GRIDDED DEPTH VALUES FROM RANDOMLY - LOCATED SOUNDINGS

R. GOTTINGER

GRIDDED DEPTH VALUES FROM RANDOMLY-LOCATED SOUNDINGS

by

R. Gottinger
Applied Research Division
National Waters Research Institute Canada Centre for Inland Waters

This is an internal technical report which has received only limited circulation. On citing this report, the reference should be followed by the words "UNPUBLISHED MANUSCRIPT".

ABSTRACT

This report describes a number of computer programs which provide a means of converting a random set of sounding data in any given area into a file containing depth values for specified gridded sub-areas. The original sounding data can be provided by Hydrographic charts or tapes, or by a combination of both. Editing and display routines are included as well as a complete listing of the programs. Examples of the bathymetric outputs for the James Bay and Hudson Bay areas are shown.

The gridded bathymetric data of Hudson Bay and James Bay are obtained in order to calculate the freshwater and heat content for different salinity and temperature cruise data. Future uses of the gridded bathymetry computer program will be the tidal and estuarine modelling of these areas.

ACKNOWLEDGMENTS

The author wishes to express his thanks to Mr. N.G. Freeman, Central Region Ocean and Aquatic Sciences, and Mr. J. Rogalsky of the Applied Research Division, National Water Research Institute, for critically reviewing and making time and support available for writing this manuscript. Mr. C. Doekes and Dr. S. Prinsenberg provided many helpful suggestions while working on the actual research as well as during the writing of this report. Mr. A. Zingaro and Mrs. Jo-Ann Hodson are thanked for their programming and technical support; Mrs. Joyce Burford for typing the first draft; and Mrs. C. Kennedy and Mr. B. Thorson for their editorial and cartographic support, respectively.

TABLE OF CONTENTS

Page
Abstract i
Acknowledgments ii
Table of Contents iii
List of Figures iv

1. INTRODUCTION 1
2. CREATION OF THE BATHYMETRY FILE FOR THE NORTHEAST CORNER OF JAMES BAY 3
3. CALCULATING THE SCALE FACTOR FOR A GIVEN BATHYMETRY 7
4. CONCLUDING REMARKS 9
5. REFERENCES 13
Appendix 14

LIST OF FIGURES

Page
Figure 1: Geodetic Reference Layout of the Selected Bathymetric Area 5
Figure 2: Zone Layout of James Bay 6
Figure 3: Geodetic Layout of a Gridded Cell relative to a Bathymetric Origin 8
Figure 4: Zone Layout of Hudson Bay and James Bay 10
Figure 5: Line Printer Plot of Hudson Bay and James Bay Bathymetry 11
Figure 6: Calcomp Plot of Hudson Bay and James Bay Bathymetry ($25 \mathrm{~km} \times 25 \mathrm{~km}$ grid size) 12
Figure 7: System Flowchart 15

1. INTRODUCTION

The method described here consists of obtaining a tape containing positions and soundings of the area in question, creating a suitable data file, and using the "General Purpose Contouring Program" (GPCP) to compute gridded depth values. Another method, of course, would be to digitize depth contours on a chart and, at pre-set intervals, compute positions of those depths in appropriate coordinates. Also, individual soundings can be digitized from an existing chart where no data tapes are available and used as input for the GPCP program.

Although all three methods have been used to create bathymetries (gridded depth values for specific areas) for Hudson Bay and James Bay, only the method of using an existing sounding tape will be dealt with here.

Since rather large areas encompassing up to 1000 km are to be considered, a scale factor has to be introduced. The scale factor simply represents the ratio of true (geodetic) distance and the map distance between two points and is calculated for each row of the bathymetry. The Mercator projection is used as a base.

