POLLUTION STUDIES OF THE PROPOSED VANCOUVER INTERNATIONAL AIRPORT EXPANSION

Volume III - Effects of Airport Activities on Air Quality

Prepared for

Environment Canada Environmental Protection Service Kapilano 100, Park Royal West Vancouver, B.C. V7T 1A2

by

B.C. RESEARCH 3650 Wesbrook Crescent Vancouver, B.C. V6S 2L2

LIBRARY ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

el 3000034 E

Report Number EPS-8-PR-75-3

May 27, 1975

LIBRARY DEPT. OF THE ENVIRONMENT ENVIRONMENTAL PROTECTION SERVICE PACIFIC REGION

> B.C. Research Project 2397

TABLE OF CONTENTS

:teiß

tintal

			· · · · ·
	SUMMARY		
1.	INTRODUC	CTION	1
	1.1	Background	1
	1.2	State-of-the-Art Review	1
2.	IDENTIFI	CATION OF AIRPORT EMISSION SOURCES	8
3.	AIRPORT	ACTIVITY LEVELS	9
		Passenger Demand	9
	3.2	Air Cargo Demand	11
	3.3	Aircraft Activity	12
		Ground Service Vehicle Activity	15
		Fuel Storage and Distribution	20
		Engine Tests and Maintenance	20
		Heating and Air Conditioning Plants	23
	3.8	Access Traffic	24
4.	SOURCE F	MISSION FACTORS	26
	4.1	Aircraft	26
		Ground Service Vehicles	28
		Fuel Storage and Distribution	29
		Engine Tests and Maintenance	29
		Heating and Air Conditioning Plant	31
	4.6	Access Traffic	32
5.	SOURCE F	EMISSION RATES	33
	5.1	Aircraft	33
		Ground Service Vehicles	36
		Fuel Storage and Distribution	38
		Engine Tests and Maintenance	39
		Heating and Air-Conditioning Plant	40
		Access Traffic	42
		Total Airport Emissions	45
		Spatial Distribution of Emission Sources	52
		Line Sources	52
	5.8.2	Area Sources	59

Page

			Page
6.	REGIONAL MET	TEOROLOGY	62
		nd Conditions ability	62 65
7.		NODEL DESCRIPTION	69
		neral Methodology	69
•		int Source Evaluation	71
		ea Source Evaluation	73
		ne Source Evaluation	74
		way Climb-out and Approach Zones	76
		cimum Short-term Concentrations	77
	/./ Anr	nual Mean Concentrations	78
8.	DIFFUSION MC	DDELING RESULTS	79
		ides of Nitrogen	81
		lfur Dioxide	83 85
		cbon Monoxide	85
		spended Particulate Irocarbons	86
	0.5 нус	irocarbons	00
9.	DISCUSSION A	AND RECOMMENDATIONS	87
10.	CONCLUSIONS		92
	BIBLIOGRAPHY	ζ.	93
	APPENDIX 1	FERRY TERMINAL ACCESS TRAFFIC	
	APPENDIX II	I FIRE FIGHTING DRILLS	
	APPENDIX III	TABLE A.5.2 - EMISSIONS BY AIRCRAFT MIX AND MODE OF OPERATION VANCOUVER INTERNATIONAL AIRPORT	

No.

4 Ditt

أن أثلثته

1000

1944

\$ General

APPENDIX IV EMERGENCY FUEL DUMPING FROM AIRCRAFT

SUMMARY

The Ministry of Transport projects an expansion of Vancouver's International Airport activities from the present 3.5 million passengers per year to approximately 25 million passengers per year by the year 2000. This report presents an assessment of the air emission impact from the airport on the ambient air quality in the region. The emissions from the proposed ferry terminal on Iona Island are also considered.

The report contains sections on the following: background information and state-of-the-art review, identification of airport sources, activity of various sources, source emission factors, source emission rates, regional meteorology, dispersion model description, dispersion modeling results, discussion and recommendations, and conclusions.

The following activities which are associated with air pollutant emissions have been considered: aircraft movements, ground service vehicle movements, fuel storage and distribution, engine tests and maintenance, heating plant operations, airport access traffic and ferry terminal access traffic.

Peak hour emissions, peak day emissions and average daily emissions of carbon monoxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulates due to various activities have been assessed for the year 1973 through the year 2000.

The biggest source of pollution is aircraft, followed by access traffic and heating plants. Emissions resulting from ground service vehicles, fuel storage and distribution, and engine tests are less significant.

Regional meteorology including wind conditions and atmospheric stability have been described. These data are necessary for mathematical atmospheric diffusion modeling.

A modified Pasquill-Gifford Gaussian plume model has been used in the dispersion calculations. Pollutant sources are divided into point, line and area sources, and receptors are defined as geographic locations where it is desired to know the ambient pollutant concentration. The geographic locations of sources and receptors are specified relative to a Cartesian coordinate system. Ambient pollutant concentrations were calculated for various atmospheric conditions and wind velocities.

The concentrations of carbon monoxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulates were estimated at four representative locations and the results were compared with federal air quality standards. This was done for the year 1975 through the year 2000. Maximum 1-hour, typical 24-hour and expected average concentrations were estimated.

It is shown that under adverse weather conditions the peak concentration of sulfur dioxide, oxides of nitrogen, and hydrocarbons will reach high values by the year 1985. Although these estimated maximums are high relative to air quality criteria, they should not result in environmental stress. They will probably occur less than ten hours per year.

While the estimates of maximum one-hour concentration serve to place an upper bound on airport-derived pollutant levels, more probable values are obtained by examining typical 24-hour average concentrations and expected annual average concentrations. It is shown that under these conditions no pollutant concentration will exceed the pertinent federal air quality objectives before the year 2000.

Of concern is the build-up of pollutants in the Lower Mainland which is a natural basin surrounded by mountains in which frequent stable atmospheric conditions occur. Temperature inversions prevent polluted air from diffusing upwards and low land breeze/sea breeze winds transport pollutants backwards and forwards through the valley. Under such conditions accumulation of pollutants in the atmosphere takes place leading to high concentrations. The large majority of these pollutants derive from vehicular activity and domestic fuel consumption in the GVRD area. The contribution of airport-derived pollutants during such an episode is minor.

To put things in perspective ambient pollutant values measured in the Central Vancouver area are compared with those calculated for the airport. It is shown that by the year 2000 the airport-derived pollutants will result in associated maximum ambient concentrations similar to the peak levels measured in urban Vancouver during 1969 - 1970. But even by year 2000 the long-term average concentrations at the airport will generally be considerably less than the equivalent 1969 - 1970 averages measured in urban Vancouver. For more reliable forecasting of the air quality in the Lower Mainland an air quality model should be developed for the whole air basin. This model should be tuned by conducting the appropriate meteorological and air quality surveys. A realistic model for the whole area would facilitate studying the ramifications of future urban and industrial growth, and enable the assessment of the effects of evolving air pollution regulations.

1. INTRODUCTION

1.1 Background

The Ministry of Transport projects an expansion of Vancouver's International Airport activities from the present 3.5 million passengers per year to approximately 25 million passengers per year by the year 2000. Such large commercial airports have a significant direct environmental impact as a result of activities related to their operations. Also, large airports may cause indirect impact due to the stimulated urban and industrial growth around them. The environmental considerations associated with the airport expansion are manifold; here only the direct ambient air quality effects will be considered. Such information is one of many embodied in the Environmental Impact Statement (EIS) which should contain information of all known possible environmental consequences and should enable the airport planners to incorporate environmental considerations into design of airport and its associated facilities.

In the U.S.A. the National Environmental Policy Act (NEPA) has been the law since January 1, 1970. The Act requires a report to be filed assessing the environmental impact of proposed major federal actions. In the first 3 years of the existence of the law more than 3600 EIS's were filed of which more than 2000 by Department of Transport (1). The exact number of EIS related to airport developments is not known to us, but it must be substantial. During the first two months of 1974 29 airport related EIS's were filed in the U.S. (2).

The next section is aimed at assessing the state-ofthe-art for estimating the airport related air pollution impact on the environment.

1.2 State-of-the-Art Review

Typically, the EIS contains an elaborate description of the proposed development program and its purpose, but the environmental considerations are far from being exhaustive. Environmental insults are often described in qualitative terms such as "not significant, minor, not appreciable, minimal, certain amount, temporal, etc." (3,4,5,6). Most of the airport EIS's published to date therefore do not analyze environmental problem areas comprehensively in a satisfactory manner, reflecting the lack of understanding of environmental problems and inadequacy of analytical techniques. Deficiencies in current procedures for environmental impact evaluation of airport activities and the need for methods which would enable a comprehensive environmental evaluation prompted studies on air pollution impact methodology for airports (7,8,9). The following discussion is mainly based on the EPA publication by Norco et al (7).

The general approach to assess the air pollution impact of an airport and its associated surrounding activities is based on a general protocol which consists of: (a) identification and isolation of air pollution producing activities, (b) quantification of these activities. (c) transformation of the activities into emission rate estimates by using source emission factors, (d) description of regional meteorology and (e) transformation of computed emission rates and meteorological data into an air quality forecast via dispersion modeling or some other technique. In cases where the present ambient pollutant levels are known and related to the emission rates via an appropriate dispersion model such a model can be "tuned" to predict future ambient air quality from predicted future spatial and temporal increased source activities. The predicted ambient pollutant levels are related to the ambient air quality standards and, if necessary recommendations are made on how to minimize the environmental impact of these pollutants.

(a) Identification and Isolation of Air Pollution-producing Activities.

The airport-related activities producing air pollution are usually separated into two broad categories; those which take place within the airport boundaries and those which occur outside the boundaries but are induced by the presence of the airport. The activities within the airport are comprised of those related to:

- 1) aircraft
- 2) ground service vehicles
- 3) fuel storage and distribution
- 4) engine tests and maintenance
- 5) heating and air conditioning plants
- 6) access traffic

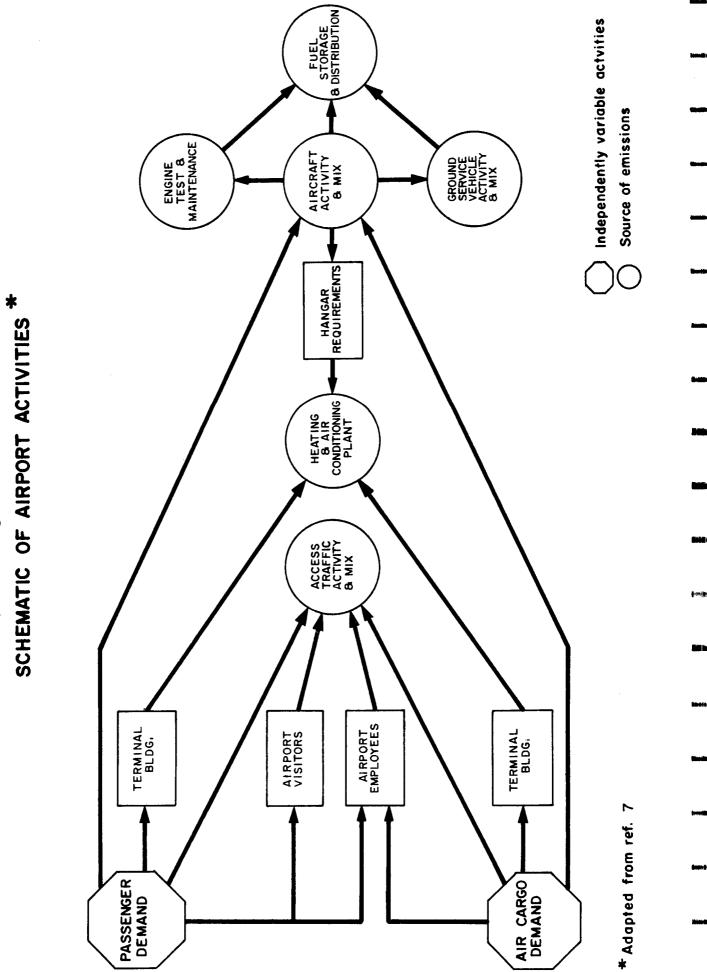
These activities may be grouped into point, line and area sources according to their emission characteristics.

The activities corresponding to the areas outside the airport boundaries are associated with the various categories of

land use, to mention only a few:

- 1) residential
- 2) commercial and institutional
- 3) manufacturing and warehousing
- 4) transportation and communication
- 5) vacant and agricultural
- 6) recreational and water

In our further endeavour we will be concerned only with the activities within the airport boundaries.


(b) Quantification of Air Pollution-producing Activities.

The basis for an analysis of a proposed airport facility and the estimate of various activities are the engineering and planning studies drawn up to satisfy the technical needs of the decision makers. These studies project various airport activity levels and usually contain enough information to enable reasonable estimate of emission sources. Figure 1.1 schematically presents functional dependence of various activities of a commercial airport which are likely to result in emission of air pollutants. The actual emission sources are shown as circular figures on the diagram. The primary independently variable activities (octagons with no input arrows) are the projected passenger demand and projected cargo demand. All other activity levels can presumably be estimated from this information.

(c) Estimation of Air Pollutant Emissions.

After the various airport activity levels leading to air pollutant emissions have been estimated the emission rates can be computed by applying proper emission factors for each activity. Emission factors are compiled in literature (7,10) and are presented for aircraft, ground service vehicles, fuel storage and distribution, engine test and maintenance, heating and air conditioning plant, and access traffic. Pollutants of primary consideration are carbon monoxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulates.

In most cases the calculation procedure is straightforward and requires only simple arithmetic. Computer programs have been written to handle the large volume of data and to enable the investigator to conduct "numerical experiments" and analysis of specific variables of interests.

... Figure

٠,

Emission rates are presented for each activity separately indicating spatial and temporal patterns and trends with respect to mix and modes of operation. Finally the total emission rate is presented as a summation of individual contributions.

(d) Regional Meteorology.

Once the air pollutants are emitted to the atmosphere they undergo a number of different processes. The most important meteorological processes for air pollution which take place while waste substances are airborne are dilution of waste substances by diffusion and stirring, their removal by fallout, washout and atmospheric reactions, and photochemical processes promoted by solar radiation (11). Regional temperature and wind structure form the background of atmospheric pollutant dispersion and are of prime importance in estimating the air quality of the region.

Meteorological analysis includes the data on atmospheric stability and wind speed, direction and persistance. The most important parameters governing the dispersion of air pollutants in the lower atmosphere are the mixing height and the transport wind speed. Another derived parameter is the ventilation factor. The ventilation factor is obtained as a product of mixing height and the transport wind speed and is a measure of the volume rate of horizontal transport of air within the mixed layer per unit width (normal to the wind vector). Monthly statistics, mean values and directional frequency distributions are derived which are fed into a dispersion model.

(e) Air Quality Estimates. Dispersion Modeling.

The complexity of airport pollutant dispersion modeling resembles that for urban air pollution. A large number of diverse sources emit a variety of waste materials at different rates varying with time and location. The receiving atmosphere is, in turn, continually undergoing changes in temperature and wind structure, thermal and mechanical turbulance, and solar radiation. The kinetics of atmospheric reactions also vary depending on the types of pollutants, moisture content, presence of reactive and/or catalytic particulate matter and solar radiation. The topography of the region modifies the temperature and wind profiles and strongly effects the nature of the turbulent planetary boundary layer as well as the importance of this layer as a pollutant sink. The accuracy of a pollutant dispersion model will reflect the degree to which the above phenomena are comprehended. The simplest model of diffusion from an area source is a "box" model based on a mean mixing height and transport wind velocity. This model is crude and unreliable unless limited to the order of magnitude assessment and gross pollutant trends. The very complex models, on the other hand take into account and process a large amount of information, and give fairly reliable preductions of ambient pollutant concentrations both temporally and spatially. The use of such models is restricted by the computer capacity and speed, and the available meteorological and analytical data. It is of little use to incur the high expense of developing and running a sophisticated model unless the supply of data is adequate.

At present, there are three fairly complex dispersion models available for use in computing the quality of ambient air as a result of airport activity: the FAA/Argonne Airport Air Pollution Model, the Northern Research and Engineering Corp. (NREC) Model, and the Systems Science and Software (S^3) Photochemical Model. The following brief description of these models is taken directly from reference (7).

"The FAA/Argonne Airport Air Pollution Model is made up of two sub-models. The first deals with the simulation of airport activity and generates an emission enventory that is diurnally and spatially distributed. The second uses the emission inventory as a data base for computing air quality, using a modified steadystate guassian plume algorithm.

The activity sub-model further classifies the emissions by the type of source producing them. Emissions which are generated over a large area (e.g., ground service activity in the terminal area, automobile movement in the parking lots, fuel evaporation from the filling of vehicle tanks, etc.) are classified as area sources. Emissions generated in a long and narrow strip (e.g., roadways, runways) are classified as line sources. Emissions emanating from a very small area (e.g., heating plant, engine test cells) are classified as point sources.

The Gaussian plume air quality sub-model utilizes the point, area, and line source parameters calculated by the activity sub-model, and combines them with meteorological information that is relevant to the area to compute air quality. Since the input emission inventory is both spatially and diurnally distributed, the resulting air quality is also spatially and diurnally distributed.

5

The sub-model uses a one-hour averaging time to compute pollutant concentrations and makes use of time- and distancedependent dispersion coefficients. These give better results at the high and low ends of the wind speed range than the coefficients that are distance-dependent only. In addition, a diurnal variation of important meteorological parameters, such as wind speed, mixing depth, etc., is used instead of a seasonal average to improve the model's accuracy.

In making the computations the model extrapolates the point, area, and line sources back to a virtual origin. This eliminates some of the wide fluctuations in calculated concentrations resulting from changes in the wind direction-receptor location, referred to as the beacon effect.

To summarize, the projected emission rates can readily be translated into air quality via the FAA/Argonne Air Pollution Model. The data as presented need only to be modified to show spatial distribution in order to serve as direct input into the air quality sub-model. Experience with this model on Chicago's O'Hare Airport shows the calculated air quality to be underestimated, as compared to observed air quality, particularly for hydrocarbon concentrations.

The NREC model is fundamentally similar to the FAA/ Argonne model. An activity sub-model and an air quality sub-model are used.

The basic differences between the Argonne and the NREC air quality sub-models are the type of mathematical simplifications used to compute dispersion. The NREC model uses a one-hour averaging time and a Gaussian plume algorithm, as does the Argonne model. NREC, however, uses only point sources that are located at ground level, instead of the virtual origin point, area, and line sources. It therefore suffers from the large fluctuations in concentration resulting from the "beacon" effect. Also, the NREC model uses dispersion coefficients that are distance-dependent only.

As with the Argonne model, the emission calculations can be readily adapted for input into the NREC model once some spatial resolution is available. Experience with this model at Argonne has shown that it also underestimates air quality as compared to observations. In most cases, the discrepancies are larger than that of the Argonne model. The S³ photochemical model consists of two computer codes; the first, SETUP, uses meteorological and source data to create an input for the second, NEXUS/P (Numerical EXamination of Urban Smog with Photochemistry). NEXUS/P then moves and diffuses the pollutants, changes the pollutant concentrations as a result of photochemical reactions, adds pollutants due to sources, and stores or retrieves pollutants advected into or out of the borders of the computational grid. 7

The program was originally written to stimulate the photochemical reactions taking place in the Los Angeles smog. It is, therefore, necessary to tailor SETUP to the conditions found around the airport under study.

The data read in at execution time includes wind measurements and initial concentrations of hydrocarbons, NO, NO₂, and CO if desired. NEXUS/P considers reactions occurring between and producing NO, NO₂, HC, O₃, and HNO₂. HNO₂ and O₃ are the results of photochemical reactions, while CO is not explicitly considered. Briefly, the S³ model treats the transport of pollutants by assigning mathematical points to given amounts of pollutant. The movements of each of these points are then traced through time so that at any point in time and in any cell of the three-dimensional grid system the concentration can be determined by simply counting the number of points residing in that cell at that time. The mechanism for moving the points which takes into account both advection and diffusion is completely independent from the photochemical reactions. Consequently, it is possible to employ several alternative photochemical reaction mechanisms, if so desired. The dispersion and chemical reactions are treated in an alternating step fashion. First, the pollutants are allowed to disperse through the grid system for a time interval, then the dispersion is frozen and a chemical reaction step occurs, etc. In the limit of very small time steps, this alternating procedure approaches the simultaneous operation of dispersion and chemical reactions.

The mathematical point method provides a very convenient means for merging a distribution of airborne and ground-based sources into a cell or grid type model which is essential for the treatment of photochemical reactions. However, because of the limitations of computer core storage and run time, the individual cells cannot be too small so that one tends to lose a certain amount of spatial and temporal resolution. This is the sacrifice which must be made if the photochemistry is to be treated without an intolerable consumption of computer time."

2. IDENTIFICATION OF AIRPORT EMISSION SOURCES

Among the activities which are associated with air pollutant emissions within the airport and which will be considered in this report are included:

- 1) Aircraft movements
- 2) Ground service vehicle movements
- 3) Fuel storage and distribution
- 4) Engine tests and maintenance
- 5) Heating plants operation
- 6) Access traffic activity

These sources may be classified by the type into three groups:

- A. Area sources: aircraft movements outside runways, ground service vehicels, fuel distribution, traffic on parking lots.
- B. Line sources: aircraft movements on runways, access traffic on roadways.
- C. Point sources: engine tests, heating plants.

3. AIRPORT ACTIVITY LEVELS

Various airport activities and their functional dependence have been described in Section 1.2 and schematically presented in Figure 1.1. Independently variable activities are the projected passenger demand and projected air cargo demand. All other activities can presumably be determined from this information.

3.1 Passenger Demand

The passenger demand level is measured by the enplaning passenger rate. Enplaning passengers include originating and connecting passengers. The deplaning passenger rate which includes terminating and connecting passengers is approximately equal to the enplaning passenger rate. The through passengers are those arriving and departing the airport aboard the same aircraft.

Annual enplaning passenger rates are presented in Table 3.1 up to the year 2000 (12). The passenger enplaning rate will increase from 2.2 million in 1975 to over 13 million in the year 2000. The peak enplaning rate will increase from close to 9 thousand passengers per day in 1975 to about 49 thousand passengers per day in the year 2000, and from 1400 passengers per hour in 1975 to 5600 passengers per hour by the year 2000.

PASSENGER DEMAND FORECAST*

VANCOUVER INTERNATIONAL AIRPORT

Enplaned passengers	1973	1975	1980	1985	1990	1995	2000
annual (millions)	1.76	1.76 2.16	3.31	4.85	3.31 4.85 6.98 9.83	9.83	13.45
peak day	7136	8615	12903	18537	26132	36150	48656
peak hour	1208	1401	1902	2527	3336	4356	5599

Passenger distribution

- originating
 - terminating
- connecting

35% 35% 30% - through negligible

* Data obtained from ref 12.

3.2 Air Cargo Demand

The air cargo is functionally divided among freight, express and mail. As with passenger forecasts distinction must be made between originating air cargo, transfer air cargo and termin-• ating air cargo. Table 3.2 presents air cargo forecasts up to year 2000 (12).

TABLE 3.2

AIR CARGO FORECAST*

VANCOUVER INTERNATIONAL AIRPORT

Year	Enplaning and Deplaning (thousands of metric tons)
1972	52.7
1975	108.9
1980	261.8
1985	554.0
1990	1032
1995	1750
2000	2570

* Data obtained from ref (12).

11

....

••• B

3.3 Aircraft Activity

Aircraft activity and mix is perhaps the single most important information necessary for evaluation of air pollution arrising from the operation of an airport (see Figure 1.1). The activity level is measured by the number of aircraft movements or by the number of aircraft landing-takeoff (LTO) cycles. An aircraft movement or operation is either landing or a takeoff. An LTO cycle includes operations of approach, landing, taxi-in, taxi-out, takeoff and climbout; it consists of two movements and LTO cycle activity level equals one-half the number of movements. The mix is measured by the fraction that each aircraft type makes of the total activity. The classification of aircrafts into different classes is summarized in Table 3.3.

Table 3.4 presents data on projected aircraft activity and mix for Vancouver International Airport up to the year 2000 (12). The total aircraft activity is divided into activities corresponding to air carriers, cargo crafts and general aviation. The aircraft percent activity mix is graphically presented in Figure 3.1. The forecast predicts an increase of jumbo and long range aircraft activity from about 1 and 8% in 1973 to about 22 and 13% in the year 2000, respectively. The medium and short range aircraft activity will decrease from about 19 and 6% in 1973 to about 2 and 0.1% in the year 2000, respectively. The general aviation will remain approximately constant at about 65%, as will the cargo aircraft activity at about 1% of the total.

It should be pointed out that aircraft activity and mix are as much dependent on the influence of developing technology as on the patterns of the air passenger and cargo demand and their estimates present an exceedingly difficult task. The projected activities are therefore only approximate figures.

AIRCRAFT TYPE BY CLASS*

CLASS	TYPE	CODE	PAS. CAP.	WEIGHT (m. tons)	COMMON NUMBER OF ENGINES	ENGINE COMMONLY USED
Jumbo						
350	Boeing 747	B747	365	352	4	JT-9D
250	Lockheed 1011	L101	260	186	3	JT -9 D
	Douglas DC10	DC10	250	186	3	JT -9 D
Long Range						
200	Douglas DC8-60	DC86	180-210	159	4	JT-3D
150	Boeing 707	B707	140-150	148	4	JT-3D
	Douglas DC8-40	DC84	135-140	143	4	JT-3D
Medium Range						
100	Boeing 727	B727	97-122	77	3	JT-8D
	Boeing 737	B737	92-117	52	2	JT-8D
	Boeing 720	B720	115-120	106	4	
	Douglas	DC9	94	44	2	JT-8D
Short Range						
50	Viscount	VC7	48	33	4	
	Convair 640	CV64	50	25	2	501-D13
	Commando CV20	C46	50	22	2	
	Douglas DC3	DC3	21-28	12	2	R-1830
	Nord 262	ND62	24	11		

* Data from references 7, 10 and 12.

13

.

-

Cinty-

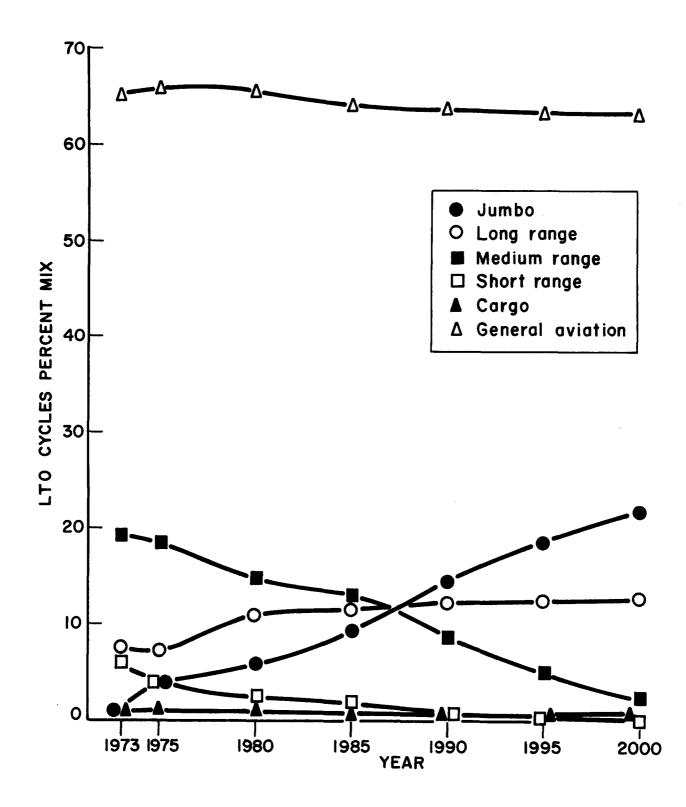
Weibr

8:0-10 6

General an

inner Pr

(country)


AIRCRAFT ACTIVITY AND MIX* VANCOUVER INTERNATIONAL AIRPORT

LTO Cycles		1973	1975	1980	1985	1990	1995	2000
Total	- annual	84,701	89,288	117,705	149,015	179,025	208,970	238,250
	- average day	230	242	320	405	487	569	650
	- peak day	315	348	460	582	700	817	933
	- peak hour	28	31	41	52	62	72	82
Air Carrier	- annual	28,806	29,738	39,805	52,715	64,325	75,870	87,000
Cargo	- annual	782	006	006	1050	1200	1350	1500
General Aviation	1 - annual	55,113	58,650	77,000	95,250	113,500	131,750	149,750
Air Carrier Ju	Jumbo							
- C1	Class 350, % total	0.6	1.5	2.5	4.2	6.4	8.5	9.7
- C1	Class 250, % total	0.5	2.3	3.3	5.1	8.0	10.0	12.0
Lc	Long Range							
- C1	Class 200, % total	2.8	1.6	1.2	2.1	2.8	3.1	3.6
+ C1	Class 150, % total	4.9	5.6	9.7	9.4	9.4	9.3	0.6
Me	Medium Range							
۰ C1	Class 100, % total	19.1	18.8	14.7	12.9	8.6	5.0	2.3
Sh	Short Range							
+ C1	Class 50, % total	6.0	4.0	2.5	1.7	0.7	0.3	0.1
Cargo	% total	0.9	1.0	0.8	0.7	0.7	0.6	0.6
General Aviation	1 % total	65.1	65.7	65.4	63.9	63.4	63.0	62.9

* Data obtained from ref (12).

14

3.4 Ground Service Vehicle Activity

The ground service vehicles are the motorized equipment needed to load and unload the aircraft and otherwise prepare the aircraft for the next flight. The activity level and mix of the equipment is measured by the amount of time spent in operation by each vehicle type. The operating time of a particular vehicle type, on the other hand, depends on the type of aircraft being serviced. Table 3.5 lists estimated servicing times of different ground supporting vehicles as a function of aircraft class. These estimates are obtained from data published in reference (7).

The ground supporting vehicle operating times are obtained by multiplying the number of LTO cycles of each aircraft type by the service time of each vehicle type. Table 3.6 gives the projected ground service vehicle operating times for air carriers based upon the aircraft activity and mix forecast of Table 3.4 and the service times of Table 3.5. The ground service vehicle activity related to the cargo and general aviation is not taken into account since it represents only a small fraction of the total activity.

The fuel consumed by ground service vehicles can be estimated using fuel consumption rates listed in Table 3.7 and operating times in Table 3.6. Estimated annual ground service fuel requirements are given in Table 3.8.

SERVICE TIMES OF AIRCRAFT GROUND SERVICE VEHICLES*

			Ti	me in	Vehic1	e-Minutes per	Aircraft
Vel	Aircraft Class nicle	Ju 350	mbo 250	Long 200	Range 150	Medium Range 100	Short Range 50
1.	Tractor	155	148	98	98	66	50
2.	Belt Loader	48	40	37	30	28	15
3.	Container Loader	92	80	12	10	6	0
4.	Cabin Service	24	25	15	15	12	0
5.	Lavatory Truck	24	18	18	18	15	10
6.	Water Truck	12	10	10	10	10	10
7.	Food Truck	55	20	30	30	17	10
8.	Fuel Truck	50	45	40	40	20	15
9.	Tow Tractor	10	10	10	10	10	5
10.	Conditioner	0	0	30	30	0	0
11.	Airstart						
	Transporting Engine	3	0	10	5	0	0
	Diesel Power Unit	2	0	8	4	0	0
12.	Ground Power Unit						
	Transporting Engine	0	0	9	5	0	0
	Gasoline Power Unit	0	0	4	2	0	0
	Diesel Power Unit	0	0	4	2	0	0
13.	Transporter	19	10	10	5	3	0

* Estimated from data in ref (7).

16

Den fitz

(mail)

RÍF

•

TOTAL DAILY GROUND SERVICE VEHICLE OPERATING TIME*

				Time in V	ehicle Hou	rs per Day	<u>,</u>	
	Vehicle	1973	1975	1980	1985	1990	1995	2000
1.	Tractor	95.15	108.33	154.39	234.17	322.57	413.25	559.67
2.	Belt Loader	35.42	38.90	55.28	77.76	102.59	127.67	153.26
3.	Container Loader	11.21	20.45	36 .9 9	66.89	114.28	165.23	258.73
4.	Cabin Service	14.24	17.00	25.73	37.51	51.93	66.39	81.19
5.	Lavatory Truck	19.49	21.03	29.92	41.18	53,02	64 .9 8	77.04
6.	Water Truck	13.04	13.56	18.34	24.47	30.17	35.93	41.86
7.	Food Truck	25.25	28.07	42.95	61.72	83.71	106.92	129.40
8.	Fuel Truck	31.91	35.99	55.55	79.86	109.61	139.93	170.78
9.	Tow Tractor	11.84	12.64	17.41	23.33	28.84	34.18	39.69
10.	Conditioner	8.86	8.72	17.44	23.29	29,71	35.28	40.95
11.	Airstart							
	Transportation Engine	2.08	1.96	3.63	5.34	6.64	9.77	11.92
	Diesel Power Unit	1.66	1.54	2.84	4.24	5 .91	7.49	9.12
12.	Ground Power Unit							
	Transportation Engine	1.91	1.71	3.17	4.44	5.86	7.05	8.38
	Gasoline Power Unit	0.81	0.71	1.29	1.84	2.52	2.94	3.50
	Diesel Power Unit	0.81	0.71	1.29	1.84	2.52	2.94	3.50
13.	Transporter	4.84	6.07	9.87	16.03	24.53	33.57	42.49

* Serving air carriers

GROUND SERVICE VEHICLES FUEL CONSUMPTION RATES*

	Vehicle	Rate of Fuel Consumption (1/hr)
1.	Tractor	6.81
2.	Belt Loader	2.65
3.	Container Loader	6.62
4.	Cabin Service	5.68
5.	Lavatory Truck	5.68
6.	Water Truck	5.68
7.	Food Truck	7.57
8.	Fuel Truck	6.43
9.	Tow Tractor	8.89
10.	Conditioner	6.62
11.	Airstart	
	Transporting Engine Diesel Power Unit	5.30 31.04
12.	Ground Power Unit	
	Transporting Engine Gasoline Power Unit Diesel Power Unit	7.57 18.93 26.87
13.	Transporter	5.68
Ave	rage 1-10	6.25

* Data from Reference 7

18

7

GROUND SERVICE VEHICLE FUEL REQUIREMENTS* VANCOUVER INTERNATIONAL AIRPORT

	Gaso	line	Die	sel
Year	Annual cu.m	Average Daily litres	Annual cu.m	Average Daily litres
1973	733.737	2010	26.751	73
1975	713.383	1954	24.411	67
1980	1072.841	2939	44.828	123
1985	1591.262	4360	66.084	181
1990	2208.503	6051	91.673	251
1995	2845.057	7795	113.613	311
2000	3723.954	10203	137.652	377

* Based on forecast in Table 3.6 and consumption rates in Table 3.7.

3.5 Fuel Storage and Distribution

The amount of emitted pollutants from fuel storage and distribution depends on the total amount of fuel that is handled at the airport for both, aircraft and ground service vehicles. Fuel consumption at Vancouver International Airport is on the order of 350×10^3 cu.m of jet fuel and about 3600 cu.m of gasoline per year. The projected total amount of fuel that is required for operation of aircraft and ground service vehicles will be estimated indirectly by using fuel consumption rates.

The average amount of fuel pumped per carrier LTO cycle is assumed to be approximately 10 cu.m. This is based on the average amount of about 10 cu.m per LTO cycle at the Chicago airport (7).

The ground service vehicles fuel requirements are given in Table 3.8.

The projected total annual fuel requirements based on the aircraft activity forecast (Table 3.4) and ground service vehicles activity (Table 3.6) is presented in Table 3.9. Even though this estimating procedure is crude the projected estimates are probably of the right order of magnitude.

3.6 Engine Tests and Maintenance

To ensure proper performance aircraft engines require regular maintenance and testing. A test consists of measurements of performance while running the engine through a set of typical flight conditions. The air pollutant emissions due to the engine tests may be significant if a substantial number of tests are performed.

The maintenance activity at an airport depends mainly on its character and location. Airlines prefer to locate their maintenance facilities at airports with a large number of originating and terminating flights. Airports which serve mainly as connection points usually are not preferred locations for large-scale maintenance operations. To illustrate: at Los Angeles originating/ terminating airport there are about 38 engine run-ups per 1000 aircraft movements (8), while at Chicago connecting airport there are only about one to two engine run-ups per 1000 aircraft movements (7). Based on information obtained from major airlines at Vancouver

AVERAGE DAILY AIRCRAFT AND GROUND SERVICE VEHICLE FUEL REQUIREMENTS

VANCOUVER INTERNATIONAL AIRPORT

	Diesel Litres	73	67	123	181	251	311	377
Total	Jet Fuel Gasoline Litres x10 ⁻⁶ Litres x10 ⁻³	25.01	26.15	34.94	44.86	54.75	64.70	75.20
×	Jet Fuel Litres x10 ⁻⁶	2.30	2.42	3.20	4.05	4.87	5.69	6.50
: Vehicles**: rements	Diesel Litres	73	67	123	181	251	311	377
Ground Service Vehicles*** Fuel Requirements	Gasoline Litres	2,010	1,954	2,939	4,360	6,051	7,795	10,203
Aircraft Fuel Requirements*	Gasoline** Litres x10 ⁻³	23.0	24.2	32.0	40.5	48.7	56.9	65.0
Aircraft Fuel	Jet Fuel* Litres x10 ⁻⁶	2.30	2.42	3.20	4.05	4.87	5.69	6.50
		1973	1975	1980	1985	1990	1995	2000

* Based on consumption of 10,000 litres per air carrier LTO cycle

** 1% of jet fuel

*** From Table 3.8

International Airport it appears reasonable to assume about 10 engine run-ups per 1000 air carrier movements. The estimated number of engine tests is given in Table 3.10.

TABLE 3.10

ANNUAL AIR CARRIER ENGINE TESTS VANCOUVER INTERNATIONAL AIRPORT

Year	Total No. of Engine Tests	<u>No. of</u> 350	Engine 250	e Testa 200	s in A: 150	ircraf 100	t Class* 50	Consumed Fuel** cu.m
1973	576	14	9	63	111	325	68	1152
1975	595	34	39	36	128	313	45	1190
1980	796	71	70	34	274	312	35	1592
1985	1054	147	134	74	330	339	30	2108
1990	1287	262	246	115	385	264	14	2574
1995	1517	399	352	146	437	176	7	3034
2000	1740	510	474	187	474	91	4	3480

* Estimated on the basis of the 1973-2000 aircraft mix and the number of engines per aircraft.

** Based on average consumption of 2000 litres per engine test.

Bette it:

3.7 Heating and Air Conditioning Plants

Terminal buildings and hangars are generally heated and air conditioned from one or several plants whose operation is expected to produce some air pollutant emission. The estimated fuel requirements for the heating plants at Vancouver International Airport are summarized in Table 3.11. It is supposed that the new terminal building will be completed in 1985 and that the same amount of fuel will be required in the period 1985-2000.

TABLE 3.11

ANNUAL HEATING PLANTS FUEL REQUIREMENTS VANCOUVER INTERNATIONAL AIRPORT

Year	Fuel Type	Required Quantity
1973	gas oil coal	5.4 × 10 ⁶ cu.m/yr 2.1 × 10 ³ cu.m/yr 330 m.ton/yr
1975	gas oil	5.4 × 10 ⁶ cu.m/yr 2.1 × 10 ³ cu.m/yr
1980	gas oil	8.2 × 10 ⁶ cu.m/yr 3.3 × 10 ³ cu.m/yr
1985	gas oil	34 × 10 ⁶ cu.m/yr 13.2 × 10 ³ cu.m/yr
1990- 2000		Same as 1985

3.8 Access Traffic

Access traffic is a significant source of air pollution at the airport and must be included in the estimate of total airport emissions. The needed information should contain the following:

> number of vehicle trips mix of vehicles distance travelled vehicle operation characteristics

Table 3.12 summarizes the data on access traffic activity and mix at the Vancouver International Airport.

ACCESS TRAFFIC ACTIVITY

VANCOUVER INTERNATIONAL AIRPORT

Typical Peak Hour Traffic Two-way**	2,600	3,100	4,500	6,300	8,500	10,900	13,500
Typical 12-hour Day Traffic Two-way**	22,000	26,000	39,500	54,500	72,000	92,500	115,000
Typical 24-hour Day Traffic Two-way***	29,260	34,580	52,535	72,485	95,760	123,025	152,950
Typical 12-hour Day Number of Cars with Cold Start (20% Total)*	4,400	5,200	7,900	10,900	14,400	18,500	23,000
Average* Speed	40 km/hr	*		:	-	¥	=
Typical 12-hour Day Vehicle Kilometers Travelled	66,000	78,000	118,500	163,500	216,000	277,500	345,000
Distance from* Collection Point to Terminal	3 km	E	1	-	800 810	E	F
Year	1973	1975	1980	1985	1990	1995	2000

* Estimated

** Data from ref 12

*** Equals 1.33 typical 12-hour day traffic

4. SOURCE EMISSION FACTORS

The source emission factors will be presented for carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (SO_x) , sulfur oxides (SO_x) and particulates (PT).

4.1 Aircraft

The emission factor for aircraft is expressed per LTO cycle which includes ground operations of landing, taxi-in, taxiout and take-off, and in-flight operations of approach and climbout below 500 m (1640 feet) (10,13). Typical times-in-mode for an LTO cycle at a metropolitan airport are given in Table 4.1. The modal emission factors are listed in Table 4.2.

TABLE 4.1

TYPICAL TIME IN MODE FOR LTO CYCLE

	Time in Mode, minutes										
Aircraft Class	Taxi- idle	Take- off	Climb- out	Approach	Landing**	Taxi- idle					
Jumbo 350 & 250	19.00	0.70	2.20	4.00	0.70	7.00					
Long range 200 & 150	19.00	0.70	2.20	4.00	0.70	7.00					
Medium range, 100	19.00	0.70	2.20	4.00	0.70	7.00					
Short range, 50	19.00	0.50	2.50	4.50	0.50	7.00					
General aviation turboprop	19,00	0.50	2,50	4.50	0.50	7.00					
General aviation piston	12.00	0.30	4.98	6.00	0.30	4.00					

AT A METROPOLITAN AIRPORT*

* Data from ref 10.

** Taken as equal to Take-off.

TABLE 4.2

MODAL AIRCRAFT EMISSION FACTORS PER LTO CYCLE*

					[
ΡŢ	kg/hr/ engine	1.0	1.7	1.0	0.2	3.7	3.9	3.6	0.16	1.7	1.2	0.68	0.73	1.7	1.4	1.4	0.14	0.36	0.27	0.27	NA**	NA	NA	NA
$S0_{x}$ as $S0_{2}$	kg/hr/ engine	0.788	1.74 6.49	2.36	0.396	4.92	4.06	1.88	0.435	3.97	3.33	1.55	0.224	1.09	0.992	0.520	0.0662	0.166	0.154	0.0934	0.0059	0.0298	0.0288	0.0105
NO _X as NO ₂	kg/hr/ engine	2.75	327.0 208.0	24.5	0.649	67.1	43.6	9.89	1.32	89.8	59.4	14.0	0.560	12.7	10.1	3.32	0.433	1.65	1.50	0.767	0.006	0.097	0.170	0.023
HC	kg/hr/ engine	12.4	1.34	1.36	44.7	2.11	2.23	3.56	3.71	0.353	0.418	0.794	3.35	0.200	0.181	0.148	0.399	0.025	0.024	0.109	0.161	0.676	0.594	0.225
co	kg/hr/ engine	¢ • 97	3.76 5.31	14.8	49.4	5.60	6.94	18.0	15.2	3.4	4.03	8.26	3.96	1.71	1.54	1.58	1.60	0.178	0.258	1.17	5.03	32.2	29.8	11.0
Mode	of Operation	Taxi-idle	Take-off Climbout	Approach	Taxi-idle	Take-off	Climbout	Approach	Taxi-idle	Take-off	Climbout	Approach	Taxi-idle	Take-off	Climbout	Approach	Taxi-idle	Take-off	C1 imbout	Approach	Taxi-idle	Take-off	Climbout	Approach
Engine	Commonly Used		JT-9D	JT-9D			JT-3D	JT-3D				JT-8D												
Common	Number of Engines		4	n.			4	4				З				2			2		2			
Atronoft	Class	Jumbo	350	250	Long	Range	200	150	Med ium	Range		100	Short	Range		50	General	Aviation	-Turboprop		-Piston			

27

* Data from ref. 10 ** NA = Not available **li**niai i

liter di

4.2 Ground Service Vehicles

The "uncontrolled" emission factors for ground service vehicles are presented in Table 4.3. These factors are based on the assumption that ground service vehicle (off highway vehicles) will not be subject to the same emission controls as are private motor vehicles. Because ground service vehicles have similar engines only one emission factor is presented for all gasolinepowered and only one for diesel-powered ground service vehicles.

TABLE 4.3

GROUND SERVICE VEHICLES UNCONTROLLED EMISSION FACTORS*

YEAR	1975 – 2000								
Engine Type Pollutant	CO g/1	HC g/l	NO _X g/1	SO _x g/1	PT g/1				
Gasoline	263.9	59.0	15.1	0.36	0.48				
Diesel	39.0	7.79	40.8	3.20	3.01				

* Data from ref 7 and 10.

4.3 Fuel Storage and Distribution

Emission of hydrocarbons from fuel storage and distribution is a result of evaporation from storage tanks, i.e., the breathing loss, and of displacement of fuel vapors when tanks are filled, i.e., the working loss. Since breathing and working losses from storage tanks and breathing losses from other tanks can be controlled it will be assumed that the emissions result solely from working losses associated with aircraft and ground service vehicle refueling. Table 4.4 lists emission factors in terms of milligrams of hydrocarbons emitted per litre of fuel pumped.

TABLE 4.4

FUEL STORAGE AND DISTRIBUTION EMISSION FACTORS

Hydrocarbon Working Loss Emission

	Jet Fuel	Gasoline
milligrams per litre of fuel pumped	66	436

4.4 Engine Tests and Maintenance

An engine test lasts approximately 20-25 minutes and consists of running the engine through a set of typical flight conditions while measurements of performance are made. Times-inmode of an engine test cycle are similar to those of an LTO cycle presented in Table 4.1. Therefore we will assume the emission factors for engine tests to be the same as those for LTO cycle of an engine under consideration. Such emission factors are presented in Table 4.5.

TABLE 4.5

AIRCRAFT EMISSION FACTORS PER LTO CYCLE*

-	Common Number	Engine	СО	НС	NO_x as NO_2	SO_x as SO_2	PT
Aircraft Class	of Engines	Commonly Used	kg/ Engine	kg/ Engine	kg/ Engine	kg/ Engine	kg/ Engine
Jumbo							
350	4	JT -9 D	21.2	5.5	14.2	0.83	0.59
250	3	JT-9D	21.2	5.5	14.2	0.83	0.59
Long Range							
200	4	JT-3D	21.5	18.7	3.6	0.71	0.55
150	4	JT-3D	21.5	18.7	3.6	0.71	0.55
Medium Range							
100	3	JT-8D	7.71	2.2	4.6	0.46	0.19
Short Range							
50	2		3.0	1.3	1.1	0.18	0.49
General Aviation							
- Turboprop	2		1.4	0.5	0.54	0.08	0.09
- Piston	2		5.5	0.18	0.021	0.006	0.01

* Data from ref 10.

4.5 Heating and Air Conditioning Plant

The most probable fuels for use in Vancouver International Airport heating plants are natural gas and oil. Coal is not used for heating to any significant extent although the supply in the area is ample. Table 4.6 lists the emission factors for all three types of fuel.

TABLE 4.6

Fuel Type	Natural Gas	011	Coal
	kg/10 ⁶ cu.m	kg/cu.m	kg/m.ton
CO	320	0.5	1.0
HC	128	0.35	0.5
NO_x as NO_2	1600	7.2	7.5
$\mathrm{SO}_{\mathbf{x}}$ as SO_{2}	9,6	36	38
PT	302	2.2	7.0

HEATING PLANT EMISSION FACTORS*

* Data from ref 10.

4.6 Access Traffic

In this study the average emission factors for highway vehicles listed in Table 4.7 will be used. The emission factors for hot engine operation and for cold start are included. These emission factors diminish with time as more new vehicles with emission controls are brought into the population.

TABLE 4.7

HIGHWAY VEHICLES AVERAGE EMISSION FACTORS

	со		нс		NO _x	so _x	PT
Year	Hot* Operation	Cold** Start	Hot* Operation	Cold** Start	Hot* Operation	Hot*** Operation	Hot*** Operation
	g/km	g	g/km	g	g/km	g/km	g/km
1973	52	158	6.5	15	3.2	0.12	0.36
1975	43	158	4.9	15	2.9	0.12	0.36
1980	30	83	3.1	8.1	2.6	0.12	0.36
1985	19	61	1.3	5.8	1.5	0.12	0.36
1990- 2000			Same as	1985			

* Data from ref 14
** Data from ref 7
*** Data from ref 10

32

5. SOURCE EMISSION RATES

The source emission rates of various pollutants will be computed by applying the source emission factors of Section 4 to the activity levels of Section 3.

5.1 Aircraft

The important points considered in aircraft emissions are the total emission rate, the emission by aircraft mix and mode of operation, and the trends in aircraft emissions.

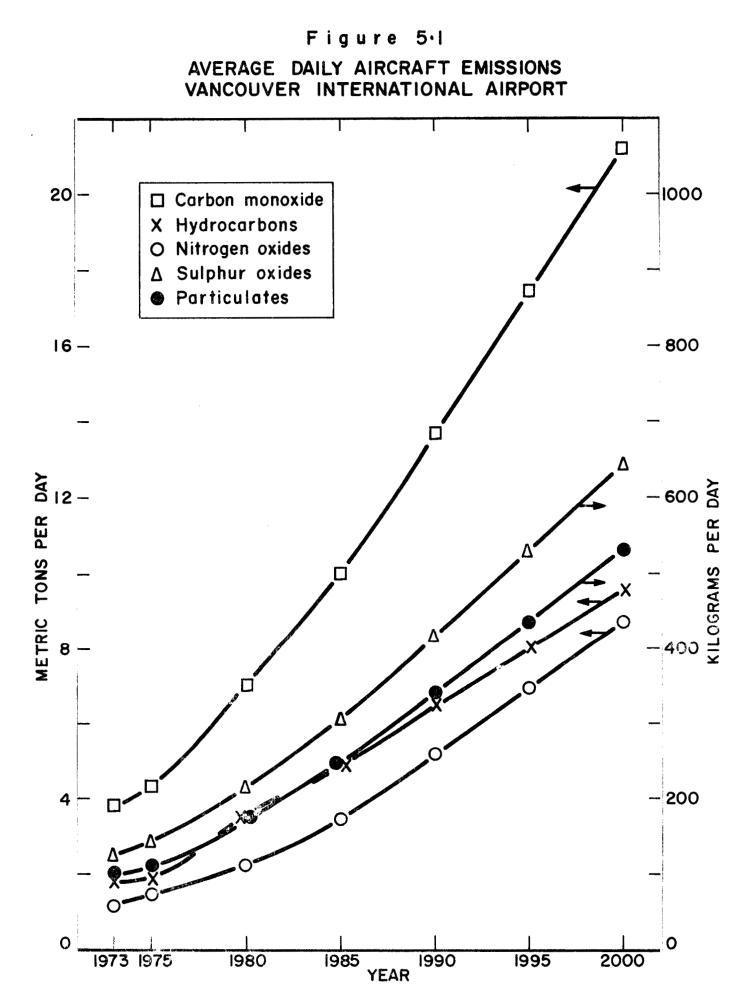
Total emissions of various pollutants and yearly trends are shown in Table 5.1 and Figure 5.1. Average 24-hour day, peak day and peak hour emissions are listed in the Table. Carbon monoxide is emitted in largest quantities followed by hydrocarbons and nitrogen oxides. Sulfur oxides and particulates are emitted in an order of magnitude smaller amounts. The relative increase in emissions of different pollutant is about the same; the quantities of emitted pollutants will about double in the period till the year 1980, quadruple till 1990 and increase 5 to 8 times before the end of the century.

Relative emission rates by mode of operation are summarized in Table 5.2. Average 1973-2000 contributions for various pollutants by different modes of operation are presented. The highest contribution to carbon monoxide, hydrocarbons, sulfur oxides and particulates emissions comes from taxi-idle operation, while the nitrogen oxides contribution is the highest for climbout operation.

More detailed presentation of relative emission rates by aircraft mix and mode of operation is given in Table A.5.2 (Appendix III).

Over 88% of overall pollutant emissions in 1973, and 93% in the year 2000 comes from air carriers. Although the activity level of general aviation is high (see Table 3.4 and Figure 3.1) the resulting pollutant emissions are comparatively low. Emissions from cargo aircrafts amount to less than 2% of total emissions. The increase in pollutant emissions is mainly due to enlarged activities of jumbo and long range aircrafts, commonly equipped with JT-9D and JT-3D engines, respectively.

TOTAL AIRCRAFT EMISSIONS


VANCOUVER INTERNATIONAL AIRPORT

	Ave	rage Da	ily Em:	Average Daily Emissions, kg	, kg	Pe	Peak Day Emissions, kg	Emission	ıs, kg			Peak Hour Emissions, kg	r Emissi	ons, kg	
	co	НС	NOX	s_{0x}	ΡT	co	HC	NOx	s0 _x	PT	co	НС	NOx	s0x	ΡT
1973	3,808	1,792	1,121	3,808 1,792 1,121 122.8	99.44	5,216	,216 2,454 1,535 168.2	1,535	168.2	136.2	136.2 463.6	218.2	136.4	14.96	12.11
1975	4,315	1,887	1,447	4,315 1,887 1,447 141.0 109.2	109.2	6,205	2,713	2,713 2,080 202.8	202.8	157.0	157.0 552.8	241.7	185.3	18.06	13.99
1980	7,028	3,502	2,228	212.6	7,028 3,502 2,228 212.6 173.2 10	10,103	5,034	5,034 3,203 305.6	305.6	249.0	900.5	448.7	285.5	27.24	22.20
1985	9,991		3,470	4,858 3,470 305.1	246.8 14	14,358	6,981	4,986 438.4	438.4	354.6	354.6 1,283	623.7	445.5	39.17	31.69
1990		6,474	5,160	415.8	13,693 6,474 5,160 415.8 339.2 19	19,682	9,305	9,305 7,417 597.6	597.6	487.6 1,743	1,743	824.2	656.9	52.93	43.18
1995		8,005	6,949	528.6	17,412 8,005 6,949 528.6 434.6 25		,001 11,494 9,978 759.1	9,978	759.1	624.0	624.0 2,203	1,013	879.3	66.89	54.99
2000	21,142	9,551	8,732	9,551 8,732 641.7	530.7	30,347), 347 13, 710 12, 534 921.0	12,534	921.0	761.8	761.8 2,667	1,205	1,102	80.95	66.96
					-										

AVERAGE EMISSION INCREASE FACTORS

ΡT	1.00	1.1	1.7	2.5	3.4	4.4	5.3
s0 _x	1.00	1.1	1.7	2.5	3.4	4.3	5.2
NOX	1.00	1.3	2.0	3.1	4.6	6.2	7.8
HC	1.00	1.1	2.0	2.7	3.6	4.5	5.3
co	1.00	1.1	1.8	2.6	3.6	4.6	5.6
	1973	1975	1980	1985	1990	1995	2000

34

-

Carbon monoxide emissions from jumbo aircrafts amount to about 5% of total emissions in 1973, about 19% in 1980 and almost 50% in the year 2000. The emissions from long range aircrafts will increase from about 43% in 1973 to 46% in 1980 and then drop to 36% in the year 2000. By the end of the century these two classes together will account for over 85% of all carbon monoxide emissions. Similar trend is observed for all other pollutants. The results in Table A.5.2 thus demonstrate that any attempt to reduce aircraft emissions should concentrate on the jumbo and long range aircraft classes.

TABLE 5.2

AVERAGE RELATIVE EMISSIONS BY MODE OF OPERATION*

	CO % Emission	HC % Emission	NO _x % Emission	SO _x % Emission	PT % Emission
Taxi-idle	82	97	11 ΄	39	45
Takeoff	1	0.2	23	10	6
Climbout	8	1.0	48	27	18
Approach	8	1.5	16	21	27
Landing	1	0.3	2	3	4

VANCOUVER INTERNATIONAL AIRPORT

* From data in Table A.5.2

5.2 Ground Service Vehicles

It is assumed that ground service vehicles (off highway vehicles) will not be subject to the emission controls as highway vehicles. The "uncontrolled" emission rates of carbon monoxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulates are presented in Table 5.3 for gasoline and diesel type of engines. The combined total emissions are also given in kilograms per day. The emissions amount to 533 kg/day of carbon monoxide, 110 kg/day of hydrocarbons, 33 kg/day of nitrogen oxides, 1.0 kg/day of sulfur oxides and 1.2 kg/day of particulates in the year 1973; for 1980 the corresponding figures are 780, 174, 49, 1.4 and 1.8 kg/day respectively; in the year 2000 the corresponding emissions will be 2708, 606, 170, 4.9 and 6.0 kg/day respectively.

Most of the pollutant emissions come from gasoline type engines; diesel type engines contribute less than 1 percent of carbon monoxide and hydrocarbons emissions, about 10% of nitrogen oxides emissions, about 30% of sulfur oxides emissions and about 20% of particulate emissions. In the event of imposition of emission controls on off highway vehicles the emissions from ground service vehicles will be reduced.

GROUND SERVICE VEHICLES UNCONTROLLED AVERAGE DAILY EMISSIONS

VANCOUVER INTERNATIONAL AIRPORT

	. Total	7 1.185	7 1.140	0.3702 1.781	0.5448 2.638	0.7551 3.659	0.9361 4.678	1.135 6.032
PT kg/day	Diesel	0.9648 0.2197 1.185	0.9379 0.2017 1.140	0.370	0.5448	0.755	0.936	_
' X'	Gasoline Diesel Total	0.9648	0.9379	1.411	2.093	2.904	3.742	4.897
	Total	0.234 0.958	0.214 0.917	0.394 1.452	0.579 2.149	0.805 2.983	0.995 3.801	1.206 4.879
SO _X ' kg/day	Diesel	0.234	0.214	0.394	0.579	0.805	0.995	1.206
5, 3	Gasoline Diesel Total	0.7236	0.7034	1.058	1.570	2.178	2.806	3.673
	Total	2.978 33.33	2.734 32.24	5.018 49.40	73.23	101.6	130.4	169.5
NO _X kg/day	Diesel	2.978	2.734	5.018	7.385 73.23	10.24	12.69 130.4	15.38 169.5
к К Ю	Gasoline Diesel Total	30.35	29.51	44.38	65.84	91.37	117.7	154.1
	Γ	119.2	115.8	174.4	258.6	359.0	462.3	605.9
HC kg/day	Diesel	118.6 0.5690 119.	115.3 0.5219 115.	173.4 0.9582 174.	257.2 1.410 258.	357.0 1.955	459.9 2.423	603.0 2.937
ķ	Gasoline Diesel Total		{		257.2	357.0	459.9	603.0
	1	533.2	2.613 518.3	780.4	1158	1607	2069	2708
CO kg/day	Diesel	530.4 2.847 533.2	2.613	4.797 780.4	7.059 1158	9.79	12.13	14.70 2708
k K	Gasoline Diesel Total	530.4	515.7	775.6	1151	1597	2057	2693
Ураг		1973	1975	1980	1985	1990	1995	2000

37

-28

5.3 Fuel Storage and Distribution

The emissions of hydrocarbons due to working losses associated with aircraft and ground service vehicle refueling are listed in Table 5.4. The hydrocarbon emission range from 163 kg/ day in 1973, to 226 kg/day in 1980, to 462 kg/day in the year 2000. These emissions depend on aircraft activity and the emission growth pattern is the same as that for aircraft.

