74%	70%	71%	70%	55%
Trimethoprim-										
sulfamethoxazole	12%	14%	12%	14%	11%	12%	16%	9%	10%	8%

Figure 3. 25 Temporal variations in resistance of *Campylobacter* isolates from pigs, 2012 to 2018

Number of isolates and year

Year	2012	2013	2014	2015	2016	2017	2018
Number of isolates	287	253	236	279	265	236	235
Antimicrobial							
Azithromycin	53%	48%	53%	50%	45%	36%	30%
Ciprofloxacin	10%	13%	11%	6%	13%	8%	10%
Gentamicin	0%	0%	0%	0%	0%	0%	0%
Telithromycin	45%	40%	43%	42%	39%	28%	27%
Tetracycline	76%	78%	78%	75%	78%	66%	60%

Recovery results

Table 3. 18 Abattoir Surveillance recovery rates, 2002 to 2018

Animal species	Year	Percentage	(%) of isolate	s recovered a	and number o	f isolates reco	overed / numb	per of samples submitted
		Escheric	hia coli	Salmo	onella	Campylo	obacter	Enterococcus
Beef cattle	2002	97%	76/78	1%	3/78			
	2003	97%	155/159	<1%	1/114			
	2004	98%	167/170					
	2005	97%	122/126			66%	23/35	
	2006	100%	150/150			36%	31/87	
	2007	99%	188/190			39%	75/190	
	2008	97%	176/182			71% ^a	129/182	
	2009	94%	119/126			68%	86/126	
	2010	97% ^b	77/79			53% ^b	37/70	
	2011	99%	139/141			77%	108/141	
	2012	99%	165/166			92%	152/166	
	2013	100% ^b	59/59			92% ^b	54/59	
	2014	99%	141/142			87%	123/142	
	2015	98%	149/152			85%	129/152	
	2016	98%	133/136			76%	104/136	
	2017	98%	148/151			83%	125/151	
	2018	98%	125/127			85%	108/127	
Chickens	2002	100%	40/40	13%	25/195			
	2003	97%	150/153	16%	126/803			
	2004	99%	130/131	16%	142/893			
	2005	99%	218/220	18%	200/1,103			
	2006	100%	166/166	23%	187/824			
	2007	99%	180/181	25%	204/808			
	2008	99%	170/171	28%	234/851			
	2009	100%	171/171	27%	230/851			
	2010	99%	119/120	24%	142/599	19%	111/599	
	2011	99%	164/166	20%	140/701	17%	117/696	
	2012	100%	173/173	18% ^c	126/684	23%	155/685	
	2013	99%	171/172	16%	105/672	21%	137/662	
	2014	100%	170/170	15%	103/684	27%	187/683	
	2015	99%	179/181	18%	128/708	20%	143/709	
	2016	99%	206/208	14%	120/840	21%	177/842	
	2017	99%	195/196	16%	127/785	21%	168/784	
	2018	99%	227/229	13%	118/915	24%	215/915	

See corresponding footnotes at the end of the table.

CIPARS 2018: Figures and tables > 149

Animal species	Year	Percentage (%) of isolates	recovered a	and number of	isolates reco	vered / numl	per of samples submitted
		Eschericl	nia coli	Salmo	onella	Campylo	bacter	Enterococcus
Pigs	2002	97%	38/39	27%	103/385			
	2003	98%	153/155	28%	395/1,393			
	2004	99%	142/143	38%	270/703			
	2005	99%	163/164	42%	212/486			
	2006	98%	115/117	40%	145/359			
	2007	98%	93/95	36%	105/296			
	2008	100%	150/150	44%	151/340			
	2009	98%	160/163	45%	147/327			
	2010	98%	199/203	44%	182/410			
	2011	99%	190/191	43%	165/382			
	2012	100%	184/184	42%	157/370	78%	289/370	
	2013	99%	166/168	52%	171/330	76%	237/314	
	2014	99%	161/162	49%	158/325	73%	237/325	
	2015	98%	192/195	55%	211/385	72%	279/385	
	2016	99%	182/184	51%	188/367	72%	265/366	
	2017	98%	164/167	52%	175/336	71%	237/336	
	2018	97%	157/162	57%	184/324	73%	235/324	

Table 3. 18 Abattoir Surveillance recovery rates, 2002 to 2018 (continued)

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

^a Implementation of a new *Campylobacter* recovery method in 2008 in abattoir beef cattle isolates.

^b In 2010 and 2013, the number of samples received from abattoir beef cattle was much lower than anticipated due to a drop in submissions related to unavoidable operational issues at 2 major participating abattoirs.

^c Decreased prevalence in chickens and one non-compliant plant (lack of sampling) resulted in a shortfall of *Salmonella* isolates from chickens.

Farm Surveillance

Multiclass resistance

Table 3. 19 Number of antimicrobial classes in resistance patterns of *Escherichia coli* from feedlot cattle, 2018

		Nu	mber	ofiso	olates	bv			Number of isolates re	esistant by antir	nicrobial class	s and antimi	crobial		
Province or region	Number (%) of isolates	number of antimicrobial classes in the resistance pattern			Aminog	lycosides	β-Lactams	Folate pathway inhibitors	Macrolides	Phenicols	Quinolones		Tetracyclines		
		0	1	2–3	4-5	6-7	GEN	STR	AMP AMC CRO FOX I	MEM SSS SXT	AZM	CHL	CIP	NAL	TET
Alberta	119 (100)	42	41	32	4			29	3	26 1		4		5	71

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3. 20 Number of antimicrobial classes in resistance patterns ofCampylobacter from feedlot cattle, 2018

Species	Number (%) of isolates	Number of isolates by number of antimicrobial classes in the resistance pattern				by bial ance	Ni Aminoglycosides	umber of iso Ketolides	lates resistant b Lincosamides	y antimi Macro	crobial olides	class and and Phenicols	ntimici Quino	robial plones	Tetracyclines
		0	1	2–3	n 4–5	6–7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Campylobacter coli	67 (71.3)	8	27	24	8			21	20	21	21		14	14	47
Campylobacter jejuni	27 (28.7)	11	13	3									3	3	16
Total	94 (100)	19	40	27	8			21	20	21	21		17	17	63

