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SUMMARY 

.Using the theory of dimensions, it has been established that the 

dimensionless dispersion coefficient in the transverse direction in 

meandering channels is a function of the friction factor, meander 

amplititude to width ratio and the width to hydraulic radius ratio. 

An attempt is made to establish the functional relationship by measuring 

the dispersion coefficients for various values of the above-mentioned 

parameters. The meandering channels used for this study had realistic 

bottom configurations which resulted from the scouring and deposition of 

the sand forming the bottom of the channels in contrast to the rigid 

bottom channels used in the previous studies. The dispersion coefficients 

Vwere evaluated using the Generalized Change of Moment Method. Different 

assumptions for the behaviour of the dispersion coefficient were tested 

but none exhibited superiority over the others. A numerical method has 

been developed to predict the concentration distribution in a meandering 

channel.



|NTRODUCTl0N" 
‘ when a pollutant is discharged into a natural stream, it gets 

transported by the flow velocities: while being transported it also 

spreads along the vertical, lateral and longitudinal direction simulta- 

neously, due to the turbulence present in the natural stream. The rates 

of spreading in these directions depend upon the characteristics of the 

flow and the flow geometry. A quantitative knowledge on these rates of 

spreading of a pollutant in a natural stream is an essential management 

tool to decide upon the amount of pollutant that can be discharged into 

the stream without violating certain established water quality criteria. 

At present, such a knowledge is limited only to very simple flow geometries, 

and its application to field problems is often associated with many un- 

certainties. The object of the research outlined in the present paper. 

is to expand the knowledge on the spreading rate in the transverse direction 

in flow geometries more closer to those of the natural streams. 

Natural streams usually meander, setting up transverse currents 

which move towards the inner bank at the bottom and towards the outer 

bank at the top. 9A5 a consequence, erosion of sediments occur at the 

outside of the meander, and deposition on the inside. Therefore, the 

flow cross-sections vary along the length of the stream and the spreading 

rates in such flows will certainly be different from the simpler cases, 

wherein the flow geometry is the same throughout the length. 

So far, there is no study found in the literature which dealt with 

such a flow geometry in the laboratory. Y. Chang (I), (1971); H.B. Fisher



(2), (i969); and Engman (3), (1974) studied lateral spreading processes 

in meandering channels in the laboratory; but the bottom of the channel 

is flat and hence the transverse currents are not stronger and are not 

representative of the real situation. Hence, the present research is 

undertaken to systematically study the lateral spreading processes in 

meandering channels having realistic bottom configurations. One of the 

main objectives is to investigate the effect of the meanders on the 

transverse dispersion coefficient. 

l. _Theoretical Background 

a. General 

The transport of a neutrally buoyant pollutant can be described 

by the general diffusion equation (in Cartesian co-ordinate system)’ 

cum + ["1 C oz (1 II II 

MW 

57; ' xi Bx; 

where the dimensionless volumetric concentration C is a function of space 

(xi, i=l,2,3) and time t. The above equation is derived by considering 

the conservation of mass principle for the pollutant. (See w.w. Sayre (H). 

The terms under the sigma sign on the left hand side of Equation (1) 

represent the convective transport of the pollutant due to the time 

average velocity components U], whereas, the terms with the square bracket 

on the right hand side give the transport of the pollutant due to the 

fluctuating velocity and concentration fields. The transport due to the



fluctuating velocity and concentration fields is assumed to be proportional 

-to the concentration gradient (BC/axi), and the proportionality constant 

»ci is the turbulent diffusion coefficient in the ith direction. In other 

words, 5; is given by: 

e] = -u;’ c’- / 3C/Bx; . . . . . . . . . ._. . . . . . . . . . . . . . . . . . . . . . . . . . .. (2) 

where U;(is the fluctuating component of the velocity in the ith direction 

and C’is the fluctuating part of the concentration C. 

