
Environment Environnement Canada Canada

0058255E DEST PVM CIRC COPY 02 QH 91.8.04 ¥67 VOL ISS 82-1 WORKING REPORT SERIES (BAFFIN ISLAN D OIL SPILL PROJECT (CANADA))

CHEMISTRY

1. Field Sampling and Measurements

Baffin Island Oil Spill Project

WORKING REPORT SERIES

1982 STUDY RESULTS

The Baffin Island Oil Spill Project

OBJECTIVES

The Baffin Island Oil Spill (BIOS) Project is a program of research into arctic marine oil spill countermeasures. It consists of two main experiments or studies. The first of these, referred to as the Nearshore Study, was designed to determine if the use of dispersants in the nearshore environment would decrease or increase the impact of spilled oil. The second of the two experiments in the BIOS Project is referred to as the Shoreline Study. It was designed to determine the relative effectiveness of shoreline cleanup countermeasures on arctic beaches.

The project was designed to be four years in length and commenced in 1980.

FUNDING

The BIOS Project is funded and supported by the Canadian Government (Environment Canada: Canadian Coast Guard; Indian and Northern Affairs; Energy, Mines & Resources; and Fisheries & Oceans), by the U.S. Government (Outer Continental Shelf Environmental Assessment Program and U.S. Coast Guard), by the Norwegian Government and by the Petroleum Industry (Canadian Offshore Oil Spill Research Association; BP International [London] and Petro-Canada).

WORKING REPORT SERIES

This report is the result of work performed under the Baffin Island Oil Spill Project. It is undergoing a limited distribution prior to Project completion in order to transfer the information to people working in related research. The report has not undergone rigorous technical review by the BIOS management or technical committees and does not necessarily reflect the views or policies of these groups.

For further information on the BIOS Project contact:

BIOS Project Office #804, 9942 - 108 Street Edmonton, Alberta T5K 2J5

Phone: (403) 420-2592/94

Correct citation for this publication:

Humphrey, B., 1983, Chemistry: 1. Field Sampling and Measurement - 1982 Study Results. (BIOS) Baffin Island Oil Spill Working Report 82-1: 64 p.

BAFFIN ISLAND OIL SPILL PROJECT CHEMISTRY COMPONENT

REPORT ON THE 1982 OIL SPILL EXPERIMENTS

VOLUME 1 SUMMARY OF FIELD WORK AND SHORELINE HYDROCARBON ANALYSIS

> Final Report Contract No. OSS82-00058

> > Prepared for

Environment Canada Environmental Protection Service Edmonton, Alberta

by

B. Humphrey, M.Sc.

Seakem Oceanography Ltd. 2045 Mills Road Sidney,B.C.,V8L 3S1

Phone (604)656-0881 Telex 049-7460

MAY 1983

ACKNOWLEDGEMENTS

I wish to thank David Hope for his support in the field and for his excellent analytical work. I would also thank Dr. David R. Green for his advice during the preparations and completion of this project.

.

I would also like to acknowledge the Project and camp administration, and my colleagues in camp, for their part in making the 1982 field season so enjoyable.

.

TABLE OF CONTENTS

ABS	STRACT	i
FOF	REWARD	ii
ACK	NOWLEDGEMENTS	iii
ТАВ	BLE OF CONTENTS	iv
LIS	ST OF TABLES	v
LIS	ST OF FIGURES	vi
1.	INTRODUCTION	1
2.	SAMPLING STRATEGIES	2
	 2.1 SHORELINE COUNTERMEASURES 2.2 RAGGED CHANNEL SHORELINES 2.3 SEAWATER SAMPLES 2.4 LARGE VOLUME WATER SAMPLES 2.5 BOTTOM SEDIMENTS 2.6 FLOC SAMPLES 2.7 SEDIMENT TRAPS 2.8 CORES 2.9 TISSUE SAMPLES 	2 10 13 16 18 20 22 22 23
3.	ANALYTICAL METHOD	24
	3.1 EXTRACTION PROCEDURE 3.2 ANALYSIS	24 25
4.	RESULTS	26
	4.1 SHORELINE TOTAL HYDROCARBON ANALYSIS 4.2 RAGGED CHANNEL BEACHES	26 46
5.	DISCUSSION	48
6.	REFERENCES	49
7.	APPENDIX	50

LIST OF TABLES

Table 1: High energy shoreline; aged crude Plot H1 Table 2: High energy shoreline; emulsion Plot H2	27 28
Table 3: Low energy shoreline; aged crude Plot L1	29
Table 4: Low energy shoreline; emulsion Plot L2	30
Table 5: Backshore control; aged crude Plot T1	31
Table 6: Backshore control; emulsion Plot T2	31
Table 7: Microbiology control; aged crude Plot TE1	32
Table 8: Microbiology control; emulsion Plot TE2	32
Table 9: 1981 Control; aged crude Plot CC Table 10: 1981 Control; emulsion Plot CE	33
Table 11: 1981 Mixing; aged crude Plot MC	33
Table 12: 1981 Mixing; emulsion Plot ME	33 33
Table 13: 1981 Exxon dispersant; aged crude Plot D[E]C	33 34
Table 14: 1981 Exxon dispersant; emulsion Plot D[E]E	34 34
Table 15: 1981 BP dispersant; aged crude Plot D[B]C	34
Table 16: 1981 BP dispersant; emulsion Plot D[B]E	35
Table 17: 1982 Z-Lagoon Baseline	36
Table 18: 1982 Control; aged crude Plot ICC	37
Table 19: 1982 Control; emulsion Plot ICE-East	38
Table 20: 1982 Control; emulsion Plot ICE-West	39
Table 21: 1982 Exxon dispersant; aged crude Plot ID[E]C	40
Table 22: 1982 Exxon dispersant; emulsion Plot ID[E]E	41
Table 23: 1982 BP dispersant; aged crude Plot ID[B]C	42
Table 24: 1982 BP dispersant; emulsion Plot ID[B]E	43
Table 25: 1982 Backshore; aged crude Plot IMC	44
Table 26: 1982 Backshore; emulsion Plot IME	45
Table 27: Surface oil release, Bay 11 Shoreline	46
Table 28: Dispersed oil release, Bay 9 Shoreline	
Table 29: Seawater Samples	51
Table 30: Large Volume Water Samples	53
Table 31: Tissue Plot Sediments	55
Table 32: Benthic Plot Sediments	56
Table 33: Floc Samples	57
Table 34: Sediment Traps	58
Table 35: Tissue Samples	60

LIST OF FIGURES

FIGURE 2	2.1: Cape Hatt	4
FIGURE 2	2.2: Z - Lagoon	5
FIGURE 2	2.3: 1980 Plots	6
FIGURE 2	2.4: 1981 Plots	7
FIGURE 2	2.5: 1982 Intertidal Plots	8
FIGURE 2	2.6: 1982 Backshore Plots	9
FIGURE 2	2.7: Bay 11	11
FIGURE 2	2.8: Bay 9	12
FIGURE 2	2.9: Dispersed Oil Release	15
FIGURE 2	2.10: Large Volume Water Sampler	17
FIGURE 2	2.11: Bottom Sediment Plots	19
FIGURE 1	2: 2.12: Floc Sampler	21

• ·

.

.

1. INTRODUCTION

Seakem's participation in the third year of the Baffin Island Oil Spill Project (BIOS) consisted of two components: the collection of samples in the field for various purposes and the analysis of the shoreline sediments for total hydrocarbon content.

Two people from Seakem were in the field from August 10,1982 to early September . During that time, the following groups of samples were collected:

> Shoreline sediments for total hydrocarbon Shoreline sediments for gas chromatography Seawater samples Large volume water samples Tissue plot sediments Benthic plot sediments Floc Sediment trap contents Sediment cores

Assistance was given in the collection of the following animals:

Astarte borealis Mya truncata Macoma calcarea Serripes groenlandia Strongylocentrotus droebrachiensis

While in the field, a start was made on the analysis of the shoreline sediments for total hydrocarbon content. These analyses were finished in the laboratory after the end of the field season.

This report describes the sampling strategy for 1982. It describes the analytical method for total hydrocarbon content, and provides the results of those analyses. An appendix includes sample lists and historical results for hydrocarbon analyses of those groups of samples collected in the third year.

2. SAMPLING STRATEGIES

The site of the BIOS experiments at Cape Hatt at the north end of Baffin Island (Figure 2.1) is divided into areas for the two major experiments which are in progress. Around Z Lagoon on the east side of the cape, various shoreline countermeasures experiments have taken place. On the west side, along the shores of Ragged Channel, two experimental oil releases were made in 1981. In Bay 11, about 15,000L of Lago medio crude oil were released gently onto the surface inside a boom enclosing the beach area, about half of which stranded on the beach. In Bay 9, the same amount of oil was mixed 10:1 with a dispersant, Corexit 9527, and released at depth through a diffuser into the water column (Dickins, 1982).

The sampling strategies for the 1982 sampling period were based on the sampling done in previous years, in particular 1981.

All samples were logged immediately upon collection. The log sheet included dates for the completion of each step of the analyses, and a signature when the samples were passed to a different laboratory.