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

		Nu	ımbei	of is	plates by				mber	of is	solate	es resista	ant by antim	icrobial class	and antimic	robial	
	Number (%)	nur	nber	of ant	imicrobial								Folate				
Province or region / serovar	of isolates	clas	ses i	n the I	resistance	Aminog	lycosides		β٠	Lacta	ams		pathway	Macrolides	Phenicols	Quinolones	Tetracyclines
				patter	n								inhibitors				_
		0	1	2–3	4-5 6-7	GEN	STR	AMP	AMC	CRC	D FO	X MEM	SSS SXT	AZM	CHL	CIP NAL	TET
British Columbia																	
Kentucky	30 (50.0)		1	20	9		29	17	17	17	15					9	29
Enteritidis	23 (38.3)	22			1		1	1					1				1
Infantis	3 (5.0)	1	2					2	2	2	2						
Heidelberg	2 (3.3)	1		1		1	1						1				
Senftenberg	2 (3.3)	1	1				1										
Total	60 (100)	25	4	21	10	1	32	20	19	19	17		2			9	30
Prairies																	
Enteritidis	34 (33.0)	34															
Kentucky	27 (26.2)	10	2	15			15	7	7	7	7						15
Lille	12 (11.7)	12															
Schwarzengrund	11 (10.7)	11															
Typhimurium	4 (3.9)	3	1														1
Heidelberg	3 (2.9)	3															
Newport	3 (2.9)	3															
Less common serovars	9 (8,7)	7		2			2										2
Total	103 (100)	83	3	17			17	7	7	7	7						18
Ontario																	
Enteritidis	11 (18.6)	11															
Heidelberg	11 (18.6)	7	3	1			2	3	3	3	3						
Litchfield	8 (13.6)	5	2	1		1	3						1				
	7 (11.9)	-	4	3			3						-				7
Liverpool	6 (10.2)	2	3	1			2						1 1				3
Hadar	5 (8 5)	-		5			5										5
Typhimurium	3 (5 1)			3									3				3
Ilganda	3 (5 1)	3		0									0				
Muenchen	2 (3.4)			2			2						2				2
	2 (5.4)	2		- 1			1						2				
Tetal	5 (3.1)	20	12	17		4	10	2	2	2	2		7 1				21
	39 (100)	30	12	17			10	3	3	3	3		/				21
Kentucky	47 (78 3)	2	2	13		1	44	0	0	0	7		1				44
Worthington	47 (70.3) 6 (10.0)	- 2	2	43			44	9	3	9							44
Hadar	2 (5 0)	0		2			2										2
Entoritidio	3 (3.0)	2		3			3										3
	2 (3.3)	_ 2	1	1			2						1				1
Tetal	2 (3.3)	10	2	47		4	40	•	•	0	7		2				49
National	60 (100)	10	3	4/			49		3	9	- '		2				40
Kentucky	105 (37.2)	12	5	70	0	1	80	33	33	33	20		1			0	80
Esteritidia	70 (37.2)	60	5	79	9		1	- 33	- 33	33	29		1			9	
Lidelbarg	10 (24.0)	- 09	2	2					2	2	2		1				1
heideiberg	10 (3.7)	-10	3	2			3	3	3	3	3		1				
Cobyerroparupd	12 (4.3)	12		1			1						1				1
Schwarzengrund	12 (4.3)												1				
	8 (2.8)	-	~	8			ŏ										ŏ
	8 (2.8)	5	2	1		1	3						1				
I yphimurium	8 (2.8)	3	2	3			1						3				4
Livingstone	7 (2.5)		4	3			3		_								7
Less common serovars	36 (12.8)	25	6	5			7	2	2	2	2		3 1				7
Iotal	282 (100)	148	22	102	10	3	116	39	38	38	34		11 1			9	117

Table 3. 21 Number of antimicrobial classes in resistance patterns of Salmonellafrom chickens pre-harvest, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies region includes Alberta and Saskatchewan.

Table 3. 22 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from chickens at pre-harvest, 2018

Province or region	Number (%) of isolates	Nur num class	mber Iber (ses il	r of iso of anti n the r patter	olates imicro esist n	by bial ance	Aminogly	/cosides	Nun	nber β-l	of iso Lacta	lates resis ms	stant by Fol path inhib	antim ate Iway itors	icrobial class Macrolides	and antimic Phenicols	Quinc	olones	Tetracyclines
		0	1	2–3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX MEN	A SSS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	120 (21.9)	27	26	36	29	2	30	54	64	21	22	21	43	5		6	2	30	46
Prairies	175 (32.0)	81	31	49	14		24	61	25	5	5	5	42	3		4		10	60
Ontario	144 (26.3)	56	19	43	26		30	54	44	5	3	5	51	28	5	8		6	65
Québec	108 (19.7)	13	9	67	19		27	83	41	9	8	9	67	32	2	9		7	56
National	547 (100)	177	85	195	88	2	111	252	174	40	38	40	203	68	7	27	2	53	227

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies region includes Alberta and Saskatchewan.

		Nu	mber	of isolates by	Ν	umber of iso	lates resistant by	/ antimicro	bial class a	nd antim	icrobial	
Province or region / species	Number (%) of isolates	clas	nber d ses ir I	n the resistance pattern	Aminoglycosides	Ketolides	Lincosamides	Macrolid	es Pheni	cols Qu	inolones	Tetracyclines
		0	1	2-3 4-5 6-7	GEN	TEL	CLI	AZM E	RY FL	R C	P NAL	TET
British Columbia												
Campylobacter coli	11 (23.9)	3	4	4							8	4
Campylobacter jejuni	35 (76.0)	31	4									4
Total	46 (100)	34	8	4							8	8
Prairies												
Campylobacter jejuni	45 (100)	25	20									20
Total	45 (100)	25	20									20
Ontario												
Campylobacter coli	3 (20.0)	3										
Campylobacter jejuni	12 (80.0)	12										
Total	15 (100)	15										
Québec												
Campylobacter jejuni	16 (100)	8		8						8	8 8	8
Total	16 (100)	8		8							8	8
National												
Campylobacter coli	14 (11.5)	6	4	4						1	8	4
Campylobacter jejuni	108 (88.5)	76	24	8							8	32
Total	122 (100)	82	28	12						1	6 16	36

Table 3. 23 Number of antimicrobial classes in resistance patterns of*Campylobacter* from chickens at pre-harvest, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies region includes Alberta and Saskatchewan.