Since the GPCP program only accepts a specific number of data points, the total area may have to be divided into smaller parts with an adequate overlap provided for each area. Due to storage capacity restraint on the CDC 3170 computer used at National Water Research Institute (NWRI), separate sub-bathymetry gridded areas containing 16×46 cells were used. The depth array, or bathymetry, thus obtained has to be edited and updated as more information is made available. The program has a provision which enables the user to specify the number of neighbouring sounding points to be used for calculation of the depth at each grid point. It is up to the user's judgment to specify the number of neighbouring points and is dependent largely on the density of the soundings and the bottom topography of the area. Furthermore, a zero depth is an acceptable value and designates land. In some cases, it may be advantageous to add zero depths (islands, etc.) to obtain better boundary conditions.

As far as Hudson and James Bays were concerned, a common row for both bathymetries was chosen, and the cell size of any sub-bathymetry was made a multiple of the original cell size. It should be kept in mind that a certain depth value of a bathymetry represents an average depth of the entire cell. Subsequently it will happen that sub-bathymetry depth values will vary considerably, despite the fact that they appear in the same position but will influence a smaller bottom area.

The method described here produces good results for a set of input data points with a rather uniform distribution and is used as a basis for volumetric calculations. However, in areas with inadequate coverage, additional data points have to be incorporated either before the data is gridded or prior to the gridded data being edited.

For the general description and philosophy for creating gridded depth values for an area (bathymetry), the reader is referred to an unpublished technical report of NWRI, "Digital Bathymetry of Lakes Ontario, Erie, Huron, Superior and Georgian Bay", by D.G. Robertson and D.E. Jordan.

2. CREATION OF THE BATHYMETRY FILE FOR THE NORTHEAST CORNER OF JAMES BAY

In the second part of this report, the listings of the programs discussed below are included; here their general application for a particular area will be discussed. The area in question is the northeast corner of James Bay where oceanographic research to predict changes caused by the hydroelectric development of the La Grande River is in process.

A tape (RD011) containing soundings of James Bay, obtained during the winter surveys of 1975 and 1976 , was obtained from the Canadian Hydrographic Service (CHS) of Central Region, Ocean and Aquatic Sciences. Depths were in decimetres and positions in UTM coordinates, zone 17, with a central meridian of 81°. Program JAMES was written to convert the UTMs to geographic coordinates and to write an input disc file for program GE \emptyset RGR.

Program GEØRGR was written mainly to select part of the total sounding area and delete those soundings which might introduce false data (nearshore, inlets, etc.).

Program CREBAT was used to modify and complete the file created by program GEøRGR. It combines those values retrieved with soundings from other sources (ship soundings, charts, etc.). This is necessary especially where soundings are not dense enough from any one source to obtain good gridded data (nearshore, islands, and channels). Output of program CREBAT is a tape in card image form, with a format specified by the GPCP program. Sounding values are in metres and their locations are given in X and Y coordinates in inches relative to the bathymetric origin. This program is used for updating and supplementing the individual soundings. It has been found to be impractical to plot the soundings at this stage for visual inspection (time factor). However, the printed output of the following program (GPCP) is usually adequate to inspect the gridded data and make further decisions as to the number of neighbouring points, additional soundings, etc.

The GPCP program was used to calculate a gridded depth array by choosing the proper dimension and grid intervals for the area concerned
and using the individual soundings as data points. Figure 1 shows the layout of the two Hydrographic charts covering Hudson Bay; \#5003 for the southern half and \#5549 for the northern half. A sample area contained within latitude YMAX and YMIN and within longitude XMAX and XMIN is shown with a bathymetric sounding at point $P(X, Y)$. All positions are referenced to the reference latitude and reference meridian and are in Mercator coordinates for the corner points of the bathymetry and subsequently its dimension. It should be emphasized that program CATMER was written as a mere convenience for the user in order to eliminate the task of scaling the coordinates by hand from an existing chart. For an explanation or for documentation of this program, the reader is referred to either the charting sub-system or some reference quote therein.

The card output (depth array) of the GPCP program was converted and sequenced to a suitable card format by program INTDEP. This was necessary to convert the output cards to a standard format (also used by NWRI) since the output format of the GPCP program cannot be altered.