TABLE 5.4

FUEL STORAGE AND DISTRIBUTION AVERAGE DAILY EMISSIONS VANCOUVER INTERNATIONAL AIRPORT

Year	Hydrocarb	on Emissions,	kg/day
lear	Jet Fuel	Gasoline	Total
1973	151.80	10.90	162.70
1975	159.72	11.40	171.12
1980	211.20	15.23	226.43
1985	267.30	19.56	286.86
1990	321.42	23.87	345.29
1995	375.54	28.21	403.75
2000	429.00	32.79	461.79

5.4 Engine Tests and Maintenance

Pollutant emissions due to engine tests and maintenance are listed in Table 5.5. These figures were arrived at by using the number of tests in Table 3.10 and emission factors per LTO cycle in Table 4.5. The number of engine tests depends on aircraft activity and the emission growth pattern is the same as that for aircraft.

TABLE 5.5

ENGINE TESTING AND MAINTENANCE AVERAGE DAILY EMISSIONS VANCOUVER INTERNATIONAL AIRPORT

Year	СО	HC	NO _x	so _x	PT
ieal	kg/day	kg/day	kg/day	kg/day	kg/day
1973	19.01	11.46	7.81	0.83	0.56
1975	20,88	11.55	8.54	0.90	0.59
1980	33.19	19.91	12.56	1.33	0.90
1985	47.49	27.08	19.28	1.87	1.28
1990	64.65	34.91	28.06	2.47	1.73
1995	81.74	42.27	37.21	3.07	2.19
2000	98.04	49.26	45.96	3.64	2.64

39

5.5 Heating and Air-Conditioning Plant

It is assumed that only natural gas and oil are used as fuel for heating plants (see Table 3.11). Emissions resulting from gas-fired and oil-fired heating plants are given in Table 5.6.

Carbon monoxide emission is expected to increase from 2.8 metric tons per year in 1975 to 4.3 tons in 1980 and 17.5 tons in the year 1985. Hydrocarbon emissions will increase from 1.4 tons per year in 1975 to 2.2 tons in 1980 and 9.0 tons in 1985. Corresponding emissions of nitrogen oxides are 23.8, 36.9 and 149.4 tons; of sulfur oxides 75.6, 118.9 and 475.5 tons; and of particulates 6.3, 9.7 and 39.3 metric tons per year in the year 1975, 1980 and 1985, respectively.

The average contribution to the emission from gas heating over the period 1973-2000 is 62% CO, 48% HC, 36% $\rm NO_X$, 0% $\rm SO_X$ and 26% PT.

Fuel consumption by heating plants varies during a year; it is higher in winter and lower in summer. The "average" day's fuel consumption is calculated over the 200-day period.

DEPT OF THE LIVERONMENT ENVIRONMENT & ROTE FOR SERVICE FARTH SEG M

HEATING PLANT EMISSIONS VANCOUVER INTERNATIONAL AIRPORT

	Total	/year	6,251	6,251	9,736	39,308	to/day	.8/ uay	31.26	31.26	48.68	196.5		
PT		g/year kg	4,620 6	4,620 6	7,260 9	29,040 39		kg/ day w	23.10	23.10	36.30	145.2		74
	Gas 0il Heating Heating	kg/year kg/year kg/year	1,631 4	1,631 4	2,476	10,268 29		kg/uay r	8.16	8.16	12.38	51.34		26
	Total H		75,652	75,652				kg/ day	378.3	378.3	594.4	2378		
s0 _x	011 ating To	year kg/	75,600 75	75,600 75	118,800 118,879	475,200 475,526		kg/ day kg	378.0	378.0	594.0	2376 23		100
0	Gas 011 Heating Heating	kg/year kg/year kg/year	52 75	52 75	79 118	326 475		kg/day kg	0.26 3	0.26 3	0.40	1.63 23		0
			/60	760	380	140			8	8	4	.2		
	g Total	r kg/ye	23,760	23,760	36,880	149,440		y kg/day	0 118.8	0 118.8	184.4	747.2		
NOX	0il Heatin	kg/yea:	8,640 15,120	8,640 15,120	23,760	95,040		kg/day	75.60	75.60	118.8	475.2		64
	Gas 0il Heating Heating	kg/year kg/year kg/year	8,640	8,640	13,120	54,400		kg/day	43.20	43.20	65.60	272.0		36
	Total	kg/year	1,426	1,426	2,205	8,972	:	kg/day	7.13	7.13	11.03	44.86		
HC	0il Heating	kg/year kg/year kg/year	735	735	1,155	4,620		kg/day	3.68	3.68	5.78	23.10		52
	Gas Heating	kg/year	691	169	1,055	4,352		kg/day	3.46	3.46	5.25	21.76		87
	Total	kg/year	2,778	2,778	4,274	17,480		kg/day	13.89	13.89	21.37	87.40		
CO	Gas 011 Heating Heating	kg/year kg/year kg/year	1,050	1,050	1,650	6,600 17,480		kg/day kg/day kg/day	5.25	5.25	8.25	33.00		38
	Gas Heating	kg/year	1,728	1,728	2,624	10,880		kg/day	8.64	8.64	13.12	54.40		62
		Year	1973	1975	1980	1985- 2000		*	1973	1975	1980	1985- 2000	Average Contri-	bution, %

* Average over 200 days period

5.6 Access Traffic

Access traffic is the second most significant source of airport emissions, and is exceeded only by the aircraft. Access traffic emissions are displayed in Table 5.7, and 12-hour day emissions are graphically presented in Figure 5.2. A substantial decrease in emissions around the year 1985 is due to the imposition of the 1975 automotive emission standards. The total emissions decrease as pre-1975 cars are gradually phasing out and more controlled vehicles enter the population even though the vehicle traffic increases. After 1985 emissions steadily increase and will about double before the end of the century. If 1975 controls, on the other hand, are not put into effect the total emissions will be 7-8 times the 1973 level.

These emissions are calculated for the average speed of 40 hm/hr. When the average speed is reduced from 40 km/hr to 20 hm/hr the emissions will increase; the correction factors for CO and HC are about 2.1 and 1.7, respectively (7).

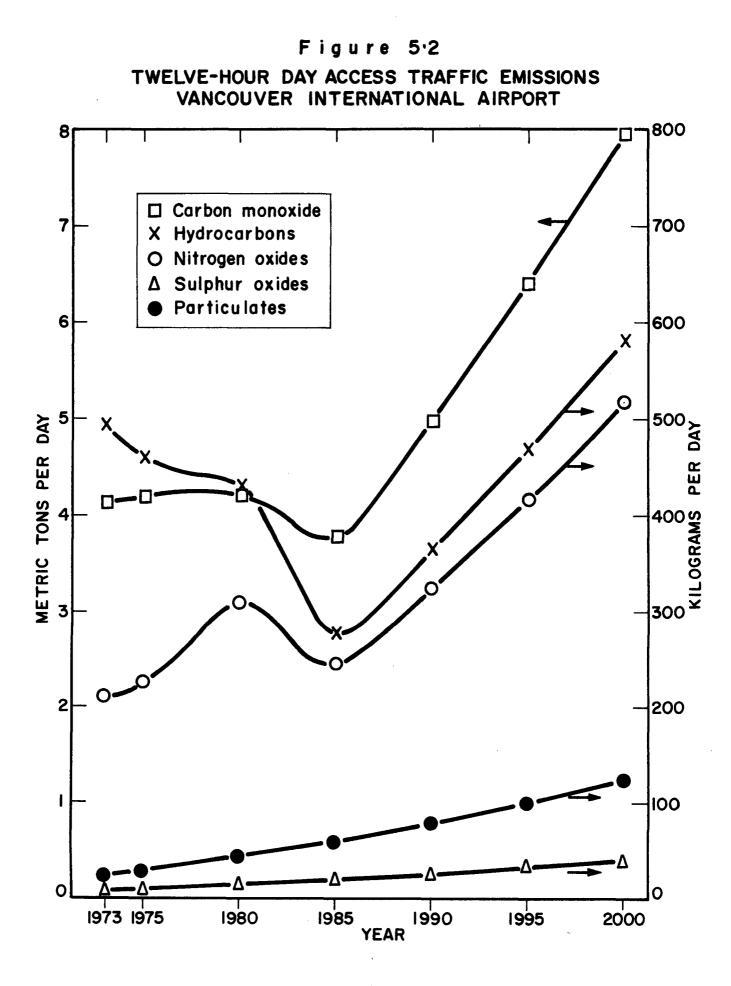
The contributions to the emissions of carbon monoxide and hydrocarbons by the cold start is presented in Table 5.8; the emissions from cold start amount to about 20% of emissions from hot operation.

The change of traffic mode from private transportation to mass transit by buses, diesel commuter trains or electric rail transit would substantially effect the pollutant emission. Such considerations, however, are beyond the scope of this study.

ACCESS TRAFFIC EMISSIONS*

VANCOUVER INTERNATIONAL AIRPORT

		24-	24-hr day emissions, kg**	emissi(ons, kg	**		2-hr da	12-hr day emissions, kg	ions, k	ഹ	Peak	Peak hour emissions, kg	missic	ons, kg	
	rear	co	HC	NOX	S0 _x	PT	co	HC	NOX	s0x	PT	co	НС	NOX	$so_{\mathbf{x}}$	ΡT
	1973		5,489 658.4 280.9 10.53	280.9	10.53	31.60	4,127 495.0 211.2	495.0	211.2	7.92	23.76	487.8 58.50 24.96 0.936	58.50	24.96	0.936	2.808
	1975		5,554 612.1 300.8 12.45	300.8	12.45	37.35	4,176 460.2 226.2	460.2	226.2	9.36	28.08	497.9 54.87 26.97 1.116	54.87	26.97	1.116	3.348
,	1980	+	5,601 573.8 409.8 18.91	409.8	18.91	56.74	4,211	431.4	308.1 14.22	14.22	42.66	479.7 49.14 35.10 1.620	49.14	35.10	1.620	4.860
	1985		5,017 366.8 326.2 26.09	326.2	26.09	78.28	3,772 275.8 245.3 19.62	275.8	245.3	19.62	58.86	58.86 436.0 31.88 28.35 2.268	31.88	28.35	2.268	6.804
	1990		6,626 484.5 430.9 34.47	430.9	34.47	103.4	4,982	364.3	364.3 324.0 25.92	25.92	77.76	588.2 43.01 38.25 3.060	43.01	38.25	3.060	9.180
	1995	1995 8,515 622.6 553.7 44.29	622.6	553.7	44.29	132.9	6,402	468.1	6,402 468.1 416.3 33.30	33.30	06.90	99.90 754.3 55.15 49.05 3.924	55.15	49.05		11.77
	2000	2000 10,584	773.9	773.9 688.3 55.06		165.2	7,958	581.9		517.5 41.40 124.2	124.2	934.2	934.2 68.31 60.75 4.860 14.58	60.75	4.860	14.58


* Distance from collection point to terminal = 3 km

** Equals 1.33 12-hr day emissions

43

8:00

柳槽

ACCESS TRAFFIC 12-HOUR DAY EMISSIONS OF CARBON MONOXIDE AND HYDROCARBONS* VANCOUVER INTERNATIONAL AIRPORT

		со			НС	
	kg	/day		kg	g/day	
Year	Hot operation	Cold Start	Total	Hot operation	Cold Start	Total
1973	3,432	695.2	4,127	429.0	66.00	495.0
1975	3,354	821.6	4,176	382.2	78.00	460.2
1980	3,555	655.7	4,211	367.4	63.99	431.4
1985	3,107	664.9	3,772	212.6	63.22	275.8
1990	4,104	878.4	4,982	280.8	83.52	364.3
1995	5,273	1129	6,402	360.8	107.3	468.1
2000	6,555	1403	7 ,9 58	448.5	133.4	581.9

* Distance from collection point to terminal = 3 km

44

(117 HB

Bioter (P

5.7 Total Airport Emissions

The summation of the total airport emission rates is given in Table 5.9 for carbon monoxide, hydrocarbons, nitrogen oxides, sulfur oxides and particulates. Average 24-hour day, peak 12-hour day and peak hour total airport emissions are given. In calculation of peak emissions corresponding peak aircraft and 12-hour day access traffic emissions were used; from other sources average emissions were utilized. The total airport average daily emissions are also graphically presented in Figure 5.3.

Based on this forecast the total average daily airport emissions would be on the order of 10 metric tons CO, 2.8 metric tons HC, 1.9 metric tons NO_x , 0.53 metric tons SO_x and 0.18 metric tons PT in the year 1975. In 1980 the total daily emissions would be 13 tons CO, 4.5 tons HC, 2.9 tons NO_x , 0.83 tons SO_x and 0.28 tons PT. By the end of the century the total daily airport emissions would amount to about 35 tons CO, 11 tons HC, 10 tons NO_x , 3.1 tons SO_x and 0.9 tons PT.

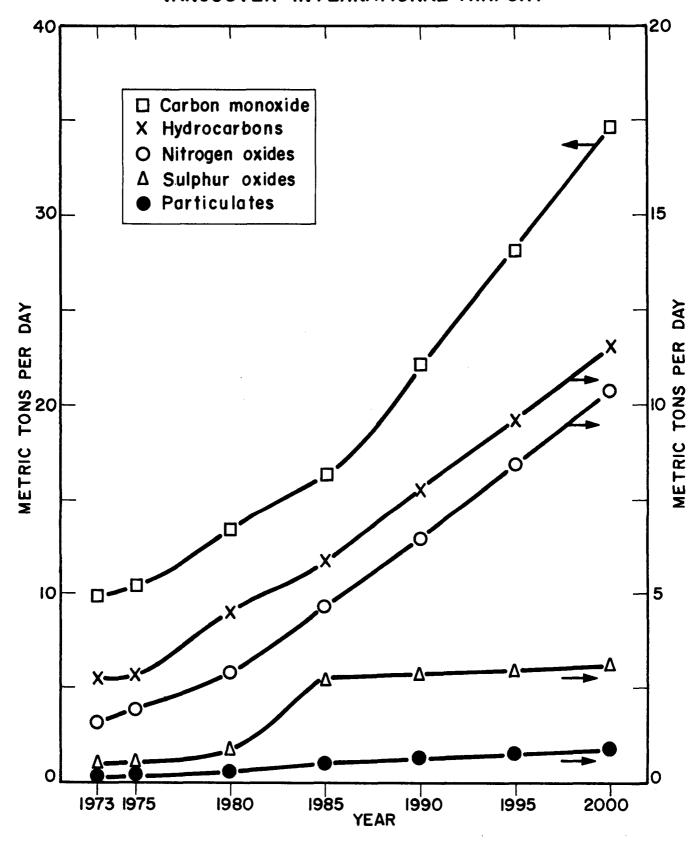
The summation of the individual contributions to the total average emission rates is given in Table 5.10. The biggest source of pollution is aircraft; aircraft accounts for 39-62% CO, 65-83% HC, 72-84% NO_x, 11-26% SO_x and 47-62% PT emission.

The second largest source of pollution is access traffic. Access traffic contributes between 30-56% CO, 6-24% HC, 7-18% $\rm NO_X$, 1-2% $\rm SO_X$ and 15-21% of PT emission.

The third most significant source of air pollutants is heating plants. Emissions of CO and HC from heating plant operations is less than 1% but emissions of NO_X , SO_X and PT are substantial. Contributions from heating plants are 6-16% NO_X , 70-88% SO_X and 17-37% PT.

Emission rates resulting from ground service vehicle, fuel storage and distribution, and engine tests and maintenance activities are less significant; these emissions together amount to about 5% of the total airport emissions.

TOTAL POLLUTANT EMISSIONS VANCOUVER INTERNATIONAL AIPORT


1000	Avera	ge 24-hı	Average 24-hr Day Emissions,	nissions	s, kg	Peak	12-hr D	Peak 12-hr Day Emissions, kg	sions,	kg	Pe	Peak Hour Emissions, kg	Emissi	ons, k	6
cat	co	HC	NOx	sox	PT	co	HC	NOX	s0 _x	PT	CO	HC	NOX	s0 _x	PT
1973	9,863	2,751	9,863 2,751 1,562 513.4	513.4	164.1	7,018	1,872	7,018 1,872 1,059	ſ	282.1 108.4	975	289.2	289.2 168.0 31.7 16.3	31.7	16.3
975	10,422	2,805	1975 10,422 2,805 1,907	533.6	179.6	7,555	1,970	7,555 1,970 1,346	300.8	123.1	1,074	300.8 123.1 1,074 309.3 218.9 35.0 18.7	218.9	35.0	18.7
980	13,464	4,508	1980 13,464 4,508 2,884 828.7	828.7	281.3	9,680	3,164	3,164 2,033	465.6	192.8	1,415	465.6 192.8 1,415 515.8 330.9 53.7 29.2	330.9	53.7	29.2
985	1985 16,301	5,842	4,636 2713	2713	525.5	525.5 11,597 4,075 3,158 1430	4,075	3,158	1430	336.4	1,773	336.4 1,773 681.3 508.8 140.7 46.8	508.8	140.7	46.8
066	22,078	7,743	1990 22,078 7,743 6,468 2834	2834	644.5	644.5 15,702 5,409 4,471 1516	5,409	4,471	1516	422.5	422.5 2,404	899.9	899.9 731.7 155.3 60.8	155.3	60.8
1995	28,165	9,581	28,165 9,581 8,418 2958	2958	770.9	770.9 20,022 6,692 5,863 1605	6,692	5,863	1605	513.6	513.6 3,051 1108	1108	966.5	966.5 170.2 75.2	75.2
000	34,619	11,487	2000 34,619 11,487 10,383 3083	3083	901.0	901.0 24,578	8,018	8,018 7,266 1695	1695	607.7	607.7 3,722 1322		1203	185.2 90.1	90.1

46

.

TOTAL AVERAGE 24-HR DAY EMISSIONS VANCOUVER INTERNATIONAL AIRPORT

AVERAGE POLLUTANT EMISSIONS BY VARIOUS SOURCES

VANCOUVER INTERNATIONAL AIRPORT

			CAF	CARBON MONOXIDE		
Year	Total	Aircraft	Ground Service Vehicles	Engine tests and maintenance	Heating and air conditioning	Access Traffic
	kg/day	kg/day %	kg/day %	kg/day %	kg/day %	kg/day %
1973	9,863	3,808 38.6	533.2 5.4	19.0 0.2	13.9 0.1	5,489 55.7
1975	10,422	4,315 41.4	518.3 5.0	20.9 0.2	13.9 0.1	5,554 53.3
1980	13,464	7,028 52.2	780.4 5.8	33.2 0.2	21.4 0.2	5,601 41.6
1985	16,301	9,991 61.3	1158 7.1	47.5 0.3	87.4 0.5	5,017 30.8
1990	22,078	13,693 62.0	1607 7.3	64.7 0.3	87.4 0.4	6,626 30.0
1995	28,165	17,412 61.8	2069 7.3	81.7 0.3	87.4 0.3	8,515 30.2
2000	34,619	21,142 61.1	2708 7.8	98.0 0.3	87.4 0.2	10,584 30.6

47

ļана;

AVERAGE POLLUTANT EMISSIONS BY VARIOUS SOURCES

VANCOUVER INTERNATIONAL AIRPORT

ļ				HYDROCARBONS	ARBONS						
Total	н	Aircraft	Ground Service Vehicles	Fuel storage and distribution	e tion	Engine tests and maintenance	ince	Heating and air conditioning	and ioning	Access Traffic	ic s
/q	kg/day	kg/day %	kg/day %	kg/day	~	kg/day	%	kg/day	%	kg/day	%
	2,751	1,792 65.1	119.2 4.3	162.7 5.	5.9	11.5 0	0.4	7.1	0.3	658.4 23.9	23.9
•	2,805	1,887 67.3	115.8 4.1	171.1 6.	6.1	11.6 0	0.4	7.1	0.3	612.1 21.8	21.8
-	4,508	3,502 77.7	174.4 3.9	226.4 5.	5.0	19.9	0.4	11.0	0.2	573.8 12.7	12.7
	5,842	4,858 83.2	258.6 4.4	286.9 4.	4.9	27.1 0	0.5	44.9	0.8	366.8	6.3
	7,743	6,474 83.6	359.0 4.6	345.3 4.	4.5	34.9 0	0.5	44.9	0.6	484.5	6.3
	9,581	8,005 83.6	462.3 4.8	403.8 4.	4.2	42.3 0	0.4	44.9	0.5	622.6	6.5
	11,487	9,551 83.1	605.9 5.3	461.8 4.	4.0	49.3 0	0.4	44.9	0.4	773.9	6.7

48

AVERAGE POLLUTANT EMISSIONS BY VARIOUS SOURCES

VANCOUVER INTERNATIONAL AIRPORT

			1						
	ss fic	%	18.0	15.8	14.2	7.0	6.7	6.6	6.6
	Access Traffic	kg/day	280.9	300.8	409.8	326.2	430.9	553.7	688.3
	and ioning	%	7.6	6.2	6.4	16.1	11.6	8.9	7.2
	Heating and air conditioning	kg/day	118.8	118.8	184.4	747.2 16.1	747.2	747.2	747.2
SE	ests enance	%	0.5	0.4	0.4	0.4	0.4	0.4	0.4
NITROGEN OXIDES	Engine tests and maintenance	kg/day	7.8	8.5	12.6	19.3	28.1	37.2	46.0
LIN	rvice es	*	2.1	1.7	1.7	1.6	1.6	1.5	1.6
	Ground Service Vehicles	kg/day	33.3 2.1	32.2 1.7	49.4 1.7	73.2 1.6	101.6 1.6	130.4 1.5	169.5 1.6
	Aircraft	y %	71.8	1,447 75.9	2,228 77.3	74.8	5,160 79.8	6,949 82.5	8,732 84.1
	Air	kg/day	1,121 71.8	1	2,228	3,470 74.8	5,160	6,949	8,732
	Total	kg/day	1,562	1,907	2,884	4,636	6,468	8,418	10,383
	Year		1973	1975	1980	1985	1990	1995	2000

49

AVERAGE POLLUTANT EMISSIONS BY VARIOUS SOURCES

VANCOUVER INTERNATIONAL AIRPORT

					SUL	SULPHUR OXIDES					
Year	Total	Airc	Aircraft	Ground Service Vehicles	ervice les	Engine tests and maintenance	sts nance	Heating and air conditioning	and tioning	Access Traffic	ss fic
	kg/day	kg/day	%	kg/day	24	kg/day	%	kg/day) %	kg/day	*
1973	513.4	122.8 23.9	23.9	0.96 0.2	0.2	0.8	0.2	378.3 73.7	73.7	10.5	2.0
1975	533.6	141.0 26.4	26.4	0.92 0.2	0.2	0.9	0.2	378.3	70.9	12.5	2.3
1980	828.7	212.6 25.	25.7	1.45 0.2	0.2	1.3	0.2	594.4	71.7	18.9	2.3
1985	2713	305.1 11.	11.2	2.15 0.1	0.1	1.9	0.1	2378	87.7	26.1	1.0
1990	2834	415.8 14.	14.7	2.98	0.1	2.5	0.1	2378	83.9	34.5	1.2
1995	2958	528.6 17.9	17.9	3.80	0.1	3.1	0.1	2378	80.4	44.3	1.5
2000	3083	641.7 20.8	20.8	4.88 0.2	0.2	3.6	0.1	2378	77.1	55.1	1.8

AVERAGE POLLUTANT EMISSIONS BY VARIOUS SOURCES

VANCOUVER INTERNATIONAL AIRPORT

	+		+	T	T	+	+	+	+
	ss fic	84	19.3	20.8	20.2	14.9	16.0	17.2	18.3
	Access Traffic	kg/day	31.6 19.3	37.4	56.7	78.3 14.9	103.4	132.9 17.2	165.2
	g and Ltioning	%	31.3 19.1	31.3 17.4	48.7 17.3	37.4	30.5	25.5	21.8
	Heating and air conditioning	kg/day	31.3	31.3	48.7	196.5	196.5	196.5	196.5
	ests enance	%	0.4	0.3	0.3	0.2	0.3	0.3	0.3
PARTICULATES	Engine tests and maintenance	kg/day	0.6 0.4	0.6	6.0	1.3	1.7	2.2	2.6
PA	ervice les	82	0.7	0.6	0.6	0.5	0.6	0.6	0.7
	Ground Service Vehicles	kg/day	1.2 0.7	1.1	1.8	2.6	3.7	4.7	6.0
ľ	caft	24	60.6	60.8	61.6	47.0	52.6	56.4	58.9
	Aircraft	kg/day	99.4 60.6	109.2	173.2 61.6	246.8 47.	339.2 52.	434.6	530.7
	Total	kg/day	164.1	179.6	281.3	525.5	644.5	770.9	901.0
	Year		1973	1975	1980	1985	1990	1995	2000

51

(inger-i) E

-

5.8 Spatial Distribution of Emission Sources

The spatial distribution of various activities contributing to the emission of air pollutants is outlined on the map in Figure 5.4. Emissions are divided into major line source emissions and major area source emissions. The individual treatment of point sources is not justified at Vancouver International Airport since they are relatively small and are scattered in separate smaller areas. Consequently they are treated as area sources.

The spatial distribution of pollutant emissions is given in Table 5.11.

5.8.1 Line Sources

At present there are three major line sources at the Vancouver International Airport; main runway (Runway No. 1), cross runway (Runway No. 2) and access road. It is assumed that in 1985 the new runway (Runway No. 3) will be added. The location of this proposed runway (Figure 5.4) corresponds to the MOT Development Concept I.

The emissions from the line sources are summarized in Tables 5.12, 5.13 and 5.14.

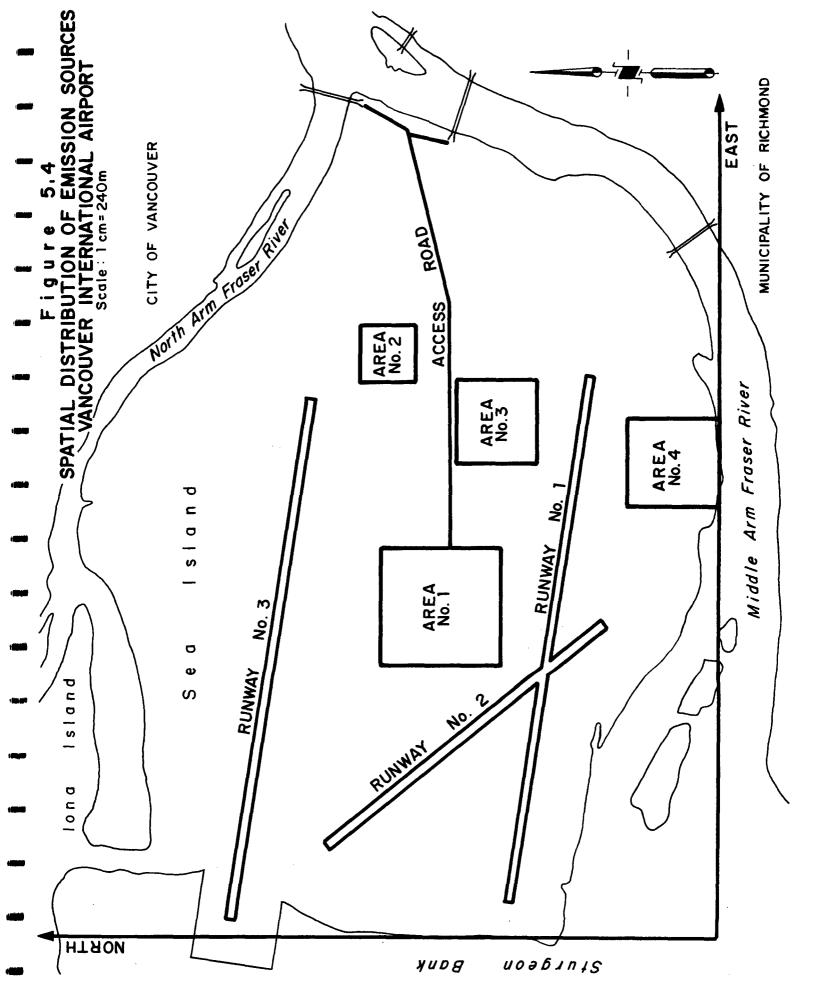
The topographic position of line sources will be defined with respect to the east/west-north/south coordinate system shown in Figure 5.4.

Spatial coordinates of the line sources are given in Table 5.15 together with the respective source lengths. The access road is divided into two straight sections in order to closely approximate the curved nature of the road.

FIGURE 5.4

SPATIAL DISTRIBUTION OF EMISSION SOURCES

VANCOUVER INTERNATIONAL AIRPORT


scale 1cm=240m

Runway No.1 = Present main runway
Runway No.2 = Present cross runway
Runway No.3 = Projected runway
Area No.1 = Terminal area, parking lot and heating plant.
Area No.2 = CPA maintenance and heating plant
Area No.3 = A number of heating plants

Area No.4 = A number of heating plants

80 #

Ger De

SPATIAL DISTRIBUTION OF POLLUTANT EMISSIONS

VANCOUVER INTERNATIONAL AIRPORT

1	9	7	3	-	1	9	8	0	

1985 - 2000

Runway No. 1:	80% Taxi-idle Emis	sions 40%	Taxi-idle Emis	sions
	90% Takeoff	" 45%	Takeoff	**
	90% Landing	" 45%	Landing	11
Climbout No. 1:	90% Climbout	" 45%	Climbout	11
Approach No. 1:	90% Approach	" 45%	Approach	11
Runway No. 2:	10% Taxi-idle	" 10%	Taxi-idle	11
-	10% Takeoff	" 10%	Takeoff	11
	10% Landing	" 10%	Landing	**
Climbout No. 2:	10% Climbout	" 10%	Climbout	11
Approach No. 2:	10% Approach	" 10%	Approach	11
Runway No. 3:	-	40%	Taxi-idle	11
	-	45%	Takeoff	11
	-	45%	Landing	11
Climbout No. 3:	-	45%	Climbout	11
Approach No. 3:	-	45%	Approach	11
Access Road:	80% Access Traffic	" 80%	Access Traffic	11

<u>1973 - 2000</u>

Area	No.	1:	10%	Taxi-idle	
			100%	Ground Service	**
			100%	Fuel Storage	11
			40%	Gas Heating	11
			10%	Oil Heating	11
			20%	Access Traffic	**
Area	No.	2:	100%	Engine Test	**
			10%	Gas Heating	"
			10%	Oil Heating	11
Area	No.	3:	20%	Gas Heating	"
			30%	Oil Heating	11
Area	No.	4:	30%	Gas Heating	11
			50%	Oil Heating	11

LINE SOURCE AVERAGE 24-HOUR DAY EMISSIONS VANCOUVER INTERNATIONAL AIRPORT

		Runway No. 1	Climbout No. 1	Approach No. 1	Runway No. 2	Climbout No. 2	Approach No. 2	Runway No. 3	Climbout No. 3	Approach No. 3	Acces Road
1973		2442	372.4	315.8	304.4	41.38	35.09	-	-	-	4391
	HC	1397	14.50	27.00	174.6	1.612	3.000	-	_	-	526.7
(Kg)	NO_X	359.5	451.3	183.6	41.54	50.14	20.40	-	-	-	224.
	SO _x	53.08	28.65	24.02	6.433	3.183	2.669	-	-	-	8.42
	PT	40.55	18.16	27.03	4.922	2.018	3.003	-	-	-	25.2
1975	СО	2802	396.5	344.3	349.2	44.05	38.25	-	-	-	444
	HC	1471	15.69	28.83	183.7	1.744	3.203	-	-	-	489.
(Kg)		464.3	604.9	215.8	53.48	67.21	23.78	-	-	-	240.
(0)	SO _x		33.27	26.98	7.411	3.692	2.997	-	-	- 1	9.96
	PT	47.15	19.05	27.56	5.741	2.117	3.062	-	-	-	29.8
1980	со	4710	532.0	508.2	587.2	59.11	56.46	_	-	-	448
	HC	2739	24.62	48.50	342.0	2.735	5.388	-	-	-	459.
(Kg)	NOx	712.2	953.4	315.8	81.83	105.9	35.09	-	- 1	- 1	327.
(SO _X	84.37	51.06	40.73	11.06	5.674	4.525	-	- 1	-	15.1
	PT	72.36	30.85	45.87	8.800	3.428	5.096	-	-	-	45.3
1985	C0	3406	333.7	340.2	935.0	74.16	75.60	3406	333.7	340.2	401
±203	HC	1900	16.63	33.16	474.7	3.695	7.368	1900	16.63	33.16	293.
(Kg)		544.0	760.1	229.5	127.1	168.9	51.01	544.0	760.1	229.5	261.
(NB)	SO _X	65.70	37.00	28.72	15.90	8.224	6.383	65.70	37.00	28.72	20.8
	PT	54.00	21.01	30.78	13.17	4.669	6.841	54.00	21.01	30.78	62.6
1990	со	4740	403.2	437.5	1182	89.60	97.21	4740	403.2	437.5	530
	НС	2533	21.69	43.29	632.9	4.821	9.620	2533	21.69	43.29	387.
(Kg)		823.9	1158	315.9	188.6	257.2	70.21	823.9	1158	315.9	344.
(0)		89.77	51.02	38.32	21.64	11.34	8.51	89.77	51.02	38.32	27.5
	PT	78.23	27.20	39.33	19.14	6.044	8.740	78.23	27.20	39.33	82.7
1995	CO	6083	472.1	533.7	1518	104.9	118.6	6083	472.1	533.7	681
	HC	3133	26.67	52.94	782.8	5.927	11.76	3133	26.67	52.94	498.
(Kg)		1110	1580	405.0	253.7	351.2	90.01	1110	1580	405.0	443.
(0)	SOv	114.4	65.33	47.94	27.69	14.52	10.65	114.4	65.33	47.94	35.4
	PT	104.2	33.19	47.44	25.54	7.375	10.54	104.2	33.19	47.44	106.
2000	СО	7430	541.8	630.6	1854	120.4	140.1	7430	541.8	630.6	846
	HC	3739	31.69	62.66	934.2	7.042	13.92	3739	31.69	62.66	619.
(Kg)		1395	2002	488.5	318.7	444.8	109.8	1395	2002	488.5	550.
·07	SO.	139.2	79.65	57.59	33.67	17.70	12.80	139.2	79.65	57.59	44.0
	PT	130.3	39.24	55.69	31.98	8.720	12.38	130.3	39.24	55.69	132.

LINE SOURCE PEAK 12-HOUR DAY EMISSIONS

VANCOUVER INTERNATIONAL AIRPORT

		······				·	·····				t
							Approach				
		No. 1	No. 1	No. 1	No. 2	No. 2	No. 2	No. 3	No. 3	No. 3	Road
1973	со	1673	255.0	216.3	208.4	28.34	24.03	-	-	-	3302
	HC	957.0	9.932	18.49	119.6	1.104	2.055	-	-	-	396.0
(Kg)		246.2	309.0	125.7	28.44	34.33	13.97	-	-	- 1	169.0
(0)	SO _x	36.35	19.62	16.45	4.405	2.180	1.828	-	-	_	6.336
	PT	27.77	12.44	18.51	3.371	1.382	2.057	-	-	-	19.01
1975	CO	2015	285.1	247.6	251.1	31.68	27.51	-	-	_	3341
	HC	1058	11.29	20.73	132.1	1.254	2.303	_	-	- 1	368.2
(Kg)		333.8	434.9	155.2	38.45	48.33	17.24	-	-	-	181.0
(87	SO _X	43.97	23.89	19.40	5.328	2.655	2.155	-	-	-	7.488
	PT	33.90	13.70	19.81	4.128	1.522	2.202	-	-	-	22.46
1980	CO	3385	382.3	365.3	422.1	42.48	40.59	-	_	-	3369
	HC	1968	17.69	34.86	245.8	1.966	3.873	- 1	-	-	345.1
(Kg)	NOx	511.9	685.2	227.0	58.82	76.14	25.22	-	-	-	246.5
	SO _x	65.66	36.70	29.27	7.948	4.078	3.252	-	-	-	11.38
	PT	52.02	22.17	32.97	6.325	2.464	3.663	-	-	-	34.13
1985	со	2447	239.8	244.4	610.3	53.29	54.32	2447	239.8	244.4	3018
	HC	1365	11.95	23.82	341.1	2.655	5.294	1365	11.95	23.82	220.6
(Kg)		398.1	546.1	164.9	91.30	121.4	36.65	398.1	546.1	164.9	196.2
. 0/	SO _x	47.20	26.59	20.64	11.43	5.908	4.586	47.20	26.59	20.64	15.70
	PT	38.80	15.10	22.12	9.461	3.355	4.915	38.80	15.10	22.12	47.09
1990	со	3407	289.8	314.4	881.5	64.40	69.87	3407	289.8	314.4	3986
	HC	1821	15.59	31.11	454.9	3.465	6.914	1821	15.59	31.11	291.4
(Kg)		592.1	831.9	227.1	135.5	184.9	50.46	592.1	831.9	227.1	259.2
	SO _x	64.51	36.67	27.54	15.61	8.148	6.119	64.51	36.67	27.54	20.74
	PT	56.22	19.55	28.26	13.75	4.344	6.281	56.22	19.55	28.26	62.21
1995	CO	4367	338.9	383.2	1090	75.32	85.15	4367	338.9	383.2	5122
	HC	4367 2249	338.9 19.15	383.2 3801	562.0	75.32	8.446	4367 2249	338.9 19.15	383.2 38.01	5122 374.5
(Kg)		796.6	1134	290.8	182.2	252.1	64.62	796.6	1134	290.8	333.0
. 0/	SO _x	82.15	46.90	34.42	19.88	10.42	7.649	82.15	46.90	34.42	26.64
	PT	74.80	23.83	34.06	18.34	5.295	7.569	74.80	23.83	34.06	79.92
2000	CO	5332	388.9	452.5	1330	86.42	100.6	5332	388.9	452.5	6366
	HC	2683	22.74	44.97	670.4	5.055	9.995	2683	22.74	44.97	465.5
(Kg)		1001	1437	354.6	228.7	319.2	78.79	1001	1437	354.6	414.0
(6)	SO _x	99.84	57.16	41.33	24.16	12.70	9.185	99.84	57.16	41.33	33.12
	PT	93.51	28.16	39.97	22.95	6.259	8.881	93.51	28.16	39.97	99.36
				1							1

LINE SOURCE PEAK HOUR EMISSIONS

VANCOUVER INTERNATIONAL AIRPORT

		Runway No. 1	Climbout No. 1	Approach No. 1	Runway No. 2	Climbout No. 2	Approach No. 2	Runway No. 3	Climbout No. 3	Approach No. 3	Access Road
- 		NO. 1		NO. 1							
1973	CO	297.3	45.34	38.45	37.05	5.037	4.272	-	-	-	390.2
	HC	170.1	1.766	3.287	21.25	0.196	0.365	-	-	-	46.80
(Kg)		43.77		22.35	5.056	6.104	2.484	-	-	-	19.97
	SO _X	6.463		2.924	0.783	0.388	0.325	-	-	-	0.749
	РТ	4.937	2.210	3.290	0.600	0.246	0.366	-	-	-	2.246
1975	CO	358.9	50.43	44.10	44.73	5.643	4.900	_	-	_	398.3
	HC	188.4	2.011	3.693	23.54	0.223	0.410	-	-	-	43.90
(Kg)	$NO_{\mathbf{X}}$	59.48	77.49	27.64	6.852	8.610	3.072	-	- 1	-	21.58
	SO _X	7.835	4.257	3.456	0.949	0.473	0.384	-	- 1	-	0.893
	PT	6.039	2.441	3.531	0.736	0.271	0.392	-		-	2.678
1980	со	603.5	68.16	65.11	75.24	7.573	7.234	-	-	-	383.8
	HC	350.8	3.154	6.214	43.83	0.350	0.690	-	- 1	-	39.31
(Kg)	$NO_{\mathbf{x}}$	91.25	122.1	40.46	10.49	13.57	4.495	-	-	-	28.08
	SO _X	11.70	6.542	5.218	1.416	0.727	0.580	- 1	- 1	- 1	1.296
	PT	9.272	3.953	5.876	1.127	0.439	0.653	-	-	_	3.888
1985	СО	437.3	42.85	43.68	109.1	9.522	9.706	437.3	42.85	43.68	348.8
	HC	243.9	2.135	4.257	60.95	0.474	0.946	243.9	2.135	4.257	25.50
(Kg)	NO_X	71.13	97.59	29.47	16.31	21.69	6.549	71.13	97.59	29.47	22.68
	SO_X	8.435	4.751	3.688	2.042	1.056	0.820	8.435	4.751	3.688	1.814
	РТ	6.933	2.698	3.952	1.690	0.600	0.878	6.933	2.698	3.952	5.443
1990	со	603.5	51.33	55.69	150.5	11.41	12.38	603.5	51.33	55.69	470.4
	HC	322.5	2.762	5.512	80.58	0.614	1.225	322.5	2.762	5.512	34.41
(Kg)		104.9	147.4	40.22	24.01	32.75	8.938	104.9	147.4	40.22	30.60
	$SO_{\mathbf{X}}$	11.43	6.495	4.878	2.766	1.443	1.084	11.43	6.495	4.878	2.448
	PT	9.959	3.463	5.007	2.436	0.770	1.113	9.959	3.463	5.007	7.344
1995	со	770.0	59.74	67.54	192.0	13.28	15.01	770.0	59.74	67.54	603.4
	HC	396.4	3.375	6.699	99.06	0.750	1.489	396.4	3.375	6.699	44.12
(Kg)	$NO_{\mathbf{X}}$	140.4	200.0	51.25	32.10	44.43	11.39	140.4	200.0	51.25	39.24
	SO _X	14.78	8.267	6.066	3.504	1.837	1.348	14.78	8.267	6.066	3.139
	PT	13.18	4.199	6.003	3.232	0.933	1.334	13.18	4.199	6.003	9.416
2000	со	937.3	68.34	79.55	233.8	15.19	17.68	937.3	68.34	79.55	747.4
	HC	471.7	3.998	7.905	117.8	0.888	1.757	471.7	3.998	7.905	54.65
(Kg)		175.9	252.5	62.32	40.20	56.11	13.85	175.9	252.5	62.32	48.60
. 0/	SO _x	17.55	10.05	7.265	4.248	2.233	1.615	17.55	10.05	7.265	3.888
	PT	16.44	4.950	7.025	4.034	1.100	1.561	16.44	4.950	7.025	11.66

TABLE 5,15

LINE SOURCES SPATIAL COORDINATES VANCOUVER INTERNATIONAL AIRPORT

	Line H	and Points Coo	rdinates	Line Source Length
	East (X) metres	North (Y) metres	Height (Z) metres	metres
Runway No. 1	191.7 3493	1392 795.2	0 0	3358
Approach No. 1	-4724 191.7	2281 1392	500 0	5000
Climbout No. 1	3493 8409	795.2 -93.4	0 500	5000
Runway No. 2	539.6 1938	2563 725.6	0 0	2286
Approach No. 2	-2519 539.6	6582 2563	500 0	5000
Climbout No. 2	1938 4997	725.6 -3293	0 500	5000
Runway No. 3	42.6 3337	3167 2556	0 0	3358
Approach No. 3	-4863 42.6	4077 3167	500 0	5000
Climbout No. 3	3337 8242	2556 1646	0 500	5000
Access Road				3000
Section No. 1	2100 4010	1687 1687	0 0	1910
Section No. 2	4010 5085	1687 1940	0 0	1090

Approach and Climbout are assumed to be in line with the runway and under the same elevation angle of 6° .

5.8.2 Area Sources

Four area sources will be considered in this study. These areas are shown on the map in Figure 5.4 and marked as Area No. 1, Area No. 2, Area No. 3 and Area No. 4, respectively. Area No. 1 includes the airport terminal, and car parking lot. This area includes 10% of aircraft taxi-idle emissions, 20% of access traffic emissions, ground service vehicle emissions, fuel storage and distribution and emissions from several heating plants. Area No. 2 comprises a number of exhaust ducts from CPA heating plant boilers, testing cell and aircraft engine run-ups in the open space. Area No. 3 and No. 4 comprise a number of point sources from heating plants (see Table 5.11).

The emissions from area sources are summarized in Table 5.16.

The area sources are approximated by squares whose sides are parallel to the axes of the east/west-north/south coordinate system (Figure 5.4). The spatial position of an area is defined by the coordinates of the centre of the square and the length of the side. Such data are given in Table 5.17.

AREA SOURCES EMISSIONS VANCOUVER INTERNATIONAL AIRPOR

AIRPORT		
COUVER INTERNATIONAL AIRPORT		
COUVER		

		co, k	CO, kg/day			HC, kg/day	ç/day			NOx, k	NOx, kg/day			sox,	SOx, kg/day			PT, kg/day	¢/day	
Icar	Area No.1	Area No.2	Area No.3	Area No.4	Area No.1	Area No.2	Area No.3	Area No.4	Area No.1	Area No.2	Area Area No.2 No.3	Area No.4	Area No.1	Area No.2	Area No.3	Area No.4	Area No.1	Area No.2	Area No.3	Area No.4
1973	1,932 20.39	20.39	3.30	5.22	589.2	589.2 12.21	1.80	2.88	128.6	128.6 19.68 31.32		50.76	50.76 45.77 38.63 113.5 189.1	38.63	113.5	189.1	16.84 3.73		8.56	14.00
1975	1,974 22.29	22.29	3.30	5.22	594.0 12.31	12.31	1.80	2.88	134.2	134.2 20.38 31.32	31.32	50.76	46.85	38.73	113.5	50.76 46.85 38.73 113.5 189.1	18.67 3.73	3.73	8.56	14.00
1980	2,482	2,482 35.34	5.10		858.9	8.06 858.9 21.00	2.78	4.47	193.8	31.04	48.76	79.08	72.96	60.74	178.3	297.1	4.47 193.8 31.04 48.76 79.08 72.96 60.74 178.3 297.1 28.55 5.37 13.37	5.37	13.37	21.86
1985	3,020	56.24	3,020 56.24 20.78 32.82	32.82	1,103	31.59 11.28		18.08	330.3	330.3 94.02 197.0 319.2 257.3 239.7 713.1 1,188	197.0	319.2	257.3	239.7	713.1	1,188	63.84 20.95		53.83	88.00
1990	4,119	73.44	4,119 73.44 20.78 32.82 1,442	32.82	1,442	39.39	11.28	18.08	393.6	393.6 102.8 197.0	197.0	319.2	264.1 240.3 713.1	240.3	713.1	1,188	75.20 21.35		53.83	88.00
1995	5,289	5,289 90.44	20.78	32.82	1,781	46.79	11.28	18.08	461.7	111.9 197.0	197.0	319.2	319.2 271.3 240.9 713.1 1,188	240.9	713.1	1,188	87.82 21.85	1.85	53.83	88.00
2000	6,674	106.7	20.78	32.82	2,164	6,674 106.7 20.78 32.82 2,164 53.79 11.28		18.08	542.4	18.08 542.4 120.7 197.0 319.2 278.9 241.4 713.1 1,188	197.0	319.2	278.9	241.4	713.1	1,188	101.3 22.25 53.83	2.25	53.83	88.00

60

tatin (

TABLE 5.17

AREA SOURCES SPATIAL COORDINATES

VANCOUVER INTERNATIONAL AIRPORT

		ates of Centre	Length of a Side of the Square	Area of a Source
	East(X) metres	North(Y) metres	metres	sq. km
Area No. 1 Area No. 2 Area No. 3 Area No. 4	2060 3660 3230 2950	1780 2060 1420 280	700 350 530 570	0.4900 0.1225 0.2809 0.3249

•

6. REGIONAL METEOROLOGY

The dispersion of air pollutants is controlled by regional meteorological conditions. The ability of the atmosphere to dilute pollutants is governed by turbulence which increases with increase in wind speed, wind shear, surface roughness and instability. This chapter describes the wind and atmospheric stability conditions at Vancouver International Airport.

6.1 Wind Conditions

Table 6.1 presents a summary of data on average wind speed in different directions at Vancouver International Airport during a period from 1955 to 1966 (16).

The average wind speed in all directions is shown graphically in Figure 6.1; the wind speed is higher during the months of November through May with the peak in March amounting to 13.6 km/hr. During the months of June through October daily average wind in all directions is of lower intensity with the minimum of 10.7 km/hr occurring in August.

The average wind speed for all months in different directions is shown graphically by a wind rose in Figure 6.2. The strongest average wind for all months is from the WNW direction amounting to 17.8 km/hr. The lowest average wind speed for all months is from the northerly direction amounting to 5.8 km/hr.

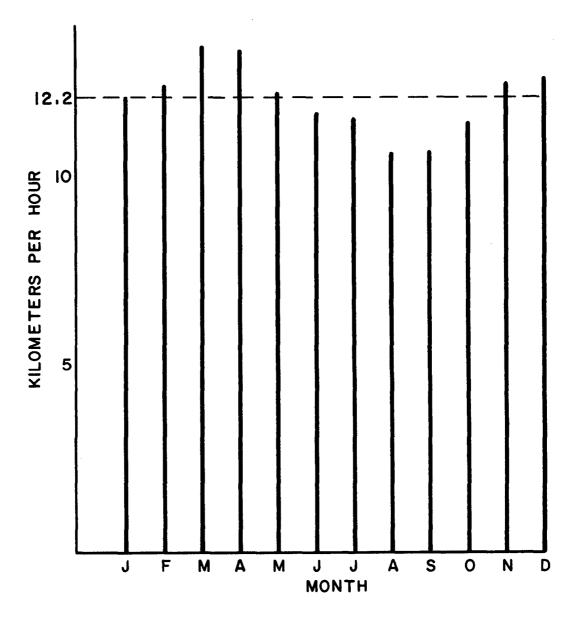
The percentage frequency wind direction and calm weather at the Vancouver International Airport during the period from 1955 to 1966 is shown in Table 6.2 (16). The average frequencydirection distributions for all months are presented by wind rose in Figure 6.3. The frequency of the easterly wind at 21% of the time is the highest, followed by the ENE and ESE winds with 10%, and westerly wind with 9%. For our purpose the winds blowing inland are of most significance, i.e., S, SSW, SW, WSW, W, WNW, NW, NNW and N winds. Their percentage frequency is 4, 2, 3, 4, 9, 6, 4 and 1%, respectively.

The highest percentage frequency of calm weather is in September amounting to 11%, and the lowest is in April, May and June being 5% of the time. The average percentage frequency of calm weather for all months is 7%. TABLE 6.1 AVERAGE WIND SPEED BY MONTHS *

VANCOUVER INTERNATIONAL AIRPORT

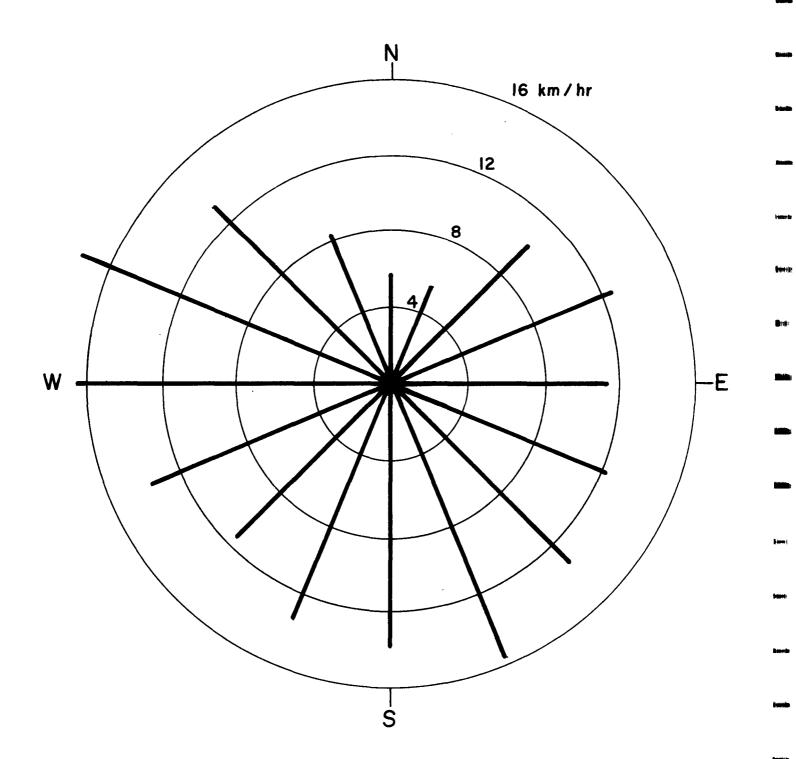
Speed					IFX	Kilometres	per	hour					
Month Direction	5	j¤ı	М	A	М	Ъ	Ъ	A	S	ο	N	Q	All Months Average
N	5.6	6.1	5.9	6.1	6.4	6.4	5.6	5.8	5.4	5.3	5.8	5.6	5.8
NNE	7.7	9.4	10.6	8.3	7.7	8.5	6.7	6.7	7.2	8.5	7.7	6.7	8.0
NE	11.8	12.8	11.5	9.8	10.1	9.3	8.6	9.6	8.8	9.8	10.2	9.9	10.2
ENE	14.4	14.2	14.2	12.6	11.5	11.4	11.5	10.7	11.4	12.3	13.4	13.4	12.6
ы	12.2	11.7	12.6	12.0	11.2	10.9	10.9	10.2	10.1	11.5	12.6	13.1	11.5
ESE	12.5	12.0	13.8	13.1	11.5	11.8	11.5	11.8	10.7	12.2	12.0	13.0	12.2
SE	13.8	13.0	15.4	14.2	12.5	12.2	11.4	11.5	11.0	14.2	14.6	14.9	13.3
SSE	19.4	16.5	18.2	16.6	13.4	12.3	11.4	12.0	12.2	17.4	18.4	19.4	15.7
S	17.6	15.4	15.8	15.2	11.8	11.5	10.4	11.0	9.4	15.4	17.0	15.5	13.9
SSW	15.0	15.0	16.2	15.5	12.5	11.5	10.6	9.3	8.6	15.2	13.9	16.0	13.3
SW	10.7	9.8	12.6	12.6	12.3	11.2	9.9	10.2	9.8	11.2	12.5	14.7	11.5
MSW	12.3	13.1	14.9	16.0	14.1	13.4	12.6	11.8	14.1	13.9	12.5	16.2	13.8
W	15.8	18.6	19.0	18.1	15.4	16.0	17.0	13.3	16.0	15.5	18.2	17.1	16.6
MNW	16.0	17.8	19.0	19.2	18.9	18.2	18.1	16.6	17.4	15.2	20.0	17.3	17.8
MN	10.1	11.8	13.9	14.1	16.0	15.5	15.5	14.4	13.3	10.9	11.8	12.3	13.3
MNN	7.2	8.2	8.0	7.8	8.0	9.0	9.4	10.9	7.7	7.4	8.6	7.5	8.3
A11 Directions	12.2	12.5	13.6	13.4	12.3	11.8	11.7	10.7	10.7	11.5	12.5	12.6	12.2

63


* Data from Ref. 16

I den i k

termer-st.

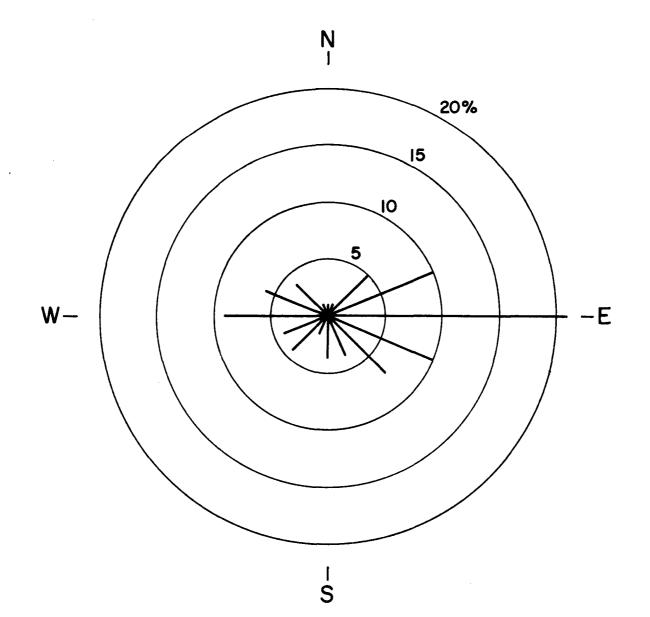

Figure 6.1

AVERAGE WIND SPEED IN ALL DIRECTIONS BY MONTH VANCOUVER INTERNATIONAL AIRPORT

Figure 6,2

Ê Ê TABLE 6.2

PERCENTAGE FREQUENCY - WIND DIRECTION BY MONTHS*


VANCOUVER INTERNATIONAL AIRPORT

						Perce	Percentage	Frequency	ency				
Month Direction	'n	Ĕι	Ж	A	Ж	J	J	A	S	0	N	A	All Months Average
N		2	1	2	1	1	1	1	2	1	2	1	1
NNE			2	1	1	1	*	1	1	1	1	1	1
RE	9	7	9	5	9	4	4	5	4	5	6	6	5
ENE	17	14	10	7	œ	8	7	7	7	6	12	13	10
ы	29	24	20	17	16	18	17	19	16	21	24	29	21
ESE	6	8	6	8	8	11	11	12	10	10	10	11	10
SE	9	5	6	7	9	6	6	8	9	9	9	9	7
SSE	°	3	4	4	4	5	4	3	3	4	4	4	4
ω	3	4	6	6	5	9	4	4	3	3	4	3	4
SSW	1	2	3	4	4	4	3	2	1	2	1	2	2
SW	2	3	3	5	5	4	5	4	3	3	2	2	æ
MSM	2	3	4	6	6	5	9	5	4	e.	7	2	4
м	5	7	ø	10	11	6	12	10	11	6	2	ъ	6
MNW	3	5	6	8	6	9	2	9	10	2	9	4	9
MN	Э	4	5	4	4	3	4	4	9	5	4	m	4
MNN	1	1	1	1	1	1	*	1	2	1	-1		1
Calm	ω	7	9	- 2	5	5	9	ø	11	10	œ	2	2

*Data from Ref. 16

Figure 6.3

AVERAGE PERCENTAGE FREQUENCY WIND DIRECTION FOR ALL MONTHS VANCOUVER INTERNATIONAL AIRPORT

6.2 Stability

The diffusive potential of the lower atmosphere is described by the six stability classes presented in Table 6.3 (17, 11, p. 304). The classes are specified in terms of wind speed, insolation and cloudiness. The class A is the most unstable (very unstable), class F the most stable (moderately stable) and class D is the neutral class. Night refers to the period from 1 hour before sunset to 1 hour after sunrise. "Strong" insolation corresponds to a solar altitude greater than 60° with clear skies; "slight" insolation corresponds to solar altitudes from 15 to 35° with clear skies.