		Nu	ımbeı	r of is	olates by			Nun	nber	of is	olate	es resista	ant by	antim	icrobial class	and antimic	crobial	
		nun	nber	of ant	imicrobial								Fol	ate				
Province or region / serovar	Number (%)	clas	ses i	n the	resistance	Aminogl	ycosides		β-	Lact	ams		path	way	Macrolides	Phenicols	Quinolone	s Tetracyclines
	or isolates			patter									inhib	itors				
		0	1	2–3	4-5 6-7	GEN	STR	AMP	AMC	CRC) FO	X MEM	SSS	SXT	AZM	CHL	CIP NA	L TET
Prairies																		
Brandenburg	9 (18.4)	4	2	3			3	2										3
Derby	9 (18.4)		5	3	1		4	4	4	4	4		4					6
Livingstone	5 (10.2)	5																
Agona	4 (8.2)	4																
Infantis	4 (8.2)	1	2	1			1						3	3				
Schwarzengrund	4 (8.2)	2		2			2						2	-				2
Give	3 (6.1)	3																
Mbandaka	3 (6 1)	1		2			2						1					2
Typhimurium	3 (6 1)	1	2	-		2	-											
Putten	2 (4 1)	2	~			~												
Bovismorbificans	2 (4.1)	1																
4 El 4 Qui	1 (2.0)	-																
4,[J], 12.1 Diagon	1 (2.0)	-																
Tatal	1 (2.0)	26	44	44	4	2	40						40	2				12
	49 (100)	20			1	2	12	0	4	4	4	•	10	3				13
Trabimurium	47 (247)			F	10	2	10	45					45			0		15
iypnimurium	17 (34.7)			5	10	3	10	15	~	~			15			9		15
Infantis	8 (16.3)	6			2		2	2	2							.1		2
Derby	6 (12.2)			3	1		4	1	1		1		4					4
Worthington	6 (12.2)	5	-	1				1		1			1					1
Brandenburg	5 (10.2)	2	3															3
4,[5],12:i:-	4 (8.2)				4	1	4	4					4					4
Mbandaka	2 (4.1)			1	1	1	2	1	1	1	1		1	1		1		2
Othmarschen	1 (2.0)				1		1						1			1		1
Total	49 (100)	17	3	10	19	5	23	24	4	5	4		28	1		12		32
Québec																		
Typhimurium	18 (43.9)	2	1	5	10	1	15	9					15	6	3	7		15
4,[5],12:i:-	10 (24.4)	1			9		9	9	1	1	1		9					9
Brandenburg	8 (19.5)	6	2				1	1										
Infantis	4 (9.8)	2			2		2						2	2		2		2
Derby	1 (2.4)			1			1						1					1
Total	41 (100)	11	3	6	21	1	28	19	1	1	1		27	8	3	9		27
National																		
Typhimurium	38 (27.3)	5	3	10	20	6	25	24					30	6	3	16		30
Brandenburg	22 (15.8)	12	7	3			4	3										6
Derby	16 (11.5)	2	5	7	2		9	5	5	5	5	5	9					11
Infantis	16 (11.5)	9	2	1	4		5	2	2	2	2		7	5		3		4
4,[5],12:i:-	15 (10.8)	2			13	1	13	13	1	1	1		13					13
Worthington	6 (4.3)	5		1				1		1			1					1
Livingstone	5 (3.6)	5																
Mbandaka	5 (3.6)	1		3	1	1	4	1	1	1	1		2	1		1		4
Agona	4 (2.9)	4			•				-				-			•		·
Schwarzengrund	4 (2 9)	2		2			2						2					2
Give	3 (2 2)	3		-			-						~					<u> </u>
	5 (2.2)				1		1						1			1		1
Total	139 (100)	54	17	27	41	8	63	49	9	10	Q		65	12	3	21		72
						•			•						-			

Table 3. 24 Number of antimicrobial classes in resistance patterns of Salmonellafrom pigs, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

The Prairies region includes Alberta, Saskatchewan, and Manitoba.

Province or region	ce or region Number (%) of isolates of isolates of isolates 0 number of antimicrobial classes in the resistance pattern 0 0 1 2–3 4–5 6–7				by bial ance	Aminogly	ycosides	Nur	nber β-I	ofiso _acta	lates Ims	resista	ant by Fol path inhib	antim ate way itors	icrobial class Macrolides	and antimic Phenicols	crobial Quinc	olones	Tetracyclines	
		0	1	2-3	4–5	6-7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
Prairies	269 (46.0)	84	63	87	34	1	1	99	61	6	6	6		75	15		34	2	4	153
Ontario	184 (31.5)	20	48	79	37		4	95	73	2	2	2		66	19	1	32		1	144
Québec	132 (22.6)	26	31	48	26	1	5	58	33	3	2	2		56	37		22		1	97
National	585 (100)	130	142	214	97	2	10	252	167	11	10	10		197	71	1	88	2	6	394

Table 3. 25 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from pigs, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

The Prairies region includes Alberta, Saskatchewan, and Manitoba.

Table 3. 26 Number of antimicrobial classes in resistance patterns ofCampylobacter from pigs, 2018

		Nu nun	ımber nber o	of iso	olates by imicrobial	Νι	umber of iso	lates resistant by	/ antimi	crobial	class and a	ntimicr	obial	
Province or region /	Number (%)	clas	ses iı	n the i	resistance	Aminoglycosides	Ketolides	Lincosamides	Macr	olides	Phenicols	Quind	olones	Tetracyclines
species	or isolates			oatter	n									
		0	1	2–3	4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
Prairies														
Campylobacter coli	219 (100)	81	50	50	38		69	70	73	73		16	16	106
Total	219 (100)	81	50	50	38		69	70	73	73		16	16	106
Ontario														
Campylobacter coli	150 (100)	24	30	37	59		75	81	91	91		12	12	114
Total	150 (100)	24	30	37	59		75	81	91	91		12	12	114
Québec														
Campylobacter coli	113 (99.1)	22	46	35	10		19	22	23	23		26	26	83
Campylobacter spp.	1 (0.9)			1									1	1
Total	114 (100)	22	46	36	10		19	22	23	23		26	27	84
National														
Campylobacter coli	482 (99.8)	127	126	122	107		163	173	187	187		54	54	303
Campylobacter spp.	1 (0.2)			1									1	1
Total	483 (100)	127	126	123	107		163	173	187	187		54	55	304

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

The Prairies region includes Alberta, Saskatchewan, and Manitoba.