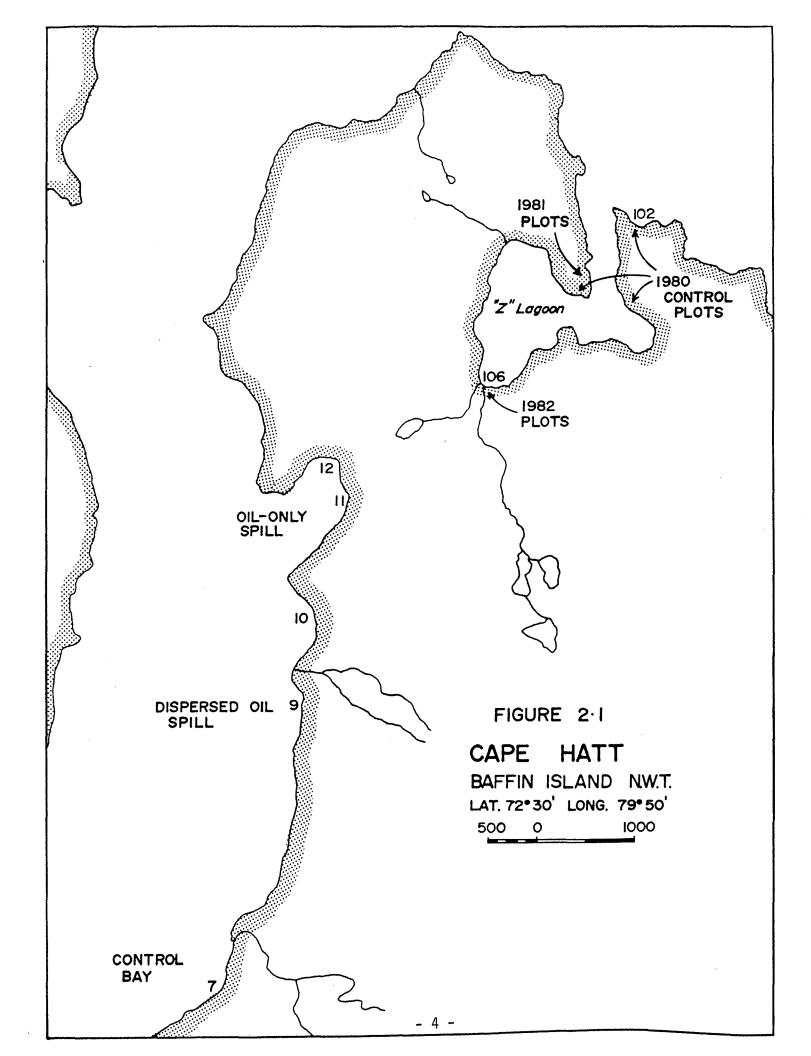
2.1 SHORELINE COUNTERMEASURES

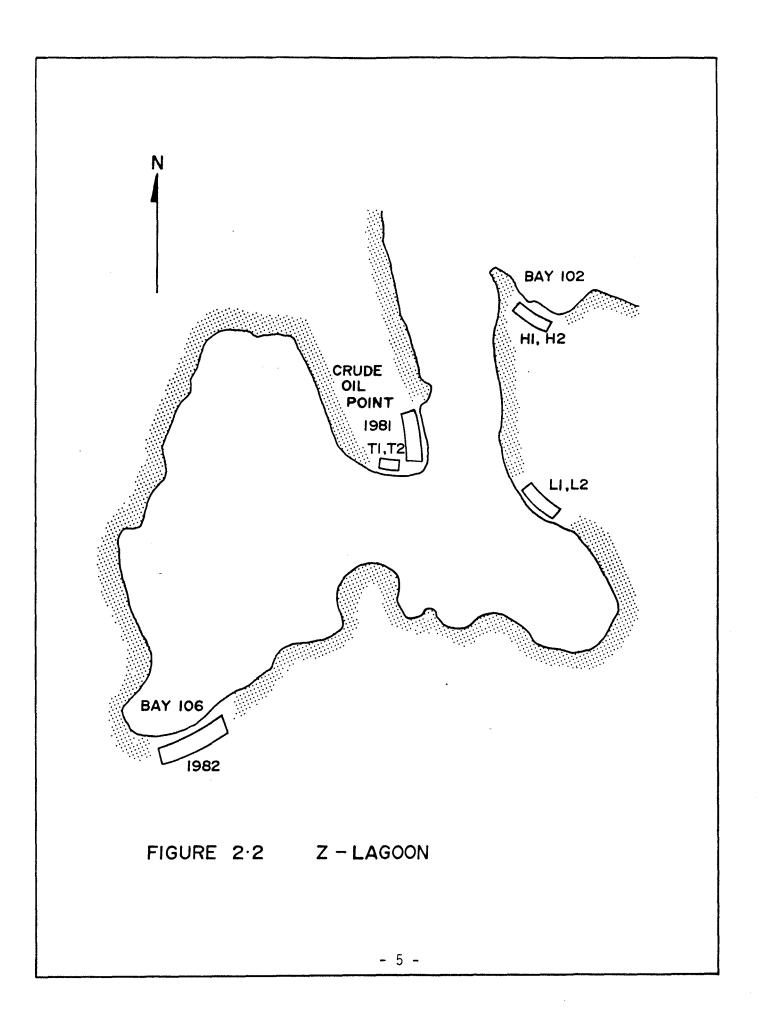
In 1980, a number of plots were set out to provide control data for experiments in 1981 and 1982. These plots are:

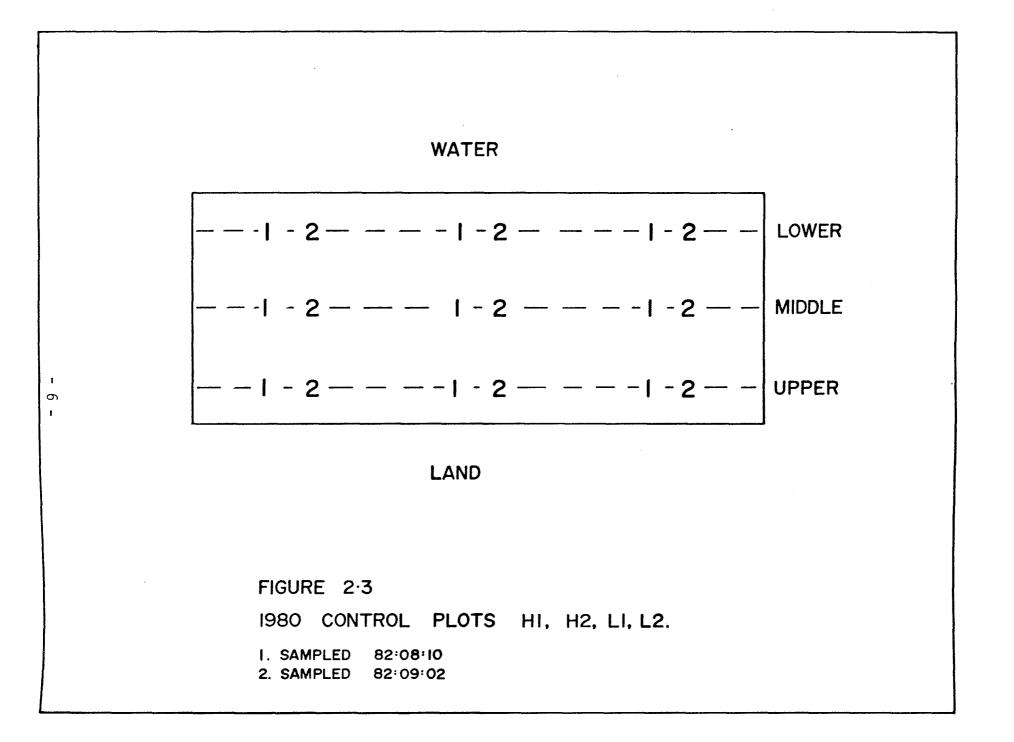
H1	High energy shoreline, aged crude
H2	High energy shoreline, emulsion
L1	Low energy shoreline, aged crude
L2	Low energy shoreline, emulsion
Т1	Backshore control, aged oil
T2	Backshore control, emulsion
TE1	Microbiology control, aged oil
TE2	Microbiology control, emulsion

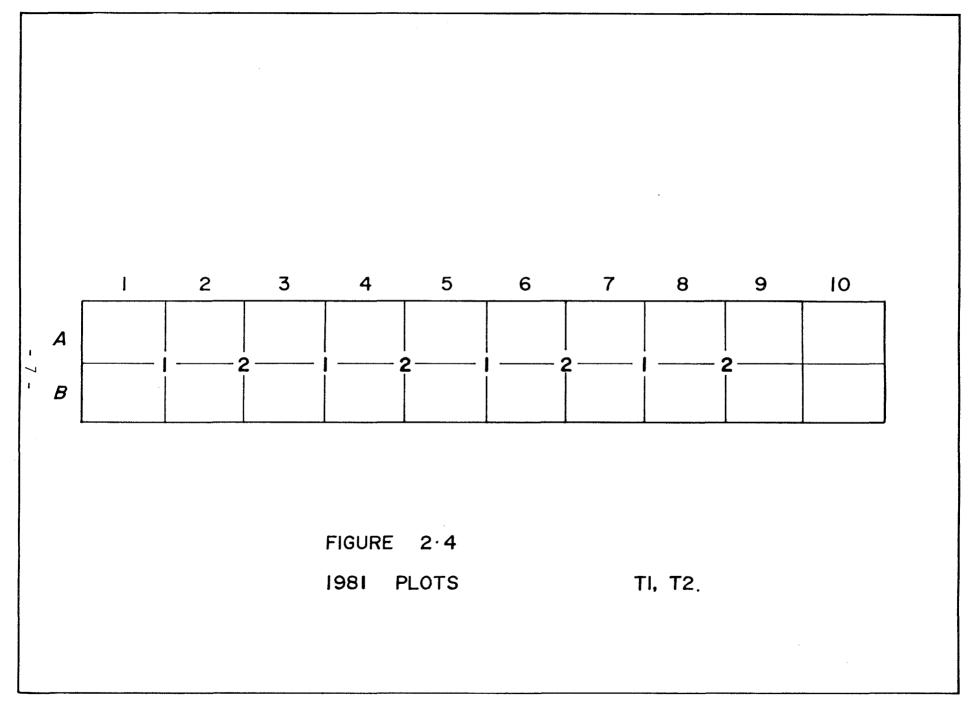
In 1981, a number of plots were set out to test the efficiency of various shoreline countermeasures:

CC	Control, aged crude
CE	Control, emulsion
MC	Mixing, aged crude
ME	Mixing, emulsion
D[E]C	Exxon dispersant, aged crude
DLEJE	Exxon dispersant, emulsion
DĒBĪC	BP dispersant, aged crude

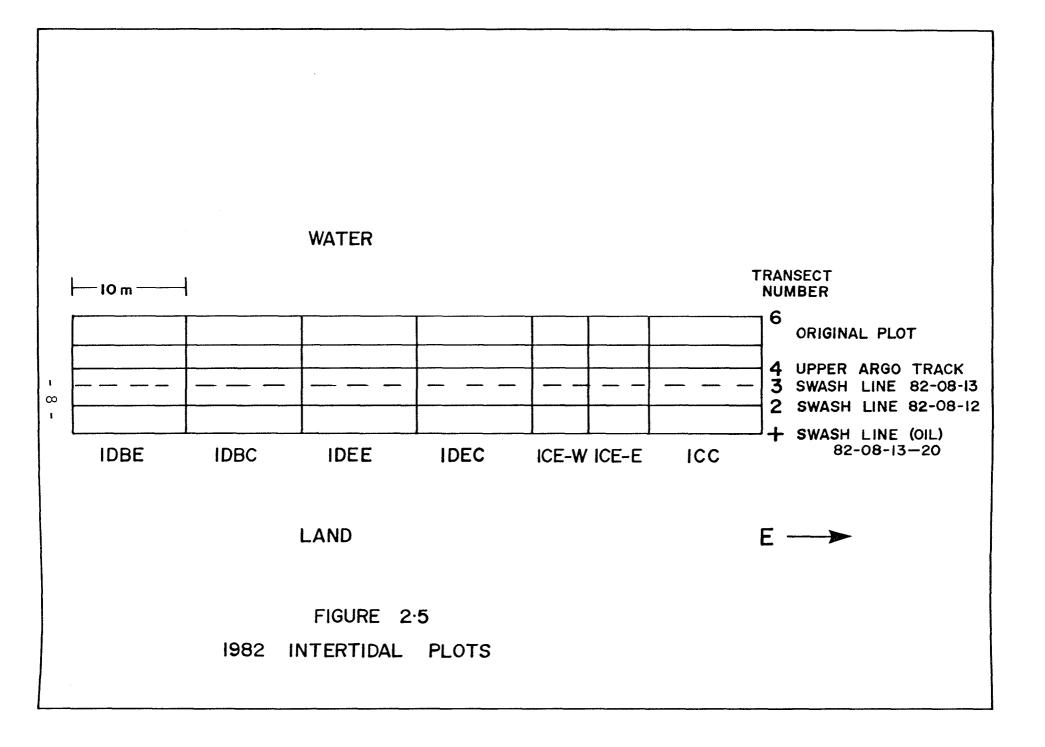

D[B]E	BP dispersant, emulsion
SC	Solidifier, aged crude
SE	Solidifier, emulsion

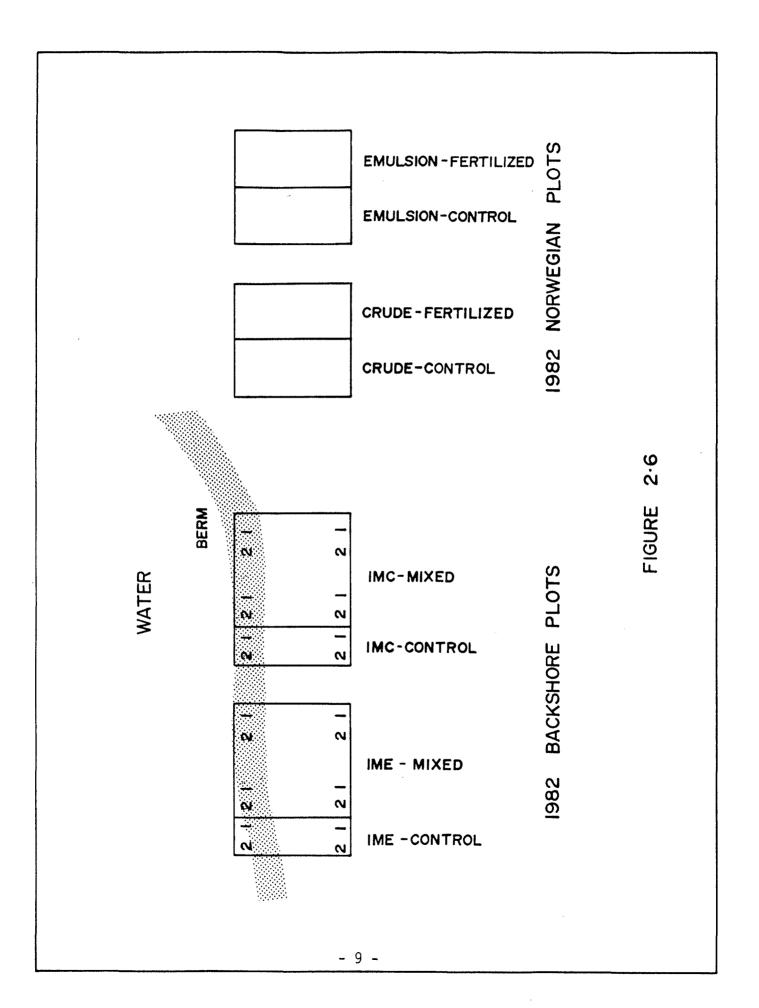

In 1982, a number of plots were set out in a low energy intertidal area to test the efficiency of countermeasures in that regime:


ICC	Control, aged crude
ICE-E	Control, emulsion
ICE-W	Control, emulsion
ID[E]C	Exxon dispersant, aged crude
ID[E]E	Exxon dispersant, emulsion
ID[B]C	BP dispersant, aged crude
ID[B]E	BP dispersant, emulsion
IMĈ -	Backshore, aged crude
IME	Backshore, emulsion
NCC	Norwegian control, crude
NCF	Norwegian fertilized, crude
NEC	Norwegian control, emulsion
NEF	Norwegian fertilized, emulsion

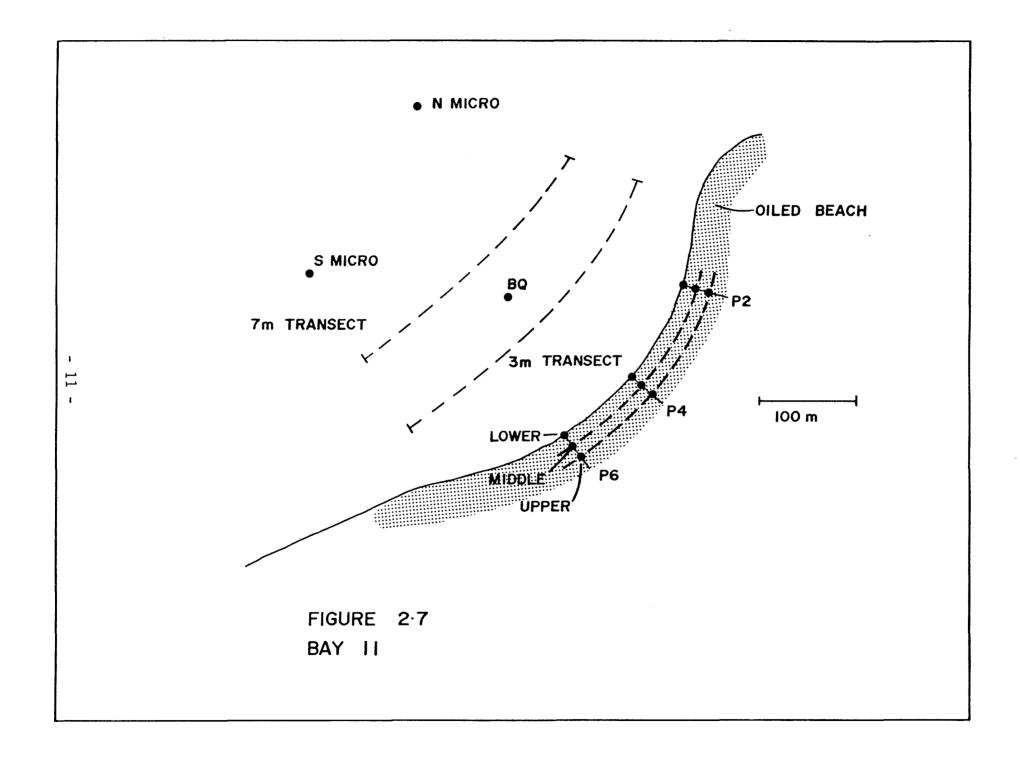

Samples were taken at three levels on nine transects in Z-Lagoon prior to the 1982 experiments to provide baseline data before the site was chosen. These samples were analysed at Cape Hatt.

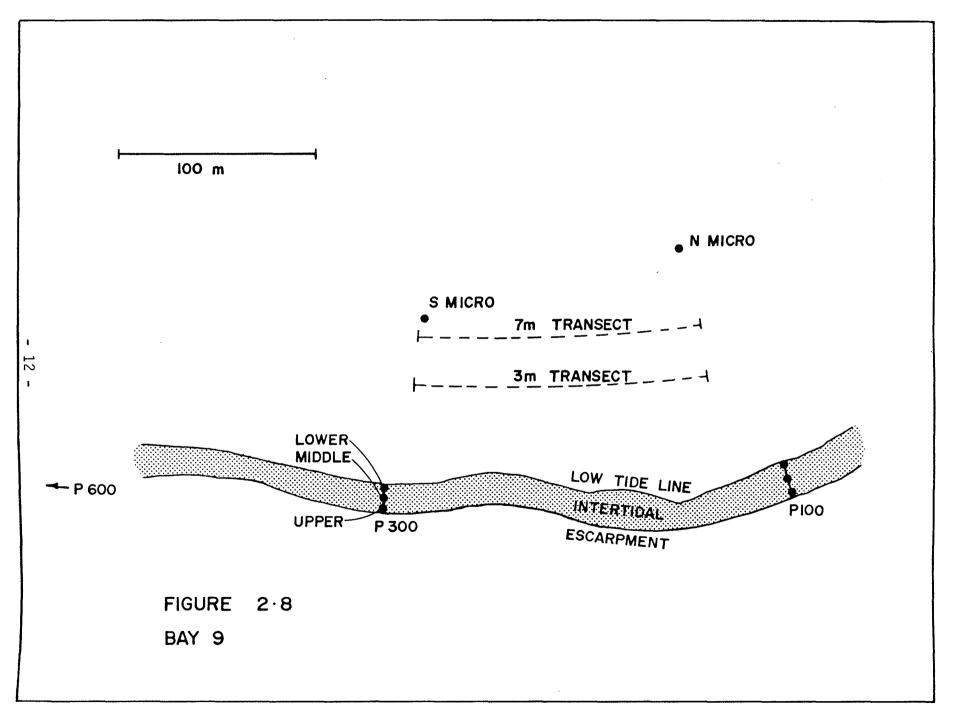
With the exception of the solidifier plots from 1981, all of the plots have been sampled in 1982. The presence of solidifier interfered with the analysis of the sediments in 1981, so no attempt was made to analyse them in 1982. As in previous years, both surface and subsurface samples were taken for total hydrocarbon content. Subsurface samples were obtained by carefully removing the surface down to 5 cm, then sampling down to 10 cm. Samples for gas chromatography were taken from the surface only. Samples were composites of a number of scoops of sediment taken from predetermined sites in the The locations of the plots are shown in Figure 2.2. The sampling plots. sites for each group of plots are shown in Figures 2.3 to 2.6. The samples for TE1 and TE2 were taken from the edge of the exposed plot. Samples for total hydrocarbon analysis were collected in Whirlpak bags and frozen until Samples for gas chromatographic analysis were collected in extraction.. baked 8 oz glass jars, covered with a Teflon liner, and stored frozen until analysis.





.


2.2 RAGGED CHANNEL SHORELINES


2.2.1 Bay 11, Surface oil release

In 1981, on three occasions after the oil release on August 19, the beach in Bay 11 was sampled for hydrocarbon content. The beach was sampled at three levels relative to the tide. The upper level was just below the high tide mark, the lower level at the low tide line at that time, and the middle level was half way between the two. The samples were obtained from three transects down the beach. Figure 2.7 identifies these sites. In 1982, these sites were resampled on one occasion. Samples were taken from the surface and from the 5-10 cm subsurface layer. The samples were analysed separately. Additional surface samples were obtained for gas chromatographic analysis.

2.2.2 Bay 9, Dispersed oil release

On August 27,1981, oil was released as a dispersion into the water column in Bay 9. No obvious stranding occurred, but the beach was sampled in the same manner as the Bay 11 beach. Figure 2.8 identifies the sites. The beach was resampled on one occasion in 1982.

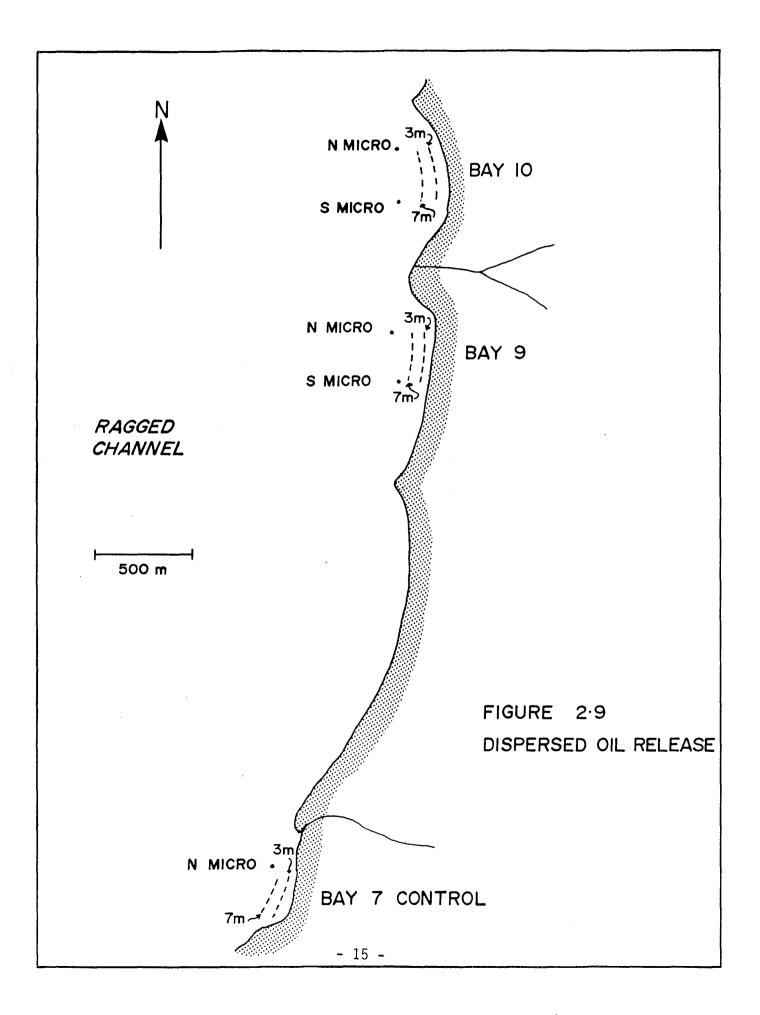
2.3 SEAWATER SAMPLES

Seawater samples were collected in 4 L glass jugs which had been baked clean before being sent to Cape Hatt. The water sample was extracted three times with 40 mL glass-distilled Freon 113. The extract was evaporated to about 20 mL, dried, and stored in a freezer until analysis. If a jug was reused, it was dried with clean acetone then rinsed twice with glass-distilled Freon 113.

2.3.1 Bay 11, Surface oil release

During and after the surface oil release in 1981, samples of seawater were collected to identify the movement of oil into the water column. During the release, continuous pumped fluorometery monitored three depths in the experimental area. After the release, water was sampled at various depths for three weeks. In 1982, samples were collected at some of the same stations as the previous year. Other samples were obtained at the same time and depth as large volume water samples for correlation. These samples were taken from the outlet of the LVWS pump system, after the sampler itself had been removed. A sample was taken in the intertidal area, as the tide was dropping. Three samples of visible surface sheen were collected.