In order to calculate volumes and their specific contents for selected areas, a zone number had to be added to each cell. Program $A D D Z \emptyset N$ was used for this purpose. Figure 2 shows the partition of James Bay into 6 zones used by other scientific programs which calculate geostrophic currents and variations in the salt and heat content of each zone. It is evident that $A D D Z \emptyset N$ will only be of use if the zone layout is geometrically simple. In more complex layouts, program Z \emptyset NESEL (Gottinger, 1978) has to be used. In this case, each row of the bathymetry and its starting and end points for each zone have to be listed.

The card deck thus obtained is the final form of the bathymetry data and is written onto a permanent file with title information and the scale factor. In the present implementation, all changes and updates are made on these card decks, and the permanent files are simply re-written. No other update routines are available.

The general card deck structure for Hudson and James Bays and their associated display routines will be discussed in another user's manual.

Figure 2: Zone Layout of James Bay.

3. CALCULATING THE SCALE FACTOR FOR A GIVEN BATHYMETRY

As previously mentioned, the scale factor represents the ratio of map distance and actual (geodetic) distance between two points. On the Mercator projection at the reference latitude (mid latitude), the scale factor is equal to unity (1.00). Since the projection is conformal, the scale at any point is the same in any direction. With the parallels and meridians represented by lines mutually perpendicular, the scale is the same along the meridians and parallels at a given point. Applying the foregoing to a bathymetry, it can be seen that a scale factor is easily determined for each row by measuring a distance along the center of the row and comparing it with the true distance.

One approach would be to calculate, by geodetic inverse, the distance between two points along the mid latitude and compare that distance between the same two points along the center latitude of each row. On the other hand, a distance obtained by using polyconic tables (or equivalent) would be sufficient for the accuracy required. The following example will demonstrate the use of those tables.

Assuming the mid latitude of $58^{\circ} 10^{\prime}$ (see Figure 3) with a scale factor of 1.00 , the Polyconic Tables (U.S. Department of Commerce, 1946) give the arc of the parallel for 5 minutes as 4905.0 m . Similarly, at latitude $54^{\circ} 40^{\prime}$, a value of 5377.2 m for 5 minutes of arc is obtained, giving a scale factor of 0.912185 at that latitude. At latitude $61^{\circ} 12^{\prime}$, a scale factor of $1.094671(\mathrm{~K}=4905.0 / 4480.8)$ is obtained. Using inverse computation, scale factors of 0.912129 and 1.094747 , respectively, are obtained.

In conclusion, it should be mentioned that it is not necessary to calculate the scale factor for each row. Interpolating between several rows is sufficient.

Po	$=$ Bathymetry origin;
Xo, Yo	= Mercator coordinates of origin (metres) ;
dLat	$=$ cell size in kilometres;
M	$=$ chart scale;
Flat	$=$ cell size at chart scale $[($ DLAT $/ \mathrm{M}) * 1000$.$] ; and$
C_{1}	$=\mathrm{Xo} / \mathrm{FLAT}$ coordinates of bathymetry,
C_{2}	$=$ Yo/FLAT origin in cell units.

Figure 3: Geodetic Layout of a Gridded Cell relative to a Bathymetric Origin.

4. CONCLUDING REMARKS

This completes the creation of a zone bathymetry card deck. It is a simple matter to re-run the entire sub-system, using different areas, specifying different cell sizes, or re-creating the source bathymetry with updated or revised sounding tapes. All depth changes, shoreline corrections, and minor zone changes are usually done on this card deck, using the line printer plot or a Calcomp plot as a guide.

In general the card deck and file structure of the bathymetric data is the same as those files used by the Applied Research Division, NWRI, and allows the interchange of existing programs with only minor modifications.

As an example, line printer plots as well as a Calcomp plot of the Hudson/James Bay region are included in this report (Figures 4, 5, and 6). The line printer plot was produced by program HUDMAP. Program GEØBAT produced the Calcomp plot and is to be described in a subsequent report.