TABLE 6.3*

KEY TO STABILITY CATEGORIES

Sumfa	ce Wind		Day		Night	
	(at 10m),	I	nsolation		Thinly Over- cast or	<3/8
m/sec	КШ/ПТ	Strong	Moderate	Slight	$\geq 4/8$ Low Cloud	Cloud
<2	<7.2	A	A-B	В		
2-3	7.2-10.8	A-B	В	С	Е	F
35	10.8-18.0	В	B–C	С	D	Е
5-6	18.0-21.6	С	C-D	D	D	D
>6	>21.6	С	D	D	D	D

The neutral class D, should be assumed for overcast conditions during day or night regardless of wind speed.

* From ref 17.

Cloudiness will decrease incoming solar radiation and should be considered along with solar altitude in determining insolation (17). The number of hours with bright sunshine and cloud normals are given in Table 6.4 (18). Hours of sunshine average 44 in December, 17% of the total possible, and 310 in July, 64% of the total possible. The average number of hours of sunshine for the whole year is 1,925 or 44% of the total possible.

The average annual atmospheric conditions during a period from 1968 to 1972 are presented in Table 6.5 (19). The average wind speeds, and relative frequencies of stability categories, calm weather and wind directions are presented.

TABLE 6.4

BRIGHT SUNSHINE AND CLOUD NORMALS *

VANCOUVER INTERNATIONAL AIRPORT

	л Г	fu	W	A	Σ	ъ	'n	A	ß	0	N	D	Year
No. of hours with bright sunshine	58	89	124	195	250	229	310	250	190	114	71	44	1,925
Percent of possible sunshine	22	32	33	48	53	47	64	56	51	35	26	17	44
Mean cloud	8.0	7.5	7.1	6.8	6.4	6.8	4.8	5.1	5.4	7.1	7.9	8.1	6.8
Frequency of $8 - \frac{10}{10}/10$ 77	77	69	64	59	54	59	39	42	48	65	74	77	61
3 - 7/10	6	13	16	19	20	20	19	19	15	13	11	11	15
$0 - \frac{2}{10}$	14	18	20	22	26	21	42	39	37	.22	15	12	24

* Data from ref.18

TABLE 6.5

AVERAGE ANNUAL ATMOSPHERIC CONDITIONS* VANCOUVER INTERNATIONAL AIRPORT

				<u> </u>			r	1-									-			_				
	UIASSES	100.00	10.53	Avg	Wind	Speed km/hr	5.7	6.3	8.7	11.9	12.8	11.9	14.4	15.2	14.1	13.5	12.8	11.9	15.7	20.0	14.3	8.5		12.2
All	ето	ī		Fre-	quency	~	1.79	1.13	1.98	6.27	26.91	13.07	7.07	4.12	4.40	2.39	2.64	4.13	8.72	10.17	3.92	1.31		
	F	21.31	7.00	Avg	Wind	Speed km/hr	5.4	4.8	5.0	5.9	6.3	6.5	5.9	5.7	5.7	5.6	5.6	5.6	5.9	6.9	6.7	6.1		4.1
		21		Fre-	quency	~	1.36	0.76	0.96	1.83	6.25	3.14	1.14	0.55	0.72	0.35	0.33	0.38	0.89	0.93	1.02	0.72		
	E	8.33	0.00	Avg	Wind	Speed km/hr	9.1	10.0	11.3	10.0	10.9	10.7	10.4	9.6	10.4	11.5	13.0	12.4	12.6	13.7	13.9	11.3		11.3
		æ	0	Fre-	quency	8	0.07	0.07	0.12	0.61	2.94	1.61	0.32	0.16	0.22	0.13	0.15	0.19	0.39	0.58	0.61	0.16		
S	D	51.45	1.54	Avg	Wind	Speed km/hr	6.9	9.1	12.0	14.0	15.4	14.4	17.4	18.7	18.0	17.8	17.4	16.5	23.2	25.0	18.5	12.0		16.9
STABILITY CLASS		51		Fre-	quency	%	0.22	0.23	0.77	3.58	16.42	6,86	4.19	2.44	2.37	1.18	1.02	1.12	3.46	5.75	1.56	0.28		
STABILI	C	11.88	1.09	Avg		Speed km/hr	5.0	5.4	6.1	7.0	8.7	10.0	12.4	11.9	10.9	10.7	10.9	11.5	12.2	15.4	14.1	7.4		10.7
		11		Fre-	quency	~	0.11	0.05	0.11	0.19	1.00	1.06	0.91	0.58	0.66	0.44	0.63	1.20	2.14	2.15	0.54	0.11		
	В	6.71	0.79	Avg		Speed km/hr	4.6	4.1	4.4	4.4	5.4	6.5	7.6	8.1	7.8	7.6	8.0	9.3	9.3	10.4	7.4	4.8		7.4
		9	0	Fre-	quency	~	0.03	0.02	0.02	0.06	0.29	0.39	0.49	0.37	0.41	0.28	0.48	1.16	1.75	0.74	0.19	0.04		
	A	0.32	0.11	Avg		Speed km/hr	1.9	0.0	0.0	0.0	2.8	6.9	5.7	5.6	6.7	6.9	6.9	7.6	7.4	7.6	0.0	0.0		4.6
		0	0	Fre-	quency	%	0.00	0.00	0.00	00.00	0.01	0.01	0.02	0.02	0.02	0.01	0.03	0.08	0.09	0.02	0.00	0.00		
		Class Frequency, %	Calm Frequency, %		Wind Direction quency		N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	MSM	W	MNM	MN	MNN	All directions	Avg Wind Speed, km/hr

* Data from ref. 19

68

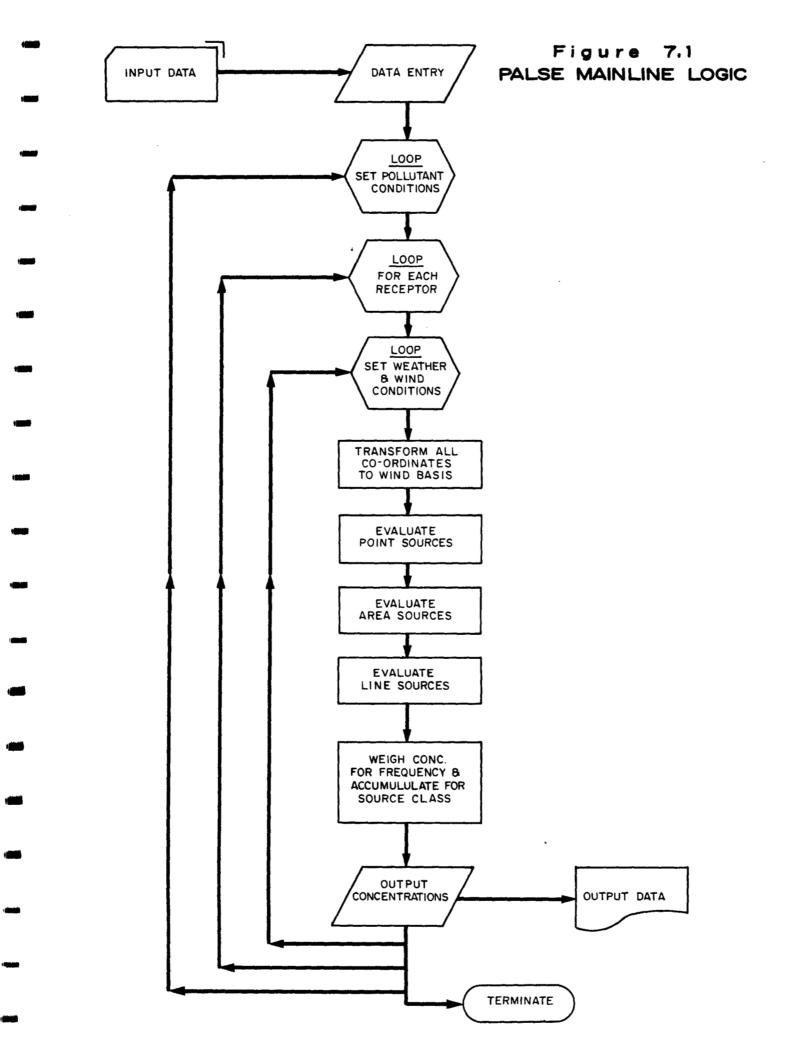
7. DISPERSION MODEL DESCRIPTION

This section describes the mathematical atmospheric diffusion model which was used to estimate the effect of expanded airport activity on ambient air quality in nearby communities.

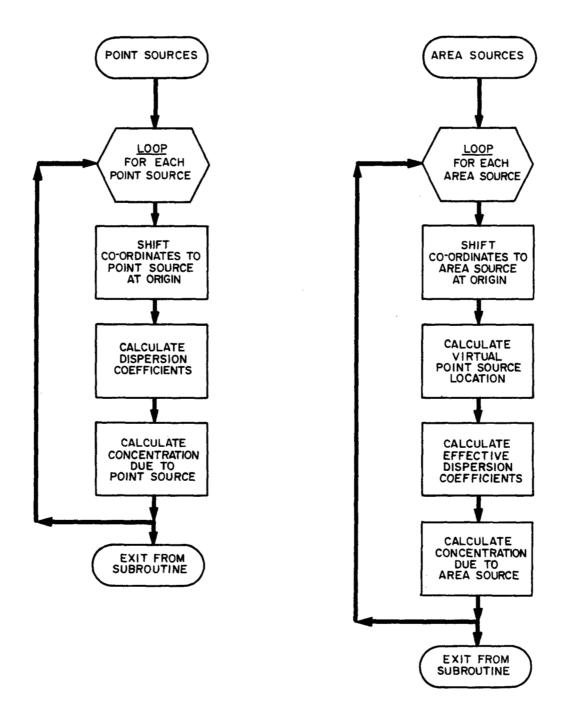
7.1 General Methodology

Pollutants emitted from a source are diluted with ambient air due to turbulent eddy mixing. The amount of dilution that occurs will hence be proportional to the intensity of these turbulent eddies. Turbulent diffusivity is a complex function of the temperature stratification (or stability), wind shear, surface roughness, and the convective heat flux. If this relationship is known then the dispersion equations can be solved numerically to yield downwind pollutant concentrations.

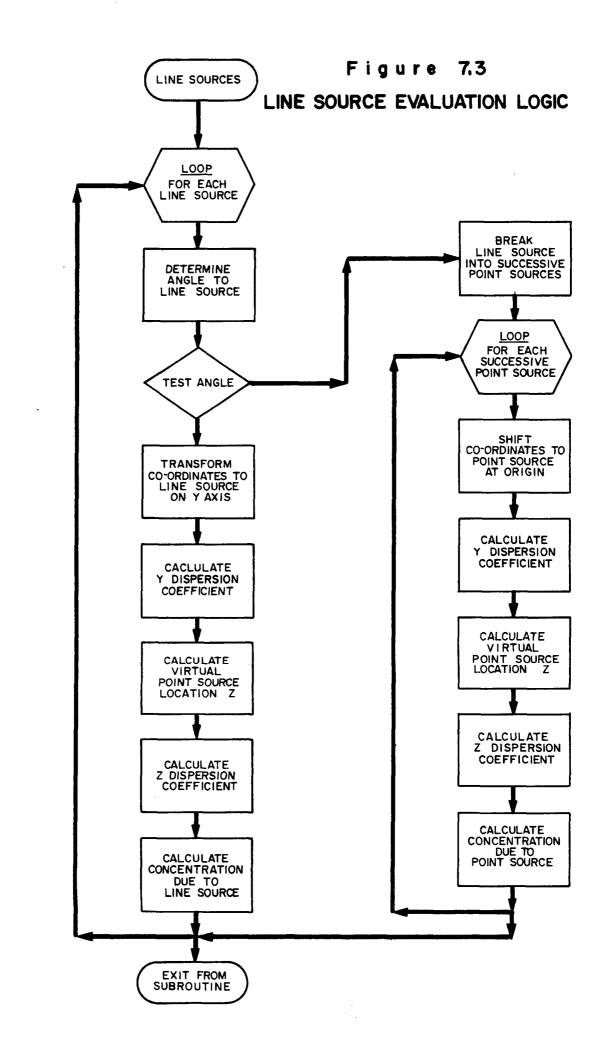
While research is being done to derive this type of relationship, at present the method of Pasquill and Gifford is more commonly used. Here the stability of the lower atmosphere is empirically correlated to horizontal and vertical dispersion coefficients as a function of downwind distance from the source. As discussed in Section 6.2, atmospheric stability is classified according to surface wind speed, cloudiness, and intensity of sunshine. It can be appreciated that this simple classification cannot accommodate the mechanically induced turbulence caused by gross topological features.


If certain assumptions (steady state, no sinks, constant wind velocity, etc.) are made concerning the dispersion equations, then an analytical solution, commonly called the Gaussian plume model, is obtained. This solution gives a normal distribution of the pollutant in both the horizontal and vertical directions. The standard deviation of these distributions are simply the Pasquill-Gifford dispersion coefficients. This is the fundamental model used in Turner's "Workbook of Atmospheric Dispersion Estimates" (17) which in turn forms the basis of our dispersion model ("PALSE" - Point, Area, and Line Source Evaluation).

Pollutant sources are divided into three categories. Point sources are those sources emitting significant quantities of pollutants from a small area, such as would occur from a large smoke stack. Area sources occur when the emissions are diffuse. They generally consist of an aggregate of small point sources spread over a relatively large area. Line sources refer to straight-line sources where it can be assumed that emissions are steady and uniform over the entire length. For long averaging times this is a reasonable assumption for highways and airport runways. Receptors are defined as those geographic locations where it is desired to know the ambient pollutant concentration.


The geographic location of these receptors, along with those of the point, area, and line sources, must be specified relative to a Cartesian coordinate system. It is generally convenient to use east/west and north/south as the two axes. Data on source strength and source parameters (stack height, mixing cell dimensions, etc.) as well as meteorological data (wind speed and direction, atmospheric stability) must be specified.

Since the Gaussian plume model was derived such that the downwind direction lies parallel to the major axis it is necessary, for a specified meteorological condition, to rotate the geographic coordinates to satisfy this condition. Then, for a given receptor, contribution from each pollutant source is computed and printed, as well as the total concentration at that point. In this manner the relative contribution of say access vehicular traffic to that of airplane activity can be easily determined.


Figure 7.1 illustrates the mainline logic as described above. Figures 7.2 and 7.3 show the subroutine logic used to estimate the pollutant contribution from each source category. These will be described in the following subsections.

POINT SOURCE AND AREA SOURCE EVALUATION LOGIC

tin**t**

7.2 Point Source Evaluation

The estimation of pollutant dispersion from point sources can be delineated into two parts:

- 1 estimation of the plume rise due to the kinetic and thermal energy of the emitted gases. The sum of the plume rise and the stack height gives the effective stack height.
- 2 estimation of plume dispersion due to turbulent diffusion in the atmosphere.

Plume rise is computed using the Moses-Carson 1968 formulae for stability classes. These formulae were compared (20) with data from 711 plume rise observations and yielded the smallest standard error. The data were obtained from single stacks whose heat emission rate varied over four orders of magnitude. Hence it is felt that the formulae should be appropriate for our diffusion model which is intended to be reasonably general in applicability.

The plume rise formulae are:

A, B, C Stability:
$$\Delta h = \frac{3.47 \text{ Vd} + 10.53 \sqrt{Q_H}}{u}$$
D Stability:
$$\Delta h = \frac{0.35 \text{ Vd} + 5.41 \sqrt{Q_H}}{u}$$

E, F Stability:
$$\Delta h = \frac{-1.04 \text{ Vd} + 4.58 \sqrt{QH}}{u}$$

where

V = stack exit velocity (m/s) d = stack diameter (m) QH = heat emission rate (Kcal/s) u = wind speed at top of stack (m/s) The Pasquill-Gifford Gaussian plume model as used by Turner (17) has been further extended (21) to allow for partial ground absorption and for decay due to a simple chemical reaction. For a downwind receptor the pollutant concentration is given as

$$C(x,y,z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{\lambda x}{u}\right) \exp\left(-\frac{y^2}{2\sigma_y^2}\right)$$
$$\left[\exp\left(-\frac{(z-h)^2}{2\sigma_z^2} + P \exp\left(-\frac{(z+h)^2}{2\sigma_z^2}\right)\right]$$

where

C(x,y,z) =	ambient concentration at (x,y,z) , (gm/m^3)
x	=	downwind distance from source, (m)
у	=	cross-wind distance from plume axis, (m)
z	=	receptor height above ground level (m)
Q	=	source strength (gm/s)
u	=	mean wind velocity (m/s)
σ _y , σ _z	=	plume dispersion coefficients (m)
λ	-	pollutant decay coefficient (sec ⁻¹)
Р	=	fraction of plume reflection
h	=	effective stack height (m)
	(h =	$h_s + \Delta h$, where h_s is the true stack height)

The dispersion coefficients σ_y and σ_z are those of Pasquill-Gifford and are obtained by curve-fitting the graphs given in Turner's Workbook (17). This process yields a family of equations of the form $\sigma_y(x,s) = f_{y,s}(x)$ and $\sigma_z(x,s) = f_{z,s}(x)$ where s denotes the stability class.

Figure 7.2 shows the logic used to evaluate a point source. The source and receptor coordinates must be shifted so that the source is located at the origin. 7.3 Area Source Evaluation

A diffuse area source is treated as a mixing cell with initial horizontal and vertical dispersion coefficients σ_y° and σ_z° . The initial standard deviation (dispersion) for a square area with sides of length s can be approximated by $\sigma_y^{\circ} \approx s/4.3$. The initial vertical dispersion would correspond to the standard deviation of the variation in individual source heights.

The area source can now be treated as a point source located at an upwind virtual origin. This strategy reduces to determining the virtual origin distances d_y and d_z from the dispersion coefficient relationships described previously:

$$\sigma_y^\circ = f_{y,s}(d_y)$$

 $\sigma_z^\circ = f_{z,s}(d_z)$

For purposes of diffusion calculations the dispersion coefficients are then evaluated using

$$\sigma_y(x,s) = f_{y,s}(x + d_y)$$
 and

$$\sigma_z(\mathbf{x},\mathbf{s}) = \mathbf{f}_{z,\mathbf{s}}(\mathbf{x} + \mathbf{d}_z) \ .$$

The mean stack height is taken as the effective stack height when using the point source diffusion model, i.e., it is assumed that there is no significant plume rise associated with an area source.

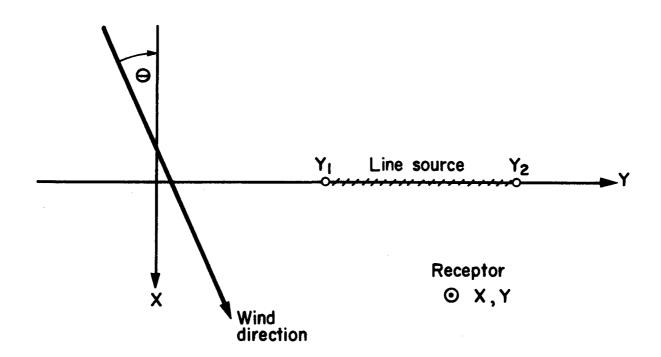
Figure 7.2 shows the simplified program logic used to evaluate area sources.

7.4 Line Source Evaluation

When a receptor is located adjacent to a line source then this source can be treated as an infinite line source and the resultant diffusion equation is greatly simplified. Sutton (21) presents an expression for the case where the wind is perpendicular to the infinite line source. Turner (17) extends this relation to oblique winds when the angle ϕ between the line source and the wind direction is greater than 45°. Calder (22) shows that Turner's relation gives incorrect results for very oblique winds. He derives an approximation formula which yields accurate results for values of ϕ down to 15°.

For finite line sources one must account for edge effects. Sutton (21) does this for a wind orientated perpendicular to the finite line. For an oblique finite line source no appropriate diffusion equation existed. Hence we used Calder's (22) methodology to extend Sutton's expression to this general case. Figure 7.4 illustrates the source/receptor relation used in the derivation. It is assumed that the line source lies on the Y axis as shown. This implies that a coordinate transformation must be made before the derived equation can be utilized. For a value of $\beta > 15^{\circ}$ ($\beta = 90-\theta$) the ground-level concentration from an oblique line source is given by:

$$C_{L}^{\theta}(x,y,0) = \frac{\sqrt{\pi/2} \sigma_{y}(D) K(x,0)}{\cos \theta} [Erf(p_{1}) - Erf(p_{2})]$$


where

$$K(\mathbf{x},\mathbf{0}) = \frac{(1 + P) Q_{L}}{2\pi u \sigma_{\mathbf{y}}(D) \sigma_{\mathbf{z}}(D)} \exp\left(\frac{-\lambda \mathbf{x}}{u \cos \theta}\right) \exp\left(\frac{-h^{2}}{2\sigma_{\mathbf{z}}^{2}(D)}\right)$$

$$pi = \frac{(Y - Yi) \cos \theta - X \sin \theta}{\sqrt{2} \sigma_{\mathbf{y}}(D)}$$

 $D = x \sec \theta$

NOTES

 Θ = Angle from wind vector to line source normal. Y₁ and Y₂ defined such that Y₂ > Y₁.

σ _y (D),	$\sigma_z(D)$	=	dispersion coefficients as previously defined (m)
-	Erf	-	error function
	Р	æ	fraction ground reflectance
	λ	=	decay coefficient
	$Q_{\rm L}$	=	source strength (gms/m/s)
	u	=	mean wind velocity (m/s)
	h	=	mean height of line emission (m)

Initial vertical dispersion, due to the turbulent wake caused by a moving vehicle or aircraft, is allowed for by specifying a value σ_z^0 (22). The subsequent computation of σ_z is then modified to allow for this initial mixing, as was done for the area source methodology previously described.

When the angle between the wind direction and the line source is less than 15° then the line source is approximated by a series of equi-spaced point sources. Point source spacing is based on the plume spread that occurs in a very stable atmosphere and on the minimum distance between the receptor and the line source terminals as given by

$$D_{\min} = \frac{Min}{i=1,2} \sqrt{(Xr - Xi)^2 + (Yr - Yi)^2}$$

Then the spacing, ΔL , is

$$\Delta L = \frac{34}{\cos \theta} \left(\frac{D_{min}}{1000}\right)^{0.91} meters.$$

From this the number of points and their specific source strength can easily be calculated.

7.5 Runway Climb-out and Approach Zones

Subsequent to the construction of the above computer model it was decided to further refine the model to include a realistic spatial distribution of aircraft emissions during runway approach and climb-out modes. Hence these inclined line sources are treated as a non-equispaced sequence of point sources, with spacing based on the vertical resolution desired.

For purposes of this study each inclined line source is approximated by 16 point sources, resulting in 96 points for all three runways. Spatial distribution is determined by the normalized coefficients c_i , where $c_i = 0.01(1.2147)^{i-1} + c_{i-1}$. Hence, if P1 and P2 are the vector coordinates of the beginning and end points of an incline, per Table 5.15, then the vector coordinate of the ith point source is given by

$$p_{f} = P_{1} + c_{f} \cdot (P_{2} - P_{1})$$
.

It can be readily ascertained from the above that maximum resolution (minimum spacing) occurs near the ground where the receptors are located.

Given the appropriate inclined line source emission rate (Tables 5.12 - 5.14) W, the computer then assigns to point source p_i an emission w_i according to

$$w_i = 0.01(1.2147)^{1-1} W.$$

In other words, point source strength is in direct proportion to the length of the line segment which it approximates.

7.6 Maximum Short-term Concentrations

Maximum ambient pollutant concentrations will occur during peak source emissions and under adverse weather conditions. Each receptor will have associated with it a critical wind angle which yields a maximum concentration.

Hence the methodology to estimate this value is to input peak emissions and then to vary the allowable weather conditions until a maximum occurs. The resulting concentration is applicable for a 10 minute sampling period. To extend this to longer periods the method recommended by Turner (17) is used:

$$C_{s} = C_{10} \left(\frac{10}{t_{s}}\right)^{0.185}$$

where C_s is the desired concentration estimate for the sampling time t_s and C_{10} is the concentration estimated using the Pasquill-Gifford dispersion coefficients.

While this procedure is useful for establishing an upper bound on airport derived ambient pollutant levels, it should be emphasized that such episodes — a combination of peak emissions and very adverse weather — would be infrequent. Table 6.5 lists the average frequency of occurrence of various meteorological conditions. No data is available on the joint probability between adverse conditions and maximum emissions, nor is suitable data available on the duration of such an episode.

7.7 Annual Mean Concentrations

Long term ambient pollutant concentrations are always considerably less than the short term maximums. This is mainly due to the variations in wind direction, velocity, and atmospheric turbulence. Historical data on these parameters are averaged to give rise to wind roses or to wind stability roses. While these averaged weather conditions obviously are of little value in estimating short term maximum concentrations, they do furnish the necessary meteorological input for computing expected long term averages.

An estimate of the annual mean ambient concentration at receptor "r" due to pollutant emissions from source "s" can be obtained by the following expression:

$$\overline{C}_{r,s} = \sum_{\phi} f_{\phi} \sum_{w} f_{w}(\phi) C_{r,s}(\phi,w)$$

where

f _d	is	the	fraction	of	the	year	that	the	wind	blows	from
Ŧ	dir	ecti	ion "¢",								

- $f_w(\phi)$ is the relative frequency of weather condition "w" (wind speed and atmospheric stability) given a wind direction " ϕ ",
- $C_{r,s}(\phi,w)$ is the short term (one-hour) concentration calculated using program PALSE.

78

8. DIFFUSION MODELING RESULTS

Diffusion modeling was carried out for five potential pollutants: nitrogen oxides, carbon monoxide, sulfur dioxide, suspended particulates, and hydrocarbons. The contribution to the ambient air quality, for the respective pollutants, was estimated at four representative locations and the results were compared with federal air quality objectives. This was done for the year 1975 through to the year 2000. The study includes emissions associated with the operation of a proposed expanded airport, and from the proposed ferry terminal and its associated access traffic (see Appendix).

Figure 8.1 shows the relative position of the four points (receptors R1 - R4) where the contributions to ambient pollutant concentrations were estimated. For a given receptor the maximum one hour concentration will occur when the peak hour emissions coincide with adverse weather conditions. As previously described (Section 7.6), there is associated with each receptor a critical wind angle which will result in maximum pollutant concentration. For the four receptors these were found to be:

TABLE 8.1

CRITICAL WIND ANGLES

Receptor Number	Critical Wind Angle*	Wind Sector	Inversion Frequency (Table 6.5)	Associated Average Wind Speed (m/s)
1	295°	WNW	0.0093	1.9
2	242°	WSW	0.0038	1.5
3	183°	S	0.0072	1.6
4	355°	N	0.0136	1.5

* Angle is taken clockwise from true north.

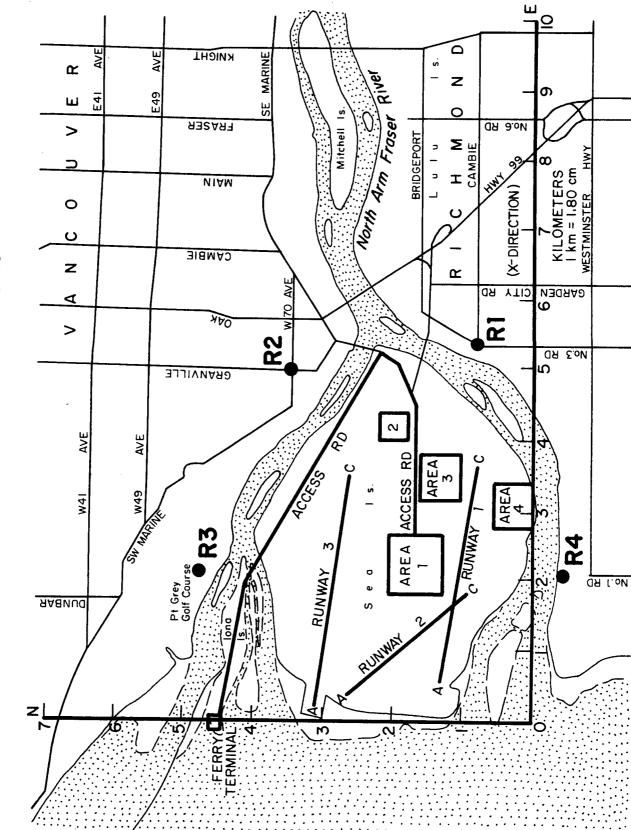


Figure 8,1 LOCATION OF RECEPTORS

میں میں میں ا روپی اور

Hence for adverse weather conditions it was assumed that the wind persistently blew from the critical angle at 1 m/s during a deep ground-based inversion (Class F stability). These conditions, coinciding with peak source emissions, would occur only infrequently but do serve to place an upper bound on possible ground level concentration. The above table shows the average frequency of occurrence of stable conditions when the wind blows in a sector associated with the critical wind angle. Shown also is the average wind speed for this condition. From available meteorological data (19) a wind speed of 1 m/s, or less, occurs in approximately 50% of the instances of a ground-based inversion. If we now arbitrarily choose a joint probability of 0.1 between peak emissions and the assumed adverse conditions, then we can estimate the number of hours per year during which the calculated maximum ground level concentrations may occur: hours/year \approx 0.5 \times 0.1 f_F = 438 f_F , where f_F is the frequency from Table 8.1. For receptor #2 this works out to 2 hours per year, while for receptor #4 the value is 6 hours/year. The reader should keep these figures in mind when reviewing the maximum concentrations presented in the following text.

A reasonable estimate of 24-hour average ambient concentrations can be made by assuming that there is a steady wind shift from the east to the north-west during which time a cloudy sky and a 5-knot (2.6 m/s) wind result in a neutral stability atmosphere (19). Hence for eleven compass sectors the wind duration per sector would be 2.2 hours and the resulting weighting factor to be used in the equation of Section 7.7 would be 0.079.

The methodology for estimating expected annual mean pollutant concentrations was described in Section 7.7. Weighting factors associated with various non-isotopic average weather conditions were obtained from Table 6.5.

The following subsections will present the results of the computer modeling described above. Ambient pollutant concentration is plotted versus year, with the concentration further delineated as to source class:

- Airport terminal area, runways, and climb-out and approach zones.
- Access Roads automobile access roads from east side of Sea Island to the terminal area.
- 3. Miscellaneous Sources hanger areas, utility plants, etc. per Areas 2, 3, and 4 of Figure 8.1.

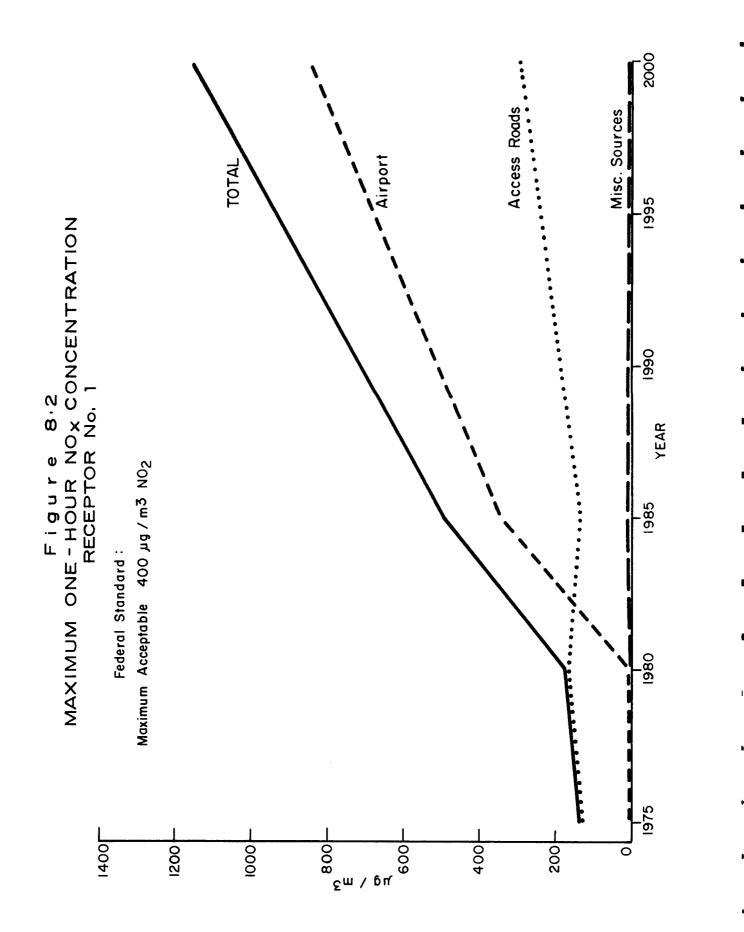
4. Ferry Terminal - includes the terminal proper plus its associated access road. The terminal is shown (Figure 8.1) situated on Iona Island. Its actual location is not yet known but would probably be about 3 miles west of this island.

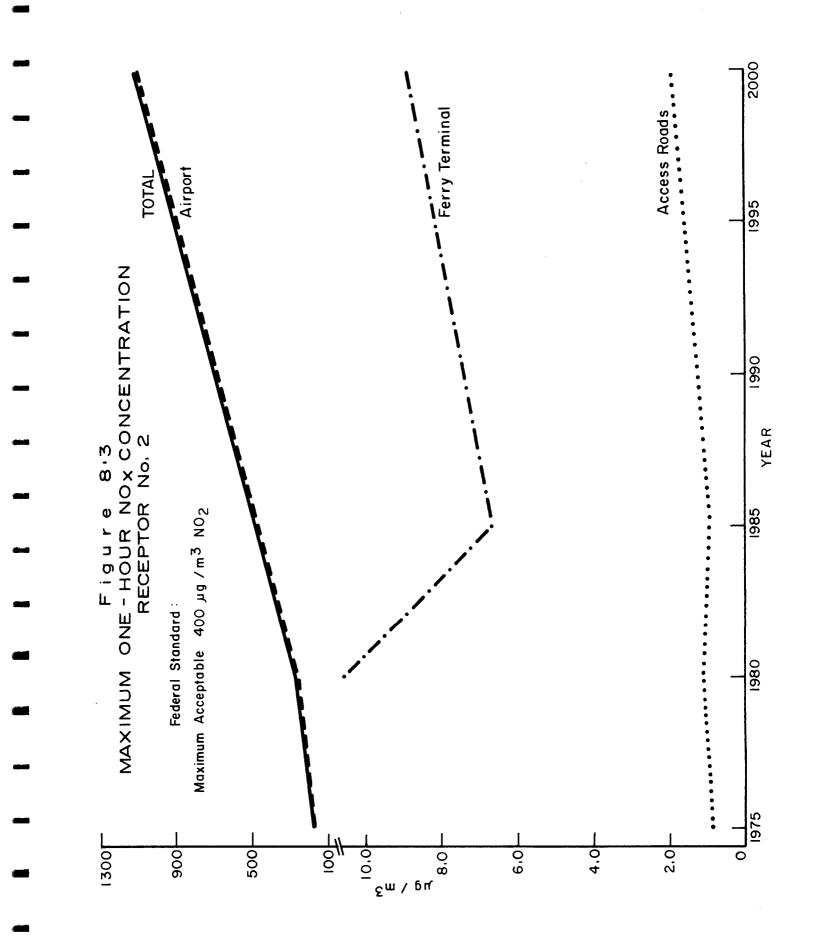
8.1 Oxides of Nitrogen

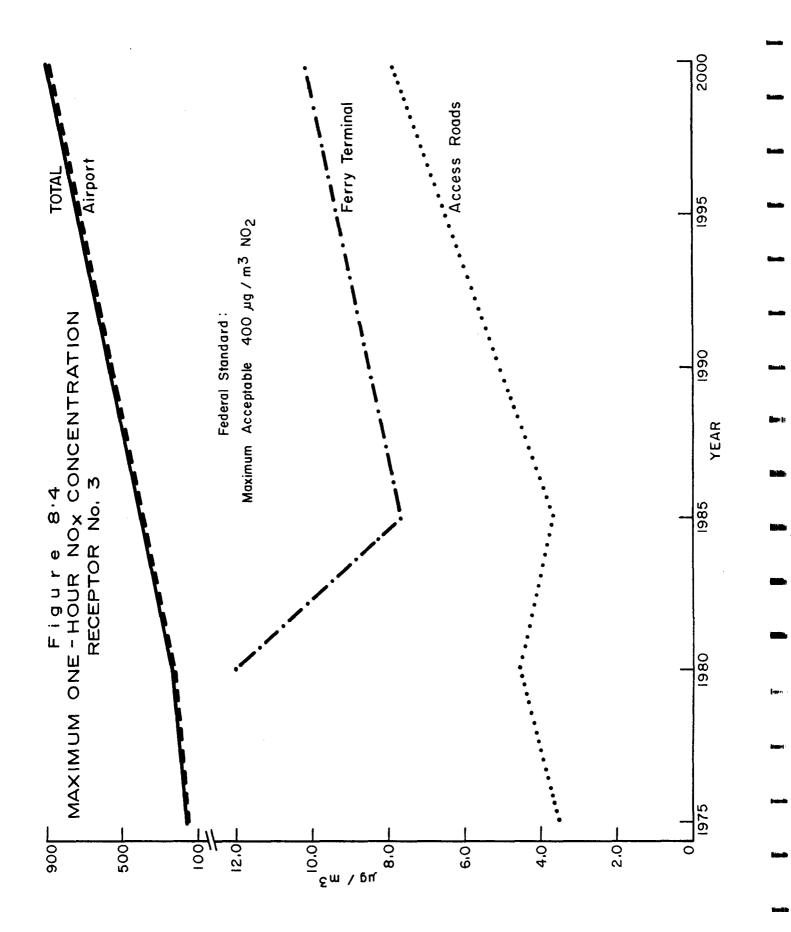
Federal objectives have been established for nitrogen dioxide (23). These are:

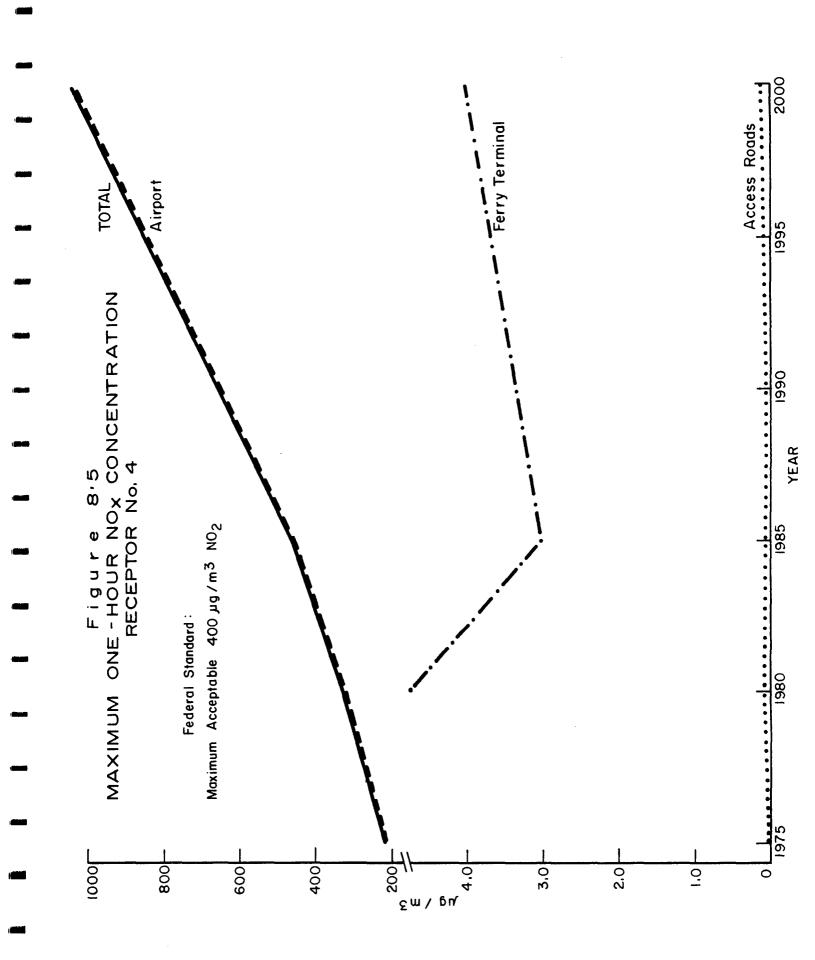
Averaging Period	Concentration $(\mu g/m^3)$	
1 hour	400)	
24 hours	200) (Maximum Acceptable)	
1 year	100)	
l year	60 (Maximum Desirable)	

It will be noted that the above ambient air quality objectives pertain to NO2, while the source emissions tabulated in Section 5 are given as total oxides of nitrogen. During most combustion processes oxides of nitrogen are mainly emitted in the form of nitric oxide (NO). The NO is subsequently oxidized to NO_2 which can participate in various complex photochemical reactions among which is a photodecomposition back to NO and atomic oxygen. The mechanisms and kinetics of the many complex atmospheric reactions undergone by the oxides of nitrogen are not yet well understood. Our diffusion model does not include photochemical reactions and so cannot estimate ambient NO_2 levels. Since the total oxides of nitrogen (NO_X) , and not just NO_2 , are photochemical smog precursors, we feel that estimated ambient concentrations of NO_x can and should be compared directly with NO_2 standards if the object is to assess the smog potential. It should be remembered, however, that the actual NO₂ levels will be somewhat lower than the estimated NO_x concentrations.


81

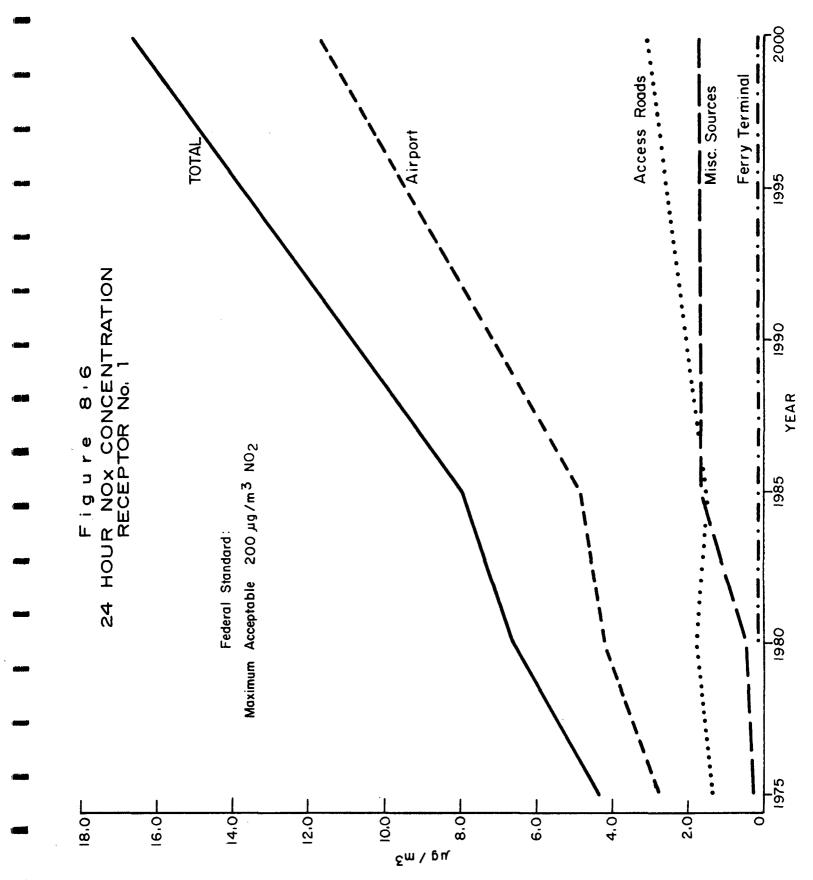

ter th

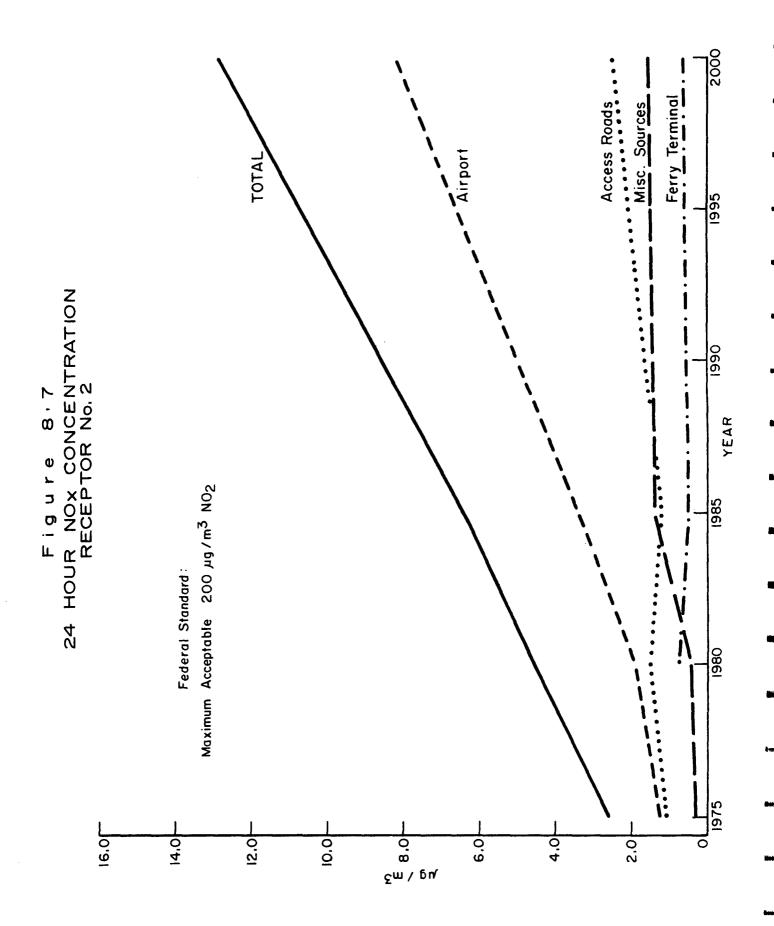

Figures 8.2 - 8.5 show the maximum one-hour NO_X concentrations calculated for the four receptors. In all four cases the airport (terminal plus runways) is the major contributor. For receptor #1 the airport access road is initially a major contributor. It can be observed that by 1985 the air quality objective of 400 μ g/m³ may be occasionally exceeded. Also apparent is the temporary decrease in NO_X concentration (1980 - 1985) resulting from federal automobile emission standards coming into effect.

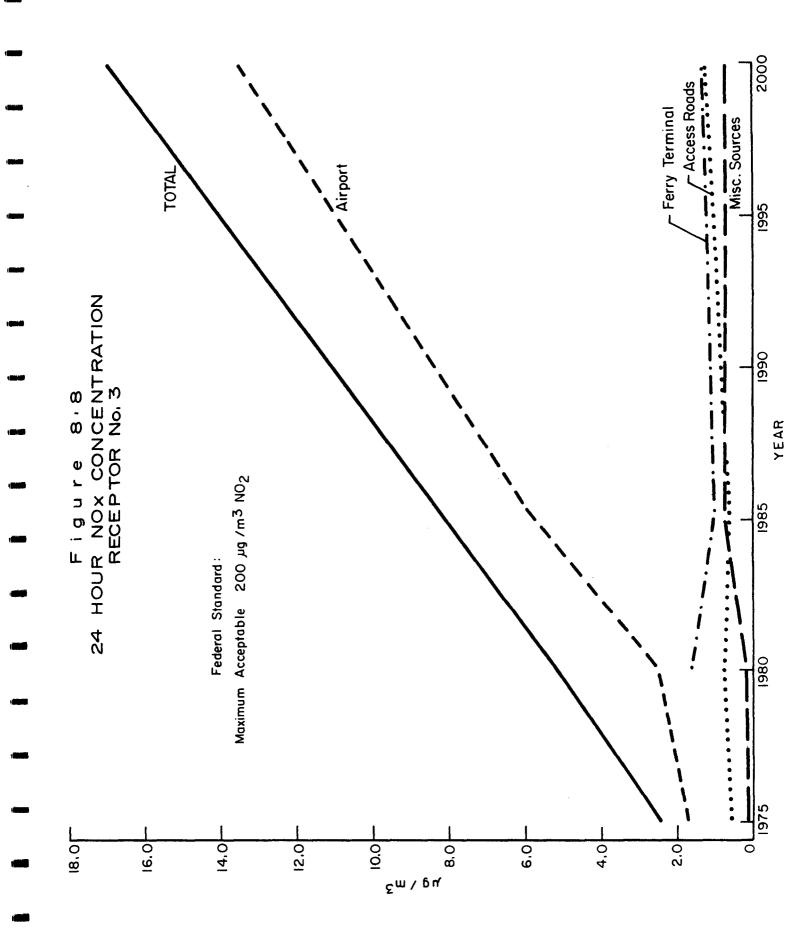

Figure 8.5 shows a maximum one-hour concentration, for the year 2000, of 1040 $\mu g/m^3$ of $NO_{\rm X}$ which is attributable to aircraft related sources. A further breakdown of this figure is shown below:

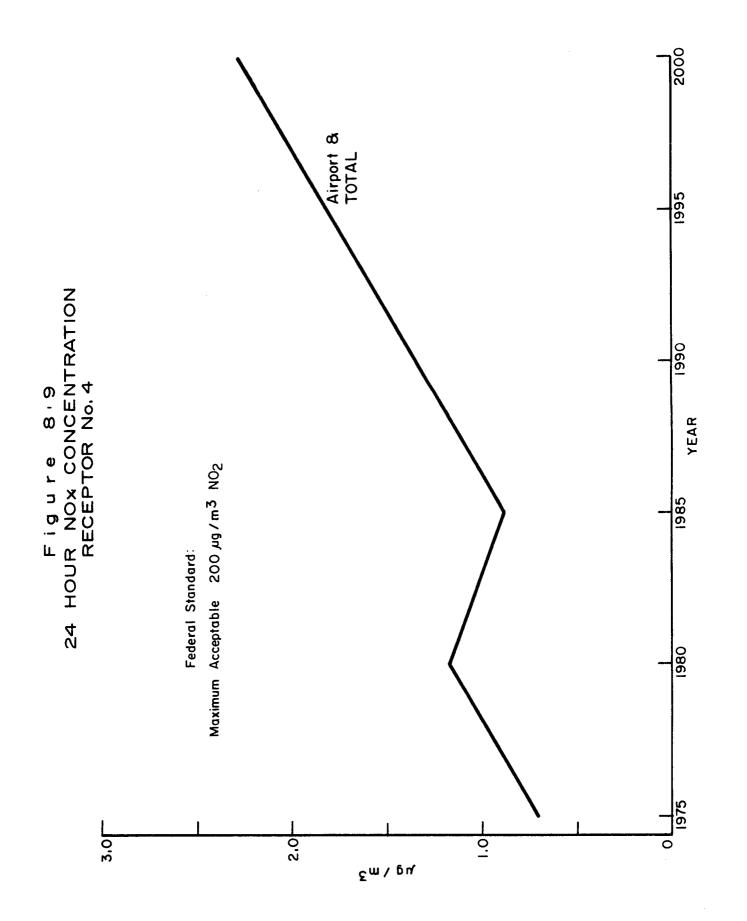
Source	Contribution $(\mu g/m^3)$
Terminal	164
Runway 1	468
Runway 2	13
Runway 3	312
Climb-out/Approaches	80

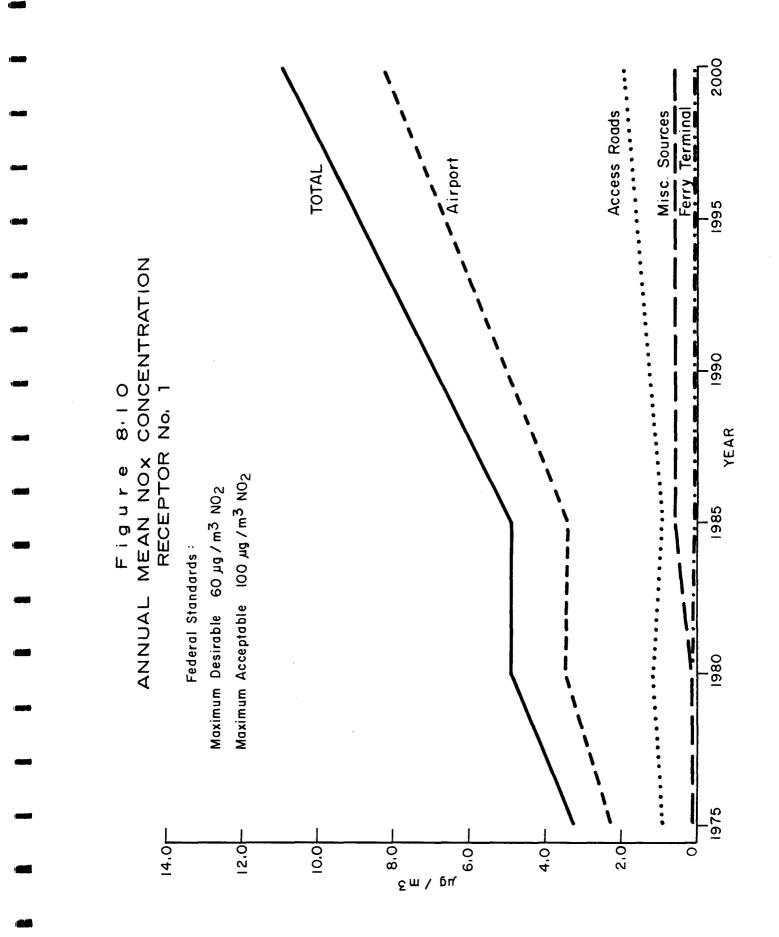
In order to check the model for the line source approximation (Section 7.4) the contribution from runway 1 to the concentration at receptor 4 was estimated using the recently published (28) boundary layer model of Ragland and Peirce. Assuming an upper (300 m) geostrophic wind speed of 5 m/s, a stable atmosphere, and a surface roughness of 0.2 m, their numerical model yields a concentration of 580 μ g/m³ NO_x. The results of our model, where a wind speed of 1 m/s near the ground is assumed, is seen to be 468 μ g/m³. The somewhat lower concentration predicted would be partially due to our use of an initial mixing cell volume in order to allow for traffic generated turbulence. In any event the close agreement between the two independent methods is gratifying. It should be noted that researchers testing several mathematical models for reliability in forecasting the dispersion of vehicle emissions have concluded that the Gaussian model is the most reliable under the greatest amount of circumstances (29).

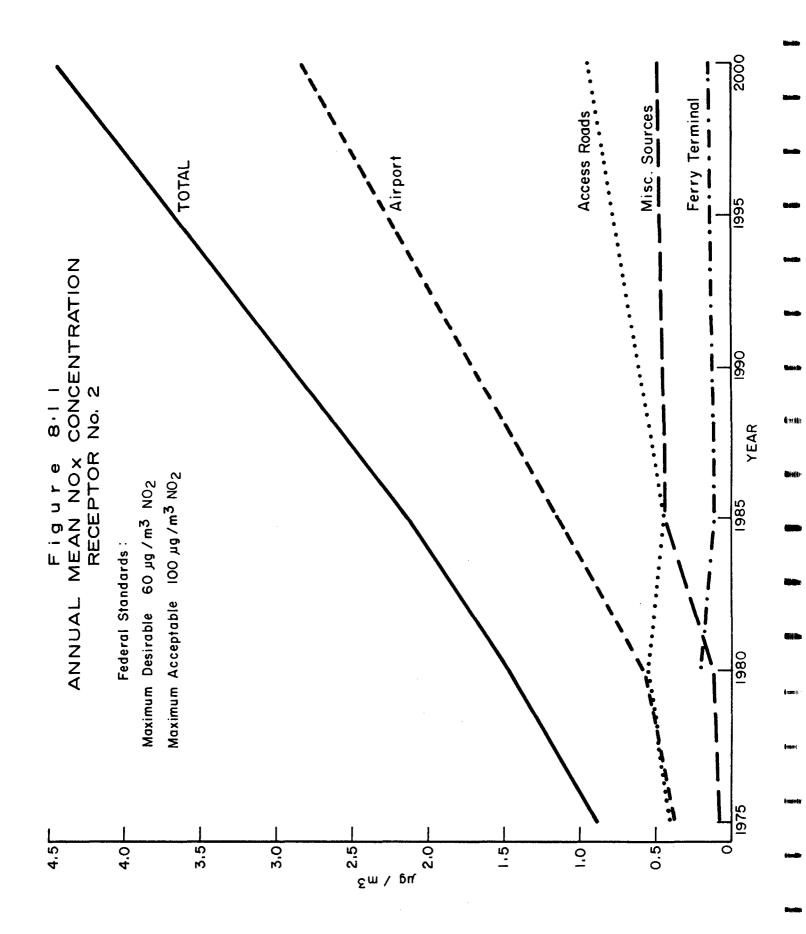

Figures 8.6 to 8.9 show typical 24-hour ambient NO_x concentrations for the four receptors during the years 1975 through 2000. It should be reiterated that only airport related emissions are included - the ground level concentrations would be correspondingly higher if emission sources from the surrounding urban and industrial areas were included.