2.3.2 Bay 10, Dispersed oil release

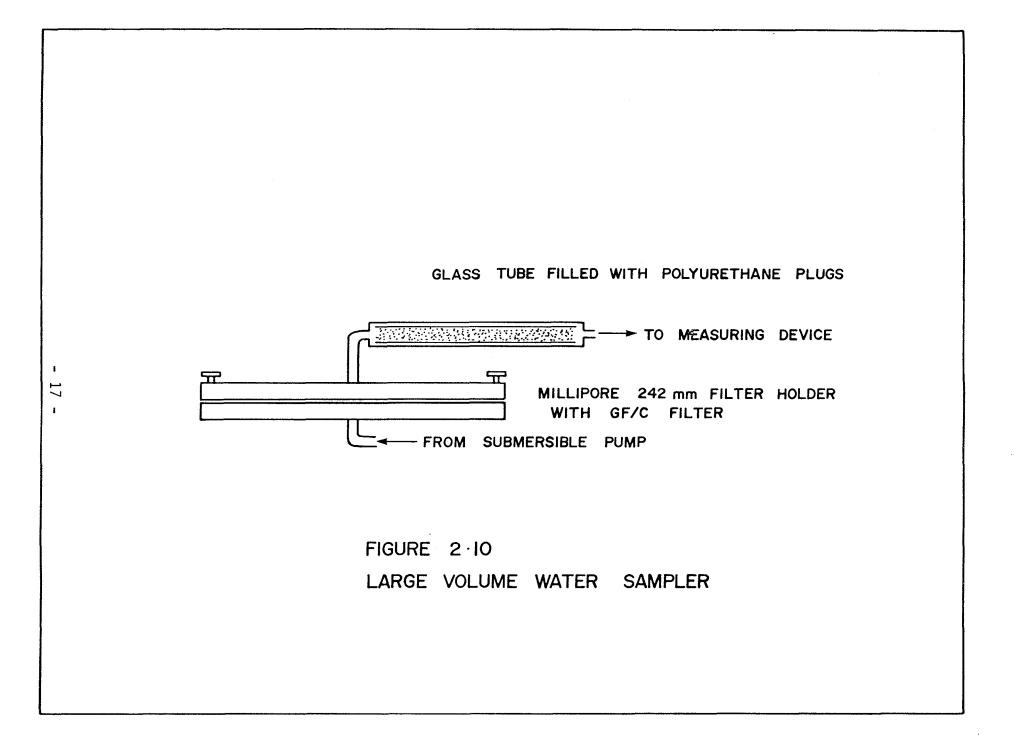

During the dispersed oil release in Bay 9, a number of samples were taken at sites in Bay 10 to monitor any oil entering that bay. Significant levels were found during the release and for some days after. In 1982, some water samples were taken as part of the microbiology studies. Figure 2.9 identifies the sampling sites for both years.

2.3.3 Bay 9, Dispersed oil release

During the release, continuous pumping fluorometry monitored the oil in the water column. Twenty samples were collected at the same time for chromatographic analysis and 96 for instrument validation. A number were also collected as part of the microbiology studies. In 1982, samples were again collected as part of the microbiology studies. Figure 2.9 identifies the sites. 2.3.4 Bay 7, Control

It became apparent from the physical oceanographic measurements made in 1980 and 1981 that both Bays 9 and 10 would be impacted by dispersed oil, so Bay 7 to the south was selected as an alternative control bay. Samples were taken in 1981 as part of the microbiology studies. In 1982, this was repeated.

·



2.4 LARGE VOLUME WATER SAMPLES

In 1980, a novel sampling system described by de Lappe and Risebrough (de Lappe et al, 1979) was used to collect samples for very low levels of hydrocarbons in sea water. In 1981 and 1982 this sampler was modified slightly to make it more easily handled and more consistent. In 1980 and 1981, the volumes passed through the sampler were not consistently measured because of the possibility of leaks at the sampler, which was under water and thus out of view. In 1982 the sampler was modified to have the sampler in view so that leaks could be checked. The sampler as it was used in 1982 appears in Figure 2.10.

Samples were taken at 10 m and near the bottom in Bays 7,9,10 and 11 in 1982. In Bay 11, additional samples were taken near the surface and in the beach intertidal area, on a rising and a falling tide.

The samples consist of a glass fiber filter paper (Whatman GF/C) containing particulate matter and a tube packed with 12 polyurethane foam plugs containing dissolved organic matter. These plugs, about 2.5 x 5 cm each, were cut from polyurethane foam and cleaned by continuous extraction with a 1:1 acetone:hexane mixture for 72 hours, the solvent being changed every 24 hours. Both filters and columns were wrapped in baked aluminum foil and frozen until analysis.

2.5 BOTTOM SEDIMENTS

Bottom sediments have been taken in all three years of the project. In 1981, the experimental areas were layed out in a consistent pattern in all four bays. Figure 2.11 outlines the pattern for plots in a bay.

The samples were collected in 8 oz wide mouth jars by divers. The jars were sent to the bottom closed, in a jar holder. The diver removed the lid, used the jar to scrape sediment from the 0-2 cm layer into the jar, closed it, and returned it to the surface. A Teflon liner was placed under the lid and the sample frozen until analysis.

2.5.1 Tissue plot sediments

In 1981, before and after the experimental spills, the tissue plots were sampled for hydrocarbons in the sediments. Each plot was sampled once before the release and twice after, close to the times the animals were being taken from the same plots. In 1982, samples were taken in the five tissue plots at the 7 m depth only in each bay. The number of samples taken in each plot is marked in the corresponding box in Figure 2.11. Where more than one sample was collected in a plot, all were taken from the same location and no distinction was made between samples.

2.5.2 Benthic plot sediments

In 1981, additional samples were taken from the benthic plots in each bay late in the season. In 1982, this was repeated at all benthic plots in each bay. The number of samples from each plot is indicated in Figure 2.11. The samples were taken at predetermined random distances along the benthic transect, but the samples were not identified as to location within each plot.

2.5.3 Microbiology station sediments

For the three years of the project, samples have been taken from the microbiology stations.

2.5.4 Deep sediments

In 1982, four samples of sediment from 15 m depth were collected in Bays 9 and 11.

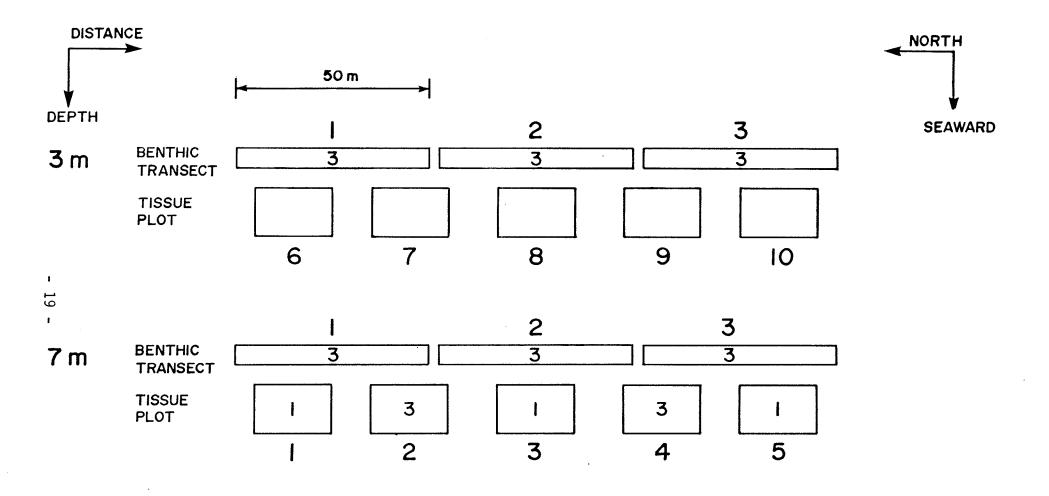
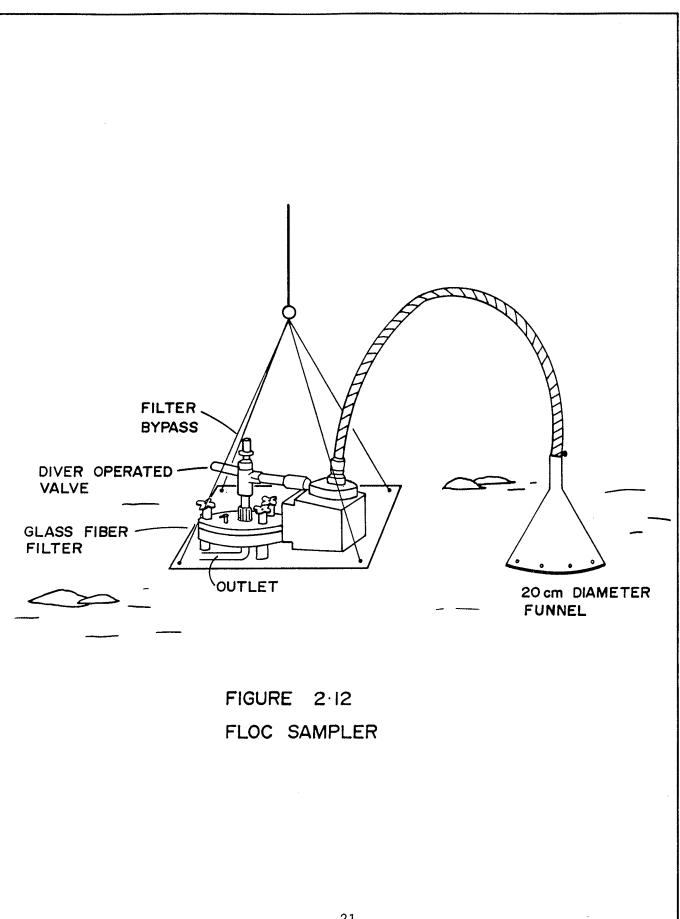



FIGURE 2.11 BOTTOM SEDIMENT PLOTS

2.6 FLOC SAMPLES

The very light, newly settled layer of sediment is of particular interest in this project. Called "floc", this material may contain the bulk of the oiled material entering the sediments from the water column. In order to sample this material, an underwater filtering apparatus was developed (Figure 2.12). This device was operated by divers. It was sent down to the diver with a fresh glass fiber filter in the bypass position. When the diver was in place, he directed the pumped water through the filter and sucked up the loose surface material in a 1 m² area in the tissue plot as identified in Figure 2.11. The filter was then bypassed and the sampler returned to the surface. The filter was wrapped in baked aluminum foil and frozen until analysis.

In 1981, samples were taken from all tissue plots in all four bays. In 1982, samples were taken from all tissue plots in Bay 11 only.

2.7 SEDIMENT TRAPS

Sediment traps may be used to collect the same type of material as the floc sampler. Left for a long period of time in an undisturbed area, any large particles in the water column may settle into the trap. No poisoning agent was added to the traps. After the collection period, the traps were carefully returned to the surface by divers. The collecting beaker was removed, the bulk of the water decanted, and the settled material transfered to a baked jar. A Teflon liner was placed under the lid and the sample frozen until analysis.

Twenty-three samples were collected in 1981. At the end of the season in 1981, traps were left in all four bays to overwinter. This was an ad-hoc addition to the sampling scheme, as no other long collecting periods have been done. In 1982 they were recovered and redeployed in Bay 11 for two periods.

2.8 CORES

Sediment cores were collected in 1982. Using hand corers, divers obtained cores at each end of the 7 m transect in all four bays. Each sample was frozen in the sampler immediately after collection. Samplers were warmed to facilitate removal of the core, the core was cut into sections of 5 cm lengths, placed in baked 8 oz jars, which were sealed with Teflon and kept frozen until analysis.