To describe the flow and concentration distributions in meandering 

channels, it is more convenient to have a co-ordinate system in which the 

longitudinal axis follows the meander. Such a covordinate system is defined 

as follows. Referring to Fig. l, x is measured along the centre line 

of the meandering channel which is assumed to consist of circular bends 

alternating with the straight reaches. y is measured along the vertical 

and z is measured perpendicular to both x and y, from the centre line. 

This system of co-ordinates is the same as the one used by Y. Chang (l), 

(l97l). In this system of co-ordinates, Equation (l) becomes: 

ac+13 cu 3 » 

.
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where hl is the metric coefficient given by, 

l + z/rc for the bend curving to the right 

. h1 = I for straight reach 

l - z/rc for the bend curving to the left 
i

.

l 

u, v and w are thevelocit-y components in x, y and 2 directions, respectively, 

whereasbex, ray, and 52 are the turbulent diffusion coefficients along the 

same directions. when Equation (3) is integrated along y from the bottom 

to the free surface of the flow, the resulting depth average version of 

Equation (3) is: 

_ H? __ = g 

_ — . .. - F
, 

~3h 3 (huc)+ L(h hcw) l__§)___(he: a_c) + §_(hhe_§_) “,5? 3-; ._ 32 1 hlax ‘ax. 2321232 

0 0 

I 

whet“: ff, ,7, E’, Ex and E2 are the depth average quantities. 

The dispersion coefficients EX and E2 now represent, 

E _ (.u'c' - u‘1c')/at X — __ 
3x 

.........(6) 
E = (wncll _ ‘WI 
Z 32 

where u", v" and w"are given by, 

U = T|"+ua: 

W = ;+w", 
andC = -E+C" 

7* The details of the derivation of Equation (5) from Equation (3) can be '. found_in E.R. Holley (-5), (l97l). 
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For the case of a continuous injection of the pollutant,8E/at 

becomes zero and the diffusion flux (Ex BE/ax) becomes negligible in 

comparison with the convective flux (6 E) and hence the Equation (5) can 

be simplified as: 

(h:a)+ a (h mi) = 3(h he sf) .——— 1 $1 Z";L 
3); 82 

.(8) 

using the depth average flow continuity equation 

§_y___(hG) + _a_ (hhw) =0 
3X 32

E 

Equation (8) can be written as: 

h G'§_:_ + h1\'~_2=_E_ = L h1hEzfl_ 
3x 32 32 32 

. .‘. . . . . . . . . . (10) 

Equation (l0) can be used to calculate concentration distributions 
provided that the depths, flow velocities and the dispersion coefficient E2 
are known. The first two items can be measured reiatively easily but 
measurements of E2 are usually time consuming and expensive. There are no 
methods for predicting E2 for changing hydraulic conditions and no laboratory 
measurements of E2 has been made for meandering channels in which there are. 
variations in bed topography. in this paper, measurements of 22 for such 
channel are reported and the effect of meander characteristics on E2 is 

investigated. A numerical method to solve equation (I0) is also outlined.



b, Dimensional Analysis 

“ V 

. To aid in the planning of the experiments and the analysis of data, 

;a dimensional analysis is performed to shed some light on the dependence 

of E2 on the various hydraulic variables. 

If the geometry of the flow boundaries is specified, then the flow 

structure and thus the E2 can be defined by the following characteristic 

parameters: 

34.. h, 9, u. ks 

when p and u are the density and the absolute viscosity of the fluid 

respectively and ks is the height of the equivalent sand roughness of 

the boundaries. 

In the case of meandering channels of various dimensions, the 6 V meander length A, the meander amplititude H and the channel width B 

(Fig. l) also affect 22. 