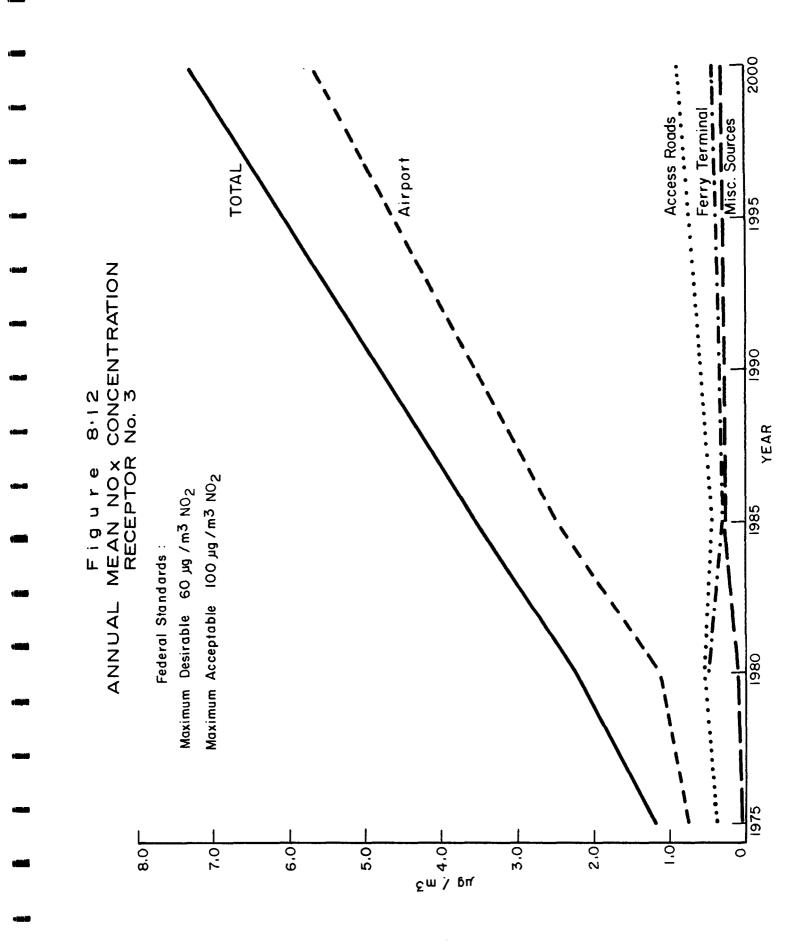

Expected annual mean NO_x concentrations are depicted in Figure 8.10 to 8.13. The relatively low annual NO_x concentrations reflect the highly non-isotopic average weather conditions tabulated in Table 6.5, where it can be seen that there often occurs a strongly ventilating wind from the east. This would, of course, tend to blow airport related emissions away from the receptors shown in Figure 8.1.

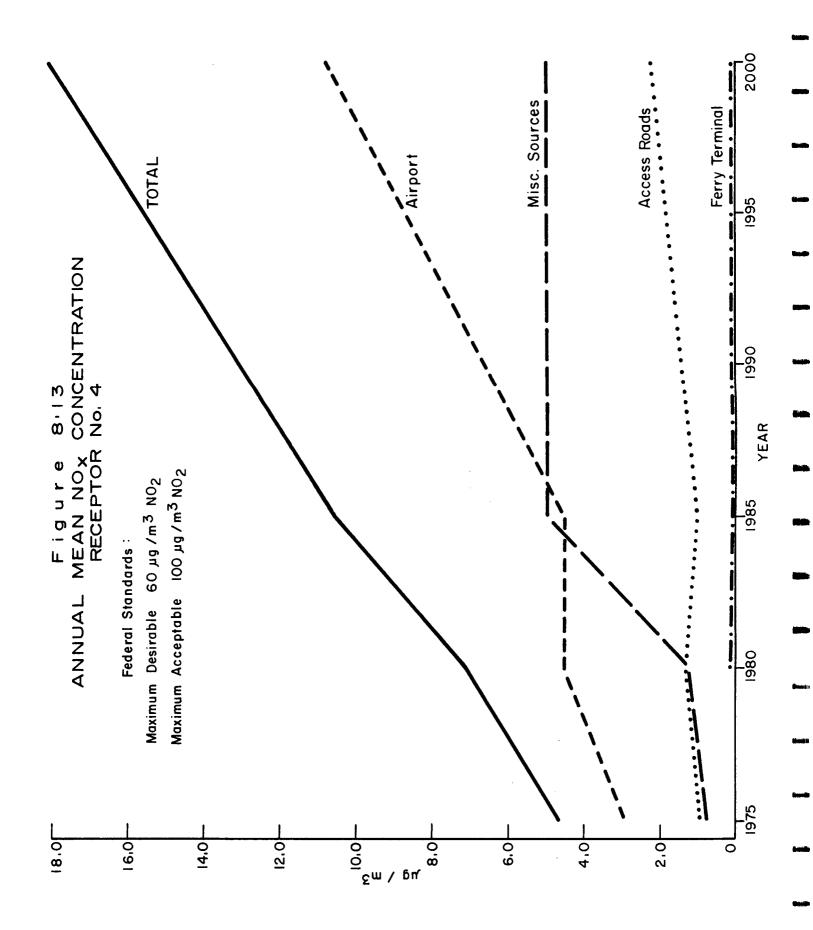

Figure 8.10 shows a slight decrease in NO_x concentration at receptor No. 1 between 1980 and 1985. This apparent anomaly is due to a shift in aircraft traffic when a new runway comes into service in 1985.

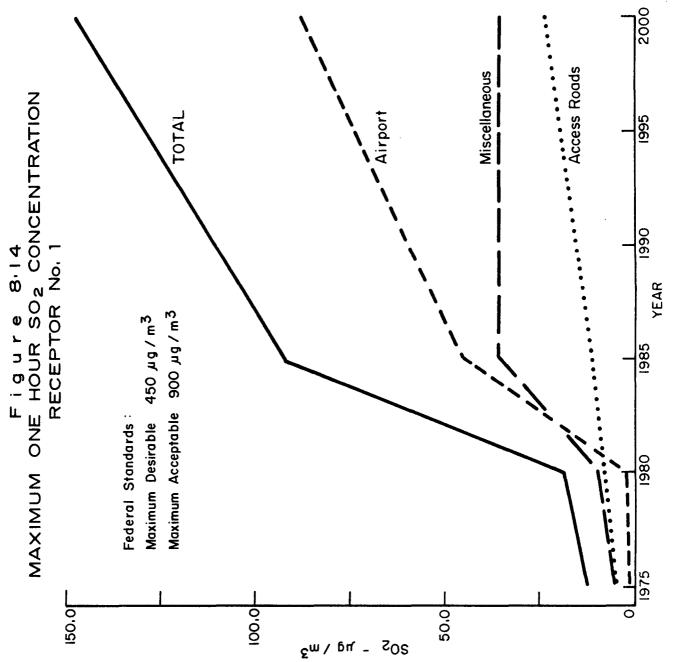

8.2 Sulfur Dioxide

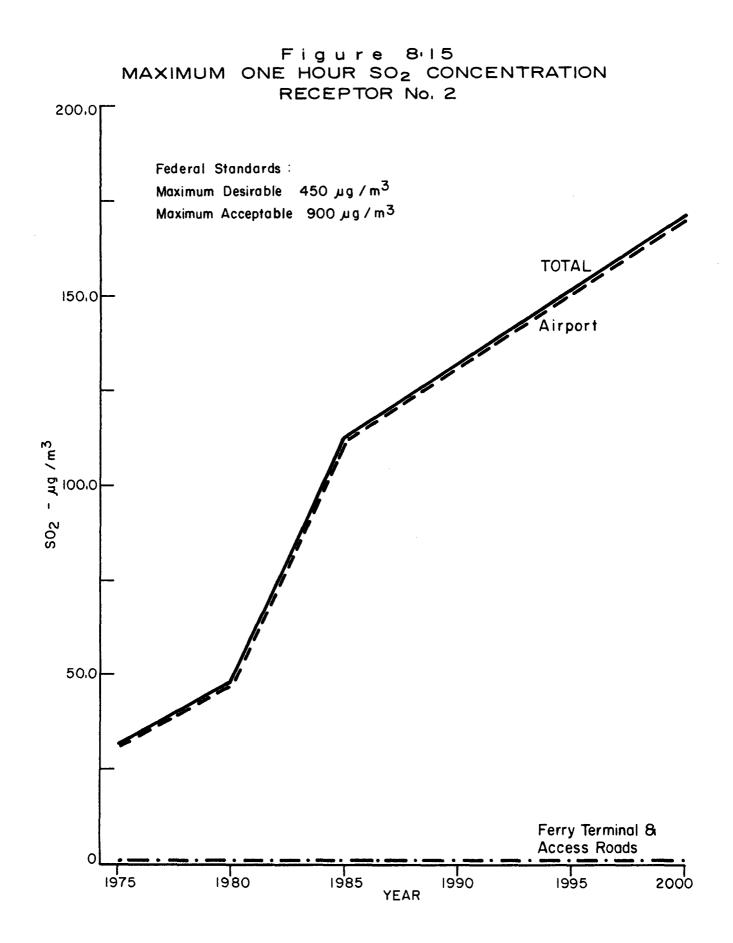

The federal ambient air quality objectives (24) for sulfur dioxide are listed below:

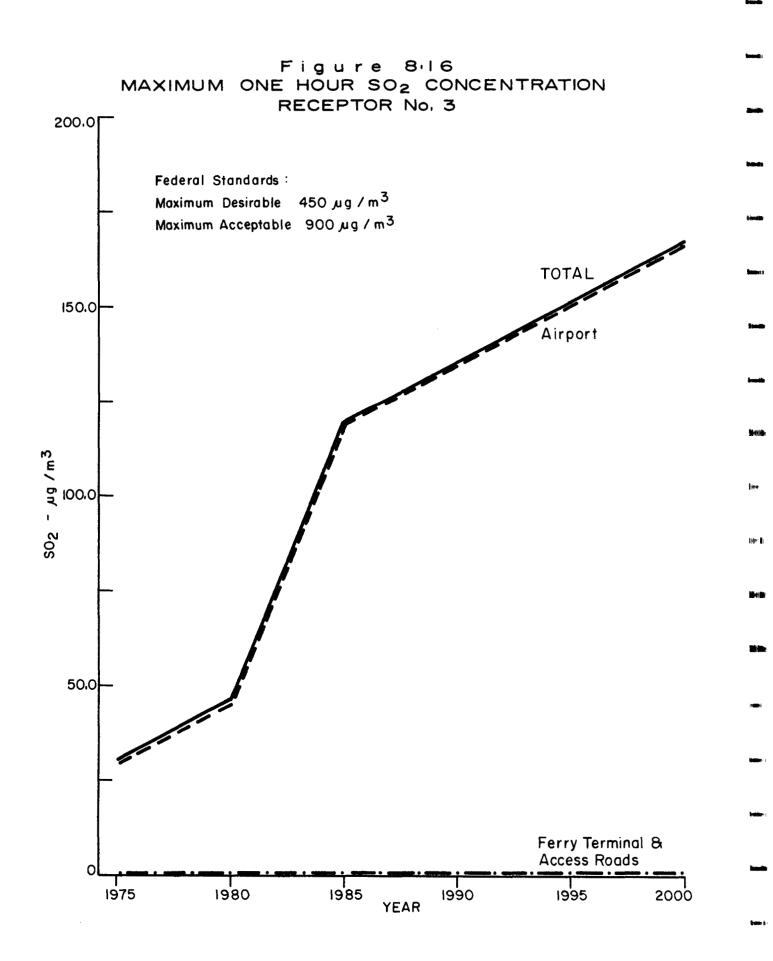


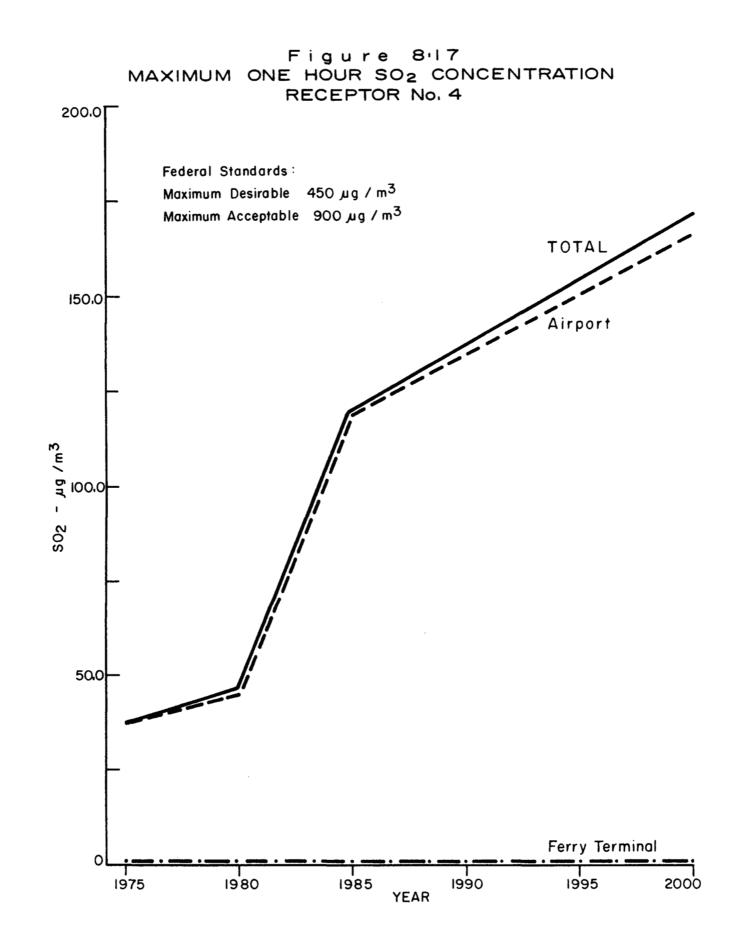


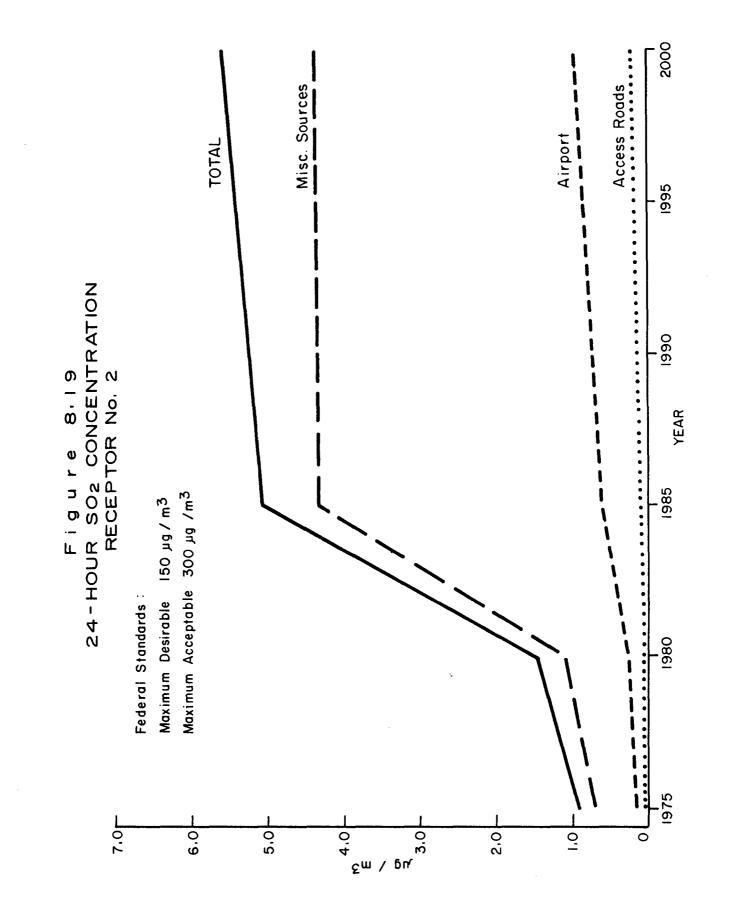


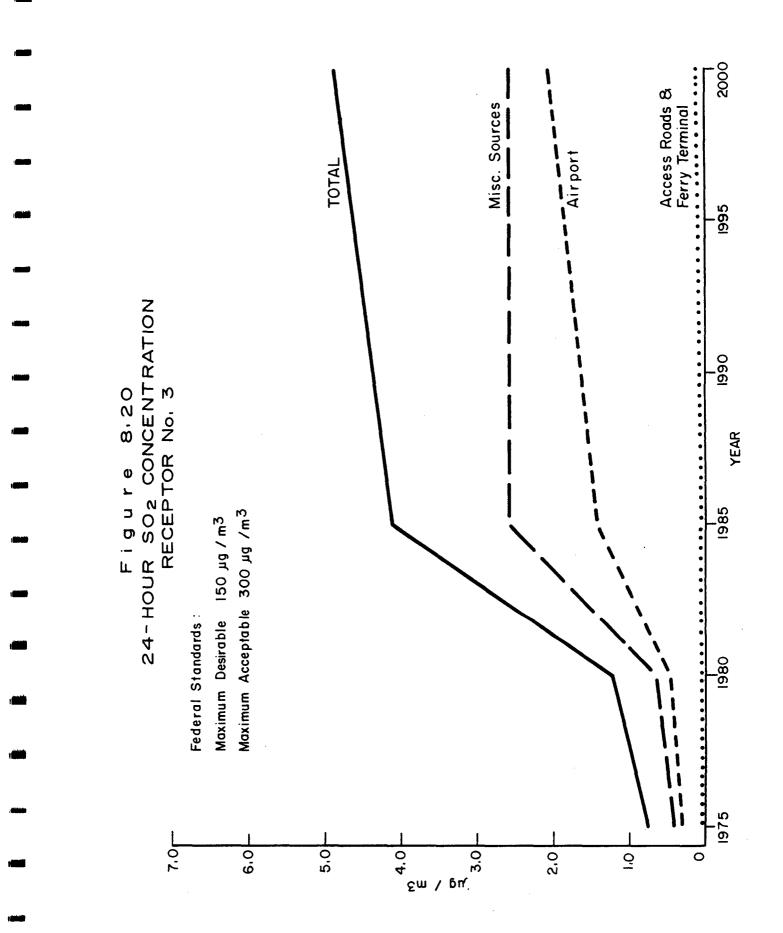

Averaging Period	Desirable (µg/m ³)	Acceptable (µg/m ³)
1 hour	450	900
24 hours	150	300
l year	30	60

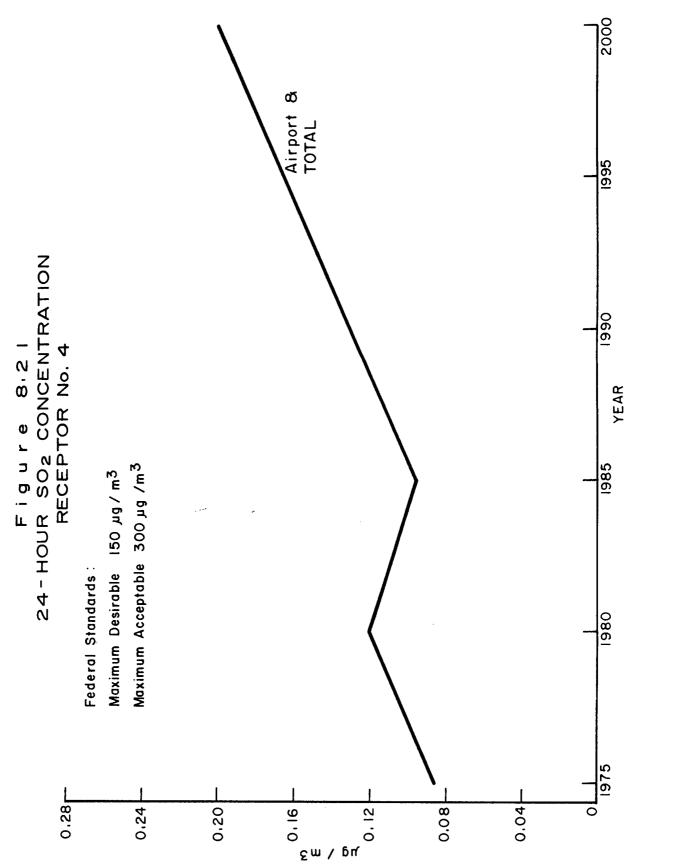

Using the previously described methodology the maximum one hour, typical 24 hour, and expected annual mean SO_2 concentrations attributable to airport related sources were estimated for the four receptor locations. Maximum one-hour SO_2 concentrations are presented in Figure 8.14 to 8.17, while typical 24-hour SO_2 concentrations are shown in Figures 8.18 to 8.21.

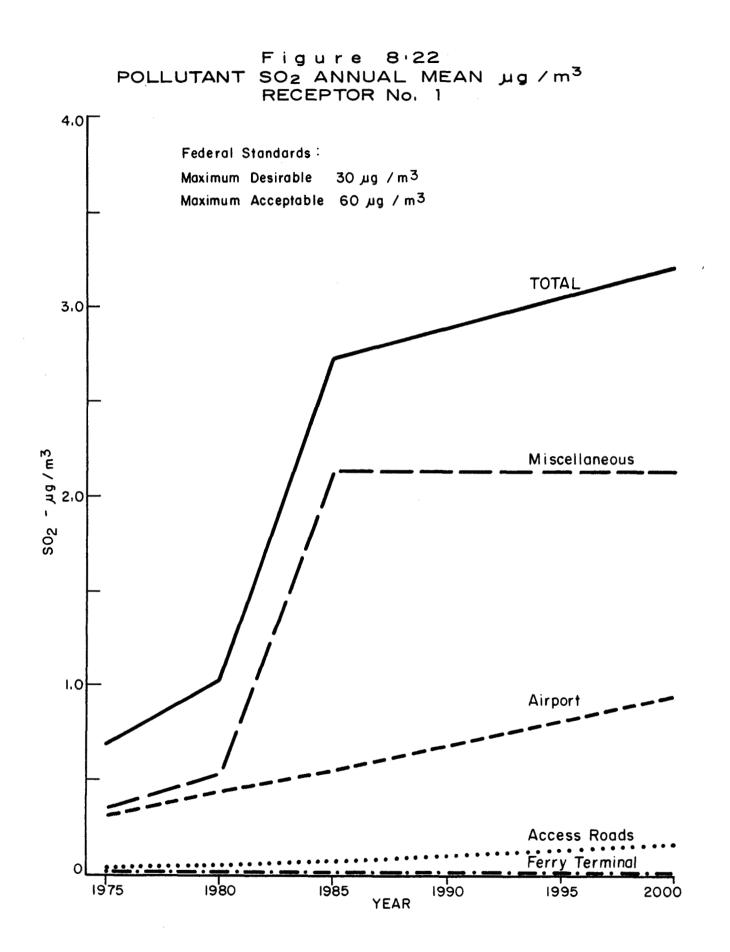

The major source of SO_2 is that derived from fuel oil combustion that occurs in areas 3 and 4 (Table 5.16). Since the maximum one-hour SO_2 concentrations are based on critical wind angles associated with transportation related emissions, the actual maximum SO_2 levels would be higher than those shown. Peak SO_2 would occur when a light (1 m/s) wind blows directly from area 4 to receptor 4 (see Figure 8.1) during a ground based inversion. Using our previous assumptions on the frequency of occurrence of such phenomena, it is estimated that the maximum concentration would occur about 8 hours per year on the average. This value is estimated to be about 170 μ g/m³ for 1975, rising to a peak of 1100 μ g/m³ during the year 2000. These estimates are based on the present practice of using roof-level vents. Hence consideration should be given to stack design during any future heating plant expansion.

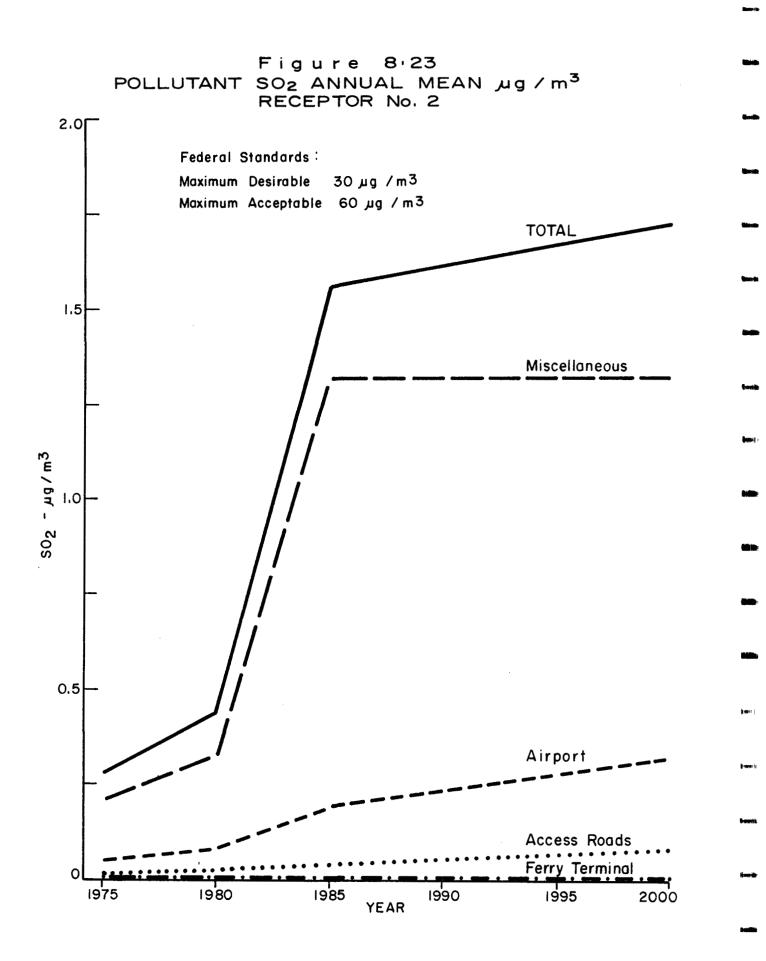

The typical 24 hour ground-level SO_2 concentrations (Figures 8.18 to 8.21) generally reflect the major source of this pollutant — the miscellaneous source class. Receptor 4 (Figure 8.21) however, does not "see" these sources when the wind vector shifts clockwise from the east to the northwest. The concentration shown is derived mainly from aircraft movements on runway 1.

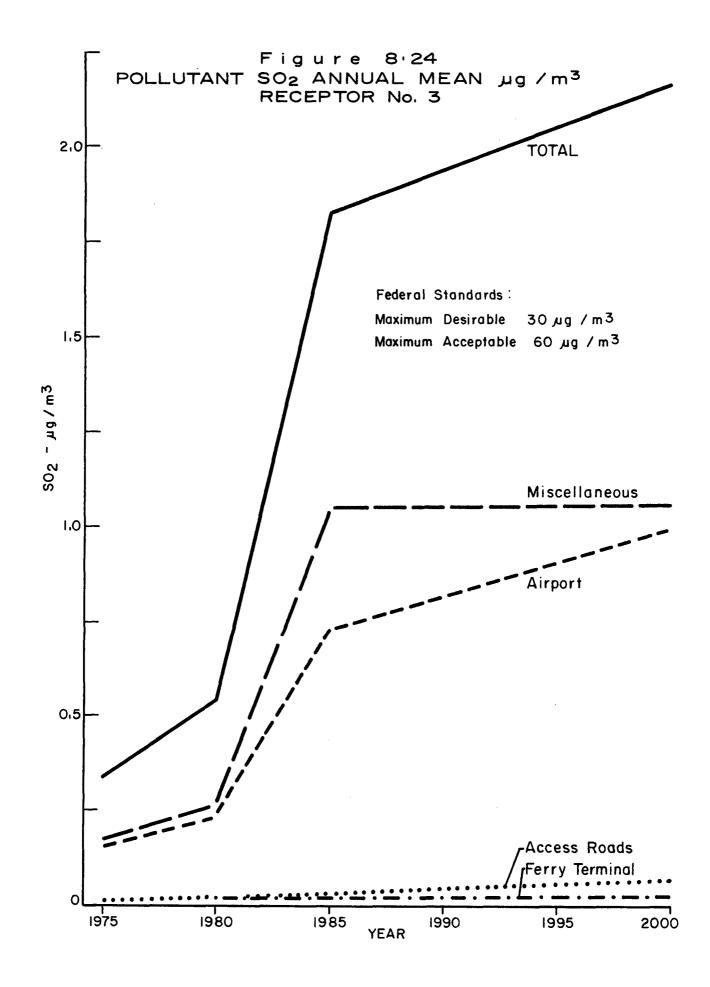

Expected annual mean SO_2 concentrations are generally small when compared with federal objectives as is done in Figures 8.22 to 8.25. An exception is at receptor 4 (Figure 8.25) where the close proximity to area 4 can, as previously discussed, lead to occasional high SO_2 levels.

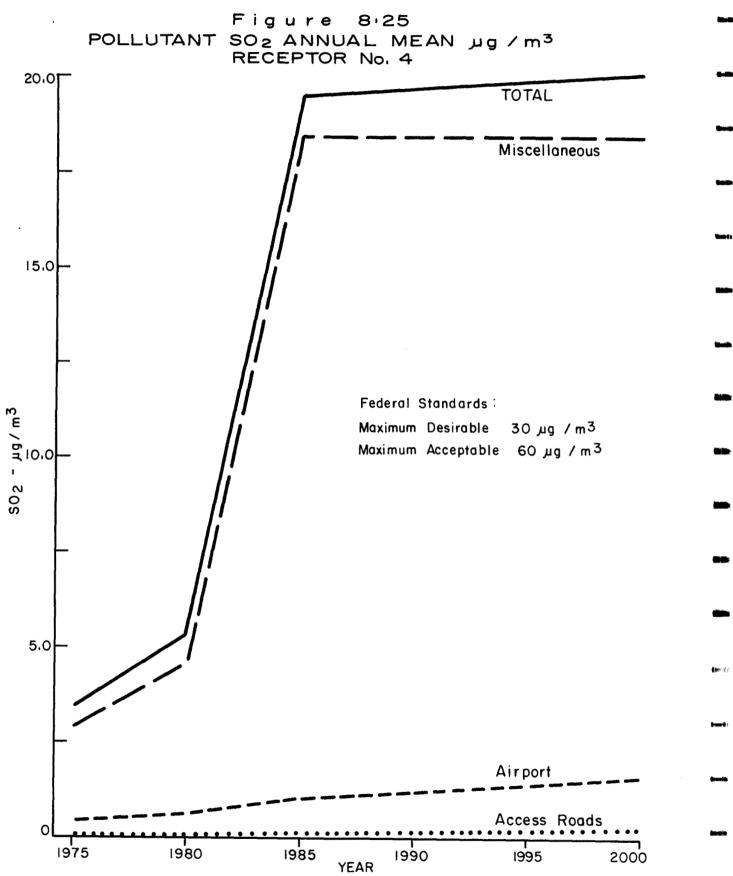





1997 Q.


.....


.....

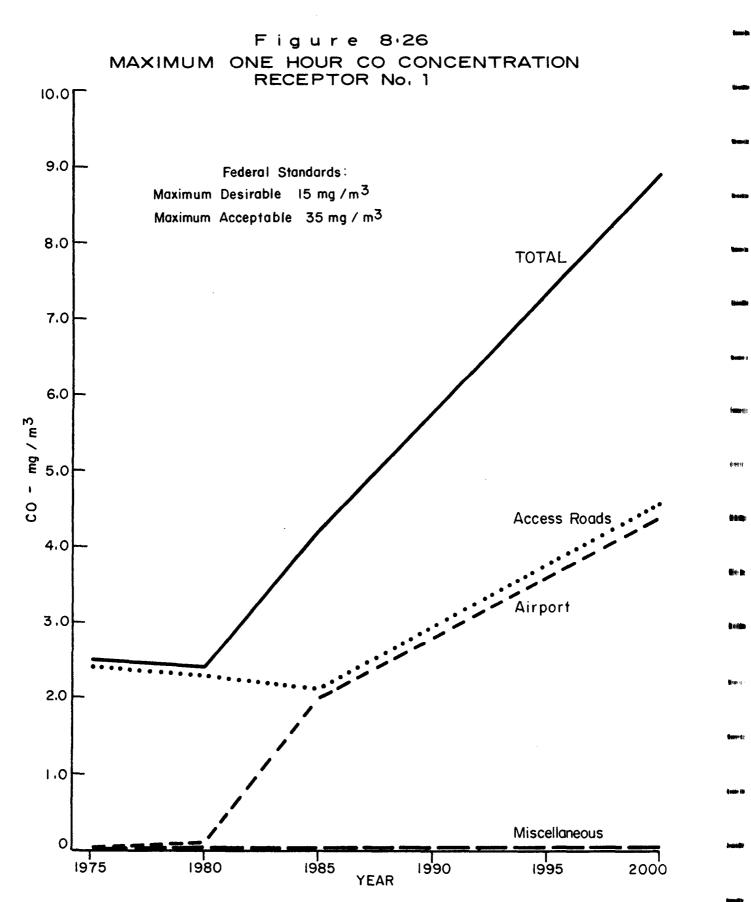


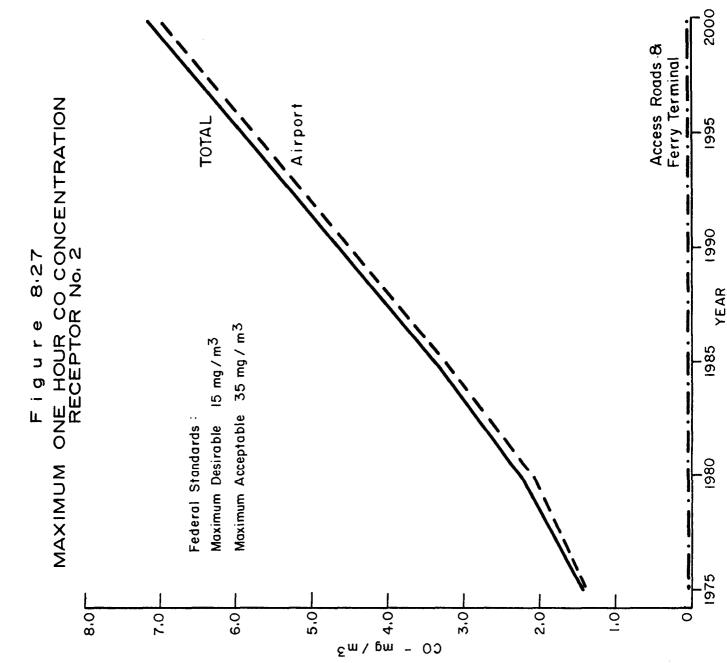
8.3 Carbon Monoxide

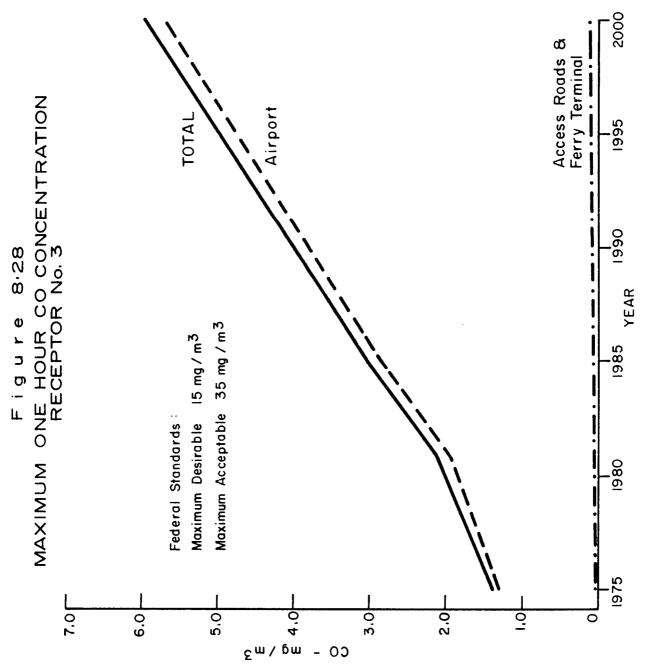
The federal air quality objectives for carbon monoxide are (24):

Averaging Period (hours)	Desirable (mg/m ³)	Acceptable (mg/m ³)
1	15	35
8	6	15

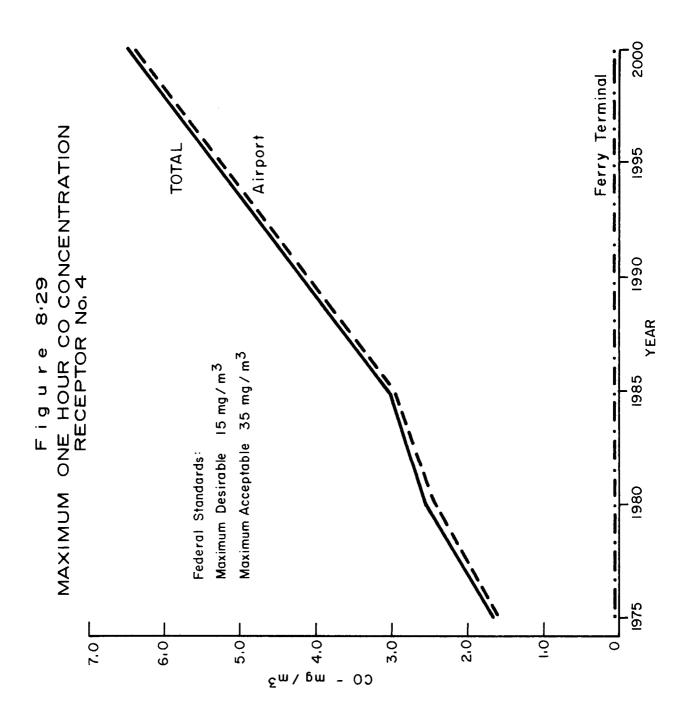
Figures 8.26 to 8.29 show the estimated maximum one hour CO concentrations at the four receptors. It can be seen that by the year 2000 the airport could increase the ambient concentrations to a significant fraction of the maximum desirable ambient CO level.

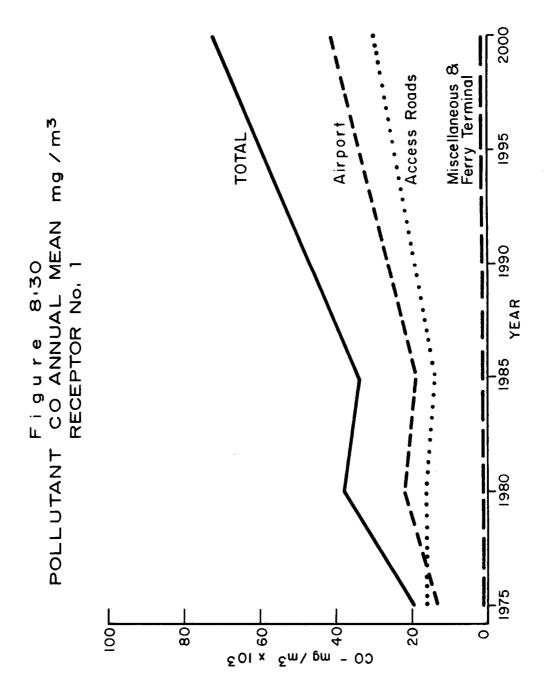

Figures 8.30 to 8.33 show expected annual mean CO levels. Although the federal objective for CO is not based on this averaging time, it was felt that such estimates would be useful for purposes of comparison with actual field surveys.

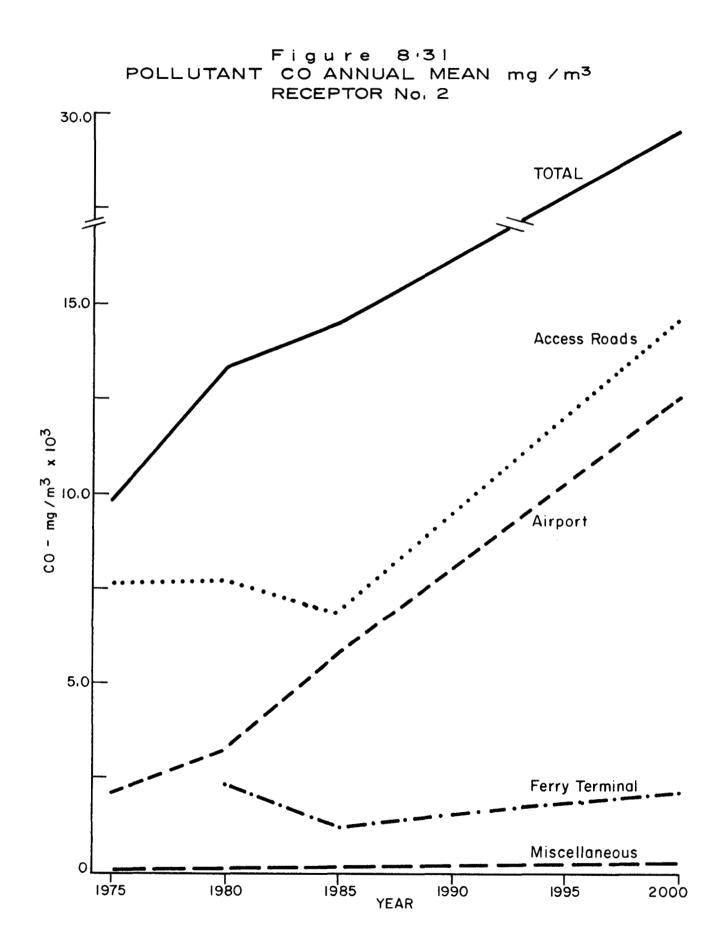

8.4 Suspended Particulate

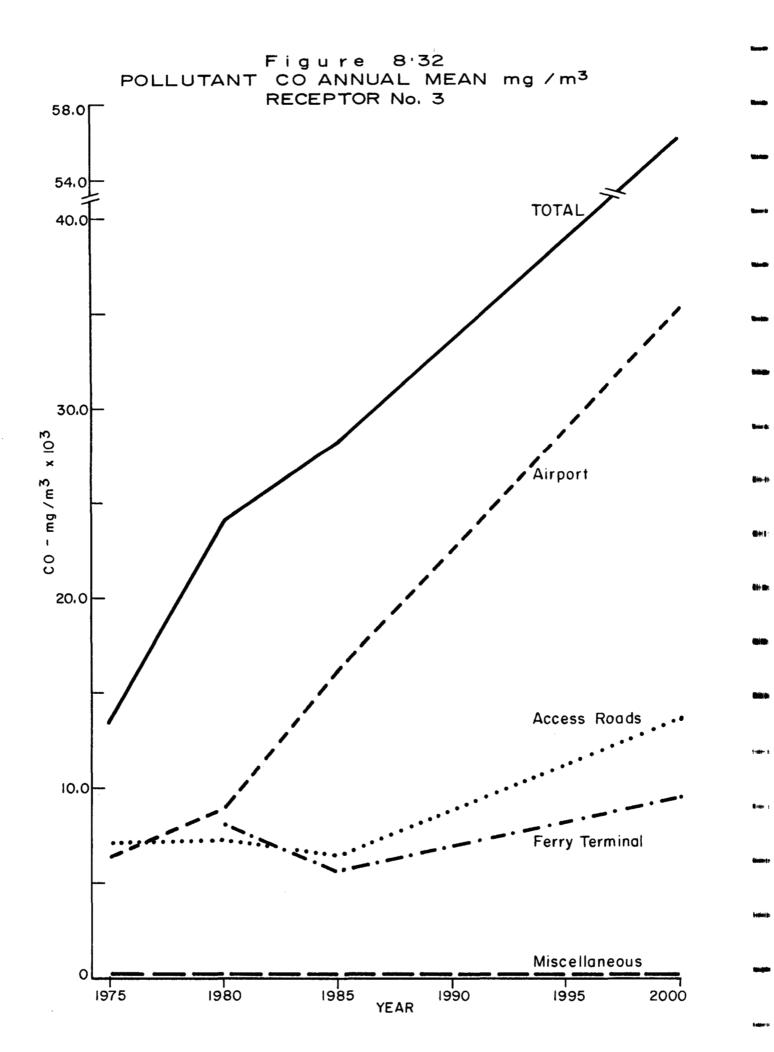

Federal objectives (24) for suspended particulate matter are given as:

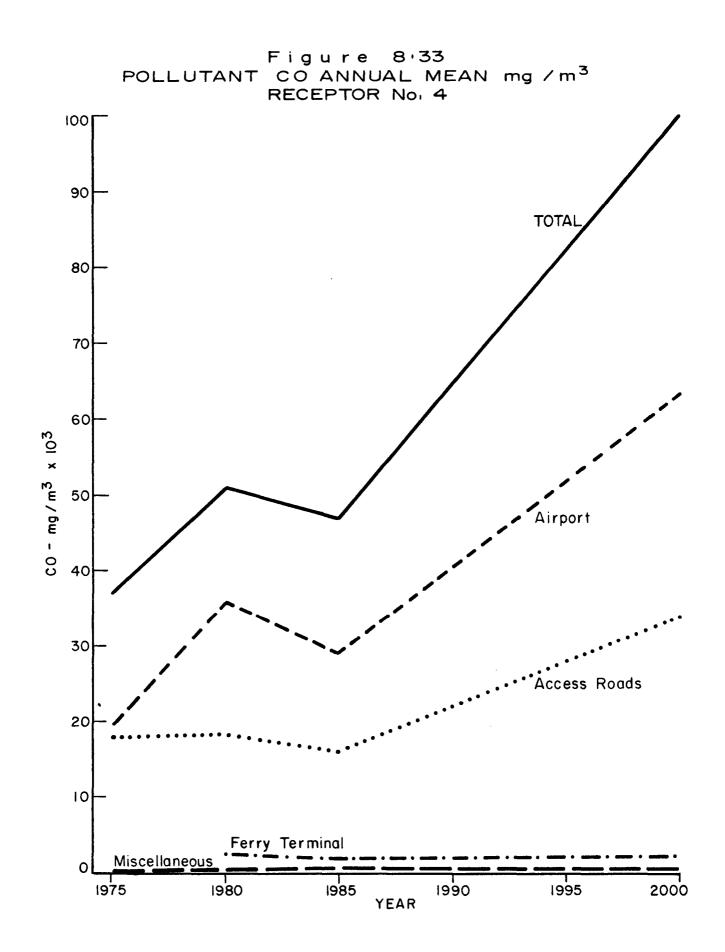
Averaging Period	Desirable (µg/m ³)	Acceptable <u>(µg/m³</u>
24 hours	-	120
1 year	60	70

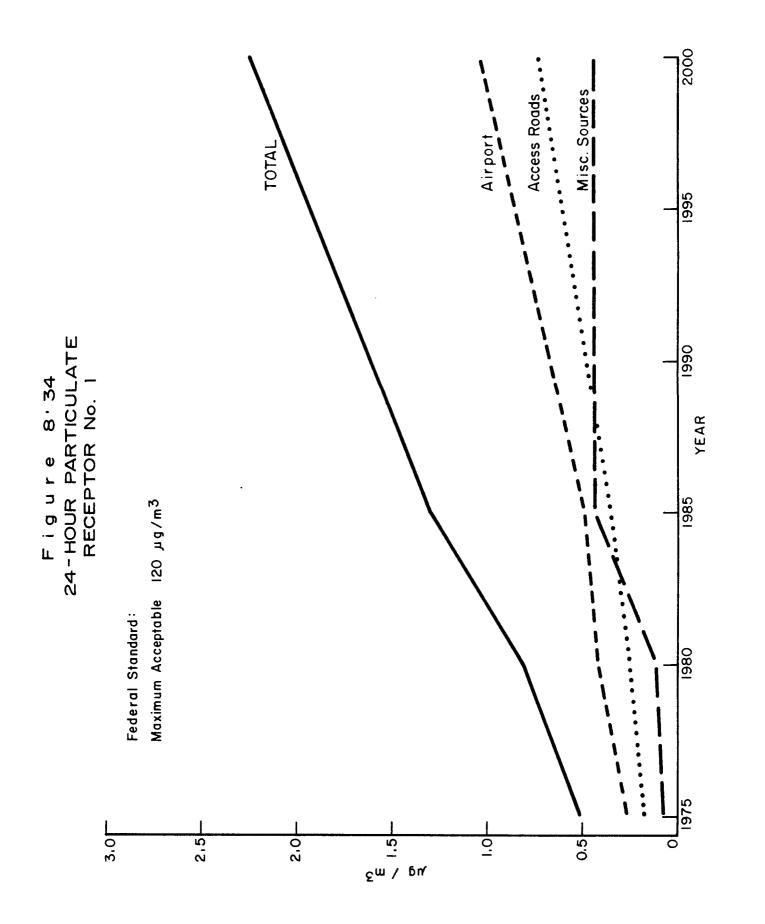

Figures 8.34 to 8.37 show typical 24-hour concentrations while Figures 8.38 to 8.41 illustrate the expected annual mean particulate concentrations at the four receptor sites. The contribution of the airport to ambient particulate burden is relatively low.