The nature of the samplers and the sediments precluded obtaining complete samples from all bays. The samples collected were:

Date	Bay	0-5 cm	5-10 cm	10-15 cm	
82-08-18 82-08-18 82-08-17 82-08-17 82-08-16 82-08-16 82-08-15	7N 7S 9N 9S 10N 10S 11N	X X X X X X X	NS × × × × × ×	NS NS NS NS NS NS X	
82-08-15	11S	x	x	NS	
LNS = NO	[NS = no sample]				

2.9 TISSUE SAMPLES

Over the three years of the project, many animals have been collected for hydrocarbon content analysis. In 1980, seven animal and three plant species were collected. In 1981, six animal species were collected, of which three had been collected in 1980. In 1982, five animal species were collected, all of which had been collected in 1981, and three of which had been collected in 1980.

The animals were collected by divers. <u>Astarte</u> and <u>Strongylocentrotus</u> were hand picked at all times, all the others were usually sampled using an airlift technique, although <u>Serripes</u> was hand picked if found on the surface. The samples were taken from anywhere within the 7 m tissue plots in each bay (Figure 2.11). When the samples were brought ashore, they were sorted according to species. Ten animals of each species from each plot were wrapped in aluminum foil and frozen until analysis.

The species collected in 1982 were:

Astarte borealis Mya truncata Macoma calcarea Serripes groenlandia Strongylocentrotus droebrachiensis

With the exception of Bay 11, adequate numbers of samples were found. Bay 11 did not provide enough Serripes.

3. ANALYTICAL METHOD

Shoreline sediments have been analysed for total hydrocarbon in all three years of the project. The method of analysis has changed each year to reflect the changing program.

In 1980, much of the analysis was to determine baseline levels of hydrocarbon in the beach sediments. In consequence, a precise but time-consuming method was used. The detection limit for this method was 0.25 mg/kg (Green 1981).

In 1981, in response to the need for the analysis of large numbers of samples to reduce the problem of sampling a large plot, subsamples were taken in a number of sites within a plot. Some sites were composited before extraction, and composited again after extraction with samples from other sites in the same plot. Over three hundred samples were analysed in 1981 (Green et al, 1982).

Carbon tetrachloride was used as solvent in 1981, as it is the most effective solvent available for the determination of oils by IR. The ventilation conditions in the laboratory at Cape Hatt were found to be inadequate for using a toxic solvent of this nature.

In 1982, the solvent was changed to the less toxic Freon 113, for safety reasons. The procedure remained the same, with the exception that the amount of extract used for ultimate analysis depended on the visual appearance of the extract.

3.1 EXTRACTION PROCEDURE

Between 0.5 and 2.0 kg of beach sediment were placed in a Teflon extraction jug with a Teflon lid. About 0.2 kg of Freon 113 was added and the sample shaken on a paint shaker for 5 minutes. If the extract showed visible oil content, a 4 mL aliquot was transfered to a small break-neck ampoule which was then sealed in a flame. If there was no visible oil in the extract, two 20 mL aliquots were transfered to two large break-neck ampoules. The weight of each aliquot was recorded.

When very highly oiled samples were extracted, some dark precipitate remained in the extraction jug. This was not the case when CCl_4 was used. This material was soluble in CCl_4 . A solution of this material in CCl_4 , which

was opaque to visible light, was analysed in the same manner as the extracts. No CH_2 absorption at 2850 cm⁻¹was observed. As the analytical method is based on this CH_2 absorption it was felt that the change to Freon 113 would not bias the results relative to the CCl₂ extraction method.

3.2 ANALYSIS

The analysis of oil by Infra-red absorption is based on the CH_2 absorption at 2850 cm⁻¹. A calibration curve based on the absorption of Lago medio standard solutions was used to determine the concentration of the sample.

Sample extracts that were visibly very concentrated were diluted gravimetrically before analysis. Samples that were visibly dilute were concentrated by gentle evaporation with a stream of dry nitrogen before analysis.

Because of the requirement for immediate results, some samples were analysed in Cape Hatt on a Perkin-Elmer 700 Infra-red Spectrometer. This machine is not very stable. After each analysis, a standard was run and the sample absorbance corrected to this standard. The results from this instrument were not considered to be as good as those from the Seakem instrument, so extracts of important samples were taken to Seakem for re-analysis.

The extracts taken to Seakem were analysed on a Perkin-Elmer 337 Infra-red Spectrometer. This instrument has adjustable slits and scan speeds. The resolution and stability of this instrument was far superior to the Perkin-Elmer 700.

Daily calibrations were done using seven standard Lago medio crude solutions in Freon 113. The concentrations of the standards varied from 100 mg/kg to 2000 mg/kg. The corresponding peak heights varied from 12 mm to 102 mm. The standard error of the absorption of the standards over 21 days of analysis was 1 mm at all concentrations. A second order regression curve was determined each day. The sample concentrations were calculated from this curve.

Based on a 15x concentration of dilute extracts, the detection limit is 30 mg/kg, with a precision of 10 mg/kg. At higher concentrations, the precision of the analysis is 1%, based on the precision of the absorption.

4. RESULTS

4.1 SHORELINE TOTAL HYDROCARBON ANALYSES

The results of the shoreline analyses for all three years of the project are given in the following pages. The results are reported to two significant figures only. The validity of the results as a measure of the oil content of a plot or a beach does not depend on the precision of the analyses, but on the consistency of the coverage. This point will be discussed later.

In the following tables the entries tr and 0 refer to extracts with no measurable hydrocarbon but visible colour (tr) and to no measurable hydrocarbon and no colour (0).

4.1.1 1980 SHORELINE COUNTERMEASURE CONTROL PLOTS

Table 1 High energy shoreline; aged crude Plot H1

Sample Description	Date	Day	<u>Total hyd</u> Surface	<u>Subsurf.</u>
Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot	80-08-23 "" 80-08-25 "" 80-08-27 "" 80-08-31 "" 81-07-28 "" 81-07-28 "" 81-08-29 "" 82-08-10 "" 82-09-02	0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.0 1.2 7.7 3.6 0.001 0.019 0.001 0.007 0.005 0.005 0.005 0.005 0.005 0.005 0.007 0.005 0.007 0.005 0.007 0.005 0.005 0.001 0.009 0.037 0.32 0.001 0.12 0.015 tr - .008 tr 0 0 0 0 0 0 0 0 0 0 0 0 0	1.0 1.5 1.2 1.2 0.056 0.88 0.055 0.33 0.18 1.62 0.22 0.67 2.7 0.001 0.26 1.0 0.15 tr - .008 0 0 0 0 0 0 0 0 0 0 0 0 0
Plot	18	740	Ō	0

,

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle	80-08-23 " 80-08-25 " 80-08-27	0 0 0 2 2 2 2 2 2 4	1.5 0.19 2.3 1.4 0.001 0.002 0.001 0.001 0.010	2.8 0.13 0.22 1.1 0.002 0.001 0.001 0.001 0.011
Middle Lower Plot Upper Middle Lower Plot	" 80-08-31 "	4 4 8 8 8 8 8	0.001 0.001 0.004 0.005 0 0 0	0.003 0.001 0.005 0 0 0 0
Upper Middle Lower Plot Upper Middle Lower	81-07-28 " " 81-08-29	339 339 339 339 371 371 371	0 0 0 0 0 0	0 0 0 0 0 tr
Plot Upper Middle Lower Plot Upper Middle Lower Plot	82-08-10 " 82-09-02 "	371 717 717 717 717 740 740 740 740 740	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0

Table 2 High energy shoreline; emulsion Plot H2

Table	3	Low	energy	shore	line;	aged	crude	Plot	L1
-------	---	-----	--------	-------	-------	------	-------	------	----

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot	80-08-21 80-08-23 80-08-23 80-08-25 80-08-29 81-07-28 81-07-28 81-08-29 81-08-29 81-08-29	0 0 0 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4	Surface 0.67 0.87 3.6 1.7 0.46 0.47 0.61 0.45 0.25 0.47 0.39 0.57 0.77 0.60 0.64 0.48 0.29 0.65 0.47 0.25 0.11 0.13 0.16 0.22 0.18 0.55 0.32	Subsurf. 0.88 1.30 2.5 1.6 0.80 0.009 0.69 0.70 0.77 0.94 0.47 0.72 1.26 1.83 1.08 1.39 0.58 0.75 0.18 0.50 0.53 0.47 0.45 0.47 0.53 0.47 0.53 0.47 0.45 0.48 1.57 0.98 0.30 0.95
Upper Middle Lower Plot	82-09-02 " "	742 742 742 742	0.26 1.2 0.044 0.49	0.85 1.3 0.38 0.85

Table	4	Low	energy	<pre>shoreline;</pre>	emulsion	Plot	L2

Table 4 Low energy	shoreline;	emulsion	Plot L2	
Sample Description	Date	Day	<u>Total hyd</u> Surface	<u>Subsurf.</u>
Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot Upper Middle Lower Plot	80-08-21 80-08-23 80-08-25 80-08-29 81-07-28 81-07-28 81-08-29 81-08-29 82-08-10	0 0 0 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4	0.19 0.45 0.37 0.34 0.021 0.034 0.014 0.023 0.008 0.034 0.006 0.016 0.037 0.001 0.013 0.001 0.013 0.007 0.029 0.005 0.014 0.017 0.017 0.017 0.017 0.017 0.017 0.015 0 0 0.023 0.008 0 0.004	0.050 0.22 - 0.13 0.011 0.001 0.005 0.006 0.002 0.001 0.001 0.001 0.001 0.002 0.016 0.005 0.008 tr 0.013 0.007 0.010 0.019 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.016 0.013 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.005 0.006 0.002 0.00100000000
Lower Plot	19	742 742	0 0.001	0 0

Table 5 Backshore control; aged crude Plot T1

Sample Description	Date	Day	Total hydrocarbo Surface Subsu	
			Surrace	Subsurf.
Mean	80-08-20	0	4.0	2.3
Mean	80-08-22	2	5.8	3.0
Composite	80-08-24	4	3.4	3.0
Composite	80-08-28	8	6.6	1.7
Composite	81-07-28	342	2.8	2.4
Composite	81-08-29	374	3.4	2.1
Composite	82-08-10	720	2.8	1.6
Composite	82-09-02	743	2.9	1.5

Table 6 Backshore control; emulsion Plot T2

Sample Description	<u>Date</u>	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Mean Mean Composite Composite Composite Composite Composite Composite	80-08-20 80-08-22 80-08-24 80-08-28 81-07-28 81-08-29 82-08-10 82-09-02	0 2 4 342 374 720 743	1.3 2.0 1.3 6.0 1.4 1.6 1.7 1.8	1.5 2.7 1.3 5.8 2.1 1.8 1.7 1.4

Table 7 Microbiology control; aged crude Plot TE1

Sample Description	Date	Day	<u>Total hyd</u> <u>Surface</u>	rocarbon <u>%</u> Subsurf.
Composite	80-08-23	0	4.6	2.9
Composite	80-08-25	2	5.0	1.5
Composite	80-08-27	4	5.4	3.3
Composite	80-08-31	8	4.0	4.8
Composite	81-07-28	339	2.9	2.4
Composite	81-08-29	371	2.2	1.9
Composite	82-08-10	717	2.5	4.0
Composite	82-09-02	740	2.4	0.3

Table 8 Microbiology control; emulsion Plot TE2

Sample Description	Date	Day	<u>Total hydrocarbon %</u>		
			Surface	Subsurf.	
Composite	80-08-23	0	5.1	0.17	
Composite	80-08-25	2	10.2	0.46	
Composite	80-08-27	4	2.9	6.2	
Composite	80-08-31	8	5.8	0.050	
Composite	81-08-29	371	2.4	2.6	
Composite	82-08-10	717	4.5	2.4	
Composite	82-09-02	740	3.6	3.0	

٠

4.1.2 1981 SHORELINE COUNTERMEASURE PLOTS

Table 9 1981 Control; aged crude Plot CC

Sample Description	Date	Day	<u>Total hydrocarbon %</u>		
			Surface	Subsurf.	
Composite Composite Composite Composite	81-08-14 81-09-16 82-08-10 82-09-02	8 41 369 392	1.7 0.31 0.030 0.008	0.15 0.015 0.34 0.022	

