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the last decade. For example, the PopHR software platform 
integrates a wide range of population health data using 
epidemiologic knowledge to guide decisions about public health 
interventions (5). Together with a repository of synthesized, 
quality appraised research evidence evaluating the effectiveness 
of public health interventions (Health EvidenceTM) (6), such 
software platforms may enable the realization of benefits of 
precision public health.

A pilot project to code the research evidence of interventions 
related to influenza control illustrated that it is possible to create 
a coded knowledge base of influenza control interventions 
that could be “read” by a computer and then paired with local 
data to identify interventions suited to a specific circumstance. 
However, the human effort to achieve this automation was 
not inconsequential and this approach is likely not scalable 
without additional automation of the process to encode 
evidence. Furthermore, while a 2019 survey of public health 
professionals illustrated highly favourable perceptions towards 
an electronic evidence service for public health, decision-makers 
also identified issues that would need to be resolved, such as 
accounting for community values and resources, in order to 
be comfortable using such a resource. So, while there is much 
reason for optimism regarding the potential benefits of precision 
public health, the reality is that there is still much to be learned 
and considerable work to be done. Recent investments in public 
health and informatics, however, place Canada at the forefront of 
this emerging field.
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Precision public health (PPH) is defined as an “emerging practice 
to more granularly predict and understand public health risks 
and customize treatments for more specific and homogenous 
sub-populations, often using new data, technologies and 
methods”(1). In Canada, public health practitioners are 
beginning to focus their attention on precision public health 
and researchers are developing methods to implement this 
practice. As this effort ramps up, it is important to ask if the 
anticipated benefits are likely to be realized, or if we are chasing 
an unachievable dream? 

In a manner similar to evidence-informed public health (2), 
precision public health (3) has the potential to alter the 
decision‑making process significantly and impact population 
health positively. Both approaches are based on the use of 
the best available evidence to classify population health status 
and identify the optimal interventions for a population, given 
the health status (2,4). Both approaches have been enabled 
by the explosive growth in data and computing power over 
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Introduction

There is a growing interest in deploying artificial intelligence 
(AI) strategies to achieve public health outcomes, particularly 
in response to the global coronavirus disease 2019 (COVID-19) 
pandemic where novel datasets, surveillance tools and models 
are emerging very quickly. 

The objective of this manuscript is to provide a framework for 
considering natural language processing (NLP) approaches 
to public health based on historical applications. This 
overview includes a brief introduction to AI and NLP, suggests 
opportunities where NLP can be applied to public health 
problems and describes the challenges of applying NLP in 
a public health context. Particular articles were chosen to 
emphasize the breadth of potential applications for NLP in public 
health as well as the not inconsiderable challenges and risks 
inherent in incorporating AI/NLP in public health analysis and 
decision support.

Artificial intelligence and natural 
language processing
AI research has produced models that can interpret a radiograph 
(1,2), detect irregular heartbeats using a smartwatch (3), 
automatically identify reports of infectious disease in the 
media (4), ascertain cardiovascular risk factors from retinal 
images (5) and find new targets for existing medications (6,7). 
The success of these models is built from training on hundreds, 
thousands and sometimes millions of controlled, labelled and 
structured data points (8). The capacity of AI to provide constant, 
tireless and rapid analyses of data offers the potential to 
transform society’s approach to promoting health and preventing 
and managing diseases. AI systems have the potential to “read” 
and triage all of the approximately 1.3 million research articles 
indexed by PubMed each year (9); “examine” comments from 
1.5 billion Facebook users or “monitor” 500 million tweets of 
people struggling with mental illness on a daily basis, foodborne 
illness or the flu (10,11); and simultaneously interact with each 
and every person seeking answers to their health questions, 
concerns, problems and challenges (12).

Abstract

Natural language processing (NLP) is a subfield of artificial intelligence devoted to 
understanding and generation of language. The recent advances in NLP technologies are 
enabling rapid analysis of vast amounts of text, thereby creating opportunities for health 
research and evidence-informed decision making. The analysis and data extraction from 
scientific literature, technical reports, health records, social media, surveys, registries and other 
documents can support core public health functions including the enhancement of existing 
surveillance systems (e.g. through faster identification of diseases and risk factors/at‑risk 
populations), disease prevention strategies (e.g. through more efficient evaluation of the safety 
and effectiveness of interventions) and health promotion efforts (e.g. by providing the ability to 
obtain expert-level answers to any health related question). NLP is emerging as an important 
tool that can assist public health authorities in decreasing the burden of health inequality/
inequity in the population. The purpose of this paper is to provide some notable examples of 
both the potential applications and challenges of NLP use in public health.
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NLP is a subfield of AI that is devoted to developing algorithms 
and building models capable of using language in the same 
way humans do (13). It is routinely used in virtual assistants 
like “Siri” and “Alexa” or in Google searches and translations. 
NLP provides the ability to analyze and extract information 
from unstructured sources, automate question answering and 
conduct sentiment analysis and text summarization (8). With 
natural language (communication) being the primary means 
of knowledge collection and exchange in public health and 
medicine, NLP is the key to unlocking the potential of AI in 
biomedical sciences.

Most modern NLP platforms are built on models refined 
through machine learning techniques (14,15). Machine learning 
techniques are based on four components: a model; data; a loss 
function, which is a measure of how well the model fits the data; 
and an algorithm for training (improving) the model (16). Recent 
breakthroughs in these areas have led to vastly improved NLP 
models that are powered by deep learning, a subfield of machine 
learning (17). 

Innovation in the different types of models, such as recurrent 
neural network-based models (RNN), convolutional neural 
network-based models (CNN) and attention-based models, 
has allowed modern NLP systems to capture and model more 
complex linguistic relationships and concepts than simple 
word presence (i.e. keyword search) (18). This effort has been 
aided by vector-embedding approaches to preprocess the data 
that encode words before feeding them into a model. These 
approaches recognize that words exist in context (e.g. the 
meanings of “patient,” “shot” and “virus” vary depending on 
context) and treat them as points in a conceptual space rather 
than isolated entities. The performance of the models has also 
been improved by the advent of transfer learning, that is, taking 
a model trained to perform one task and using it as the starting 
model for training on a related task. Hardware advancements 
and increases in freely available annotated datasets have also 
boosted the performance of NLP models. New evaluation tools 
and benchmarks, such as GLUE, superglue and BioASQ, are 
helping to broaden our understanding of the type and scope of 
information these new models can capture (19–21).

Opportunities

Public health aims to achieve optimal health outcomes within 
and across different populations, primarily by developing and 
implementing interventions that target modifiable causes 
of poor health (22–26). Success depends on the ability to 
effectively quantify the burden of disease or disease risk factors 
in the population and subsequently identify groups that are 
disproportionately affected or at-risk; identify best practices 
(i.e. optimal prevention or therapeutic strategies); and measure 
outcomes (27). This evidence-informed model of decision 
making is best represented by the PICO concept (patient/
problem, intervention/exposure, comparison, outcome). PICO 

provides an optimal knowledge identification strategy to frame 
and answer specific clinical or public health questions (28). 
Evidence-informed decision making is typically founded on the 
comprehensive and systematic review and synthesis of data in 
accordance with the PICO framework elements.

Today, information is being produced and published (e.g. 
scientific literature, technical reports, health records, 
social media, surveys, registries and other documents) at 
unprecedented rates. By providing the ability to rapidly analyze 
large amounts of unstructured or semistructured text, NLP has 
opened up immense opportunities for text-based research and 
evidence-informed decision making (29–34). NLP is emerging as 
a potentially powerful tool for supporting the rapid identification 
of populations, interventions and outcomes of interest that 
are required for disease surveillance, disease prevention and 
health promotion. For example, the use of NLP platforms that 
are able to detect particular features of individuals (population/
problem, e.g. a medical condition or a predisposing biological, 
behavioural, environmental or socioeconomic risk factor) in 
unstructured medical records or social media text can be used to 
enhance existing surveillance systems with real-world evidence. 
One recent study demonstrated the ability of NLP methods to 
predict the presence of depression prior to its appearance in 
the medical record (35). The ability to conduct real-time text 
mining of scientific publications for a particular PICO concept 
provides opportunities for decision makers to rapidly provide 
recommendations on disease prevention or management that 
are informed by the most current body of evidence when timely 
guidance is essential, such as during an outbreak. NLP-powered 
question-answering platforms and chatbots also carry the 
potential to improve health promotion activities by engaging 
individuals and providing personalized support or advice. Table 1 
provides examples of potential applications of NLP in public 
health that have demonstrated at least some success.

Challenges

Despite the recent advances, barriers to widespread use of NLP 
technologies remain.

Similar to other AI techniques, NLP is highly dependent on the 
availability, quality and nature of the training data (72). Access 
and availability of appropriately annotated datasets (to make 
effective use of supervised or semi-supervised learning) are 
fundamental for training and implementing robust NLP models. 
For example, the development and use of algorithms that are 
able to conduct a systematic synthesis of published research on a 
particular topic or an analysis and data extraction from electronic 
health records requires unrestricted access to publisher or 
primary care/hospital databases. While the number of freely 
accessible biomedical datasets and pre-trained models has been 
increasing in recent years, the availability of those dealing with 
public health concepts remains limited (73).
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The ability to de-bias data (i.e. by providing the ability to inspect, 
explain and ethically adjust data) represents another major 
consideration for the training and use of NLP models in public 
health settings. Failing to account for biases in the development 
(e.g. data annotation), deployment (e.g. use of pre-trained 
platforms) and evaluation of NLP models could compromise 
the model outputs and reinforce existing health inequity (74). 
However, it is important to note that even when datasets and 
evaluations are adjusted for biases, this does not guarantee an 
equal impact across morally relevant strata. For example, use of 
health data available through social media platforms must take 
into account the specific age and socioeconomic groups that 
use them. A monitoring system trained on data from Facebook 
is likely to be biased towards health data and linguistic quirks 
specific to a population older than one trained on data from 
Snapchat (75). Recently many model agnostic tools have been 
developed to assess and correct unfairness in machine learning 
models in accordance with the efforts by the government and 
academic communities to define unacceptable AI development 
(76–81).

Currently, one of the biggest hurdles for further development 
of NLP systems in public health is limited data access (82,83). 
Within Canada, health data are generally controlled regionally 
and, due to security and confidentiality concerns, there is 
reluctance to provide unhindered access to these systems and 
their integration with other datasets (e.g. data linkage). There 
have also been challenges with public perception of privacy and 
data access. A recent survey of social media users found that the 
majority considered analysis of their social media data to identify 
mental health issues “intrusive and exposing” and they would 
not consent to this (84). 

Before key NLP public health activities can be realized at 
scale, such as the real-time analysis of national disease trends, 
jurisdictions will need to jointly determine a reasonable scope 
and access to public health–relevant data sources (e.g. health 
record and administrative data). In order to prevent privacy 
violations and data misuse, future applications of NLP in the 
analysis of personal health data are contingent on the ability to 
embed differential privacy into models (85), both during training 
and postdeployment. Access to important data is also limited 
through the current methods for accessing full text publications. 
Realization of fully automated PICO‑specific knowledge 
extraction and synthesis will require unrestricted access to journal 
databases or new models of data storage (86).

Finally, as with any new technology, consideration must be given 
to assessment and evaluation of NLP models to ensure that 
they are working as intended and keeping in pace with society’s 
changing ethical views. These NLP technologies need to be 
assessed to ensure they are functioning as expected and account 
for bias (87). Although today many approaches are posting 
equivalent or better-than-human scores on textual analysis tasks, 
it is important not to equate high scores with true language 
understanding. It is, however, equally important not to view 

Table 1: Examples of existing and potential applications 
of natural language processing in public health

Abbreviation: NLP, natural language processing 

Type of 
activity

Public health 
objective

Example of NLP use

Identification 
of at-risk 
populations or 
conditions of 
interest 

To continuously measure 
the incidence and 
prevalence of diseases 
and disease risk factors 
(i.e. surveillance)

Analysis of unstructured 
or semistructured text 
from electronic health 
records or social media 
(36–42)

To identify vulnerable and 
at-risk populations 

Analysis of risk 
behaviours using social 
media (43–45)

Identification 
of health 
interventions

To develop optimal 
recommendations/
interventions 

Automated systematic 
review and analysis of the 
information contained in 
scientific publications and 
unpublished data (46–50)

To identify best practices Identification of 
promising public health 
interventions through 
analysis of online grey 
and peer reviewed 
literature (51)

Identification 
of health 
outcomes 
using 
real-world 
evidence

To evaluate the benefits 
of health interventions

Analysis of unstructured 
or semistructured text 
from electronic health 
records, online media and 
publications to determine 
the impact of public 
health recommendations 
and interventions (52,53)

To identify unintended 
adverse outcomes related 
to interventions 

Analysis of unstructured 
or semistructured text 
from electronic health 
records, social media and 
publications to identify 
potential adverse events 
of interventions (54–58)

Knowledge 
generation 
and translation

To support public health 
research 

Analysis and extraction 
of information from 
electronic health records 
and scientific publications 
for knowledge generation 
(59–62)

To support evidence-
informed decision making 

Use of chatbots, 
question/answer systems 
and text summarizers 
to provide personalized 
information to individuals 
seeking advice to 
improve their health and 
prevent disease (63–65)

Environmental 
scanning and 
situational 
awareness 

To conduct public 
health risk assessments 
and provide situational 
awareness

Analysis of online content 
for real-time critical event 
detection and mitigation 
(66–70)

To monitor activities that 
may have an impact on 
public health decision 
making

Analysis of decisions of 
international and national 
stakeholders (71) 



OVERVIEW

CCDR • June 4, 2020 • Vol. 46 No. 6Page 164 

a lack of true language understanding as a lack of usefulness. 
Models with a “relatively poor” depth of understanding can still 
be highly effective at information extraction, classification and 
prediction tasks, particularly with the increasing availability of 
labelled data.

Natural language processing and the 
coronavirus disease 2019 (COVID-19)
With the emergence of the COVID-19, NLP has taken a 
prominent role in the outbreak response efforts (88,89). NLP has 
been rapidly employed to analyze the vast quantity of textual 
information that has been made available through unrestricted 
access to peer-review journals, preprints and digital media (90). 
NLP has been widely used to support the medical and scientific 
communities in finding answers to key research questions, 
summarization of evidence, question answering, tracking 
misinformation and monitoring of population sentiment (91–97).

Conclusion

NLP is creating extraordinary opportunities to improve evidence-
informed decision making in public health. We anticipate that 
broader applications of NLP will lead to the creation of more 
efficient surveillance systems that are able to identify diseases 
and at-risk conditions in real time. Similarly, with an ability to 
analyze and synthesize large volumes of information almost 
instantaneously, NLP is expected to facilitate targeted health 
promotion and disease prevention activities, potentially leading 
to population-wide disease reduction and greater health equity. 
However, these opportunities are not without risks: biased 
models, biased data, loss of data privacy and the need to 
maintain and update models to reflect the evolving language 
and context of public communication are all existing challenges 
that will need to be addressed. We encourage the public health 
and computer science communities to collaborate in order to 
mitigate these risks, ensure that public health practice does not 
fall behind in these technologies or miss opportunities for health 
promotion and disease surveillance and prevention in this rapidly 
evolving landscape.
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A call for an ethical framework when using social 
media data for artificial intelligence applications 
in public health research
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Abstract

Advancements in artificial intelligence (AI), more precisely the subfield of machine learning, 
and their applications to open-source internet data, such as social media, are growing faster 
than the management of ethical issues for use in society. An ethical framework helps scientists 
and policy makers consider ethics in their fields of practice, legitimize their work and protect 
members of the data-generating public. A central question for advancing the ethical framework 
is whether or not Tweets, Facebook posts and other open-source social media data generated 
by the public represent a human or not. The objective of this paper is to highlight ethical 
issues that the public health sector will be or is already confronting when using social media 
data in practice. The issues include informed consent, privacy, anonymization and balancing 
these issues with the benefits of using social media data for the common good. Current ethical 
frameworks need to provide guidance for addressing issues arising from the use of social media 
data in the public health sector. Discussions in this area should occur while the application of 
open-source data is still relatively new, and they should also keep pace as other problems arise 
from ongoing technological change.

Affiliations

1 Université Laval, Québec, QC
2 Public Health Agency of Canada, 
Ottawa, ON
3 University of Toronto,  
Toronto, ON

*Correspondence:  
jean-philippe.gilbert.5@ulaval.ca

Suggested citation: Gilbert J-P, Ng V, Niu J, Rees EE. A call for an ethical framework when using social media 
data for artificial intelligence applications in public health research. Can Commun Dis Rep 2020;46(6):169–73. 
https://doi.org/10.14745/ccdr.v46i06a03
Keywords: ethics, ethical research, social media, artificial intelligence

This work is licensed under a Creative 
Commons Attribution 4.0 International 
License.

Introduction

Rapid technological advancements in artificial intelligence (AI), 
and more specifically, natural language processing (NLP) using 
machine learning techniques, are enabling easy access and 
use of open-source big data. NLP allows computers to analyze 
datasets of natural language discourse (i.e. text not structured 
for quantitative analysis). 

In public health, digital epidemiology has emerged as a new 
field that focuses on using non–public health sector data such 
as open-source internet data (e.g. Google Trends, news media) 
and social media data (e.g. Twitter and Facebook posts), whereas 
traditional epidemiology uses data collected for the purposes of 
health care, such as reporting of notifiable diseases by healthcare 
professionals to contribute to data for the surveillance of disease 
cases.

Researchers and policy makers recognize the potential of digital 
epidemiology data for advancing early warning of public health 
threats (1–3). Odlum & Yoon (4) used NLP to assess Twitter data 
and reported that Tweets related to Ebola increased in the days 

leading up to the official alert of the 2014 Ebola outbreak in 
Africa. Yousefinaghani et al. (5) showed that 75% of real-time 
outbreak notifications of avian influenza were identifiable from 
Twitter; one‑third of outbreak notifications were reported on 
Twitter earlier than official reports. These observations support 
using Twitter volumes to predict the occurrence of outbreaks, 
and even forecast expected case counts, has also been shown 
with Google Trends data (1,6). Furthermore, refinement of social 
media data into various disease-relevant categories, by using 
NLP to classify Tweets into symptom types (e.g. fever, vomit), or 
focusing analysis on specific search terms from Google Trends, 
helps increase the accuracy in predictions of outbreak occurrence 
and forecast estimates.

Research that uses data from human participants requires 
ethical approval. A review process by a government body or 
university committee independent of the researchers assesses 
if use of these data ensures the safety, dignity and rights of the 
participants. Researchers need to demonstrate to the research 
ethics board (REB) that their study minimizes harm to participants 

mailto:jean-philippe.gilbert.5%40ulaval.ca?subject=jean-philippe.gilbert.5%40ulaval.ca
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


OVERVIEW

CCDR • June 4, 2020 • Vol. 46 No. 6Page 170 

and respects their autonomy, generates and maximizes benefit 
(e.g. to society, science, participants) and acts with integrity, 
fairness and transparency to all stakeholders (e.g. participants, 
beneficiaries of the research). However, in a systematic review 
of the utilization of Twitter for health research, only 32% of the 
studies acquired ethical approval (7).

This is an example of technology moving faster than policy, 
in that the availability of newer data sources, such as from 
social media, have outpaced the need to assess the ethics 
of their use. This has led to studies with questionable ethical 
actions, which casts a shadow on all fields that use big data. An 
example is the “Tastes, Ties, and Time” study in 2007, where 
the researchers published an anonymized dataset of a group 
of university students and a codebook with information about 
the dataset; the dataset was identifiable from the codebook (8). 
Similarly, in 2012, evidence of online emotional contagion was 
sought, without prior consent, by manipulating the Facebook 
news feed of thousands of people to see if doing so changes 
sentiments in individuals’ posts (9).

In this article, we explore issues to do with traditional ethical 
frameworks in relation to research based on AI, particularly in the 
field of public health and digital epidemiology. We then present 
ethical frameworks that allow scientists and policy makers to use 
data from social media and their applications.