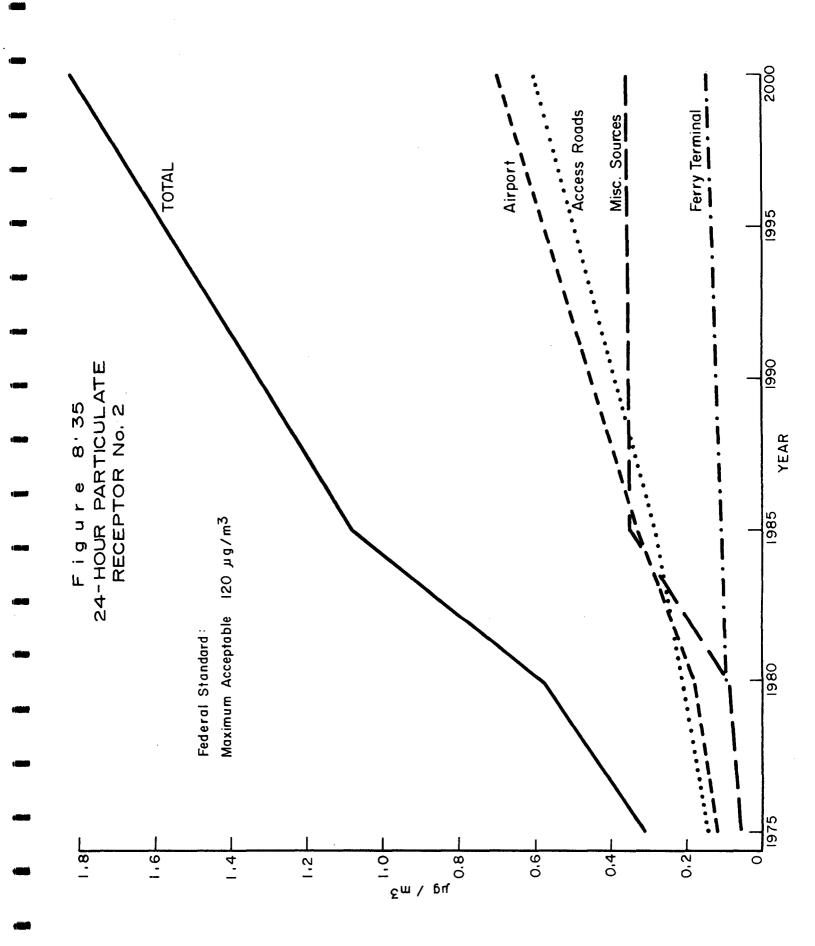


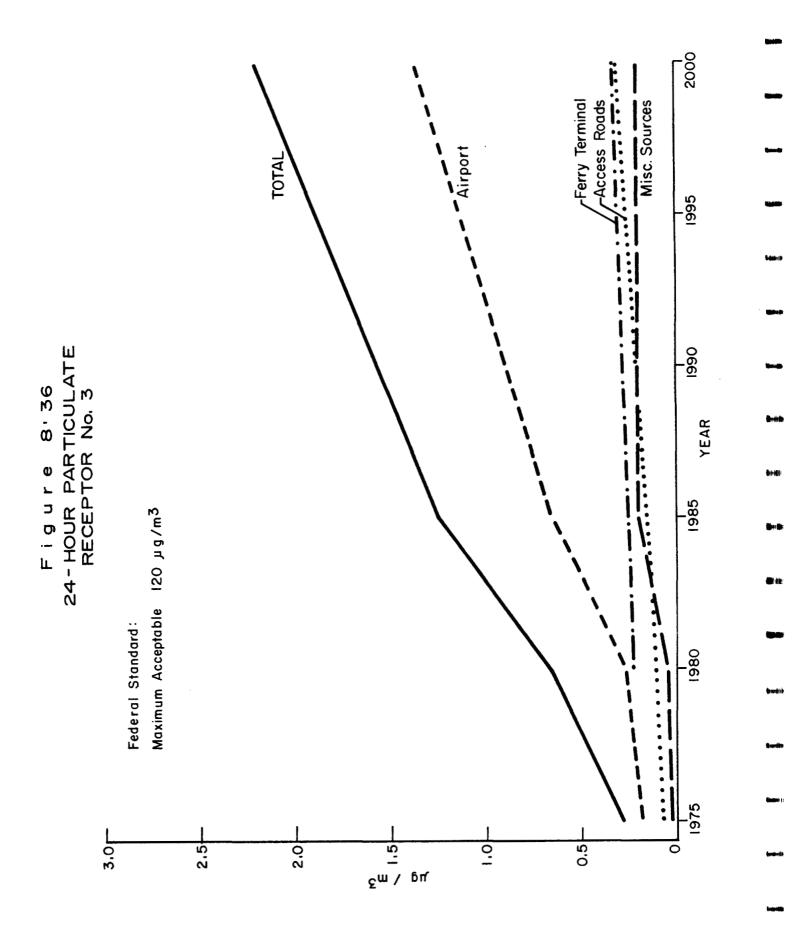


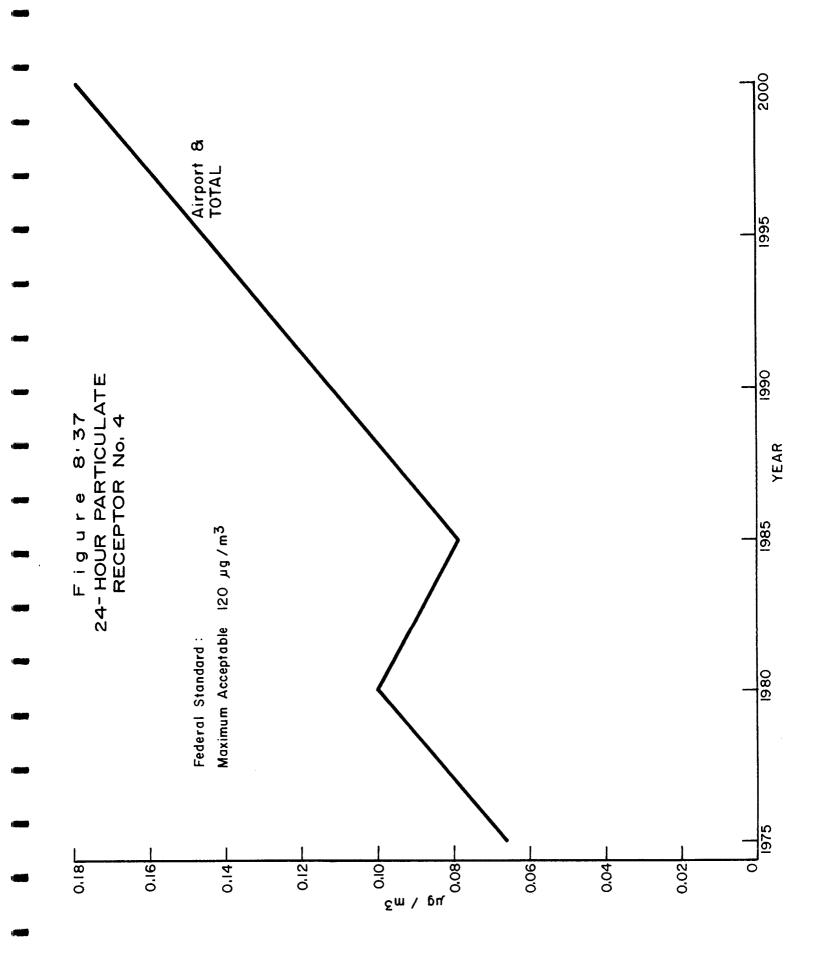

tm-

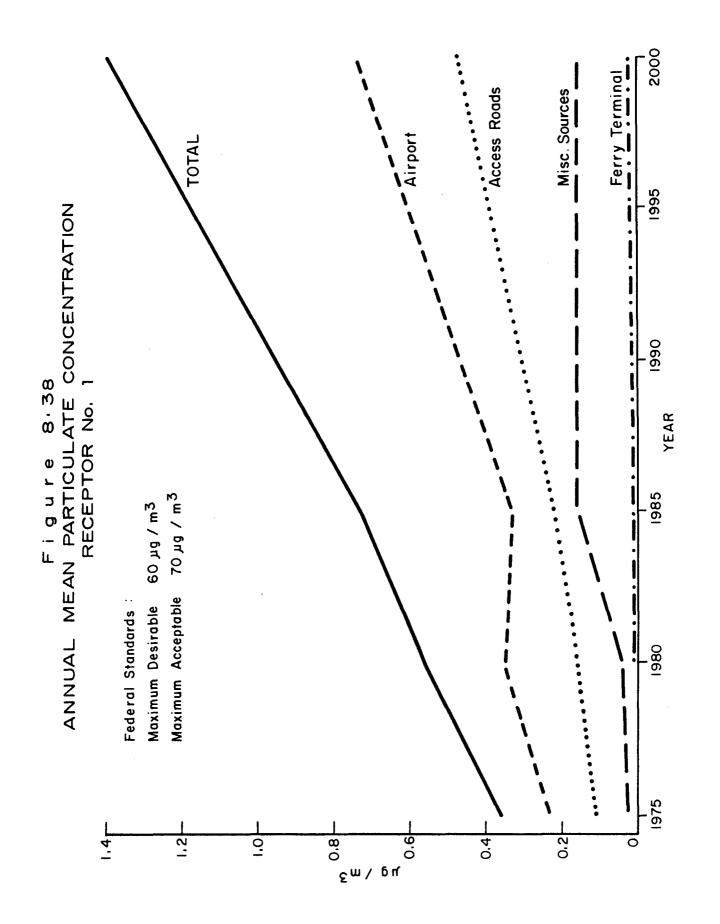


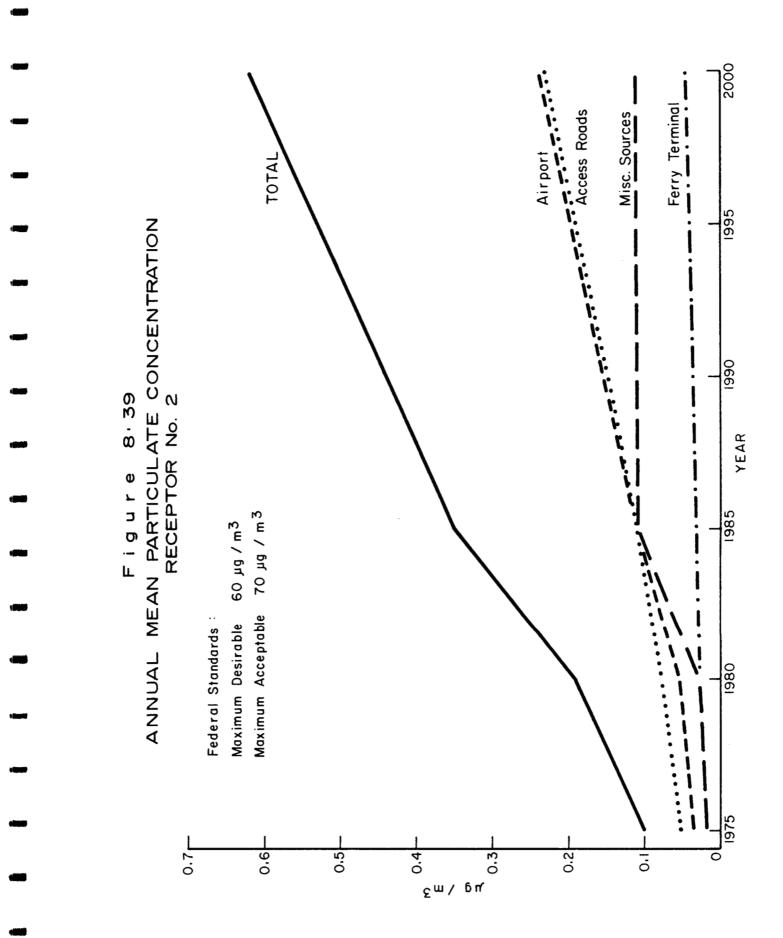


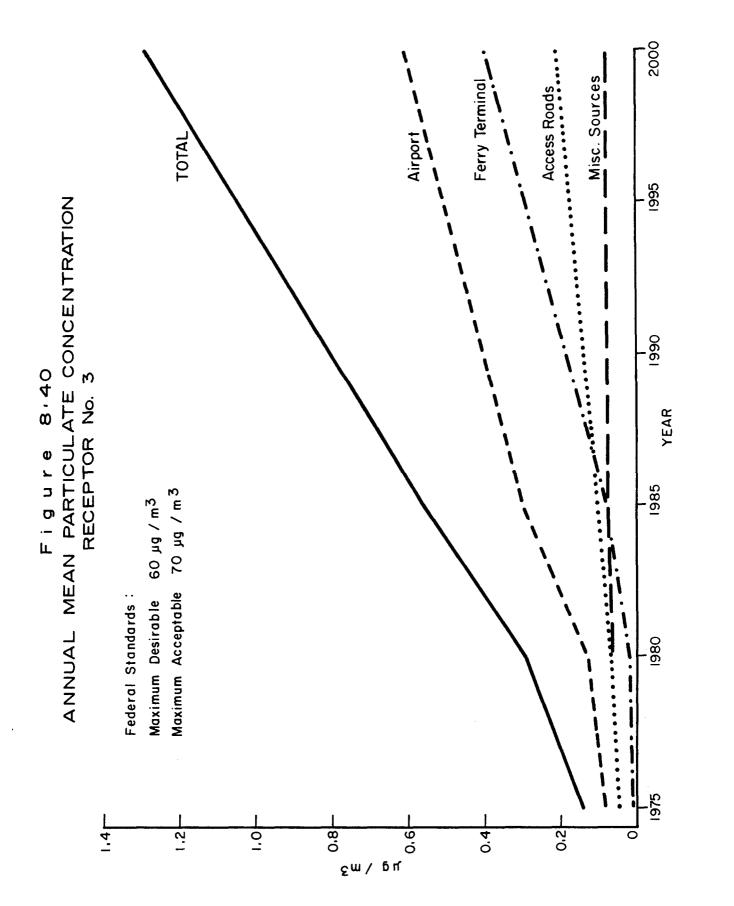


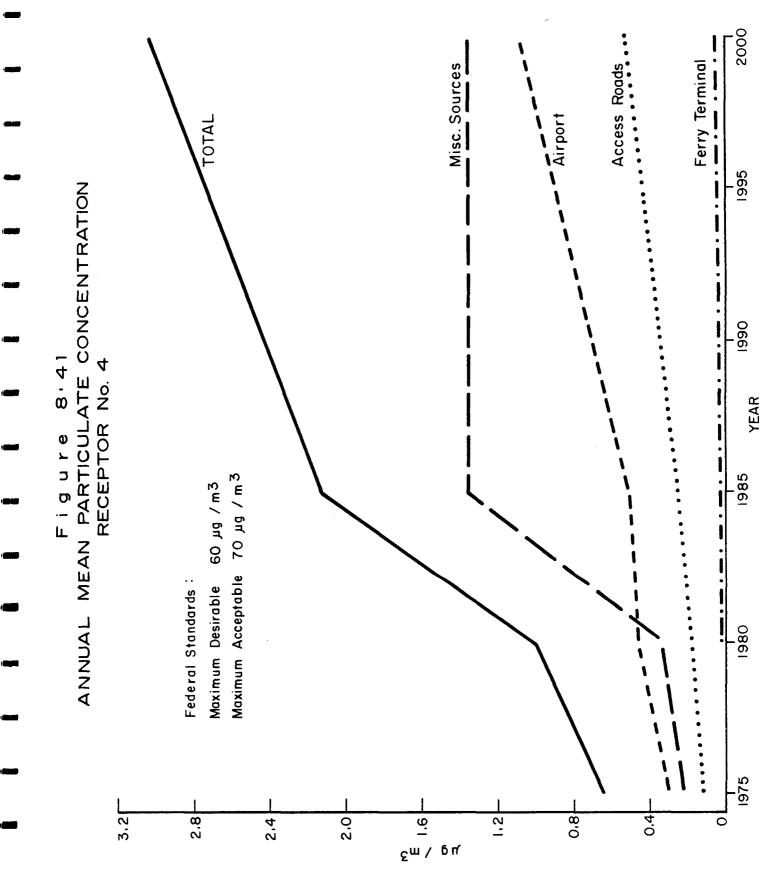


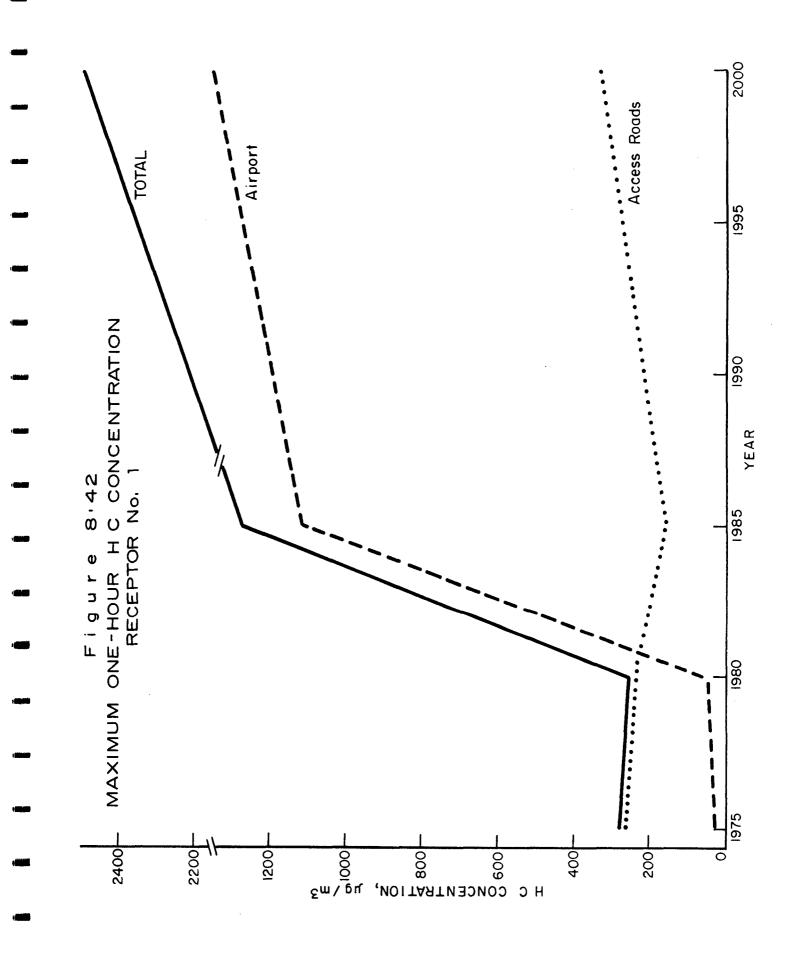


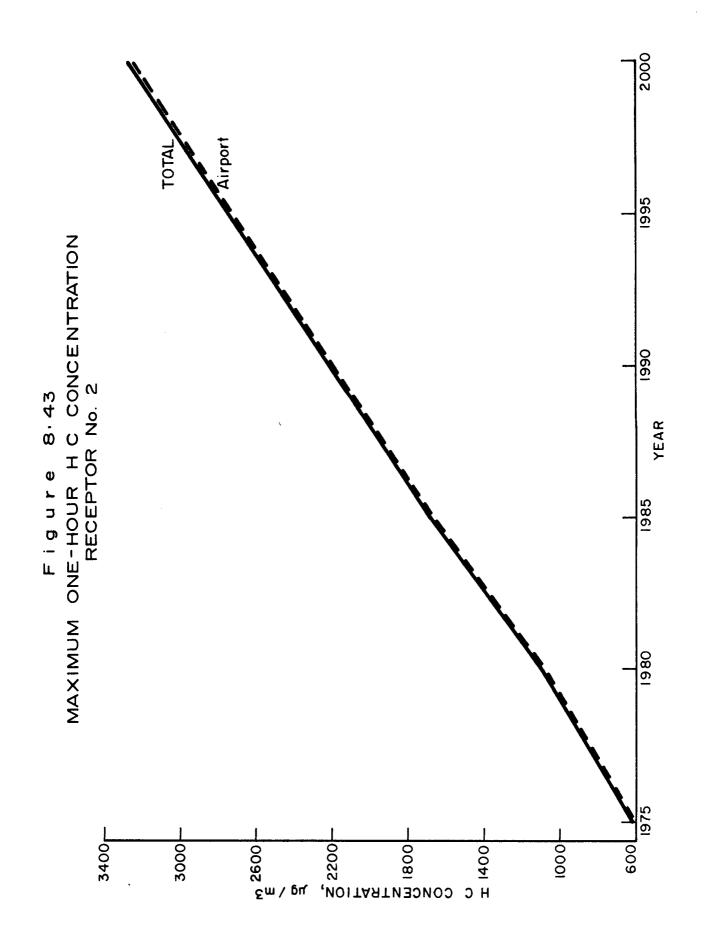


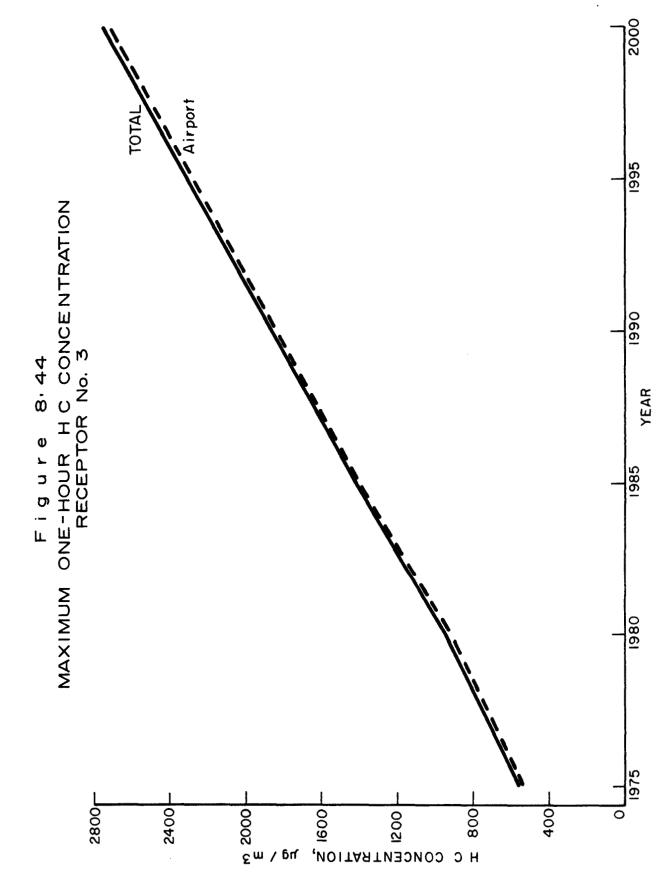


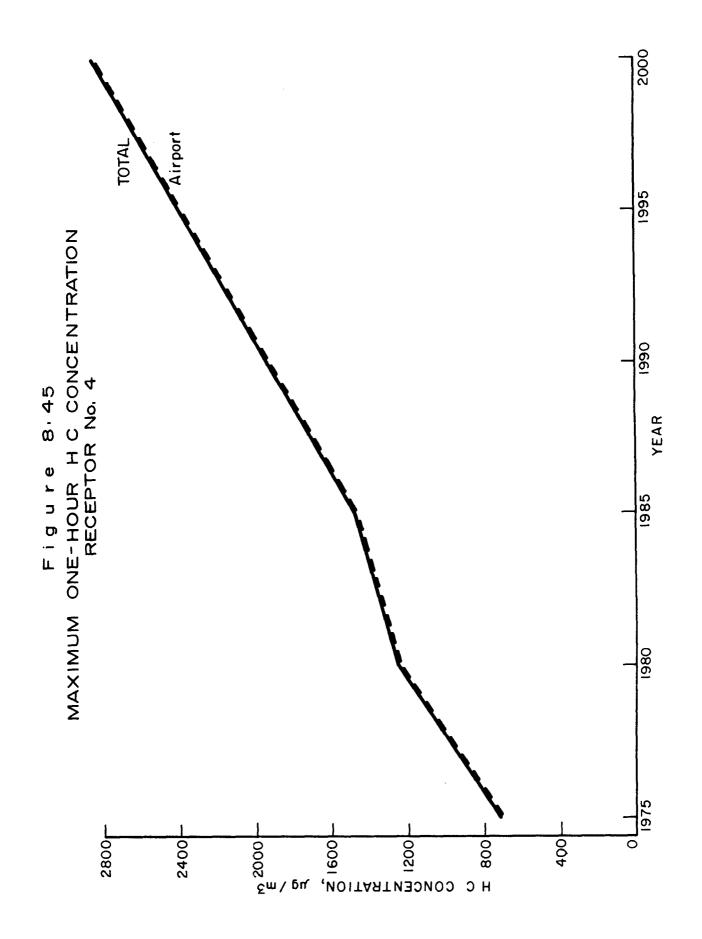



Hum HD






8.5 Hydrocarbons


The Canadian government does not presently have standards for ambient hydrocarbons. The U.S. federal objectives for this pollutant are designed to limit photochemical oxidant buildup and hence are set at 160 μ g/m³ (0.24 ppm) maximum 3-hour concentrations (6 - 9 a.m.), not to be exceeded more than once per year (25). Their primary and secondary standards are the same, and are corrected to exclude the non-reactive methane portion of the total hydrocarbons. These standards thus prevent the injection of gross quantities of reactive hydrocarbons into a stagnant air basin where the subsequent effects of NO_x accumulation and intense solar radiation would lead to the formulation of photochemical oxidants.

Using the previously described methodology maximum one hour HC concentrations were calculated for the four receptor sites and are shown in Figures 8.42 to 8.45. It can be seen that aircraft related sources are the major contributor towards the very high estimated ambient hydrocarbon level.

-

9. DISCUSSION AND RECOMMENDATIONS

The previous section presented forecasts on the contribution to ambient air quality reduction by pollutants emanating from airport-related sources. These estimates were done for short-term maximum concentrations, where peak airport emissions coincide with adverse weather conditions, for typical 24-hour average concentrations, and for expected annual mean concentrations.

It was seen that maximum one-hour concentrations of nitrogen oxides and hydrocarbons could reach high levels at all four receptor sites before the year 2000. For example, by the year 2000 receptor 1 could occasionally experience NO_x at 1200 µg/m³ and HC at 2500 µg/m³. It is generally accepted that nitrogen oxides act as smog precursors in heavily polluted atmospheres containing relatively high concentrations of hydrocarbons. The nitrogen oxides are felt to participate in photochemical reactions which produce ozone and the peroxyacyl nitrates (PANS), two highly phytotoxic oxidants.

Hence there would appear to be cause for alarm until it is recalled that the above high ambient pollutant concentrations are calculated for an adverse weather condition based on a ground level temperature inversion. Since such an inversion cannot persist during the prolonged, strong solar radiation that is required for smog, it is obvious that the estimated short-term maximum levels are not a reliable pollution indicator in this instance.

Vegetation is generally more susceptible to injury by air pollutants than are humans. The injury threshold for nitrogen dioxide is given (31) as 2.5 ppm (4800 μ g/m³) for a four hour exposure dosage. Thus it does not seem likely that the maximum short-term levels calculated are going to result in serious environmental impact, even though ambient air quality objectives may be exceeded occasionally each year.

The maximum one-hour concentration of sulfur dioxide was shown to be $1100 \ \mu\text{g/m}^3$ (0.4 ppm). It was estimated that receptor 4 could experience such a level by 1985 during instances of unfavourable weather. This value is approaching the dose required for sensitive plant injury as estbalished by Dreisinger and McGovern (32):

> 0.70 ppm for 1 hour, or 0.40 ppm for 2 hours, or 0.26 ppm for 4 hours, or 0.18 ppm for 8 hours.

Hence it is recommended that special attention be devoted to the design of flue gas exhaust stacks for the utility plants.

The human taste threshold for SO_2 is commonly considered to be 0.3 ppm, although available data on the physiological effects of the pure pollutant indicate that it is relatively innocuous at considerably higher levels (33).

There is, however, a synergistic effect between SO_2 and aerosols (particulates) which greatly enhances the physiological impact of SO_2 . This could be due to SO_2 being catalytically oxidized to SO_3 , and hence forming sulfuric acid, after being absorbed by the particulate. (Catalysis can be effected by trace materials such as vanadium and the alkali metal salts.) Urban air pollution episodes arising from SO_2 generally occur when the particulate concentration exceeds $200 \ \mu g/m^3$ and the SO_2 exceeds $500 \ \mu g/m^3$ on a 24-hour average. These episodes resulted in an increase in the mortality rate accompanied by an increase in hospital admissions for acute illness. Those predominantly affected were individuals with chronic pulmonary disease or cardiac disorders, or very young or very old individuals (33).

An examination of the estimated typical 24-hour average concentrations of SO_2 and particulates (Figures 8.18 to 8.21 and 8.34 to 8.37) will show levels two or more orders of magnitude below the above episode threshold and hence should pose little danger to human health.

While it has been argued above that the short-term maximum pollutant concentrations will not be serious from an ecological point of view, they may contribute to an over-all pollution problem. In certain air basins the pollutants can become trapped under a persistent, elevated inversion lid. They build up within this stagnant air mass and undergo photochemical reactions which eventually lead to noxious levels of photochemical smog. This phenomenon, which is common to the Los Angeles air basin, also happens to some extent in the Lower Mainland. Here the basin is flanked to the north and east by the Coast Mountains (elevation 4,000 - 6,000 feet), to the northwest by the Tantalus Range (6,000 feet), and to the west and south, across the Georgia Strait, by the Vancouver Island and Olympic Mountains (3,000 - 7,000 feet). During stable atmospheric conditions the air within this basin is not rapidly replenished, but instead tends to flow backwards and forwards through the valley due to a land/sea breeze mechanism. It has been observed (26) that the concentration of carbon monoxide 1-10-11

will build up during such an episode, and that such episodes, lasting three to eleven days, will occur between twenty to forty times each year. Several factors, however, limit the impact of such an episode upon local air quality: the episodes are generally of relatively short duration; solar radiation is of a lower intensity due to our more northern latitude; our air basin contains a low ambient concentration of particulate due to frequent washout by precipitation; and during an episode some of the pollutant burden will be absorbed from the air mass due to the presence of forests and green belts located at the land-air interface.

At this time it would be speculative to discuss how airport-derived emissions contribute to air quality degradation during a land/sea breeze episode. A more thorough study is required on the mesoscale mixing and circulation within the Lower Mainland basin and on the roles played by various pollutant sinks. We can, however, do some comparisons between the airport emissions and those from the GVRD and from the total Lower Mainland region. Table 9.1 shows that the airport-related emissions are a very small fraction of the total emissions in the Lower Mainland. The majority of the emissions stem from vehicular activity and domestic fuel consumption in the GVRD area. Hence airport-derived pollutants can be expected to play a relatively minor role during one of the previously discussed episodes.

As we have seen in the previous section, however, the airport can have a significant effect upon air quality in the area immediately adjacent to it. To put this into perspective we can compare some of the estimated worst case pollutant concentrations, near the airport during the year 2000, with pollutant concentrations actually measured (26) at Vanier Park during the years 1969 - 1970. Table 9.2 shows that by the year 2000 the local air quality degradation, due solely to airport activity, will be similar to that presently occurring in central Vancouver due to urban activity. Hence, if the present urban levels are considered to be serious then this conclusion must be extended to future airport derived pollutants.

In any case the need for a realistic air quality model of the Lower Mainland air basin is obvious. This model should be tuned by conducting the appropriate meteorological and air quality surveys. In this way reasonably reliable forecasting could be conducted and the ramifications of urban growth and technological advances on air quality in the shole basin could be studied.

• 4

TABLE 9.1

POLLUTANT EMISSIONS

(Metric Tons per Year)

Pollutant Species	Lower Mainland 1973 Total (30)	GVRD 1970 Vehicular and Domestic Fuel (27)	Airport (1 1973	Airport (This Study) 073 2000
Carbon Monoxíde	624,000	435,000	3,600	13,000
Hydrocarbons	80,000	80,000	1,000	4.200
Nitrogen Oxides	48,000	23,000	600	4,000
Sulfur Oxides	15,000	6,000	190	1,100
Particulates	47,000	3,600	60	300

90

دزيقا

littine

-

-

طنبين

.

9.2	
TABLE	

0()(

AMBIENT POLLUTANT CONCENTRATIONS

 $(\mu g/m^3)$

Pollutant Snariae	Vanier Park	Airport Vicin	Airport Vicinity (estimated)
rbectes	(Measured, 1909 - 19/U)	C/AT	2000
Carbon Monoxide One Hour Maximum Annual Mean	25,000 (0.1% frequency) 2,450	2,500 37	8,900 100
Oxides of Nitrogen One Hour Maximum 24 Hour Maximum Annual Mean	1,670 (0.1% frequency) 134 (20% frequency) 117	219 4.4 4.6	1,160 17 18
Hydrocarbons One Hour Maximum	6,656 (peak)	705	3,270
Sulfur Dioxide One Hour Maximum Annual Mean	453 (peak) 26.6 (Mean over study period)	170 3.4	1,100* 20.1

* Estimation based on use of roof-level exhaust vents.

10. CONCLUSIONS

A study of the effects on local air quality due to expanded activity at the Vancouver International Airport has shown that on the average these effects will be minor. When peak emissions coincide with very adverse weather conditions, however, the air quality adjacent to the airport will, by the year 2000, be of impaired quality similar to that presently occurring in the central Vancouver area. Under these adverse conditions the federal limit for ambient nitrogen dioxide may be exceeded.

The effect on air quality from emissions emanating from the proposed ferry terminal on Iona Island will be negligible when compared to that of the airport.

It is recommended that work be commenced on a tuned air quality model of the Lower Mainland air basin in order that the ramifications of future urban and industrial growth, as well as the effects of evolving air pollution regulations, can be determined with a reasonable degree of accuracy. In conjunction with this we recommend that a program of detailed monitoring of air quality in the Lower Mainland be initiated. This should involve the study of common primary air pollutants, oxidants and ozone. The results of such a program would enable the testing of an air quality model for the area.

M. Capic

M.M. Papic Division of Applied Chemistry

esplin

G.J. Esplin Division of Applied Chemistry

The Intere

A.D. McIntyre Head, Division of Applied Chemistry

BIBLIOGRAPHY

1.	High, M.D. A Review of the Background, Preparation and Use of Environmental Impact Statements, J.A.P.C.A. <u>24</u> (1974) 111.
2.	Government Report Index, GVRIA 74, No. 1-5 (1974).
3.	Final Environmental Impact Statement, Caldwell Industrial Air Park, Idaho, 1974.
4.	Draft Environmental Impact Statement, Boston-Logan International Airport, Boston, Massachusetts, 1973.
5.	Final Environmental Impact Statement, Sea-Tac International Airport, Port of Seattle, 1974.
6.	Draft Environmental Impact Statement, Eastman-Dodge County Airport, Eastman, Georgia, 1973.
7.	Norco, J.E. Cirillo, R.R., Baldwin, T.E., Gudenas, J.W. An Air Pollution Impact Methodology for Airports - Phase I. Argonne National Laboratory, prepared for Environmental Protection Agency, Research Triangle Park, North Carolina, 1973.
8.	Study of Jet Aircraft Emissions and Air Quality in the Vicinity of the Los Angeles International Airport, County of Los Angeles, 1971.
9.	Aviation Effect on Air Quality in the Bay Region, Bay Area Air Pollution Control District, San Francisco, California, 1971.
10.	Compilation of Air Pollutant Emission Factors 2nd Ed., U.S. Environ mental Protection Agency, Research Triangle Park, North Carolina, 1973.
11.	<pre>Stern, A.C. (Ed.), Air Pollution, 2nd Ed., Vol 1, pp 187, Academic Press, 1968.</pre>
12.	Ministry of Transport Vancouver International Airport Planning Project, private communication (Mr. F.A. Almeda, Airport Planning Team, October 1974).
13.	The Air Quality Act of 1967. U.S. Government Printing Office, Washington, D.C., 1968.
14.	Emission Estimates for Greater Vancouver Region Road Transportation Environment Canada, EPS, private communication. (Mr. E.P. Wituschek, Air Quality Group, May 1974).

- 15. Exploratory Analysis of Rising Plumes from Open Gasoline Spills and Sooty Flame Combustion. Report prepared by Western Petroleum Analysis and Service Ltd., Victoria, B.C.
- 16. Climatic Normals, Vol 5 Wind. Canada Department of Transport, Meteorological Branch, Toronto, 1968.
- Turner, D.B. Workbook of Atmospheric Dispersion Estimates.
 U.S. Department of Health, Education and Welfare, Cincinnati, Ohio, 1970.
- Climatic Normals, Vol. 3 Sunshine, Cloud, Pressure and Thunderstorms. Canada Department of Transport, Meteorological Branch, Toronto, 1968.
- 19. Environment Canada, AES, Pacific Region, private communication.
- Carson, J.E., and Moses, H. The Validity of Several Plume Rise Formulas. J.A.P.C.A., 19 (8), 862 (Nov., 1969).
- Sutton, O.G., 1932. A Theory of Eddy Diffusion in the Atmosphere. Proc. Roy. Soc. London, A, 135, 143-165.
- Calder, K.L. On Estimating Air Pollution Concentrations from a Highway in an Oblique Wind. Atmospheric Environment, <u>7</u>, 863-868 (1973).
- Clean Air Act (Ambient Air Quality Objectives), Canada Gazette, Part II, 109 (3), (12/2/75).
- 24. Clean Air Act (Ambient Air Quality Objectives), Canada Gazette, Part II, 108 (11), 1754 (12/6/74).
- National Primary and Secondary Air Quality Standards. Environmental Protection Agency. Federal Register, <u>36</u> (84) (April 30, 1971).
- Lower Mainland Air Quality Study (Final Report). Province of British Columbia (October, 1972).
- Environmental Pollution Studies, Air Quality in British Columbia, B.C. Research, Project 2328 (1970).
- Ragland, K.W., and Peirce, J.J. Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic. J.A.P.C.A., <u>25</u>(1), 48 (Jan., 1975).

- 29. Habegger, L.J., <u>et al</u>. Dispersion Simulation Techniques for Assessing the Air Pollution Impacts of Ground Transportation Systems. Report ANL/ES-29, Argonne (II1.) National Laboratory.
- Lynch, A.J., <u>et al</u>. An Analysis of Air Pollution in the Lower Mainland — Present and Future (Second Draft). Province of B.C. (May 1974).
- 31. Hindawi, I.J. Air Pollution Injury to Vegetation. U.S. National Air Pollution Control Administration Publication No. AP-71.
- 32. Dreisinger, M.F. and McGovern, P.C. Monitoring Atmospheric Sulphur Dioxide and Correlating its Effects on Crops and Forests in the Sudbury Area. Proceedings of the Impact of Air Pollution on Vegetation, April 7-9, 1970, Toronto, Ontario.
- National Emission Standards Study, Appendix Vol. 1, U.S. Dept. of Health, Education, and Welfare, March 1970.

101.00

APPENDIX I

FERRY TERMINAL ACCESS TRAFFIC

A ferry terminal has been proposed for Sea Island or Iona Island. The final decision regarding the development and location has yet not been reached. Since a request from the sponsor of this project for including this emission source into the study came after the draft report covering emissions for the airport had been completed the ferry terminal access traffic is treated separately in this Appendix.

The limited information on the traffic activity obtained from the Department of Highways, Government of B.C. is summarized in Table A.1. The forecast average daily two-way traffic is 8000 vehicles per day in the peak month of August 1980 and 2500 vehicles per day in January 1980. The activity in January is at its minimum level and amounts to only 30% of the activity in August. The access traffic activities for other months are assumed to vary between that in August and January as indicated in Table A.1. The forecast for other years is based on a compound growth rate of 10% per year.

The average emission factors for highway vehicles in Table 4.7 are used in estimations of emission rates. The emissions in the month of August are displayed in Table A.2; for emissions in other months the percentage activities in Table A.1 should be used. The emissions on the access road are calculated for the average speed of 40 km/hr. At the ferry terminal an average speed of 20 km/hr is assumed. The emission factors for CO and HC for 20 km/hr speed are about 2.1 and 1.7 times those for 40 km/hr speed (7), respectively. The duration of unloading/ loading operations of $\frac{1}{2}$ hour is assumed. The emissions at the ferry terminal during unloading/loading operation are estimated per 300 vehicles operating for $\frac{1}{2}$ hour, which is equivalent to 3000 vehicle kilometers travelled.

TABLE A.1

ACCESS TRAFFIC ACTIVITY

IONA ISLAND FERRY TERMINAL

	Distance from Collection	Average Speed	Average Daily Two-Way Traffic	Average Daily Vehicle Kilometers	Average Daily Number of		Activitie Percentag	is in Othe e of Augu	Activities in Other Months as Percentage of August Activity	
	Point to Terminal	(km/hr)	in August	Travelled in August	Unloading/loading Operations in	July	June, Sent	May, Oct	March,	Jan, Feh
	(km)			0	August **		ocpr	000	Nov.	Dec.
1980*	5.8	40	8,000	46,400	13.3	100	70	50	40	30
1985	:	=	8,800	51,040	14.7	=	Ξ	2	2	1
0661	E	=	9,680	56,144	16.1	=	=	=	Ξ	=
1995	:	=	10,645	61,758	17.7	14	5	Ξ	=	=
2000	5	=	11,713	67,935	19.5	=	z	E	=	E

* Compound growth rate = 10% per year.

** Based on average 300 cars per ferry.

TABLE A.2

-

ACCESS TRAFFIC EMISSIONS IN MONTH OF AUGUST*

IONA ISLAND FERRY TERMINAL

	TOTAL	NO _X SO _X PT	224.3 10.36 31.06	142.7 11.42 34.25	156.7 12.53 37.60	172.3 13.78 41.35	189.7 15.17 45.52	
		HC	354.1	163.8	179.7	197.7	217.6	
		ខ	3906	2730	2994	3292	3625	
		ΡT	14.36	15.88	17.39	19.12	21.06	
kg	IAL***	s0 _x	4.788	5.292	72.45 5.796	79.65 6.372	87.75 7.020	
SNOIS;	FERRY TERMINAL***	NOx	103.7 4.788	66.15 5.292	72.45	79.65	87.75	
AVERAGE DAILY EMISSIONS, kg	FERR	нс	210.3	97.46	106.7	117.4	129.3	
AGE DA		co	2514	1760	1927	2119	2334	
AVER		ΡT	16.70	18.37	20.21	22.23	24.46	
	**(so _x	5.568	6.125	6.737	92.64 7.411	8.152	
	ACCESS ROAD**	NOX	120.6	76.56 6.125	84.22 6.737		88.32 101.9	
	ACCI	HC	143.8	66.35	72.99	80.29	88.32	
		ខ	1392	969.8	1067	1173	1291	
k			Aug	Aug	Aug	Aug	Aug	
			1980	1985	1990	1995	2000	

* For emissions in other months use percentage activities in Table A.1

** Distance from collection point to terminal = 5.8 km

*** Based on 3000 vehicle kilometers travelled at 20 km/hr per unloading/loading operation

The access road is treated as a line source, and ferry terminal as an area source. Spatial coordinates with respect to the east/west-north/south coordinate system shown in Figure 5.4 are given in Table A.3.

TABLE A.3

LINE AND AREA SOURCES SPATIAL COORDINATES IONA ISLAND FERRY TERMINAL

	Coord	inates	
	East (X), meters	North (Y), meters	Source Length, meters
Access Road			5800
Section No. 1	0 1680	4560 4130	1740
Section No. 2	1680 5259	4130 2275	4060
Ferry Terminal	0	4560	350 (0.1225 km ²)

解剖出物

The emission densities per unit length of line source and unit area of area source are given in Table A.4. TABLE A.4

ACCESS TRAFFIC EMISSIONS PER UNIT LENGTH AND UNIT AREA IN THE MONTH OF AUGUST*

IONA ISLAND FERRY TERMINAL

		0	co	CH	U	NOx	x	s0x	м	ΓŢ	Fri
	<u></u>	Access Road kg/day/km	Terminal Area kg/day/km ²								
1980 Aug	Aug	240.0	20,522	24.79	1,717	20.79	846.5	0.960	39.09	2.879	117.2
1985	Aug	167.2	14,367	11.44	795.6	13.20	540.0	1.056	43.20	3.167	129.6
1990 Aug	Aug	184.0	15,731	12.58	871.0	14.52	591.4	1.162	47.31	3.484	142.0
1995 Aug	Aug	202.2	17,298	13.84	958.4	15.97	650.2	1.278	52.02	3.833	1.921
2000 Aug	Aug	222.6	19,053	15.23	1,056	17.57	716.3	1.406	57.31	4.217	171.9

* For emissions in other months use percentage activities in Table A.1

APPENDIX II

FIRE FIGHTING DRILLS

As part of Emergency Services personnel training at Vancouver International Airport aircraft crash fires are simulated. The amount of fuel burned in each training exercise is about 2000 litres. Duration of the fire is one to two minutes. The number of training sessions varies from four to twelve per month. The pollution effect of open gasoline fires has been investigated at Vancouver's airport (15). We quote the concluding remarks from that report:

"Based on the results in the previous section, the ignition and deflagration combustions of fire training gasoline spillages contributes less serious pollutants percentage-wise, to the immediate vicinity of the Airport environment per any 15 minute period than any other major air polluter source.

The results indicated low level of air pollution and except for the very fine sootiness, slight visibility reduction at 100 feet above ground and aesthetic nuisance for periods up to 10-15 minutes duration, constitute only a minor hazard in the surveillance of air pollution source programs at the present time."

The emissions from fire fighting drills have, therefore, not been included in this study.

APPENDIX III

TABLE A.5.2

EMISSIONS BY AIRCRAFT MIX AND MODE OF OPERATION VANCOUVER INTERNATIONAL AIRPORT

Based on aircraft activity in Table 3.4 and emission factors in Table 4.2. Emission factors for landing operation assumed to be equal to those for approach operation.

General aviation assumed to be 50% turboprop and 50% piston aircrafts.

Cargo aviation emissions assumed to be 2% of air carrier emissions.

TABLE 5.2 (CONTINUED) 1973 CO AVERAGE DAY EMISSIONS GRAND TOTAL AIRCRAFT EMISSION = 3808.401 KG 100.00 % JUMBO 350 = 118.466 KG 3.11 % JUMBO 250 = 74.041 KG 1.94 % LONG 200 = 595.994 KG 15.65 % LONG 15C = 1042.990 KG 27.39 % MED. 100 = 978.629 KG 25.68 % SHORT 50 = 53.160 KG 1.40 % TOTAL AIR CARGE EMISSION = 57.224 KG 1.50 % TUTAL AIR CARGE EMISSION = 57.224 KG 1.50 % TURBU = 120.243 KG 3.15 % PISTUM = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 73.33 % GRAND IOTAL AIRCRAFT SMISSION = 3908.401 KG 100.00 % TAXIIDLE = 2968.719 KG 7.95 % TAKE OFF 35.164 KG 0.92 % CLIMBUT = 413.790 KG 10.67 % APPRGACH 350.937 KG 9.21 % LANDING = 39.773 KG 1.04 %											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		TABL	E	5.2 (CON.	, INUEL	D)				
JUMBO 350 = 118.466 KG 3.11 3 JUMBO 250 = 74.041 KG 1.94 3 LONG 200 = 595.994 KG 15.65 3 LONG 15C = 1042.990 KG 27.39 3 MED. 100 = 978.029 KG 25.68 3 SHORT 50 = 53.160 KG 1.40 3 TOTAL AIR CARRIER EMISSION = 2862.680 KG 75.17 3 TOTAL AIR CARGE EMISSION = 57.224 KG 1.50 3 TURBC = 120.243 KG 3.16 3 PISTUN = 768.224 KG 20.17 3 TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 3 GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 3 TAXIIDLE = 2968.719 KG 77.95 3 TAKE DFF = 35.184 KG 0.92 3 CLIMBOUT = 413.790 KG 10.87 3 APPRUACH = 350.937 KG 9.21 3	1973	CO		۸V	ERA	GE DAY	YEM	ISSIC	N S		
JUMBO 350 = 118.466 KG 3.11 3 JUMBO 250 = 74.041 KG 1.94 3 LONG 200 = 595.994 KG 15.65 3 LONG 15C = 1042.990 KG 27.39 3 MED. 100 = 978.029 KG 25.68 3 SHORT 50 = 53.160 KG 1.40 3 TOTAL AIR CARRIER EMISSION = 2862.680 KG 75.17 3 TOTAL AIR CARGE EMISSION = 57.224 KG 1.50 3 TURBC = 120.243 KG 3.16 3 PISTUN = 768.224 KG 20.17 3 TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 3 GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 3 TAXIIDLE = 2968.719 KG 77.95 3 TAKE DFF = 35.184 KG 0.92 3 CLIMBOUT = 413.790 KG 10.87 3 APPRUACH = 350.937 KG 9.21 3	GRAND TOTAL AIRCR	AFT	EM		N' =	3808	.401	КG	100.00	9	
JUMBO 250 = 74.041 KG 1.94 % LONG 200 = 595.994 KG 15.65 % LONG 15C = 1042.990 KG 27.39 % MED. 100 = 978.629 KG 25.68 % SHORT 50 = 53.160 KG 1.40 % TOTAL AIR CARGE EMISSION = 2862.680 KG 75.17 % TOTAL AIR CARGE EMISSION = 57.254 KG 1.50 % TURBE = 120.243 KG 3.15 % PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 888.467 KG 23.33 %											
LONG 200 = 595.994 KG 15.65 % LONG 15C = 1042.990 KG 27.39 % MED. 100 = 978.629 KG 25.68 % SHORT 50 = 53.160 KG 1.40 % TOTAL AIR CARGE EMISSION = 2862.680 KG 75.17 % TOTAL AIR CARGE EMISSION = 57.224 KG 1.50 % TURBE = 120.243 KG 3.15 % PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 3808.401 KC 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPREACH = 350.937 KG 9.21 %			0	250	=						
MED. 100 = 978.029 KG 25.68 % $SHORT 50 = 53.160 KG 1.40 %$ $TOTAL AIR CARRIER EMISSION = 2862.680 KG 75.17 %$ $TOTAL AIR CARGO EMISSION = 57.254 KG 1.50 %$ $TURBC = 120.243 KG 3.16 %$ $PISTUN = 768.224 KG 20.17 %$ $TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 %$ $GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 %$ $TAXIIDLE = 2968.719 KG 77.95 %$ $TAKE OFF = 35.184 KG 0.92 %$ $CL IMBOUT = 413.790 KG 10.87 %$ $APPROACH = 350.937 KG 9.21 %$		LONG	•	200	=	595	.994	KG	15.65		
SHORT 50 = 53.160 KG 1.40 % TOTAL AIR CARRIER EMISSION = 2862.680 KG 75.17 % TOTAL AIR CARGO EMISSION = 57.254 KG 1.50 % TURBO = 120.243 KG 3.16 % PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.124 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPROACH = 350.937 KG 9.21 %			,	150	=	1042	.990	КG	27.39	2	
TOTAL AIR CARRIER EMISSION = 2862.680 KG 75.17 % TOTAL AIR CARGE EMISSION = 57.254 KG 1.50 % TURBE = 120.243 KG 3.16 % PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND TOTAL AIRCRAFT EMISSION = 3808.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPREACH = 350.937 KG 9.21 %				100	=	978	.029	KG	25.68		
TOTAL AIR CARGE EMISSION = 57.254 KG 1.50 % TURBE = 120.243 KG 3.16 % PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPREACH = 350.937 KG 9.21 %											
$TURBC = 120.243 \text{ KG} \qquad 3.16 \ \%$ $PISTUH = 768.224 \text{ KG} \qquad 20.17 \ \%$ $TOTAL GENERAL AV. EMISSION = 888.467 \text{ KG} \qquad 23.33 \ \%$ $GRAND IOTAL AIRCRAFT EMISSION = 3908.401 \text{ KG} \qquad 100.00 \ \%$ $TAXIIDLE = 2968.719 \text{ KG} \qquad 77.95 \ \%$ $TAKE OFF = 35.184 \text{ KG} \qquad 0.92 \ \%$ $CL IMBOUT = 413.790 \text{ KG} \qquad 10.87 \ \%$ $APPRCACH = 350.937 \text{ KG} \qquad 9.21 \ \%$	TOTAL AIR CARR				•	2002					
PISTUN = 768.224 KG 20.17 % TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 3808.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPROACH = 350.937 KG 9.21 %	TOTAL AIR CARG	C EM	IS	SIGN	=	57	•254	KG	1.50	*	
TOTAL GENERAL AV. EMISSION = 888.467 KG 23.33 % GRAND IOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPROACH = 350.937 KG 9.21 %		TURE	8G								
GRAND TOTAL AIRCRAFT EMISSION = 3908.401 KG 100.00 % TAXIIDLE = 2968.719 KG 77.95 % TAKE DFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPROACH = 350.937 KG 9.21 %											
TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPRUACH = 350.937 KG 9.21 %	IUTAL GENERAL	AV •	см 	15510	N =	888	•467	ĸĠ			
TAXIIDLE = 2968.719 KG 77.95 % TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPROACH = 350.937 KG 9.21 %											
TAKE OFF = 35.184 KG 0.92 % CLIMBOUT = 413.790 KG 10.87 % APPRCACH = 350.937 KG 9.21 %	GRAND FOTAL AIRCR	AFT	ΞM	12210	:: =	3808	•401	КG	100.00	3	
TAKE OFF = 35.184 KG 0.92 % CL IMBOUT = 413.790 KG 10.87 % APPRCACH = 350.937 KG 9.21 %			TΑ	XIIDI	E =	2968	.719	KG	77.95	2	
APPROACH = 350.937 KG 9.21 %			TA	KE OF	F =	35	.184	KG	0.92	2	
LANUING = 39.773 KG 1.04 %	····· · · · · · · · · · · · · · · · ·								+	-	
			LA	NUTNG	Ξ	29	• 1 1 5	NU	1.04	*	
		· - ···	•	• · - ··	··· ·						

	TABLE 5.2 (C	UNIINUEDI		
1975	COAVE	RAGE DAY EMI		
GRAND TOTAL AIRC	RAFT EMISSION	= 4315.285	KG 100.00	8
	JUMBO 350	= 311.616	KG 7.22	3 0
	JUMBO 250	= 358.359	KG 8.30	0 10
	LONG 200 LONG 150 MED. 100	= 358.337	KG 8.3C	09 52
	LUNG 150	= 1254.180	KG 29.06	
•	MED 100 SHORT 50	= 985.955 = 37.289	KG 22.85 KG 0.86	
TOTAL AIR CAR				
	RICK ENIGGION	55070150		*0
TUTAL AIR CAR	GO EMISSION	= 66.115	KG 1.53	2
			KG 2.96	
			KG 18.90	
TOTAL GENERAL	AV. EMISSIUN	= 943.437	KG 21.86	
e de la composición d En la composición de l				
GRAND TOTAL AIRC	RAFT EMISSION	= 4315.285	KG 100.00	a pi ≁3
	TAXIIDLE	= 3410.637	KG 79.04	z
	TAKE OFF	= 37.532	KG 0.87	8
	CL IMBOUT			
	APPRCACH	and the second s		- AND. A WEATHER AT MERINA THE REPORT OF A DESCRIPTION OF A
	LANDING	= 44.041	KG 1.02	2
·····				· · · ·
	9 - 19- 19- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1	<u></u>	***	

Gammin Tri

ŝ

TABLE 5.2 (CONTINUED) 1980 CO AVERAGE DAY EMISSIONS GRAND TOTAL AIRCRAFT EMISSION = 7028.000 KG 100.00 % JUMBC 350 = 686.759 KG 9.77 % JUMBO 250 = 9.67 % 679.891 KG 200 = 355.375 KG 5.06 % LONG 150 LONG = 2872.622 KG 40.87 % = 1047.268 KG 14.90 % MED. 100 SHORT 50 = 30.817 KG 0.44 % TOTAL AIR CARRIER EMISSION = 5672.727 KG EC.72 % TOTAL AIR CARGO EMISSION = 113.455 KG 1.61 % TURBC = 168.066 KG2.39 % = 1073.758 KG 15.28 % PISTON TOTAL GENERAL AV. EMISSION = 1241.823 KG 17.67 % GRAND TOTAL AIRCRAFT EMISSION = 7028.000 KG 100.00 % TAXIIDLE = 5751.477 KG81.84 %

TAKE OFF = 52.094 KG 0.74 % CLIMBOUT = 591.059 KG 8.41 % APPRUACH = 564.630 KG LANDING = 68.737 KG 8.03 % 0.98 %

L.I.M.I.ED CRAN

J

	TABLE	5.2 (0)	ONT	INUED				
1985	CO	AVE	RAG	E CAY EM	ISSICNS			
GRAND TOTAL AIRC	RAFT EM	ISSION	=	9991.480	KG	100.00	8	
	JUMBC	350	=	1460.221	KG	14.61	2	
	JUMBO	250	=	1329.844	KG	13.31	2	
	LONG	200	=	787.102	KG	7.88	2	
				3523.215				
				1163.149				
				26.522				
TOTAL AIR CAP								
TOTAL AIR CAR	GC EMIS	SIUN	=	165.801	KG	1.66	2	
	TURBO		=	207.830	KG	2.08	8	
	PISTON		=	1327.807	KG	13.29	2	
TUTAL GENERAL	AV. EM	ISSION	=	1535.636	KG	15.37	2	
GRAND TOTAL AIRC								
				8331.977 66.823				
		THE OUT	~	741.583	KC	10.01	-4 9	
			¥ _	741.583		7.57	4 4	
	AP	NOTNO		95.150	KC	0.95		
	ĹA		-	72.130	ΝU	U • 7J	•	
						<u></u>		•
							· · · · · · · · · · · · · · · · · · ·	

- - -----

				TABL	E 5	•2	(C D i	Ť	INUED)			
	199	90		CO		A\	VERA	G	E DAY	'EM	1551(DNS	
GR	AND TO	TAL .	AIRCR	AFT	EMI	SSIG	ЭN _=	= 1	3692.	731	KG	100.00	L
												19.54	
				JUME	C	250			2508.	387	KG	18.32	8
												9.22 30.94	
												6.81	
		•		SHOR	Τ	50		:	13.	132	KG	0.10	8
	TOTAL	AIR	CARR	IER	EMI	5 S I (DN =	= 1	1628.	660	KG	84.92	z
	TOTAL	AIR	CARG	60 EM	155	ION	=	=	232.	561	KG	1.70	2
				TURE	0		=	:	247.	953	KG	1.81	8
					UN		=	=	1584.	154	KG	11.57 13.38	- 7
										r			
GR	AND TO	TAL /	AIRCR	AFT	EMI	SSI	ON =	= 1	3692.	731	KG	100.00	
									1616.			84.84	7
									81.				
									896.			6.54	
						DIN			_972. 125.			7.10	્ર જ
											_		
		naar 994 addaaa	-				ana a statistica						
			,										

		TABL	E 5.2 (C	ONTINUED)				
	1995	<u>CO</u>	AVE	RAGE DAY EM	ISSIONS			
	GRAND TOTAL A	IRCRAFT	EMISSION	=17411.711	KG	100.00	e	
		JUME	30 350	= 4151.887	KG	23.85	8	
		JUME	30 250	= 3663.429	KG	21.04	2	
		LONG	3 200	= 1632.415	KG	9.38	2	
				= 4897.238				
•		SHUR	100 T 50	= 633.393 = 6.576	KG	3.04	- 4 - 2	
	TOTAL AIR							
	TOTAL AIR	CARGO EN	ISSION	= 299.698	KG	1.72	8	
		THDE	10	= 287.875	KC	1 65	up	
	an de manuels actors apport the local to conservations - arte a fin	PISI		= 1839.213	KG	10.56	2	
	TOTAL GENE							
								<u></u>
	GRAND TOTAL A	IRCRAFT	EMISSION	=17411.711	KG	100.00	8	•
				-1(022 626	VC	05 71		
			TAKE DEE	=14923.426 = 96.850	KG	02.11	9	
				= 1049.153		6.03		
				= 1186.056		6.81		
			LANDING	= 156.234	KG	0.90	8	
				-	<u> </u>		· · ·	

•

									<u> </u>		
t net de la manufacture en companye de la companye de la companye de la manufacture de la companye de la compa											
	TADI			· · ·	• • • • •	P D					
· · · · · · · · · · · · · · · · · ·	TABL	E 5.2		JAI	INU	EU) 	····· · ·· ·			
2000	<u> </u>		A.4 C.C		- 0	A 14	(* M.)		N C		
2000	CO		AVEN	(AG	EU	AT	<u></u>	18810	N 5		
		UNICC	T O M	- 7	114	2	263	VC	100.00	g	
GRAND TOTAL AIRC	NAC I	C.0133	TOW	÷ 2	114	2	202	ΝU	100.00	6	
	JUMB	0 35	0	=	541	2.	508	KG	25.60	2.6	
	JUMB	0 25 20	0		216	1.	918 571	KG	23.75		·
	LONG	15	0	=	541	3.0	918	KG	25.61	7	
	MED.	10	0	=	33	2.1	837	KG	1.57	2	
	SHOR	T 5	0	Ξ		2.5	504	KG	C.01		
TOTAL AIR CAR	RIER	EMISS	ION	=1	834	9.0	250	KG	86.79	7	
TOTAL AIR CAR	GO EM	ISSIO	N	=	36	6.4	985	KG	1.74	2	
	TURB	0		=	32	8.	333	KG	1.55	3 6	
	PIST	ÛN		=				KG	9.92	8 2	
TOTAL GENERAL	AV •	EMISS	ION	=	242	6.0	031	K G	11.47	*	
GRAND TOTAL AIRC	RAFT	EMISS	ION	= 2	114	2.	262	KG	100.00	Z	
		ΤΑΧΙΙ		- 1	072	<u> </u>	. 1 .	KC.	86.27	9	
		TAKE							0.53		
		CL IMB							5.70		
		APPRO							6.63		
		LANDI	NG	=	18	6.	700	KG	83.0	2	
					- <u></u>	···					
											·
									a från samme – Lakarine die 2 in Steam – Lakarine av Steamer		

ÎN AN

			-			• • • • • • • • • • •			
	·····	TABL	E 5.2 (C	0N	TINUED)				
	1973	нс	AVE	R A (GE DAY EM	ISSIC	٧S		
C D A NO				-	1701 075	~~	100 00		
GRAND	TOTAL AI	KUKAFI	EM12210N		1191.915	KG	100-00		
		JUMB					1.71		
		JUMB	0 250	=	19.111	KG	1.07	8	
							28.40		
							49.70		
• •••	·····	SHOR	T 50	=	40.660	KG	2.27	2	
TO	TAL AIR C								
			TEETON					- <u>.</u>	
10	TAL AIR C	AKGU EM	12210N	3	34.249	KG	1.91	4	
		TURB	C	=	27.429	KG	1.53	2	
		PIST	ON	Ξ	17.854	KG	1.00	2	
10	TAL GENER	AL AV.	EMISSION	=	45.283	KG	2.53	76	
00.440					1701 075	× C	100.00		
GRAND	TOTAL AI	RURAFI	EM 15510R	=	1/91.975	KG		4	
			TAXIIDLE	=	1738.071	KG	96.99		
			TAKE OFF		3.060		0.17		
			CL IMBOUT		16.115		0.90		
			APPROACH Landing		29.999 4.731		1.67		· •••• • • • • •
			LANDING	-	70731	NO	0.20	•0	
. 		·							•
				• •• •	••••	·· ·			

•					Concernance and an one-set				

		 .								
	TABI	LĽ	5.2 (C		TINUED)					
1975	FC		Δνξι	λ γ	GE DAY EN	1551	CNS			
										<u> </u>
GRAND TOTAL AIRC	RAFT	EM	ISSION	Ξ	1886.890	KG	• •	100.00	8	
	JUM		350		80.433					
	JUM	BO	250	=	92.498	KG		4.90	*	
	LON	5	200	=	305.969	KG		16.22		
		ن	150	=	1070.891 224.438	KG		56.75 11.89		
···· · · · · ·			50		28.521			1.51		• •• •
TOTAL AIR CAR										
TOTAL AIR CAR	GO EI	MIS	SION	=	36.055	KG		1.91	z	
	TUR	BO		=	29.126	KG		1.54	2	
· · · ·	PIS	TON		=	18.958	KG		1.00		
TOTAL GENERAL	AV •	EM	ISSION		48.085	KG 		2.55		
GRAND TOTAL AIRC	RAFT	ĒΜ	ISSION	=	1886.890	KG		106.00	2	
		T۸		-	1828.955	KC		96.93	9	
					3.409			0.18		
					17.437			0.92		
					32.029			1.70	8	
		LA	NDING	=	5.061	KG		0.27	8	
								<u> </u>		
				<u> </u>						
								<u> </u>		