(ll) 

The dimensionless relationship which can be formed is 

52. =¢ (""9" 1 E E) 
Vfih u h h h H 9 9 9 I 

(12) 

In the present work, attention is focussed only on rough turbulent V 

” flows and for these flows the shear Reynolds number pvfih is no longer 

_

H 
a governing parameter. There is also evidence to suggest that the meander



length A'and the width B are interdependent. Figure 2, taken from Yalin 

(b) i972, presents data taken from various meanders in rivers, flumes, 

the Gulf Stream and in glacier ice and shows approximately linear relation- 

ship between A and B. Yalin (6), I972, drawing the analogy with the wave- 

length of sandunes, reasoned that the line A = 2wB corresponds to rough 

turbulent flow conditions. Therefore, for the present investigation 

it is not unreasonable to assume that A and B are interdependent and 

eliminate A/h from equation (l2). The parameter ks/h can also be replaced. 

by the friction factor f when considering rough turbulent flows. Therefore 

equation (l2) can be simplified to 

iv. E) II 

(13) 

or E2 ='\Y 
(f ll; 

’ B, h '...IOOIOOI(ll‘) 

in the experiments an attempt was made to keep the friction factor 

relatively constant. The channel width B was kept constant and the 

meander amplititude and flow depth h were varied to obtain variations in 

H/B and B/h. 

2. Experimental Set up and Procedure 

The meandering configurations chosen for the present experiments 

are shown in Fig. 3. The width of the channel is kept constant at 30 cm. 

The centre line of the channels are sine curves which can be approximated 

by circular arcs and straight reaches as shown in Fig. 3, The amplitude
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of meander H, varied from 30 cm to ISO cm, whereas the wave length of 

meander A, remained constant at 1.88 m, corresponding to A = 2nB. These 

channels were built one at a time on a sloping table measuring 15.25 m x 

_ 
2.4h m. The slope of the top surface of the table in the longitudinal‘ 

direction is l% while the same in the transverse direction is 0%. The 

general view of the whole set up with a meandering channel of amplititude 

30 cm is schematically shown in Fig. 4. 

water from the constant head tank of the laboratory flows through 

an inlet pipe and a diffuser into a head tank containing vertical baffles 

‘and smoothly enters into the meandering channel. At the downstream end 

of the channel, water passes through a tail gate down to a collecting 

chamber at the end of which there is a V notch weir to measure the flow 

rate. water flows through the notch to the sump from where it is pumped 

to the head tank again. The flow rate is controlled by a flow control 

valve at the inlet pipe and a rough estimate of the flow rate is made 

using an annubar flow meter mounted in the inlet pipe. 

The vertical sides of the meandering channels are made up of 

galvanized sheet metal while the bottom of the channel is covered with 

loose ottawa sand. The sand is initially molded evenly across the 

channel to a desired longitudinal slope and the equilibrium bed form, 

corresponding to a particular flow rate, is achieved by letting the flow 

scour its own bed. A vibratory sand feeder is used to feed the sand at 

the upstream end to compensate for the amount of sediment transported by 

the flow to the downstream collecting chamber. with the flow rate kept
I 

constant, the equilibrium bed is formed usually after six to seven hours. 

.‘|]..
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Equilibrium bed is said to have formed when the configurations of the 

flow cross sections at corresponding sections of the various meandering 

cycles are nearly identical. Once the equilibrium bed is formed, water 
"is drained away carefully without disturbing the bed forms and then the 

bed is solidified using the procedure suggested by M.B. Khalil (7) (i972). 

According to this procedure, the sand bed is allowed to dry until its. 

water content is about l0% of the total volume and a resin commercially 

known as ”Aerolite“ mixed with equal weight of water is sprayed evenly 

followed by a coat of dilute solution of formic acid, known as the 

"Gardener G.P.X.“. The resin and the formic acid react chemically and 

a hard crust is formed on the top surface of the sand bed without altering 

the roughness characteristics of the sand bed. For full details of this 

solidifying procedure, reference should be made to the original paper 

by Khalil (7) (I972); 

The presence of the secondary currents due to the bends in the 

channel causes the erosion of sand on the outside of the bend and deposition 
on the inside and hence the flow cross~sections exhibit a large variation 
of flow depth across the channel. The variation of flow depths at certain 
sections (near-the bends) is as high as 700% and this in turn causes an 
enhanced secondary current. Such a variation of flow depths in a cross- 

section is not noticed in the existing works on the dispersion studies 
in meandering channels. 