		Nur	nber	ofise	plates by			Number	ofisolates resista	nt by anti	microbial cla	ss and ar	ntimicrobial	
	Number		nu	ımber	of					Folate				
Province / serovar	(%) of	ant	imic	robia	lclasses	Aminogl	ycoside	s	3-Lactams	pathway	Macrolides	Phenicol	s Quinolones	Tetracyclines
	isolates	i	n the	resis	stance					inhibitor				
		0	1	2–3	4-5 6-7	GEN	STR	AMPAN	ICCROFOX ME	SS SX	AZM	CHL	CIP NAL	TET
British Columbia														
Reading	19 (28.8)	6	8		5		5	13		5				5
Hadar	17 (25.8)			17			17	9						17
Uganda	8 (12.1)	5		3			3			3				3
Enteritidis	7 (10.6)	7												
Agona	5 (7.6)			5		5	5			5				5
Muenchen	3 (4.5)	3												
Anatum	2 (3.0)			2		1	2	1						2
Senftenberg	2 (3.0)	1		1			1			1				1
Less common serovars	3 (4.5)	2		1			1			1				1
Total	66 (100)	24	8	29	5	6	34	23		15				34
Alberta	. /													
Reading	14 (45.2)	5	7		2		2	9		2				2
Uganda	12 (38.7)	12	-		_					_				
Schwarzengrund	3 (9.8)	2	1				1							
Senftenberg	2 (6.5)		· ·		2	2	2	2		2		2		2
Total	31 (100)	19	8		4	2	5	11		4		2		4
Ontario	01 (100)									•				
Uganda	51 (52 6)	7		44			44			44				44
Muenchen	13 (13.4)	۰ ۹		4			4			4				4
Schwarzengrund	13 (13.4)	13		-						-				
Albany	5 (5 2)	2	2	1		1	3							1
Agona	4 (4 1)		-	4						4				4
Hadar	4 (4.1)			4			4			4				4
Livingstopo	4 (4.1) 2 (2.1)		2	4			4							- 4
	3 (3.1)	2	2	1		4	1			1				3
	4 (4.1)	34	4	50		2	57			E2				60
	97 (100)	34	4	59		2	57			55				00
Heidelberg	29 (62 2)	22	2	2		2	4	4		2				1
Heidelberg	20 (02.2)		2	<u> </u>		2	4			2				
Oganda	8 (17.8)			0			0			0				0
Schwarzengrund	5(11.1)			3			3			3				3
Agona	4 (8.9)	4		40			42	-		44				
National	45 (100)	31	2	12		2	13	1		TI				10
National	70 (00.4)	- 00		50			50			50				50
Oganda	79 (33.1)		45	53	-		53			53				
Reading	33 (13.8)		15		1	_		22		/				1
Heidelberg	29 (12.1)	23	2	4		3	5	1		3				1
Schwarzengrund	22 (9.2)	18	1	3			4			3				3
Hadar	21 (8.8)	- 10		21			21	9						21
Muenchen	16 (6.7)	12		4			4			4				4
Agona	13 (5.4)	4		9		5	5			9				9
Enteritidis	7 (2.9)	7												
Albany	5 (2.1)	2	2	1		1	3							1
Senftenberg	5 (2.1)	2		1	2	2	3	2		3		2		3
Less common serovars	9 (3.8)	3	2	4		1	4	1		1				6
Total	239 (100)	108	22	100	9	12	109	35		83		2		108

Table 3. 27 Number of antimicrobial classes in resistance patterns of Salmonellafrom turkeys, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

		Nun	nber	ofise	olates	sby			Numb	er of	isola	atesi	resista	nt by	antin	nicrobial cla	ss and an	timicro	bial	
	Number		nu	ımber	of									Fol	ate					
Province	(%) of	antin	nicro	obial	class	esin	Aminogl	ycosides		β-L	.acta	ms		path	way	Macrolides	B Phenico	IsQuin	olones	Tetracyclines
	isolates	the	resis	stance	e patt	ern								inhi	bitor		_			
		0	1	2–3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	ME	SS	SXT	AZM	CHL	CIP	NAL	TET
British Columbia	118 (32.1)	34	16	54	13	1	29	51	36	3	2	2		32	2		8	2	4	67
Alberta	39 (10.6)	14	8	14	3		7	16	10					9					1	19
Ontario	118 (32.1)	44	24	39	11		9	39	23					27	13	1	3			67
Québec	92 (25.1)	23	17	40	12		5	34	39		1			34	24		1			53
National	367 (100)	115	65	147	30	1	50	140	108	3	3	2		102	30	1	12	2	5	206

Table 3. 28 Number of antimicrobial classes in resistance patterns of *Escherichia*coli from turkeys, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Table 3. 29 Number of antimicrobial classes in resistance patterns ofCampylobacter from turkeys, 2018

		Nun	nber	of isolates by	Nu	mber of isolat	tes resistant by	/ antim	nicrobi	al class an	d antin	nicrobia	al
	Number		nu	mber of									
Province / species	(%) of	ant	imic	robial classes	Aminoglycoside	s Ketolides I	Lincosamides	Macro	olides	Phenicols	Quinc	olones	Tetracyclines
	isolates	i	n the	resistance									
		0	1	2-3 4-5 6-7	GEN	TEL	CLI	AZM	ERY	FLR	CIP	NAL	TET
British Columbia													
Campylobacter coli	33 (35.1)		23	10				2	2		27	27	14
Campylobacter jejuni	61 (64.9)	20	28	13							30	30	24
Total	94 (100)	20	51	23				2	2		57	57	38
Alberta													
Campylobacter jejuni	14 (100)	7	5	2							2	2	7
Total	14 (100)	7	5	2							2	2	7
Ontario													
Campylobacter coli	31 (53.4)	10	7	14			4	4	4		10	10	18
Campylobacter jejuni	27 (46.6)	17	7	3							3	3	10
Total	58 (100)	27	14	17			4	4	4		13	13	28
Québec													
Campylobacter coli	9 (36.0)		6	3			3	9	9				
Campylobacter jejuni	16 (64.0)	9	5	2							2	2	7
Total	25 (100)	9	11	5			3	9	9		2	2	7
National													
Campylobacter coli	73 (38.2)	10	36	27			7	15	15		37	37	32
Campylobacter jejuni	118 (61.7)	53	45	20							37	37	48
Total	191 (100)	63	81	47			7	15	15		74	74	80

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Campylobacter spp. include unidentified species, some of which may be intrinsically resistant to nalidixic acid.

Temporal antimicrobial resistance summary

Year	2016	2017	2018
Number of isolates	78	75	119
Antimicrobial			
Ampicillin	3%	4%	2%
Ceftriaxone	0%	0%	0%
Gentamicin	0%	0%	0%
Nalidixic acid	4%	5%	4%
Streptomycin	21%	21%	24%
Tetracycline	51%	57%	60%
Trimethoprim-sulfamethoxazole	0%	1%	1%

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per feedlot.

Number of isolates and year

Year	2016	2017	2018
Number of isolates	56	43	94
Antimicrobial			
Azithromycin	0%	0%	20%
Ciprofloxacin	9%	0%	18%
Gentamicin	0%	0%	0%
Telithromycin	0%	0%	20%
Tetracycline	94%	84%	67%

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per feedlot. For the temporal analyses, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first year of surveillance and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given antimicrobial.

Province/region		Britis	h Colu	umbia			F	Prairie	s			(Ontario)			(Québe	C	
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	74	72	73	65	60	54	84	66	73	103	42	106	49	51	59	79	61	62	74	60
Antimicrobial																				
Ampicillin	14%	36%	13%	10%	32%	4%	11%	7%	1%	6%	5%	8%	2%	0%	6%	22%	11%	12%	5%	13%
Ceftriaxone	14%	32%	13%	10%	31%	4%	1%	2%	1%	6%	5%	8%	2%	0%	6%	20%	11%	12%	5%	13%
Gentamicin	0%	1%	1%	4%	2%	2%	0%	6%	0%	0%	8%	1%	0%	0%	2%	1%	2%	5%	0%	2%
Nalidixic acid	0%	30%	0%	0%	15%	0%	1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	18%	42%	46%	35%	49%	14%	32%	28%	28%	19%	43%	18%	17%	31%	30%	79%	82%	88%	67%	84%
Tetracycline	18%	42%	50%	33%	43%	13%	36%	28%	28%	20%	41%	20%	28%	46%	37%	83%	82%	83%	65%	83%
Trimethoprim-																				
sulfamethoxazole	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	2%	0%	0%	2%	4%	0%	6%	0%	0%

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per flock.