Contemporary ethics

In contemporary science, researchers need ethical approval for 
the use of human data. This very criterion is the main problem in 
big data–based research. It raises a seemingly simple question: 
Does a post or a Tweet represent human data or text data? (10). 
Several issues and points of view arise from this question, leading 
to a necessary debate given that the popularity of using social 
media data is increasing in several scientific fields, including 
digital epidemiology.

Currently, studies that use social media data are usually 
perceived as outside the scope of ethics committees’ evaluation 
because these data are commonly not considered to be human 
data (11,12). Many researchers, policy makers and practitioners 
assume that they can use open-source data, for example, 
Tweets, public posts on Facebook, public photos on Instagram 
and Google Trends queries, which do not require passwords to 
access (8,13). However, for many users of social media, posting 
publicly does not equate with giving their consent for the post 
to be used for research (8,11,12). This issue is not covered by 
existing ethical review mechanisms (14). 

Furthermore, the ease of access to social media data (in the 
absence of ethical regulations and using rapid data capture via 
AI) means that the number of data points is often much larger 
than from traditional epidemiological datasets. Therefore, 
decisions about the use and implications of social media data 

can potentially affect more people (14). For example, the 
number of people accidentally or maliciously reidentified in a 
Twitter database is only limited by the resources used to compile 
and analyse the database, which is far less than traditional 
surveillance systems (14).

Informed consent
Informed consent in the way it exists in contemporary ethics fits 
poorly with social media data. Firstly, it is almost impossible to 
obtain the informed consent of people whose data contribute 
to digital epidemiology because there are often insufficient 
resources to contact such high numbers of people who can be 
living anywhere (15). 

Secondly to obtain informed consent, scientists need to confirm 
the identity of the social media users (16). There is no way to 
ensure that the person behind the social media profile is who 
they claim to be or to confirm whether the social media post was 
not generated by a bot (i.e. “robot” responsible for computer-
generated social media posts). Because of this complication, 
some researchers consider consent to the terms and services of a 
social media platform, which users must give to use the platform, 
to be a surrogate for informed consent (16). However, users 
often do not read the terms and services or understood them 
well (17–19); nor do these stipulate the terms and conditions 
under which the data will be used for research, which calls into 
question the legitimacy and integrity of using terms and services 
as a surrogate for informed consent. Many “participants” in 
digital epidemiology are not aware that their data were collected 
or used (20).

Privacy and anonymization issues
We are becoming increasingly reliant on technology to structure 
and analyze the data proliferating in our digital societies. 
Data mining helps researchers find complex and unintuitive 
data patterns. However, data mining methods can also reveal 
confidential information from seemingly harmless social media 
data, for example, political affiliations (12,21). In addition, 
Wang et al. (22) reported being able to identify people’s sexual 
orientation by processing pictures of people from a dating 
website.

An anonymized dataset is the minimal requirement to protect 
the identity of subjects in social science (23) or in traditional 
epidemiology (20). According to the Common Rule, also 
known as 45 CFR 46 Subpart A, the principal regulation for 
human research from the Department of Health and Human 
Services of the United States (24), 17 identifiers need to be 
removed to consider a dataset anonymized. These include, 
among others, name, location of residence, all dates except the 
year and biometric identifiers (25). The Canadian Institutes of 
Health Research (CIHR), the Natural Sciences and Engineering 
Research Council of Canada (NSERC) and the Social Sciences 
and Humanities Research Council (SSHRC), identify similar 
identifiers (26). However, removing the 17 Common Rule 
identifiers is often not enough to ensure a dataset is anonymized. 
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This is because social media data are highly complex (i.e. 
have high dimensionality). Many non-traditional attributes can 
enable identification, such as reidentification from assessing the 
structure of the social networks (i.e. human connections) from 
multiple social media platforms (15,27). The advancements in 
AI algorithms and computational power to extract information 
and assess patterns means it is no longer possible to have 
anonymous databases (28,29). Many examples in the scientific 
literature demonstrate this issue by reidentifying an anonymized 
and subsequently published dataset (12,21).

The common good
The common good takes roots in the utilitarian vision of ethics. In 
this vision, the common good that research can do is considered 
versus the potential harm to individuals. A certain level of harm 
can be tolerated if the result is “positive morality". In the context 
of social media, the harm is mostly an invasion of privacy (30). 
People are more willing to sacrifice their privacy if they perceive 
that usage of their data will benefit the common good (31,32). 
For the most enthusiastic social media users in the Mikal et 
al. study (31), “it’s cool when it’s stuff [...] like the flu, because 
then that’s how [public health decision-makers] know to get 
the vaccines to a place.” Similarly, for the social media users in 
the Golder et al. study (32), it “could give a voice to patients 
and others groups, uncover true prevailing issues, and improve 
patient care.” Factors that influence people’s compliance in 
sharing their data for the common good include the type 
of research and the researchers affiliations (i.e. university, 
company, government) (32–34). 

Ultimately, while the majority of people agree with the concept 
of the common good, there is no agreed-upon threshold for 
which an invasion of privacy can, and should, be tolerated for 
public health research.

New ethical frameworks
New frameworks that respond to new ethical challenges 
regarding the use of AI for research have been proposed by the 
Association of Internet Researchers (AoIR) (35) and Zook et al. 
(36) (Table 1).

Following a framework can help to legitimize research for the 
population (37). Since the AoIR framework (35) is accepted in the 
scientific literature, with the Association being one of the most 
cited organizations in terms of ethics and big data, scientists may 
want to use this framework rather than the lesser-known Zook 
et al. framework. However, the Zook et al. (36) framework is less 
restrictive and easier to follow. 

Many points in these guidelines are already considerations 
that public health scientists have to address (e.g. protection 
of the vulnerable population, the potential harms of the study, 
the anonymization process). Public health scientists already 
frequently use highly confidential data. The main difference 
between social media data and traditional data is the way 
the data are accessed; the original intent for which the data 

are produced; and the limited ability for social media users to 
provide informed consent. The data still represent humans, and 
can result in unintentional consequences such as identifying 
the individual behind their social media content. Public health 
scientists have an obligation to protect the individuals behind 
their data while balancing this with the common good; this 
subjective decision is extremely difficult to agree upon.

Discussion

As technology advances rapidly and more research is done with 
AI and social media data, an established ethical framework is 
essential to prevent improper use of social media data in public 
health applications. Researchers in public health, computer 
science and ethics need to come together to develop a 
framework that will help scientists conduct responsible research. 
In general, existing frameworks have been developed for use in 
every scientific field. Public health‑related decisions can have an 
important impact on the population, however, going as far as 
to restrict the freedom of movement of persons in the case of a 
highly infectious disease, as an example (20).

The REB is an important part of the process to ensure the 
research is within the ethical framework. Inherent in using open-
source social media data is that people do not know, or do not 
have the opportunity to consent, with their data being used. 
Thus, the REB provides the means to defend the safety, dignity 
and rights of the participants as stipulated through the ethical 
framework. 

Table 1: Proposed ethical frameworks

Authors Guidelines

AoIR (35) 1. Protect vulnerable populations
2. Assess potential harm from research studies on 

a case-by-case basis
3. Consider data from humans to be human
4. Balance the rights of all involved parties (i.e. 

the right of privacy for the subject and the 
right to do research for the scientist)

5. The temporal variability of ethical 
considerations must be resolved when it 
occurs

6. Discuss ethical problems with qualified 
professionals when these arise

Zook et al. (36) 1. Acknowledge that data are people and can do 
harm

2. Recognize that privacy is more than a binary 
value

3. Guard against the reidentification of your data
4. Practice ethical data sharing
5. Consider the strengths and limitations of your 

data; big does not automatically mean better
6. Debate the tough, ethical choices
7. Develop a code of conduct for your 

organization, research community or industry
8. Design your data and systems for auditability
9. Engage with the broader consequences of 

data and analysis practices
10. Know when to break these rules

Abbreviation: AoIR, Association of Internet Researchers
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The REB and ethical framework are also needed to address the 
limitations of social media data. Many social media platforms 
are available, and the predominance in their use can differ by 
location. For example, Twitter and Facebook are used extensively 
in Western countries but banned in the People’s Republic of 
China; the Chinese government authorizes the use of Sina 
Weibo and WeChat as the respective Twitter and Facebook 
equivalents. Furthermore, the demographics of use can vary 
among applications. Older generations tend to use Twitter and 
Facebook, while younger generations tend to use Snapchat, 
Instagram and TikTok. This is known as the digital divide (38). 
Some profiles may be underrepresented (e.g. children and 
elderly), depending of the social media platforms.

Conclusion
The ethical issues to do with using social media data for AI 
applications in public health research centre around whether 
these data are considered human. Current ethical frameworks 
are inadequate for public health research. To prevent further 
misuse of social media data, we argue that considering social 
media to be human would facilitate an REB process that ensures 
the safety, dignity and rights of social media data providers. 
We further propose that there needs to be more consideration 
towards the balance between the common good and the 
intrusion of privacy. Collaboration between ethics researchers 
and digital epidemiologists is needed to develop ethics 
committees, guidelines and to oversee research in the field.
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Abstract

Evidence-informed decision making is based on the premise that the entirety of information on 
a topic is collected and analyzed. Systematic reviews allow for data from different studies to be 
rigorously assessed according to PICO principles (population, intervention, control, outcomes). 
However, conducting a systematic review is generally a slow process that is a significant drain 
on resources. The fundamental problem is that the current approach to creating a systematic 
review cannot scale to meet the challenges resulting from the massive body of unstructured 
evidence. For this reason, the Public Health Agency of Canada has been examining the 
automation of different stages of evidence synthesis to increase efficiencies. 

In this article, we present an overview of an initial version of a novel machine learning–based 
system that is powered by recent advances in natural language processing (NLP), such as 
BioBERT, with further optimizations completed using a new immunization‑specific document 
database. The resulting optimized NLP model at the core of this system is able to identify and 
extract PICO‑related fields from publications on immunization with an average accuracy of 88% 
across five classes of text. Functionality is provided through a straightforward web interface.
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Introduction

Evidence-based medicine relies on systematic reviews as key 
sources of information on a variety of topics (1) because these 
provide rigorous assessments and analyses of data from different 
studies. Although rapid publication of relevant, high-quality 
systematic reviews is ideal, in practice the publication process 
has generally been slow (1,2). This is largely due to the massive 
amount of unstructured information that must be filtered. 
Synthesizing key information from multiple articles to create a 
systematic review requires considerable amounts of experts’ 
time. Publication times often exceed one year (3), and costs run 
into hundreds of thousands of dollars (4). 

Machine learning methods have previously been identified for 
the automation of systematic reviews (1,5). These allow for the 
development of software systems capable of automatically 
identifying distinct types of textual information, providing 
there are enough examples to learn to do this from. Natural 
language processing (NLP) methods have also been identified 
for the automation of systematic reviews (1,5) as these methods 
analyze written text through statistical and/or knowledge-based 

approaches, allowing for the identification of key items and 
patterns.

Background

The Public Health Agency of Canada has been examining the 
automation of aspects of evidence synthesis based on PICO 
principles (population, intervention, control, outcomes) to 
eliminate some of the barriers to obtaining systematic reviews 
results, namely, direct involvement of experts, time and cost. 
To do this, the Agency collaborated with Xtract AI (Vancouver, 
British Columbia) to develop a system that uses state-of-the-
art machine learning and NLP to focus on extracting the PICO 
principles from immunization‑specific articles. The functionality 
of our system is a result of its learning to review articles in a 
database composed of 249 immunization‑specific articles with 
manually labelled PICO elements. Once the system’s accuracy 
at extracting relevant PICO-related text from previously unseen 
articles is shown to be high, we can rely on it to carry out work 

mailto:christopher.brogly%40canada.ca?subject=christopher.brogly%40canada.ca
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that would normally be completed manually. The aim was to 
develop the system so that far fewer articles need to be manually 
reviewed.

In this article, we use the terms “NLP model” and “system.” 
Strictly speaking, the “NLP model” refers to the collection 
of machine learning and NLP methods used to process 
immunization-related documents. The “system” refers to the 
NLP model with a web-based user interface that allows easy use 
of the model (see Figure 1). Although the NLP model is the core 
of the system, performing text extraction and prediction tasks, 
we use the term “system” more often in this article due to the 
interdependencies of the NLP model and system components.

The system was designed to automatically extract 27 
PICO-relevant classes of text from previously unseen 
immunization‑specific articles. To test this initial version of 
the system we measured performance based on the system’s 
ability to identify text about the main vaccine, the study 
type, the population health status and the outcome as well 
as the outcome’s descriptive text from 40 previously unseen 
immunization‑specific articles. We considered these five classes 
to be appropriate means of measuring the initial performance 
of the extraction of PICO-related text because they cover a 
wide range of texts and we suspected they were more varied 
than many of the other text classes the system can extract. 
Table 1 shows the five main classes of text used to measure the 
performance of the system.

At the time of writing, the average accuracy of the system 
across these five key text classes was 88%. A summary of the 
accuracy results is shown in Table 1. To achieve this degree of 
accuracy, the system learned from 209 of the 249 examples in 
our document database. The automation task was tested using 
the remaining 40 examples in the document database. Two 
versions of these 40 test documents existed; the first version was 
labelled by an expert who scanned the documents for instances 
of the 27 text classes, and the other was unlabelled. To test 
the PICO-related text extraction capability of the system, the 
system processed the unlabelled versions of the test documents. 
We then compared the system’s automated extractions to the 
text in the expert’s labels. If the system extracted text that was 
comparable in quality to one of the expert’s labelled texts, this 

was counted as a success that contributed to the 88% average 
accuracy score. 

As development work continues and more expert-labelled 
immunization‑specific articles are added to the document 
database, we expect to be able to demonstrate similarly high 
accuracy scores when testing the PICO-related text extraction 
task on many more documents. 

In this article we describe the technical approach to the 
development of the NLP model and the process by which the 
NLP model learned to perform this task. We then provide a 
more detailed analysis of accuracy using several performance 
measures.

Technical approach

The NLP model was designed as a multi-class sequence 
extraction model. A multi-class sequence extraction model works 
by processing the full text of a previously unseen document 
and then extracting sequences of text that correspond to 
each text class it learned to extract. In this case, based on the 
expert‑labelled domains in 209 of our 249 immunization‑specific 
documents, the system extracts up to 27 classes of text. 
Duplicates for each class may be included.

BioBERT, the biomedical language variant of Bidirectional 
Encoder Representations from Transformers (BERT), was used as 
a basis for the NLP model in order to increase performance (6,7). 

Figure 1: Screen capture of the homepage of the web 
interface of the NLP-based extraction system showing 
an example of a search query

Abbreviation: NLP, natural language processing

Table 1: Key text extraction classes with examples and 
accuracy scores

Text class Description Extracted 
example

Accuracy 
score (%)

Main vaccine
What vaccine 
is this article 
about? 

Quadrivalent human 
papillomavirus 
vaccine, or 
heptavalent 
pneumococcal 
vaccine

90

Study type What kind of 
study is this?

Randomized, 
placebo-controlled 
trial

92.5

Population 
health status

Population 
health status HIV-positive 85

Outcome – 
adverse event

Any adverse 
outcome 
described in 
the article

“The most common 
adverse event 
was pain; other 
common events 
were neurological, 
gastrointestinal and 
skin related.”

85

Outcome – 
description 
sentence

Any important 
sentence 
related to 
outcomes

Safety/
immunogenicity 
outcome, e.g. “VE 
was 93.0%  
(85.1–97.3) in the 
TVC‐E (Table S1).”

87.5
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BERT, a recent development in NLP (7), is essentially a model 
that has processed and learned from a massive corpus of text. 
BERT and variants like BioBERT are being increasingly used as 
the basis for new machine learning and NLP software systems. 
Their use has resulted in a considerable increase in the accuracy 
of these systems. BioBERT, as the biomedical language variant of 
the original BERT model, was considered more appropriate for 
use in this work.

Dataset creation
The initial learning data used for the system’s NLP model was 
the evidence-based medicine NLP (EBM-NLP) corpus for PICO 
extraction. The EBM-NLP corpus contains 5,000 annotated 
abstracts of medical articles describing clinical randomized 
controlled trials (8). EBM-NLP corpus annotations labelled key 
parts of these abstracts, such as description of the participants 
(e.g. age range, condition), interventions (e.g. pharmacological) 
and outcomes (e.g. pain, adverse effects or mortality). These 
fields/classes of text were determined by the EBM‑NLP 
corpus developers. A complete description of the annotation 
methodology used for the EBM-NLP corpus can be found at 
https://ebm-nlp.herokuapp.com/annotations.

We used the EBM-NLP corpus to “teach” our system to work 
with these fields because we needed to be able to extract the 
same fields/classes of text. However, because the EBM‑NLP 
corpus annotates a small number of text fields that are not 
immunization‑specific, we also generated the 249‑document 
immunization‑specific database by annotating data in‑house. 
While the specific amount of time for including and labelling 
each article in the document database was not noted, adding 
and labelling a document would be equivalent to the time 
typically taken to manually review an article that might 
potentially be included in a systematic review. However, the 
effort at this stage will ultimately mean less human involvement 
in the overall systematic review process, as the system’s accuracy 
should show that it is capable of reliably performing the task on 
its own. 

Currently the model processes all types of documents, without 
pause, but returns nil results for those that do not contain 
any recognizable text similar to learned examples. We expect 
future versions of the system to be able to identify documents 
not related to immunization based on a lack of results. Using 
the BRAT annotation tool (9), we annotated the title, abstract, 
methods and results sections of the 249 articles in the new 
database. The articles were sourced from PubMed Central 
using a keyword search. We annotated the fields not included 
in the EBM-NLP corpus, that is, “study type,” “main vaccine,” 
“outcomes – adverse event,” “outcomes – description sentence” 
and “population health status.” The NLP model understands 
these text classes because they were manually labelled in the 
new immunization‑specific document database. Examples of 
these text classes are listed in Table 1. 

System learning process/accuracy testing
The BioBERT-based NLP model was initialized from the original 
BioBERT model, with subsequent learning using the EBM-NLP 
corpus. The model then completed more learning using our 
immunization‑specific document database. While 209 samples 
from the document database were used during this final learning 
stage, 40 labelled articles were excluded in order to test the 
system’s performance.

Although we focused on testing five key text classes in this 
article, the system only needs to extract and output a small 
amount of simple text to test several of the 27 extractable text 
classes (see Table 2 for examples). For the remaining classes, 
the system does not output the extracted text on finding it but 
rather flags the article as “true” or “false” depending on the 
content of the research article. The EBM-NLP corpus used in the 
initial training of the NLP model contained examples for some 
of these classes. These examples were expected to allow the 
NLP model to identify anything included in the EBM-NLP corpus 
accurately.

Evaluation

To evaluate the prediction performance for the five key text 
classes, we computed common measures of performance for 
machine learning and NLP-based systems, namely, precision, 
recall and F1 score (another measure of accuracy based 
on precision and recall). We further computed the number 
of successes, errors and general accuracy percentage. All 
performance measures are defined in Table 3. The measures 
listed apply to entire documents. The number of true positives, 
true negatives, false positives and false negatives are used to 
compute the successes and errors. Those numbers are the result 
of the degree of correctness of text extractions made by the 

Table 2: Additional text extraction classes with 
examplesa

Text Classb Extracted example

Safety True

Efficacy True

Pharmacologicalb
Quadrivalent human papillomavirus (types 6, 
11, 16 and 18) recombinant vaccine 0.5 mL 
intramuscularly

Condition HIV-infected

Country Mali

Age Adults aged 27 years or older

Sample size 535

Sex Women
a The system also extracts “vaccine_pathogen_target_main,” “adjuvanted,” “immunogenicity,” 
“immunocompromised,” “healthy,” “non-live,” “non-adjuvanted,” “live,” “sex,” “pregnancy,” 
“doi,” “score,” “abstract,” “methods,” “results,” “ai_version” and “keywords,” but these are not 
listed here for reasons of brevity
b For some text classes, e.g. pharmacological, the system was shown many thousand learning 
examples via the evidence-based medicine natural language processing corpus

https://ebm-nlp.herokuapp.com/annotations
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system. The general accuracy percentages shown in Table 1 are 
calculated based on the successes and errors.