As indicated in the introduction, experimental flumes of Y. Chang 

(l) (1971). “-3- Fisher (2) (1969) and P. Engman (3) (i974) had flat rigid‘ 
' 0 ; . u ' o bottoms and hence, the variation of flow depth across a section IS only 

»due to superelevation, which is only of the order of a few percent and 
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Chang completely neglected it. Hence, the secondary currents present in 

these channels are not realistic and hence dispersion processes governed 

by these secondary currents do not correspond to those in nature. To 

the authors‘ knowledge, the present experimental set up is the only one 

so far to properly reproduce the variation of depth in a laboratory 

flume designed for dispension studies; 

The bottom profile and the water level elevations at various locations 

across the flume at a particular section were measured using a point 

gauge which facilitated the determination of the flow cross-sectional 

area A, wetted perimeter P, the hydraulic radius R and the flow depth h 

as a function of 2 at that section. The longitudinal velocity component 

was measured by aligning a pitot tube tip parallel to the x-axis at a 

particular section and at various locations along y- and z-axes, respecti- 

vely, which allowed the determination of the depth average longitudinal 

velocity component B as a function 2. Knowing h and U, the depth average 

transverse velocity component Q, is computed using the finite difference 

form of Equation (9). The hydraulic conditions of the flows tested are 

summarized in Table i. 

For the concentration measurements, salt solution was used as the 

tracer.‘ It was mixed with methonal to make it neutrally buoyant. The 

concentration of the tracer solution is 62.5 gm/litre. It was injected 

continuously at a point in the flow with the same velocity as the flow 

in the channel. 

The concentration of the salt-methonal mixture was measured using 

a single electrode conductivity probe of the type used by R.S. McQuivey 8 

_].L...
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TABLE 1 SUMMARY OF HYDRAULIC DATA 

Run No. H/B Average Hydraulic" Ax"/erage f’1ow ‘Average shear B/R f = 8 vi 
Radius R in cm 'v‘e1oc1t=y U ve1oc1ty \)* 

1 in cm/s in cm/s U

I G . 

- 1 1.0 2.85 _26.3 3.75 10.5 0.162 

2 2.0 1.89 
A 

26.8 3.07 15.9 0.105 

3 2.0 3.95 31.1 11.1111 7.6 0.163 

1+ 2.0 . 2.911 30.1 11.85 ' 10.2 0.2108 

5 3.0 3.30 27.8 5.12 9.01 
' 

0.271 

6 3.0 2.59 
V 

22.5 3.1h ‘11.6 0.156 

7 5.0 3.01 
I 

32.1 3.51 10.0 0.101



T.N. Keefer (8) (I972). This probe operates on the principles that when 

a large and a small electrode are immersed in an electrolyte solution, 

the resistance between the two will be governed by the volume elements 

adjacent to the small electrode. This theory was proposed by C.H. Gibson 8 

W.H. Schwarz (9) (I963). The construction details, the bridge circuit 

to be used in conjunction with this probe, the calibration and the 

operational details are explained in a laboratory report by F. Dunnett (l0) 

(1975). Concentration measurements were made at the same locations where 

the longitudinal velocity component was measured and an average value 

over the depth was computed. 

The dispersion coefficient E2 is evaluated using the “generalized 

change of moment” method proposed by the Holley (5), i971. Equation (8) 

is multiplied by Z2 and is integrated across the width of the channel, i,e. 

+ B/2 T B/2 

3 J Z2 dz + 
I 

3 h :4. 22 d2 
__. - —- 1 
3x 32 

4- B/2 
' B/2 

+ 8/2 
= 

I 
g_ ‘(h h E Q) 22 dz 

_ 

32 1 Z 32 
— 8/2 

(15) 

interchanging the order of integration and differentiation using Liebnitz 

Rule, carrying out some of the integration, and dividing throughout 
‘B/2 _ _ 

by the total flux of the tracer h u 5 dz_ we get: 
-B/2 
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+B/2 +3/2 

I h E E 22 dz 1’ hlh G E 2 dz
A 

-32 -B/2 _ 
9. 