ł		
<u> </u>		
ſ		
اینیں		
	TABLE 5.2 (CONTINU	JED)
لادی		·····
		NAM CHITECTONE
	1980 HC AVERAGE D	TAT EMISSIONS
	GRAND TOTAL AIRCRAFT EMISSION = 350	01.683 KG 100.00 %
		7.264 KG 5.C6 % 75.491 KG 5.C1 %
	JUMBC 250 = 17 LONG 200 = 30	3.440 KG 8.67 %
ويتنا	10NG 150 = 245	52.810 KG 70.05 %
	LONG 150 = 245 MED. 100 = 23	38.395 KG 6.81 2
	SHORT 50 = 2	23.571 KG G.67 %
	TOTAL AIR CARRIER EMISSION = 337	
	TOTAL AIR CARGO EMISSION = 6	
	IUTAL AIR CARGU EMISSION = C	07.419 KG 1.93 %
- Cienti	TURBO = 3	38.338 KG 1.C9 %
		24.955 KG C.71 %
ا لمیں	TOTAL GENERAL AV. EMISSION = 6	53.293 KG 1.81 %
~~~~		
<b>الندن</b> :		
	GRAND TOTAL AIRCRAFT EMISSION = 350	01.683 KG 10C.CO 7
	TAXIIDLE = $340$	5.838 KG 97.26 %
		5.890 KG C.17 %
i		27.351 KG 0.78 %
	APPROACH = 5	53.884 KG 1.54 %
	LANDING =	8.720 KG 0.25 %
1		
		· · · · · · · · · · · · · · · · · · ·
Ī		
-		
· · · · · · · · · · · · · · · · · · ·		

	ara is ar for for one anamaris i							and an and a second					
											•		
1.81				TABL	E	5.2 (C	0N1	TINUED)	. •		•		•
		1985		HC		AVE	RA	GE DAY EM	1 S S I	ONS			
	GRAND	τοται	L AIRCE	RAFT	EM	ISSION	=	4857.586	KG		100.00	2	
				JUM		350		376.907			7.76		
			· ··· · · · · · · · · · · · · · · · ·	JUNI		250		343.254			7.07		
						200		672.073			13.84		
				LONG		150		3008.324			61.93 5.45		
				MED SHOP		100 50		264.773 20.286			0.42		
	тот	AL A	IR CAR					4685.609			96.46		
	TUT	AL A	IR CAR	GC EI	MIS	SICN	=	93.712	KG		1.93	8	
				TURI	80		=	47.409	κG		C.98	2	
				PIS		•	=	30.859		-	C.64		
	TOT	AL GI	ENERAL	AV.	EM	ISSION	=	78.268	KG		1.61	2	
	GRAND	TOTAL	L AIRCI	RAFT	ΕM	ISSION	=	4857.586	KG		100.00	Ł	
					TΔ		Ξ	4726.582	KG		97.30	2	
								8.361					
					CĽ	IMBOUT	=	36.946	ΚG		0.76		
				na Alfrages I	AP	PROACH	. =	73.679	KG		1.52		
					LA	NDING	=	12.021	КG		C.25	L	
		-											

∽			
(			
		•	
,			
	TABLE 5.2 (CONTINUED)		
	1990 HC AVERAGE DAY EMISSIONS		
	GRAND TOTAL AIRCRAFT EMISSION = 6473.801 KG	100.00	2
التدخان			
	JUMEU 350 = 690.619 KG	10.67	
	JUMBD 250 = 647.456  KG	10.00	A Real reality of the second statement is a second statement of the second statement of the second statement of
	LONG 200 = 1077.529 KG	16.64	
	LONG 150 = 3617.419 KG	55.88	
	MED. 100 = 212.255 KG	3.28	
	SHORT 50 = 10.044 KG	C.16	
	TOTAL AIR CARRIER EMISSION = 6255.320 KG	96.63	7
	TOTAL AIR CARGO EMISSION = 125.106 KG	1.93	2
السبيقان			
	TURBO = 56.562 KG	0.87	2
	PISTON = 36.816  KG	C.57	*
	TUTAL GENERAL AV. EMISSION = 93.378 KG	1.44	2
	·		
	GRAND TOTAL AIRCRAFT EMISSION = 6473.801 KG	100.00	2
1 <b>866</b>	$TAXIIDLE = 6302 \cdot 117 \text{ KG}$	97.35	2
Ì	TAKE UFF = 11.466 KG	C.18	
ł	CLIMEOUT = 48.210  KG	C.74	
•	APPROACH = 96.203  KG	1.49	
	LANDING = 15.801 KG	0.24	2
}			
			·
·			
-			
e .			
•			
5			
J			alandin tanin 12. data maka data in anya a diji jiwa tana muji ata mana in ang
-			
L			

			TABI	LE	5.2 (	CON	TINU	EDI	)		-				
	19	95	нс	<b>*</b>	Δ٧	ERA	GE D	ΔY	EM	<u> </u>	CNS				
(	GRAND TO	TAL AIRC	RAFT	EM	<b>ISS I</b> 0	N =	800	5.1	105	KG		100.	.cc	q	
			JUM				107					13.			
				30_	250							11.			
					200 150										
			MED	•	100	=	14	4.1	182	KG		1.	.80	2	
	TOTAL	AIR CAR			50 15510							0. 96.			
	TOTAL	AIN CAN		6.14	12210	IN -	114	1.00		ΝŪ		704		40	
	TOTAL	AIR CAR	GO EI	MIS	SION	=	15	4.8	337	KG		1.	.93	2	
			TUR	30		=	6	5.6	569	КG		C.	. 82	2	
			PIS	TON		=	4	2.7	744	KG		C.	53	Z	
	TOTAL	GENERAL	AV.	EM		N =	10	8.4	+13	KG		1.	. 35	<b>%</b> 	
		TAL AIRC	DAFT	м	<u>TSSIN</u>	N =	800	5	105	KG		100.	CCC		
					XIIDL KE OF							<u> </u>	. <u>37</u> .18		
					IMBOU								, 74		
				AP	PRCAC	H_=	11	7.6	541	KG			.47		
				LAI	NDING	=	1	9.3	389	KG		0.	24	z	

		TABL	.E'5.2 (C	DV	TINUED)			
 2000	)	HC	AVE	RA	GE DAY EM	15510	IN S	
 GRAND TOTA	L AIRCR	AFT	EMISSION	-	9551.285	KG	100.00	<b>9</b>
		JUMB	SC 350	=	1397.059	KG	14.63	z
		JUMB	30 250	=	1296.241	KG	13.57	<b>*</b>
		LONG	200	=	1849.089	KG	19.36	2
		LONG	150	=	4622.719	KG	48.40	2
•		MED.	100	=	75.765	KG	0.79	8
		SHOR	T 50	=	1,915	KG	C.C2	8
TOTAL A	IR CARR	IER	EMISSION	Ξ	9242.781	KG	96.77	2
 TOTAL A	IR CARG	0 EM	ISSION	=	184.856	KG	1.94	8
 		TURB	C	=	74.898	KG	C.78 0.51	8
		PIST	I ON	=	48./51	KG	0.51	<b>Q</b> 42
 TOTAL G	SENERAL	AV .	EMISSION	=	123.649	KG	1.29	7
 GRAND TOT A	L AIRCR	AFT	EMISSION	=	9551.285	KG	100-00	<b>G7</b> *3
			TAXIDLE	=	9300.980	KG	97.38	2
 	<u>.</u>		TAKE DEE	=	17.636	KG	97.38 0.18	2
			CL IMBOUT	=	70.420	KG	0.74	2
			APPROACH	Ξ	139.247	KG	1.46	2
 			LANDING	=	23.004	KG	0.18 0.74 1.46 0.24	2
 								```` <u>`````````````````````````````````</u>
 na disebut dan kara kara kara kara kara kara kara ka								

	1	973		NO		AVE	RA	GE DAY	EM	ISSION	S		
	GRAND	OT AL	AIRCE	RAFT	EM	ISSION	<b>;</b> _=.	1120.	764	KG	100.00	<b>2</b>	ANI
				JUMI	80	350	=	80.3	330	KG	7.17	2	
<u></u>				JUM	BC	250	=	50.2	206	KG	4.48	8	
								88.5					
											13.83		
		<b>.</b>		MED	•	100	=	645.0	223	KG	57.55	<b>%</b>	
											2.58		
	ATOT	L AIR	CAR	RIER	ΕM	ISSION	=	1047.9	<del>)</del> 37	КG	93.50	<b>8</b> 40	
	TOTA	LAIP	CAR	GC EI	MI S	SICN	=	20.9	959	KG	1.87	2	
				TURI	во		Ŧ	49.(	081	KG	4.38	2	
				PIS	TON		=	2.1	786	KG	0.25	*	
	ΤΟΤΑ	L GEN	IERAL	AV.	EM	ISSION	1 =	51.8	868	KG	4.63	<b>9</b> 49	
	GRAND T	OTAL	AIRCH	RAFT	EM	ISSICN	=	1120.7	764	KG	100.00	z	
					TA	XIIDLE	=	143.2	281	KG	12.78	8	
								237.4					
					CL	IMBOUT	=	501.3	390	KG	44.74		
					AP	PRUACH	+ =	204.0	017	κĠ	18.20		
					LA	NDING	#	34.0	562	KG	3.09	8	

- -

. ..

1975	NO	AVE	R A(	GE DAY EM	ISSION	S		
GRAND TOTAL A	IRCRAFT	EMISSION	=	1446.740	KG	100.00	2	
	JUME	0 350		211.302		14.61	7	
	JUME	a comparison of the second		242.997		16.80		
	LONG			53.239		3.68		
	LONG			186.337		12.88		
	MED.			650.250		44.95		
				20.251		1.40		
TOTAL AIR	CARRIER	EMISSION	=	1364.376	KG	94.31	*	
FOTAL AIR	CARGO EM	ISSION	Ξ	27.288	KG	1.89	2	
	TURB	0	=	52.118	KG	3.60	( <b>1</b> ) -{12}	
	PIST	ON	=	2.959	KG	C.2C	*	
TOTAL GENE	RAL AV.	EMISSION	=	55.077	KG	3.81	4	
anna alfright of all annual alfright fragme		· · ·				······		
GRAND TOTAL A	IRCRAFT	EMISSION	=	1446.740	KG	100.00	<b>a</b>	
			=	170.332	KG	11.77	9	
· ····································		TAKE OFF				22.36		
				672.141		46.46		
		APPROACH				16.57		
t attact to sugar a most a count the configuration of the		LANDING	=	41.019	KG	2.84	7	
							•	,

· · · · · · · · · · · · · · ·

·

	<u>_</u>					······		
	TABL	.E 5.2 (C	JV.	TINUED)				• •• •••
1980	NO	AVE	<u> </u>	GE DAY EM	ISSI	CNS		,
GRAND TOTAL AIRCE	RAFT	EMISSION	=	2228.487	KG	100.00	ę	
		30 350				20.90		
				461.023				
	LONC	3 200	Ξ	52.799	KG	2.37	2	
	LONG	<b>i</b> 150	Ξ	426.793	KG	19.15	<b>9</b>	
· · · · · · · · · · · · · · · · · · ·	MED.	. <u>1</u> 00 RT 50		690.687	KG	30.99	<b>%</b>	
TOTAL AIR CARE				16.736 2113.717				
TOTAL AIR CARC	SO EN	ISSION	=	42.274	KG	1.90	z	
	TURE	۲ <b>.</b>	=	68.602	ĸc	3.08	9	
		ron		3.895	KG	0.17	2	
TOTAL GENERAL	AV.	EMISSION	=	72.497	KG	3.25		
				,				
GPAND TOTAL AIRCE	RAFT	EMISSION	=	2228.487	KG	100.00	Z	
		TAVIIDIE	_	243.323	× c	10.92	9	
				514.712			2	
						47.53		
				350.850				
				60.310		2.71		
		· · · · · · · · · · · · · · · · · · ·						
							·· · -	

R. L. CPANA (1997) D

	<u></u>						<del></del>								,			
												·····				·····		
			···	·	TAB	L E'	5.2	100	INI	INUED)								
		198	5		NO			AVER	2 81	SE DAY	EM	1221	NIS					
		170	·			<u></u>												_ <del></del> _
	GRAND	TOT	AL /	AIRCI	RAFT	EN	ISS	ION	. =.	3469.7	31	KG	100.	00	<b>. 7</b>			
					11 I M	R C	35	n	_	990.1	<b>5</b> 1	xc	28.	5.	9			
					MUL.	BO BO	25	0	=	901.7	21	KG	20.					
					LON	G	20	0	=	901.7	42	KG	3.					
					LON	G	15	0	=	523.4	54	KG	15					
										767.1			22	11	7			
		•								14.4				. 42				
	TOT	ľ AL	AIR	CARI	RIER	E۲	1155	ION	=	3313.8	06	KG	95.	51	8			
	TO	T A1	ATD	CAR	<u> </u>	MIC	<u>s</u> rn			66.2	76	KC	1	91				
	10	186 .	AIK	CAR	OU E	r) 1 3	510	N	-	00+2	10	NU	1	991	4			
					TUR	80			=	84.8	33	KG	2.	.44	8			
		· ·					•	• •	=	4.8	16	KG	Ċ.	.14	2		• • • • • •	
	<b>TO</b> 1	TAL I	GENI	ERAL	AV.	E۲	1155	ION	Ξ	89.6	49	KG	2.	.58	2			
	GRAND	TOT	AL /	AIRCE	RAFT	E٨	1155	ION	=	3469.7	31	KG	100	00	Ľ			
						т			_	255 2	00	VC	10.	36				
										355.2				84				
										1689.0				.68				
										510.0				.70				
•••			• •	•						88.0				.54		•••••		-
	•												·····			·		
																•		
					· · · · · -			a.e			• ••••				<b></b>		~	• •
······································										· · · · · · · · · · · · · · · · · · ·								
				•														
	8 4.8					a-7												

	· .							
		h						
				,				
	TABLE	5.2 (0	CN	(INUED)				
······			<b>-</b>				** .*	••••••••••••••••••••••••••••••••••••••
1000	NO		D A	GE DAY	EMICCI	ONS		
1990	NU	AVE	K A	SE DAT	<u>CM1331</u>	UNS		
							~	
GRAND TOTAL AIR	CRAFTE	MISSION	=	5160-2	23_KG	100-00	*	
	JUMBO	350	=	1814.2	86 KG	35.16	*	
	JUNBO	250	=	1700.8	95 KG	32.96	2	
		200	=	187.4	92 KG	3.63	74 97	
	MED.	100	=	614.9	57 KG	11.92		
··· · •	SHOR 1	100	#	7.1	32 KG	0.14		5 11 <b>8</b> 1
TOTAL AIR CA	RRIER E	MISSION	Ŧ	4954.1	88 KG	96.01	7	
TOTAL AIR CA	RGC EMI	SSICN	=	99.0	84 KG	1.92	2	
	TURBO	1	=	101.2	11 KG	1.96	2	
		)N						
TOTAL GENERA	L AV. E	MISSION	=	106.9	57 KG	2.07	8	
							~	
GRAND TOTAL AIR	CRAFT E	MISSICN	=	5160.2	23 KG	100-00	Z	
	1	AXIIDLE	=	495.2	CO KG	9.60	2	
		AKE OFF				24.59		
		LIMBOUT				49.85		
		PPROACH				13.61		
	l	ANDING	=	121.5	28 KG	2.36	•	
						•		

٠

-

. .

.

an ann an												• • • • •	····
	·····												
				-	_· .		_						
				TABL	E	5.2 (0	UN	TINUED)		• •			
							_			_			
	199	95		NO		AVE	RA	GE DAY EM	ISSION	S			
GF	RAND TO	TAL A	IRCH	AFT	EM	ISSION	Ξ	6948.848	KG	100.00	<b>.</b>	÷	•• • •
				JUMB	υ	350	=	2815.323	KG	40.51	2		
				JUMB	0	250	=	2484.110	KG	35.75	2		
								242.532					
						150		727.597 417.731					
		•				50		3.571					
	TOTAL	ATP	6 700					6690.855					
	ICIAL	AIN	CAN		<b>L</b> 11	13310:4			, U	JU•2 J	-		
,	TOTAL	AIR	CARC	C EM	IS	SIGN	=	133.817	KG	1.93	8		
				TURB	0		=	117.506	KG	1.69	8		
				PIST	CN		=	6.671	KG	C.1C			••
	TOTAL	GENE	RAL	AV.	EM	ISSION	=	124.178	KG	1.79	2		
		<b>T</b> A I - A	1000	AET	ΓM	155105	-	6948.848	KG	100 00	9		
07	AND TU		INCE							100.00	~		
								642.070		9.24			
								1739.085		25.03			
								3511.613		50.54 12.95			
								900.056		2.25			
					641	101110	-	130.034	ĸo	2.27	•		
												•	
****	·····							alar 1 1 - 1 1 - 1 1 - 1 - 1 - 1 - 1 - 1 -	••				
							_						

2000	NO AVE				
	<u> nruf</u>	RAGE DAY EM	ISSIONS		
GRAND TOTAL AIRC	RAFT EMISSION	= 8732.461	KG	100.00	7
			r.		•••
	JUMBO 350	$= 3670 \cdot 136$	KG	42.03	
	JUMBC 250	$= 3405 \cdot 283$	KG	39.CC 3.68	
	LONG 200	= 804.363	KG	9.21	
	LONG 150 MED. 100	= 219.511	KG	2.51	
	SHORT 50	= 1.360	KG	0.02	
TOTAL AIR CARF	RIER EMISSION	= 8422.387	KG	96.45	2
TUTAL AIR CAR	GO EMISSION	= 168.448	KG	1.93	Z
	TURBC	= 134.021	KG	1.53	ag
	PISTON			0.09	
TOTAL GENERAL	AV. EMISSION	= 141.630	к <b>G</b>	1.62	2
GRAND TOTAL AIRCE	RAFT EMISSION	= 8732.461	KG	100.00	<b>9</b>
	TAXITOLE	= 788.806	ĸG	9.03	2
· · · · · · · · · · · · · · · · · · ·		= 2207.421			
	CL IMBOUT	= 4447.941	KG	50.94	*
		= 1097.812			
	LANDING	= 190.476	KG	2.18	*
					•
	CL IMBOUT	= 4447.941	KG Kg	50.94	2 2

	1973 Grand tota	S AL AIRCF	SO RAFT		AVE		INUED) E DAY EM				 
		S AL AIRCF	SO RAFT		AVE						 
		S AL AIRCF	SO RAFT		AVE						
		AL AIRCE	RAFT			RAG	E DAY EM				
(	GRAND TOTA			EM I				12210	15		 
			<u>+</u> 1 1 4 4 7		133104	z	122.845	KG	100.00	7	
			JUME	80	350	=	4.717		3.84		
· · · · · · · · · · · · · · · · · · ·			JU∾E	50	250	=	2.948		2.40		 
			LONG	;	200	=			11.01		
									19.27	2	
			MED.	,	100	Ŧ	63.039	KG	51.32	2	
			SHOP	۲۲	50	Ξ	5.267	КG	. 4.29	2	 - · · · · ·
· · · · · · · · · · · · · · · · · · ·	TCTAL A	IR CARH	RIER	EMI	ISSION	=	113.172	KG	92.13	2	
<u> </u>	TOTAL A	IR CARG	GO EM	ISS	SION	=	2.263	KG	1.84	2	 
			TURE			=	6.629	KG	5.40		 
			PIST	[ON]		=	0.781	КG	C.64		
	TOTAL G	SENERAL	AV.	EMI	ISSION	#	7.409	KG	6.03	2	
	<u></u>										 
	GRAND TUTA	L AIRCE	RAFT	EMI	ISSION	Ξ	122.245	KG	100.00	8	 • • · · · · ,
				ΤΑΧ	IIDLE	=	48.126	KG	39.18	8	
<u></u>				TAK	E OFF	=	11.685	KG	9.51		 
				CL I	IMBOUT	z	31.829		25.91		
					PREACH		26.690		21.73		
	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				NDING	Ξ	4.514		3.67		 
					•						
			<u></u> <u>w</u>				······································		· · · · · · · · · · · · · · · · · · ·		 
	<u> </u>	·									 <u></u>
					unionnes not not starm.						 

	TABLE	5.2 (C	DNT	INUED)			
1975	SO	AVE	RAG	E DAY EMI	SSIO	NS	
GRAND TOTAL AIR	CRAFT EM	ISSION	=	141.001	KG	100.00	ð
	JUMBO	350		12.409		8.80	
	JUMBO	250	=	14.270	KG	10.12	2
	LONG	200	=	8.133	КG	5.77	
	LONG			28.466		20.19	
	MED.	100		63.550		45.07	
	SHORT	50	=	3.694		2.62	
TOTAL AIR CA	ARRIER EM	ISSION	=	130.523	KG	92.57	2
TOTAL AIR CA	ARGC EMIS	SION	=	2.610	KG	1.85	8
	TURBO		=	7.039	КG	4.99	2
	PISTON		=	0.829		C.59	
TOTAL GENER			=	7.868		5.58	
GRAND TOTAL AI	TA TA CL AP	XIIDLE KE OFF IMBOUT PROACH		141.0C1 55.345 13.656 36.923 29.974 5.104	KG KG KG KG	100.00 39.25 9.68 26.19 21.26 3.62	8- 9- 8- 8-
					<u> </u>		

_____

	TABLE	5.2 (0	ONT I	NUED)			-
1980	SO	AVE	RAGE	DAY EM	ISSICNS		
GRAND TOTAL AIRC	RAFT EM	ISSION	=	212.564	KG	100.00	2
		<b>350</b> 250		27.347 27.074		12.87	
······	LONG	200	=	8.066	KG	3.79	2
······································	MED.	100	=	67.502	KG	31.76	2
TOTAL AIR CAR							
TOTAL AIR CAR	GO EMIS	SICN	3	3.965	KG	1.87	2
· · · · · · · · · · · · · · · · · · ·	TURBO		=	9.265	KG	4.36	<b>%</b> 2
TOTAL GENERAL							
							· · · · · ·
GRAND TOTAL AIRC							
				<u>81.650</u> 21.170			
	CL	IMBOUT	=	56.735	KG	26.69	2
				45.252		21.29	
	ĹA	INDING	-	1.151	NU	5.07	4
	angan da y a waanaangangan oo ayo oo aa			ninenie ann a' t tara è angres màraghan i			

		<b>.</b>												
 				TABL	Ε 5	.2 (C	ONT	INUE	))		···· ·			ş - 14
 	198	5		SO		AVE	RAG	E DAY	e M	1551	ONS			
GRAND	тет		A T R C G		- M T	SSTON	=	305	070	KG	100		9	
 OFAND	10,1	AL J	HINCH											
				JUNE		350		58.				• 06		
 				JUME	SU	250 200	=	52 17	865	KG		• 30	- <del>7</del>	
				LONG		150	=	79	967	KG	26			
 				MED.		100	=	74	.971	KG	24	.58	2	
 				SHOR		50	=	2	628	KG	. 0	• 86	2	
TOT	' AL	AIR	CARF	RIER	EMI	SSION	=	286.	533	KG	93	•92	z	
 TOT	٦L	AIR	CAR	GC EN	ISS	ION	=	5	731	KG	. ]	.88	8	
				TURE	0		±	11.	457	KG	3	. 76	8	
 				PIST			Ξ	1	350	KG		.44		
 TOT	`AL	GENI	ERAL	AV .	EMI	SSION	=	12	807	KG	4	• 20	2	
 GRAND	TCT	AL /	AIRCE	RAFT	EMÍ	SSION	=	305	.070	KG	100	• CC	*	
					τΛΧ	TIDIE	=	117	218	KG	38	. 47	2	
 											10			
					CL I	MBOUT	=	82.	224	KG	26	. 95	8	
 											20			
					LAN	DING	Ξ	10	986	KG	3	•60	8	
 											<u> </u>			

							• •·· · ·· <del>··</del> •			** *** ****** * *****	
·····											
		TAB	LE	5.2 (0	DNT	INUED)		••••••			
				• • • =							
·	1990	<u>\$0</u>		AVE	RAG	E DAY EM		INS		<u></u>	
GRAN	D TOTAL AIR	CRAFT	EM	ISSION	=	415.764	KG	100.00	ę		
		HIM	80	350	=	106.545	KG	25.63	2		
				250		99.686					
		LON	G	200		28.643	KG	6.89			
		LON	G	150	=	96.158	KG	23.13	2		
		MED	•	100	Ξ	96.158 60.101	KG	14.46	z		
		SHO	RT	50	Ξ	1.301	KG	.0.31	2		
TI	DTAL AIR CA	RRIER	EM	ISSION	=	392.632	KG	94.44	2		
T	DTAL AIR CA	RGC E	MIS	SICN	=	7.853	KG	1.89	2		
		TUR	80		=	13.669	KG	3.29	*		
		PIS	TON		#	1.610	КG	C.39	Z		
T	DTAL GENERA	L AV.	EM	ISSION	=	15.279	KG	3.67	2		
				-							
GRAN	D TOTAL AIR	CRAFT	ΞM	ISSION		415.764	ĸg	100.00			1 <b>44</b> - P.
				XIIDLE				38.46			
				KE OFF		<u>159.905</u> 42.635		10.25			
						113.372		27.27			
				PROACH		85.147		20.48			
	<u> </u>			NDING		14.705		3.54			
			64			140103	NU	5071	-0		
							·····				
				•	••••		<u>.</u>			••••••••••••••••••••••••••••••••••••••	
	de regelengen generalen, om generalen for al stille offer vieret, de					**************************************	****				

TABLE 5.2 (CONTINUED)         1995 SO AVERAGE DAY EMISSIONS         GRAND TOTAL AIRCRAFT EMISSION = 528.649 KG 100.00 %         JUMEC 350 = 165.331 KG 31.27 %         JUMEC 200 = 37.051 KG 7.01 %         JUMEC 200 = 37.051 KG 7.01 %         LONG 200 = 37.051 KG 7.01 %         LONG 200 = 37.051 KG 7.01 %         LONG 100 = 10.154 KG 7.02 %         TOTAL AIR CARRIER EMISSION = 500.893 KG 94.75 %         TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 %         TURED = 15.669 KG 3.00 %         PISTON = 1.670 KG 0.35 %         TOTAL AIRCRAFT EMISSION = 10.018 KG 1.89 %         TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 %         TOTAL AIRCRAFT EMISSION = 528.649 KG 100.000 %         GRAND TOTAL AIRCRAFT EMISSION = 528.649 KG 100.000 %         GRAND TOTAL AIRCRAFT EMISSION = 528.649 KG 100.000 %         GRAND TOTAL AIRCRAFT EMISSION = 528.649 KG 100.000 %         GRAND TOTAL AIRCRAFT EMISSION					·····									
1995         SO         AVERAGE DAY EMISSIONS           GRAND TOTAL AIRCRAFT EMISSION =         528.649 KG         100.00 %           JUMEC 350         =         165.331 KG         31.27 %           JUMBD 250         =         145.860 KG         27.59 %           LONG 200         =         37.051 KG         7.01 %           LONG 150         =         111.154 KG         21.03 %           MED.         100         =         40.826 KG         7.72 %           SHORT 50         =         0.651 KG         0.12 %           TOTAL AIR CARRIER EMISSION =         50.893 KG         94.75 %           TOTAL AIR CARGO EMISSION =         10.018 KG         1.89 %           TOTAL AIR CARGO EMISSION =         10.018 KG         1.89 %           TOTAL GENERAL AV. EMISSION =         17.739 KG         3.36 %           GRAND TOTAL AIRCRAFT EMISSION =         528.649 KG         100.00 %           GRAND TOTAL AIRCRAFT EMISSION =         528.649 KG         100.00 %           TOTAL GENERAL AV. EMISSION =         528.649 KG         100.00 %           GRAND TOTAL AIRCRAFT EMISSION =         528.649 KG         100.00 %           GRAND TOTAL AIRCRAFT EMISSION =         528.649 KG         100.00 %           GRAND TOTAL AIRCRAF			C. Labor, C. & County, J. & Summer and Summer and Summer and Summer Summer and Summer and Sum Summer and Summer and Sum Summer an								2	- 44		
$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<b></b> .			TABL	.5_5	.2 (C	CNT	INUE	))			-		
JUMEC 350 = 165.331 KG 31.27 % $JUMBO 250 = 145.860 KG 27.59 %$ $LONG 200 = 37.051 KG 7.61 %$ $LONG 150 = 111.154 KG 21.03 %$ $MED. 100 = 40.826 KG 7.72 %$ $SHORT 50 = 0.651 KG 0.12 %$ $TOTAL AIR CARRIER EMISSION = 500.893 KG 94.75 %$ $TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 %$ $TUREO = 15.869 KG 3.00 %$ $TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 %$ $GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 100.00 %$ $GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 100.00 %$ $TAXIIDLE = 203.829 KG 38.56 %$ $TAKE OFF = 54.678 KG 10.34 %$ $CLIMBOUT = 145.176 KG 27.46 %$ $APPROACH = 106.539 KG 20.15 %$		1999	5	<u>S0</u>		AVE	RAG	E CA	<u>r em</u>	ISSICNS				
JUMBO 250 = 145.880 KG 27.59 % LUNG 2C0 = 37.c51 KG 7.61 % LONG 150 = 111.154 KG 21.C3 % MED. 1CC = 40.826 KG 7.72 % SHORT 50 = C.651 KG C.12 % TOTAL AIR CARRIER EMISSION = 5C0.893 KG 94.75 % TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 % TUREO = 15.869 KG 3.CC % PISTCN = 1.870 KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 1CC.CC % TAX11DLE = 203.829 KG 38.56 % TAX11DLE = 203.829 KG 1CC.CC % TAX11DLE = 203.829 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %	GR	AND TOT	AL AIRCE	RAFT	EMI	SSION	=	528	649	KG	100.00	2		
JUMBO 250 = 145.880 KG 27.59 % LUNG 2C0 = 37.c51 KG 7.61 % LONG 150 = 111.154 KG 21.C3 % MED. 1CC = 40.826 KG 7.72 % SHORT 50 = C.651 KG C.12 % TOTAL AIR CARRIER EMISSION = 5CO.893 KG 94.75 % TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 % TUREO = 15.869 KG 3.CC % PISTCN = 1.870 KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 1CC.CC % TAXIIDLE = 203.829 KG 38.56 % TAXE CFF = 54.678 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %				JUME	С	350	=	165	.331	КG	31.27	8		
LUNG       200       =       37.051 KG       7.01 %         LUNG       150       =       111.154 KG       21.03 %         MED.       100       =       40.826 KG       7.72 %         SHORT       50       =       0.651 KG       0.12 %         TOTAL AIR CARRIER EMISSION       =       50.893 KG       94.75 %         TOTAL AIR CARGO EMISSION       =       10.018 KG       1.89 %         TUREO       =       15.869 KG       3.00 %         PISTON       =       1.870 KG       0.35 %         TOTAL GENERAL AV. EMISSION       =       17.739 KG       3.36 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT EMISSION       =       528.649 KG       100.000 %         GRAND TOTAL AIRCRAFT														
MED. 1CC = 40.826 KG 7.72 % SHORT 50 = C.651 KG C.12 % TOTAL AIR CARRIER EMISSION = 5CO.893 KG 94.75 % TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 % TURED = 15.869 KG 3.CC % PISTCN = 1.87C KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC % TAXIIDLE = 203.829 KG 38.56 % TAXIIDLE = 203.829 KG 38.56 % TAKE CFF = 54.678 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %				LUNG	•	200	=	37	ιc51	KG	7.01	7		
SHORT 50 = 0.651 KG       C.12 %         TOTAL AIR CARRIER EMISSION = 500.893 KG       94.75 %         TOTAL AIR CARGO EMISSION = 10.018 KG       1.89 %         TURED = 15.869 KG       3.00 %         PISTCN = 1.870 KG       0.35 %         TOTAL GENERAL AV. EMISSION = 17.739 KG       3.36 %         GRAND TOTAL AIRCRAFT EMISSION = 528.649 KG       100.00 %         TAXIIDLE = 203.829 KG       38.56 %         TAKE CFF = 54.678 KG       10.34 %         CLIMBOUT = 145.176 KG       27.46 %         APPROACH = 106.539 KG       20.15 %														
TOTAL AIR CARRIER EMISSION =       5C0.893 KG       94.75 %         TOTAL AIR CARGO EMISSION =       10.018 KG       1.89 %         TURBO =       15.869 KG       3.CC %         PISTEN =       1.870 KG       0.35 %         TOTAL GENERAL AV. EMISSION =       17.739 KG       3.36 %         GRAND TETAL AIRCRAFT EMISSION =       528.649 KG       10C.CC %         TAXIIDLE =       203.829 KG       38.56 %         LIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       2C.15 %			<b>.</b>	MED.	<b>-</b> .	100	: <b>=</b>	40	826	KG	7.72	¥		<b></b>
TOTAL AIR CARGO EMISSION = 10.018 KG 1.89 7 TUREO = 15.869 KG 3.CC 7 PISTCN = 1.870 KG 0.35 7 TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 7 GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC 7 TAXIIDLE = 203.829 KG 38.56 7 TAXIIDLE = 203.829 KG 38.56 7 TAKE CFF = 54.678 KG 1C.34 7 CLIMBOUT = 145.176 KG 27.46 7 APPROACH = 106.539 KG 2C.15 7		TOTAL												
TURED       =       15.869 KG       3.CC %         PISTEN       =       1.670 KG       0.35 %         TOTAL GENERAL AV. EMISSION =       17.739 KG       3.36 %         GRAND TETAL AIRGRAFT EMISSION =       528.649 KG       100.00 %         TAXIIDLE =       203.829 KG       38.56 %         TAKE CFF =       54.678 KG       100.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %		TUTAL	AIR CARP	CIER	5 P) 1	2210N	-	500	073	NG	74.10	45		
PISTCN = 1.870 KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC % TAXIIDLE = 203.829 KG 38.56 % TAKE CFF = 54.678 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %		TOTAL	AIR CAR	GO EM	ISS	IGN	=	10	018	KG	1.89	7		
PISTCN = 1.870 KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC % TAXIIDLE = 203.829 KG 38.56 % TAKE CFF = 54.678 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %														
PISTCN = 1.870 KG 0.35 % TOTAL GENERAL AV. EMISSION = 17.739 KG 3.36 % GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC % TAXIIDLE = 203.829 KG 38.56 % TAKE CFF = 54.678 KG 1C.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 2C.15 %				TURE	0		=	15	869	KG	3.00	2		
GRAND TCTAL AIRCRAFT EMISSION = 528.649 KG 10C.CC % TAXIIDLE = 203.829 KG 38.56 % TAKE CFF = 54.678 KG 10.34 % CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 20.15 %				PIST	CN		=	1.	.870	КG	0.35	7		
TAXIIDLE =       203.829 KG       38.56 %         TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %		TOTAL (	GENERAL	Δ٧.	EMI	SSION	-	17.	.739	KG	3.36	*		
TAXIIDLE =       203.829 KG       38.56 %         TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %														
TAXIIDLE =       203.829 KG       38.56 %         TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %														
TAXIIDLE =       203.829 KG       38.56 %         TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %														
TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %	GR	AND TOT	AL AIRCE	RAFT	EMI	SSICN	=	528.	649	KG	100.00	20		
TAKE CFF =       54.678 KG       10.34 %         CLIMBOUT =       145.176 KG       27.46 %         APPROACH =       106.539 KG       20.15 %					<b>* 1</b> 14				0.00		30 51			
CLIMBOUT = 145.176 KG 27.46 % APPROACH = 106.539 KG 20.15 %			• •···· ··· ·											<u> </u>
APPROACH = 106.539 KG 20.15 %														
													· ·	
					LAN	DINO	-	10	120		5415	<b>.</b>		
· · · · · · · · · · · · · · · · · · ·														
			• • • •						-					

SO IRCRAFT E JUMBO JUMBO LONG LONG	MISSION 35C 250 200 15C 10C	<u>R AG</u> = = = =	E CAY EM	KG KG KG KG	100.00 33.59 31.17 7.66	7 7	
SO IRCRAFT E JUMBO JUMBO LONG MED. SHORI	AVE MISSION 35C 250 200 15C 1CC	<u>R AG</u> = = = =	E CAY EM 641.657 215.530 199.976 49.152	KG KG KG KG	10C.CC 33.59 31.17	7 7	· · ·
SO IRCRAFT E JUMBO JUMBO LONG MED. SHORI	AVE MISSION 35C 250 200 15C 1CC	<u>R AG</u> = = = =	E CAY EM 641.657 215.530 199.976 49.152	KG KG KG KG	10C.CC 33.59 31.17	7 7	
SO IRCRAFT E JUMBO JUMBO LONG MED. SHORI	AVE MISSION 35C 250 200 15C 1CC	<u>R AG</u> = = = =	E CAY EM 641.657 215.530 199.976 49.152	KG KG KG KG	10C.CC 33.59 31.17	7 7	
IRCRAFT JUMBO JUMBO LONG LONG MED. SHORT	MISSION 35C 250 200 15C 10C	= = = =	641.657 215.530 199.976 49.152	KG KG KG KG	10C.CC 33.59 31.17	7 7	<b>-</b> · ·
JUMBO JUMBO LONG MED. SHORI	35C 250 200 15C 10C	=	215.530 199.976 49.152	KG KG KG	33.59 31.17	7 7	
JUMBO JUMBO LONG MED. SHORI	35C 250 200 15C 10C	=	215.530 199.976 49.152	KG KG KG	33.59 31.17	7 7	
JUMBO LONG LONG MED. SHORI	250 200 15C 10C	= = =	199.976 49.152	KG KG	31.17	8	
JUMBO LONG LONG MED. SHORI	250 200 15C 10C	= = =	199.976 49.152	KG KG	31.17	8	
LONG LONG MED. SHORT	200 15C 10C	=	49.152	KG	7.66	~	
MED. SHORT	100		122.881				rannanda dalahar ta ranga gasa 🛛 a ran
SHORT					19.15		
	1 50	· ·	21.453		3.34	a contraction of the second second	
CARRIER L			0.248		C.C4 94.95		
	2M13310N	-	009.241	NG	94.75	4	
CARGO EM	ISSION	=	12.185	KG	1.90	3	
TURBO	2	=	18.100	KG	2.82	ę	
		Ξ.					
RAL AV. E	EMISSION	=	20.232	KG	3.15	8	
IRCRAFT E	MISSION	=	641.657	KG	100.00	7	
1		E	247.806	KG	38.62	2	
L	ANDING	=	22.156	KG	3.45	94	
						·	
					•		
	PISTO RAL AV. E IRCRAFT E	PISTON RAL AV. EMISSION IRCRAFT EMISSION TAXIIDLE TAKE OFF CLIMEOUT APPRCACH	PISTON = RAL AV. EMISSION = IRCRAFT EMISSION = TAXIIDLE = TAKE OFF = CLIMEOUT = APPRCACH =	PISTON = 2.132 RAL AV. EMISSION = 20.232 IRCRAFT EMISSION = 641.657 <u>TAXIIDLE = 247.806</u> TAKE OFF = 66.720 CLIMEOUT = 176.999 APPRCACH = 127.978	PISTON = $2.132 \text{ KG}$	PISTON = 2.132 KG 0.33 RAL AV. EMISSION = 20.232 KG 3.15 IRCRAFT EMISSION = 641.657 KG 1CC.00 <u>TAXIIDLE = 247.806 KG 38.62</u> TAKE OFF = 66.720 KG 1C.40 CLIMEOUT = 176.999 KG 27.58 APPRCACH = 127.978 KG 19.94	PISTON       =       2.132 KG       C.33 %         RAL AV. EMISSION       =       20.232 KG       3.15 %         IRCRAFT EMISSION       =       641.657 KG       100.00 %         TAXIIDLE       =       247.806 KG       38.62 %         TAKE OFF       =       66.720 KG       10.40 %         CLIMEOUT       =       176.999 KG       27.58 %         APPRCACH       =       127.978 KG       19.94 %

				· t							
				TAB	F 5						
•				140	/	• • • • •				•	
	197	3		PT		<u>AV</u>	ERAGE	DAY EM	[ \$ \$ 1 0	NS	<b></b> -
GRAN	D TCT	۸L	AIRCR	AFT	EMI	SSIC	N _ =	99.436	KĢ	100.00	2
										3.32	
					eu _ ₽	250		14.292	KG	2.07	74 . 74
										25.15	
										24.71	
г		ATD	<b>C</b> A D D							14.C3 83.66	
								1.664		1.67	
1	UTAL	AIK	LARU								
				TUR						14.67 C.C	
T	OTAL	GEN	ERAL							14.67	
GRAN	ο τοτ	AL	AIRCE	AFT	EM I	SSIO	N =	99.436	КG	100.00	ðt.
					* * *			27 524	vc	37.75	
					ΤΔΚ	E OF	F =	37.536	the street of second	£.85	
					CLI	NEOU	T =	20.178		20.29	
					APP	RCACI	H =	30.034		30.20	
					LAN	DING	Ξ	4.873	KG	4.90	Z
······································	······································										

1-000-11

**1≈**#ili;

<mark>l</mark>ere i

¶≊xul}

**Buik**:

\$110T

f														
							•							•
(														
			·· ·							1997 - 1995 - 1				
<b>.</b>														· · · · · · · · · · · · · · · · · · ·
					TAB	LE	5.2 (0	CONT	INUED)				÷	
		197	5	<u></u>	PT		<u> </u>	RAC	SE DAY EM	ISSI	CNS			
•														
	GRAND	тот	AL /	AIRCR	AFT	EM	ISSION	=	109.204	KG	100.00	8	<b>_</b> .	
I						0.0	250	-	'0 (J(	× c	7.04	æ		
					JUM		350 250	=	8.676 9.977		7.94			
								=	8.593	KG	7.87	2		
1									30.076		27.54			
		•			MED	•	100	=	24.769	KG	22.68	7		
					SHO				9.786		8.56			
	TOT	<b>IA</b>	AIR	CARP	RIER	EM	ISSION	=	91.878	KG	84.13	2		
	тот	AL	AIR	CARG	60 E	MIS	SIUN	=	1.838	KG	1.68	r		
					<b>T</b> 1 1 5 1	0.0		_	15 (00	KC	1/ 10	œ.		
									15.489 0.0		14.18 C.C			
	тот	AL	GEN	ERAL					15.489		14.18			
) 										_				
)														
	GRAND	TOT	AL /	AIRCR	AFT	EM	ISSION	: =	109.204	KG	100.00	6 B		
						ΤΛ	XIIDLE		45.247	KG	41.43	2		
L							KE CFF		7.145		6.54			
							IMBOUT		21.171		19.39			
							PROACH				28.04			
					•. ••	LAI	NDING	=	5.020	KG	4.60	2		
												•		
						<u>.</u>								
											hidensin v stadagassayan ay ayay ay a sakasin dada a sa ^{ra a s}			
								<u></u>		····			<u> </u>	<del></del>
•														
							•							
-														
<u> </u>														

	<u>.                                    </u>		•					·····	
	• • · · · •				<b>.</b>				
	TABL	.E	5.2	(00	лт	INUED)			
1980	PT		Α	VER	AG	E DAY EMI	SSIC	INS	
GRAND TOTAL AIRCE	RAFT	EM	ISSI	ON	=	173.241	KG	100.00	2
	JUME	80	350		=	19.120	KG	11.04	<b>9</b>
						18.929			
	LONG		200		=	8.522	КG	4.92	e de la companya de l
								39.76	
						26.309		15.19 4.67	
TOTAL AIR CARP									
TOTAL AIR CARC	GCEN	IS	SION		I	2.997	KG	1.73	q
	TURE	30			Ξ	20.387	KG	11.77	7
						0.0	KG		
TOTAL GENERAL	AV.	EM	ISSI	ON	=	20.387	KG	11.77	2
GRAND TOTAL AIRCR	RAFT	EM	1551	ON	Ξ	173.241	ĸĠ	100.00	7
		TA	XIID	LE	=	68.319	KG	39.44	2
		TAI	KE Ü	FF	=	11.145	KG.	6.43	
		CL	IMBO	UT	=	34.277	KG	19.79	8
						50.962		29.42	
		LA	NDIN	6	=	8.538	ĸĠ	4.93	<b>4</b>
	<u></u>								
								999-1-1-1-1999-1-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-1999-1-	

Ģ

## TABLE 5.2 (CONTINUED) PT AVERAGE DAY EMISSIONS 1985 GRAND TUTAL AIRCRAFT EMISSION = 246.780 KG 100.CC 3 350 JUMBC = 40.654 KG 16.47 % = 15.00 % JUMBO 250 37.024 KG 18.875 KG LONG 200 = 7.65 % 84.490 KG LUNG 150 = 34.24 % 100 29.221 KG MED. ≍ 11.84 % SHORT 50 Ξ 6.961 KG 2.82 % TOTAL AIR CARRIER EMISSION = 217.225 KG 88.02 % TOTAL AIR CARGO EMISSION = 4.344 KG 1.76 % TURBO 25.211 KG 10.22 % = C.C % PISTCN = 0.C KG TOTAL GENERAL AV. EMISSION = 25.211 KG 10.22 % 100.00 % GRAND TOTAL AIRCRAFT EMISSION = 246.780 KG TAXIICLE = 105.159 KG 42.61 % TAKE CFF =14.979 KG 6.07 % CLIMBOUT = 46.691 KG 18.92 % 68.409 KG APPROACH =27.72 % 11.543 KG LANDING = 4.68 %

## TABLE 5.2 (CONTINUED)

## 1990 PT AVERAGE DAY EMISSIONS

GRAND	TOT	AL A	IRCR	AFT	EMI	SSION	=	339.196	KG	100.00	7	
				JUM	30	350	=	74.491	КG	21.96	7	
				JUM	30	250	=	69.836	КG	20.59	97. 70	
				LON	3	200	=	30.263	KG	8.92	8	•
				LON	5	150	=	101.596	KG	29.95	2	
				MED	•	100	=	23.425	KG	6.91	3	
				SHC	रां	50	=	3.446	KG	1.02	2	
то	TAL	AIR	CARR	IER	EM I	SSION	=	303.057	КG	89.35	2	
TO	TAL	AIR	CARC	50 EI	MISS	ION	z	6.061	KG	1.79	2	
				TUR	30		Ŧ	30.078	KG	8.87	8	
				PIST	TON		=	0.0	KG	C.C	2	
TO	TAL	GENE	ERAL	AV.	EM I	SSION	=	30.078	KG	8.87	2	

GRAND TOTAL AIRCRAFT EMISSION = 339.196 KG 100.00 2

1

----

917 KG	5.58 %
444 KG	17.82 %
396 KG	25.77 %
848 KG	4.38 %
	396 KG

04 it

1995         PT         AVERAGE DAY EMISSIONS           GRAND TOTAL AIRCRAFT EMISSION =         434.567 KG         100.00 %           JUMBO 350 =         115.592 KG         26.60 %           JUMBO 250 =         101.993 KG         23.47 %           LONG 250 =         39.147 KG         9.01 %           LONG 150 =         117.440 KG         27.02 %           MED. 100 =         15.912 KG         366 %           SHORT 50 =         1.726 KG         C.40 %           TOTAL AIR CARRIER EMISSION =         7.836 KG         1.80 %           TOTAL AIR CARGO EMISSION =         7.836 KG         1.80 %           PISTON =         0.0 KG         0.0 %         7           TOTAL GENERAL AV. EMISSION =         34.921 KG         8.04 %           GRAND TOTAL AIRCRAFT EMISSION =         434.567 KG         100.00 %           GRAND TOTAL AIRCRAFT EMISSION =         434.567 KG         100.00 %           TAKE CFF =         22.645 KG         5.21 %           CLIMBOUT =         73.747 KG         16.97 %           APPROACH =         105.422 KG         24.26 %           LANDING =         17.962 KG         4.13 %		TABLE 1						
JUMBO 350 = 115.592 KG 26.6C 3 JUMBC 250 = 101.993 KG 23.47 3 LONG 2CC = 39.147 KG 9.01 3 LONG 150 = 117.440 KG 27.02 3 MED. 1CO = 15.912 KG 3.66 3 SHORT 50 = 1.726 KG C.40 3 TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 3 TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 3 TUREO = 34.921 KG 8.C4 3 PISTON = 0.0 KG 0.0 3 TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 3 TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 3 TAXIIOLE = 214.792 KG 49.43 3 TAKE CFF = 22.645 KG 5.21 3 CLIMBOUT = 73.747 KG 16.97 3 APPROACH = 105.422 KG 24.26 3 LANDING = 17.962 KG 4.13 3	1995	PT	AVEF	RAG	E DAY EM	ISSICNS		
JUMBC 250 = 101.993 KG 23.47 7 LONG 20C = 39.147 KG 9.01 7 LONG 150 = 117.440 KG 27.02 7 MED. 100 = 15.912 KG 3.66 7 SHORT 50 = 1.726 KG C.40 7 TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 7 TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 7 TURED = 34.921 KG 8.04 7 PISTON = 0.0 KG 0.0 7 TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 7 TOTAL GENERAL AV. EMISSION = 434.567 KG 100.00 7 TAXIIDLE = 214.792 KG 49.43 7 TAKE CFF = 22.645 KG 5.21 7 CLIMBOUT = 73.747 KG 16.97 7 APPROACH = 105.422 KG 24.26 7 LANDING = 17.962 KG 4.13 7	GRAND TOTAL AIRCE	RAFT EM	ISSION	=	434.567	KG	100.00	2
JUMBC 250 = 101.993 KG 23.47 % LONG 20C = 39.147 KG 9.01 % LONG 15C = 117.440 KG 27.02 % MED. 10C = 15.912 KG 3.66 % SHORT 50 = 1.726 KG C.40 % TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 % TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 % TUREO = 34.921 KG 8.04 % PISTON = 0.0 KG 0.0 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 10CC.CC % TAXIIDLE = 214.792 KG 49.43 % TAKE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %		JUMBO	350	z	115.592	KG	26.60	2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		JUMBC	250	=	101.993	KG	23.47	<b>19</b>
LONG 150 = 117.440 KG 27.02 % MED. 1C0 = 15.912 KG 3.66 % SHORT 50 = 1.726 KG C.40 % TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 % TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 % TUREO = 34.921 KG 8.04 % TUREO = 34.921 KG 8.04 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 10C.CC % TAXIIDLE = 214.792 KG 49.43 % TAXIIDLE = 214.792 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 7.426 % LANDING = 17.962 KG 4.13 %								The second secon
MED. 1C0 = 15.912 KG 3.66 % SHORT 50 = 1.726 KG C.40 % TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 % TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 % TUREO = 34.921 KG 3.C4 % PISTON = 0.0 KG 0.0 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 10C.CC % TAXIIDLE = 214.792 KG 49.43 % TAKE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %								
SHORT 50 =       1.726 KG       C.40 %         TOTAL AIR CARRIER EMISSION =       391.810 KG       9C.16 %         TOTAL AIR CARGO EMISSION =       7.836 KG       1.80 %         TUREU =       34.921 KG       8.04 %         PISTON =       0.0 KG       0.0 %         TOTAL GENERAL AV. EMISSION =       34.921 KG       8.04 %         GRAND TOTAL AIRCRAFT EMISSION =       434.567 KG       1000 %         TAXIIDLE =       214.792 KG       49.43 %         TAKE CFF =       22.645 KG       5.21 %         CLIMBOUT =       73.747 KG       16.97 %         APPRCACH =       105.422 KG       24.26 %         LANDING =       17.962 KG       4.13 %								
TOTAL AIR CARRIER EMISSION = 391.810 KG 90.16 % TOTAL AIR CARGO EMISSION = 7.836 KG 1.80 % TUREO = 34.921 KG 8.04 % PISTON = 0.0 KG 0.0 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 10C.00 % TAXIIDLE = 214.792 KG 49.43 % TAXE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %	······································	SHORT	50	=	1.726	KG	19 I I	
TUREO       =       34.921 KG       3.04 %         PISTON       =       0.0 KG       0.0 %         TOTAL GENERAL AV. EMISSION       =       34.921 KG       8.04 %         GRAND TOTAL AIRCRAFT EMISSION       =       434.567 KG       100000 %         TAXIIDLE       =       214.792 KG       49.43 %         TAKE CFF       =       22.645 KG       5.21 %         CLIMBOUT       =       73.747 KG       16.97 %         APPROACH       =       105.422 KG       24.26 %         LANDING       =       17.962 KG       4.13 %	TOTAL AIR CARF							
PISTON = 0.0 KG 0.0 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 100.00 % TAXIIDLE = 214.792 KG 49.43 % TAKE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %	TOTAL AIR CARC	GO EMIS	SION	Ξ	7.836	KG	1.80	a de la companya de l
PISTON = 0.0 KG 0.0 % TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 10000 % TAXIIDLE = 214.792 KG 49.43 % TAKE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %		TUREO		=	34.921	KG	8.04	2
TOTAL GENERAL AV. EMISSION = 34.921 KG 8.04 % GRAND TOTAL AIRCRAFT EMISSION = 434.567 KG 100.00 % TAXIIDLE = 214.792 KG 49.43 % TAKE CFF = 22.645 KG 5.21 % CLIMBOUT = 73.747 KG 16.97 % APPROACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %			****		0.0	KG		
TAXIIDLE =       214.792 KG       49.43 %         TAKE CFF =       22.645 KG       5.21 %         CLIMBOUT =       73.747 KG       16.97 %         APPROACH =       105.422 KG       24.26 %         LANDING =       17.962 KG       4.13 %	TOTAL GENERAL			=				
TAKE CFF =       22.645 KG       5.21 %         CLIMBOUT =       73.747 KG       16.97 %         APPRCACH =       105.422 KG       24.26 %         LANDING =       17.962 KG       4.13 %	GRAND TOTAL AIRCE							
CLIMBOUT = 73.747 KG 16.97 % APPRCACH = 105.422 KG 24.26 % LANDING = 17.962 KG 4.13 %								
APPREACH =         105.422 KG         24.26 %           LANDING =         17.962 KG         4.13 %				=	73.747	KC		
LANDING = 17.962 KG 4.13 %								
· ·								a
		LAI		-	114702	NO	-1 • I J	•
								<u> </u>

.

	· •• •	TABLE 5.2 (0	ΟΝΤΙ	NUED)		n an arangente