It is important to note that the system extracts free-form text, 
where the length and content of an extracted prediction can 
vary greatly from the correct, labelled sequence of text on a test 
document (for examples, see Figure 2). This being the case, it 
is very important to clearly define what constitutes a success 
(true positive or true negative). For example, if the extracted 
prediction is “pneumococcal vaccine” while the correct answer is 
“heptavalent pneumococcal vaccine,” the result may be classified 
as an error if “heptavalent” is deemed to be too important to be 
left out of the “main vaccine” text for this document.

If the problems associated with definitions are not addressed, 
the performance measures have no context. In this initial stage, 
the extracted predictions were manually inspected for accuracy 
based on defined criteria. Although not yet completed at the 

time of writing, we expect the application of accuracy criteria to 
extracted predictions to be automated in future versions of the 
system. These accuracy criteria were imposed upon the five key 
text classes for an extracted prediction to count as a predicted 
true positive (PTP). Since a document can have many extracted 
predictions, a high number of correct PTPs are needed for 
the document classification task to be counted as a complete 
success, or true positive. The easiest way to think about a PTP 
compared to a true positive is that a PTP is at the text level while 
a true or false positive is assigned to an entire document based 
on the number of PTPs. We define the general criteria for this in 
Table 4.

The full results of the 40-document accuracy testing are shown in 
Table 5.

Table 3: Definitions of model performance measures

Measure of 
accuracy

Means or formula of 
calculation Meaning of results

TP Number of documents
Correctly identified 
documents

Higher scores are better

TN Number of documents
Correctly identified 
documents

Higher scores are better

FP Number of documents
Documents incorrectly 
identified

Lower scores are better

FN Number of documents
Documents incorrectly 
identified

Lower scores are better

Successes TP + TN
The sum of correctly 
identified documents

Higher scores are better

Errors FP + FN
The sum of incorrectly 
identified documents

Lower scores are better

General 
accuracy 
percentage

Overall accuracy from 0% 
to 100%

Precision

Measure of document 
retrieval

Scores from 0.0 to 1.0, 
the higher the better

Recall

Measure of document 
retrieval

Scores from 0.0 to 1.0, 
the higher the better

F1 score 2*(P*R) / (P+R) Scores from 0.0 to 1.0, 
the higher the better

Abbreviations: FN, false negative; FP, false positive; P, precision; R, recall; TN, true negative;  
TP, true positive

(VP + VN)
(VP + VN + FP + FN)

* 100

VP 
(VP + FP)

VP 
(FN + VP)

Figure 2: Screen capture of the NLP model web 
interface showing an extracted predictiona

Abbreviation: NLP, natural language processing
a The extracted prediction is underlined in the web interface and circled on the main results panel 
of the web interface

PTP criteria 
1a

PTP criteria 
2a

Requirement for 
a success (true 

positive)b,c

Requirement 
for a success 

(true negative)
b,c

The EP contains 
one or more 
of the labelled 
answers OR 
unlabelled 
but correct 
answer(s), 
including all 
important 
information

The EP 
cannot have 
too much 
unnecessary 
information

                    > 0.8

>0.5 for Outcome 
text classes due to 
subjectivity

PTP+PFP+PFN = 0

Table 4: Custom criteria for predicted true positives and 
the formulas used to calculate true positives and true 
negatives

Abbreviations: EP, extracted prediction; PFN, predicted false negative; PFP, predicted false 
positive; PTP, predicted true positive
a PTPs are determined based on the extracted predictions made by the system from the 
document text after evaluation by an expert reviewer. There could be many extracted predictions 
per text class that might count as PTPs or otherwise
b PFPs and PFNs are equally important but the numbers of each may vary depending on the 
article
c If the requirements for a true positive or true negative are not met, a false positive may be 
assigned where PFP > PFN or a false negative may be assigned where PFP < PFN

VPP
(VPP + FPP + FNP)
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The system consistently performed well. The success rate 
was high and the error rate low, which demonstrates overall 
effectiveness at the PICO extraction task. A balance of both 
positive and negative test examples was not possible for every 
text class due to limited data, although a balance may not 
necessarily reflect real‑world performance. For instance, there 
were many more true negatives for “population – health status” 
because the articles did not contain any text that could be 
extracted for this class. Regardless, one issue resulting from this 
imbalance is that the accuracy scores for these text classes may 
be skewed in favour of the group (either positive or negative) 
with more test examples. However, we expect that scores will 
remain high as this issue is addressed through the expansion of 
the immunization‑specific documents database.

As shown in Figure 1, PICO-related extraction results are 
accessible through a user-friendly web interface. Figure 3 shows 
an example of a completed search displaying results for many of 
the text classes.

System limitations

As previously stated, a balance of positive and negative test 
example groups for all text classes was not possible due to 

limited data. This may skew the accuracy scores in favour of the 
group with the higher number of test examples. However, it 
is important to note that there may be an imbalance between 
these positive and negative examples on unseen documents in 
real-world situations. 

Developing the new immunization‑specific document database 
required some involvement by experts, that is, it was not 
automated. There was also some manual effort in reviewing 
extracted predictions from the document text for correctness. 
This early manual effort is ultimately required to enable 
automation later.

Next steps
At the time of writing, the system was still being developed. 
Future work will include increasing the number of labelled 
documents in the new immunization‑specific document database 
to improve system learning. The web interface will also continue 
to be refined. Ideally, the system will identify documents that 
are not related to immunization and stop processing them 
immediately to prevent even the brief delay that is currently 
needed to scan a text. A related system, designed to encompass 
all biomedical literature (based on the same technology in this 
article), is also being developed. 

Finally, the effectiveness of a more complete system will need to 
be tested in consultation with public health decision makers.

Conclusion

 We described a system based on machine learning and NLP 
methods for automating the repetitive manual work of analyzing 
documents that is part of the systematic review process. This 
system focuses on immunization‑specific documents only. The 
promising performance results in this initial work demonstrate 
that there is potential to move away from the manual and 
laborious approaches of systematic reviews and move towards 

Table 5: All performance results for five key classes 

Performance 
measure

Key text classes

Main 
vaccine

Study 
type

Outcome 
- adverse 

eventa

Outcome - 
description 
sentencea

Population 
- health 
status

F1 scoreb 0.8824 0.947 0.727 0.9315 0.75

Precisionc 1 0.964 1 0.9444 0.9

Recalld 0.7895 0.931 0.571 0.9189 0.643

TPe 15 27 4 34 9

TNe 21 10 33 1 25

FPf 0 1 0 2 1

FNf 4 2 3 3 5

Successes (TP 
or TN)g

36 37 37 35 34

Errors (FP or 
FN)h

4 3 3 5 6

Accuracy 
percentage for 
class, %i

90 92.5 92.5 87.5 85

Abbreviations: FN, false negative; FP, false positive; P, precision; R, recall; TN, true negative;  
TP, true positive
a Text classes had noticeably imbalanced positive and negative examples. Overall accuracy may 
be skewed in favour of the group with the greater number of examples. However, an imbalance 
between examples may also occur in real-world data
b Another measure of accuracy based on precision and recall. Scores range from 0.0 to 1.0, the 
higher the better
c Scores range from 0.0 to 1.0, the higher the better
d Scores range from 0.0 to 1.0, the higher the better
e A measure of correctly identified documents. Higher scores are better
f A measure of incorrectly identified documents. Lower scores are better
g A measure of the sum of correctly identified documents. Higher scores are better
h The sum of incorrectly identified documents. Lower scores are better
i Overall accuracy, with scores ranging from 0% to 100%

Figure 3: Example extraction results for HPV after 
submitting search terms
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automated systems, in an effort to eventually eliminate (or 
significantly reduce) expert involvement in the repetitious tasks 
of the process.

The system’s overall design presents a promising way for public 
health decision makers to utilize unstructured data more quickly 
and economically when making policy decisions and applying the 
principles of evidence-based medicine. Our unique contribution 
to this area is the system’s ease of use via the straightforward 
web interface combined with the performance resulting from 
the application of state-of-the-art machine learning and NLP 
methods on our new immunization‑specific document database.
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Application of artificial intelligence to the in silico 
assessment of antimicrobial resistance and risks 
to human and animal health presented by priority 
enteric bacterial pathogens
Rylan Steinkey1, Janice Moat2,3, Victor Gannon1, Athanasios Zovoilis3,4,5, Chad Laing2*

Abstract

Each year, approximately one in eight Canadians are affected by foodborne illness, either 
through outbreaks or sporadic illness, with animals being the major reservoir for the pathogens. 
Whole genome sequence analyses are now routinely implemented by public and animal health 
laboratories to define epidemiological disease clusters and to identify potential sources of 
infection. Similarly, a number of bioinformatics tools can be used to identify virulence and 
antimicrobial resistance (AMR) determinants in the genomes of pathogenic strains.

Many important clinical and phenotypic characteristics of these pathogens can now be 
predicted using machine learning algorithms applied to whole genome sequence data. In 
this overview, we compare the ability of support vector machines, gradient-boosted decision 
trees and artificial neural networks to predict the levels of AMR within Salmonella enterica and 
extended-spectrum ß-lactamase (ESBL) producing Escherichia coli. We show that minimum 
inhibitory concentrations (MIC) for each of 13 antimicrobials for S. enterica strains can be 
accurately determined, and that ESBL-producing E. coli strains can be accurately classified as 
susceptible, intermediate or resistant for each of seven antimicrobials.

In addition to AMR and bacterial populations of greatest risk to human health, artificial 
intelligence algorithms hold promise as tools to predict other clinically and epidemiologically 
important phenotypes of enteric pathogens.
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Introduction

Every year, about one in eight Canadians will be affected 
by a foodborne illness, resulting in an average of 11,600 
hospitalizations and 238 deaths nationwide (1). Animals are often 
the reservoir for major bacterial pathogens such as Salmonella 
enterica and Escherichia coli. These pathogens are associated 
with both sporadic cases and outbreaks of foodborne disease. 
Antimicrobial resistance (AMR) among these organisms is a 
growing concern, with treatment being more difficult and 
expensive. For example, extended-spectrum ß-lactamase (ESBL) 
producing E. coli are multidrug resistant, with treatment costs up 
to three times that of non-ESBL-producing E. coli (2).

National and provincial public health agencies are very effective 
at identifying sources and halting exposure to pathogens. 
Historically, AMR determination has been performed in a wet 
lab setting (3,4). Two of the most commonly used diagnostic 
methods are diffusion and dilution tests. Diffusion methods, 
such as the Kirby–Bauer method, require growing a bacterial 
lawn in either a disk of known concentration of antimicrobials or 
a strip with a gradient of concentrations of antimicrobials; the 
zone of growth inhibition around the antimicrobial is compared 
with a standard to determine the resistance of the bacteria (3). 
Dilution methods involve liquid cultures in serial dilution of 

mailto:chad.laing%40canada.ca?subject=chad.laing%40canada.ca
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


CCDR • June 4, 2020 • Vol. 46 No. 6 Page 181 

OVERVIEW

each antimicrobial, where growth of the organism is used to 
determine the minimum inhibitory concentration (MIC) (3,4). 

These methods are time consuming because they rely on the 
growth of bacteria, and expensive because they require trained 
personnel and specialized equipment to carry out.

Whole genome sequence (WGS) analyses have become integral 
to public health work flows. In silico tests have largely replaced 
many costly and time-consuming wet lab tests in outbreak 
response and routine surveillance (5–7). Artificial intelligence is 
being increasingly used to analyse these datasets.

Artificial intelligence involves training machines to make 
predictions based on large amounts of data. It has been 
used in fields as disparate as handwriting recognition (8) and 
autonomous weapons systems (9). 

Supervised machine learning (ML) better describes the 
application of artificial intelligence to the prediction of bacterial 
phenotypes based on WGS data. ML algorithms are trained on 
known data (“features”) and subsequently predict or classify 
unknown data using the trained models. In general, data used 
for ML training are application specific and can include images 
or information about weather or outbreaks of infectious disease. 
Biological data, and in particular WGS data from populations of 
organisms, provide an extremely large number of features for 
training ML models and predicting phenotypes of interest. Use of 
these algorithms in infectious disease research has not yet been 
fully exploited but holds significant promise.

ML algorithms have been used to predict important phenotypes 
such as AMR (10,11) and to determine if different groups 
of pathogens from the same species pose different risks to 
human health (12–14). The ability to predict important bacterial 
phenotypes based solely on WGS data would be of enormous 
benefit to both Canadian public health and the animal agriculture 
industry.

In this study, we trained three ML models on WGS data 
to predict the levels of resistance to 13 antimicrobials in 
S. enterica isolates and to classify ESBL-producing E. coli 
strains as susceptible, intermediate or resistant (SIR) to seven 
antimicrobials.

Methods

S. enterica WGS were collected from the National Center for 
Biotechnology Information GenBank. These 5,853 sequences 
were primarily isolated within North America between 2002 
and 2017; the data included 63 serotypes with at least five 
members, along with phenotypic MICs for 13 antimicrobials 
(15). WGSs were decomposed into sequence substrings, called 

k-mers, of length 11, and their occurrences were counted using 
Jellyfish (16).To limit the selection of features to those most 
associated with the phenotype being examined, we used an 
ANOVA F-value, keeping the top 1,000 k-mers most associated 
with each antimicrobial agent prior to model training. This 
feature selection allows the model to focus on statistically 
important k-mers, which can improve accuracy and saves 
substantial amounts of time and computing resources.

We implemented gradient-boosted decision trees 
using XGBoost (17) and support vector machines using 
SciKit‑learn (18). Data analyses were conducted using five‑fold 
cross-validation where 80% of the data was used to train 
a model and the remaining 20% was withheld to evaluate 
model performance. This was repeated five times, with each 
20% being used once for evaluating performance. An average 
of the accuracy for the five evaluations was calculated for each 
experimental replicate. Ten separate experimental replicates with 
random assignment of genomes to each fold were performed, 
with the total model accuracy and standard deviation calculated 
from these.

Artificial neural networks were implemented using Keras (19) with 
a TensorFlow (20) backend and hyperparameter optimizations 
conducted with Hyperas (21). The five‑fold cross‑validation for 
the neural network consisted of a 60-20-20 split for training, 
hyperparameter optimization and testing, respectively, for 
each fold. Early stopping mechanisms were used to prevent 
over‑fitting by monitoring diminishing or negative returns with 
successive training epochs. In addition, a random selection of 
nodes in the network and their connections were removed via 
dropout to prevent over‑fitting or co‑adaptation (22).

As shown in Figure 1, MICs were predicted within one dilution 
with an accuracy of 97.88% (± 1.13) using XGBoost, 97.48% 
(± 1.20) using support vector machines and 97.16% (± 1.48) 
using artificial neural networks. XGBoost classifiers averaged a 
major error and major error rate of 0.19% (± 0.19) and 0.71% 
(± 0.60), respectively. To prevent inflating model accuracies, 
co‑trimoxazole, ciprofloxacin and ceftriaxone, which had low 
MIC class diversity, were removed from these averages. XGBoost 
classifiers trained to predict MICs for a single antimicrobial used 
eight cores (Intel Xeon Gold 6154 CPU), had a mean training 
time of 15 minutes and 12 seconds, and peaked at 84.74 GB of 
random access memory (RAM).

We also examined a set of 2,413 E. coli sequences containing 
ESBL producers, but no MIC data were available for these strains. 
Instead, they were classified as SIR for seven antimicrobials. 
The set included bovine, clinical and environmental samples 
isolated between 1970 and 2017 in Canada, Thailand and the 
United Kingdom (11,23,24). We analyzed the sequences with 
the k-mer approach described above and used them to train 
models to classify isolates as SIR for each antimicrobial. The 
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average accuracies of the models across the seven antimicrobials 
were 89.18% (± 5.44) for XGBoost, 89.25% (± 4.43) for support 
vector machines and 89.18% (± 5.20) for artificial neural networks 
(Figure 2).

Discussion

As we have shown, the ML methods we employed did not rely 
on specific reference genomes, or a priori knowledge of the 
mechanisms of resistance, but on the classification of organisms 
into broad phenotypic groups. It is the ML models that identify 
the underlying genomic differences that are most associated 
with the phenotype. This has the double benefit of not requiring 
mechanistic knowledge and has the potential for identifying 
novel genomic determinants of the phenotype under study. 
These novel features extracted from the models have enormous 
potential benefit: as in the case of AMR, they can be used to 
grow established public databases of resistance mechanisms, 
and they can be used as potential targets for rapid diagnostics in 
subsequent in silico or wet lab assays.

ML models can rapidly and accurately predict AMR using WGS 
data, from SIR classification to quantitative MIC values. For AMR 
predictions, XGBoost models were shown to train faster, use less 
memory and be more accurate than deep-learning methods. 
In addition, XGBoost and support vector machine models can 
be used to determine the specific regions of the genome that 
are most predictive of a phenotype. This is very difficult with 
the “black box” implementation of a neural network; however, 
artificial neural networks still excel in complicated network 
modelling and therefore should not be excluded from future 
studies in genomics.

AMR data typically suffer from substantial class imbalance, which 
can result in high accuracy models that are of no value, such as 
the case of co-trimoxazole in our Salmonella data, where more 
than 95% of the samples were within one dilution of each other, 
resulting in a model capable of 95% accuracy without learning 
anything from the underlying data.

Nguyen et al. (10) trained XGBoost regressors on a dataset 
containing 4,500 non-typhoidal S. enterica whole genome 
sequences (from a larger dataset of 5,278 samples, of 
which 4,595 were also in our dataset). These models had a 
cross-validation accuracy of 95% for the same 10 antimicrobials 
included in our current study. Nguyen et al. (10) used a single 
regressor trained on all 15 antimicrobials at once, which 
took 51 hours to train and peaked at 1,184 GB of memory 
on 170 cores (Intel Xeon E5‑4669v4 CPU) (10). The XGBoost 
classifiers trained in our current study improved upon these 
training times as well as memory usage and accuracy. The 
XGBoost classifiers did this by creating per‑antimicrobial models 
and initially selecting only the 1,000 most statistically important 
features. To better compare the accuracies of these models, an 
independent dataset should be used instead of relying on the 
reported cross-validation accuracies.

The E. coli dataset included 1,935 isolates from a previous study 
by Moradigaravand et al. (11). Their methods required the 
isolation year for each sequence and data preprocessing in the 

Figure 1: Accuracies within one two-fold dilution for 
three machine learning models trained on the top 
1,000 11-mers and used to predict minimum inhibitory 
concentrations for 13 Salmonella enterica antimicrobials

Abbreviations: ANN, artificial neural network; SVM, support vector machine; XGB, XGBoost
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Figure 2: Accuracies of three machine learning models 
trained on the top 1,000 11-mers, and used to predict 
susceptible, intermediate and resistant classifications 
for seven Escherichia coli antimicrobials
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form of pan-genome determination and population structure 
calculation (11). In contrast, our methods required only the 
genome sequence paired with laboratory-determined resistance 
phenotype, which allows classification as well as identification of 
novel regions not currently known to be associated with AMR. 
The regions could be used for subsequent in silico or wet lab 
diagnostic tests.

While broader classifications, such as SIR, are common for 
laboratory diagnostics, and useful for establishing treatment 
guidelines for a bacterial infection, the breakpoint criteria for 
these categories are established by committees, with some 
disparity between regions. The prediction of quantified values 
in the form of MICs will be of most use in future, even if they 
are subsequently used for classifying bacteria into broader 
categories such as SIR.

Though the results of these studies are encouraging, 
over-interpretation of results is a problem with genomic data due 
to the high number of features used to make predictions relative 
to the smaller sample size of the number of genomes. This can 
lead to over‑fitting of data and poor performance of models, 
both of which we have tried to address in the methods of this 
study (25).

Use of ML has proved successful for AMR prediction in other 
pathogens, including Mycobacterium tuberculosis, where 
new resistant genetic signatures were identified (26). ML has 
also proved useful in the identification of novel antimicrobial 
compounds, which has historically been fraught with high failure 
rates in pharmaceutical companies (27).