/ * 2 
dx 

+B/2 +B/2 
h E 5 dz I h u C dz 

-B/2 ' -B/2 

+B/2 

‘I 
h h E 35' 2 dz 

1 Z 5; 
_ 2 

~B/2 

+B/2 

I hIIE dz 

-B/2 

.....(I6) I I ' I 

-In order to evaluate E2 from Equation (l6), its dependence on 2 has to be 

known. For example, if E2 is independent of 2, then it can come out of 

the integral sign in Equation (l6) and can be computed by knowing h, 6, 

E, and Q. Since the dispersion coefficient can be normalized with a velo- 

city and a length scale, the following relations are possible for the 

dispersion coefficient E2: 

a h v, 
I fl 

— a h U 
c =. 2z 

a H_v, 
3 - 

a H 5 
I; .4 

. . (17) 
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Each one.of the relationships listed in equation (l7) assumes a 

"different behaviour for 52. For example the first relation states 

that the transverse variation of E2 is the same as that of the local 

depth h, whereas the third relation assumes that E2 is constant across 

the width of the channel. 

Choosing, for instance, the first relation of (17): (i.e. E2 = a1 h v§), 

‘the Equation (16) can be expressed as: 

d o2(x) 4 9(x) = 2 0, f,(X)f 
'd—x" . 

(I8) 

+B/2 
where 

-B/2 

+B/2 

‘B/2 
l 

.(l9a) 

+3/2 

g(x) = 2 
-B/2 

+8/2 

-B/2 

(l9b) 

+8/2
_ 

J‘ h h2'v* fig _z dz 
-B/2 ' 32 

and fl (X) =
K 

' 

+B/2 

‘.3/2 '.*"".°°.-.--.-.(l9C)



Therefore, knowing o2(x), g(x) and f1(x), the dimensionless dispersion 

coefficient a1 can be evaluated from Equation (I8). The term 02 is the 

variance of the distribution of the flux of the pollutant and it re- 

presents the total spread due to both the diffusion and the transverse 

velocity. The term g(x) accounts for the spreading due to the transverse 

velocity and hence the difference (doz/dx - g(x))represents the effects 

of just dispersion. 

The application of Equation (18) to evaluate a requires the
1 

evaluation of the derivative of 02 with respect to x, and if the variation 

of 02 with x is not linear, which is perfectly possible due to the presence 

of the transverse velocity w, it is difficult to get an accurate evaluation 

of (do2/dx). This difficulty can be overcome by considering the integral 

version of Equation (l8),namely, 

O2(x) - G(x) + Al N R) Q '‘'l 

0-- 

r-xi X \J 
. . . . . . . . . . . . (20) 

where G(x)
X 

i g(x) dx _- 
° ,...........(2la)

X 

F (x) "' I f, (X) dx 
1 0 

_ 
‘A ............(2lb) 

and A1 is the constant of integration. _x0 in Equation (2l) is the location 

of the injection point. 

"niefiefore. by plotting a fgraph between" {cw-°-(x) - G(x)} vs F (x) and 
measur'. th ' - - - . . . Ing e slope of the line the dimensionless dispersion coefficient a1 
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can be obtained. It should be noted that if the variation of the 

dispersion coefficient is not correctly represented, then the plot between 

.'{o2(x) - G(x)} and F1(x) will not be a straight line. But it is not 

certain whether the converse is necessarily true. 

The values of o2(x) and G(x) as given by Equations (l9a) and (Zia), 

respectively, remain the same for all the assumptions regarding the 

variation of E with z.. The values of Fi(x), on the other hand, depend 

on the assumption used to describe 5;. Equation (l9c) gives the value 

of fi(x) when E; is expressed by the first of the four possibilities 

expressed by Equation (l7) and Equation (20) then gives the value of 

the dimensionless dispersion coefficient al. The values of fi(x) for the 

remaining expressions of 2 become: 

+8/2_ ' 

__ 
J’ h h2 u at 2 dz 

f2(x) 
"B/2 

I 

. . . . . . (22) 

+B/2 
‘ jh h‘; 3 dz 
-B/2 

+B/2 

J( h h H V* §§_z dz 
1 32 

f3(x) 
"B/2 ‘ 

. 