The line printer plot (Figure 4) shows the zone layout of the cells for the Hudson/James Bay region. The entire James Bay region is contained in zone 6. For the same cell layout, Figure 5 shows the line printer plot of the individual cell depths. This plot is used as an aid to update and revise bathymetric depths if new soundings become available. A final display of the bathymetry shown by the line printer plot (Figure 5) is obtained by the Calcomp plotter and is shown in Figure 6.

This set of programs was specifically written to create gridded depth values for large geographic areas. They can be modified to obtain gridded (physical or chemical) parameter values such as salinity using randomly-located parameter values from existing data bases.

 -

 Н

 -- θ --

Figure 6: Calcomp Plot of Hudson Bay and James Bay Bathymetry ($25 \mathrm{~km} \times 25 \mathrm{~km}$ grid size).

5. REFERENCES

California Computer Products, Inc. 1968. GPCP. A General Purpose Contouring Program (Calcomp Applications Software). Anaheim, California.
Gottinger, R. Display Programs used for Editing Oceanographic and Bathymetric Data. Applied Research Division, National Water Research Institute; Burlington, Ontario, to be published.
Gottinger, R. and A.C. Zingaro. Charting Sub-System. Applied Research Division, National Water Research Institute, Burlington, Ontario, to be published.
Robertson, D.G. and D.E. Jordan. 1978. Digital Bathymetry of Lakes Ontario, Erie, Huron, Superior and Georgian Bay. National Water Research Institute, Burlington, Ontario, CCIW unpublished report.

U.S. Government. 1946. Tables for A Polyconic Projection of Maps and Lengths of Terrestrial Arcs of Meridian and Parallels, Sixth Edition, Special Publication No. 5. U.S. Department of Commerce, Coast and Geodetic Survey.

APPENDIX

This Appendix contains the program subroutines and their general descriptions and listings of the following programs:

A1) Program JAMES;
A2) Program GE \varnothing RGR;
A3) Program CREBAT;
A4) Program CPL $\emptyset T$;
A5) Program INTDEP;
A6) Program ADDZØN;
A7) Program PERMA;
A8) Program HUDMAP;
A9) Program CATMER; and
Al0) Subroutine MERCAT.
A general flow hart (Figure 7) shows the order by which the programs are used. The input and output symbols used are:

1) cards,

2) disc,
3) tape,

4) printer, and
5) data record.

Figure 7: System Flowchart.

This program converts hydrographic sounding data in UTMs to geographic positions, sequences the printed output, and writes a disc file. A subroutine converting UTM coordinates to geographic coordinates can be obtained from the Nautical Geodesy Section, Hydrographic Service, Ottawa. In JAMES, a similar program (B51211) was used and is available through the NWRI computer library.

Input
Hydrographic tape containing soundings in decimetres and UTMs in Zone 17.

Output

Listing with added sequence numbers and a permanent file (003/096 JAMES BAY S \emptyset UNDINGS, $01, \mathrm{R} \emptyset \mathrm{BT}$) written in binary with 25 soundings per record. All disc files written for either this system or the charting sub-system will have essentially the same format.

Main Parameters

ICM $=$ Central meridian in degrees;
IK = sequence number of individual soundings;
$X, Y=$ northings and eastings (UTM);
FLAT $=$ latitude of sounding (dec. degrees);
FLøN $=$ longitude of sounding (dec. degrees); and
IB = one-dimensional array containing sounding values and their respective coordinates (UTMs).