Table 10 1981 Control; emulsion Plot CE

Sample Description	Date	Day	<u>Total hydrocarbon %</u>		
			Surface	Subsurf.	
Composite Composite Composite Composite	81-08-14 81-09-16 82-08-10 82-09-02	8 41 369 392	- 0.093 0.009 0.050	0.038 0.011 0.039 0.030	

Table 11 1981 Mixing; aged crude Plot MC

Sample Description	<u>Date</u>	Day	<u>Total hyd</u> <u>Surface</u>	rocarbon <u>%</u> Subsurf.
Pretest Comp.	81-08-06	0	2.1	0.30
Posttest Comp.	81-08-06	0	2.8	1.0
Composite	81-08-14	8	0.50	1.6
Composite	81-09-16	41	1.9	0.19
Composite	82-08-10	369	0.016	0.13
Composite	82-09-02	392	0.014	0.23

Table 12 1981 Mixing; emulsion Plot ME

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Pretest Comp.	81-08-06	0	1.2	0.11
Posttest Comp.	81-08-06	0	2.1	0.029
Composite	81-08-14	8	1.9	0.031
Composite	81-09-16	41	0.19	0.019
Composite	82-08-10	369	0.023	0.017
Composite	82-09-02	392	0.010	0.045

Table 13 1981 Exxon dispersant; aged crude Plot D[E]C

Sample Description	Date	Day	Total hydrocarbon %	
			Surface	Subsurf.
Pretest Comp.	81-08-07	0	2.5	0.03
Posttest Comp.	81-08-07	0	0.61	0.59
Composite	81-08-14	7	0.044	0.24
Composite	81-09-16	40	0.036	0.017
Composite	82-08-10	368	0.008	0.090
Composite	82-09-02	391	0.009	0.005

Table 14 1981 Exxon dispersant; emulsion Plot D[E]E

Sample Description	<u>Date</u>	<u>Day</u>	<u>Total hyd</u> <u>Surface</u>	rocarbon <u>%</u> Subsurf.
Pretest Comp.	81-08-07	0	2.4	0.015
Posttest Comp.	81-08-07	0	2.0	0.051
Composite	81-08-14	7	0.24	0.029
Composite	81-09-16	40	0.033	tr
Composite	82-08-10	368	0.013	0.017
Composite	82-09-02	391	0.037	0.026

Table 15 1981 BP dispersant; aged crude Plot D[B]C

Sample Description	Date	Day	Total hydrocarbon %	
			Surface	Subsurf.
Pretest Comp.	81-08-07	0	0.43	-
Posttest Comp.	81-08-07	0	1.0	0.31
Composite	81-08-15	8	tr	0.32
Composite	81-09-16	40	tr	tr
Composite	82-08-10	368	0	0.003
Composite	82-09-02	391	0	0

Table 16 1981 BP dispersant; emulsion Plot D[B]E

Sample Description	Date	Day	<u>Total hydrocarbon %</u>	
			Surface	Subsurf.
Pretest Comp.	81-08-07	0	0.74	0.007
Posttest Comp.	81-08-07	0	0.27	0.44
Composite	81-08-15	8	0.007	0.008
Composite	81-09-16	40	tr	tr
Composite	82-08-10	368	0	0
Composite	82-09-02	391	0	0

4.1.3 1982 SHORELINE COUNTERMEASURE PLOTS

Table 17 1982 Z-Lagoon Baseline

Sample Description	<u>Date</u>	Day	<u>Total hydrocarbon %</u> <u>Surface</u> <u>Subsurf.</u>
Z1 upper middle lower		82-08-10 "	0 0 0
Z2 upper middle lower		82-08-10 "	0.003 0 0.003
Z3 upper middle lower		82-08-10 "	0 0 0
Z4 upper middle lower		82-08-10 "	0.003 0.015 0
Z5 upper middle lower		82-08-10 "	0 0 0
Z6 upper middle lower		82-08-10 "	0 0 0
Z7 upper middle lower		82-08-10 "	0.003 0 0
Z8 upper middle lower		82-08-10 "	0 0 0
Z9 upper middle lower		82-08-10 "	0 0 0

•

Sample Description	Date	Day	<u>Total hyd</u> <u>Surface</u>	Irocarbon <u>%</u> Subsurf.
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2 T1 Plot T6 T4 T3 T2 T1	82-08-12 82-08-13 " " 82-08-20 " " " 82-09-15 " "	-1 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.5 0.15 0.016 1.1 0.42 0.52 0.010 0.062 0.69 - 0.26 0.21 0.062 0.065 0.020 0.040	0.004 0 0.005 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Plot		33	0.080	0.01

Table 18 1982 Control; aged crude Plot ICC

Table 19 1982 Control; emulsion Plot ICE-East

Sample Description	Date	Day	<u>Total hyd</u> <u>Surface</u>	<u>Subsurf.</u>
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest Posttest T6 Posttest T4 Posttest T3 Posttest T2 Posttest T2 Posttest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2	82-08-12 82-08-13 " " 82-08-14 " " 82-08-20 " " " 82-08-20 " " " "	-1 0 0 0 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7	0.88 0.63 0.027 0.17 0.28 2.4 0.043 0.97 1.1 1.1 1.6 0.046 3.4 0.12 0.007 1.0 1.2 0.12 1.5 0.14	0.009 0 0 0.004 0.009 0.003 0.003 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.003 0 0.004 0.004 0.004 0.00900000000
T1 Plot	11 90	33 33	0.004 0.59	- 0.018

.

Table :	20	1982	Control:	emulsion	Plot	ICE-West
---------	----	------	----------	----------	------	----------

Sample Description	<u>Date</u>	Day	<u>Total hyd</u> <u>Surface</u>	rocarbon <u>%</u> Subsurf.
Pretest T6 Pretest T4 Pretest T2 Pretest	82-08-13 ""	0 0 0 0	0.63 0.027 0.17 0.278	0.009 0 0.003
Posttest T6 Posttest T4 Posttest T3 Posttest T2	82-08-14 " "	1 1 1	0.54 0.031 0.24 0.16	0.008 0 0.005 0.003
Posttest T6 T4 T3	" 82-08-20 "	1 7 7 7	0.24 0.46 0.026 0.10	0.004 0 0 0
T2 T1 Plot	и и и 92.00.15	7 7 7 7	0.023 0.005 0.12	0 0 0
T6 T4 T3 T2	82-09-15 " "	33 33 33 33	0.083 0.020 0.053 0.82	0 0 0 0.57
T1 Plot	14 88	33 33	0.023 0.20	0.003 0.12

Sample Description	Date	Day	<u>Total hyd</u> Surface	lrocarbon <u>%</u> Subsurf.
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest Posttest T6 Posttest T4 Posttest T3 Posttest T2 Posttest T1 Posttest T1 Posttest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2 T1	82-08-12 82-08-13 " " 82-08-14 " " 82-08-20 " " " 82-08-20 " " "	-1 0 0 0 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7	0.409 0.44 0.007 2.1 0.85 0.042 0.013 0.20 0.88 0.008 0.23 0.012 0.026 0.093 0.88 0.008 0.23 0.012 0.026 0.093 0.88 0.008 0.20 0.003 0.13 0.027 0.55	0.54 0.003 0.18 0.046 0 0 0 0.009 0 0.005 0 0.005 0 0.001 0 0.25 0.13
T1 Plot	11 88	33 33	0.033 0.15	0 0.076

Table 21 1982 Exxon dispersant; aged crude Plot ID[E]C

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest Posttest T6 Posttest T4 Posttest T3 Posttest T2 Posttest T2 Posttest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2 T1	82-08-12 82-08-13 " " 82-08-14 " " 82-08-20 " " " 82-08-20 " " "	-1 0 0 0 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7	0.49 0.17 0.069 0.21 0.15 0.15 0.023 0.13 0.22 0.13 0.15 0.053 0.22 1.5 0.091 0.41 0.019 0.12 0.038 0.15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T1 Plot	11 06	33 33	0.045 0.075	0 0.004

Table 22 1982 Exxon dispersant; emulsion Plot ID[E]E

ł

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest Posttest T6 Posttest T4 Posttest T3 Posttest T2 Posttest T2 Posttest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2	82-08-12 82-08-13 " 82-08-14 " 82-08-20 " " 82-08-20 " "	-1 0 0 0 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7	0.88 0.084 0.29 0.97 0.45 0.83 0.003 1.9 2.0 1.2 0.30 0.51 1.1 2.8 0.11 0.95 0.017 0.32 0.17 1.2	0.005 0 0.037 0.014 0 0.71 0.004 0.020 0.18 0 0.005 0.005 0.007 0 0.002 0.021 0.32 0.22 0.23
T1 Plot	11	33 33	0.032 0.36	0.003 0.16

Table 23 1982 BP dispersant; aged crude Plot ID[B]C

<u>Sample</u> <u>Description</u>	Date	Day	<u>Total hyd</u> <u>Surface</u>	rocarbon <u>%</u> Subsurf.
Oil laying Pretest T6 Pretest T4 Pretest T2 Pretest Posttest T6 Posttest T4 Posttest T3 Posttest T2 Posttest T2 Posttest T2 Posttest T6 T4 T3 T2 T1 Plot T6 T4 T3 T2 T2	82-08-12 82-08-13 " " 82-08-14 " " 82-08-20 " " " 82-08-20 " " " " "	-1 0 0 0 1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7	0.83 0.73 0.054 0.52 0.44 2.0 0.90* 3.4 4.1 3.2 1.2 0.48* 0.63 2.9 0.039 1.2 0.069 0.16* 0.18 0.69	0.041 0 0.013 0.005 0.006 0.003 0.13 0.037 0 0 0 0.003 0 0 0.026 0.43 0.036 0.79
T1 Plot	11 80	33 33 .	0.053 0.25	0.015 0.26

Table 24 1982 BP dispersant; emulsion Plot ID[B]E

"Show

[Values marked * were shown by GC analysis to be primarily gasoline and are not included in the calculations of plot means.]

Table 25 1982 Backshore; aged crude Plot IMC

Sample Description	<u>Date</u>	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Control berm				
Pretest	82-08-14	0	5.7	0.70
Posttest	82-08-15	1	2.3	-
	82-08-22		1.9	2.7
Control brokhorch	82-09-15	31	3.1	2.3
Control backbeach	02 00 14	0	4 0	0.007
Pretest Posttest	82-08-14	0 1	4.2	0.027
POSILESI	82-08-15 82-08-22	1 7	1.3 1.5	0.84
	82-09-15	, 31	1.5	0.94 0.75
Mixed berm	02-09-15	51	1.0	0.75
Pretest	82-08-14	0	10.6	0.22
Posttest	82-08-15		6.7	0.14
	82-08-22		8.9	0.19
	82-09-15	31	5.7	0.53
Mixed backbeach				
Pretest	82-08-14	0	2.4	0.010
Posttest	82-08-15	1	2.1	0.057
	82-08-22	7	3.8	0.017
	82-09-15	31	3.3	6.52

.