200	0	PT AVE	RAGE	DAY EMI	ISSIONS	
GRAND TOT	AL AIRCE	RAFT EMISSION	-	530.740	KG	100.00
		JUMBD 350	=	150.689	κg	28.39
		JUMBO 250	=	139.815	KG	26.34
		LONG 200				
		LONG 15C	=	129.831	KG	24.46
		MED. 100	=	8.362	KG	1.58
		SHCRT 50		0.657		
TOTAL	AIR CARR	RIER EMISSION	; =	481.285	KG	90.68
TOTAL	AIR CARC	GO EMISSION	=	9.626	KG	1.81
		TURBO	=	39.829	KG	7.50
		TURBO PISTON	=	0.0	KG	C.C
		AV. EMISSION				7.50

. . . . . . . .

.. . . .

Ĵ.

-

GRAND TOTAL AIRCRAFT EMISSION = 530.740 KG 100.00 %

	= 26.413 = 87.204	KG 4.98 KG 16.43	7 7
LANDING =	= 21.118	KG 3.98	<b>%</b> .

şim.

		••••••••••••••••••••••••••••••••••••••								
- ····									··· <del>··</del> ·······························	
	TABL	.E 5.2 (C	0N1	INUED)						
1973	CO	PEA	< [	DAY EMISSI	lons					
GRAND TOTAL A	IDCONET	EMISSION	=	5215.852	KG	100	00	9		
GRAND TOTAL A	INUNALI	LI113310W	-	7213072	ΝG	_ 100	• • • •	÷		-· · ·
	JUMF		=	162.247	KG	3	. 11	2		
 anderson encours as suman as sumarias sons a so a	JUME	e e e e e e e e e e e e e e e e e e e		101.404		1	-			
				816.254			. 65			
				1428.444			• 39			
		100		1339.475			-68			
	SHOR			72.806		1				
TOTAL AIR (	CARRIER	EMISSION	=	3920.630	KG	75	.17	*		
 TOTAL AIR (	CARGO EN	ISSICN	Ξ	78.413	KG	1	.50	2		
	TURE	3G	=	164.681	KG	3	.16	2		
	PIST			1052.133			.17			
TOTAL GENER							• 33			
 	anantan dari sebut yake da Badanta w									
GRAND TOTAL A	IRCRAFT	EMISSION	=	5215.852	κg	100		2		
								-		
				4065.855			. 95			
				48.187			.92			
				566.712			.87			
 an a chu a na ann a dhu ann a dhuga a chu a shar a carao dhu propinsing adhaga. Ann an				480.631			.21			
		LANDING	=	54.472	ĸĠ	1	• C 4	4		
 						· · · · · · · · · · · · · · · · · · ·				
									•	
 <b></b>										
						Dra	-	LIE	SRARY	
						ENNER	1. C			NBAL
 adagama magkapuntan ngangang nangang mangkapang mangkapan na kang mangkapan na kang mangkapang na kang mangkap						ENVIRON		I'TL P	けいしてにへいい	e
					1		P	ACLER	REGION	JIC Smi
								1 W 11 1		
						Same			megion	

	TABL	ë 5.2 (	CON	(INUED)			
1975	_C0	PE	<u>ΑΚ</u> Ι	DAY EMISS	IONS		
GRAND TUTAL AIRC	RAFT	EMISSIC	N =	6205.449	KG	100.00	8
	JUMB			448.110		7.22	z
	JUMB	ŭ 250	=	515.326	KG	8.30	
	LONG	200	Ξ	515.295 1803.531	KG	8.30	
	LONG	150	=	1803.531	KG	29.06	
	MED.	10C	=	1417.821 53.622	KG	22.85	
TOTAL AIR CAR						0.86	
TUTAL AIR CAR	KIEK	EM12210	N =	4123-103	ĸĠ	76.61	6
TOTAL AIR CAR	GO EM	ISSION	3	95.074	KG	1.53	q
	TURB	n	=	183.610	KG	2.96	2
• • • •				1173.069			
TOTAL GENERAL		-					
GRAND TOTAL AIRC		TAXIIDL TAKE OF CLIMBCU APPROAC	E = F = T = H =	<u>4904.543</u> 53.972	KG KG KG KG	10.21	X X X X
		antala viziti di antala a a vi an vizi		anus kay ny mitany ang			
	· · · · · · · · · · · · · · · · · · ·						

.

_____

<b></b> .				an , _{an} n - mh -			
	TABLE 5.2	CONTINU	CED)				
1985	СО Р	EAK DAY	EMISS	ICNS	·		
GRAND TOTAL AIRC	RAFT EMISSI	ON =1435	58.133	KG	100.00	ę	· · • • • • •
	JUMBO 350	= 209	8.391	KG	14.61	8	
		= 191			13.31		
	LUNG 200		31.094		7.88		
	LONG 150		2.988		35.26		
·····	MED. 100 SHORT 50		<b>1.489</b> <b>38.113</b>	-	11.64 0.27		
TOTAL AIR CAR					82.97		
TUTAL AIR CAR	GO EMISSIUN	= 23	38,262	KG	1.66	8	
	TURBO	= 29	8.658	КG	2.08	2	
· · · · · · · · · · · · · · · · · · ·	PISTON		8.108		13.29		
TOTAL GENERAL	AV. EMISSI	ON = 220	6.766	к <b>G</b>	15.37	Z	
GRAND TOTAL AIRC	RAFT EMISSI	CN =1435	58.133	KG	100.00	<b>a</b>	
	TAXIIO	LE =1197	73.363	KG	83.39	r	
					0.67		<u></u>
	CLIMBO	UT = 106	5.683	КG	7.42	Я,	
	APPRCA	CH = 108	86.328	KG	7.57		
	LANUIN	G = 13	36.134	KG	û <b>.</b> 95	. 2	
······		•					

	TABLE 5.2 (CONTINUED)	
1980	CO PEAK DAY EMISSIONS	
GRAND TOTAL AIR	RCRAFT EMISSION =10102.750 KG	100.00 %
	JUMBD 350 = 987.216 KG	9.77 3
	JUMBU 250 = 977.344 KG	9.67 %
	LONG 200 = 510.852 KG	
	LONG $150 = 4129.387$ KG	
	MED. 100 = 1505.449 KG SHORT 50 = 44.3C0 KG	
TOTAL ATR CA	ARRIER EMISSION = $8154.539$ KG	
TOFAL AIR CA	ARGO EMISSION = 163.091 KG	1.61 %
	TURBO = $241.595$ KG	2.39 %
	PISTON = 1543.529 KG	15.28 %
TOTAL GENERA	AL AV. EMISSION = 1785.123 KG	17.67 %
GRAND TOTAL AIR	CRAFT EMISSION =10102.750 KG	100.00 %
	TAXIIDLE = 8267.754 KG	81.84 %
	TAKE OFF = 74.885 KG	0.74 %
	CLIMBOUT = 849.647 KG	8.41 %
	APPRCACH = 811.655  KG	8.03 %
	LANDING = 98.810 KG	C.98 %
		<u></u>
annyn, serend en for oler i melekasingene for der eider einerste der einer de		

•

					***		* · · ·		55			
		тлы	LE 5	.2 (C	0N1	<b>FIN</b>	JED	)			~	···· · · · · · · · · · · · · · · · · ·
	1995	CO		ΡΕΑ	ĸ	DAY	EM	155	ICNS			
GRAND	TOTAL AIRC	RAFT	EMI	SSION		2500	.00	641	KG	100.00	8	
		ואטנ	BC	350	=	596	51.	488	KG	23.85	52	
										21.04		
		LON	G	200	=	23	43.	907	KG	9.38	2	
		LONG	G	150	=	703	31.	711	KG	28.13	3	
		MED	•	100	.=	90	)9.	459	KG	3.64	2	
		SHOP	RT	50	=		9.	442	KG	. G • 04	7	
τα	TAL AIR CAP	RIER	EMI	SSION	=2	215	16.	141	KG	86.06	3	
TO	TAL AIR CAR	GD EI	MISS	ION	=	4	30.	323	KG	1.72	8	
		TUR	BO		=	4	3.	346	КG	1.65	8	
		PIS	TCN		<b>=</b>	264	÷0.	838	KG	1.65	8	
TO	TAL GENERAL											
GRAND	TOTAL AIRC	RAFT	EMI	SSION	=	2500	00-	ώ41	KG	100-00		
			τΔχ	IIDLE	=2	2142	27.	844	KG	85.71	2	
<u></u>				E CFF						0.56		
				MBOUT						6.03		
				ROACH						6.81		
			LAN	DING	=	22	24.	329	KG	0.90	2	
											<u> </u>	••••••
		••• •• •••			• • ••		• •	• •••• •				
	•											<u> </u>

					· <u>.</u>		
							<b></b>
	TABLE 5.	2 (CCM	TINUED)				
1990	CO	ΡΕΑΚ	DAY EMISS	ICNS			
GRAND TOTAL AIR	CRAFT EMIS	SION =	=19681.539	KG	100.00	<b>67</b> • 10	
	JUMBO 3	50 =	= 3845.846	KG	19.54	<b>d</b> a Ag	
	JUMBO 2	50 =	3605-486	KG	18.32	8	
	LONG 2	00 =	= 1813.896	KG	9.22	L	
	LONG 1	50 =	6089.500	KG	30.94	ж а	
		50 =	= 1340.255 = 18.876	KG .	6.10	3	
TOTAL AIR CA							
TOTAL AIR CA	RGD EMISSI	ON =	= 334.277	KG	1.70	%	
	TURBO		= 356.400	KG	1.81	8	
			2277.017	KG		2	
TOTAL GENERA	L AV. EMIS	SION =	= 2633.417	' KG	13.38		
GRAND FOTAL AIR	CRAFT EMIS	SION =	=19681.539	KG	100.00	2	
	ΤΑΧΙ	IDLE =	=16697.527	' KG	84.84	2	
	A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERT		= 117.859		C.60	These serves the statement of the server and the server of	
			= 1287.942		6.54		
			= 1397.286		7.10		
	LAND	ING =	= 180.939	) KG	0.92	2	
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	- <u>-</u>	

					TABI	 F	5.2 (C	กุญา						
<b>__</b> .			• • • •											t to an
		197	3		HC		PEA	ĸ	DAY EM	ISS	IONS			
	GRAND	гот	AL	AIRC	AFT	EM	ISSION	=	2454.	226	KG	100.00	2	• ·
					німі	2.7	350	Ŧ	41.	879	KG	1.71	2	
												1.07		
					LON	;	200	=	696	964	KG	28.40	Z	
					LONG	6	150	=	1219.	687	KG	49.70	2	
					MED	•	100	=	304.	911	КG	12.42	2	
												2.27		
	TOT	ΑL	AIR	CARI	<b>KIER</b>	ΕM	122108	=	2345.	302	ĸĠ	95.56	76	
	TOT	AL	AIR	CAR	GC EI	115	SION	=	46.	906	KG	1.91	2	
					TUR				37.					
												1.00		
	TOT	ΔL	GEN	ERAL	AV .	EM	ISSION	=	62.	018	K G	2.53	<b>X</b>	
	GRAND	тот	AL	AIRC	RAFT	EM	ISSION	! =	2454.	226	KG	100.00	2	
						ТΔ	XIIDLE	=	2380.	401	KG	96.99	2	
							KE OFF							
						CL	IMBOUT	. =	22.	071	KG			
						AP	PREACH	=	41.	086	KG	1.67		
				-		LA	NDING	=	6.	479	KG	0.28	8	
							·· · ·					• •		

· · · · · · · · · · · · · · · · · · ·	TABL	E 5.2 (C	ONTINUE	D)		· · · · · · · · · · · · · · · · · · ·	
2000	CO	PEA	K DAY E	MISS	IONS		
GRAND TOTAL AIRCR	RAFT	EMISSION	=30347	.301	ĸg	100.00	z
	JUMB	0 350	= 7769	.043	KG	25.60	2
		0 250				23.75	
	LONG	200	= 3108	•429	KG	10.24	
	LONG	150	= 7771	.059	KG	25.61	2
	MED.		= 477		KG	1.57	z
	SHOR			• 594		0.01	
TOTAL AIR CARP	CIER	EM12210M	=20000	•224	NG	86.79	-6
TOTAL AIR CARG	GO EM	ISSICN	= 526	.165	KG	1.74	8
	TURB	n	= 471	. 284	ĸG	1.55	2
···· · ····· · · · · · · · · ·		ON .	= 3011	.002	KG	9.92	2
TOTAL GENERAL	AV.	EMISSION	= 3482	•286	KG	11.47	8
GRAND TCTAL AIRCP	RAFT	EMISSION	=30347	.301	KG	100.00	8
		TAXIIDLE	=26179	.148	KG	86.27	2
		TAKE OFF					
		CLIMBOUT	= 1728	.310	KG	5.70	2
		AP PROACH	= 2011	•336	KG	6.63	2
		LANDING	= 267	•987	KG	89.0	2
		·		<u></u>			. <u></u>

	• ••• · · • • · · ·			·				
							••	
	TAB	LE 5.2 (C	0N'	[INUED]				
1975	НС	PEA	ĸ	DAY EMISSI	CNS			
GRAND TOTAL	AIRCRAFT	EMISSION	. =	2713.379	KG	100.00	8	-
	JUM	BO 350	=	115.665	KG	4.26	ભ્	
	JUM			133.014		4.90		
	LUN	G 200	- · · ·	439.988		16.22		- · · · · · ·
				1539.959		56.75		
		. 100		322.745		11.89	2	
· · · ·	SHO			41.014	KG	1.51		
TOTAL AIR	CARRIER	EMISSION	=	2592.385	KG	95.54	8	
TOTAL AIF	R CARGU E	MISSION	=	51.848	KC	1.91	<b>a</b> y 'a	
	TUR	BC	=	41.884	KG	1.54	7	
	PIS	TON	=	27.263	KG	1.00	2	
TOTAL GEN	NERAL AV.	EMISSION	"	69.147	KG	2.55	*	
GRAND TOTAL	AIRCRAFT	EMISSION	=	2713.379	KG	100.00	8	
		TAXIIDIE	=	2630.068	KG	96-93	2	
		TAKE OFF	=	4.903	KG	0.18	2	-
				25.075				
				46.058				
		LANDING	=	7.278	KG	0.27	*	
						<u> </u>		
				·····				<b>- .</b>

<u>}</u>									
3		TABLE	5.2 (C	CN	TINUED)		· · · · · ·		
	1980	НС	PEA	K I	DAY EMISS	ICNS			
	GRAND TOTAL AIR	CRAFTE	MISSION	*	5033.656	KG	100.00	æ	· .
		JUMBC	250	=	254.817	KG	5.01	8	
		LONG	150	=	436.195 3525.909 342.692	ΚG	70.05	<b>C</b> 20	
	TOTAL AIR CA	SHORT	50	=	33.884	KG	C.67	*	
	TOTAL AIR CA	RGO EMI	SSION	z	96.915	KG	1.93	8	
		TURBO PISTC			55.111 35.872				
	TOTAL GENERA	_ AV. E	MISSION	=	90.984	KG	1.81	8	
	GRAND TOTAL AIR	DAET E	MISSION	-	5033.656	ĸc	100.00	9	
	GRAND TOTAL AIN				4895.875		97.26		
<u></u>		Т	AKE CEE	Ξ	8.466	KG	0.17	X	
		C	LIMBOUT	=	39.316	KG	0.78		
		L	ANDING	=	77.459	KG	1.54 0.25		
						-			
0   									
2	x								
י י									

(HB)

**0**-6

.

	TABLE	5.2 (0)	CN.	TINUED)				
1985 H	HC	PEA	< (	DAY EMISS	IONS			
GRAND TOTAL AIRCRA	AFT EM	ISSION	=	6980.531	ĸG	100.00	z	
	JUMBO	350	=	541.629	KG	7.76	*	
	JUMBU	220	-	493.210	NG	1.01	76	
l	LONG	200	=	965.794	KG	13.84 61.93	99	
l	LONG	150	=	4323.066	KG	61.93	2	
r i		100	=	380.489	KG	5.45 0.42	70 19	
TOTAL AIR CARR								
TOTAL ATA CANA		100104			ŇŬ		70	
TOTAL AIR CARGO	DEMIS	SION	=	134.068	KG	1.93	2	
-	TURBD		=	68.129	κG	C.98	<b>9</b>	
						0.64		
TOTAL GENERAL A	AV. EM	ISSION	=	112.474	KG	1.61	2	
GRAND TOTAL AIRCR	AFT EM	ISSION	=	6980.531	KG	100.CC	2	
	ТА		=	6792.273	KG	97.30	2	
						C.17		
						0.76		
	AP .	PRUACH	=	105.880	KG	1.52	8	
	LA	NDING	=	17.274	KG	C.25	2	
		· · ·					<b></b>	
			<b>2</b>					

	TABLE	5.2 (CON	TINUED)	<b>.</b> .	-
1990	D HC	ΡΕΑΚ	DAY EMISS	IONS	
GRAND TOT	AL AIRCRAFT EI	MISSION =	9305.242	KG	100.00
	JUMBO		992.676		10.67
· · · · · · · · · · · · · · · · · · ·	JUMBC	250 =	930.635		10.00
	LONG		1548.810		16.64
	LONG		5199.566		55.88
	MED.		305.088		3.28
TOTAL	SHORT		14.437		0.16
	AIR CARRIER EI	112210W =	8991.203	ĸĠ	96.63
TOTAL	AIR CARGO EMI	SSICN =	179.824	KG	1.93
			81.300		C.87
			52.919		0.57
TOTAL (	GENERAL AV. EI	4ISSION =	134.219	КG	1.44
GRAND TOT	AL AIRCRAFT E	MISSION =	9305.242	KG	100.00
	Т	AXIIDLE =	9058.484	KG	97.35
	and the second	the second of th	16,481	and the second second second second	0.18
			69.295		0.74
			138.279		1.49
	and the second	and the second sec	22.712		0.24
······································					
	<u></u>		· · <u>· · · · · · · · · · · · · · · · · </u>		
			angan na ang kanang ang ang ang ang ang ang ang ang an		

·····

. . . .

,

------

----

.....

. ....

1995	HC PEA	K DAY EMISS	IONS	
GRAND TOTAL AIRCH	RAFT EMISSION	=11494.156	KG 100.00	8
	JUMEO 350	= 1538.761	KG 13.39	
	JUMEO 250	= 1357.730	KG 11.81	the state of the s
	LONG 200 LONG 150 MED. 100	= 2001.362	KG 17.41	
	LUNG 150	= 6004.078	KG 52.24	126 1 29
· · · · · · · · · · · · · · · ·	FEU. LUU	= 207.025	KG 1.80	
TOTAL AIR CARP			KG 0.06 KG 96.71	
IUTAL AIR CARP	VIEN CHISSION	-11110+172	K <b>O</b> 70.11	
TOTAL AIR CARC	GO EMISSION	= 222.323	KG 1.93	1 2
	TURBO	= 94.290	KG 0.82	2
	PISTON	= 61.374	KG C.53	8
TOTAL GENERAL	AV. EMISSION	= 155.665	KG 1.35	5 2
GRAND TOTAL AIRCH				
			KG 97.37	
			KG C.18 KG C.74	
			KG 1.47	
·····			KG C.24	
		2.00.0		
				n an ann a na an an an an an an an an an

.

TABLE	5.2	(CONT	INUED)
-------	-----	-------	--------

## 2000 HC PEAK DAY EMISSIONS GRAND TOTAL AIRCRAFT EMISSION =13709.770 KG 100.00 % = 2005.319 KG JUMBO 350 14.63 % JU™80 250 = 1860.606 KG13.57 % 200 = 2654.156 KG 19.36 % LONG = 6635.379 KG LONG 150 48.40 % MED. 108.753 KG C.79 % 100 = SHORT 50 ≘ 2.749 KG C.C2 % TOTAL AIR CARRIER EMISSION =13266.953 KG 96.77 % TOTAL AIR CARGO EMISSION = 265.339 KG 1.94 % TURBO 107.507 KG C.78 % = PISTON 69.977 KG 0.51 % = TOTAL GENERAL AV. EMISSION = 177.484 KG 1.29 %

GRAND TOTAL AIRCRAFT EMISSION =13709.770 KG 1CC.CC %

**H**all

TAXIIDLE	=1	3350.496	KG	97.38	8
TAKE OFF	=	25.315	KG	C.18	8
CLIMBOUT	=	101.080	KG	0.74	8
APPRCACH	Ŧ	199.873	KG	1.46	8
LANDING	=	33.019	KG	0.24	2
				an ann an s am suigeann an am staineann an Araidere a s a s a s an	

CRAN

					·. · -	i i	
	TADLE		T T NH (C () N				
	TABLE 5.2 (CONTINUED)				· ·	· ·	
1973	NO	ΡΕΔΚ	DAY EMISS	ICNS			
					· · · · · · · · · · · · · · · · · · ·		
GRAND TOTAL AI	RCRAFT EM	ISSION_=	1534.959	KG	100.00	19 19 19	
	HIMPC	250 -	110 017	vr	7 17	3	
	JUMBO	350 = 250 =	68 760	KC	7.17	ń. uj	
		$\frac{200}{200} =$	121.273	KC -	4.48 7.90	9 9	
					13.83		
					57.55		
	SHORT	50 =	39.539	KG	2.58	8	•
TOTAL AIR C					•		
TOTAL AIR C	ARGO EMIS	SION =	29.704	KG	1.87	z	
	TURBO	<b></b>	67.220	KG	4.38 0.25	2	
TOTAL GENER	AL AV. EM	15510N =	11.031	ĸĠ	4.03	76	
	= .= .					<u>.</u>	
GRAND TOTAL AI	RCRAFT EM	ISSION =	1534.959	KG	100.00	43 (1)	
	тл	XIIDIE =	196 233	KG	12.78	9	
		KF OFF =	325,154	<u>KC</u>	21.18	2	
		IMBOUT =	686.687	KG	44.74	2	
	API	PROACH =	279.414	KG	18.20	2	
			47.471		3.09		
	_						
				<u> </u>			
						•	
· · · · · · · · · · · · · · · · · · ·							
		n and the advances of them					

<u> </u>				
		enter de la companya		
• • •	TABLE 5.2 (C	STINHED		
· · · · · · · · · · · · · · · · · · ·				<b>-</b>
1975	NO PEAK	DAY EMISS	IONS	
GRAND TOTAL AIRCE	DAET EMICCION	- 2080 437	KG 100 0	an 9
GRAND TOTAL AIRCI	· · · · · · · · · · · · · · · · · · ·			
	JUMBO 350 JUMBC 250			
	LONG 200	= 76.559	KG 3.6	8 %
	LONG 150	= 267.956	KG 12.8	8 %
-	MED. 100	= 935.071	KG 44.9	15 %
TOTAL AIR CARE			KG 1.4 KG 94.3	
TOTAL AIR CAR	GC EMISSION	= 39.240	KG 1.8	19 2
	TURBO	= 74.947	KG 3.6	50 <b>%</b>
	PISTON	= 4.255	KG C.2	2C \$
TOTAL GENERAL	AV. EMISSION	= 79.202	KG 3.8	1 %
GRAND TOTAL AIRCH	RAFT EMISSION	= 2080.437	KG 100.0	20 2
	TAXIIDLE	= 244.940	KG 11.7	7 %
	TAKE OFF	= 465.137	KG 22.3	36 2
		= 966.551		
	APPROACH	= 344.822	KG 16.5	
	LANCING	= 58.986	KG 2.02	34 8
:			٠	
-			· · · · · · ·	
•				
ļ				

CRASS TO CONTRACT

	TABLE 5.2 (CO	ONT INUED )	•		. <u>.</u>
1000					
1980	NO PEAK	K DAY EMISS	IONS		
GRAND TOTAL AIRCE	RAFT EMISSION	=_ 3203.452	KG 10	0.00 %	
	JUMBO 350	= 669.414	KG 2	C.9C %	
	JUMEG 250	= 662.120	KG 2	0.69 %	
	LONG 2CO LONG 150				
	MED. 100		KG 3	0.99 %	
		= 24.058	KG	0.75 %	
TOTAL AIR CARF	RIER EMISSION	= 3038.469		4.85 %	
TOTAL AIR CARC	GO EMISSION	= 60.769	KG	1.90 %	
	TURBU	= 98.615	KG	3.08 %	
	PISTON	= 5.599	KG	C.17 %	
TOTAL GENERAL	AV. EMISSIUN	= 104.214	KG	3.25 %	
GRAND TOTAL AIRCH	RAFT EMISSION	= 3203.452	κg 10	C.CC %	
	TATIOLE	= 349.777	KG 1	0.92 %	
		= 739.899		3.10 %	
		= 1522.732		7.53 %	
		= 504.347		5.74 %	
	LANDING	= 86.695	KG	2.71 3	ana a san si sa sa
· · · · · · · · · · · · · · · · · · ·					
		· · · · ·		a 1.24 mil 4	

				TABL	. E	5.2	(00	) N T	I NUE	D)		<b>..</b>	• • •		
	198	35		NO		٢	EAK		DAYE	MISS	ICNS				
GR	AND TO	Γ Δ L	AIRCH	RAFT	EM	1551	<u>ON</u>	11	4986	5.125	KG	100.0	0	8	
				JUME	80	350	)	=	1422	2.883	KG	28.5	i4	<b>8</b> 49	
				JUME	20	250		H .	129	5.840	KG	25.9	17	œ.	
				LONG		150	, ;	=	752	2.223	KG KG		39	4 8 8	
				MED.	•	100		=	1102	2.369	KG	22.1	. 1	2	
	TOTAL	AIR	CARF			50 1 S S I				0.698 2.059		0.4 95.5			
	TOTAL	AIR	CARO	SO EN	115	SICN	1	=	9	5.241	KG	1.9	n	2	
				TURE	3C			=	12	1.908	KG	2.4	4	2	
		*		PIST							KG	G.1			•
· · · _ · . · . · . · . · . · .	TOTAL	GEN	ERAL	Αν.	EM		ON	=	12	8.829	- KG	2.9	8	<b>z</b>	
0.5					- 1						~ ~ ~ ~		~ ~	æ	
GR	AND TO	AL	AIRCI	<b>KAFI</b>	5.	1221	UN	~	498	6.125	o kg	100.0	J U	2	
					TA	XII	LE		_ 510	0.563	KG	10.2	24	2	
												23.			
											B KG	48.0 14.7			
											B KG				
• • • • •		• • • • •						ran i			11 1998	1.81. <b>1895</b> , 183, 193, 193, 193		• ·	

į		
,	·	
		······································
		•
	TABLE 5.2 (CONTINUED)	
ويسمر		• • • • • • • • • • • • • • • • • • • •
	·	
	1990 NO PEAK DAY EMISSIC	NS
	GRAND TOTAL AIRCRAFT EMISSION = 7417.164 KG	G 100.00 %
(int	JUMBC 350 = 2607.803 K	G 35.16 %
		クリンク10 を クリンク10 を
	JUMBD 250 = 2444.818 KG	G 32.96 %
	LUNG 200 = 269.496 K(	G 3.63 %
1	LONG 150 = 904.735 K	G 12.20 °
	MED. 100 = 883.916 KG	G 11.92 %
	SHORT 50 = $10.251 \text{ K}$	
	TUTAL AIR CARRIER EMISSION = 7121.012 K	
	1014L AIR CARRIER 10155100 - 7121.012 R	0 )C.101 €
		G 1.92 %
	TOTAL AIR CARGO EMISSION = 142.420 KG	6 1.92 %
د		
	TURBU = 145.478 KG	G 1.96 %
•	PISTCN = 8.259 KG	G C.11 %
1	TOTAL GENERAL AV. EMISSION = 153.737 KG	6 2.07 %
لترتق		
:		
(MAR)		
	GRAND TOTAL AIRCRAFT EMISSION = 7417.164 KG	G 10C.0C %
فالشمص	TAXIIDLE = 711.787 K	G 9.60 %
-	TAKE OFF = 1824.189 K	
	CLIMBOUT = 3697.380  K	
1	APPROACH = 1009.137  K	
	I sumple sector in the sector sector is set as well.	
	LANDING = 174.681  K	G 2.36 %
i		
1		
أ		
[		
;	:	
-		
<b></b>		
5		
Ξ.		
;		
Ũ		
Ī		
,		

.

			.,		<b></b>	ar é des craéi anns créi anns d'fhuir i b		-		
		TABL	.5 5	5.2 (00		TINUED)				
	1995	NO		PEAK	< 1	DAY EMISS	ICNS			
<u></u>		· · · · · · · · · · · · · · · · · · ·								
GRAN	D TOTAL AIR	CRAFT	EMI	ISSION	2	9977.520	KG	100.00	*	
		JUME				4042.390		40.51		
	a and and the second second	JUME				3566.816			÷ •	
						348.241				
								LC.47		
				100		599.800		6.C1 0.05		
T	OTAL AIR CA			50 ISSINN		5.127 9607.082		96.29		
•	OTAC AIR CA		<b>L</b>	199101		,			~	
T	OTAL AIR CA	RGC EN	'IS!	SICN	=	192.142	KG	1.93	2	
		TUR	30		=	168.722	KG	1.69	<b>ey</b>	
		PIST	rgn'		=	9.579	KG	C.1C	<b>9</b> 4	
T	DTAL GENERA	L AV.	EMI	ISSION	=	178.301	. KG	1.79	2	
CD AN	D TOTAL AIR	CONET	см		-	0077 520	KC	100.00	9	
GRAN	U TUTAL AIN	GRAFI	<b>L</b> 177 .	133100	-	· · · · · · · · · · · · · · · · · · ·		100.00	æ	
			TA:	XIIDLE	=	921.918	KG	9.24	2	
			TAI	KE OFF	=	2497.069	KG	25.03	2	
			CL.	INROUT	=	5042.148	KG	50.54	7	
			API	PROACH	Ξ	1292.348	KG	12.95		<b>.</b>
			LAI	NDING	=	224.042	KG	2.25	2	
				<u> </u>						
				an en en samelin er en fami				مر و من		
		-								

					<u></u>											
••••••											<b>,</b> .					
				TABL	. Ë [:] 5	5.2 (	CONT	IN	JED	)	· · ·· · · · •					
		2000		NO		PE	AK C	γΔα	EM	155	ICNS					
	GRAND	TOTAL /	AIRCR	AFT	EMI	SS 10	N = ]	125	34.	438	KG	100.0	00	2		
				JUME								42.0				
				LONG	3U	250 200	=	_488 4	51.	887	k G K G	39.0	58	* · · ·		
				LONC	, ,	150	=	11	54.	570	KG	9.1	21	2		
		•		MED.	•	100	=	3	15.	082	KG	2.				
	тот	AL AIR	CARR									C.( 96.4				
	тот	AL AIR	CARC	CEN	<u>' I S S</u>	ICN	=	24	+1.	787	KG	1.9	93	2	<b></b>	<b>.</b>
				TURE	30		Ŧ	19	92.	371	KG	1.9	53	2		
											KG					
	TUT	AL GENI	ERAL	AV.	EMI	5510	N =	20	3.	293	KG	1.0	52	z		
								-								
	GRAND	TOTAL .	AIRCR	AFT	EM I	ssio	V = ]	125	34.	438	KG	100.0	cc	2		
					ΤΛΥ	IIDL		11	22	2/1	¥C.	9.0	<b>6</b> 2	9		
	-4-01-L-1- <b></b>					and the same in the second second						25.				
					CLI	MBCU	r =	638	34.	516	KG	50.0	94	*		
											relation to restrict a to an in	12.				
					LAN	DING	-	2		400	NG	2.	f C	<b>Æ</b>		
														· · ·		
															•	
					*****				** **							

		TARI	F 5	2 100	ז <b>ד</b> גר	NUED)				
		TADE	/•		7:41 T	NOLDI	-			
	1973	<u> </u>		PEAN	< DA	Y EMISSI	CNS			-
GR	AND TOTAL AD	IRCRAFT	EMIS	SION	=	168.244	KG	100.00	2	
		JUMP	30 3	850	=	6.461	KG	3.84	8	
		JUME		250	=	4.038		2.40		
		LONG	3 2	200	=	18.527	KG	11.01	43	
		LONG	5 I	150	=	32.422	κg	19,27	<b>69</b> 13	
		MED.	. 1	00	=	86.337		51.32		
		SHOR		50	=	7.213		4.29		
	TUTAL AIR (	CARRIER	EMIS	SION	=	154.997	KG	92.13	4	
	TOTAL AIR (	CARGC EN	1551	I C N	Ξ	3.100	KG	1.84	9	
		TURE	8C		=	9.078	KG	5.40	8	
		PIST	[ ON		=	1.069	KG	C.64	*	
	TOTAL GENER	RAL AV.	EMIS	SION	Ξ	10.148	КG	6.03	2	
				<u></u>						
<u>C</u> P	AND TOTAL A	UCDACT	C M 1 C		·	169 244	vr	100.00	<b>Q</b>	÷ • • • •
GR	AND ICIAL A.	IKUKAFI	29413	510A		100+244	<b>N</b> U	100.00	40	
			TAXI	IDLE	=	65.912	KG	39.18	8	
			TAKE	OFF	=	16.003	KG	9.51	2	
			CLIM	BCUT	=	43.593	KG	25.91	2	
			APPH	RCACH		36.554	KG	21.73	%	
			LANE	DING	=	6.182	KG	3.67	8	
						<u></u>				

·								
	TABL	.E 5.2 (C)	ONT	INUED)				
1975	\$0	PEA	< D	AY EMISS	IONS			
GRAND TOTAL AIR	CRAFT	EMISSION	Ξ	202.762	KG	100.00	2	
	JUME	C 350	=	17.844	KG	8.80	2	
	JUME	0 250	=	20.521	KG	10.12	8	
						5.77		
						20.19		
	MED	100	=	91.386	KG	45.07	. 2	
TOTAL AIR CA		T 50		5.312	KG	2.62 92.57	76 G	
TOTAL AIR CA	KKIEK	EMISSION	-	101.074	NU	92.01	Æ	
TOTAL AIR CA	RGC EM	ISSION	=	3.754	KG	1.85	*	
	TURE	90	=	10.122	KG	4.99	8	
	PIST	CN	=	1.192	KG	0.59	9	
TOTAL GENERA	L AV.	EMISSION		11.314	KG	5.58	<b>?</b>	
			<b>.</b> .					
GRAND TOTAL AIR	CRAFT	EMISSIUN	=	202.762	KG	100.00	4	
		TAXIICLE	Ξ	79.586	KG	39.25	2	
		TAKE CFF	=	19.637	KG	9.68	2	
		CLIMBOUT	=	53.096	KG	26.19	7	
		APPROACH		43.103		21.26		
		LANDING	=	7.340	KG	3.62	2	
							•	•

•

_____

198	0	<u>SO</u>	PEAK D	AY EMISS	IGNS	
GRAND TOT	AL AIRC	RAFT_EMIS	SION =	305.560	KG	100.00
		JUMEO 3	50 =	39.312	KG	12.87
		JUMBO 25	50 =	38.918	KG	12.74
		LONG 20	CO =	11.595	KG	3.79
		LONG 1	50 =	93.726	KG	30.67
		MED. 10	= 0C	97.035	KG	31.76
	њ. ,	SHCRT	50 =	4.389	KG	1.44
TOTAL	AIR CAR	RIER EMIS:	SION =	284.974	KG	93.26
TOTAL	AIR CAR	GO EMISSI	= NC	5.699	KG	1.87
		TURBO	=	13.318	KG	4.36
		PISTON				C.51
TOTAL	GENERAL	AV. EMISS	SION =	14.887	KG	4.87

GRAND TOTAL AIRCRAFT EMISSION = 305.560 KG 100.00 % TAXIIDLE = 117.372 KG 38.41 % 9.56 % TAKE OFF = 30.431 KG 81.557 KG 26.69 % CLIMBOUT = APPRCACH = 65.C49 KG21.29 % 11.151 KG LANCING = 3.65 % 2 L. CUA 1 e

-

TABLE 5.2 (CONTINUED)

_____

44

制作

·· ····		• • •	TAE	BLE	5.2 (	CONT	INUED	)	÷	<u>.</u>		
÷.,												
. <u></u>	19	85	<u> </u>		ΡΕ.	<u>AK D</u>	AY EM	155	ICNS			
	GRAND TO	TAL AI	RCRAFI	EM	ISSIO	<u>v</u> =	438.	397	ĸC	100.00	8	
			JUL		350					19.06		
	·····		JUL		250	=	76.	099	KG	17.36	2	
			LOP		200	=	25.	613	KG	5.86	: X ~	
			LON		150	=	114.	916	KG	26.21		
			ME E SHC		<u>100</u> 50		_107• 3•	121 776	KG	24.58 C.86		
	τοτλι	AIR C								93.92		
	10172		ANNILI		13310			• • •		/ ] • / 2		
	TOTAL	AIR C	ARGO E	MIS	SIGN	=	8.	235	KG	1.88	8	· · · · · · · · · · · · · · · · · · ·
_			TUF	80		=	16.	464	KG	3.76		
			PIS	TON		2	1.	940	KG	C-44		
	TOTAL	GENER	AL AV	EM	ISSIO	N =	18.	403	KG	4.20	2	
	GRAND TO	TAL AI	RCRAF1	TA TA CL AP	ISSIC XIIDLI KE OFI IMBOU PROACI NCING	E = F = T =	168.	447 276 159 729	KG KG KG KG	38.42	<b>%</b> <b>%</b> <b>%</b>	
				• • ·								
				<b>.</b>	<b>.</b> .			•			· ·	•• •• ••• •• •• •• ••

					•		<u></u>							
				•••			******					- 1		- ·· ·
-4														
			TAB	LĘ	5.2 (C	CNT	INUE	D)	·-·· ·		·• ····			· -
<u>,</u>	199	90	<u>\$0</u>		ΡΕΑ	ĸ	DAY E	MISS	ICNS					
G	RAND TO	TAL AIF	RCRAFT	EM	ISSION	=	597	.607	KG		100.0	co	z	
	· · • ·		JUM								25.			
					250						24.			
			LON	G	200	Ξ	41	170	ΚG		٤.	89	2	
			LON	G	150	=	138	.215	KG		23.	13	8	
<b>.</b>	· •••••				100	=		.870	KG		14. C.			1. arts.
	TOTAL	AIR CA			50 ISSION						94.			
	TOTAL	AIR CA	ARGO E	MIS	SIGN	=	11	.287	KG		1.	89	Z	
			TUR	80		Ξ	19	.647	κg		3.	29	Z	
		- 6 - 46 - 68 - 68 - 68	[°] PIS	TCN		=	2	.315	KG	• • • •	0.			
	TOTAL	GENER	AL AV.	EM	ISSION	=	21	.962	KG		3.	67	7	
G	RAND TO	FAL AIF	RCRAFT	ЕМ	ISSION	=	597	.607	KG		100.	00	8% 6	
				TΔ	XIICLE	ŧ	229	.843	KG		38.	46	2	
					KE CFF					·	10.			
				CL	IMBOUT	Ħ	162	. 958	KG		27.			
•					PROACH						20.			
				LA	NDING	=	21	•136	KG		3."	54	<b>ъ</b> .	
			· ··	··· ··										
					··									
		· · · · · ·												

**)**(1999) ||

(###

	···· · · · · · ·	TAB	LE 5.2 (C	ONŤ	INUED)				** * **
	1995	SO	PEA	K D	AY EMISS	ICNS			
GRAND	TOTAL AIRC	RAFT	EMISSION	. =	759.063	KG	100.00	8	
		JUM	BD 350	=	237.391	KG	31.27	2	
		JUM	BC 250	=	209.462	KG	27.59	Z	
			G 200	=	53.200	ĸG	1.01	Æ	
		LON	G 150	=	159.600	КG	21.03		
			. 100						•
			RT 50						
10	TAL AIR CAR	RIER	EWI22IOV	=	/19.208	ĸĠ	94 • 73	*	
TO	TAL AIR CAR	GU E	MISSION	=	14.384	KG	1.89	8	
		TUR	BC	=	22.786	KG	3.CC C.35	z	
		PIS	TON	=	2.684	KG	C.35		
	TAL GENERAL	AV •	EMISSION	=	25.471	KG	3.36	¥	
GRAND	TOTAL AIRC	RAFT	EMISSION	=	759.063	КG	100.00	2	
			TAXIICLE	=	292.668	KG	38.56	8	
	8 # - min 844mmik # A. A. 🗱 an provinsi spontani 444 min 1 - min		TAKE OFF		78.510		10.34		
			CL IMBOUT		208.451		27.46		
			APPROACH		152.974		20.15		
			LANCING	=	26.460	KG	3.49	2	
									·
							· · · · · · · ·		

								• • • • • • • • • • • • • • • • • • •				
· · · · · · · · · · · ·				TABL	LE S	5.2 (C	ONT	INUED)		<u></u>		
		2000		\$0		PEA	K D	AY EMISS	IONS			
	GRAND	TOTAL	AIRC	RAFT	EM	ISSION	=	921.025	KG	100.00	2	
									KG	33.59	2	
				JUM	BŪ	250	=	287.043	KG	31.17	8	
				LONO	5	200	=	70.553	KG	7.66	2	
					כ	150	=	176.382	KG	7.66 19,15 3.34	76 97	
	e. e	•		SHOP	• • T	50	. =	0.356	KG	0.04	2	
	тот	AL AI	R CARI							94.95		
	TOT	AL AI	R CAR	GO EI	MISS	SION	=	17.490	KG	1.90	2	
				TUR	30		=	25.980	KG	2.82	*	
				PIST	TON		=	3.061	KG	C.33	2	
	TOT	AL GE	NERAL	AV •	EM	ISSION	=	29.041	KG	3.15		
	GRAND	TOTAL	AIRC	AFT	EM	ISSION	z	921.025	KG	100.00	96	•
					TAY	IIDLE	-	255 606	×C	20 62	9	
						KE OFF		355.696	KG	38.62 1C.40		
								254.061		27.58		
						ROACH		183.697		19.94		
					LAN	NCING	=	31.803	KG	3.45	2	

TABLE 5.2 (CONTINUED)         1973       PT       PEAK DAY EMISSIONS         SAND TOTAL AIRCRAFT EMISSION = 136.184 KG       1CC.CO 3         JUMEC 350 = 4.517 KG 3.32 %         JUMEC 350 = 2.523 KG 2.07 %         LONG 150 = 34.255 KG 25.15 %         MED. 100 = 33.650 KG 24.71 %         SHORT 50 = 19.108 KG 14.03 %         TOTAL AIR CARRIER EMISSION = 113.928 KG 83.66 %         TOTAL AIR CARGO EMISSION = 2.279 KG 1.67 %         TURBO = 19.977 KG 14.67 %         TURBO = 19.977 KG 14.67 %         TAXIIDLE = 51.408 KG 100.00 %         TAXIIDLE = 51.408 KG 37.75 %         APPROACH = 41.133 KG 30.20 %         APPROACH = 41.133 KG 30.20 %         APPROACH = 41.133 KG 30.20 %
RAND TOTAL AIRCRAFT EMISSION =       136.184 KG       1CC.CO ?         JUMEC 350 =       4.517 KG       3.32 ?         JUMBU 250 =       2.623 KG       2.C7 ?         LONG 2C0 =       19.574 KG       14.37 ?         LONG 150 =       34.255 KG       25.15 ?         MED. 1C0 =       33.650 KG       24.71 ?         SHORT 50 =       19.108 KG       14.C3 ?         TOTAL AIR CARGO EMISSION =       113.928 KG       83.66 ?         TOTAL AIR CARGO EMISSION =       2.279 KG       1.67 ?         TURBO =       19.977 KG       14.67 ?         PISTGN =       0.6 KG       C.0 ?         TOTAL GENERAL AV. EMISSION =       136.184 KG       1CC.C0 ?         TAXIIDLE =       51.468 KG       37.75 ?         TAKE OFF =       9.333 KG       6.85 ?         CLIMBOUT =       27.635 KG       20.29 ?         APPROACH =       41.133 KG       3C.20 ?
JUMEC 350 = 4.517 KG 3.32 % $JUMBU 250 = 2.623 KG 2.07 %$ $LONG 200 = 19.574 KG 14.37 %$ $LONC 150 = 34.255 KG 25.15 %$ $MED. 1C0 = 33.650 KG 24.71 %$ $SHORT 50 = 19.108 KG 14.03 %$ $TOTAL AIR CARKIER EMISSION = 113.928 KG 83.66 %$ $TOTAL AIR CARGO EMISSION = 2.279 KG 1.67 %$ $TURBO = 19.977 KG 14.67 %$ $PISTCN = 0.6 KG 2.0 %$ $TOTAL GENERAL AV. EMISSION = 136.184 KG 100.00 %$ $TAX IICLE = 51.408 KG 37.75 %$ $TAX IICLE = 51.408 KG 37.75 %$ $TAKE 0FF = 9.333 KG 6.85 %$ $CL IMBOUT = 27.635 KG 20.29 %$ $APPROACH = 41.133 KG 30.20 %$
$JUMBU 250 = 2.623 \text{ KG} 2.07  \\ LGNG 2C0 = 19.574 \text{ KG} 14.37  \\ LONC 150 = 34.255 \text{ KG} 25.15  \\ MED. 1C0 = 33.650 \text{ KG} 24.71  \\ SHORT 50 = 19.108 \text{ KG} 14.03  \\ SHORT 50 = 19.108 \text{ KG} 14.03  \\ TOTAL AIR CARRIER EMISSION = 113.928 \text{ KG} 23.66  \\ TOTAL AIR CARGO EMISSION = 2.279 \text{ KG} 1.67  \\ TURBO = 19.977 \text{ KG} 14.67  \\ PISTCN = 0.0 \text{ KG} C.0  \\ TOTAL GENERAL AV. EMISSION = 19.977 \text{ KG} 14.67  \\ TAXIJCLE = 51.408 \text{ KG} 37.75  \\ TAKE OFF = 9.333 \text{ KG} 6.85  \\ CLIMBOUT = 27.635 \text{ KG} 20.29  \\ APPROACH = 41.133 \text{ KG} 30.20  \\ \end{bmatrix}$
LGNG 2CO = 19.574 KG 14.37 % $LONG 150 = 34.255 KG 25.15 %$ $MED. 1CO = 33.650 KG 24.71 %$ $SHORT 50 = 19.108 KG 14.C3 %$ $TOTAL AIR CARKIER EMISSION = 113.928 KG 83.66 %$ $TOTAL AIR CARGO EMISSION = 2.279 KG 1.67 %$ $TURBO = 19.977 KG 14.67 %$ $PISTCN = 0.0 KG C.0 %$ $TOTAL GENERAL AV. EMISSION = 19.977 KG 14.67 %$ $RAND TOTAL AIRCRAFT EMISSION = 136.184 KG 100.00 %$ $TAXIIDLE = 51.4C8 KG 37.75 %$ $TAKE DFF = 9.333 KG 6.85 %$ $CLIMBOUT = 27.635 KG 20.29 %$ $APPROACH = 41.133 KG 3C.20 %$
LGNG 2CO = 19.574 KG 14.37 % $LONG 150 = 34.255 KG 25.15 %$ $MED. 1CO = 33.650 KG 24.71 %$ $SHORT 50 = 19.108 KG 14.C3 %$ $TOTAL AIR CARKIER EMISSION = 113.928 KG 83.66 %$ $TOTAL AIR CARGO EMISSION = 2.279 KG 1.67 %$ $TURBO = 19.977 KG 14.67 %$ $PISTCN = 0.0 KG C.0 %$ $TOTAL GENERAL AV. EMISSION = 19.977 KG 14.67 %$ $RAND TOTAL AIRCRAFT EMISSION = 136.184 KG 100.00 %$ $TAXIIDLE = 51.4C8 KG 37.75 %$ $TAKE DFF = 9.333 KG 6.85 %$ $CLIMBOUT = 27.635 KG 20.29 %$ $APPROACH = 41.133 KG 3C.20 %$
MED. 1C0 = 33.650 KG 24.71 % $SHORT 50 = 19.108 KG 14.03 %$ $TUTAL AIR CARKIER EMISSION = 113.928 KG 83.66 %$ $TOTAL AIR CARGO EMISSION = 2.279 KG 1.67 %$ $TURBO = 19.977 KG 14.67 %$ $PISTGN = 0.6 KG C.0 %$ $TOTAL GENERAL AV. EMISSION = 19.977 KG 14.67 %$ $RAND TOTAL AIRCRAFT EMISSION = 136.184 KG 100.00 %$ $TAXIIDLE = 51.408 KG 37.75 %$ $TAKE OFF = 9.333 KG 6.85 %$ $CL IMBOUT = 27.635 KG 20.29 %$ $APPROACH = 41.133 KG 30.20 %$
SHURT 50       =       19.108 KG       14.03 %         TUTAL AIR CARRIER EMISSION       =       113.928 KG       83.66 %         TOTAL AIR CARGO EMISSION       =       2.279 KG       1.67 %         TURBO       =       19.977 KG       14.67 %         PISTCN       =       0.6 KG       C.0 %         TOTAL GENERAL AV. EMISSION       =       136.184 KG       100.00 %         RAND TOTAL AIRCRAFT EMISSION       =       136.184 KG       100.00 %         TAXIICLE       =       51.408 KG       37.75 %         TAKE OFF       9.333 KG       6.85 %       20.29 %         APPROACH       =       41.133 KG       30.20 %
TUTAL AIR CARRIER EMISSION =       113.928 KG $83.66$ %         TOTAL AIR CARGO EMISSION = $2.279$ KG $1.67$ %         TURBO = $19.977$ KG $14.67$ %         PISTON = $0.0$ KG $c.0$ %         TOTAL GENERAL AV. EMISSION = $19.977$ KG $14.67$ %         RAND TOTAL AIRCRAFT EMISSION = $136.184$ KG $100.00$ %         TAXIICLE = $51.408$ KG $37.75$ %         TAKE OFF = $9.333$ KG $6.85$ %         CLIMBOUT = $27.635$ KG $20.29$ %         APPROACH = $41.133$ KG $30.20$ %
TOTAL AIR CARGO EMISSION = $2.279 \text{ KG}$ 1.67 % TURBO = $19.977 \text{ KG}$ 14.67 % PISTGN = $0.6 \text{ KG}$ C.0 % TOTAL GENERAL AV. EMISSION = $19.977 \text{ KG}$ 14.67 % RAND TOTAL AIRCRAFT EMISSION = $136.184 \text{ KG}$ 100.00 % TAXIICLE = $51.4C8 \text{ KG}$ 37.75 % TAKE OFF = $9.333 \text{ KG}$ 6.85 % CLIMBOUT = $27.635 \text{ KG}$ 20.29 % APPROACH = $41.133 \text{ KG}$ 30.20 %
TURBO       = $19.977 \text{ KG}$ $14.67 \text{ $$}$ PISTON       = $0.0 \text{ KG}$ $C.0 \text{ $$}$ TOTAL GENERAL AV. EMISSION       = $19.977 \text{ KG}$ $14.67 \text{ $$}$ RAND TOTAL AIRCRAFT EMISSION       = $136.184 \text{ KG}$ $100.00 \text{ $$}$ TAXIICLE       = $51.468 \text{ KG}$ $37.75 \text{ $$}$ TAKE OFF       = $9.333 \text{ KG}$ $6.85 \text{ $$}$ CLIMBOUT       = $27.635 \text{ KG}$ $20.29 \text{ $$$}$ APPROACH       = $41.133 \text{ $$KG}$ $3C.20 \text{ $$$}$
PISTON = 0.0 KG C.0 % TOTAL GENERAL AV. EMISSION = 19.977 KG 14.67 % RAND TOTAL AIRCRAFT EMISSION = 136.184 KG 100.00 % TAXIICLE = 51.408 KG 37.75 % TAKE OFF = 9.333 KG 6.85 % CLIMBOUT = 27.635 KG 20.29 % APPROACH = 41.133 KG 30.20 %
PISTON = 0.0 KG C.0 % TOTAL GENERAL AV. EMISSION = 19.977 KG 14.67 % RAND TOTAL AIRCRAFT EMISSION = 136.184 KG 100.00 % TAXIICLE = 51.408 KG 37.75 % TAKE OFF = 9.333 KG 6.85 % CLIMBOUT = 27.635 KG 20.29 % APPROACH = 41.133 KG 30.20 %
TAXIICLE = 51.4C8 KG 37.75 % TAXIICLE = 51.4C8 KG 37.75 % TAKE OFF = 9.333 KG 6.85 % CLIMBOUT = 27.635 KG 20.29 % APPROACH = 41.133 KG 3C.20 %
TAXIICLE =       51.4C8 KG       37.75 %         TAKE DFF =       9.333 KG       6.85 %         CLIMBOUT =       27.635 KG       20.29 %         APPROACH =       41.133 KG       30.20 %
TAXIICLE =       51.4C8 KG       37.75 %         TAKE DFF =       9.333 KG       6.85 %         CLIMBOUT =       27.635 KG       20.29 %         APPROACH =       41.133 KG       30.20 %
TAKE OFF =       9.333 KG       6.85 %         CLIMBOUT =       27.635 KG       20.29 %         APPROACH =       41.133 KG       30.20 %
TAKE OFF =       9.333 KG       6.85 %         CLIMBOUT =       27.635 KG       20.29 %         APPROACH =       41.133 KG       30.20 %
CLIMBOUT = 27.635 KG 20.29 % APPROACH = 41.133 KG 30.20 %
APPROACH = 41.133 KG 30.20 %
LANDING = 6.674 KG 4.90 %

						tan a ta dan a aa	
							· <del>- • • • • • • • • • • • • • • • • • • </del>
	TABLE	5.2 (CON	TINUED)			· •, •	
1975	PT	ΡΕΔΚ	DAY EMISS	IONS			
GRAND TOTAL AI	RCRAFT E	MISSION =	= 157.037	KG	100.00	8	
	JUMBG	350 =	12.476	KG	7.94	30	
	JUMBC	• • • • • • •			9.14		-
	LONG		12.357		7.87		
		150 =			27.54 22.68		
	MED. SHORT		= 35.618 = 14.073		8.96		
TOTAL AIR C					84.13		
TOTAL AIR C	ARGC EMI	SSICN =	2.642	KG	1.68	Z	
	TURBO	-	= 22.273	KG	14.18	2	
	PISTO			KG	C.O		-
TUTAL GENER	AL AV. E	MISSION =	= 22.273	KG	14.18	*	
GRAND TOTAL AI	RCRAFT E	MISSION =	157.037	KG	100.00	2	
	т		= 65.067	KG	41.43	9	
			10.274				
			= 30.444				
	ΔΙ	PPRCACH =	44.033	KG	28.04	8	
	L	ANDING =	<b>7.</b> 220	KG	4.60	8	

					· · · · ·	-			· · · · · · · · · · · · · · · · · ·		
			TABL	.E 5	.2 (0	CNT	INUED)		·		
	19	80	PT		PEA	KC	AY EMISS	ICNS			
	GRAND TO	TAL AIRC	RAFT	EMI	SSION	=	249.034	KG	100.00	7	<b>"</b>
			JUME		350		27.485		11.04		
·····	•		JUME		250	=	27.210	KG	10.93		
			LONG				12.251		4.92		
					150	=	99.026 37.820	KG	39.76 15.19		
		•	MED. ShOR				11.626		4.67		
	TOTAL	AIR CAR							86.50		
<u> </u>	TOTAL	AIR CAR	GO EM	ISS	ION	=	4.308	KG	1.73	*	
			TURE	0		=	29.307	КG	11.77	2	
			PIST			=	0.0		C.C		
	TOTAL	GENERAL	AV.	EMI	SSION	*	29.307	KG	11.77	2	
	GRAND TO	TAL AIRC	RAFT	EMI	SSION	=	249.034	KG	100.00	<b>₽</b> ₹	
				τΔΧ	IIDLE	=	98.208	KG	39.44	7	
			<u></u>		E OFF		16.021		6.43		
				CL I	MBOUT	=	49.273	KG	19.79		
						=	73.257		29.42		
				LAN	DING	8	12.273	KG	4.93	2	
											•
							an an ann an stàrann an stàrann an stàraige air aige air an ann an stàraigh an stàraigh an stàraigh an stàraig		an a		

. .

				. <b>.</b> .		···· •· •· •· ·		
						·		
	TABLE	5.2 (C	ЗМŤ	INUED)				
1985	PT	PEAP	(D	AY EMISSI	IONS			
GRAND TOTAL AIRC	RAFT E	MISSION	н	354.632	KG	100.00	r	
	<b>JUWBC</b>	350	Ŧ	58.421	КG	16.47		
	JUMED	250	=	53.205	KG	15.00	2	
	LGNG	200	=	27.125	KG	7.65	z	
		150		121.415				
· · · ·		100		41.991				
		50		10.003				
TOTAL AIR CAR	KIEK E	M1221UN	Ξ	312+139	ĸĠ	88.02	4	
TOTAL AIR CAR	GC EMI	SSION	=	6.243	KG	1.76	2	
	TURBC		=	36.229	KG	10.22	8	
	PISTO	N	=	0.0	KG	0.0		
TOTAL GENERAL	AV. E	MISSION	-	36.229	KG	10.22	2	
						16-94 <u> </u>		
GRAND TOTAL AIRCI	RAFTE	MISSION	=	354.632	KG	100.00	2	
	т	AXIIDIE	=	151.117	KG	42.61	2	
				21.525		the second second states and a state of the second se		
	C	LIMBOUT	z	67.096	KG	18.92		
	Α	PPROACH	=	98.307	KG	27.72		
	L	ANDING	3	16.587	KG	4.68	2	
								•
	· · · · · · · · · · · · · · · · · · ·	<u> </u>						

	TABLE	5.2 (C)	тис	INUED)				
1990	PT	PEAN	<u> </u>	AY EMISS	ICNS			
GRAND TOTAL AIRC	RAFT EM	ISSION	z	487.551	KG	100.00	2	
	JUMBC	350	=	107.072	KG	21.96	<b>9</b>	
	JUMBO	250	=	100.380	κg	20.59	8	
	LUNG	200	=	43.499	KG	8.92	2	
				146.032			8	
	MEÐ.	100	=	33.670	KG	ó.91	8	
	SHORT	50	=	4.954	KG	1.02		
TOTAL AIR CAR	RIER EM	ISSION	=	435.606	KG	89.35	2	
TOTAL AIR CAR	GC EMIS	SION	=	8.712	KG	1.79	2	
	TURBC		=	43.233	KG	8.87		
	PISTON		Ξ	0.0	KG	C.C		
TOTAL GENERAL	AV. EM	ISSION	Ŧ	43.233	KG	8.87		
GRAND TOTAL AIRC								
				226.518		46.46		
	TA	KE UFF	=	27.191	KG	5.58		
				86.880				
		PRUACH		125.621	KG	25.77		
	LA	NUTING	-	21.342	NG	4.38	4	
				<u></u>			· · · · · · · · · · · · · · · · · · ·	

····		· · · · · · · · · · · · · · · · · · ·	<b>.</b>				
	TABLE	5.2 (CC	INTINUE	D)			
1995	PT	PEAK	DAY E	MISSI	CNS		
GRAND TOTAL A	I <u>r</u> ckaft e	MISSION	= 623	•974	KG	100.00	2
	JUMBO					26.60	
		250				23.47	
						9.01	
		150 100				27.02	
· · · · · · · ·_	SHCRT		= 22			C.4C	
TOTAL AIR						90.16	
TUTAL AIR	CARGO EMI	SSION	= 11	•252	KG	1.80	2
	TURBO		= 50	. 141	KG	8.04	8
· · · · · · · · · · · · · · · · · · ·	PISTO			.0		C.O	
TUTAL GENE	RAL AV. E	MISSION	= 50	.141	KG	8.04	2
GRAND TOTAL A	IRCRAFT	MISSION	= 623	•974	KG	100.00	8
	т	AXIIDLE	= 308	. 409	KG	49.43	2
		AKE OFF		the set of the second second second	States - We also get an and the second second second	5.21	
		LIMBOUT				16.97	
	۵	PPROACH	= 151	.371	KG	24.26	2
	L	ANCING	= 25	.790	KG	4.13	2
anaan dada ila da da da alka da alka ayaya ayaya ayaya aya da anaa ah da alka ayaya aya da anaa							

ilerii:

••••••						· · · · · · · ·	-	
							_,	
· · · · · · ·		TABLE 5.2	CONT	INUED)				
	2000	PT	PEAK D	AY EMISS	ICNS			
							_	
GRA	ND TOTAL AIRC	RAFT EMISS	ION =	761.816	KG	100.00	8	
		JUMBO 35	0 =	216.297	KG	28.39	2	
						26.34		
		LONG 20	0 =	74.543	KG	9.78	2	
						24.46		
						1.58		
		SHORT 5	0 =	0.943	KG	C.12	2	
	TOTAL AIR CAR	RRIER EMISS	ION =	690.830	KG	90.68	2	
	TOTAL AIR CAR	GO EMISSIO	N =	13.817	KG	1.81	2	
		TURBO	=	57.170	κG	7.50	8	
		PISTEN		0.0	KG	0.0	2	· · · · · · · · · · · · · · · · · · ·
	TOTAL GENERAL	AV. EMISS	ION =	57.170	KG	7.50	2	
n <b>9 19.</b> an mar gur na prior ann gur na a a a a a								
GRA	ND TOTAL AIRC	RAFT EMISS	ION =	761.816	KG	100.00	<b>9</b> 9	
•		ΙΙΧΑΤ	DLE =	390.790	KG	51.30	8	
	*****			37.912		4.98		
				125.172				
	······································			177.629		23.32		
		LANDI	NG =	30.313	KG	3.98	2	

							·										
				-													
					TABL	E 9	5.2 (C	CNT	INUED)								
		107	2		60		05.					-					
		197	3		CO		PLA	КН	ICUR EN	115.	SIGNS	>					
	CP AND	τοτ	A 1		AET	CM		-	463.6	. 2 1	ĸc		100.0	0			
	UNANU	101	AL	MINUP		<b>C</b> ⁽⁴⁾	1331014	-	403.0	191	NG .	• • •	100.0	0	0	·	
					JUMB		350		14.4				3.1				
					LUNG				9.0 72.5				1.9				
					LONG				126.9								
					MED.				119.0				25.6				
					SHOR				6.4				1.4			••	
	тот	AL	AIR	CARR					348.5				75.1				
	тот	AL	AIR	CARC	60 EM	IS	SION	=	6.9	70	KG		1.5	0 9	5		
					TURB	0		=	14.6	38	KG		3.1	6 9			
					PIST	CN		=	93.5	23	KG		20.1	7 3			
	TOT	AL	GEN	ERAL	AV •	EM	ISSION	=	108.1	.61	KG		23.3	3 3	5		
• •	GRAND	тот	AL .	AIRCR	AFT	EM	ISSION	Ξ	463.6	31	KG	•	100.0	0 3			
						TAY		-	361.4	na	ĸc		77.9	5 9	•		
					f	TA	CE CEE			83	KC		0.9	2 9	) 2		
						ci		±	50.2	174	KG		10.8	7 9	2		
						AP	PROACH	=	4.2 50.3 42.7	23	KG		9.2	1 9	K	•	
						LAI	NDING	=	4.8	42	KG		1.0	4	8		
						_								-	-		

			TAD			<b></b>					
 • • • • • •			IAD		5.2 10		INUED)				
 20	00		PT		PEA	K D	AY EMISS	ICNS			 
GRAND TO	τ Δι Δ	IRCE	RAFT	FM	ISSION	=	761-816	KG	100.00	7	