*** OUTPUT DISC FILE IS WRITTEN
$\begin{aligned} & J \\ & M \\ & M\end{aligned}=\frac{1}{25}$

80
CONTINUE
90 ENDFILE 30
WRITE (61,140) IEND
STOP
100 FORMAT (20A4)
110 FORMAT (/1/10X,20A4/1/)
120 FORMAT (2F7.022X,I4)
 END

Program GEøRGR

This program selects the soundings located in the area for which the gridded depth values are required, deletes soundings, and writes a permanent file to be used as input for program CREBAT (003/090, GE \emptyset RGE-RIVER-S \emptyset UND-MERC, $01, R \emptyset B T$). Soundings to be deleted are physically set to zero and eliminated in program CREBAT.

Input
Permanent file written by program JAMES.

Output

Listing of soundings and their respective Mercator coordinates and a disc file (binary) in standard format.

Main Parameters

$M=$	Chart scale;
$D L, \emptyset N=$	reference latitude and longitude of chart in decimal
	degrees; and
IDEL $=$	one-dimensional array for soundings to be deleted
	$($ max. 16$)$.

Note

Parameters C_{1}, C_{2}, and DLAT, in common block MER, are constants unique to the bathymetry and are not used in the foregoing calculations (left blank).


```
            FLAT(IC) = x
```



```
            IF (IND.EQ.O) GO TO 60
            IF (IDEL(J).EQ.O) GO TO 50
            IF (KCSNE IOELIS), GO TO 50
            IF &NSTATIIGOUNT:.NE.ICKIJIN GO TO 40
C
    *F# IF THE SOUNDING DEPTH OF THE FILEEDOES NOT AGREE WITH THE
```



```
    40 WRITE (61,140) KC,NSTAT(ICOUNT),ICK(J)
        WRITE }6
    50 CONTINUE
    60 IDPT(IC) = NSTAT(ICOUNT)
        IC IIIC&1.25) GOTO 80
    7 0
    GOTOSO
        0
    IF IIC.LE.25) GO TO 20
C *** OUTPUT DISC FILE IS WRITTEN
    80 IC = 1
        WRITE (30) (FLAT(I),FLON(I),IOPT(I),I=1,25)
        00 90 K=1,160) (FLAT(I),FLON(I),IDPT(I),I=1,25)
        FLAT(K)=1,25.0
        FLON(K)}=0.
    90 CONTINUE
    100 IF IIC.EQ.1) GO TO 110
        HRITE (30) (FLAT(I),FLON(I),IDPT(I),I=1,25)
```



```
        NRITE (61,170) KC
C
    120 FORMAT (4F10,4)
    140 FORMAT (// /5X,22HERROR: OEPTH ON RECORD,I5, IH=,I5,18H DEPTH ON UPDA
    150 FORMA末⿱⿱亠䒑日\zh20
    160 FORMAT (2X,5(2F10.6,I5))
    170 FCRMAT (10X,I5)
    END
```


Program CREBAT

This program writes a tape in card image format to be used as input to the GPCP program. Additional soundings may be added to this tape in Mercator coordinates (see program CATMER).

Input

Permanent file written by program GEØRGR and cards containing additional soundings (optional).

Output
Card image tape with soundings to be used as input for GPCP program and line printer listing of the soundings.

Main Parameters

ISUPP = Control variable for additional soundings;
XBASE $\mid=$ Mercator coordinates of bathymetry origin;
IDUM = one-dimensional array (blank), specifying 13 quantities as required by GPCP program; and
IC $\quad=$ total number of points (used for planning the GPCP input).

Note

This program eliminates zero values created by program GEØRGR. However, these zero values are not "genuine" because they do not designate land. If some true zero values are to be added, it can be done at the end of this program.


```
C
C *** SUPPLEMENTARY POINTS ARE READ IN AT THIS POINT
    50 IF (ISUPP.EQ.0) GO TO }7
    50 READ (60,8O) X,Y,DPT,IDUM
        IF IIFECF(IDSI).EQ,-11) GOTO }7
        HRITE (30,80) X,Y,DPT,IDUM
    0.60 10 60
C *** X =0.0,Y=0.0 AND DPT=0.0 WILL ACT AS ENO OF JOB IN
C *** THE GPCP PROGRAM
    70 x = 0.0
        OP\overline{T}
        WRITE (30,80) X,Y,DPT,IDUM
        ENDFILE 30
        NREFNO
C
    80 FCRMAT (3F12,7,13A1)
    90 FORMAT (10X,3F12.7,13A1)
    100 FORMAT IIOX,I5I
        END
```