ML research on S. typhimurium found that more than 80% of host 
source could be attributed using protein variants. This result was 
obtained using support vector machine (SVM), artificial neural 
networks and Random Forest models (28). What is particularly 
interesting from this study is the overlap between the animal 
reservoir and human cases. This indicates that not all isolates 
of a particular pathogen represent the same disease risk and 
suggests that more specific points of control could limit human 
infection. In addition, as more than 60% of human pathogens are 
of zoonotic origin, ML holds promise for identifying emerging 
pathogens by analyses of host adaptation of current animal 
pathogens (29).

Despite the proven usefulness of ML, bacteria are constantly 
evolving, and so our models, as they are only as good as the 
data they are trained on. The power of these techniques must be 
tempered by their judicious use. In addition, class and species-
specific models are still required to generate meaningful results, 
for example, one model per drug per species for predicting AMR 
(30).

It should be noted that ML does not always accurately capture 
complex interactions and that improved modelling alone cannot 

compensate for sampling bias or an incomplete or error-prone 
dataset.

Conclusion
As demonstrated in this overview, artificial intelligence 
has already improved infectious disease identification and 
characterization, the benefits of which will affect public health 
and animal health laboratories around the world. For example, 
genomic regions identified as predictive for specific AMR 
classes could be used for rapid downstream identification and 
classification, including in silico pipelines and wet lab applications 
such as polymerase chain reaction.

The near-future promises exciting developments, such as 
using ML to identify bacteriophages that lyse specific groups 
of pathogenic bacteria, enabling phage therapy in place of 
traditional antimicrobials (31). Lastly, “whole phenotype” 
characterization, with the ability to predict integral membrane 
protein expression, is becoming more likely (32); and biofilm 
formation (33).

Despite this, the size of the datasets required to effectively train 
ML models mean that desktop computers are often incapable 
of analyzing the data. Those without access to the necessary 
resources must instead use analytical approaches that reduce 
the computational burden (34). Fittingly, the use of ML itself has 
led to an increase in speed of mechanistic models, in some cases 
over four orders of magnitude (35).

We are just at the beginning of the coupling of vast amounts of 
genomic data and artificial intelligence, with the promise of new 
discoveries that will improve most aspects of animal and human 
health from the burden of enteric bacterial pathogens.
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Abstract

The focus of this article is the application of natural language processing (NLP) for information 
extraction in event-based surveillance (EBS) systems. We describe common information 
extraction applications from open-source news articles and media sources in EBS systems, 
methods, value in public health, challenges and emerging developments.
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Background

Natural language processing (NLP) methods enable computers 
to analyse, process and derive meaning from human discourse. 
Although the field of NLP has been around since the 1950s 
(1), progress in technology and methods in recent years 
have made NLP applications easier to implement, with some 
tasks outperforming human performance (2). There are many 
day-to-day applications of NLP including machine translation, 
spam recognition and speech recognition. NLP is a powerful 
tool in health care because of the large volumes of text data, 
for example, electronic health records, being produced. Indeed 
electronic health records have already been the focus of NLP 
applications, including detecting melanocytic proliferations (3,4), 
the risk of dementia (5) and neurological phenotypes (6). But 
NLP applications in health care extend beyond electronic health 
records, for example, it is possible to identify people with 
Alzheimer’s disease based on their speech patterns (7). 

The focus of this article is the application of NLP for information 
extraction in event-based surveillance (EBS) systems. We 
describe common information extraction applications from open-
source news articles and media sources in EBS systems, methods, 
value in public health, challenges and emerging developments.

EBS systems mine the Internet for open-source data, relying on 
informal sources (e.g. social media activity) and formal sources 
(e.g. media or epidemiological reports from individuals, media 

outlets and/or health organizations) to help detect emerging 
threats (8). Operational systems include the Public Health Agency 
of Canada’s Global Public Health Intelligence Network (9), 
HealthMap (10) and the World Health Organization’s Epidemic 
Intelligence from Open Sources (11). Due to the growing 
volume, variety and velocity of digital information, a wealth of 
unstructured open-source data is generated daily, mainly as 
spoken or written communication (9). Unstructured open-source 
data contains pertinent information about emerging threats that 
can be processed to extract structured data from the background 
noise to aid in early threat detection (12). For EBS systems, this 
includes information about what happened (threat classification; 
number of cases), where it happened (geolocation) and when 
it happened (temporal information). The ability to identify this 
information allows governments and researchers to monitor and 
respond to emerging infectious disease threats. 

One of the challenges in infectious disease surveillance, such 
as COVID-19, is that there is an immense amount of text data 
continuously being generated, and in an ongoing pandemic, this 
amount can be far more than humans are capable of processing. 
NLP algorithms can help in these efforts by automating the 
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filtering of large volumes of text data to triage articles into 
levels of importance and to identify and extract key pieces of 
information. 

In this article, we discuss some important NLP algorithms and 
how they can be applied to public health. For a glossary of 
common technical terminology in NLP, see Table 1.

 
NLP algorithms and their application to 
public health 

The simplest way to extract information from unstructured 
text data is by keyword search. Though effective, this ignores 
the issue of synonyms and related concepts (e.g. nausea and 
vomiting are related to stomach sickness); it also ignores the 
context of the sentence (e.g. Apple can be either a fruit or 
a company). The problem with identifying and classifying 
important words (entities) based on the structure of the sentence 
is known as named entity recognition (NER) (13). The most 
common entities are persons, organizations and locations. Many 
early NER methods were rule-based, identifying and classifying 
words with dictionaries (e.g. dictionary of pathogen names) and 
rules (e.g. using “H#N#” to classify a new influenza strain not 
found in the dictionary) (14). Synonyms and related concepts 
can be resolved using databases that organize the structure of 
words in the language (e.g. WordNet (15)). Newer NER methods 
use classifications and relationships predefined in corpora to 

Term Definition

(Linguistic) 
annotation

The association of descriptive or analytic notations 
with language data, generally performed to generate 
a corpus for algorithm training

Artificial 
intelligence (AI)

A branch of computer science dealing with the 
simulation of human intelligence by machines

Computational 
linguistics (CL)

The branch of computer science trying to model 
human language (including various linguistic 
phenomena and language related applications) using 
computational algorithms

Corpora 
(singular – 
corpus)

A set of articles where the unstructured text has 
been annotated (labelled) to identify different types 
of named entity. Corpus are developed for different 
domains to train ML algorithms to identify named 
entities (e.g. WikToR corpus of Wikipedia articles 
for geographic locations, TimeBank corpus of new 
report documents for temporal information)

F1 score

A performance measure used to evaluate the ability 
of NLP to correctly identify NEs by calculating the 
harmonic mean of precision and recall: F1 = 2 * 
Precision * Recall / (Recall + Precision). The F1 score 
privileges balanced algorithms because the score 
tends toward the least number, minimizing the 
impact of large outliers and maximizing the impact of 
small ones

Geocoding Also known as georesolution, assigns geographic 
coordinates to toponyms

Geoparsing The combined process of geotagging and geocoding

Geotagging A subset of named NER that identifies geographic 
entities in unstructured text

Machine 
learning (ML)

The study of computer algorithms that learn patterns 
from experience. ML approaches may be supervised 
(the algorithm learn from labelled training samples), 
unsupervised (the algorithm retrieve patterns from 
unlabeled data), or semi-supervised (the algorithm 
perform learning with a small set of labelled data and 
a large set of unlabeled data)

Named entity 
(NE)

A word or phrase that identifies an item with 
particular attributes that make it stand apart from 
other items with similar attributes (e.g. person, 
organization, location)

Natural 
language 
processing 
(NLP)

A subfield of AI to process human (natural) language 
inputs for various applications, including automatic 
speech recognition, natural language understanding, 
natural language generation and machine translation

Named entity 
recognition 
(NER)

The process of identifying a word or phrase that 
represents a NE within the text. NER formerly 
appeared in the Sixth Message Understanding 
Conference (MUC-6), from which NEs were 
categorized into three labels: ENAMEX (person, 
organization, location), TIMEX (date, time) and 
NUMEX (money, percentage, quantity)

Polysemy
The association of a word or phrase with two or more 
distinct meanings (e.g. a mouse is a small rodent or a 
pointing device for a computer)

Table 1: Glossary of common technical terminology in 
natural language processing

Term Definition

Precision 
(also known 
as positive 
predictive 
value)

Percentage of named entities found by the algorithm 
that are correct: (true positives) / (true positives + 
false positives)

Recall
Fraction of the total amount of relevant instances 
that were actually retrieved (true positives) / (true 
positives + false negatives)

Semi-
supervised

Due to the high cost of to creating annotated data, 
semi-supervised learning algorithms combine the 
learning from a small set of labelled data (supervised) 
and a large set of unlabeled data (unsupervised) to 
achieve the tradeoff between cost and performance

RSS feed

RRS stands for Really Simple Syndication or Rich Site 
Summary, it is a type of web feed that allows users 
and applications to receive regular and automated 
updates from a website of their choice without 
having to visit websites manually for updates

Supervised 
learning

Supervised learning algorithms is the type of ML 
algorithms that learn from labelled input-output 
pairs. Features of the input data are extracted 
automatically through learning, and patterns are 
generalized from those features to make predictions 
of the output. Common algorithms include hidden 
Markov models (HMM), decision trees, maximum 
entropy estimation models, support vector machines 
(SVM) and conditional random fields (CRF)

Synonyms Words of the same language that have the same or 
nearly the same meaning as another

Toponym A NE of the place name for a geographic location 
such as a country, province and city

Unsupervised 
learning

A type of ML method that does not use labelled 
data, but instead, typically uses clustering and 
principal component analytical approaches so that 
the algorithm can find shared attributes to group the 
data into different outcomes

Table 1: Glossary of common technical terminology in 
natural language processing (continued)
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develop machine learning (ML) algorithms to identify and classify 
entities (13). For NER, terms are annotated to categories and 
the algorithm learns how to recognize other examples of the 
category from the term and surrounding sentence structure. 
Because language data are converted to word tokens as part of 
the analysis, NLP algorithms are not limited to languages using 
the Latin alphabet; they can also be used with character-based 
languages such as Chinese.

1. Article classification (threat type)
Classifying articles by taxonomy keywords into threat types 
allows EBS system users to prioritize emerging threats. For 
example, analysts monitoring an event can filter out articles to 
focus on a specific threat category. Rule‑based NER identifies 
keywords to assign each article to different categories of health 
threats (e.g. disease type). Keywords are then organized into 
a predetermined, multilingual taxonomy (e.g. “Zika virus” is a 
human infectious disease, “African horse sickness” is an animal 
infectious disease, etc.) that can be updated as new threats are 
discovered. The taxonomy takes advantage of the structure of 
the language similar to WordNet (16). This mitigates part of the 
problem with keyword matching because it allows synonyms and 
related concepts to stand in for one another (Figure 1).

2. Geoparsing
Identifying places where health-related events are reported from 
articles can help locate susceptible populations. Geoparsing 
is the task of assigning geographic coordinates to location 
entities (i.e. toponyms such as city, country) identified in 
unstructured text. The process starts with geotagging, a subset 
of NER for identifying the toponyms, and then geocoding to 
assign geographic coordinates from a dictionary such as from 
GeoNames (17). Geoparsers use computational methods that are 
rule-based, statistical and based on ML. The general approach of 
geoparsing is to characterize toponyms by a set of features (e.g. 
toponym name, first and last character position in text, character 
length). Feature information is then processed by computational 
methods to link each toponym to a geographic name in a 
location database (e.g. GeoNames (17)) and then assign the 
corresponding coordinates (18).

Advancements in geoparsing, like other NLP applications, 
focus on increasing leverage from unstructured text to resolve 

ambiguities. One advancement is using semi-supervised learning 
techniques that utilize programmatically generated corpora to 
train ML algorithms from larger datasets of annotated examples. 
Using code to annotate articles is faster and results in larger 
and more consistent corpora than from human annotation (19). 
Leveraging more context is also resulting from extending feature 
information to be topological (spatial relationships among 
toponyms, e.g. distance to closest neighbouring toponym) (20). 
A toponym from a phrase like “There are new cases of influenza 
in London” can be difficult to resolve because there are multiple 
potential locations. Toponym coordinates can be resolved by 
assigning a bias towards more populated areas because they are 
typically mentioned more often in discourse; however, emerging 
diseases do not always favour highly populated areas (Figure 2).

3. Temporal information extraction and 
temporal reasoning

Identifying the timing of events described in articles is necessary 
for coherent temporal ordering of those events. It is important 
to be able to differentiate an article reporting on a new event 
from an article reporting on a previous known event. The most 
common temporal identifiers in EBS systems are the article 
publication date and the received/import date (the timestamp 
for receiving the article into the EBS system). Neither of these 
dates extract the reported timing of event described in the 
articles. A subset of NLP—temporal information extraction—
has been developed to extract this information. Temporal 
information extraction is used to identify tokens in text that 
contain temporal information of relevant events. 

Two subtasks of temporal information extraction help resolve 
ambiguities arising from complicated narratives reporting on 
multiple events. First, temporal relation extraction focuses on 
classifying temporal relationships between the extracted events 
and temporal expressions. Using those relationships, EBS 
systems can anchor events to time (e.g. in the sentence “the first 
infection was reported on May 1st,” the relation between the 
event “infection” and the date “May 1st” is used to timestamp 
the first infection). Second, temporal reasoning (21) focuses on 
chronological ordering of events through inference.

Threat type classifier

Input news article

“Lessons to be learned 
from Zika virus”

“Horse movement
banned to contain

African horse sickness”

Rule-based NER
Domain 
relevant

keywords

EBS system
keyword taxonomy

Threat
type

Zika, 
African horse sickness

Human infectious disease,
animal infectious disease

Figure 1: Article classification

Abbreviations: EBS, event-based surveillance; NER, named entity recognition

Input new article 

“Paris hospital fears 
being overwhelmed as 

COVID-19 cases 
increase”

Geotagging
(subset of NER) 

Location database

Identify toponyms Paris – location 
name 

Location database Geographic
coordinates 

Geoparsers 
(rule-based, 

statistical, ML)

Paris, France – most
 likely location  

Paris, France
Latitude – 48.865 
Longitude – 2.349 

Figure 2: Geoparsing

Abbreviations: ML, machine learning; NER, named entity recognition
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Multiple temporal information extraction systems have been 
developed including TimeML (developed for temporal extraction 
of news articles in finance) (22); ISO‑TimeML (a revised version 
of TimeML) (23); and THYME (developed for temporal extraction 
in patient records) (24). Results have reached near-human 
performance (25–28). Based on these annotation standards, 
an annotation standard for news articles in the public health 
domain, Temporal Histories of Epidemic Events (THEE), was 
recently developed for EBS systems by the authors of this 
article (29) (Figure 3).

4. Case count extraction
Extracting the number of disease cases reported in articles 
would help EBS system users to monitor and forecast disease 
progression. Currently, there is no NLP algorithm incorporated 
into EBS systems capable of this task, however, there are 
algorithms capable of tackling related tasks that can be 
leveraged to develop a case count algorithm. News articles in 
epidemiology frequently mention the occurrence of disease 
cases (e.g. “There were six new cases of Zika this week”) so that 
identifying cases requires identifying the relationships between 
a quantitative reference in the text (six new cases) and a disease 
term (of Zika). Many algorithms already identify relationships 
between entities in diverse fields, for example, the RelEx 
algorithm identifies relations between genes that are recorded in 
MEDLINE abstracts and performs with an F1 of 0.80 (30). Based 
on the RelEx algorithm, an algorithm has been developed to 
identify sentences in news articles that report on case counts of 
foodborne illnesses (31). 

The authors of this article are developing and refining this 
algorithm to extract case count information from sentences 
that have been identified to contain case count information 
(Figure 4).

5. Automatic text summarization
The goal of text summarization is to quickly and accurately create 
a concise summary that retains the essential information in the 
original text. Text summarization in EBS systems would increase 
the number of articles that can be scanned for threat detection 
by reducing the volume of text that needs to be read. There 
are two main types of text summarization: extraction-based and 
abstraction-based. Extraction-based summarization involves 
identifying the most important key words and phrases from 
the text and combining them verbatim to produce a summary. 
Abstraction-based summarization uses a more sophisticated 
technique that involves paraphrasing the original text to write 
new text, thus mimicking human text summarization. 

Text summarization in NLP is normally developed using 
supervised ML models trained on corpora. For both 
extraction-based and abstraction-based summarization, 
key phrases are extracted from the source document using 
methods including part-of-speech tagging, word sequences 
or other linguistic pattern recognition (32). Abstraction-based 
summarization goes a step further and attempts to create 
new phrases and sentences from the extracted key phrases. 
A number of techniques are used to improve the level of 
abstraction including deep learning techniques and pre-trained 
language models (33) (Figure 5).

Temporal information
Temporal information 
extraction algorithm

Event and time 
expression extraction

algorithm  

Events

Time expressions 

Relation extraction 
algorithm  

Input news article 

The first infection was 
reported on May 1st 

Relations among 
the events and 

time expressions 

Infection

May 1st

Infection

May 1st

is included

Timeline of the news 
article 

Figure 3: Temporal information extraction and temporal 
reasoning

Input news article  

There were six new 
cases of Zika, and five 
new cases of dengue 

fever this week

Case count extraction 
algorithm 

Numerals Six, five 

Disease term 
extraction 

Disease terms 

Entity relation 
identifier Case count 

Numeral extraction 

Zika, Dengue 
fever

Zika: 6,
Dengue fever: 5

Figure 4: Case count extraction

Text summarization 
algorithm

Abstraction-based text 
summarization

Extraction-based text 
summarization Important sentences

Input news article  

Summary

Important sentences 

Paraphrase of the original text

A recent strain of pneumonia that has not been
identified has infected dozens of people. Symptoms of

pneumonia include mainly fever, difficulty breathing
and invasive lesions of lungs 

“A recent strain of pneumonia that
health authorities have not been

able to identify has infected dozens
of people. According to CNN, Chinese

health authorities have ruled out 
severe acute respiratory syndrome

(SARS) virus, Middle East respiratory
syndrome (MERS) and bird flu. The 
WHO describes symptoms of the 
pneumonia as mainly fever, with a 
number of patients having difficulty
breathing, and chest radiographs
showing invasive lesions of both

lungs” 

A recent strain of pneumonia that health authorities 
have not been able to identify has infected dozens of

people. The WHO describes symptoms of the
pneumonia as mainly fever, with a number of patients
having difficulties breathing, and chest radiographs

showing invasive lesions of both lungs

Figure 5: Automatic text summarization

Abbreviation: WHO, World Health Organization
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Discussion

NLP has a huge number of potential applications in health care 
because of the omnipresence of text data. Electronic health 
records are an obvious source of data for NLP application, but 
text relevant to health care extends far beyond health records; 
it includes traditional and social media sources, which are the 
main sources of data for EBS systems, in addition to official 
government reports and documents. 

As NLP algorithms can interpret text and extract critical 
information from such diverse sources of data, they will continue 
to play a growing role in the monitoring and detection of 
emerging infectious diseases. The current COVID-19 pandemic 
is an example of where NLP algorithms could be used for the 
surveillance of public health crises. (This is, in fact, something 
several co-authors of this article are currently developing). 

While NLP algorithms are powerful, they are not perfect. Current 
key challenges involve grouping multiple sources referring to 
the same event together and dealing with imperfections in the 
accuracy of information extraction due to nuances in human 
languages. Next-generation information extraction NLP research 
that can improve these challenges include event resolution 
(deduplication and linkage of the same events together) (34) and 
advancements in neural NLP approaches such as transformers 
networks (35), attention mechanism (36) and large-scale 
language models such as ELMo (37), BERT (38) and XLNet (39) to 
improve on the current performance of algorithms.

Conclusion
We have discussed several common NLP extraction algorithms 
for EBS systems: article classification, which can identify articles 
that contain crucial information about the spread of infectious 
diseases; geolocation, which identifies where a new case of the 
disease has occurred; temporal extraction, which identifies when 
a new case occurred; case count extraction, which identifies 
how many cases occurred; and article summarization, which can 
greatly reduce the amount of text for a human to read.