	·										 
			JUM	80	350	=	216.297	KG	28.39	۲ ۳	
 			JUM		200		74 543	KG	26.34		 
				G	150	=	186-357	KC	24.46	10 92	
			MED	•	100	=	12.002	KG	9.78 24.46 1.58	2	
 	• • ••• •• • • • • •	· •· ···	SHOP	RT .	50	=	0.943	KG	C.12	8	 
TOTAL	AIR	CARF	RIER	EM	ISSION	=	690.830	KG	90.68	L	
 TOTAL	AIR	CARC	GO EI	MIS	SION	=	13.817	KG	1.81	2	 
			TUR	BO		=	57.170	KG	7.50	8	
			PIS	TCN		=	0.0	KG	0.0	2	
 TOTAL	GENE	RAL	AV.	EM	ISSION	#	57.170	KG	7.50	7	 
GRAND TO	TAL A	IRCF	RAFT	ЕM	ISSION	=	761.816	KG	100.00	<b>9</b> 9	
				TA	XIIDLE	±	390.790	κG	51.30	8	
 				TA	KE CFF	=	37.912	KG	4.98	X	 
							125.172		16.43		
 	<b>Mar</b>	<b>.</b>			PROACH				23.32		 ·····
				LA	NDING	Ξ	30.313	KG	3.98	7	
										•	

							· · · · · · · · · · · · · · · · · · ·						
											· · · ·		
										-			
					TABL	.E	5.2 (C	CNT	INUED)		ar e		
		197	3		CO		ΡΕΑ	кн	CUR EMIS	SICN	S		
	GRAND	10 <b>T</b>	AL A	IRCR	AFT	EM	ISSION	1	463.631	KG	100.00	) ę	
					JUME		350				3.11		
			· · · · · · · · · · · · · · · · · · ·						9.014		1.94		
									126.973		27.39		
									119.065				
			-		SHOR				6.472		1.40		
	тот	۹L	AIR	CARR	IER	ЕM	ISSION	Ŧ	348.500	KG	75.17		
	TOT	AL	AIR	CARG	O EM	115	SION	=	6.970	KG	1.50	) 3	
					TURE	30		=	14.638	KG	3.16	5 %	
					PIST				93.523		20.17		
	TOT	AL	GENE	RAL	AV •	EM	ISSION	=	108.161	KG	23.33	3 %	
•	· • • • • • •								·				<b></b> .
	GRAND	101	AL A	IRCR	AFI	EM	122108	=	463.631	KG	100.00	13	
						TA	XIIDLE	=	361.409	KG	77.95	5 %	
						TA	KE CFF	Ξ	4.283	KG	0.92 10.87	2 2	
						CL	IMBOUT	=	50.374	KG	10.87	1 %	
						AP	PRUACH	=	42.123	KG	9.21	. 7	
						LA	NUING	=	4.042	ΝG	1.04	1 4	

	- -							
	•							
	-				•		• • •• •	
	TABLE 5.2	CONT	INUED)					
1975	<u>CO</u> P	ΕΑΚ Η	CUR EMIS	SIONS				
						-		
GRAND TOTAL AIRC	RAFT EMISSI	ON =	552.785	KG	100.00	2		
	JUMBO 350		39.918		7.22			
	JUMBO 250				8.30			
	LONG 200 LONG 150		45.903 160.660		8.30 29.06			
	MED. 100		126.300		22.85			
	SHORT 50		4.777		0.86			
TUTAL AIR CAR					76.61			
TOTAL AIR CAR	GO EMISSION	=	8.469	KG	1.53	2		
· · ·	TURBO PISTON		16.356		2.96			
TOTAL GENERAL			104.498		18.90 21.86		,	
GRAND TOTAL AIRC	RAFT EMISSI	0N =	552.785	KĠ	100.00	<b>a</b>		
	TAXIID		436.900	ĸG	79.C4	9		
	TAKE O	FF =	4.808	KG	C.87			
	CLIMBO	UT =	56.434	KG	10.21			
			49.002		8.86			
	LANDIN	C =	5.642	KG	1.02			
						•		
						<u></u>	· ·	
n takan kanan kanan katalah salah salah kata kanan kanan kanan kanan kanan kanan kanan kanan kanan sa								
- <u> </u>								

			1.7 8 99 8 - 1 is Addin 1 1 is soo					
			a Name and an					
								844-444 \$ 27 4 - <b>3</b> 444 \$ 70 -
	TABLE 5	.2 (COM	TINUED	))				
1980	CO	PEAK	HOUR E	MISS	SIONS	<u></u>		
GRAND TOTAL AIRC	RAFT EMI	ISSION =	= 900.	463	KG	100.00	Z	
	JUMBO	350 =	87.	991	κG	9.17	8	
	JUMBC		87.			9.67	-	
	LONG		= 45 <b>.</b>			5.06		
	LONG MED.		= 368. = 134.			46.87		
	SHORT		- 3.			C•44		
TOTAL AIR CAR						80.72		
TOTAL AIR CAR	GC EMISS	SICN =	= 14.	536	KG	1.61	8	
	TURBO	-	= 21.	533	KG	2.39	3	
	PISTON	• • • • •	: 137.			15.28		
TOTAL GENERAL	AV. EMI	SSION =	= 159.	109	KG	17.67	*	
GRAND ICTAL AIRC	RAFT EMI	SSICN =	900.	463	KG	100.00	<b>8</b>	·····
	TAX	IIDLE =	736.	909	KG	81.84	8	
	TAK	E OFF =	= 6.	674	KG	C.74		
		MBOUT =				8.41	7	
		RUACH =						
	LAP	IDING =	- 8.	807	ĸG	C•98	τ.	
<del></del>								
· · · · · · · · · · · · · · · · · · ·								

## TABLE 5.2 (CONTINUED) CO 1985 PEAK HOUR EMISSIONS GRAND TOTAL AIRCRAFT EMISSION = 1282.857 KG 100.00 % JUMED 350 = 187.485 KG 14.61 3 JUMBO 250 = 170.745 KG 13.31 % . . . ... LONG 200 Ξ 101.060 KG 7.88 % 452.363 KG 35.26 % LONG 150 Ξ MED. 100 = 149.343 KG 11.64 % SHORT 50 = 3.405 KG 0.27 3 TOTAL AIR CARRIER EMISSION = 1064.401 KG 82.97 % TUTAL AIR CARGO EMISSION = 21.288 KG 1.66 % TURBO 26.684 KG 2.08 % PISTON 170.484 KG 13.29 % Ξ 15.37 % TOTAL GENERAL AV. EMISSION = 197.168 KG GRAND TOTAL AIRCRAFT EMISSION = 1282.857 KG 100.0C % 83.39 % TAXIIDLE = 1069.785 KG TAKE OFF = 8.580 KG C.67 % 95.215 KG CLIMBOUT = 7.42 % APPROACH =97.060 KG 7.57 % 12.217 KG C.95 % LANDING =

			TAEL	.6 9	5.2	(CC	INT	INUE	D)	×		
199	0	(	co	·····	Р	ΕΔΚ	<u> </u>	OUR	EMIS	SIONS	5	
GRAND TOT	AL AI	RCR	AFT	EM	1 S S I :	ON	=	1743	.222	KG	100.00	2
			JUME	0	350					κG	19.54	5-9
			JUME	30 .	250		=	319	.342	KG	18.32	. *
			LONG	3	200		=	160	.660	KG	9.22 30.94	72
				2	150		=	539	- 356	KG	30.94	X a
···· - ··· · · · · · · · · · · · · · ·			SHOR	≥⊤	_100 50		 =	110	- 672	KG	6.81 6.10	. <u>*</u>
TOTAL	AIR C						=	1480	.369	КĞ	34.92	z
TOTAL	AIR C	ARG	<u>G</u> EM	115	SION		=	29	.607	KG	1.70	2
			TURE	3Ü			=	31	•567	KG	1.81	*
TOTAL	CENED										11.57	
TUTAL	GENER	AL	AV •	C M						<u> </u>	13.38	
											••	
GRAND TOT	AL AI	RCR	AFT	έM	ISSI	DN	=	1743	.222	KG	100.00	22
				TA			=	1479	.924	KG	84.84	9
									• 439		C.60	
									.075		6.54	
									.760		7.10	
an na an a				LAI	NDIN	G	=	16	.026	KG	0.92	7
												•
						-						
an ana a si arran ini an an ana												

		• ••													
••••						· • •									<b></b>
	-			TAB	LE	5.2 (0	ON	TINUE	))						
		995		<u>CO</u>		PEA		HCURE	- M I S :	SILNS	·				
• •	GRAND	TOTAL	AIRCE	RAFT	EM	ISSION	=	2203	240	KG	100.	C Ç	2		
						350					23.	85	2		
				JUM	PŪ_	250	=	. 463.	562	KG	21.	C 4	2		
				LON	C	200	=	206.	.562	KG	9.	38	Z,		
											28.				
				MED	•	100	=		148	KG	3.	64 	ζ ~		
	TOT		CARE								• 0 • 68				
	1014	AL AIR				SIGN					1.				
				TUR	BC		=	36	427	KG	1-	55	2		
											10.				
	1014	AL GEN		AV •	сM		=	269.	.157	KG	12.		Z		
	GRAND T	TOT AL	AIRCE	RAFT	ΕM	ISSION	= 1	2203	240	KG	100.	СС	3	• •	
					TA	XIIDLE	=	1888.	.378	KG	85.	71	2		
					TA	KE OFF	=	12.	255	KG	0.	56	2		
					CL	IMBOUT	. =	132	.757	KG	6.	03	8		
					AP	PREACH	=					81			
					LA	NDING	=	19.	.770	KG	0.	90	<b>e</b>		
													·		•
	·····			·				<u></u>							
	~				• • •••						<ul> <li>complements access a complementary</li> </ul>				
		na suna saton s. sa													
													• • •		• ·

	8- 11		•								
	<b></b>		n a mun da anna galadigan. A								
••••••••••••••••••••••••••••••••••••••	TABL	E 5	•2 (C	<u>0</u> N1	[ INU	ED)			·······		
2000	CO		PEA	K I	HCUR	EM	155	SICNS			
GRAND TOTAL AIRCH	RAFT	EMĮ	SSICN	=	266	7.1	80	KG	100.00	q	
	JUMB JUMB LONG LONG MED.	C	350 250 200 150 1c0	=	63	3.5	35	КG	25.60 23.75 10.24 25.61 1.57	* *	
TOTAL AIR CAR	SHUK	1	50	=		د و ر	10	KG	C.01 86.79	Z	
TOTAL AIR CARC	GO EM	ISS	ION	=	4	6.2	97	KG	1.74	¥	
TOTAL GENERAL	TURB PIST AV.	ON		=	4 26 30	4.6	33	KG	1.55 9.92 11.47	Z	
GRAND TCTAL AIRCE	RAFT	EM I	SSION	=	266	7.1	80	KG	100.00	<b>44</b>	
		ŤAK CL I	E OFF	=	1 15	4.1 1.8	10 99	KG KG	86.27 0.53 5.70 6.63	<b>X</b> Z	
			DING						C.88		•
					<i>.</i> .	~	<b>.</b>				
					<del></del>						

		·						 
·	TABLE	5.2 (0	τλί	INUED)	•			
1973	нг		( н	GUR EMISS	STONE			
1715		<u> </u>	<u> </u>	UUIX LIIIS	510:15			 
GRAND TOTAL AIRCE	RAFT EM	ISSION	=	218.154	KG	100.00	<b>X</b>	 <b></b>
						1.71		
						1.07		 
						28.40 49.70		
						12.42		
· · · · · · · · · · · · · · · · · · ·						2.27		 •••••
TOTAL AIR CAR								
TOTAL AIR CARC	GOEMIS	SIGN	=	4.169	KG	1.91	2	 
	TURBO		=	3.339	κg	1.53	<b>1</b>	
				2.174		1.00		 •
TOTAL GENERAL	AV. EM	ISSION	=	5.513	KG	2.53	*	 
GRAND TOTAL AIRCH	RAFT EM	ISSION	=	218.154	KG	100.00	2	
	ΤA	XIIDLE	=	211.591	κG	96.99	2	
	and the second se	KE OFF		0.372		0.17	2	 
		IMBOUT		1.962		0.90		
. <u>.</u> .				3.652		1.67		 
	LA	NDING	#	0.576	KG	0.26	<b>%</b> .	
								 -

n ann 1 i Mhair an Ann Ann a' S							· · · · · · · · · · · · · · · · · · ·					,			
													• • · • • • • • • •		
					ΤΑΟ		<b>5</b> 7 1	C 0 1 1	• <b>•</b> • • • • • •	~ •					
					IAB	Lt	5.2 (	CUNI	INUEL	, <b>,</b> , , , , , , , , , , , , , , , , ,					
		197	75		HC		PE	AK H	IUUR (	EMIS	SION	is			
	C D AND	TO	T A I	A 10CO		E 14	15516	۱ <b>۸</b> :	27.1	700	ĸc	100	00		
	GRAND	10	IAL	AIRG	CAFI	EM	13210	IN -	241	.709	ΝŪ	100	• 6,0	<b>6</b>	
					JU™		350					4			
· · ·· ·							250		11.			and the second			
							200			.194					
							150 100								
					SHO				3				.51		
	TOT	T AL	AIR	CARF			15510								
							SION		4.				• 91		
				•••••			••••								
					TUR			=	3.	.731	KG	1	•54		
	***		<b>.</b>		PIS			=	2	<b>.</b> 429	KG		.00		
	10		GEN		AV.	E M	15510	//x =			ΛG		• 55		<u>.</u>
	GRAND	Т () Т	ГЛІ	A [ 20]	) <b>.</b>	- N.	15510	154 <del>-</del>	241	709	ĸc	100	66	<b>a</b>	
	OFAND	101		AINC	NAL 1	<b>L</b> 11	13310	- nn	271	5107	NO	100	• • • •	40	
						TA	XIIDL	E =	234.	288	KG	96	.93	%	
						TA	KE OF	F =	0	.437	KG	C			
						CL	INGON	T =	2.	.234	KG	0			
						٨P	PROAC	H =	_ 4.	103	KG		•70		<b>.</b> .
						LA	NDING	; =	0	.648	KG	C	.27	2	
															•
<u> </u>					<u>.</u>			<u>.</u>							
				· · · · · · · · · · · · · · · · · · ·							- · -···				
				<u> </u>					·						

				<u> </u>			·
		•••					
	TABLE 5.2	2 (CON	[INUED]				
108.0		DEAK					
1980	НС	PEAN	HOUR EMIS:	51013			
GRAND TOTAL AIRC	RAFT EMISS	SION =	448.652	KG	100.00	Z	
	JUMBO 35	50 =	22.712		5.06		
	JUMEC 25		22.485		5.01		
	LONG 20 LONG 15		38.878 314.266		8.67 70.05		
	MED. 10		30.544		6.81		
	SHORT 5				C.67		
TOTAL AIR CAR	RIER EMISS	SION =	431.905	KG	96.27	2	
TOTAL AIR CAR	GO EMISSIC	)N =	8.638	KG	1.93	8	
	TURBC	=	4.912	KG	1.09	<b>8</b> ¥	
	· · · · · · · · · · · · · · · · · · · ·		3.197				
TOTAL GENERAL	AV. EMISS	=	8.109	KG	1-81		
GRAND TOTAL AIRC	RAFT EMISS	5ION =	448.652	KG	100.00	76	
	TAXII	DLE =	436.372	KG	97.26	2	
	TAKE	OFF =	0.755	KG	0.17	2	
	CL IME	OUT =	3.504	KG	0.78		
		NG =	6.904	KG	1.54		
	LANUI	.ING =	1•117	ΝG		- <b>(</b> -	
					·····		
	tere attant, frankra 1 sin franzenskov vers s or ok stranov har okolovensker.						
					·····		

.

			• :						, 
		TABL	LE 5.2 (C	ONT	INUED				
	1985	нс	ΡΕΑ	кн	IGUR EMISS	ICNS			
GR	AND TOTAL A	IRCRAFT	EMISSION	=	623.690	KG	100.00	2	
		JUM	80 350	- =	48.393	KG	7.76	×	
		JUM			44.072		7.07		
		LOŃ			86.291		13.84		
					386.254 33.996		61.93 5.45		
		MED ( SHOP		2 H	2.605		0.45		
	TOTAL AIR						96.46		
	TOTAL AIR	CARGO E	ISSION	=	12.032	KG	1.93	2	
		TURE		=	6.087		0.98		
		PIST		=	3.962		0.64		
	TOTAL GENE	RAL AV.	EMISSION	=	10.049	KG	1.61	<b>7</b> 	
60	AND TOTAL A		CH LC C LON	· •		KC	100.00	a	<b>.</b>
GRA	AND TOTAL A	IKUKAFI	Em 12210N	-	623.690	ĸĠ	100.00	3	
			TAXIIDLE	÷	606.870	KG	97.30	8	·
			TAKE OFF	=	1.074	KG	0.17		
							C.76		
					9.460	KG	1.52		
			LANDING	Ξ	1.543	KG	0.25	. <b>б</b>	
					**		· ·		
<u>-</u>	·····	· · · · · · · · · · · · · · · · · · ·		·			×		
					andress day the distribution spranger program of the				

	· 						
	•		,				
	TABLE 5.2 (C	ONT	INUED)				
1990	нс реа	КН	CUR EMISS	SICNS			
GRAND TOTAL AIR	CRAFT EMISSION	=	824.180	KG	100.00	8	
	JUMBO 350		87.923				
	JUMBO 250 LONG 200	=	82.428		16.64	· · · · · · · · · · · · · · · · · · ·	
	LONG 150		460.533	KG	55.88	2	
	MED. 100		27.022		3.28		
TOTAL AIR CAN	SHORT 50 RRIER EMISSION		1.279 796.365		C.16 96.63		
TOTAL AIR CA	RGO EMISSIUN	=	15.927	KG	1.93	q	
·····	TURBO		7.201		0.87		
	PISTON L AV. EMISSION	=	4.687		C.57 1.44		
GRAND TOTAL AIR	CRAFT EMISSION	=	824.180	KG	100.00	3	<b>.</b>
			802.324		97.35		
			1.460				
					0.74 1.49		
			2.012		0.24		
						•	
,							

		-					
		• . 					
			···· ·	• • • •		···· · · · · · · · · · · · · · · · · ·	
				,			
	TABLE	5.2 (0		[INUED]			
1995	HC	ΡΕΑ	K ł	CUR EMISS	IONS		
				· · · · ·			
GRAND TOTAL AIRC	RAFT EN	ISSION	=	1012.950	κg	100.00	8
	JUMBO	350	_	135.607	KG	13.39	9
				119.053			
	LUNG	200	=	176.375	KG	17.41	
				529.124			
				18.244			
				0.636			
TOTAL AIR CAR	RIER EN	ISSION	=	979.639	KG	96.71	*
TOTAL AIR CAR	GC EMIS	SSION	=	19.593	KG	1.93	3
	TURBO		. =	8.310 5.409	KG	C.82	
<b></b>	PISTON						
TOTAL GENERAL	AV. EN	4 I S S I O N	=	13.718	KG	1.35	*
						·····	
GRAND TOTAL AIRC	RAFT E	ISSION	=	1012.950	KG	100.00	ų
				986.270		97.37	
	T,	AKE CFF	=	1.840	KG	C.18	
	CI	IMBOUT	=	7.500	KG	0.74	
	A	PRUACH		14.886	KG	1.4/	
	L	ANDING	=	2.453	KG	0.24	<b>76</b>
	,		-	······································		······	
	e apare electric cameralization a defining						

**4**+#

**G**est**i**te

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		TABLE 5	5.2 (CON	TINUED)			
JUMBC 350 = 176.245 KG 14.63 % $JUMBC 250 = 163.526 KG 13.57 %$ $LONG 2C0 = 233.270 KG 19.36 %$ $LONG 150 = 583.174 KG 48.40 %$ $MED. 100 = 9.558 KG 0.79 %$ $SHCRT 50 = 0.242 KG 0.02 %$ $TOTAL AIR CARRIER EMISSION = 1166.013 KG 96.77 %$ $TOTAL AIR CARGO EMISSION = 23.320 KG 1.94 %$ $TURBO = 9.449 KG 0.78 %$ $PISTON = 6.150 KG 0.51 %$ $TOTAL GENERAL AV. EMISSION = 1204.932 KG 1.29 %$ $GRAND TOTAL AIRCRAFT EMISSION = 1204.932 KG 100.00 %$ $GRAND TOTAL AIRCRAFT EMISSION = 1204.932 KG 100.00 %$ $TAXIIDLE = 1173.356 KG 97.38 %$ $TAKE OFF = 2.225 KG 0.18 %$ $CLIMEOUT = 8.884 KG 0.74 %$	2000	НС	PEAK	HOUR EMIS:	SIONS		
JUMBU 256 = 163.526 KG 13.57 % LONG 2C0 = 233.270 KG 19.36 % LONG 15C = 583.174 KG 48.40 % MED. 100 = 9.558 KG C.79 % SHCRT 50 = 0.242 KG C.02 % TOTAL AIR CARRIER EMISSION = 1166.013 KG 96.77 % TOTAL AIR CARGO EMISSION = 23.320 KG 1.94 % TURBO = 9.449 KG C.78 % PISTON = 6.150 KG C.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 15.599 KG 1.29 % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG C.18 % CLIMEGUT = 8.884 KG C.74 % APPROACH = 17.566 KG 1.46 %	GRAND TOTAL AIRC	RAFT EMI	ISSION =	1204.932	KG	100.00	2
JUMBU 256 = 163.526 KG 13.57 % LONG 2C0 = 233.270 KG 19.36 % LONG 15C = 583.174 KG 48.40 % MED. 100 = 9.558 KG C.79 % SHCRT 50 = 0.242 KG C.02 % TOTAL AIR CARRIER EMISSION = 1166.013 KG 96.77 % TOTAL AIR CARGO EMISSION = 23.320 KG 1.94 % TURBO = 9.449 KG C.78 % PISTON = 6.150 KG C.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 15.599 KG 1.29 % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG C.18 % CLIMEGUT = 8.884 KG C.74 % APPROACH = 17.566 KG 1.46 %		JUMBO	350 =	176.245	KG	14.63	2
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
MED.       100       =       9.558 KG       C.79 %         SHCRT       50       =       0.242 KG       C.02 %         TOTAL AIR CARRIER EMISSION       =       1166.013 KG       96.77 %         TOTAL AIR CARGO EMISSION       =       23.320 KG       1.94 %         TURBO       =       9.449 KG       C.78 %         PISTON       =       6.150 KG       C.51 %         TOTAL GENERAL AV. EMISSION       =       15.599 KG       1.29 %         GRAND TOTAL AIRCRAFT INISSION       =       12C4.932 KG       ICC.CC %         TAXIIDLE       =       1173.356 KG       97.38 %         TAKE OFF       =       2.225 KG       C.18 %         CLIMEOUT       =       8.884 KG       C.74 %         APPRCACH       =       17.566 KG       1.46 %							
$\begin{array}{rcl} SHCRT & 50 &= & 0.242 \ KG & C.C2 \ \$ \\ TOTAL AIR CARRIER EMISSION &= & 1166.013 \ KG & 96.77 \ \$ \\ \hline TOTAL AIR CARGO EMISSION &= & 23.320 \ KG & 1.94 \ \$ \\ \hline TURBO &= & 9.449 \ KG & C.78 \ \$ \\ PISTON &= & 6.150 \ KG & C.51 \ \$ \\ \hline TOTAL GENERAL AV. EMISSION = & & 15.599 \ KG & & & 1.29 \ \$ \\ \hline GRAND TOTAL AIRCRAFT EMISSION &= & & & & & 12C4.932 \ KG & & & & & & \\ \hline TAXIIDLE &= & & & & & & & & & \\ \hline TAXIIDLE &= & & & & & & & & & & \\ \hline TAKE OFF &= & & & & & & & & & & & \\ \hline CLIMBOUT &= & & & & & & & & & & & & & \\ \hline APPRCACH &= & & & & & & & & & & & & & & & \\ \hline \end{array}$							9
TOTAL AIR CARRIER EMISSION = 1166.013 KG 96.77 % TOTAL AIR CARGO EMISSION = 23.320 KG 1.94 % TURBO = 9.449 KG 0.78 % PISTON = 6.150 KG 0.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT INISSION = 12C4.932 KG 1CC.CC % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG 0.18 % CLIMEOUT = 8.884 KG 0.74 % APPROACH = 17.566 KG 1.46 %			50 ~		KC	C 02	4) Cy
TOTAL AIR CARGO EMISSION = 23.320 KG 1.94 % TURBO = 9.449 KG 0.78 % PISTON = 6.150 KG 0.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 12C4.932 KG 1CC.CC % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG 0.18 % CLIMEOUT = 8.884 KG 0.74 % APPROACH = 17.566 KG 1.46 %							
TURBO       = $9.449$ KG $0.78$ %         PISTON       = $6.150$ KG $0.51$ %         TOTAL GENERAL AV. EMISSION       = $15.599$ KG $1.29$ %         GRAND TOTAL AIRCRAFT CHISSION       = $1204.932$ KG $100.000$ %         TAXIIDLE       = $1173.356$ KG $97.38$ %         TAKE OFF       = $2.225$ KG $0.18$ %         CLIMBOUT       = $8.884$ KG $0.74$ %         APPROACH       = $17.566$ KG $1.46$ %	ILIAL AIR CAR	VIEK EMI	122104 -	1100.013		90 <b>.</b>	-र्ष -
PISTON = 6.150 KG C.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 12C4.932 KG 1CC.CC % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG C.18 % CLIMEOUT = 8.884 KG C.74 % APPROACH = 17.566 KG 1.46 %	TOTAL AIR CAR	GO EMISS	SION =	23.320	KG	1.94	2
PISTON = 6.150 KG C.51 % TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 12C4.932 KG 1CC.CC % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG C.18 % CLIMEOUT = 8.884 KG C.74 % APPROACH = 17.566 KG 1.46 %		TURBO	=	9.449	KG	0.78	<b>0</b> 9 40
TOTAL GENERAL AV. EMISSION = 15.599 KG 1.29 % GRAND TOTAL AIRCRAFT EMISSION = 12C4.932 KG 1CC.CC % TAXIIDLE = 1173.356 KG 97.38 % TAKE OFF = 2.225 KG C.18 % CLIMBOUT = 8.884 KG C.74 % APPROACH = 17.566 KG 1.46 %							
TAXIIDLE = 1173.356 KG       97.38 %         TAKE OFF =       2.225 KG       C.18 %         CLIMEOUT =       8.884 KG       C.74 %         APPRCACH =       17.566 KG       1.46 %	TOTAL GENERAL						
	GRAND TOTAL AIRC	TA) TAK CLI	(IIDLE = (E OFF = (Mecut =	1173.356 2.225 8.884	KG KG KG	97.38 C.18 C.74	82 64 84
$LANDING = 2.902 \text{ kg} \qquad C.24  3$						an and a second and a second	
		LAP	NUTNG =	2.902	ΝG	0.24	<b>.</b>
							anna aran. Aran annan, ar sannarhar an proisean an an an an an
	· ·····			<u></u>			

•

.

_____

	• •••												
······													
• • • • • • • • • • • • • • • • • • •	TABL	Ē	5.2	(00	ли	INUE	<b>))</b>			···· · · ·			
1973	NO		ŀ	PEAL	<u>&lt;                                    </u>		EMIS	SIC	IS				
		<b>с м</b>	TCC		_	124		K C		100	<u> </u>	æ	
GRAND TOTAL AIRC					• • •							•	/-
				) )		9.				7. 4.			
						10				7.			
	LONG					18.				13.			
	MED					78				. 57.			
TOTAL AIR CAR	SHOI RIER		50 [SS]		2 2		•515 •575			.2. 93.			
TOTAL AIR CAR	GO EI	115	SIUN	1	=	2	.551	KG		1.	87	q	
	TUR	20			_	5	075	×r		4.	29	7	
	PIS					5 0	• 339	KG	••••••		25		
TOTAL GENERAL				[ON	=					4.			
GRAND TOTAL AIRC	RAFT	ЕM	ISŠ	เอพิ	=	136	. 441	КG		100.	ĊĊ	7	
						17				<u>    12.</u> 21.			
		ТА С1	NE L Imri		=	28 61	• 2030 • 203	KC		21• 44•			
		AP	PRC	ACH.	=	24	.837	KG		18.			
	• • •	LA	NDIN	IG	Ŧ	4	.220	KĞ		3.			
							<u> </u>						
									•				
													· · · · · ·
								<b>.</b>					
												•• •• ••	

					•••••••••••••••••••••••••••••••••••••••					
							·			
		ΤΑΒΙ	LE 5.2 ((	CONT	INUED)				<b></b> .	
	1975	<u>NO</u>	PE	<u>4K</u> H	CUR EMISS	SICNS				
	GRAND TUTAL AI	RCRAFT	EMISSION	4 =	185.326	κG	100.00	di		
••••••		JUM			27.068		14.61			
		JUM	3C 250	=	31.128	KG	16.80	8		
			G 200	=	6.820	KG	3.68			
		MED	G 150 • 100		23.870 83.297		12.98	-t 92		
	respective a second and an endance of the	SHOP	• 100 ₹T 50		2.594	KG	1.40	2		
	TUTAL AIR C						94.31			
	TOTAL AIR C	ARGO EI	MISSICN	=	3.496	KG	1.89	z		
		TURI	90	=	6.676	κG	3.60	<del>Z</del>		
			TCN	=	0.379	KG	C.20	7		
	TOTAL GENER	AL AV.	EMISSION	v =	7.055	КG 	3.81	°		
	GRAND TOTAL AI	RCRAFT	EMISSIO	V =	185.326	KG	100.00	2	. <u>-</u>	
			TAXIIDL	E =	21.819	KG	11.77	2		
			TAKE CFI	F =						
			CL IMBOU				46.46			
			APPROACE							
			LANUING	Ξ	5.255	KG	2.84	4		
			·····				······································		•	<u></u>
				• •						

					•						
	ana to -no to no provents									an - a a - a.	
	<u></u>				<u></u>						<u> </u>
, , , , , , , , , , , , , , , , , , ,		• • • • •	TAB	LE_f	5.2 ((	CONT	INUED)				···· -• ·
	198	50	NO		PE	<u> K</u> F	CUR EMIS	SION	<u>s</u>		
G R A	ND TOT	TAL AIR	CRAFT	EM	ISSIO	1 =	285.525	KG	100 <b>.CO</b>	2	
			JUM	20	350	=	59.665	KG	20.90		
			JUM	BC	250	=	59.009	KG	20.69	*	
			LON	Ç A	200	=	6.765 54.683 88.494	KG	2.37		
				<b>և</b>	150	=	54.683 88.494	KG	19.15 30.99		
			SHO	R T	50		2.144	KG	0.75		*** ** ** **
	TOTAL	AIR CA	RRIER	EM	ISSION	N =	270.820		94.85		
	TOTAL	AIR CA	RGC E	MISS	SICN	=	5.416	KG	1.90	8	
			TUR	ви		=	8.790	KG	3.08	X	
			PIS			=					
	TOTAL	GENERA		EM		1 = 	9.289	KG	3.25	<b>%</b>	
GRA	ND TOT	TAL AIR	CRAFT	EM	ISSION	v =	285.525	KG	100.00	Ţ	
				TAX	XIIDLE	=	31.176	KG	10.92	8	
				TAI	KE OFF	=	65.948	KG	23.10	2	
							135.722				
		•	• •				44.953 7.727		15.74		,
			,	LAI	ND I NG	-	1.121	ΝŪ	2.11	4	
	<u></u>							<u></u>			
							••••••••				

 .,													
 								<u></u>					
				тла	۴. (	5.2 10	CNT	INUED)					
 	• • •			TAC			0.07	INOLUT					
 	198	35	··· E · · # - 8 t-	ND	<u> </u>	PEA	K H	OUR EMIS	SIUNS				
											-		
 GRAND	101	IAL	AIRCI		EM	155108	=	445.496	ĶĠ	100.00	é		
				JUM				127.130		28,54			
 · · · · · · · · · · · · · · · · · · ·				JUM	30	250	=			25.99			
						200		15.015		3.37			
								67.209		15.09			
						50		98.493 1.849		22.11 G.42		~	
TO	TAL	AIR	CARE			ISSION				95.51			
TO	TAL	AIR	CAR	GC EI	VIS:	SICN	=	8.510	KG	1.91	7		
				TURI	30		=	10.892	KG	2.44	2		
							=			C.14			• •
TO	TAL	GEN	ERAL	AV.	EM	ISSICN	=	11.510	KG	2.58	2		
GRAND	тот	[ A L	AIRC	RAFT	EM	ISSION	=	445.496	KG	100.00	<b>4</b> 2		
					тл		-	45.617	KG	10.24	4		
 						KE CFF				23.84			
						IMBOUT			-	48.68			
					-			65.490		14.70			
								11.300		2.54		÷	
 												•	
 • . • •	n					········			• • • • • •			••• • •••	

!

_____

_____

.

199	90		NO		PEAI	<u>( H</u>	OUR EMISS	SICNS		
 GRAND TO	<b>F</b> AL	AIRCR	AFŢ	EM I	SSION	=	656.949	KG	100.00	8
			JUME	30	350	=	230.977	KG	35.16	<b>8</b> 49
			JUME	30	25C	=	216.541	KG	32.96	2
			LON(	3	200	=	23.870	KG	3.63	2
			LONG	;	150	=	80.134	KG	12.20	3
			MED	•	100	Ŧ	78.290	κg	11.92	2
			SHOP	RT	50	=	0.908	KG	0.14	2
TOTAL	AIR	CARR	IER	EMI	SSION	=	630.718	KG	96.01	7
 TOTAL	AIR	CARG	0 EM	ISS	ION	=	12.614	KG	1.92	8
			TURE	30		=	12.885	KG	1.96	2
			PIST	FON		=	0.732	KG	0.11	2
TOTAL	GEN	ERAL	AV.	HM I	SSION	=	13.617	KG	2.07	8

GRAND TOTAL AIRCRAFT EMISSION = 656.949 KG 100.00 3 TAXIIDLE = 63.044 KG 9.60 3 TAKE OFF = 161.571 KG 24.59 3

CL IMBOUT	=	327.481	ΚG	49.85	7
 APPRCACH	=	89.381	ΚG	13.61	2
LANDING	æ	15.472	KG	2.36	*

•

3

	TABLE	5.2 (0)	ONT	INUED)				
1995	<u>N0</u>	PEA	< н	CUR EMIS	SICNS			
GRAND TOTAL AIRCE	AFT EN	ISSION	=	879.292	KG	100.00	L	
	JUMBO	350	=	356.245	КG	40.51		
	JUMBO	250	=	314.333	KG	35.75	5 <b>0</b>	
	LONG	200	=	30.690	КG	3.49	2	
						10.47		
						6.01		
•	SHORT	50	=	0.452	КG	C.C5	2	
TOTAL AIR CARF	RIER EM	ISSION	Ξ	846.646	KG			
TOTAL AIR CARC	O EMIS	SIGN	=	16.933	KG	1.93	Z	~
	TURBO		=	14.869	KG	1.69	2	
	PISTON	4	=	0.844	KG	C.10		
TOTAL GENERAL	AV. EN	ISSION	=	15.713	KG	1.79		
GRAND TOTAL AIRCR	AFT EM	ISSION	=	879.292	KG	100.00	° <b>7</b> ,	
	т.		_	01 277	ve	0.14	æ	
		VE CEE		81.246		9.24		
	1 A C I		_	220.000	KG	25.03	4 9	
			-	112 801	KG	50 <b>.5</b> 4 12 <b>.</b> 95	40 19	
nannen al en angeget etanologi antereta geget begetet a geben die en antereta antereta en agranden	LA	NDING	=	19.744	KG	2.25	7 7	
		······						

•-•

-----

..........

,

		200	0		NO			PEAP	<u> </u>	HOUR E	MIS	SIONS	
GRA	ND	тот	AL /	AIRCR	AFT	EMJ	I S S	ION	=	1101.	634	КG	100.00
					JUME		35		=	463.	002	κG	42.03
					JUME		25		= ,				39.00
					LONG		20			40.			3.6
					LONG		15			101.			9.2
					MED.		10			27.			2.5
	TOT	A 1	A 1 D	CADO						0. 1062.			C•03 96•4
	101	μĽ	AIN		ICK	C 19 1	53	ICA	-	1002.	JII	ΝG	70.4
	тот	ĂL.	AIR	CARG	C EM	155	SIC	N	=	21.	250	KG	1.9
					TURE	0			Ξ	16.	907	KG	1.5
		-			PIST			-	=	0.			0.0
	TOT	AL	GEN	ERAL	Δ٧.	EMI	ss	ION	=	17.	867	KG	1.6
					<u> </u>	TAK	KE KE	OFF	=	561.	474 126	KG Kg	9.0 25.2 50.9 12.5
							1 C 1 C 1			···· ·· · · · ·			2.1

_____

.....

- -- ---

	TABLE 5	.2 (0)	CNT	INUED)			
1973	SO	ΡΕΑΙ	<u>к н</u>	OUR EMISS	SICN	S	
GRAND TOTAL AIRCH	AFT EMI	SSION	Ξ	14.955	KG	100.00	2
	JUMBC	350	=	0.574	KG	3.84	ł
	JUMBO	250	=	0.359	KG	2.40	*
	LUNG	200	=	1.047	ĸG	11.01	
	MED.	100	-	2.382 7.674	KG KG	19,27 51,32	
•	SHORT	50	=	0.641	KG	4.29	
TOTAL AIR CARP						92.13	
TOTAL AIR CARC	O EMISS	IGN	=	0.276	KG	1.84	9 2
	TURBO		=	0.807	κG	5.40	2
	PISTON	•••••••	=	0.095	KG	0.64	
TOTAL GENERAL	AV. EMI	SSION	=	0.902	KG	6.03	2
GRAND TOTAL AIRCR	AFT EMI	SSION	=	14.955	KG	100.00	<b>9</b> .
	TAX	IIDLE	Ξ	5.859	KG	39.18	2
						9.51	8
				3.875			
				3.249		A 100 MM	
	LAN	DING	=	0.550	KG	3.67	2
				<u></u>			•

	1975	SO		PEAK H	HOUR EMISS	SIGNS		
GRAND	TOTAL A	IRCRAFT	EMISS	[ON =	18.062	KG	100.00	
		JUMB	0 35	) =	1.590	KG	8.8C	
		JUME	0 250	) =	1.828	KG	10.12	
		LONG	200				5.77	
		LONG	150	= (	3.647	KG	20.19	
		MED.	100	) =	8.141	KG .	45.07	
	** ***	SHOR	LT 5(	) ं≃	0.473	KG	2.62	
TOT	AL AIR	CARRIER	EMISS	ION =	16.720	KG	92.57	
TOT	AL AIR	CARGO EM	ISSIC	N =	0.334	KG	1.85	
		TURB	0	=	0.902	KG	4.99	
		PIST	ON	=	0.106		C.59	
тот	AL GENE	KAL AV.	EMISS	ION =	1.008	KG	5.58	
GRAND		IRCRAFT	FMISS	10N =	18.062	KG	10C.CC	
<b>U</b> (A)							20000	
			TAXII	DLE =	7.090	KG	39.25	
			TAKE (	OFF =	1.749	KG	9.68	
			CLIMB	= TUC	4.730	KG	26.19	
			APPRO	ACH =	3.840	KG	21.26	
ananananan manan manan san sapangan manan sakar			LANDI	VG =	0.654	KG	3.62	
	<u></u>							

....

- -

-----

i san i t

-

R L. CRAIN LIMITED

	TABLE 5.2 (CC	NTINUED)			
1980	SO PEAK	HOUR EM	ISSICNS		
		- 07 )		100.00	
GRAND TOTAL AIRCE	CAPI EMISSION	= 21.2	55 KU	100.00	3
	JUMBO 350	= 3.50	04 KG	12.87	2
	JUMBO 250	= 3.46	59 KG	12.74	
	LUNG 200	= 1.03		3.79	
	LONG 150		D4 KG	30.67	7 9
	MED. 100 SHORT 50	= 8.64	17 NG	31.76	* g
TOTAL AIR CAR				93.26	
TOTAL AIR CARC	GO EMISSION	= 0.50	08 KG	1.87	8
·	TURBO	= 1.18	87 KG	4.36	8
_	PISTON	= 0.14	HO KG	0.51	2
TOTAL GENERAL		- 1.34		4.87	<b>6</b>
GRAND TOTAL AIRCE	RAFT EMISSION	= 27.23	35 KG	100.00	4 •
	TAXIIDLE	= 10.46	51 KG	38.41	8
1999-1999-1999-1999-1999-1999-1999-199	TAKE OFF	= 2.7	L2 KG	9.96	8
		= 7.20			
an an an ann annan an ann an ann an ann an a		= 5.79		21.29	
	LANDING	= 0.99	74 RG	3.65	4
	· - · · · · · · · · · · · · · · · · · ·				•
, a constant and and a constant of the second s					

. . . .

**1** 

	. 19	85		SO	PEA	< н	CUR EMISS	SICNS		
	GRAND TO	TAL	AIRCR	AFT EM	ISSION	=	39.170	KG	100.00	z
					-		7.466			
				JUMBC	250	=	6.799	KG	17.36	2
				LUNG	200	=	2.294	КG	5.86	R
				LUNG	150	=	10.267	KG	26.21	2
				MED.	100	=	9.626	KG	24.58	8
				SHORT	50	=	0.337	KG	0.86	2
	TOTAL	AIR	CARR	IER EM	ISSION	=	36.789	KG	93.92	39
	TOTAL	AIR	CARG	O EMIS	SION	=	0.736	KG	1.88	94
				TURBC		=	1.471	κG	3.76	7
, an eye				PISTON		=	0.173	KG	0.44	8
	TOTAL	GEN					1.644	KG	4.20	8

GRAND TOTAL AIRCRAFT EMISSION = 39.170 KG 100.00 %

. ....

. . .

i forik i

	TAXIIDLE	=	15.050 KG	36.42 %	
	TAKE OFF		3.956 KG	10.10 %	-
	CL IMBOUT	=	10.557 KG	26.95 %	
	APPRCACH	=	8.196 KG	20.92 %	
· · · · · · · · · · · · · · · · · · ·	LANDING	=	1.411 KG	3.60 %	
1					

						•		
•				•				
· · · · · · · · · · · · · · · · · · ·								
•			<b>-</b>					 <b>.</b>
					· · • · · •.			 
,								
				·····				 
· · · · · · · · · · · · · · · · · · ·	TABLE	5.2 (0	ONTI	NUED)				
1990	SO	ΡΕΛ	к нс	UR EMIS	SIUNS			
GRAND TOTAL AIRC	RAFT E	ISSION	=	52,931	KG	100.00	9	
		100100		72 • 7 5 1	NO	. 100.00	<b>.</b> .	 • • •
	JUMBO	350				25.63		
	JUMEC					24.02		 
						6.89		
						23.13		
the second s		100				14.46		 
	SHORT			0.166		.0.31		
TOTAL AIR CAR	RRIER EI	MISSION	=	49.986	KG	94.44	3	
TOTAL AIR CAR	GC EMI	SSICN	=	1.000	KG	1.89	¥	 
	TUDDO			1 7/0	~ ~		-	
······ ·······························	TURBO			1.740		3.29		 • • • •
				0.205		0.39		
TUTAL GENERAL				1.745	NG	3.67	<b>4</b>	 
GRAND TOTAL AIRC	RAFT	MISSION	=	52.931	KG	100.00	7	
	т	XIIDLE	-	20.357	KG	38.46	9	
		AKE OFF		5.428		10.25		 
						27.27		
				10.640				
				1.872		3.54		 · · ·
				~ • • • • •		2021		
	L,							
			<i>.</i> .					 

				·					
·	· · · · · · · · · · · · · · · · · · ·								
	,								
			· · · · · · · · · · · · · · · · · · ·						
<b></b>	· • • · · · · • • • • • • • •	TABLE 5.2	(CONT I	NUED)	· · · · · · · · · ·			··· • •	
	:	-							
	1995	SO	PEAK HO	UR EMISS	IONS				
CN	ND TOTAL AIF	DODART RAISS		66.804	KG	100 00			
	AND TOTAL AT			•••••••••••••••••••••••••••••••••••••••					
		JUMBO 35	0 =	20.921	KG	31.27			
		JUMBC 25 LONG 20 LONG 15	0 = C =	4.688	KG	27.59			
		LONG 15	0 =	14.065	KG	21.03	2		
		MED. 10	0 =	5,166	KC	7.72			
	• • ••••	SHORT 5	0 =	0.082	KG	0.12			
	TOTAL AIR CA		ION =	63.382	KG	94.75			
	TOTAL AIR CA	ARGC EMISSIC	N =	1.268	KĠ	1.89	2		
		TURBO	=	2.008	KG	3.00	7		
		PISTON	=	0.237	KG	0.35	2		•
	TOTAL GENER	AL AV. EMISS	ION =	2.245	KG	3.36	2		
GR	AND TOTAL AIS	RCRAFT EMISS	ION =	66.894	KG	100.00	2	<b></b> .	
0.14									
			DLE =			38.56 10.34			
			CUT =						
			ACH =			20.15			
				2.332		3.49			••
		241101		20002		5017	•		
			·						
-				•		•			
							,		

Ĭ

							-					
>							· · · · · · · · · · · · · · · · · · ·					
···· <u>-</u>		<b>.</b>					• · · · · · · · · · · · · · · · · · · ·					
				TABLE	5.2 (	CONT	INUED)					
	2	2000		<u>so</u>	PE	AK HI	DUR EMIS	SIONS				
·· -	GRAND 1	TOTAL	AIRCR	AFT E	MISSIC	)N =	80.948	KG	100.00	2		
				JUMBO	350	=	27.190	КG	33.59	2		
					250				31.17			
	······································			LONG	200	=	6.201		7.66			
				LONG	150		15.502		19.15			
					100	. = .	2.706		3.34		· · · · ••	~
	τοτ			SHORT	50 50 MISSIC		0.031 76.858		0.04			
					SSION	=	1.537		1.90			
				TUDOC		_	2 262	K C	2	œ		
				TURBO		<b>=</b> .	2.283 0.269		2.82 0.33			
	TOTA	AL GEN					2.552		3.15			
	664ND 1							W C	100 00	•		
	GRAND	IUIAL	AIRUR	AFIE	:M1551C	)N =	80.948	ĸĠ	100.00	ች		
					AXIIDL				38.62			
							8.417	KG	10.40	z		
							22.329					
•	• • • • • • • •						16.145 2.795		19.94 3.45			
				Ĺ	ANDING	, –	61173		2672	-		
			<del></del>			•						<u> </u>
				•••••••••••••••								
		a aamado /a.a. a										

•			TABL	_E 5	5.2 (C	ONT	INUED)	- <b>.</b> .	, <i></i> .	• •••• ••
	1973		PT		PEA	<u>к н</u> а	CUR EMIS	SION	S	
	GRAND TOTAL			C AF 1		-	12 105	vr	100.00	9
	GRAND TUTAL	AIKU	KAFI	L PI I	122101		12.105	ΝG	100.00	-fa
			JUM		350		0.402		3.32	
					250	=	0.251	KG	2.07	
					200		1.740			
					100		3.045		25.15 24.71	
-					50				14.03	
	TOTAL AIR	CARI							83.66	-
	TOTAL AIR	CAR	GO EI	MISS	SION	=	0.203	KG	1.67	8
			TUR	30		=	1.776	КG	14.67	2
			PIS			=			0.0	2
	TOTAL GEN	ERAL	AV.	EMI	ISSION		1.776	КG	14.67	2
	GRAND TOTAL	AIRC	RAFT	EMI	ISSION	=	12.105	KG	100.00	2
				TA)	IIDLE	=	4.570	KG	37.75	8
				TAK	KE OFF	=	0.830	KG	6.85 20.29	2
				CLI	IMBOUT	=	2.456	KG	20.29	2
				APF	PROACH	Ħ	3.656	KG	30-20	2
		******					0.593		4.90	

**}**≉⇒}

¥#-44

**) nin**e i

• 100005(0)

	TABLE	5.2 (0)	UNT	INUED)				
1975	PT	PEA	<u>&lt; H</u>	OUR EMISS	SICNS			
GRAND TOTAL A	IRCRAFT E	MISSION	=	13.989	KG	106.00	8	. <u>-</u>
		350				7.94		
	JUMBC	250	=	1.278	KG	9.14	2	
	LUNG	200	Ξ	1.101	KG	7.87	7	
	LONG	150	=	3.853	KG	27.54	2	
	MED.	100	=	3.173	KG	27.54		
TOTAL AIR	SHERT	50	=	1./34	X L-	. 9 • 70	76	
TUTAL AIR	CARRIER E	M12210N	=	11.759	KG	84.13	76	
TOTAL AIR	CARGO EMI	SSION	=	0.235	KG	1.68	8	
	TURBO	]	=	1.984	KG	14.18	8	
	PISTO	ÎN .	=	0.0	KG	C.C	2	·· · · ·
TOTAL GENE	RAL AV. E	MISSION	=	1.984	КG	14.18	<b>R</b>	
GRAND TOTAL A	IRCRAFT E	MISSION	=	13.989	KG	100.00	*	
	т	AXITCLE	=	5.796	KG	41.43	2	
	······	AKE CEE	=	0.915	KG	6.54	2	
						19.39		
						28.04		
				0.643		4.60		
	····							· · · · · · · · · · · · · · · · · · ·

-

. .. ..

....

-. ·

- -

-----

. . . . ....

.

 198	30		PT_		PEA	<u>&lt;</u>	HCUR	EMIS	SIGNS		
GRAND IO	TAL	AIRCR	AFT	EM	ISSION	=	22	.196	KG	100.00	z
			JUM	BO	350	=	â	.450	KG	11.04	2
			JUM	BO	250	=	2	2.425	КG	10.93	8
 			LONG	3	200	=	1		KG	4.92	ંજ્ર
			LON	3	150	=	ε	8.826	KG	39.76	2
			MED.	•	100	=	-	8.371	KG	15.19	2
			SHOP	RT	50	=	<b>1</b>	.036	KG	4.67	2
TOTAL	AIR	CARR	IER	ЕМ	ISSION	=	19	9.2C0	KG	86.50	đá
 TOTAL	AIR	CARG	C EI	MIS	SICN	=	(	.384	KG	1.73	2
			TURI	BØ		=	ź	2.612	KG	11.77	2
			PIS	TON		=	(	).C	KG	C.C	7
TOTAL	GEN	ERAL	AV.	ΕM	ISSION	=	Ĩ	2.612	ΚG	11.77	7

GRAND TOTAL AIRCRAFT EMISSION = 22.196 KG 100.00 %

TAXIIDLE =	8.753 KG	39.44 2
TAKE OFF =	1.428 KG	6.43 %
CLIMBOUT =	4.392 KG	19.79 %
APPROACH =	6.529 KG	29.42 %
 LANDING =	1.094 KG	4.93 %
 · · · · · · · · · · · · · · · · · · ·		

_____

CRAIN LINUIFO

J.

	LABLE	5.2 (C	UNT	INUED				
1985	РТ	PEA	K HO	UR EMISS				
GRAND TOTAL AIRC	RAFT EN	ISSION	=	31.685	κg	10C.CC	2	••
	JUMBC JUMBC	350 250				16.47		
	LUNG	200	z	2.424	KG	7.65	3	
						34.24		
	MED.	100	=	3.752	KG	11.84	2	
··· · · ·	SHORT	50	<b>=</b>	0.894	KG	2.82	8	
TOTAL AIR CAR	RIER EN	AISSION	=	27.891	KG	88 <b>.C2</b>	2	
TOTAL AIR CAR	GO EMIS	SSICN	=	0.558	KG	1.76	<del>z</del>	
	TUREO		=	3.237	KG	10.22	2	
	PISTON	1	<b>#</b>	3.237 0.U	KG	0.0	2	
TOTAL GENERAL	AV. EN	AISSION	=	3.237	KG	10.22	2	
GRAND TOTAL AIRC	RAFTËR	Í Í S S I ÓN		31.685	KG	100.00	×	
	T/		=	13.502	KG	42.61	2	
	т. Т.	KE OFF	=	1.923	KG	6.C7 18.92 27.72	2	
	CL	IMBOUT	z	5.995	KG	18.92	3	
	AF	PROACH	=	8.783	KG	27.72	2	
	L	NDING	3	1.482	KG	4.68	2	
	·····.				••• •• •• •• • <del>• •</del> •		, <b>.</b>	
			<u> </u>			<u></u>		
				·····		<u></u>		
								<b></b>

· · · · ·

.

. . . . . . . .

. .....

linit.

-

•	GRAND	тот	ΓAL	AIRCH	AFT	EM	ISSION	r=	43.183	KG	100.00	2
					JUM	30	350	=	9.484	KG	21.96	2
					JUM	30	250	=	8.891	ΚG	20.59	Z
					LONG	3	200	=	3.853	KG	8.92 29.95	Z
					LONG	3	150	=	12.934	KG	29.95	3
					MED	•	100	. =.	2.982	KG	6.91	Ł
					SHOP			=	0.439	KG	1.02	Z,
	TOT	AL	AIR	CARR	R IER	ЕМ	ISSION	=	38.582	KG	89.35	2
•	TOT	AL	AIR	CARC	GO EN	MIS	SIUN	=	0.772	KG	1.79	8
					TUR	30		=	3.829	KG	8.87	36
					PIST	T NN		=	0.0	КG	C . C	2
	TOT	٢AL	GEN	ERAL	AV.	EM.	ISSION	=	3.829	KG	8.87	2
									43.183 20.063			
						TAI	KE DFF	=	2.408	KG	5.58	
						CL	IMBOUT	=	7.695	KG	5.58 17.82	2
											25.77	
						LA	NDING	2	1.890	KG	4.38	Z
											•	

					-16		, , -
	TABLE	5.2 (C	ONŤ	INUED)			
1995	PT	PEA	K H	CUR EMIS	SICNS		
GRAND TOTAL AIR	CRAFT E	MISSION	=	54.989	KG	100.00	3
		350				26.60	
				12.906		23.47 9.01	
		150	=	4.954 14.861 2.013	KG	27.02	
	MED.	100	=	2.013	KG	3.66	5 5
	2110111	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	0.210	NG .	C.4C	*
TOTAL AIR CA	RIER	EMISSION	Ξ	49.579	KG	90.16	2
TCTAL AIR CA	RGO EMI	ISSION	Ξ	0.992	KG	1.80	2
	TURBO	נ	=	4.419	KG	8.04	L
	PISTO	CN		0.0	KG	C.C	8
TOTAL GENERAL	AV. E	EMISSION	=	4.419	KG	8.04	<b>%</b>
						<u>.</u>	
GRAND TOTAL AIR	CRAFT E	EMISSION	=	54.989	KG	100.00	2
	1	TAXIIDLE	Ξ	27.179	KG	49.43	Z
	٦	TAKE CFF	=	2.865	KG	5.21	2
						16.97	
				13.340			
	l	LANUING	=	2.273	ĸG	4.13	4
							·
			••••••				

			• • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		••••
	TABL	E	5.2	(00)	ΝT	INUED)		· •··· •···		
2000	PT		P	EAK	H	CUR EMIS	SION	S		adag di ana i wata na
					_	11 DE				
GRAND TOTAL AIRCR		EM	1221	UN		66.95	D KG	100.00	6	a
	JU™B	0	350		=	19.010	) KG	28.39		
	JUME	20	250		=	17.638	B KG	26.34		
	LUNG	•	200		=	16.379		9.78 24.46 1.58 0.12	~ 92	
	MED.	,	100		=	1.055	5 KG	1.58	Ŷ.	
···	SHOP	T	50		=	0.08	3 KG	0.12	<b>*</b>	200 ( <b>M</b> arket on 1997), 1999
TOTAL AIR CARR	IER	EM	1551	ON	÷	60.710	5 KG	90.68		
TOTAL AIR CARG	C EM	115	SION		=	1.214	KG	1.81	8	
		30			=	5.025	5 KG	7.50	X	
	PIST	ON			=	0.0	KG	6.0	2	
TOTAL GENERAL	AV .	EM	ISSI	ON	=	5.025	5 KG	7.50	*	
GRAND TOTAL AIRCR	AFT	Ем	1551	ON	=	66.95	5 KG	100.00	2	•••
		та	XIIC		_	34.340		51.30		
			KE O		*	3.33		4.98		
						11.00				
	<b></b>		PRCA							
		LA	NDIN	G	=	2.66	4 KG	3.98	8	
	1.1 mit					'				

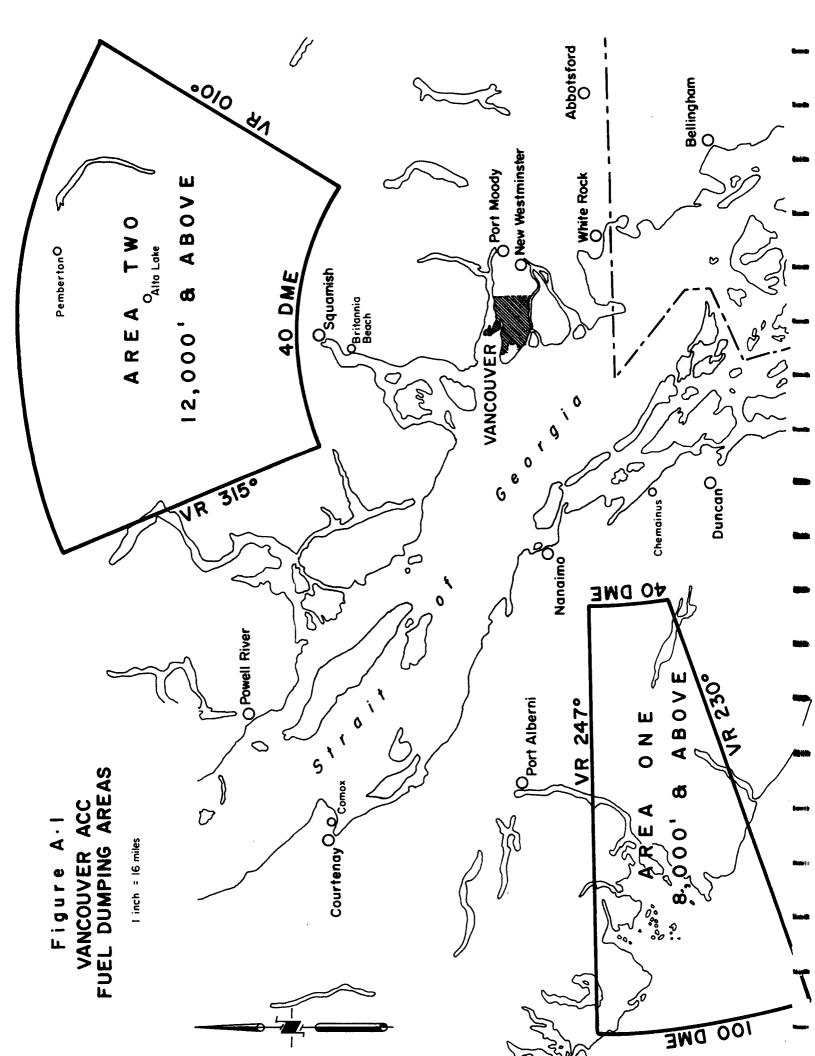
**

PÚ.

#### APPENDIX IV

#### EMERGENCY FUEL DUMPING FROM AIRCRAFT

The ensuing documentation on fuel dumping from aircraft has been prepared by Environment Canada as supplementary information to the preceding report. It has been included herein as the result of a number of public queries directed to the department during the course of this study, raising concern over the potential environmental affects from this operation.


The conditions under which aircraft are required to return to the departure airstrip relate to varied emergency conditions encountered by an aircraft after take-off and that necessitate its return to the airfield. An aircraft is therefore required to unload excess fuel to reduce its gross weight to its established landing weight prior to landing. The occurrence of such incidences is very infrequent and are thought to occur perhaps several times per year in the case of the total traffic at the Vancouver International Airport.

The Ministry of Transport has designated two fuel dumping areas in the vicinity of Vancouver to encompass the air traffic at Vancouver International Airport as well as traffic from surrounding airports. They are roughly located over the areas of Garibaldi Park on the mainland and the southern part of Vancouver Island (illustrated on the attached map), but are more specifically defined as follows:

- Area (1): from Vancouver 315 radial to the Vancouver 010 radial; between 40 and 100 miles D.M.E. (Distance Measuring Equipment); dumping altitude at 12,000 ft or above.
- Area (2): from Vancouver 230 radial to the Vancouver 247 radial; between 40 and 100 miles D.M.E.; dumping altitude at 8,000 ft or above.

Maximum fuel discharge rates for representative commercial aircraft are tabulated as follows:

в 747	5,000 lbs fuel/min
DC 8	4,000 " " "
B 727	3,500 " " "
в 737	No emergency dump
	capability



It is understood from discussions with representatives of Shell Canada Limited, that jet fuel, generally JPl and JP4 is vaporized in air and will not impinge on the ground if discharged from an aircraft flying at a speed of over 200 knots and above elevation 1,000 ft. Furthermore, the very low freezing point (58°F) of jet fuel would ensure vaporization over a wide range of ambient air temperatures.

Having regard to the previously noted data on fuel discharge rates together with the preceding information, one can calculate a fuel dispersal rate for a qualitative appreciation of the operation. Assuming the minimum aircraft speed of 200 knots, typical of an aircraft in a landing mode several miles from an airport, and a maximum fuel discharge rate of 5,000 lbs/min, the fuel would be dispersed along the line of travel at the rate of approximately 3 gal/100 ft. However, an aircraft would usually be near its cruising speed during the fuel dumping mode and that would reduce considerably the worst case dispersal rate calculated here.

It is noted that the selected dumping areas that have been adopted by the Ministry of Transport are remote from major urban centers and are considered acceptable with respect to environmental considerations recognizing the paramount importance of aircraft safety and the practical necessity of having zones that are readily recognizable from aircraft instrumentation.

Prudence suggests that there is no cause for concern of fuel impingement at ground level for the relatively high altitude fuel-dumping conditions set by the Ministry of Transport at the two designated areas discussed herein.