Program CPLゆT

The program name is used only on the job card of the GPCP program. All input parameters are described in the manual "GPCP. A GENERAL PURPOSE CONTOURING PROGRAM" (see NWRI Computer Applications Library). The reader is referred to section 2 "GPCP FORMULATION" with special emphasis on "Map Format" and "Contour Generation".

Input
Tape written by program CREBAT.

Output
Card deck with gridded depth values in E-format.

Main Parameters
XSCALE, YSCALE, $X \varnothing \varnothing, Y \emptyset \emptyset$
XMIN, XINC, XMAX \quad Described in GPCP Manual.
YMIN, YINC, YMAX

Note
XINC $=$ YINC $=$ cell size. XMIN, XMAX, YMIN, and YMAX determine the dimension of the bathymetry area (see Figure 1).

```
$JOB,090,003CPLOT,4,3000,1000%, R GOTTINGER
$SCHED, CORE =64,607=1,TIME=4,SCR=6
```



```
$ SOCR (A, 10,30,420)
$GPCP.XQT
```

JOB
FLEX
SITE
EDIT
CNTL
CNTL
CNT
GEND
PRNT
PNCH
END

FLEX
TO OBTAIN THE CONTOURED DEPTHS AT EACH GRID POINT

$$
\begin{aligned}
& \text { CNTL } \\
& \text { CNTL }
\end{aligned}
$$

CNTL

$$
\begin{aligned}
& \text { CNT } \\
& \text { BEND }
\end{aligned}
$$

PRNT
PNGH
ENO

The purpose of this program is to convert the card output of the GPCP program to integer format and sequence the cards. The card format is the same as that used by NWRI with no zone numbers added. Since the card format of the GPCP program cannot be altered, it was necessary to write this program to enable the user to display the bathymetry obtained on the line printer for editing, zone layout, and depth checks.

Input
Card deck produced by GPCP program.

Output
Card deck with integer depth values and sequence numbers.

Main Parameters

Self-explanatory.

Note
For the time being, the limits of the Do Loops have to be changed within the program.

```
        PROGRAM INTDEP
    C ### THIS PROGRAM READS THE CARD OUTPUT OF THE GPEP PROGRAM,
    *** PUNCHES ANOTHER CARD DECK ANO SEQUENCES IT. THE LIMITS 
        OIMENSION ARRAY(5), IDEP(24,27)
        L = 1
    C F*F THERE ARE 24 GRID COLUMNS ANO 27 GRIO ROWS
        DO 30 I= 1,27
        00 20 J=1,16,5
    #** THE DEPTHS ARE READINNE FORMAT, 5 DEPTHS TO A CARO. ANO
        READ (60,60) (ARRAYPL),L=1,5)
        DO 10 M=1,5
    *F* ANY NEGATIVE DEPTHS (WHICH SIGNIFY LANDI ARE SET TO ZERO
        IF(ARRAY(M).LT.0.0)ARRAY(M) = 0.0
    *** THE DEPTH IS CHANGED TO AN INTEGER ANO STORED BY
    *F* GRIO COLUMN AND RON
        INOEX = J+M-1
        IDEP(INOEX,I) = IFIX(ARRAY (M)/10.40.5)
    10 CONTINUE
C 30 CONYINUE
C ***M IS THE CARD SEQUENCE NUMBER
    M=0
C** THE GRID ARRAY OF DEPTHS IS WRITTEN ONTO THE PRINTER AND THE
**+ CARO PUNCH
    DO 50 L=1, 27
    DO 40 K=1,24,12
    N=M&1
    N=K+11
    WRITE (61,70) (IDEP(I,L),I=R,N),M
    WRITE {62,80) IIOEP{I,LI,I=R,NI,M
C ### THERE ARE IZ OEPTHS TO A CARD, FOLLONED BY THE CARD SEQUENCE
*F% NUMBER. EACH GRID ROM STARTS ON A NEW CARD
    48 CONTFNUE
    STOP
C
60 FORMAT (5X%5{1X,E{3.6))
80 FORMAT (12I6,4X,I4)
    END
```


Program ADDZøN

The purpose of this program is to add zone numbers to an existing bathymetry.