A 

. . . . . . . (23) 
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+8/2 

I h1hHu gi 2 dz 
_ 32 

>f.‘(x) = i 

. ...-o~.(2Li). 
+3/2 —-.—.-‘ 

I h u C dz 
-B/2 

and the corresponding dimensionless dispersion coefficients (ai, i=2,3,h) 

are.evaluated using Equation (20) with appropriate values of Fi(x). A 

computer programme was written to evaluate o2(x), G(x) and Fi(x) using 

the trapezoidal rule for the integrations.» The values of o2(x), G(x) 

and Fi(x) for all the runs are tabulated in an Appendix. 

3. Discussion of Results 

a. Flow cross-sections: 

Figs. 5a to lla depict the flow cross-sections at various locations 

along the channel for all the runs. It can be seen from these figures 

that the flow cross-sections vary along the length of the channel in a 

cyclic manner. As indicated earlier, the channel is deeper in the out- 

side of the bends and shallower inside, and hence the deeper and shallower 

portions interchange gradually. Because of this gradual interchange of 

the deeper and shallower portions, there are sections along the channel 

.where the bottom is almost flat. (See Sections l and 9 in Fig. 5a). it 

can also be noted from the cross-sections for various values of H/B, 

the meander amplititude to channel width ratio, that as H/B increases, 

the deeper portions are confined to sections close to the curved portions 

of the channel only and the length of the channel where the bottom is more 

or less flat becomes considerably larger compared to the channels with 

lower H/B ratios. 

-2]-
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b. Velocity Distribution: 

The depth average velocity vectors at various locations along the 

channel for all the runs are shown in Figs. 5b to llb. The depth average 

transverse velocity components were determined from the depth average 
' continuity equation (9) using the measured values of the longitudinal 

velocity components and the depths. It can be seen from these figures 

that the transverse velocity components are larger in sections near the 

bends, and hence, in channels with higher values of H/B, there are larger 

variations in the convective transport due to the transverse velocity 

components between different sections. 

It should be pointed out here that the measurements were carried 

out in stations, four or five meandering cycles downstream, thereby 

providing enough distance for the flow to stabilize. It was noticed that 

the velocity and cross-sectional distributions were similar in sections 

seperated by one meandering wavelength, when the flow is fully stabilized. 

c. Concentration distributions: 

The measured concentration distributions are shown by the solid lines 

in Fig. SC to llc for all the runs. The location of the injection of the 

tracer solution is shown by a cross X in these figures. The tip of the 

injection unit is aligned with the direction of the flow at the injection 

point in order to minimize the initial mixing. It can be seen from these 
figures that the concentration distributions become very nearly uniform 

within one meandering cycle. 
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The large convective transport due to the transverse velocity 

_ 

components in the bends is responsible for such rapid mixing in meandering 

channels. Therefore the_variation of the cross-sectional shapes along 

the length of the stream which gives rise to the transverse velocity 
components is a major governing factor for the mixing of the pollutants 
in natural streams. 

d. The dispersion coefficients 

Figs. l2 to l8 give the graphs between [c2(x) - G(xi] and Fi(x) for 

all runs. The slopes of the straight lines drawn through the experimental 
points are equal to.twice the dimensionless dispersion coefficients ai. 
For each run, there are four lines, each resulting from a particular 
assumption for the variation of the dispersion coefficient with 2. It 

has been mentioned earlier that if the variation of E; with z is correctly 
represented, then the graph between Eo2(x) - G(x)] and Fi(x) should be a 

straight line, and this fact can be used as an indicator for establishing 
the superiority of one assumption over the other. By looking at Figs. l2 

to l8, it can be seen that the scatter of the experimental points from the 
straight lines drawn through the points is of the same order of magnitude 
for all the graphs and hence, it is not possible to conclude from these 
figures which expression is the best representation for E;. 