Although the field of NLP for information extraction is well 
established, there are many existing and emerging developments 
relevant to public health surveillance on the horizon. If 
capitalized, these developments could translate to earlier 
detection of emerging health threats with an immense impact on 
Canadians and the world.

Conflict of interest
None.

Funding

EE Rees and V Ng are currently co-Principal Investigators for a 
Canadian Safety and Security Program (CSSP), a federally-funded 

program from the Department of National Defence, the grant is 
a three-year grant titled ‘Incorporating Advanced Data Analytics 
into a Health Intelligence Surveillance System’ – CSSP-2018-
CP-2334. 

References

1. Bates M. Models of natural language understanding. Proc Natl Acad 
Sci USA 1995 Oct;92(22):9977–82. DOI PubMed

2. Wang A, Pruksachatkun Y, Nangia N, Singh A, Michael J, Hill F, 
Levy O, Bowman S. SuperGLUE: a stickier benchmark for 
general-purpose language understanding systems. Ithaca (NY): 
arXiv; 2019 (revised 2020-02-13; accessed 2020-02-24). https://
arxiv.org/abs/1905.00537

3. Lott JP, Boudreau DM, Barnhill RL, Weinstock MA, Knopp E, 
Piepkorn MW, Elder DE, Knezevich SR, Baer A, Tosteson AN, 
Elmore JG. Population-based analysis of histologically confirmed 
melanocytic proliferations using natural language processing. JAMA 
Dermatol 2018 Jan;154(1):24–9. DOI PubMed

4. Nguyen AN, Truran D, Kemp M, Koopman B, Conlan D, O’Dwyer 
J, Zhang M, Karimi S, Hassanzadeh H, Lawley MJ, Green D. 
Computer-Assisted Diagnostic Coding: effectiveness of an 
NLP-based approach using SNOMED CT to ICD-10 mappings. 
AMIA Annu Symp Proc 2018 Dec;2018:807–16. PubMed

5. McCoy TH Jr, Han L, Pellegrini AM, Tanzi RE, Berretta S, Perlis RH. 
Stratifying risk for dementia onset using large-scale electronic health 
record data: A retrospective cohort study. Alzheimers Dement 2020 
Mar;16(3):531–40. DOI PubMed

6. Wheater E, Mair G, Sudlow C, Alex B, Grover C, Whiteley W. A 
validated natural language processing algorithm for brain imaging 
phenotypes from radiology reports in UK electronic health records. 
BMC Med Inform Decis Mak 2019 Sep;19(1):184. DOI PubMed

7. Karlekar S, Niu T, Bansal M. Detecting linguistic characteristics 
of Alzheimer’s Dementia by interpreting neural models. In: 
Proceedings of NAACL-HLT 2018. New Orleans (LA). June 1–6, 
2018.

8. World Health Organization. A guide to establishing event-based 
surveillance. Manila (PH): WHO Regional Office for the Western 
Pacific; 2008.

9. Dion M, AbdelMalik P, Mawudeku A. Big Data and the Global Public 
Health Intelligence Network (GPHIN). Can Commun Dis Rep 2015 
Sep;41(9):209–14. DOI PubMed

10. Freifeld CC, Mandl KD, Reis BY, Brownstein JS. HealthMap: global 
infectious disease monitoring through automated classification and 
visualization of Internet media reports. J Am Med Inform Assoc 
2008 Mar-Apr;15(2):150–7.  
DOI PubMed

11. World Health Organization. Epidemic Intelligence from Open 
Sources (EIOS): saving lives through early detection. Geneva (CH): 
World Health Organization; 2020 (accessed 2020-01-24). https://
www.who.int/eios

12. Barboza P, Vaillant L, Mawudeku A, Nelson NP, Hartley DM, Madoff 
LC, Linge JP, Collier N, Brownstein JS, Yangarber R, Astagneau 
P; Early Alerting Reporting Project Of The Global Health Security 
Initiative. Evaluation of epidemic intelligence systems integrated in 

https://doi.org/10.1073/pnas.92.22.9977
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7479812&dopt=Abstract
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://doi.org/10.1001/jamadermatol.2017.4060
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29094145&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30815123&dopt=Abstract
https://doi.org/10.1016/j.jalz.2019.09.084
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31859230&dopt=Abstract
https://doi.org/10.1186/s12911-019-0908-7
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31500613&dopt=Abstract
https://doi.org/10.14745/ccdr.v41i09a02
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29769954&dopt=Abstract
https://doi.org/10.1197/jamia.M2544
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18096908&dopt=Abstract
https://www.who.int/eios
https://www.who.int/eios


CCDR • June 4, 2020 • Vol. 46 No. 6 Page 191 

OVERVIEW

the early alerting and reporting project for the detection of A/H5N1 
influenza events. PLoS One 2013;8(3):e57252. DOI PubMed

13. Nadeau D, Sekine S. A survey of named entity recognition and 
classification. In: Nadeau D, Sekine S, editors. Named entities: 
recognition, classification and use. Lingvisticae Investigationes 
2007;30(1):3–26.

14. Sekine S, Nabota C. Definition, dictionaries and tagger for extended 
named entity hierarchy. In: Proceedings of the Fourth International 
Conference on Language Resources and Evaluation (LREC 2004). 
Lisbon (PT). 26–28 May 2004.

15. Princeton University. WordNet: an electronic lexical database. 
Princeton (NJ): Princeton University; 2010 (accessed 2020-01-24). 
https://wordnet.princeton.edu/

16. Miller GA. WordNet: a lexical database for English. Commun ACM 
1995;38(11):39–41.

17. GeoNames [database]. 2020. https://www.geonames.org/

18. Santos J, Anastácio I, Martins B. Using machine learning methods 
for disambiguating place references in textual documents. 
GeoJournal 2015;80(3):375–92. DOI

19. Gritta M, Pilehvar MT, Limsopatham N, Collier N. What’s missing in 
geographical parsing? Lang Resour Eval 2018;52(2):603–23. DOI 
PubMed

20. DeLozier G, Baldridge J, London L. Gazetteer-independent 
toponym resolution using geographic word profiles. Proceedings of 
the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin 
(TX): AAAI Press; 2015. p. 2382–8.

21. Allen JF. Maintaining knowledge about temporal intervals. In: Weld 
DS, De Kleer J. Readings in qualitative reasoning about physical 
systems. 1990, Elsevier; pp. 361–72. DOI

22. Pustejovsky J, Ingria R, Sauri R, Castano JM, Littman J, Gaizauskas 
RJ, Setzer A, Katz G, Mani I. The specification language TimeML. In: 
Mani I, Pustejovsky J, Gaizauskas R, editors. The language of time: a 
reader. 2005. p. 545–58.

23. Pustejovsky J, Kiyong L, Bunt H, Romary L. ISO-TimeML: an 
international standard for semantic annotation. In: Proceeding from 
the International Conference on Language Resources and Evaluation 
2010. La Valette (MT). 2010 May.

24. Styler WF 4th, Bethard S, Finan S, Palmer M, Pradhan S, de Groen 
PC, Erickson B, Miller T, Lin C, Savova G, Pustejovsky J. Temporal 
annotation in the clinical domain. Trans Assoc Comput Linguist 2014 
Apr;2:143–54. DOI PubMed

25. Chambers N. Navytime: event and time ordering from raw text. In: 
Second Joint Conference on Lexical and Computational Semantics 
(*SEM). Volume 2: Proceedings of the Seventh International 
Workshop on Semantic Evaluation (SemEval 2013). Annapolis (MD): 
Naval Academy; 2013.

26. Lee HJ, Xu H, Wang J, Zhang Y, Moon S, Xu J, Wu Y. UTHealth 
at SemEval-2016 Task 12: an end-to-end system for temporal 
information extraction from clinical notes. In: Proceedings 
of the 10th International Workshop on Semantic Evaluation 
(SemEval-2016). San Diego (CA): Association for Computational 
Linguistics; 2016. DOI

27. Strötgen J, Zell J, Gertz M. HeidelTime: tuning English and 
developing Spanish resources for TempEval-3. In: Proceedings 
of the Second Joint Conference on Lexical and Computational 
Semantics (*SEM). Volume 2: Proceedings of the Seventh 
International Workshop on Semantic Evaluation (SemEval 2013). 
Atlanta (GA);2013.

28. Lin C, Miller T, Dligach D, Bethard S, Savova G. A BERT-based 
universal model for both within- and cross-sentence clinical 
temporal relation extraction. In: Proceedings of the 2nd Clinical 
Natural Language Processing Workshop. Minneapolis (MN);2019.

29. Niu J, Ng V, Penn G, Rees E. Temporal histories of epidemic events 
(THEE): a case study in temporal annotation for public health. 
In: Proceedings of the International Conference on Language 
Resources and Evaluation. Marseille (FR);2020.

30. Fundel K, Küffner R, Zimmer R. RelEx--relation extraction using 
dependency parse trees. Bioinformatics 2007 Feb;23(3):365–71. 
DOI PubMed

31. Nasheri N, Vester A, Petronella N. Foodborne viral outbreaks 
associated with frozen produce. Epidemiol Infect 2019 
Oct;147:e291. DOI PubMed

32. Aries A, Eddine ZD, Hidouci WK. Automatic text summarization: 
what has been done and what has to be done. arXiv:1904.00688. 
https://arxiv.org/abs/1904.00688

33. Kryscinski W, Paulus R, Xiong C, Socher R. Improving abstraction 
in text summarization. In: Proceedings of the 2018 Conference on 
Empirical Methods in Natural Language Processing. Brussels (BE): 
Association for Computational Linguistics; 2018. DOI

34. Petroni F, Raman N, Nugent T, Nourbakhsh A, Panic Z, Shah S, 
Leidner J. An extensive event extraction system with cross-media 
event resolution. In: Proceedings of the 24th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining. 
2018. 

35. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, 
Kaiser L, Polosukhim I. Attention is all you need. In: Proceedings 
from the 31st Conference on Neural Information Processing Systems 
(NIPS 2017). Long Beach (CA);2017.

36. Liu B, Lane I. Attention-based recurrent neural network models for 
joint intent detection and slot filling. Proc Interspeech 2016;685–9. 
DOI

37. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, 
Zettlemoyer L. Deep contextualized word representations. In: 
Proceedings of the Human Language Technology Conference of 
the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (NAACL-HLT) 2018. New 
Orleans (LA). DOI

38. Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of deep 
bidirectional transformers for language understanding. CoRR 
2018;abs/1810.04805. https://arxiv.org/abs/1810.04805

39. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le Q. XLNet: 
generalized autoregressive pretraining for language understanding. 
arXiv 2019;1906.08237. https://arxiv.org/abs/1906.08237

https://doi.org/10.1371/journal.pone.0057252
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23472077&dopt=Abstract
https://wordnet.princeton.edu/
https://www.geonames.org/
https://doi.org/10.1007/s10708-014-9553-y
https://doi.org/10.1007/s10579-017-9385-8
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31258456&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31258456&dopt=Abstract
https://doi.org/10.1016/B978-1-4832-1447-4.50033-X
https://doi.org/10.1162/tacl_a_00172
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29082229&dopt=Abstract
https://doi.org/10.18653/v1/S16-1201
https://doi.org/10.1093/bioinformatics/btl616
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17142812&dopt=Abstract
https://doi.org/10.1017/S0950268819001791
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31625499&dopt=Abstract
https://arxiv.org/abs/1904.00688
https://doi.org/10.18653/v1/D18-1207
https://doi.org/10.21437/Interspeech.2016-1352
https://doi.org/10.18653/v1/N18-1202
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1906.08237


IMPLEMENTATION SCIENCE

CCDR • June 4, 2020 • Vol. 46 No. 6Page 192 

Good times bad times: Automated forecasting 
of seasonal cryptosporidiosis in Ontario using 
machine learning
Olaf Berke1*, Lise Trotz-Williams1,2, Simon de Montigny3,4

Abstract

Background: The rise of big data and related predictive modelling based on machine learning 
algorithms over the last two decades have provided new opportunities for disease surveillance 
and public health preparedness. Big data come with the promise of faster generation of and 
access to more precise information, potentially facilitating predictive precision in public health 
(“precision public health”). As an example, we considered forecasting of the future course of 
the monthly cryptosporidiosis incidence in Ontario. 

Methods: The traditional statistical approach to forecasting is the seasonal autoregressive 
integrated moving‑average (SARIMA) model. We applied SARIMA and an artificial neural 
network (ANN) approach, specifically a feed‑forward neural network, to predict monthly 
cryptosporidiosis incidence in Ontario in 2017 using 2005–2016 data as a training set. Both 
forecasting approaches are automated to make them relevant in a disease surveillance context. 
We compared the resulting forecasts using the root mean squared error (RMSE) and mean 
absolute error (MAE) as measures of predictive accuracy. 

Results: Cryptosporidiosis is a seasonal disease, which peaks in Ontario in late summer. In this 
study, the SARIMA model and ANN forecasting approaches captured the seasonal pattern of 
cryptosporidiosis well. Contrary to similar studies reported in the literature, the ANN forecasts 
of cryptosporidiosis were slightly less accurate than the SARIMA model forecasts.

Conclusion: The ANN and SARIMA approaches are suitable for automated forecasting of public 
health time series data from surveillance systems. Future studies should employ additional 
algorithms (e.g. random forests) and assess accuracy by using alternative diseases for case 
studies and conducting rigorous simulation studies. Difference between the forecasts from 
the machine learning algorithm, that is, the ANN, and the statistical learning model, that is, 
the SARIMA, should be considered with respect to philosophical differences between the two 
approaches.
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Introduction

Cryptosporidiosis is a potentially lethal diarrheal disease that 
affects humans and animals. It is caused by the protozoan 
parasite Cryptosporidium spp. (1). Some 20 of the known 
26 species have been associated with human infections (2). 
The majority of human infections are caused by C. hominis 
and C. parvum, which are mostly related to anthropogenic and 
zoonotic transmissions, respectively (3). The main infection route 

for humans is through consumption (including while swimming) 
of water contaminated with the parasites’ oocysts. 

Cryptosporidiosis is often asymptomatic but can result in 
mild-to-severe gastrointestinal disease and even mortality. 
Human infection prevalence in North America ranges between 
1% and 4% annually, but can be up to 20% elsewhere (4). While 
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cryptosporidiosis is likely underreported, it is known to occur 
more frequently in children and immunocompromised people. 
No prophylactic treatment is available, making public health 
preparedness based on surveillance an important preventive 
option.

New opportunities for statistics, epidemiology and disease 
surveillance in public health have emerged over the last two 
decades since the advent of big data (5,6). Eysenbach introduced 
the term “infodemiology” for the use of big data (and specifically 
social media use and behaviour data) in health surveillance (7). A 
prominent example of infodemiology is the Google Flu Trends 
project, which predicted regional outbreaks of influenza 7 to 
10 days ahead of conventional surveillance methods by the 
Center for Disease Control and Prevention (CDC) but was grossly 
overestimating influenza prevalence (8). That project is a valuable 
example of the opportunities as well as the risks of big data, 
termed “big data hubris” (8,9). 

Big data are often characterized by the five V’s: volume, variety, 
velocity, veracity and value (9). Big data hubris refers to the 
veracity or truthfulness of the data. The promise of big data is 
that vast amounts of data (volume) of different types and from 
different sources (variety) provide a more complete and precise 
representation of reality, hence leading to “precision public 
health” (10). However, when the data are not representative of 
the population of interest, predictive inferences are biased. 

Disease surveillance results in a big data situation due to 
data velocity and volume: data are constantly updated and 
growing in size. The dynamic nature of disease surveillance data 
requires an automated approach to analysis and forecasting. 
The traditional statistical time series modelling approach is the 
seasonal autoregressive integrated moving-average model 
(SARIMA) proposed by Box and Jenkins (11). A widely used 
machine learning algorithm for time series forecasting is the 
(feed‑forward) artificial neural network (ANN) (12). We applied 
both forecasting approaches to predict monthly cryptosporidiosis 
incidence in Ontario in 2017 using 2005–2016 data as a training 
set. We compared these forecasting approaches using the 2017 
incidence as test data, with the root mean squared prediction 
error (RMSE) and the mean absolute prediction error (MAE) as 
measures of accuracy. 

Similar comparisons have been reported in the literature. Zhang 
and Qi (13) compared SARIMA and ANN using simulations and 
showed that the ANN is consistently better at forecasting than 
the SARIMA model, when data are appropriately preprocessed. 
Kane et al. (14) compared forecasts of avian influenza H5N1 
outbreaks by the SARIMA model to those from the random 
forest algorithm and concluded that machine learning provides 
enhanced predictive ability over the time series modelling. 
Similarly, in a study of typhoid fever incidence in China, Zhang 
et al. compared SARIMA modelling to three different ANN 
architectures; the researchers concluded that all three neural 
network algorithms outperform the statistical model (15).

The goal of this study is to compare the two approaches 
to automating forecasting of monthly incidence rates of 
cryptosporidiosis in Ontario for the year 2017. The specific 
objectives were (1) to compare the accuracy of forecasts using 
the RMSE; (2) to compare forecasts using the MAE; and (3) to 
visually compare the forecasted incidence rates to the observed 
time series.

Methods

The data we used were monthly incidence counts of 
cryptosporidiosis in Ontario for the years 2005 to 2017 as 
reported to Public Health Ontario and available from the 
respective homepages (16). For analysis, we split the dataset into 
training data (monthly incidences in 2005 to 2016) and test data 
(monthly incidences in 2017).

For exploration purposes, we reported ranges of annual and 
monthly mean incidence in the training data and inspected 
the data with the seasonal and trend decomposition using 
Loess (STL) method (17). The seasonal component was assumed 
to be time invariant or periodic, while the trend component was 
found using a moving window of length 73 months, or six years 
plus one month.

A SARIMA model (11) is a data-generating model that 
includes seasonal and trend components. It is used to describe 
autocorrelations within a time series and to predict future 
values. It is described by the order of filters applied to remove 
seasonal and trend components as well as by the order of lagged 
correlations in the filtered series. The filtered series is assumed 
to be stationary and Gaussian. A brief description of the SARIMA 
model is: SARIMA(p,d,q)(P,D,Q)S, where S denotes the length 
of the season (here 12 months), d and D denote nonseasonal 
and seasonal difference filters to remove trend and seasonal 
components, respectively. Furthermore, p and P are orders 
of the nonseasonal and seasonal autocorrelation parameters, 
respectively. Finally, q and Q denote the nonseasonal and 
seasonal order of moving-average parameters. The SARIMA 
modelling approach was automated by using maximum 
likelihood estimation and stepwise backward model selection 
with the Bayesian information criterion (BIC). The SARIMA model 
as fit to the 2005–2016 training data was then used to forecast 
monthly incidences for 2017 test data.

The ANN is a data-driven and automated algorithm to 
forecasting time series data. While a variety of ANN architectures 
exist (18,19), we applied the staple feed-forward multilayer 
neural network with a single hidden layer in this study (12). More 
specifically, the ANN is described as ANN(p,P,k)S, where p, P 
and S have the same meanings as in the SARIMA model, and 
k denotes the number of nodes in the hidden layer. Automatic 
selection of the ANN’s order values was as follows: S=12 is 
known; k was the rounded value of (p+P+1)/2, where P was set 
to P=1 to accommodate linear seasonality; and p was selected as 
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the optimal order of an autoregressive model fit to the remainder 
of term of the STL decomposed series. 

We applied the ANN algorithm as follows: linear combinations 
of input data were subjected to the nonlinear sigmoid activation 
function 1/(1+exp(−z)) as output from a hidden layer, and the 
output from the hidden layer was then aggregated in the form 
of linear combinations, which resulted in the final output. The 
ANN was trained using 100 repetitions, that is, 100 different 
random starting values for the weight parameters of the linear 
combinations between input and hidden layer as well as the 
hidden and output layers. Furthermore, the input series (i.e. the 
2005–2016 data) was preprocessed using an automatic selection 
of the Box–Cox transformation parameter (by the Guerrero 
method (12)) followed by studentizing (i.e. centring and scaling). 
For each repetition, the algorithm was trained by an iterative 
experimental process of optimizing a loss function. The resulting 
set of forecasts, or ensemble, was averaged over all iterations.