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Figure 3. 29 Temporal variations in resistance of *Escherichia coli* isolates from chickens at pre-harvest, 2014 to 2018

Province/region	British Columbia						Prairies					Ontario					Québec			
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	116	97	128	117	120	147	152	152	152	175	166	195	159	154	144	132	95	104	116	108
Antimicrobial																				
Ampicillin	67%	67%	55%	57%	53%	39%	24%	34%	25%	14%	45%	41%	31%	33%	31%	37%	43%	41%	43%	38%
Ceftriaxone	51%	29%	21%	21%	18%	31%	9%	7%	4%	3%	11%	7%	4%	6%	2%	11%	9%	4%	11%	7%
Gentamicin	16%	21%	15%	21%	25%	12%	18%	20%	14%	14%	15%	13%	25%	12%	21%	28%	29%	24%	36%	25%
Nalidixic acid	9%	19%	10%	12%	25%	7%	3%	3%	4%	6%	2%	4%	3%	4%	4%	2%	3%	2%	3%	6%
Streptomycin	40%	42%	37%	51%	45%	29%	42%	49%	42%	35%	46%	37%	45%	35%	37%	77%	76%	65%	79%	77%
Tetracycline	38%	42%	40%	41%	38%	47%	52%	54%	38%	34%	50%	55%	45%	48%	45%	59%	67%	56%	67%	52%
Trimethoprim-																				
sulfamethoxazole	3%	5%	10%	11%	4%	3%	3%	6%	7%	2%	19%	23%	21%	18%	19%	42%	36%	29%	36%	30%

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per flock.

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province/region	British Columbia					Prairies				Ontario					Québec					
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18
Number of isolates	26	25	31	44	46	11	46	28	30	45	35	36	26	36	15	21	10	8	12	16
Antimicrobial																				
Azithromycin	0%	0%	0%	0%	0%	0%	31%	0%	0%	0%	0%	10%	0%	0%	0%	12%	33%	0%	50%	0%
Ciprofloxacin	29%	25%	25%	36%	17%	0%	2%	14%	0%	0%	5%	33%	0%	18%	0%	0%	0%	0%	0%	56%
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Telithromycin	0%	0%	0%	0%	0%	0%	31%	0%	0%	0%	0%	0%	0%	0%	0%	9%	0%	0%	25%	0%
Tetracycline	64%	71%	22%	39%	17%	40%	44%	4%	29%	42%	28%	62%	32%	55%	0%	59%	55%	63%	25%	56%

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per flock.

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicates significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Province/region		F	Prairies	s			(Ontario	D		Québec					
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	
Number of isolates	40	43	46	46	49	67	43	34	26	49	40	35	30	45	41	
Antimicrobial																
Ampicillin	28%	5%	23%	32%	13%	39%	52%	11%	61%	58%	56%	43%	31%	52%	48%	
Cefriaxone	6%	5%	4%	2%	8%	1%	0%	0%	4%	12%	5%	3%	4%	7%	3%	
Gentamicin	0%	0%	0%	2%	3%	1%	4%	0%	4%	11%	8%	3%	10%	8%	3%	
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Streptomycin	36%	26%	43%	43%	32%	57%	57%	39%	60%	62%	52%	67%	48%	67%	67%	
Tetracycline	46%	32%	35%	45%	37%	91%	83%	54%	69%	73%	73%	77%	65%	73%	65%	
Trimethoprim-																
sulfamethoxazole	6%	7%	4%	2%	4%	11%	0%	0%	11%	2%	18%	15%	29%	22%	26%	

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per herd.

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies region includes Alberta, Saskatchewan, and Manitoba.

Figure 3. 32 Temporal variations in resistance of *Escherichia coli* isolates from pigs, 2014 to 2018

Province/region		F	Prairie	s			(Ontario	D		Québec					
Year	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	'14	'15	'16	'17	'18	
Number of isolates	735	228	246	227	269	478	149	155	138	184	459	123	143	119	132	
Antimicrobial																
Ampicillin	27%	22%	27%	25%	23%	46%	40%	41%	36%	40%	35%	34%	33%	27%	25%	
Cefriaxone	1%	1%	1%	0%	2%	2%	2%	3%	1%	1%	3%	2%	4%	0%	2%	
Gentamicin	0%	0%	0%	0%	0%	4%	2%	1%	1%	2%	1%	2%	3%	5%	4%	
Nalidixic acid	1%	0%	0%	0%	1%	0%	0%	0%	1%	1%	0%	0%	0%	0%	1%	
Streptomycin	39%	35%	36%	33%	37%	47%	48%	43%	46%	52%	54%	59%	50%	60%	44%	
Tetracycline	60%	51%	58%	50%	57%	85%	78%	81%	87%	78%	80%	82%	79%	84%	73%	
Trimethoprim-																
sulfamethoxazole	8%	7%	9%	9%	6%	17%	15%	10%	14%	1 0 %	18%	20%	25%	27%	28%	

The proportion of resistant isolates for all antimicrobials was adjusted to account for multiple samples per herd.

For the temporal analyses within province/region, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the previous 5 years and the preceding surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province/region and antimicrobial.

The Prairies region includes Alberta, Saskatchewan, and Manitoba.

Figure 3. 33 Resistance of Campylobacter isolates from pigs, 2018

Percentage of isolates resistant and 95% confidence interval

Number of isolates, year, and province

Province		Britis	h Colu	ımbia		Alberta	Ontario			Québec		
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of isolates	27	47	50	47	66	31	70	83	97	26	31	45
Antimicrobial												
Ampicillin	46%	26%	33%	33%	30%	33%	15%	15%	0%	23%	0%	2%
Ceftriaxone	42%	6%	0%	0%	0%	0%	7%	0%	0%	0%	0%	0%
Gentamicin	17%	6%	22%	35%	9%	6%	45%	27%	2%	14%	19%	4%
Nalidixic acid	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Streptomycin	42%	47%	86%	69%	50%	16%	41%	46%	59%	37%	50%	32%
Tetracycline	55%	45%	83%	52%	50%	12%	24%	40%	59%	22%	36%	23%
Trimethoprim-sulfamethoxazole	0%	0%	0%	0%	0%	0%	1%	0%	0%	4%	3%	0%

Figure 3. 35 Temporal variations in resistance of *Escherichia coli* isolates from turkeys at pre-harvest, 2014 to 2018