- 44 -

Table 26 1982 Backshore; emulsion Plot IME

Sample Description	<u>Date</u>	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Control berm				
Pretest	82-08-14	0	1.7	1.8
Posttest	82-08-15		0.93	1.3
	82-08-22		1.4	0.77
	82-09-15	31	0.85	1.2
Control backbeach				
Pretest	82-08-14	0	4.2	0.036
Posttest	82-08-15	1	1.2	1.2
	82-08-22	7	2.5	1.5
	82-09-15	31	1.7	1.5
Mixed berm				
Pretest	82-08-14	0	1.2	1.5
Posttest	82-08-15	1	0.77	1.1
	82-08-22	7	0.86	1.2
	82-09-15	31	0.54	1.3
Mixed backbeach				
Pretest	82-08-14	0	1.8	0.014
Posttest	82-08-15	1	3.5	0.012
	82-08-22	7	4.0	0.022
	82-09-15	31	6.5	0.31

- 45 -

4.2 RAGGED CHANNEL BEACHES

Table 27 Surface oil release, Bay 11 Shoreline

Sample Description	Date	Day	<u>Total hyd</u> Surface	rocarbon <u>%</u> Subsurf.
Posttest Upper mean Middle mean Lower mean Posttest mean	81-08-19 " " "	0 0 0 0	2.8 1.9 0.49 1.7	
Upper mean Middle mean Lower mean Mean	81-08-20 " "	1 1 1 1	0.88 0.38 0.86 0.71	0.026 0.009 0.015 0.017
Upper mean Middle mean Lower mean Mean	81-08-28 " "	8 8 8 8	0.70 0.80 0.50 0.67	0.21 0.029 0.036 0.090
Upper mean Middle mean Lower mean Mean	81-09-15 " "	27 27 27 27 27	0.71 0.68 0.38 0.59	0.007 0.031 0.026 0.021
Upper Profile 2 Profile 4 Profile 6 Upper mean Middle	82-08-10 " "	356 356 356 356	0.34 0.97 1.2 0.83	0.12 0.15 0.53 0.26
Profile 2 Profile 4 Profile 6 Middle mean Lower	11 11 11	356 356 356 356	0.40 0.27 0.22 0.30	0.027 0.054 0.012 0.031
Profile 2 Profile 4 Profile 6 Lower mean	11 11 11	356 356 356 356	0.086 0.062 0.41 0.19	0.006 0.016 0.016 0.013
Mean	u	356	0.44	0.10

Table 28 Dispersed oil release, Bay 9 Shoreline

<u>Sample</u> <u>Description</u>	Date	Day	Total hyd	rocarbon <u>%</u> Subsurf.
			Surrace	Subsurt.
Posttest	81-08-28 82-08-12	-	0.13* 0**	0**
[* one sample, five others 0] [** nine samples, all 0]				

.

5

5. DISCUSSION

The significance of the total hydrocarbon content analyses to the countermeasure experiments and the Ragged Channel experiments are discussed elsewhere (Woodward-Clyde, 1983)

The validity of the analytical results depends not on the precision of the method of analysis, but on the statistical validity of the sampling. In every part of the project the sampling strategy was based on an attempt to determine the hydrocarbon content of the whole plot or beach. The sampling sites within a plot were predetermined to avoid subjectivity and samplers did not deviate from these sites. It was apparent for many of the plots that samples collected by this method, although the best method available, may not adequately describe the plot. The patchy distribution of oil on a plot or beach reduces the confidence of the results. The 1982 sampling, in particular, is biased to high oil coverage, in that the sampling transects were chosen by visual observation of the oil deposited by tide changes.

Over the three years of the project, a very large number of samples have been taken and analysed. The sampling strategies in 1981 and 1982 have been consistent. The validity of these results will be apparent when the overall changes can be compared in succeding years.

6. REFERENCES

- Boehm,P.D.,1981, Chemistry:2. Hydrocarbon Chemistry 1980 Study Results. (BIOS) Baffin Island Oil Spill Working Report 80-2: 184p.
- Boehm,P.D.,D.L.Fiest,P. Hirtzer, 1982, Chemistry:2. Analytical Biogeochemistry - 1981 Study Results. (BIOS) Baffin Island Oil Spill working Report 81-2: 354p.
- Boehm,P.D., 1983, Chemistry:2. 1983 Study Results. (BIOS) Baffin Island Oil Spill Working Report 82-2: in press
- deLappe,B.W.,R.W.Risebrough,A.M.Springer,T.T.Schmidt,J.C.Shropshire, E.F.Letterman,J.R.Payne.1979, The sampling and measurement of hydrocarbons in natural waters. In <u>Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment</u> B.K.Afghan, D.McKay, editors, Plenum Press,N.Y.
- Dickins,D.F., 1982, Discharge Systems 1981 Study Results. (BIOS) Baffin Island Oil Spill Working Report 81-9 62p.
- Engelhardt,F.R.,R.J.Norstrom, 1982, Petroleum hydrocarbons in two benthic invertabrates, the urchin <u>Strongylocentrotus</u> <u>droebrachiensis</u> and the polychaete <u>Pectinaria</u> <u>granulosa</u>. In Special Studies - 1981 Study Results. (BIOS) Baffin Island Oil Spill Working Report 81-10
- Green,D.R., 1981, Chemistry:1. Field Sampling and Environmental Chemistry- 1980 Study Results. (BIOS) Baffin Island Oil Spill Project Working Report 80-1: 93 p.
- Green,D.R., B. Humphrey, B.Fowler, 1982, Chemistry:1. Summary of field work- 1981 Study Results. (BIOS) Baffin Island Oil Spill Project Working Report 81-1.
- Woodward-Clyde Consultants, 1983, Shoreline Countermeasures -1982 Study Results. In press.

7. APPENDIX

HYDROCARBON ANALYSIS RESULTS

The results listed in the following pages summarize the results obtained in 1980 and 1981 as they relate to the samples collected in 1982. The samples collected in 1982 are included in the tables, with results where possible. The large number of results pertaining to sample groups which were not collected again in 1982 are not included. Those results may be obtained by referring to the references listed.

The references used in the appendix are:

Number Reference

[1]	Boehm, 1981
[2] [3]	Boehm et al, 1982
[3]	Boehm, 1983
[4]	Engelhardt, 1982

Table 29 SEAWATER SAMPLES

Bay 7 Control

Date	Depth	<u>Analyses [O</u>	<u>i]]</u>	Reference
81-09-03	5m	GC/MS		[2]
81-09-12	5m	GC/MS		[2]
82-08-14	5m	not analysed		[3] 2 samples
82-08-20	5m	not analysed		[3] 2 samples

Bay 9 Dispersed oil release

Date	Depth	<u>Analyses</u>	<u>[0i1]</u>	Reference
80-06-14 80-08-26 80-09-20 81-08-27 81-08-28 81-08-29 81-09-03 81-09-19 82-08-14 82-08-28	1,5,10m 1,5,10m 1,5m 0-10m 10m 5m 5m 5m 5m 5m	GC/MS UV/F UV/F,GC/M GC/MS GC/MS GC/MS GC/MS not analy not analy		[1] [1] [1] Dug/L [2] 20 samples [2] [2] [2] mean of 2 [2] mean of 2 [3] 2 samples [3] 2 samples

Bay 10 Dispersed oil release

Date	Depth	Analyses	<u>[0i1]</u>	Reference
81-08-28 81-08-28	9-10m	GC/MS UV/F UV/F GC/MS UV/F UV/F UV/F GC/MS GC/MS GC/MS GC/MS GC/MS GC/MS GC/MS UV/F UV/F Not analy not analy		<pre>[1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2</pre>

.

Date	Depth	Analyses	[0il]	Reference	
80-06-14 80-08-26 80-09-01 80-09-17 80-09-19 81-08-19 81-08-20 81-08-21 81-08-22 81-08-22 81-08-29 81-09-05 81-09-12 82-08-16 82-08-22 82-08-25 82-08-25 82-08-28	1,5,10m 1,5m 1m 5m 1,5,10m 0-2m 3m 0-2m 5m 5m 5m 5m 5m 5m 5m 5m 5m 5m 5m 5m 5m		N.D. N.D. N.D. N.D. 37µg/L 5µg/L 370µg/L 4µg/L 720µg/L 62µg/L 62µg/L 29µg/L 5µg/L 535µg/L 1.3µg/L 1.8µg/L 1.2µg/L	[3]	222 2 2 5
82-08-30	5m	not analy		[̃3]́2 samples	5

Table 30 LARGE VOLUME WATER SAMPLES

Bay 7 Control

Date	Depth	<u>[0i1]</u> Filt.	Part.	Reference
81-08-27	2m	1.9µg/L	0.7µg/L	
81-08-29	2m	1.0µg/L	2.2µg/L	
81-09-06	6m	0.2µg/L	0.1µg/L	
82-08-18	10m	0.03µg/L	0.08µg/L	
82-08-25	Bottom	0.01µg/L	0.01µg/L	

Bay 9 Dispersed oil release

<u>Date</u>	<u>Depth</u>	<u>[0i1]</u> Filt.	Part.	Reference
81-08-13 81-08-29 81-08-31 81-09-02 81-09-05 82-08-18 82-08-25	5m 2m 6m 6m 10m Bottom	0.2µg/L 22µg/L 18µg/L 2.5µg/L 0.7µg/L 0.01µg/L 0.01µg/L	0.2µg/L 0.8µg/L 1.8µg/L 0.7µg/L 0.3µg/L 0.02µg/L 0.02µg/L	[2] [2] [2] [2] [3] [3]

Bay 10 Dispersed oil release

<u>Date</u>	<u>Depth</u>	<u>[0i1]</u> Filt.	Part.	Reference
80-09-07 81-08-14 81-08-23 81-08-28 81-08-28 81-08-30 81-09-04 82-08-18 82-08-25	1m 5m 5m 3m 4m 6m 6m 10m Bottom	4ng/L* 0.2µg/L 0.2µg/L 30µg/L 21µg/L 0.2µg/L 0.01µg/L 0.03µg/L	2ng/L* 0.1µg/L 0.05µg/L 0.05µg/L 4.6µg/L 2.9µg/L 0.1µg/L 0.04µg/L 0.03µg/L	

•

Bay 11 Surface oil release

Date	Depth	[0i1] Filt.	Part.	Reference
80-09-11 81-08-12 81-08-20 81-08-21 81-08-22 81-08-22 81-08-22 81-08-25 81-08-25 81-09-06 82-08-17 82-08-17 82-08-21 82-08-25 82-08-25 82-08-25 82-08-25	4m 3m 1m 1m 1m 6m 6m 6m 0.5m 10m Intertidal Bottom	2ng/L* 0.5µg/L 5.9µg/L 2.0µg/L 3.5µg/L 0.6µg/L 0.9µg/L 2.2µg/L 0.9µg/L 1.3µg/L 0.01µg/L 0.01µg/L 0.01µg/L 0.01µg/L 0.01µg/L 0.01µg/L	0.3µg/L 4.7µg/L 0.2µg/L 0.6µg/L 0.4µg/L 0.05µg/L 0.06µg/L 0.09µg/L 1.1µg/L 0.01µg/L	[1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2

* These samples were analysed by fractionation and subsequent GC analysis. The results can not be directly compared to the other listings.

Table 31 TISSUE PLOT SEDIMENTS

Bay 7 Control

Date	<u>[0i1]</u>		Reference
81-08-17	<u>3m</u> 0.36µg/g	<u>7m</u> 0.43µg/g	[2]
81-08-31	0.34µg/g	0.43µg/g 0.67µg/g	[2]
81-09-10	0.45µg/g	1.1µg/g	[2]
82-08-18	-	1.3µg/g	[3]

Bay 9 Dispersed oil release

Date 80-06- 80-06- 80-06-	<u>Depth</u> 18m 18m 18m	<u>[Oil]</u> О.бµg/g 2.бµg/g 1.3µg/g	Reference 0-4cm [1] 10-15cm [28-33cm [1]
Date		<u>[0i1]</u>	7	Reference
81-08-10 81-08-28 81-09-13 82-08-17		<u>3m</u> 0.34µg/g 3.1µg/g 0.45µg/g -	7m 0.38µg/g 2.1µg/g 9.0µg/g 2.5µg/g	[2] [2] [3]

Bay 10 Dispersed oil release

<u>Date</u> 80-06- 80-06	Depth 12m 5m	<u>[Oil]</u> 0.8µg/g N.D.	Reference [1] [1]	
Date		<u>[0i1]</u> 3m	7m	Reference
81-08-14 81-08-29 81-09-11 82-08-16		<u>5m</u> 0.45µg/g 1.40µg/g 0.73µg/g -	0.49μg/g 0.88μg/g 1.7 μg/g 1.7 μg/g	[2] [2] [3]

<u>Bay 11</u> <u>Surface oil</u> Date	release TOill		Reference
	3m	7m	
81-08-12	<u>0.</u> 22µg/g	<u>0.</u> 55µg/g	[2]
81-08-21	0.16µg/g	0.18µg/g	[2]
81-09-08	0.70µg/g	1.1 µg/g	[2]
82-08-15	10.3µg/g	9.5µg/g	[3]

Table 32 BENTHIC PLOT SEDIMENTS

Bay 7 Control

Date	[0il]		Reference
81-09-10 82-08-18	<u>3m</u> 0.80µg/g −	<u>7m</u> 1.2µg/g -	[2] [3]

•

.