Both forecasting approaches provide prediction intervals. The 
SARIMA prediction interval was based on estimated model 
parameter. The ANN prediction interval was based on 1,000 
bootstrapped sample paths (12), that is, using resampled 
past residuals. In addition, both forecasting approaches were 
compared by their accuracy measures (RMSE and MAE) for the 
monthly forecasts and the observed test data of the year 2017.

All data analysis was performed in R (20) and RStudio (21) using 
the “forecast” package (12).

Results

The time series of monthly reported cryptosporidiosis incidences 
in Ontario for the years 2005 to 2016 is dominated by a seasonal 
component, with summer peaks and only a weak – if any – 
upward trend (Figure 1). The STL decomposition in Figure 2 
confirms this impression. The training data time series is relatively 
short with 12 years comprising 4,152 cases, or an annual average 
of 346 cases, which is equivalent to about 2.57 annual cases 
per 100,000 population at risk. The average number of monthly 
cases was 29, ranging from 6 to 109 cases over 2005 to 2016.

The stepwise automated model selection resulted in a 
SARIMA(1,0,0)(1,1,0)12 model with model parameter estimates 
being first order autoregressive parameter AR(1)=0.41 (standard 
error [SE]=0.08) and first order seasonal autoregressive 
parameter SAR(1)=−0.35 (SE=0.10) (Figure 3). 

The automatically selected ANN is of order ANN(11,1,6)12, that 
is, the last 11 observations plus the first seasonal observation 
are linearly combined into six nodes of a single hidden layer. 
The input series was Box–Cox transformed with an automatically 
chosen parameter λ=−0.21. The forecasts from the ANN are 

visualized together with 80% and 95% prediction intervals in 
Figure 4.

The observed monthly incidences and rounded forecasts are 
presented in Table 1 and Figure 5 for both models. Table 2 
shows the summaries of the RMSE and MAE from the 2017 
forecasts for both approaches.

Figure 1: Time series plot of the monthly incidence of 
cryptosporidiosis in Ontario during the years 2005 to 
2016

Abbreviation: Crypto, cryptosporidiosis

Figure 2: The cryptosporidiosis time series of monthly 
incidences from 2005 to 2016a

a Seasonal and trend decomposition based on Loess procedure (STL) plot of the training  
dataset (17)
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Figure 3: Forecasts for 2017 monthly cryptosporidiosis 
incidences with 80% and 95% prediction intervals from 
a SARIMA(1,0,0)(1,1,0)12 model

Abbreviations: Crypto, cryptosporidiosis; SARIMA, seasonal autoregressive integrated  
moving-average

Figure 5: Time series plot of the observed monthly 
cryptosporidiosis incidences for 2017 and the forecasts 
from SARIMA and ANN approaches

Abbreviations: ANN, artificial neural network (red line); Crypto, cryptosporidiosis (black line); 
SARIMA, seasonal autoregressive integrated moving-average (blue line)

Figure 4: Forecasts for 2017 monthly cryptosporidiosis 
incidences with bootstrapped 80% and 95% prediction 
intervals from an ANN(11,1,6)12 network

Abbreviations: ANN, artificial neural network; Crypto, cryptosporidiosis

Table 1: Observed cryptosporidiosis incidence rates for 2017 and rounded forecasts from SARIMA and ANN 
approachesa

Abbreviations: ANN, artificial neural network; SARIMA, seasonal autoregressive integrated moving‑average
a For each month, the forecast closer to the observed incidence are in bold

Incidence rate per month

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Observed 23 17 25 22 16 24 48 70 55 32 33 20

SARIMA 18 20 23 21 20 19 61 96 68 28 21 16

ANN 20 19 25 24 18 20 62 95 42 22 15 12

Table 2: Predictive performance measures for the 
SARIMA and ANN approaches

Model RMSE MAE

SARIMA(1,0,0)(1,1,0)12 10.3 7.7

ANN(11,1,6)12 11.2 8.4
Abbreviations: ANN, artificial neural network; MAE, mean absolute error; RMSE, root mean 
squared error; SARIMA, seasonal autoregressive integrated moving-average
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Discussion

The monthly cryptosporidiosis incidence in Ontario is 
characterized by a dominant seasonal pattern that generally 
peaks in August. The short peak in incidence may support the 
concept of human behaviour as a main driver for infection since 
environmental conditions (e.g. ambient temperature) do not vary 
in a pattern similar to the incidence. No increasing trend was 
identified, meaning that the incidence is not emerging.

Neither the machine learning algorithm (i.e. the ANN) nor the 
statistical learning method (i.e. SARIMA) were found to have a 
superior performance in predicting monthly cryptosporidiosis 
incidence. While the ANN forecasts were closer to the 
observations for six months, the SARIMA performed better for 
a different group of five months; both methods were tied for 
the month of September of 2017 (see Table 1). However, the 
accuracy measures RMSE and MAE indicate a slight advantage 
for the SARIMA forecasts: the ANN’s RMSE and MAE were 
higher by 0.9 and 0.7 units, respectively (see Table 2). 

This slight advantage for the SARIMA is interpreted as follows: 
the SARIMA forecasts are, on average, almost one case per 
month more accurate than ANN forecasts. Although this result 
is unexpected with respect to the cited reports (13–15), it is in 
line with a systematic review (22) that found no evidence for 
more accurate predictions from machine learning alternatives 
to statistical logistic regression modelling. However, it should 
be noted that this is a case study and results are specific to 
this example. While the SARIMA model assumes white noise 
residuals and an additive seasonal component, this was not 
checked here using the automated modelling approach. Similarly, 
the ANN is optimized using backpropagation, which is known 
to have difficulties finding the optimal parameter estimates (19). 
Therefore, the ANN employs ensemble forecasting to guard 
against individual erroneous forecasts. 

Proper data preprocessing is important for machine learning 
algorithms (23). This means a time series needs to be scaled and 
centred (i.e. studentized or normalized) prior to analysis. Data 
preprocessing is a natural part of the autoregressive integrated 
moving-average modelling approach, as trend and seasonal 
effects are filtered out before the model is fitted to the time 
series. In our study, stepwise model selection led to filtering 
out a seasonal effect, but a trend effect was neither identified 
nor removed. The ANN was preprocessed by a Box–Cox 
transformation, followed by centring and scaling.

Big data analysis is often presented together with machine 
learning algorithms for inference, that is, predictive modelling. 
The reason for doing so might originate from the impression 
that traditional statistical methods are inappropriate for 
the challenges of big data. For example, the variety of data 
expressed by the number of covariates could render traditional 

statistical inference less attractive and impractical. On the other 
hand, machine learning algorithms are designed around modern 
statistical methods for dimension reduction and regularization 
(e.g. Lasso regression). The training of machine learning 
algorithms is what is otherwise known as parameter estimation 
in statistical modelling and is no different from statistical learning 
methods, being based on cross-validation and bootstrapping. 

In summary, to a certain degree statistical learning and machine 
learning do not differ. However, in public health, applications 
of big data analysis, namely predictive modelling including 
time series forecasting, differ from traditional biostatistical data 
analysis in terms of risk factor identification and assessment. 
Breiman distinguished this as “the two cultures” of statistical 
modelling: the data modelling culture and the algorithmic 
modelling culture (24). He argued that statistical theory is 
irrelevant if modelling assumptions are not met in real-data 
situations. However, he also admitted that machine learning 
algorithms are often based on little theory, and modelling 
assumptions are replaced by properties of the algorithms, that is, 
whether these converge and deliver good predictions.

From a philosophical point of view, machine learning is 
based on a “black box” that is not open to interpretations 
or explanations. In the current example, the ANN(11,1,6)

12 

algorithm included a nonlinear combination of the time series 
data and 85 parameters (23). On the other hand, the SARIMA 
model describes how past observations affect the future course 
of a process; this characteristic might propose causal hypotheses 
(25). Therefore, it is not entirely correct to simply compare 
the forecasting methods by their predicted values or accuracy 
measures as the approaches are philosophically different and not 
entirely comparable: the ANN is a predictive algorithm, while the 
SARIMA is a descriptive and predictive model.

Limitations
A limitation of this study is the lack of adjustment for the 
population at risk. Indeed the Ontario population is steadily 
increasing, but at an annual rate below 0.5%, which is negligible 
in this context, where underreporting is of greater concern. 
No trend in the monthly cryptosporidiosis incidence rates was 
indicated by either the SARIMA or ANN approaches.

Conclusion
Cryptosporidiosis is a strongly seasonal disease, leading to 
good times and bad times of varying caseloads for public 
health. Machine learning methods suitable for forecasting of 
public health time series data from surveillance systems are 
becoming more popular; they have been demonstrated to be 
more accurate than traditional statistical methods. However, in 
this particular case study, the SARIMA model resulted in slightly 
lower RMSE and MAE and thus greater accuracy than the ANN. 
Both forecasting approaches captured the seasonal pattern of 
cryptosporidiosis well. 
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Future studies should employ additional algorithms (e.g. random 
forests) and assess accuracy in different setting, either by using 
alternative diseases for case studies or employing a more 
systematic approach and conducting simulation studies.
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Abstract

Background: Severe acute respiratory syndrome virus 2 (SARS-CoV-2), likely a bat-origin 
coronavirus, spilled over from wildlife to humans in China in late 2019, manifesting as a 
respiratory disease. Coronavirus disease 2019 (COVID-19) spread initially within China and then 
globally, resulting in a pandemic.

Objective: This article describes predictive modelling of COVID-19 in general, and efforts 
within the Public Health Agency of Canada to model the effects of non-pharmaceutical 
interventions (NPIs) on transmission of SARS-CoV-2 in the Canadian population to support 
public health decisions.

Methods: The broad objectives of two modelling approaches, 1) an agent-based model and 
2) a deterministic compartmental model, are described and a synopsis of studies is illustrated 
using a model developed in Analytica 5.3 software.

Results: Without intervention, more than 70% of the Canadian population may become 
infected. Non‑pharmaceutical interventions, applied with an intensity insufficient to cause the 
epidemic to die out, reduce the attack rate to 50% or less, and the epidemic is longer with a 
lower peak. If NPIs are lifted early, the epidemic may rebound, resulting in high percentages 
(more than 70%) of the population affected. If NPIs are applied with intensity high enough to 
cause the epidemic to die out, the attack rate can be reduced to between 1% and 25% of the 
population.

Conclusion: Applying NPIs with intensity high enough to cause the epidemic to die out 
would seem to be the preferred choice. Lifting disruptive NPIs such as shut-downs must be 
accompanied by enhancements to other NPIs to prevent new introductions and to identify and 
control any new transmission chains.
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Introduction

In this article, we review efforts within the Public Health 
Agency of Canada (PHAC) to model transmission of severe 
acute respiratory syndrome virus 2 (SARS-CoV-2), the agent 
of coronavirus disease 2019 (COVID-19), to support public 
health decisions. The COVID-19 pandemic has emerged 
at remarkable speed. The SARS-CoV-2 is likely a bat-origin 
coronavirus (1) that may have “spilled over” into humans 
from an intermediary animal reservoir not yet identified. The 
first detected human exposure event was linked to a “wet 

market” in the city of Wuhan, the capital city of the province 
of Hubei, China some time during late 2019 (2). The virus was 
likely already capable of human-to-human transmission, but 
evolved more efficient transmissibility during late 2019 (3). 
Human‑to‑human transmission was officially recognised by 
the global public health community in mid‑January 2020 (4). 
Shortly after this, spatial spread in China was reported. Intense 
public health measures (or non-pharmaceutical interventions; 
NPIs) of case detection, contact tracing and quarantine, and 
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social distancing were implemented within the province of 
Hubei, and the region was isolated from the rest of China by 
travel restrictions (5). International travel restrictions to and 
from China were introduced but cases had already escaped 
outside of China (6), and the consequent global spread resulted 
in declaration of a pandemic (4). The first travel‑related cases 
were identified in Canada in January 2020 and by April 2020, 
community transmission was occurring in all provinces with 
the possible exception of Prince Edward Island. Community 
transmission has yet to be reported from the territories. The 
majority of cases and deaths have been reported from the 
four largest provinces (British Columbia, Alberta, Ontario and 
Quebec). Physical distancing (including school, college, university 
and “non-essential” business closures) was implemented from 
mid-March 2020 in Canada and subsequent reductions in disease 
transmission suggest that these and other NPIs (detailed below) 
are slowing the epidemic (7).

Evolution of COVID-19 modelling

At first, modelling studies focused on the epidemic in China, and 
particularly on the dynamics of the epidemic in the city of Wuhan 
and throughout the province of Hubei. At this early stage, there 
was much effort to analyse surveillance data from China to obtain 
parameter estimates such as the basic reproduction number (R0), 
case fatality rate and incubation period (8). For the first attempts 
at Susceptible-Exposed-Infectious-Recovered (SEIR) type 
dynamic models, parameter estimates were “borrowed” from 
what was known about other coronaviruses (SARS‑CoV and 
MERS‑CoV) (6) and/or obtained by fitting the models to 
surveillance data (9,10). As more data on SARS-CoV-2 virus 
transmission and the course of infection in humans have become 
available, models have become increasingly parameterised 
using SARS‑CoV‑2‑specific data (11). With global spread of 
the disease, and with a vaccine likely more than a year away, 
modelling efforts turned to assessing the possible extent of the 
epidemic in countries outside China, and the impact of different 
NPIs (11,12). Emerging science has revealed that SARS‑CoV‑2 
virus is highly transmissible by respiratory and possibly fecal-
oral routes, is transmitted before symptoms appear and some 
cases may be entirely asymptomatic (13,14). The virus can be 
highly pathogenic for older people and some younger people, 
particularly those with co-morbidities (14). Presymptomatic 
transmission, mild symptoms (particularly in younger age groups) 
and asymptomatic cases all hinder detection of infective cases (in 
contrast to SARS) (15), making control difficult. Modelling efforts 
to date have illuminated the magnitude of the challenge we 
face: 1) the global population is entirely immunologically naive, 
2) the virus is very highly transmissible (R0 values may be greater 
than five in some settings) (16) and 3) the level of pathogenicity 
of SARS-CoV-2 means even the most advanced healthcare 
systems in the world may be completely overwhelmed if the 
virus is allowed to spread without introducing NPIs. At the same 

time, and in contrast to pandemic influenza, there are no known 
effective antivirals.

COVID-19 modelling in Canada

Predictive modelling of COVID-19 by Canadian scientists is 
a field of study that was approximately three months old at 
the time of writing (early May 2020), but there is extensive 
skill in Canada in modelling the transmission of infectious 
diseases. Some previously-developed models that investigated 
interventions to control H1N1 and other influenzas (17,18) 
have been adapted to assess the transmission of SARS-CoV-2 
and the impacts of different NPIs (9,19,20). Tang et al. (9) and 
Li et al. (21) have developed SEIR‑type models to explore 
transmission and learn from NPIs implemented in China and 
South Korea. An Expert Modelling Group, comprising more 
than 50 federal, provincial, territorial and university-based 
modellers and epidemiologists, has been assembled by PHAC to 
develop a Canadian COVID-19 modelling network that supports 
decision-making. Similar groups have been developed in other 
countries, with liaison between them facilitated by a World 
Health Organization modelling group.

COVID-19 modelling at PHAC

In January 2020, a modelling group was convened, and 
development of two complementary modelling approaches was 
initiated. The prime objective of this modelling was to assess 
the impact of different NPIs and levels of efficacy needed to  
control the epidemic in Canada. In the absence of a vaccine or 
treatment, the NPIs available to control the epidemic, which 
were explored in modelling, are 1) physical distancing (closure 
of schools, colleges and universities, meeting places, gatherings 
and personal distancing) that reduces the rates of contact 
between members of society (including those who may be 
infected), 2) detection of cases by surveillance, and their isolation 
to prevent them from transmitting infection and 3) tracing and 
quarantine of people who have had contacts with cases.

The two modelling approaches used will be published as 
separate, more detailed articles, and are termed “approaches” 
as the models themselves have evolved with evolving 
knowledge. What follows is a broad description of these 
approaches, which are based on 1) an agent-based model (22) 
and 2) a deterministic compartment model (23). The agent-based 
approach was developed de novo using AnyLogic© software, 
while the deterministic model runs in R (24). Initial versions of 
the deterministic model were adapted from Tang et al. (9). Both 
are SEIR-type models with elements to model SARS-CoV-2 and 
impacts of NPIs, with more realism (Figure 1). These elements 
include compartments for isolated cases and quarantined 
“exposed” contacts from which onward transmission to 
susceptible people is limited or absent, compartments for 
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asymptomatic cases that may or may not be detected by 
surveillance, as well as flows to “isolation” and “quarantine” 
compartments that allow variation according to different levels 
of public health effort. Parameters in the models are calibrated 
according to values obtained by literature searches, which are 
conducted each day to ensure evolving knowledge is captured 
by the models.

In the deterministic modelling approach, effects of physical 
distancing are modelled in a simplistic way by reducing daily 
per capita contact rates informed by a number of metrics 
including cellphone data (25). The agent-based model approach, 
which contains stochastic elements, uses a more detailed 
representation of communities, including homes and communal 
meeting spaces that may represent workplaces, schools, malls 
and restaurants etc., so this model is capable of modelling 
effects of closures in more detail and predicting different 
realizations of disease spread in the community. The agent-based 
approach includes contact rates within and between age groups 
that are (20) based on the POLYMOD study (26). Contact data 
specific for the United Kingdom (UK) and European countries 
were used as a surrogate for contact rates in Canada given 
that similar studies have not been conducted in Canada. The 
deterministic approach has used homogenous mixing but is also 
being modified to include contact rates that vary within and 
between age groups. For illustrative purposes, a deterministic 
compartment model has been developed in Analytica 5.3 
(Lumina Inc.) using the knowledge of COVID-19 transmission 
elucidated by the two modelling approaches. Code for this 
model is available upon request with instructions on how to 
explore the model and generate results.

Key outputs from the models are 1) under what circumstances 
the NPIs cause the epidemic to die out by reducing the effective 
reproduction rate (Re) below unity (i.e. one infected person 
infects fewer than one other person, on average) and 2) the final 

attack rate (i.e. the total percentage of the population infected) 
and 3) the approximate duration of the epidemic.

Synopsis of findings of modelling 
conducted within and outside Public 
Health Agency of Canada

The following synopsis of results of modelling studies includes 
those conducted by PHAC with reference to studies conducted 
by modelling groups outside the Government of Canada. The 
outputs are illustrated here using graphs generated by the model 
developed in Analytica 5.3.

1. What happens in the absence of NPIs?

The baseline to compare impacts of NPIs is a scenario where 
there is no effort to control disease spread. In this case, the 
attack rate is predicted to be greater than 70%, and the 
epidemic lasts approximately one year (Figure 2). These findings 
are consistent with studies estimating impacts on UK and United 
States populations (11).

2. What happens when NPIs are partially effective?

If NPIs, maintained throughout the epidemic, are partially 
effective (i.e. they have impacts on the epidemic but do not 
cause it to die out), the main effects are as follows: the epidemic 
is prolonged, the peak is reduced, the epidemiological curve is 
flattened and the attack rate is reduced to approximately 50% 
(to 25% in some models) (20) (Figure 2). This finding is consistent 
with equivalent modelling studies (11,20). This scenario has been 
termed “delay and reduce.”

Figure 1: A schematic of the Analytica 5.3 compartment 
model showing the flow of populations between 
compartments
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Figure 2: Impacts of partially-effective NPIs on the 
epidemic compared to the baseline with no control 
efforts
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If the NPIs do not cause the epidemic to die out and are 
lifted before the epidemic is over, the epidemic is predicted 
to rebound and the attack rate can be as high as without 
NPIs because the majority of the population remains naive 
(Figure 3) (11,20).

3. What happens when NPIs are highly effective?

When NPIs are highly effective, Re falls below unity, the epidemic 
dies out and does not rebound if NPIs are lifted (also referred 
to as epidemic control). How soon that happens, and thus the 
final attack rate (which may be anywhere between less than 1% 
and 25%), depends on a number of factors including at what 
point in the epidemic NPIs are implemented, the intensity with 
which NPIs are implemented, the duration of implementation 
and the level of compliance (Figure 4) (12).