Number of isolates, year, and province

Province		Britis	h Colı	ımbia		Alberta	Ontario			Québec		
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18
Number of isolates	115	118	116	106	118	49	113	120	118	48	61	92
Antimicrobial												
Ampicillin	40%	42%	31%	43%	30%	26%	24%	34%	20%	42%	35%	42%
Ceftriaxone	9%	2%	2%	1%	2%	0%	0%	0%	0%	0%	2%	1%
Gentamicin	14%	25%	25%	27%	25%	18%	19%	24%	8%	12%	16%	5%
Nalidixic acid	3%	3%	2%	4%	3%	3%	1%	2%	0%	0%	0%	0%
Streptomycin	43%	47%	58%	65%	43%	41%	40%	47%	33%	44%	36%	37%
Tetracycline	58%	59%	64%	62%	57%	49%	73%	66%	57%	69%	57%	58%
Trimethoprim-sulfamethoxazole	5%	3%	7%	5%	2%	0%	4%	5%	11%	25%	25%	26%

Figure 3. 36 Temporal variations in resistance of *Campylobacter* isolates from turkeys at pre-harvest, 2014 to 2018

Province		Britis	h Colu	ımbia		Alberta		Ontario)	Québec			
Year	'14	'15	'16	'17	'18	'18	'16	'17	'18	'16	'17	'18	
Number of isolates	85	103	79	80	94	14	65	50	58	27	27	25	
Antimicrobial													
Azithromycin	0%	0%	0%	1%	2%	0%	3%	14%	7%	0%	55%	34%	
Ciprofloxacin	45%	37%	44%	53%	61%	16%	5%	11%	22%	0%	0%	8%	
Gentamicin	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Telithromycin	0%	0%	0%	1%	1%	0%	3%	4%	0%	0%	0%	0%	
Tetracycline	38%	38%	19%	54%	40%	53%	71%	56%	47%	45%	22%	26%	

For the temporal analyses by province, the proportion (%) of isolates resistant to a specific antimicrobial over the current year has been compared to the proportion (%) of isolates resistant to the same antimicrobial during the first surveillance year and the preceding surveillance year (grey areas). The presence of blue areas indicate significant differences ($P \le 0.05$) for a given province and antimicrobial.
Recovery results

Table 3. 30 Farm Surveillance recovery rates in feedlot cattle, 2016 to 2018

Animal species	Province/region	Year	Percentage (%) of isolates	recovered and	d number of i	isolates recov	ered / numl	ber of samples submitted
			Escherich	nia coli	Salmone	ella	Campylol	bacter	Enterococcus
Feedlot beef	Alberta	2016	100%	78/78	4%	3/78	72%	56/78	
		2017	99%	75/76	1%	1/76	57%	43/76	
		2018	97%	119/123	2%	2/123	76%	94/123	

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

CIPARS Component /	Province / region	Year	Percentage (%) of isolates	recovered an	nd number of	f isolates recovered / num	ber of samples submitted
Animal species			Escherich	nia coli	Salmon	nella	Campylobacter	Enterococcus
Chickens	British Columbia	2013	72%	43/60	28%	17/60		
(Chick placement)		2014	71%	57/80	23%	18/80		
		2015	74%	37/50	16%	8/50		
		2016	68%	58/85	12%	10/85		
		2017	84%	59/70	30%	21/70		
		2018						
	Prairies	2013	89%	31/35	29%	10/35		
		2014	82%	46/56	13%	7/56		
		2015	80%	44/55	20%	11/55		
		2016	73%	40/55	15%	8/55		
		2017	87%	48/55	22%	12/55		
		2018						
	Ontario	2013	85%	64/75	17%	13/75		
		2014	87%	65/75	3%	2/75		
		2015	88%	66/75	9%	7/75		
		2016	93%	70/75	3%	2/75		
		2017	87%	65/75	8%	6/75		
		2018						
	Québec	2013	82%	53/65	17%	11/65		
		2014	83%	66/80	11%	9/80		
		2015	87%	39/45	27%	12/45		
		2016	74%	52/70	21%	15/70		
		2017	76%	65/85	18%	15/85		
		2018						
	National	2013	81%	191/235	22%	51/235		
		2014	80%	234/291	12%	36/291		
		2015	83%	186/225	17%	38/225		
		2016	77%	220/285	12%	35/285		
		2017	83%	237/285	19%	54/285		
		2018						

Table 3. 31 Farm Surveillance recovery rates in chickens, 2013 to 2018

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

The Prairies is a region including the provinces of Alberta and Saskatchewan.

CIPARS			Percentage (%) of isolates	recovered an	nd number of i	isolates recov	/ered / numb	per of samples submitted
Component /	Province / region	Year							
Animal species			Escherich	nia coli	Salmoi	nella	Campylol	bacter	Enterococcus
Chickens	British Columbia	2013	98%	94/96	71%	68/96	28%	27/96	
(Pre-harvest)		2014	100%	116/116	64%	74/116	22%	26/116	
		2015	97%	97/100	72%	72/100	25%	25/100	
		2016	100%	128/128	57%	73/128	24%	31/128	
		2017	98%	117/120	54%	65/120	37%	44/120	
		2018	100%	120/120	50%	60/120	38%	46/120	
	Prairies	2013	100%	60/60	40%	24/60	25%	15/60	
		2014	99%	147/148	36%	54/148	7%	11/148	
		2015	100%	152/152	55%	84/152	30%	46/152	
		2016	100%	152/152	43%	66/152	18%	28/152	
		2017	100%	152/152	48%	73/152	20%	30/152	
		2018	99%	175/176	59%	103/176	26%	45/176	
	Ontario	2013	100%	120/120	54%	65/120	17%	20/120	
		2014	99%	166/168	25%	42/168	21%	35/168	
		2015	99%	195/196	54%	106/196	18%	36/196	
		2016	99%	159/160	31%	49/160	16%	26/160	
		2017	99%	154/156	33%	51/156	23%	36/156	
		2018	92%	144/156	38%	59/156	10%	15/156	
	Québec	2013	99%	111/112	64%	72/112	17%	19/112	
		2014	100%	132/132	60%	79/132	16%	21/132	
		2015	99%	95/96	64%	61/96	10%	10/96	
		2016	100%	104/104	61%	63/104	8%	8/104	
		2017	97%	116/120	62%	74/120	10%	12/120	
		2018	100%	108/108	56%	60/108	15%	16/108	
	National	2013	99%	385/388	59%	229/388	20%	81/388	
		2014	99%	561/564	44%	249/564	16%	93/564	
		2015	99%	539/544	59%	323/544	22%	117/544	
		2016	99%	543/544	46%	251/544	17%	93/544	
		2017	98%	539/548	48%	263/548	22%	122/548	
		2018	98%	547/560	50%	282/560	22%	122/560	

Table 3. 31 Farm Surveillance recovery rates in chickens, 2013 to 2018(continued)