Input
Card deck produced by program INTDEP.

Output

Punched card deck with integer and zone numbers. This card deck is in the proper format to create a permanent file for the bathymetry, except for header records and scale factors. For zone boundaries following along meridians and/or parallels, program ADDZ $\emptyset \mathrm{N}$ can be used. In more complicated zone configurations, program ZøNSEL has to be used (see Inroduction). Figure 2 gives an example of a zone layout of the northeast corner of James Bay (George River) that was used by ADDZØN.

Main Parameters

IDEP $=$ Two-dimensional array for bathymetry;
Do Loop 20 limits the number of rows; and
Do Loop 10 reads one complete row (12 depths at a time) of the bathymetry.

Input Card for A Bathymetry

Program PERMA

The purpose of this program is to create a bathymetric disc file for a particular area (zone) from a card deck. There is a program attached to each card deck, and all of these programs are essentially the same, except for the area limits. As mentioned earlier, all updates and changes are made on these card decks and any sub-bathymetry created will reflect on these decks.

Main parameters

```
    IC\emptysetDE = Not used presently (reserved for multiple input);
    IMAX = number of cells per column;
    JMAX = number of rows;
    IZMAX = maximum number of zones;
    DLAT = cell size in km at mid latitude;
    SCALE = one-dimensional array (JMAX) with a scale factor for
        each row; and
    M = chart scale.
```

Output of these programs is a binary disc file having a header record and one row of bathymetry values per binary write.

Program HUDMAP

The purpose of this program is to display the zone number and depth of each cell for a given bathymetry on the line printer. The dimensions of this program have been set for the James Bay-Hudson Bay zone bathymetry, and the program is used in this report as an example only. There is another display program of this nature available, to be presented in another report, which will display a bathymetry by specifying the number of cards per row and the number of blank spaces between the rows. Sequence numbers for both rows and columns are also displayed. Since bathymetric values are conventionally read starting at the bottom row, one row at a time, the entire array has to be stored to display a map (see Figures 4 and 5).

Input

Card deck containing zone bathymetry.

Output

Line printer map of zone layout and cell depths for the zone bathymetry.

Main Parameters

IDEPZ = Two-dimensional array containing zone bathymetry;
$\mathrm{NZ} \quad=$ two-dimensional array containing zone numbers;
ND $\quad=$ two-dimensional array containing depths; and
$\mathrm{L}=$ row delimiter.

TROGRAM HIDMAD

Program CATMER

This program converts geographic coordinates to Mercator coordinates at scale.

Input

Cards with geographic coordinates.

Output
Listing of geographic coordinates (input) and their respective Mercator coordinates at scale.

Main Parameters

```
LAT,LATM = Degrees and minutes of mid latitude;
LONG,L\emptysetM = degrees and minutes of reference longitude; and
X,Y = Mercator coordinates at scale in metres.
```