.

Bay 9 Dispersed oil	release		
Date	<u>[0i1]</u> 3m	7m	Reference
81-09-10 82-08-17		<u>7⊪</u> 3.8µg/g -	[2] [3]

Bay 10 Dispersed oil release

Date	<u>[0i1]</u>	_	Reference
81-09-11 82-08-16	<u>3m</u> 0.99µg/g 0.77µg/g	<u>7m</u> 1.6µg/g -	[2] [3]

Bay 11 Surface oil release

Date	[0i1]		Reference
	3m	7m	
81-09-08	<u>0.</u> 90µg/g	<u>3.8µg/g</u>	[2]
82-08-15	7.0µg/g	5.3µg/g	[2] [3]

[Deep Sediments: 82-09-10 2 samples, detection limit oil [3]]

Table 33 FLOC SAMPLES

Bay 7 Control

Date	<u>[0i1]</u>		Reference
	3m	7m	
81-08-17	-		[2]
81-08-31	0.066µg	0.12µg	[2] [2]
81-09-10	0.040µg	0.024µg	Ī2Ī
82-08-18	, .	, ,	[2] [3]

Bay 9 Dispersed oil release

Date	<u>[0i1]</u>	_	Reference
01 00 10	<u>3m</u>	<u>7m</u>	[0]
81-08-10 81-08-28	0.035µg 4.26µg	0.040µg 9.70µg	[2] [2]
81-09-13	4.20µg 0.10µg	9.70µg 0.10µg	[2]
82-08-17	0.10µ9	0.1049	[3]

Bay 10 Dispersed oil release

Date	<u>[0i]]</u>		<u>Reference</u>
81-08-14 81-08-29 81-09-11	<u>3m</u> 0.10µg 0.071µg 0.050µg	<u>7m</u> 0.19µg 4.0µg 0.068µg	[2] [2]
82-08-16	51111		[2] [3]

Date	<u>[0i1]</u>	-	<u>Reference</u>
01 00 10	<u>3m</u>	$\frac{7\text{m}}{2}$	507
81-08-12	<u>0.</u> 084µg	<u>0.</u> 96µg	[2] [2] [2] [3]
81-08-21	-	0.23µg	
81-09-08	0.071µg	0.11µg	[2]
82-08-15	0.61µg	0.23µg	[3]

Table 34 SEDIMENT TRAPS

Bay 7 Control

<u>Date in</u>	<u>Days in</u>	Depth	Total Extract	<u>TotalHC</u>	Reference
81-08-27 81-08-27 81-09-05 81-09-15	7 7 7 335	3m 7m 7m 10m	Extract. 410µg 400µg 590µg	45µg 35µg ≮5µg DL	[2] [2] [2] [3]
<u>Bay 9 Dis</u>	persed oil	release			
<u>Date in</u>	<u>Days</u> in	<u>Depth</u>	<u>Total</u> Extract.	<u>TotalHC</u>	Reference
81-08-13 81-08-27 81-08-27 81-09-01 81-09-01 81-09-01 81-09-05 81-09-05 81-09-15	3 3 3 3 3 3 7 7 335	10m 3m 7m 7m 3m 3m 7m 3m 7m 10m	350µg 1000µg 190µg 1320µg 1770µg 80µg 550µg 700µg 580µg	<pre>< 5µg 310µg 70µg 150µg < 50µg < 5µg 90µg 5µg 80µg DL</pre>	

.

Bay 10 Dispersed oil release

<u>Date in</u>	<u>Days</u> in	Depth	<u>Total</u> Extract.	TotalHC	Reference
81-08-14	3	10m	400µg	< 5µg	[2]
81-08-27		3m	300µg	35µg	[2]
81-08-27	3	7m	380µg	170µg	[2]
81-08-30	3	3m	530µg	40µg	[2]
81-08-30	3	7m	160µg	30µg	[2]
81-09-05	7	3m	520µg	∢5µg	[2]
81-09-05 81-09-15	7 335	7m 10m	770µg	20µg	[2] [3]

Bay 11 Surface oil release

<u>Date in</u>	<u>Days in</u>	Depth	Total	<u>TotalHC</u>	<u>Reference</u>
81-08-18 81-08-18	3 3	3m 3m	Extract. 190µg 180µg	25µg	[2]
81-08-23	3	3m	340µg	15µg 25µg	
81-08-23 81-09-15	3 335	3m 10m	240µg	35jug DL	[3]
82-08-11 82-08-11	14 14	7m 7m	Different methods ເ	ısed	[3] [3]
82-08-25 82-08-25	8 8	7m 7m		11 11	[3] [3]

In 1982, some airlifting occurred in the areas the traps were deployed.

Table 35 TISSUE SAMPLES

Astarte borealis

Bay 7 Control

Date	Depth	<u>[0i1]</u>	Reference
81-08-17 81-09-01 81-09-11 82-08-18	7m 7m 7m 7m	22µg/g 51µg/g 56µg/g 6.8µg/g	[2] [2] [2] [3]
<u>Bay 9 Dis</u>	persed <u>oil</u>	release	
Date	Depth	<u>[0i1]</u>	Reference
81-08-08 81-08-28 81-09-11 82-08-17	7m 7m 7m 7m	0.81µg/g 463µg/g 171µg/g 19.0µg/g	[2] [2] [2] [3]

Bay 10 Dispersed oil release

Date	Depth	<u>[0i1]</u>	Reference
81-09-12	7m	0.43µg/g	[2]
	7m	364µg/g	[2]
	7m	310µg/g	[2]
	7m	25.0µg/g	[3]

Date	<u>Depth</u>	<u>[0i1]</u>	Reference
81-08-25 81-09-11	7m 7m 7m 7m	0.47µg/g 2.7µg/g 140µg/g 37.0µg/g	[2] [2]

<u>Mya</u> truncata

<u>Bay 7</u> <u>Control</u>

Date	Depth	<u>[0i1]</u>	<u>Reference</u>	
81-08-17 81-08-31 81-09-11 82-08-18	7m	0.34µg/g 114µg/g 47µg/g 0.41µg/g	[2] [2] [2] [3]	
<u>Bay 9 Dis</u>	persed oil	release		
Date	Depth	<u>[0i1]</u>	Reference	
81-08-07 81-08-07 81-08-28 81-08-28 81-09-10 81-09-10 82-08-17	3m 7m 3m 7m 7m	0.40µg/g 0.35µg/g 215µg/g 121µg/g 135µg/g 114µg/g 0.81µg/g	[2] [2] [2] [2] [2] [3]	
Bay 10 Dispersed oil release				

Date	Depth	[0i1]	Reference
81-08-14	3m	0.78µg/g	[2]
81-08-14	7m	0.57µg/g	[2]
81-08-29	3m	368µg.g	[2]
81-08-29	7m	277µg/g	[2]
81-09-11	3m	131µg/g	[2]
81-09-11	7m	157µg/g	[2]
82-08-16	7m	0.96µg/g	[3]

Date	Depth	<u>[0i1]</u>	Reference
81-08-12	7m	0.43µg/g	[2]
81-08-21	7m	2.0µg/g	[2]
81-09-08	7m	93µg/g	[2]
82-08-15	7m	1.3µg/g	[3]
82-09-12	7m	4.7µg/g	[3]

Macoma calcarea

Bay 7 Control

Date	Depth	[0i1]	Reference
81-09-11	7m 7m 7m 7m	1.0µg/g 82.1µg/g 85.5µg/g 1.9µg/g	[2]

Bay 9 Dispersed oil release

Date	Depth	<u>[0i1]</u>	<u>Reference</u>
81-08-28 81-09-11	7m 7m 7m 7m	0.73µg/g 74.9µg/g 836µg/g 25µg/g	[2] [2] [2] [3]

Bay 10 Dispersed oil release

Date	Depth	<u>[0i1]</u>	Reference
81-08-14	7m	2.1µg/g	[2]
81-09-01	7m	406µg/g	[2]
81-09-12	7m	440µg/g	[2]
82-08-16	7m	14µg/g	[3]

Date	Depth	<u>[0i1]</u>	Reference
81-08-13	7m	2.5µg/g	[2]
81-08-25	7m	24.5µg/g	[2]
81-09-11	7m	246µg/g	[2]
82-08-15	7m	60µg/g	[3]

Serripes groenlandicus

Bay 7 Control

Date	Depth	<u>[0i1]</u>	Reference
81-08-17	7m	1.2µg/g	[2]
81-09-01	7m	517µg/g	[2]
81-09-11	7m	73µg/g	[2]
82-08-18	7m	5.2µg/g	[3]

Bay 9 Dispersed oil release

Date	Depth	<u>[0i1]</u>	Reference
81-08-08	7m	0.68µg/g	[2]
81-08-28	7m	482µg/g	[2]
81-08-28	7m	186µg/g	[2] Hand picked
81-09-10	3m	160µg/g	[2] Hand picked
81-09-10	7m	116µg/g	[2]
81-09-10	7m	97µg/g	[2] Hand picked
82-08-17	7m	5.2µg/g	[3]

Bay 10 Dispersed oil release

Date	Depth	<u>[0i1]</u>	Reference
81-08-14	7m	1.4µg/g	[2]
81-08-29	3m	698µg/g	[2] Hand picked
81-08-29	7m	278µg/g	[2]
81-08-29	7m	329µg/g	[2] Hand picked
81-09-11	7m	149µg/g	[2]
81-09-11	7m	141µg/g	[2] Hand picked
82-08-16	7m	3.0µg/g	[3]

Bay 11 Surface oil release

<u>Date</u>	Depth	<u>[0i1]</u>	Reference
81-08-13	7m	-	[2]
81-08-21	7m	6.0µg/g	[2]
81-09-11	7m	394µg/g	[2]
82-08-15	7m	13µg/g	[3]

Strongylocentrotus droebachiensis

Bay 7 Control

Date	Depth	<u>[0i1]</u>	Reference
81-08-17	7m	12.8µg/g	[4]
81-08-31	7m	47.2µg/g	[4]
81-09-11	7m	43.7µg/g	[4]
82-08-18	7m	4.6µg/g	[3]

Bay 9 Dispersed oil release

Date	Depth	[0i1]	Reference
81-08-07 81-08-28 81-09-10 82-08-17	7m 7m 7m 7m	16.5µg/g 45.9µg/g 237.1µg/g 46.0µg/g	[4] [4]

Bay 10 Dispersed oil release

Date	Depth	[0i1]	Reference
01 00 25	7m 7m	24.9µg/g 91.7µg/g 111.2µg/g 20.0µg/g	[4] [4]

Bay 11 Surface oil release

Date	Depth	<u>[0i1]</u>	Reference
81-08-12 81-08-21 81-09-08 82-05- 82-08-15 82-09-	7m 7m 7m 7m 7m 7m	12.6µg/g 78.0µg/g 430.0µg/g 180.0µg/g 46.0µg/g 67.0µg/g	[3] [3] [3] [3]

NOTE: the averages from reference 4 are arithmetic means, those from reference 3 are geometric means.

.

da Library Biblio OOFF Gat n

.

Environment Canada Baffin Island Dil Spill Project : chemistry c omponent : report on the 1982 oil spill exper HUMPHREY, BLAIR OH 91.8.04 W67 ND. 82-1 ODFF

> DATE DUE DATE DE RETOUR