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Animal species	Province/region	Vear	Percentage (%) of isolates	s recovered an	d number o	of isolates reco	overed / numl	ber of samples	submitted
Animai species	110villee/region	rear	Escherich	ia coli	Salmon	ella	Campylo	obacter	Enteroc	occus
Pigs	Prairies	2012	100%	232/232	19%	43/232				
		2013	98%	224/228	14%	33/228				
		2014	99%	248/252	16%	40/252				
		2015	97%	228/234	18%	43/234				
		2016	98%	246/252	18%	46/252				
		2017	97%	227/234	20%	46/234	80%	187/234		
		2018	98%	269/276	18%	49/276	80%	220/276		
	Ontario	2012	99%	167/168	18%	31/168				
		2013	100%	168/168	26%	43/168				
		2014	100%	162/162	41%	67/162				
		2015	99%	149/150	29%	43/150				
		2016	99%	155/156	22%	34/156				
		2017	100%	138/138	19%	26/138	71%	98/138		
		2018	99%	184/186	26%	49/186	81%	150/186		
	Québec	2012	100%	120/120	16%	19/120				
		2013	100%	138/138	17%	23/138				
		2014	100%	156/156	26%	40/156				
		2015	98%	123/126	28%	35/126				
		2016	99%	143/144	21%	30/144				
		2017	99%	119/120	38%	45/120	70%	84/120		
		2018	100%	132/132	31%	41/132	86%	114/132		
	National	2006	99%	459/462	20%	94/462			81%	374/462
		2007	100%	612/612	21%	136/612			81%	495/612
		2008	99%	481/486	13%	61/486			92%	448/486
		2009	99%	695/698	18%	124/698			97%	680/698
		2010	99%	566/569	18%	101/569			96%	545/569
		2011	100%	560/560	14%	77/560				
		2012	99%	519/520	18%	93/520				
		2013	99%	530/534	19%	99/534				
		2014	99%	566/570	26%	147/570				
		2015	98%	500/510	24%	121/510				
		2016	99%	544/552	20%	110/552				
		2017	98%	484/492	24%	117/492	75%	369/492		
		2018	99%	585/594	23%	139/594	82%	484/594		

Table 3. 32 Farm Surveillance recovery rates in pigs, 2006 to 2018

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

The Prairies is a region including the provinces of Alberta and Saskatchewan.

Animal species	Province / region	Year	Percentage (%) of isolates	recovered ar	nd number of i	isolates reco	vered / num l	per of samples submitted
			Eschericl	hia coli	Salmo	nella	Campylo	bacter	Enterococcus
Turkeys	British Columbia	2016	100%	116/116	43%	50/116	68%	79/116	
		2017	98%	106/108	44%	47/108	75%	80/108	
		2018	99%	118/119	55%	66/119	79%	94/119	
	Alberta	2018	98%	39/40	78%	31/40	35%	14/40	
	Ontario	2016	97%	113/116	60%	70/116	56%	65/116	
		2017	100%	120/120	69%	83/120	42%	50/120	
		2018	98%	118/120	81%	97/120	48%	58/120	
	Québec	2016	100%	48/48	54%	26/48	56%	27/48	
		2017	95%	61/64	48%	31/64	42%	27/64	
		2018	100%	92/92	49%	45/92	27%	25/92	
	National	2016	99%	277/280	52%	146/280	61%	171/280	
		2017	98%	287/292	55%	161/292	54%	157/292	
		2018	99%	367/371	64%	239/371	51%	191/371	

Table 3. 33 Farm Surveillance recovery rates in turkeys, 2016 to 2018

Grey-shaded areas indicate either: a) isolates recovered from sampling activities outside the scope of CIPARS routine (or "core") surveillance in the specified year (i.e. grey-shaded areas with data) or b) discontinuation or no surveillance activity (i.e. grey-shaded areas with no data).

Surveillance of Animal Clinical Isolates

Multiclass resistance

Table 3. 34 Number of antimicrobial classes in resistance patterns of Salmonella from cattle, 2018

	Number (%)	Nu num	mber nber (r of is of ant	olates	s by obial			Nun	nber	ofiso	lates	resista	ant by Fol	antim ate	icrobial class	and antimic	robial		
Serovar	of isolates	clas	ses ii	n the i	resist	ance	Aminogly	ycosides		β-	Lacta	ims		path inhib	way itors	Macrolides	Phenicols	Quind	olones	Tetracyclines
		0	1	2–3	4–5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
Dublin	77 (45.3)			1	25	51	2	77	72	72	72	72		77	5		76	1	54	77
Typhimurium	41 (24.1)	9		4	26	2		28	29	4	4	4		32	22	1	24		1	31
4,[5],12:i:-	9 (5.3)	3			6		1	6	6					6	2		2			6
Uganda	8 (4.7)			3		5	5	8	5	5	5	5		8	5	5	5			8
Cerro	5 (2.9)	5																		
Infantis	5 (2.9)	3			2		1	2	1	1	1	1		2			2			2
Less common serovars	25 (14.7)	18	1	1	1	4		4	6	6	6	6		6	2		5		4	6
Total	170 (100)	38	1	9	60	62	9	125	119	88	88	88		131	36	6	114	1	59	130

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3. 35 Number of antimicrobial classes in resistance patterns of Salmonella from chickens, 2018

Serovar	Number (%) of isolates	Nu num clas	mber 1ber (ses il	r of is of ant n the i	olates by imicrobial resistance	Aminogly	ycosides	Nur	nber β-	of isc Lacta	olates i ims	resista	ant by antim Folate pathway	icrobial class Macrolides	and antimic	robial Quinc	olones	Tetracyclines
			1	patter	n 4-5-6-7	GEN	етр	AMD	AMC	CRO	FOX	MEM		A 7M	CHI		NAL	TET
		U		2-3	4-5 6-7	GEN	SIK	AIVIP	AIVIC	URU	FUA		333 341	AZIVI	CHL	UP	NAL	IEI
Enteritidis	113 (50.2)	111	2														2	
Kentucky	27 (12.0)			27			27	8	8	8	8							27
Typhimurium	22 (9.8)	17	5				5											
Heidelberg	12 (5.3)	5	6	1		1	1	6					1					
Schwarzengrund	9 (4.0)	9																
Infantis	7 (3.1)	7																
Less common serovars	35 (15.6)	20	8	6	1		11	4	1	1	1		2					11
Total	225 (100)	169	21	34	1	1	44	18	9	9	9		3				2	38

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

		Nu	mber	of is	olates	bv			Nun	nber	of is c	lates	resista	ant by	antim	icrobial class	and antimic	robial	
	Number (%)	num	ber	of ant	imicro	obial								Fol	ate				
Serovar	of isolates	clas	ses iı	n the I	resist	ance	Aminogly	cosides		β-Ι	Lacta	ms		path	way	Macrolides	Phenicols	Quinolones	Tetracyclines
	0. 100.4000	_		patter	'n									inhib	itors				_
		0	1	2–3	4-5	6–7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS	SXT	AZM	CHL	CIP NAL	TET
Typhimurium	78 (30.1)	_13	5	10	49	1	7	53	59					60	16	1	50		57
Derby	40 (15.4)	2	5	12	21		1	32	22	1	1	1		32	1				36
4,[5],12:i:-	24 (9.3)			1	23		1	24	24	9	9	9		24			8		23
Infantis	21 (8.1)	19			2		1	2	1	1	1	1		2	2	1	2		2
Brandenburg	15 (5.8)	4	6	5			4	4	5	3	3	3		5	1				7
Ohio var.14+	10 (3.9)	2		1	7		2	7	4					8	5		7		8
Mbandaka	8 (3.1)	7			1			1						1			1		1
Ohio	7 (2.7)	4			3			3	2	2	2	2		3	3		3		3
4,[5],12:d:-	6 (2.3)			5	1			6	1					6	3				6
Mbandaka var. 14+	6 (2.3)	3		1	2			3						3				2	3
Schwarzengrund	6 (2.3)	2		3	1		1	4	1	1	1	1		4	1		1		4
Less common serovars	38 (14.7)	14	3	12	9		2	21	10	3	4	3		11	1	1		1	21
Total	259 (100)	70	19	50	119	1	19	160	129	20	21	20		159	33	3	72	3	171