For theory and documentation, see the charting sub-system.

```
STOP
            PROGRAM CATMER
C!*## PROGRAM CONVERTS GEOGRAPHIC COOROINATES TO MERCATOR
    KR=60
    LP=61
    DEG=.4848136611E-5
        RAO=57.295779513
        GE1=667886579973E-2
        BLN=2.718281828
        A=6378206.4
C *** REFERENCE LATITUDE (MID LATITUDEI, LONGITUDE AND
*** CHART SCALE ARE READIN.
            READ(KR,10) LAT,LATM,LON,LONM,M
    10 FCRMATI4I5,10X;ILOJ
            OL=(LAT*3600 + LATM*60)*DEG
            ON={LON*3600 + LONM*60)*OEG
            SO=SIN(OL)
            CO=COS(OL)
            SO2=SO*SO
C
    *#* LATITUDE AND LONGITUQE OF THE INDIVIDUAL POINTS ARE READ IN.
*** PROGRAM ACHIEYES PLOTTING ACCURACY.
    I READ(KR,3O) ILA,ILAH,FS,ILO,ILOM,GS
    30 FORMAT(2(2I3,F7:3,1X))
        IFIIFEOF(50).EQ.-I)}G0 TO 55
        AL=(ILA*3600.+ILAM* 60.+FS) #5EG
        AO=(ILO*3600%+ILON* 60.+GS)*OEG
        EX1=SQRT (1.-GE1#SO2)
```



```
        XO=OL-(.0033939028*SIN(2.*OL)-0.0000047997*STN(4.*OL))
        XI=AL-(.0033939028*SIN(2.*AL)-0.0000047997*SINCH.*ALI)
        X=C*(ON-AOS
        ART=(PIZ-XI)*0.5
        BAT= (PI2-XO)*0.5
        TP=(COS(ART)/SIN(ART))/(COS(BAT)/SIN(BAT))
        Y=C#ALOG(TP)
        HRITE{G1%40} ILA,ILAM,FS,ILO,ILOM,GS,X,Y
    40 FORMAT(1OX, 2(2I3,F7,3,1X),5X,2F11,7)
    55 GOT
```


SUBROUTINE MERCAT

This subroutine is part of the charting sub-system and is used to calculate Mercator coordinates X and Y of geographic coordinates with respect to chart scale M and origin $\emptyset L$ and $\emptyset M$. Subsequently, it can be used to assign cell numbers to those Mercator coordinates. The cells are numbered starting from the lower left-hand corner of the bathymetry. This corner is located C_{1} cell units up (or down) and C_{2} cell units right (or left) from the chart origin, the intersection of reference latitude and reference meridian.

For theory and documentation, see the charting sub-system.

```
    SUBROUTINE MERCAT (X,Y,IO,JO,LAT,LONG)
*** S/RRCONYERTS GEOGRAPHIC COORDINATES TO MERGATOR COORDINATES AT 
    COMMON /HER/ H,OL,ON,C1,C2,DLAT
    #** THE PARAMETERS IN COMMON BLOCK /MER/ ARE GHART DEPENDENT
    *** ANO WILL HAVE TO BE GHANGED FOR EAGH CHART
    DATA IP/&/
    IF (IP.GF,1) GOTO20
    GE1 =.67686579973E-2
    BLN = 2 2,718281828
    A= 6378206.4
    DEG = 01774532925
    RAO = 57.295779513
    PI2 = 1.570796327
    X0=OL-1.0033939028*SIN(2.*OL)-0.0000047997*SIN(4.*OL))
    ILAT = LATFO.001
    ALAT = (LAT-ILAT* 1000)*0.1
    AL = (FLOAT(ILAT)+ALAT/60.)*DEG
    XI = AL-1.0033939028*SIN(2.*AL)-0.0000047997*SIN(4.*AL))
    ILON = LONG*0.001
    OLON = (LONG-ILON*1000)FO.1
    AO = (FLOAT (ILON) +DLON/EX:.1*DEG
    X = C*(ON-AO)
    ART = (PI2-xI)*0.5
    BAT = (PI2-XO)*OSF
    TP}=(COS(ART)/SIM(ART))/(COS(BAT)/SIN(BAT)
    F = C*ALOG(TP)
        AND Y ARE CONVERTED TO
    CELL NUABERS IO AND JO
    IO = (X/FLAT) +C1
    IP = (Y/FLAT)+C2
    RETURN
    END
```