Assessing hospitalisation and mortality 
rates from attack rates
The main objective of the modelling approaches was to compare 
the impacts of different NPIs. There remains much uncertainty 
in some model parameters and their distributions, including 
the duration of the latent period, the proportion of cases that 
are asymptomatic and the duration of infectivity. The strength 
of these models is their ability to compare amongst different 
NPIs using current best estimates of parameter values. However, 
in order to ensure health care capacity is sufficient to respond 
to the pandemic, planners need to have a range of estimates 
for the expected numbers of cases, hospitalizations, cases 
needing care in intensive care units (ICU) and fatalities. Initial 
modelling approaches focused on estimating total attack rates, 
and were not designed to estimate hospitalizations, cases 

needing ICU care and fatalities. To obtain these estimates 
from total attack rates, age‑specific severity estimates from 
analysis of international surveillance data (27) were used to 
assess the proportion of cases in Canada that would be mild or 
asymptomatic, require hospitalization or ICU treatment, and may 
die, according to the demography of the Canadian population as 
a whole (28). The estimates per one million population are shown 
in Table 1.

These estimates are crude and more precise health care needs 
estimates should be calculated at the community level (e.g. 
catchment area for a hospital or group of hospitals) so the 
specific age structure and co‑morbidities of the community under 
evaluation can be accounted for in the model (19).

Observations from Canada and 
elsewhere in the world 
The outputs of modelling studies are theoretical, but their 
insights and policy implications have been bolstered by real-
world evidence. Epidemic control has been realised in Singapore, 
China and South Korea, with Re falling below unity by application 
of a prompt and intense level of NPIs (5,21,29). In contrast, in 
Europe, NPIs to date do not seem to have brought Re below 
unity (30). At the time of writing, in Canada the epidemic is 
geographically heterogeneous, but unpublished estimates 
suggest that in some jurisdictions Re may be below unity, while in 
others this state has not been reached (unpublished; Dr. Ashleigh 
Tuite and Dr. David Champredon). At the time of writing, the 
observed case fatality rate is higher than that predicted using 

Figure 3: The effect of initiating partially-effective 
non-pharmaceutical interventions (in this case physical 
distancing), and then removing these interventions 
before the epidemic endsa
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Figure 4: Effects of different levels and combinations 
of non-pharmaceutical interventions on whether or not, 
and how quickly, epidemic control is reached
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methods described above because of extensive transmission in 
long-term care and seniors facilities. In these facilities, contact 
rates are likely very high (31) and the population very vulnerable 
to COVID-19.

Conclusion
The modelling studies described here provide information for 
planning of public health policies to combat the unprecedented 
risk of COVID-19 to the health and well-being of Canadians and 
the rest of the world. These studies underline that without NPIs, 
the majority of Canadians would acquire infection in a relatively 
short period of time, and the health care system would most 
likely be overwhelmed, resulting in a higher case fatality rate, 
particularly in the most vulnerable age groups. The intensity 
of the NPIs, and the compliance of the public, will determine 
whether the epidemic is brought under control, or delayed and 
reduced. The former would seem the preferred objective as the 
numbers of Canadians affected would be minimized. However, 
this will require a very high degree of public health effort and 
public buy-in and, if successful, will require a high level of 
vigilance to identify imported cases and any transmission chains 
that may result, because the Canadian population remains largely 
infection naive. If transmission in Canada is not completely 
extinguished, strong NPIs will have to remain in place or the 
epidemic will rebound. Any lifting of physical distancing, which 
appears to be bearing fruit at present, will have to be matched 
by increased efforts to detect cases by surveillance and to trace 
and quarantine contacts.

Modelling studies are not predictions, they present plausible 
outcomes with different levels of NPIs, given our current 
knowledge of the virus and its transmission, and can be used 
to support planning, particularly in evidence-limited situations, 
such as emerging infectious disease epidemics. Our knowledge 
is constantly evolving, and the models and their outcomes will 
evolve accordingly. The models provide information that is useful 
for decision-making, but they do not make decisions. Decisions 
on public health programs to control COVID-19 in Canada will 
be made accounting for a range of additional factors that include 
(but are not limited to) economic impacts, ethical and legal 
concerns, and the negative health impacts of aggressive physical 
distancing.
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Introduction

A protocol for severe acute respiratory infections (SARI) was 
initially developed as a response to the 2003 severe acute 
respiratory syndrome (SARS) outbreak (1). The protocol’s 
intended use was to facilitate the diagnosis of novel and 
emerging respiratory infections, including SARI, due to both 
unknown and known respiratory pathogens that have the 
potential for large-scale epidemics. With both the Middle East 
respiratory syndrome coronavirus (MERS‑CoV) and the influenza 
A(H7N9) virus, a key factor in diagnosis is the determination of 
risk based on epidemiologic factors, which, in turn, is related 
to exposure in an “area of concern”. With the more highly 
transmissible severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the cause of the coronavirus disease 2019 
(COVID-19) pandemic, testing guidelines have changed as the 
pandemic has developed. Initially, testing focused on those with 
travel-associated risk factors; with a shift to broader testing once 
more cases were locally acquired (within Canada). This initial 
risk assessment must be done in concert with the local Ministry 
of Health. Signals of novel and emerging respiratory infections, 
including SARI alerts, should trigger clinicians to “think, tell and 
test”: 
• Think about the possibility of an emerging respiratory 

infection (e.g. novel influenza A virus)
• Tell the local medical officer of health or local public health 

official; notify your local laboratory and provincial public 
health laboratory (PPHL) that you suspect a novel pathogen

• Test for pathogen based on clinical symptoms and only after 
appropriate consultation

Laboratory protocol

When to test
Guidance on when to test for novel or emerging pathogens is 
influenced by many epidemiological factors. At the time of the 
emergence of a novel pathogen, before widespread human 
infection, the probability that a SARI is due to a novel pathogen 
is extremely low. Therefore, in patients with no epidemiological 
risk factors, the most common pathogens should be ruled out 
before considering a novel, unusual or more highly virulent 
pathogen. When appropriate risk factors exist, novel pathogens 
should still be ruled out regardless of whether another pathogen 
is detected, as viral co-infections have been well documented 
with novel viral respiratory pathogens (e.g. MERS‑CoV, influenza 
A(H7N9) and SARS-CoV-2) (Figure 1).

Although testing is initially focused on individuals with 
epidemiologic links, such as those who have travelled to a region 
where the pathogen is circulating, once there is widespread 
activity, such as in the COVID-19 pandemic, healthcare providers 
should have a low threshold to consider testing for the novel 
pathogen when reviewing patients with acute respiratory 
illness (ARI). This threshold for testing will continue to be 
influenced by the epidemiology of the infection such as 1) 
the stage of the pandemic wave that the jurisdiction is in, 2) 
whether there is local or widespread activity and 3) whether the 
response is in a containment or mitigation phase. Specific testing 
guidelines are developed at the provincial level, and will vary 
across Canada. Other factors that may influence approaches to 
testing include the availability of testing supplies and reagents, 
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which may be in short supply at various times during a pandemic. 
This testing may be done at the local laboratory or the PPHL 
depending on local capacity and expertise. 

Specimens to collect
Until the ideal specimen to detect an emerging pathogen has 
been identified, a broad range of specimens should be collected 
including nasopharyngeal swab (NPS), throat or combined 
throat/nares swab, bronchoalveolar lavage (BAL), endotracheal 
secretions, and sputum. For pediatric patients, a nasopharyngeal 
aspirate is a suitable replacement to a NPS, although it is an 
aerosol generating medical procedure which requires airborne 
precautions whereas NPS does not. Although saliva has 
been suggested for detection of some emerging pathogens 
like SARS-CoV-2, it requires more validation prior to being 
recommended as the sole, specimen for collection. 

For patients not admitted to hospital, including those in 
emergency room settings, a single upper respiratory tract 
specimen is usually sufficient for testing emerging respiratory 
virial pathogens (such as SARS-CoV-2 or H7N9). Upper 
respiratory tract specimens include a NPS, throat OR combined 
throat/nares swab collected in universal transport medium. 
An NPS is the preferred specimen due to possible increased 
sensitivity in comparison with a throat swab. A combined throat/
nares specimen may also be collected, provided the testing 
laboratory has approved the submission of this combined 
specimen source type. 

For hospitalized patients, in particular those with SARI, 
submission of both upper and lower respiratory tract specimens 
is recommended when possible. As above, NPS is the preferred 
upper respiratory tract specimen. A throat or combined 
throat/nares swab collected in universal transport medium 
may be submitted as an additional upper tract specimen. 
Lower respiratory tract specimens should also be submitted 
when possible. These lower tract specimens include sputum, 
endotracheal aspirates and BAL. For a number of emerging 
pathogens, including avian influenza and novel coronaviruses, 
there have been reports of patients who were found to be 
negative on upper respiratory tract testing but positive on lower 
respiratory tract testing. 

Recommended pathogens and specimens to 
test

At the time of the emergence of a novel pathogen, before 
widespread human infection, the probability that a severe acute 
respiratory illness is due to the novel pathogen is extremely low. 
Therefore, in patients with no epidemiological risk factors the 
most common pathogens should be ruled out before considering 
an unusual or more highly virulent pathogen. This includes the 
following: 

Conventional bacteria 
• Sputum for routine bacterial Gram stain and culture

Atypical bacteria
• Legionella—sputum, BAL, endotracheal aspirate, lung tissue 

for polymerase chain reaction (PCR) and/or culture
• Urine for Legionella urinary antigen testing 
• Mycoplasma/Chlamydia—NPS, throat swab, and/or lower 

tract specimen for PCR and/or culture 

Conventional respiratory viruses 
• Including human influenza, parainfluenza, respiratory 

syncytial virus, adenovirus, human metapneumovirus, 
rhinovirus/enterovirus, coronavirus

• Specimens—NPS, endotracheal secretions, BAL, with or 
without throat swab (or combined throat/nares swab) and 
sputum

• NPS is the primary specimen type for respiratory viruses 
including seasonal influenza. However, based on our 
experience with pandemic H1N1, deeper specimens, such as 
endotracheal secretions or BAL, must be collected in cases 
of severe respiratory infection with negative NPS

• A number of avian influenza A viruses, including H7N9, 
has been detected in throat swabs. Influenza A (H7N9) 
was only detectable in sputum specimen in one of four 
patients. While sputum and throat swabs are not ideal for 
most influenza viruses, multiple specimens types should be 
considered in patients suspected of having avian influenza A 
viruses

Figure 1: Laboratory protocol

 
Abbreviations: ARI, acute respiratory illness; BAL, bronchoalveolar lavage; PHAC, Public Health 
Agency of Canada; SARI, sudden acute respiratory infection
a Contact microbiologist on call for guidance regarding appropriate test
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Testing methods
Testing should be conducted using assays validated for the 
specific pathogen: 

• SARS-CoV-2 should be tested by real-time reverse 
transcription-PCR (rRT-PCR) (see above)

• The primary method for detection of influenza A and B (24 
hour turnaround time) should be rRT-PCR with subtyping 
(H3N2 or H1N1). Preferred protocols for detection of novel 
influenza viruses are those developed by the United States 
Centers for Disease Control

• For parainfluenza, human metapneumovirus, coronavirus, 
rhinovirus/enterovirus and adenovirus, respiratory multiplex 
RT-PCR should be done on all specimens if possible; or 
on influenza‑negative specimens when there is a clinical 
indication to detect non‑influenza viruses

• Rapid influenza diagnostic tests should not be used to rule 
out influenza A. The sensitivity of currently available rapid 
influenza diagnostic tests for human influenza strains is 
suboptimal. The sensitivity of currently available commercial 
tests for detection of H7N9 is poor and should not be used 
for clinical testing

• SARS‑CoV‑2, novel influenza A viruses and MERS‑CoV are 
classified as RG3 pathogens. Routine culturing of specimens 
from suspect patients should only be considered in PPHLs 
with containment level (CL) 3 facilities. Virus culture in a CL2 
laboratory may be considered if the specimen has been 
tested for the relevant emerging pathogens and is negative 
by rRT-PCR

If more invasive samples are collected they should be processed 
for a wide range of pathogens:
• BAL for testing for a broad range of pathogens (bacteria, 

viruses, mycobacteria, fungi)
• Open lung biopsy—bacterial, mycobacterial and fungal, 

cultures, RT-PCR and histology (ensure specimen is NOT PUT 
IN FORMALIN

When to suspect SARS-CoV-2 virus
During the early phases of the pandemic, which began in 
Wuhan, China in December 2019, only persons who returned 
from Wuhan, then the province of Hubei, China, with ARI were 
considered for testing. With the progression of the epidemic, 
testing of those with ARI after return from travel to countries with 
COVID-19 activity was indicated. 

Following the evolution of COVID-19 to a pandemic and local 
transmission in most jurisdictions in Canada, testing approaches 
were broadened, with an initial focus on case identification for 
contact tracing and testing to support the containment strategy. 
Testing focuses on the following groups: 
• Persons with ARI who are travelers returning from areas with 

local COVID-19 activity
• Hospitalized persons; contacts of outbreak cases

• Institutionalized persons
• Healthcare workers
• Remote, isolated and/or Indigenous communities
• Vulnerable populations

Once the case numbers increase, with more extensive community 
transmission and pressures on testing resources, the goal of 
testing may need to be prioritized to support the mitigation 
strategy including the following:
• Testing persons at risk for serious disease
• Those likely to transmit virus within a healthcare facility or 

vulnerable community setting
• Those from whom COVID-19 disease would have an impact 

on delivering healthcare or critical infrastructure
• Those for whom exposure would put them at risk of testing 

positive

Additional groups may be considered for testing, depending 
on the stage of the pandemic, local policy and availability of 
reagents. 

The COVID-19 testing should be completed for patients who 
meet testing criteria regardless of whether another pathogen is 
identified. Early data suggests that up to 30% of patients with 
COVID-19 can have co-infection with other respiratory viruses. 

Further information on laboratory testing for COVID-19 is 
available from the Canadian Public Health Laboratory Network 
(CPHLN) COVID-19 Best Practices document (2).

When to suspect the Middle East respiratory 
syndrome coronavirus 

Limited data suggest that MERS-CoV can present as a 
co-infection with other viral pathogens. As such, in addition to 
specimens that are negative for conventional pathogens, those 
that do have other identified pathogens but are consistent 
with suspect cases of MERS-CoV based on the Public Health 
Agency of Canada (PHAC) case definition, or alternatively 
provincial testing guidelines should be tested. The details 
regarding testing and some control materials for method 
development are available from the National Microbiology 
Laboratory (NML). To date only a few PPHLs have developed 
the capacity to test for this pathogen in-house; all other PPHLs 
should forward the suspect specimens to the NML for further 
testing. 

When to suspect a novel influenza virus 
(including H7N9)

Influenza viruses that are positive on the initial influenza 
identification test but cannot be subtyped using RT‑PCR should 
be further characterized. Laboratories that have the capacity 
to further characterize the specimens by novel subtyping PCRs 
or sequencing methods (e.g. sequence the HA, N, M or other 



GUIDELINES

CCDR • June 4, 2020 • Vol. 46 No. 6Page 208 

genes) to determine the subtype of the virus should do so. 
Those that lack this capacity should rely on the NML for further 
characterization. However, given that subtyping assays are 
usually less sensitive than the identification assays, weak positive 
results may not be typable. Based on local experience, each 
laboratory should evaluate these on a case-by-case basis, in 
concert with their local clinicians and public health colleagues.

Influenza‑positive specimens outside the influenza season or 
obtained from patients with a history of exposure to animals (e.g. 
pigs or chickens) should be routinely submitted to the PPHL and/
or NML for characterization.

Note: While initial analysis of the in-house assays used by many 
laboratories suggests they should be effective in identifying 
H7N9, it is difficult to determine their effect on the sensitivity of 
testing. This is particularly true of the performance of commercial 
assays whose primer sequences are not known. It is important for 
laboratories to have vendors supply information about the ability 
of their assays to detect novel influenza viruses. Laboratories 
using Level of Detection Tests should monitor viral sequences 
and their matches to the primers and probes in the assays. 

If a front line laboratory suspects a novel/
emerging respiratory pathogen

The initial tests (as outlined above) would be similar but 
supplemental testing will be required at the PPHL. The 
laboratory should communicate with the clinician to ensure that 
the following specimens are collected:

• A second NPS/endotracheal aspirate or BAL—to be used for 
confirmation by the NML

• A viral throat swab (in viral transport media)—a number 
of avian influenza A viruses, including H7N9, have been 
detected in throat swabs. Multiple specimen types should be 
collected when novel influenza viruses are considered and, 
when possible, include both upper and lower respiratory 
tract specimens

• Acute and convalescent sera collection may be appropriate, 
depending on the specific virus suspected, and advice from 
NML and PPHLs. Serology is not recommended for patients 
suspected of influenza A(H7N9) or MERS‑CoV infection. 
Some SARS-CoV-2 serology assays have been developed 
by several commercial providers and are being evaluated 
by NML and some PPHLs. These include ELISA-based and 
immunochromatographic point-of-care tests. Their role in 
clinical testing and public health has yet to be clarified, as 
insufficient data are available on sensitivity, specificity and 
positive and negative predictive values. Testing guidelines 
will be developed once assay performance characteristics 
have been elucidated and assays are validated for clinical 
testing 

If a provincial public health laboratory suspects 
a novel respiratory pathogen

• The PPHL should notify the patient’s healthcare provider, 
local public health unit and Ministry of Health immediately 
when a suspect specimen is identified

• All specimens with suspected novel respiratory pathogens 
(as outlined below) must be forwarded to the NML for 
confirmatory testing. If a novel respiratory pathogen causes 
an epidemic or pandemic, with local transmission, only early 
specimens will be sent to NML for confirmatory testing. 
In addition, testing may be implemented at hospital or 
community laboratories, as has occurred during the SARS-
CoV-2 pandemic

• Specimens suspected to contain a novel respiratory virus 
should be handled using CL2 with enhanced personal 
protective equipment if manipulated outside a biosafety 
cabinet

Note: Virus culture should not be conducted on respiratory 
specimens in a CL2 laboratory when a novel or emerging 
pathogen is suspected, as they are RG3 pathogens. Virus culture, 
if required, may be considered in a CL2 setting if the specimen 
has been tested for these pathogens and is negative by RT-PCR. 

Specimen transport

Specimens should be transported to the laboratory as soon as 
possible, preferably within 72 hours on ice packs. If a longer 
delay is anticipated, specimens should be frozen at -70oC, and 
transported on dry ice. However, specimens should not be frozen 
at -20oC, as this may affect the recovery of the virus if culture 
is required. If -70oC/dry ice is not available specimens should 
remain at 4oC and shipped as soon as possible. Specimens 
should be transported as diagnostic specimens per the usual 
practice for seasonal influenza specimens, and no enhanced 
precautions are necessary. See the PHAC SARS‑CoV‑2 Biosafety 
Advisory for more information (3). 

Specimen tubes must be labelled and requisition completed 
correctly and fully, with matching patient names, unique 
identifiers and relevant clinical information. 
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Managing immunization stress-related response: 
A contributor to sustaining trust in vaccines
C Meghan McMurtry1,2,3,4*

Abstract

Adverse events following immunizations (AEFI) are important to identify and manage 
effectively so as to sustain trust in vaccines and optimize health. The AEFI category related 
to “anxiety about the immunization” was considered problematic as it did not adequately 
capture the range of stress responses that can occur. The currently used term for this category, 
immunization stress-related responses (ISRR), is broader, including the full spectrum of signs 
and symptoms that can arise in response to stress. ISRR can include vasovagal reactions 
(fainting), hyperventilation and functional neurological symptoms (e.g. weakness, nonepileptic 
seizures). It is based on a biopsychosocial framework in which biological (e.g. age, sex), 
psychological (e.g. preparedness, previous experiences, anxiety) and social factors (e.g. 
response by others, social media) interact to create an individual’s stress response to the 
immunization process. 