 Table 3. 36 Number of antimicrobial classes in resistance patterns of Salmonella

 from pigs, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Table 3. 37 Number of antimicrobial classes in resistance patterns of Salmonella from horses, 2018

	Number (%)	Nur num	nbei ber	r of is of an	solate: timicr	s by obial			Nu	umber of i	solates	resist	ant by Fol	antim ate	icrobial class	and antimi	crobial	1	
Serovar	of isolates	class	ses i	in the	resis	tance	Amino	glycosides		β-Lao	tams		path	iway	Macrolides	Phenicols	Quin	olones	Tetracyclines
		_		patte	ern												_		
				2-3	3 4-5	6-7	GEN	STR	AM	P AMC CF	RO FOX	MEM	SSS	SXT	AZM	CHL	CIP	NAL	TET
Thompson	4 (44.4)	4																	
Barranquilla	1 (11.1)	1																	
Derby	1 (11.1)	1																	
Infantis	1 (11.1)	1																	
Newport	1 (11.1)	1																	
Typhimurium	1 (11.1)	1																	
Total	9 (100)	9																	

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

	No	Nu	mber 1ber o	of is	olates by imicrobial			Nur	nber	ofiso	lates	resista	ant by an Folate	timicrobia e	l class	and antimic	robial		
Serovar	of isolates	clas	ses ii	n the i patter	resistance n	Aminogl	ycosides		β-I	Lacta	ms		pathwa inhibito	ay Macro rs	olides	Phenicols	Quin	olones	Tetracyclines
		0	1	2–3	4-5 6-7	GEN	STR	AMP	AMC	CRO	FOX	MEM	SSS S	KT AZ	ZM	CHL	CIP	NAL	TET
Heidelberg	55 (28.9)	7	9	39		47	48						39						
Uganda	30 (15.8)	6		24		1	24						24						24
Schwarzengrund	23 (12.1)	21	2				1												1
Bredeney	14 (7.4)		8	6		14	9	1	1	1	1		1						5
Reading	14 (7.4)	7	2	2	3		5	6					4						4
Agona	13 (6.8)	10		1	2		2	3	2	2	2		2			2			3
Muenchen	5 (2.6)	3	1	1			1						1						2
Ouakam	5 (2.6)	1	2	2		4	4						2						
4,[5],12:-:-	4 (2.1)		3	1		3	4						1						
Montevideo	4 (2.1)			4		4	4	4											
Less common serovars	23 (12.1)	7	7	8	1	5	15	4					3	1 *	1			1	6
Total	190 (100)	62	34	88	6	78	117	18	3	3	3		77	1	1	2		1	45

Table 3. 38 Number of antimicrobial classes in resistance patterns of Salmonellafrom turkeys, 2018

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Serovars represented by less than 2% of isolates were classified as "Less common serovars".

Surveillance of Feed and Feed Ingredients

Multiclass resistance

Table 3. 39 Number of antimicrobial classes in resistance patterns of *Salmonella* from feed and feed ingredients, 2018

		Nu	mber	r of isol	ates by			Number of is	olates resist	ant by antim	icrobial class	and antimic	robial	
Serovar	Number (%) of isolates	class	ses i	of antin n the re pattern	esistance	Aminogly	ycosides	β-Lacta	ams	pathway	Macrolides	Phenicols	Quinolones	Tetracyclines
		0	1	2–3	4-5 6-7	GEN	STR	AMP AMC CRC	FOX MEM	SSS SXT	AZM	CHL	CIP NAL	TET
Infantis	7 (20.6)	6	1							1				
Schwarzengrund	4 (11.8)	4												
Senftenberg	4 (11.8)	4												
Ealing	3 (8.8)	3												
Cubana	2 (5.9)	2												
19:-:-	2 (5.9)	2												
42:z4,z23:-	2 (5.9)	2												
ldikan	2 (5.9)	2												
Lille	2 (5.9)	2												
Muenster var. 15+ 34+	2 (5.9)	2												
Agona	1 (2.9)	1												
Mbandaka var. 14+	1 (2.9)	1												
Minnesota	1 (2.9)	1												
Montevideo	1 (2.9)	1												
Total	34 (100)	33	1							1				

Antimicrobial abbreviations are defined in the Appendix.

Red, blue, and black numbers indicate isolates resistant to antimicrobials in Categories I, II, and III of importance to human medicine, respectively.

Appendix

Abbreviations

Canadian provinces, territories, and regions

Provinces	Territories
BC British Columbia	YT Yukon
AB Alberta	NT Northwest Territories
SK Saskatchewan	NU Nunavut
MB Manitoba	
ON Ontario	Regions ⁷
QC Québec	Prairies: AB, SK, MB
NB New Brunswick	Maritimes: NB, NS, PE
NS Nova Scotia	Atlantic ⁸ : NB, NS, PE, NL
PE Prince Edward Island	
NL Newfoundland and Labrador	
Antimicrobials	
AMC Amoxicillin-clavulanic acid	GEN Gentamicin
AMP Ampicillin	MEM Meropenem
AZM Azithromycin	NAL Nalidixic acid
CHL Chloramphenicol	SSS Sulfisoxazole
CIP Ciprofloxacin	STR Streptomycin
CLI Clindamycin	SXT Trimethoprim-sulfamethoxazole
CRO Ceftriaxone	TEL Telithromycin
ERY Erythromycin	TET Tetracycline
FLR Florfenicol	TIO Ceftiofur
FOX Cefoxitin	

⁷ In 2018, not all provinces are represented in each surveillance component for the Prairies and the Atlantic region.

⁸ In 2018, no sampling occurred in the Atlantic region.

Other abbreviations

APP Actinobacillus pleuropneumoniae
IBV Infectious Bronchitis Virus
PCVAD Porcine Circovirus Associated Disease
PDAR Pig-days at risk
PED Porcine Epidemic Diarrhea
PRRS Porcine Reproductive and Respiratory Syndrome
TGE Transmissible gastroenteritis
VDD Veterinary Drugs Directorate, Health Canada