New guidance is available on prevention, early detection and management of ISRRs which is 
summarized in the article. 
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Introduction

Vaccines are a clear public health success story, protecting 
people from a number of diseases. Adverse events following 
immunizations (AEFI) are important to identify and manage 
appropriately so as to sustain trust in vaccines and optimize 
health. In 2015, the Global Advisory Committee on Vaccine 
Safety of the World Health Organization (WHO) brought 
together an Expert Working Group to discuss what was 
previously known as an “AEFI arising from anxiety about 
the immunization.” Following review by the Global Advisory 
Committee in 2017 and 2018 and endorsement by the Strategic 
Advisory Committee for Vaccine Safety in April 2019, a detailed 
guidance manual for healthcare professionals, Immunization 
stress-related response: a manual for program managers 
and health professionals to prevent, identify and respond to 
stress-related responses following immunization, was published 
(1) along with a synopsis (2) and a peer-reviewed publication (3). 

The guidance manual provides details on understanding, 
preventing, identifying and managing what are now termed 
“immunization stress-related responses,” or ISRR (1).

The objective of this paper is to briefly describe ISRR, direct 
readers to detailed guidance on the topic and provide an 
overview of prevention and management. 

This is the fifth article produced by the Canadian Vaccination 
Evidence Resource and Exchange Centre (CANVax) in the 
CANVax Briefs series. Multidisciplinary professionals at 
CANVax identify and develop useful resources to foster vaccine 
uptake (4,5).

ISRR as part of AEFI
The safety of vaccinations is monitored globally, and AEFI, 
including events that are seen as arising from “anxiety” about 
the immunization, are grouped into five different categories 
(6). Naming these “anxiety reactions” is problematic for two 
reasons: anxiety does not paint an accurate or complete picture 
of what can be quite complex; and this description is indicative 
of a biomedical lens that classifies physiological responses as 
“physical” versus “psychological,” which does not take into 
account that each individual’s mind and body are intricately 
connected (1). 

The term immunization stress-related responses (ISRR) 
acknowledges the full spectrum of signs and symptoms 
experienced in response to stress: vasovagal reactions (fainting), 
hyperventilation, and functional neurological symptoms 
(e.g. weakness, nonepileptic seizures), among others. The 
biopsychosocial framework helps to understand that biological 
(e.g. age, sex), psychological (e.g. preparedness, previous 
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experiences, anxiety) and social (e.g. peer behaviour and 
experiences, social media, community trust in health care) factors 
interact to develop an individual’s stress response and ISRR (1).

ISRR and other AEFI require different prevention and treatment 
responses. For example, it is important to distinguish ISRR 
from anaphylaxis, which is life-threatening and requires 
urgent recognition and a particular pharmacologic response 
(intramuscular epinephrine) and expert management. ISRR is 
neither life-threatening nor helped by epinephrine, and requires 
different management.

The role of the immunization process
Immunizations are typically delivered through injections. 
The process has several characteristics that can increase 
distress: pain from the injection, fear, sight of a needle, sight 
of blood, prolonged standing and responses by others in the 
environment (1,7). Children and adolescents are particularly at 
risk as immunizations are common at this age. Pain and fear 
can go hand in hand: the more scared an individual is about a 
needle, the more pain they report feeling (7,8). Most people 
who have high levels of needle fear report a previous negative 
experience (7,9–11). 

There are short and long-term consequences of needle fear. In 
the short-term, individuals may require longer procedure times, 
have an increased risk of fainting, try to run away and experience 
greater distress and pain (7,8,10,12). Fear of the procedure 
can develop in the long-term along with fear of healthcare 
professionals, avoidance of medical procedures, vaccine 
hesitancy and lack of benefit from traditional pain management 
techniques (7,8,13–15).

Identification of ISRR: Timing and 
manifestation

Understanding and recognizing ISRRs is key to facilitating 
prevention and appropriate management of this category of 
AEFIs. While other AEFIs occur only after immunization, an ISRR 
can occur immediately before, during or after immunization (1,6). 
The manifestations are acute stress responses, vasovagal 
reactions or dissociative neurological symptom reactions 
(DNSRs) (1). An acute stress response (“fight–flight–freeze” 
response) can vary in severity, from “butterflies in the stomach” 
and low to moderate levels of worry to more severe responses 
including difficulty breathing or rapid breathing/hyperventilation 
with tingling in the fingers and toes and increased heart 
rate (1,16,17). A vasovagal reaction is a fainting response that 
can cause a range of effects, from feeling mildly dizzy to losing 
consciousness due to insufficient blood flow to the brain (18). 

An acute stress response may be followed by a vasovagal 
reaction after a sudden decrease in heart rate and a drop in 
blood pressure. Headache and nausea can also accompany 
stress reactions (1). Symptoms of an acute stress response and 

vasovagal reaction can present before, during or immediately 
after immunization, usually within five minutes (1). 

DNSRs are characterized by neurological symptoms with no 
physical findings, otherwise known as functional neurological 
symptoms (19,20). Symptoms can include difficulty walking or 
moving a limb, weakness, tingling sensations in the muscles 
and nonepileptic seizures. These symptoms are considered 
involuntary. DNSRs have not been well documented or reported 
in individuals following immunization, but there are reports of 
“masses” or “clusters” of these reactions in multiple people in 
close proximity (21). The current evidence suggests that DNSRs 
result from complex multifactorial etiologies (22). DNSRs most 
commonly occur independently of immunization; a DNSR that 
develops after an immunization is best understood using a 
biopsychosocial framework in which the immunization process is 
one of a number of contributing factors (1).

A variety of postimmunization events, syndromes and disorders 
have been reported that have no confirmed relationship 
with immunization (1). These include complex regional pain 
syndrome (CRPS) type 1 with delayed onset; chronic fatigue 
syndrome; postural orthostatic tachycardia syndrome (POTS); 
and dissociative neurological symptom disorders (also known 
as conversion disorders) with delayed onset. They are not 
considered to be ISRR (1).

Acute stress response, vasovagal reaction and DNSR in 
individuals or “clusters” of individuals can occur independent of 
immunization. They have also been reported after immunization. 
WHO uses a detailed causality process to determine 
whether there is any relation between the symptoms and the 
immunization (6); more details can be found in the WHO ISRR 
guidance manual (1). ISRR are not caused by the vaccine, a 
defect in vaccine quality or an error in the immunization program 
or process.

Each person who comes to be immunized has their own history, 
psychological strengths and vulnerabilities, and perceptions of 
the procedure and social context. Experiencing an ISRR is not the 
person’s fault (1). Figure 1 illustrates ISRR in individual and group 
contexts (1).

Facilitating prevention and appropriate 
intervention of ISRR
Prevention
Prevention relies on targeting predisposing risk factors. Clinicians 
should be educated on ISRRs, their prevention, screening and 
management (1). Brief reminders/educational materials on 
display in immunization clinics, for example, a poster describing 
the difference between anaphylaxis and ISRR, could be helpful. 
As social media can play a particularly strong negative role in 
mass immunization contexts, including school immunization 
programs, communication is important before, during and after 
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Abbreviations: HPA, hypothalamic-pituitary-adrenal; ISRR, immunization stress-related response
There are three broad time points: before the immunization (historical, predisposing factors); in the immunization context (precipitating factors, initial response); and after immunization (delayed 
response influenced by perpetuating factors)
Risk factors: shapes with a patterned fill show examples of potential risk factors for an ISRR; gear shapes show the dynamic interactions between risk factors
Progression: the person being immunized is shown at different times with example risk factors leading to a cascade of symptoms (initial response, ongoing) consistent with ISRR. However, not everyone 
progresses step-by-step from one stage to the next. For example, a dissociative neurological symptom reaction (DNSR) does not need to follow an acute stress response
Social media’s potential to provide negative information is highlighted
Source: Immunization stress-related response: a manual for program managers and health professionals to prevent, identify and respond to stress-related responses following immunization (1)

Figure 1: ISRR in individual and group contexts
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the immunization to reduce the risk of ISRR (23). Planning for 
mass immunizations should take into account existing rates of 
ISRR and vulnerability factors, that is, the age and sex of the 
recipients because adolescents and females are at greater risk of 
a vasovagal reaction (24). Therefore, planning for immunization 
clinics should include familiarizing healthcare providers with how 
to screen, prevent and manage vasovagal reactions (1). Targeted 
education sessions teaching coping strategies can also be 
helpful (25,26).

In every clinic, environmental strategies can reduce risk factors 
for ISRR. The immunization environment should be at a 
comfortable temperature (rather than overheated) and those 
at risk of an ISRR should be vaccinated in private (1). The flow 
of individuals through the clinic should be such that the waiting 
area has only a few people (i.e. should not be crowded) and 
no one should be waiting for long. Allowing space to sit rather 
than having to stand for a long time is helpful. To build trust, the 
healthcare team should be calm, confident and friendly and able 
to communicate well with the recipients and any caregivers; they 
will also need to address any caregivers who are nervous and 
exacerbating fear in the vaccine recipient (1).

Screening
People at high risk for ISRR should be identified by screening for 
high levels of needle fear and previous negative experiences with 
needles, including fainting (1). For school vaccination campaigns, 
teachers, school nurses or other staff may be able to flag 
students at high risk for ISRR ahead of time, or individuals may 
self-identify. Late school-age and adolescent youth appear to be 
at higher risk of ISRR than other age groups. Individuals with a 
history of vasovagal reactions, including syncope and/or a high 
level of needle fear may be particularly at risk. Individuals with 
preexisting anxiety disorders and/or developmental disorders 
(including autism spectrum disorder) may also need extra time 
and care (1).

Each vaccine recipient should be asked if they have ever fainted 
(i.e. lost consciousness) and/or had prodromal symptoms (e.g. 
felt dizzy, nauseated and/or clammy and/or saw spots) before, 
during or after a needle procedure (1). Individuals who have a 
history of vasovagal reactions should be immunized in a seated 
or supine position and only move to sitting (from supine) or 
standing (from sitting) if there have no signs of a vasovagal 
reaction. Ideally the individual should stay seated for 15 to 30 
minutes following the procedure, and the healthcare provider 
should monitor them for signs of a vasovagal reaction (1). In 
addition, the muscle tension technique can be taught to and 
used by the recipient (see Targeted Interventions for ISRR).

Although no current gold standard exists for screening for 
high levels of fear, it is recommended that healthcare providers 
ask vaccine recipients the questions shown in Table 1 (27). 
Caregivers can be asked similar questions about their 
younger children.

Universal interventions
All recipients should be shown age-appropriate ways to manage 
pain and low to moderate fear (1,27). See Table 2 for physical, 
psychological, procedural and pharmacological strategies 
recommended for different age groups. A supportive caregiver 
could also be present to help with coping strategies. For further 
details see Reducing pain during vaccine injections: clinical 
practice guideline (27). 

Targeted interventions for ISRR
If an individual is at elevated risk for an ISRR, additional measures 
need to be put in place, such as avoiding having them wait in 
the general waiting area, immunizing them at the beginning of 
the clinic and immunizing them in private (1). These strategies 
are designed to reduce contagion of fear and other negative 
emotions as well as to contain any negative effects of an ISRR, 
should one occur. These individuals may benefit from having a 
calm, supportive caregiver or friend with them; as noted above, a 
fearful caregiver or friend can exacerbate the situation and they 
need to be addressed immediately (1).

If an individual’s level of fear is high but they are not avoiding 
the vaccination, two approaches could be used: first, identify 
what can be done in the immunization clinic to create a 
positive experience for the individual, for example, taking 
more time, making further environmental modifications, etc.; 
and second, determine whether treatment of the needle fear 
by a mental health professional outside of the immunization 
context is necessary before future immunizations (1,28). If 
high levels of needle fear and avoidance are present, consider 
delaying the needle to address these factors. For extreme fear, 
pharmacological strategies (e.g. anxiolytics, sedations (1)) could 
also be considered if the expertise is available.

If the individual is at risk for a vasovagal reaction, immunizing 
them in a reclining or supine position while they are using the 
muscle tension technique can be helpful (1). Muscle tension 
keeps an individual’s blood pressure up and prevents the 
precipitous drop that can lead to a faint. This technique has been 
recommended for those aged seven years and older (adolescents 
are at greater risk for vasovagal syncope) (27,28). First, the 

Table 1: Questions to ask to screen for high levels of 
needle fear

Age 
group, 
years

Question

5–8 1) How afraid of needles are you? Not at all; a little bit; a 
medium amount; a lot; very, very much/most possible?

2) Do you try hard to miss having a needle because you 
are so scared?

Older than 
8

1) How afraid of needles are you? Not afraid; a little bit; 
a moderate amount; a lot; or the most afraid possible? 

2) Do you think this level is higher than it should be (or 
higher than that of most of your friends)?

3) Do you avoid getting needles because you are afraid?
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individual tenses their major muscle groups (e.g. abdomen, legs, 
contralateral arm to where the injection will be administered) 
for 15 to 30 seconds until they feel flushed or warm in the face. 
Next, they release the tension for 15 to 30 seconds, but they do 

not fully relax. They repeat these steps in cycles before, during 
and after the procedure until they have no prodromal symptoms.

It is critical to differentiate anaphylaxis from a DNSR (1). (The 
WHO ISRR guidance manual contains a table that can help 

Table 2: Strategies for managing vaccine-related pain and fear in different age groups

Type of strategy Newborn
Infant

(1–35 
months)

Preschool

(3–5 years)

School-aged

(6–12 years)

Adolescent

(13–18 
years)

Adult

(19 years+)

Procedural 

Inject into anterolateral thigh 


(1–11 months)
– – – –

No aspiration when injecting      

Give most painful vaccine last 



(or 
simultaneous 
injection 0–1 

year)

   

Physical

Skin-to-skin (kangaroo care) before, during, 
after  – – – – –

Cradled in parent’s arms   – – – –

Breastfeeding before, during, after OR sweet-
tasting solutions before and/or nonnutritive 
sucking before, during, after

  – – – –

Seated uprighta – –    

External vibrating device with cold – –    –

Communicationb and psychological 

Calm voice, simple language      

Don’t say it won’t hurt      

Use neutral words to signal procedure (e.g. 
“1, 2, 3, here we go”)      

Avoid repeated excessive reassurance (e.g. 
“it’s okay, it’s okay, it’s okay”) before, during, 
after

     

Talk about things other than the procedure 
(verbal distraction) before, during, after      

Distraction (age appropriate) –



(e.g. toy, 
video with 

adult coaching 
to pay 

attention to 
distractor)



(e.g. blowing 
bubbles, toys, 
video, singing)



(e.g. video 
game, video, 

blowing 
bubbles, toys, 

music)

– –

Breathing strategy – –


(breathing 
with toy)



(breathing 
with toy)

–


(cough, 
breath-hold)

Pharmacological

Topical anesthetic applied before (check 
product instructions for time)c –     

Vapocoolant spray right before – – – – –  

Abbreviations: , recommended strategy for a particular age group; –, strategy is not recommended for a particular age group
a Individuals with a history of vasovagal reaction should be immunized in a seated or supine position and only move to sitting (from supine) or standing (from sitting) if there have no signs of a vasovagal 
reaction
b The communication strategies for newborns and young infants are primarily directed to the caregiver
c Topical anesthetic should be used when feasible; for adolescents and adults, topical anesthetic may be used if resources are available and the person is at high risk for an immunization stress-related 
response (ISRR)
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healthcare providers distinguish between anaphylaxis and 
an ISRR (29)). If an individual loses consciousness following 
a vaccination, it could be a result of vasovagal syncope or 
anaphylaxis. Anaphylaxis is potentially life-threatening and 
requires medication (30). While the recipient is in the recovery 
position (supine, on their side), a healthcare provider should 
monitor the recipient’s pulse, respiration, blood pressure and 
peripheral circulation (1), watch their skin for rash or swelling and 
listen to their lungs for wheeze or stridor. 

If an ISRR has been identified, it is important to communicate 
that the response is not due to a vaccine product or procedural 
error; that the response is a known event that staff resolve by 
following specific guidance; and that the response can resolve 
spontaneously without medication or hospitalization.

A DNSR that occurs following an immunization does not causally 
implicate either the immunization or the immunization process. A 
specific assessment is used to determine causality (6); the WHO 
ISRR guidance manual provides a list that can help to diagnose 
a DNSR. Examples include symptoms that are inconsistent with 
known disorders and inconsistent presentation of symptoms 
(e.g. that disappear inexplicably or do not respond typically to 
interventions) (31). Nonepileptic seizures are one example of a 
DNSR; these resemble epileptic seizures but do not have neural 
discharges in the way epileptic seizures do (epileptic seizures 
are differentiated from nonepileptic seizures in the WHO ISRR 
guidance manual (32)). Nonepileptic seizures are typically a 
diagnosis of exclusion (33). Although an electroencephalogram is 
the gold standard assessment for seizures, conducting one may 
not be practicable.

A DNSR may resolve spontaneously or may require the 
involvement of a multidisciplinary team including a mental health 
professional. The biopsychosocial framework that is used to 
understand ISRR should also guide treatment (1). Medical and 
psychological expertise is needed for further assessment and 
management to reduce functional disability. Treatment is specific 
to the presenting symptoms but may include physiotherapy, 
cognitive behavioural therapy and/or pharmacological strategies 
(34,35). In the short term, the healthcare providers at the 
immunization clinic should attempt to put the affected individual 
and others present at ease. They should note that anxiety about 
and fear of immunization are normal and can result in a bodily 
response that may seem extreme but can resolve spontaneously 
without any injury (1). The affected individual should be kept 
in a separate, calm, quiet space with only key people present. 
The healthcare providers can answer the questions raised by the 
affected individual and/or their caregiver(s). If the recipient and 
caregiver(s) are relatively calm, they may be able to be distracted 
by talking about something else or listening to music to further 
calm them. The goal is to encourage return to normal activity (1).

Similar or identical symptoms appearing in more than one person 
with no physiological cause have been the source of attention 
and curiosity for hundreds of years; the “spread” is thought to 

be due to shared beliefs and contagion of anxiety and fear  
(36–39). These “clusters” have been known as “mass 
psychogenic illness” or “mass hysteria” and have been reported 
inside and outside the immunization context (21,40). These 
terms can be inflammatory and demeaning to the affected 
individuals (1). 

Trying to complete a mass vaccination campaign in a short 
amount of time is a risk factor for the development of ISRR (1). 
The biopsychosocial framework is used to understand clusters, 
with particular attention paid toward understanding and 
managing social factors. Known clusters in the immunization 
context have occurred in adolescents and adults but not in 
infants and young children (1). Anaphylaxis is rare and extremely 
unlikely to occur in clusters (1). If an ISRR cluster occurs, the 
affected individuals should be separated from others and each 
other to enable containment and appropriate management (1). 
The general strategies outlined above (i.e. training of staff, 
communication, environmental modifications, screening for 
people at risk for ISRR and targeted strategies such as privacy) 
are also critical in mass immunization contexts. Community 
leaders and healthcare providers who are known to the recipients 
can help keep them calm and comfortable. Educational materials 
such as posters differentiating anaphylaxis from ISRR and 
epileptic seizures from nonepileptic seizures could be designed 
and posted in the clinic (1).

Conclusion

In summary, ISRRs are the redefined way to think about, identify 
and manage what was previously known as AEFI stemming 
from “anxiety” related to the immunization. ISRRs can occur 
before, during or after the immunization and are not due to 
the vaccine product itself or an error in the process. Prevention 
strategies include proactive communication, managing social 
media use and in-clinic environmental strategies. Screening can 
identify those with increased risk of an ISRR, including those with 
high levels of needle fear or with previous vasovagal reaction. 
Age-appropriate pain management strategies should be 
standard for all immunization recipients. Targeted interventions 
for those experiencing an ISRR include muscle tension for 
vasovagal reactions, reducing vaccine recipients’ fear, increasing 
comfort and avoiding the contagion of fear and misinformation.

Understanding the nature of ISRRs and their occurrence 
provides an opportunity for their prevention and appropriate 
management, warding off future negative reactions towards 
immunization and health care in general, and contributing to 
sustaining trust in vaccines. The ISRR should be reported as part 
of AEFI surveillance. 

See the WHO ISRR guidance manual for further information (1) 
and the CANVax website for updates.
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