One of the main objects of the present work is to investigate the 
dependence of the dispersion coefficient on the flow characteristics 
and flow geometry. Referring to equation (l#), the dimensionless 
dispersion coefficient (E;/v*h) is expressed as a function of the friction 
‘factor f, the amplitude to width ratio H/B and the width to depth ratio B/H. 
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Considering the different assumptions which are made for E; in equation 

(17) a general form of the dimensionless relationship can be written as 

°"‘=w“(f’%'%) ............(25) 
A summary of the values of al to dq which were obtained in the 

seven experimental runs are listed in Table 2, together with the other 

dimensionless parameters in equation (25). The values of.B/h are not listed 

because the depth varies both across the channel and along the channel 

and it is not easy to define one representative h. Instead, an average 

hydraulic radius, R, was calculated by considering all the sections within 

one meandering cycle and the parameter B/R is listed. It should also be 

noted that since the cross sectional area also varies in the downstream 

direction, the average velocity 6 also varies from section to section. 

For the calculation of the average friction factor f, the friction factors 

of all the sections within one meandering cycles were considered. 

In Figs. l9 to 22, the values of ai are plotted against H/B. 

a1 appears to increase slightly with H/B, whereas, as and an are 

decreasing as H/B increases. Values for dz exhibit rather large scatter 

and it is difficult to infer how it should vary with H/B. The absolute 

values of E2 in all cases-increases with increasing values of H, even 

though the rate of increase decreases as H becomes larger and larger. 

No attempt has been made to establish the effect of f and B/R on ai's 

since there are not enough experimental points. B/R values for the 

experimental data vary from 7.6 to l5.§, Whereas the f values range from 
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TABLE 2 SUMMARY or MEASURED D1MENSl0NLESS DISPERSION COEFFICIENTS 

-R0n No, H/B B/R f = E; 02 = E; = E; = E; _ii 

1 1.0 10.5 .162 0.075 0.020 .0211 .00351v_ 0.222’ 

22 2.0 15.9 .105 0.075 
0 

0.028 .0131 .0018 °-“'5 

3 2.0 7.6 .163 0.100 0.025 .0140 .0035 °-?‘3 

A 2.0 10.2 .208 0.163 0.055 .0186 .0060 ° 379 

5 3.0 9.0 .271 0-225 0 056 .0125 .0032 ° 338 

6 3.0 11.6 .156 o_2oo 0.005 .0093 .0010’ 0.320 
7’ 

5.0 10.0 .101 0-'3' 0.028 .0062 .0008 0.310
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0.lOl to 0.271. Even though both f and B/R have influence over the 

mixing processes, it was felt that the effects of H/B would be considerably 

larger than those of f and B/R.. Indeed, the variation of H/B alters
Z 

the distribution of the transverse velocity components in the vertical, 

which alters the differential convection and consequently, the dispersion 

coefficient. 

Referring to Figs. l9 to 22, as exhibits the least amount of scatter 

of the experimental points. it should be noted that as results from the 

assumption that the transverse dispersion coefficient E2 is constant across 

the width of the channel. Since it is difficult to establish the variations 

of E2 with z from the Figs. l2 to 18, and since a3 yields a better co- 

relation with H/B than the other dimensionless dispersion coefficients,. 

it can be concluded that for all practical purposes, the transverse 

dispersion coefficient E2 can be assumed to be constant across the width 

of the meandering channel. At this point it is interesting to refer 

to the work of F.M. Holly Jr. and D.B. Simons (ll), i975, who measured 

dispersion in trapezoidal channels, and obtained values of 52 by 

simulation. They also found best agreement between simulated and ' 

measured concentrations when 52 W85 assumed to be constant across the 

channel. 

In most of the existing studies on the measurement of the trans- 

verse dispersion coefficient E2, it is customary to lump the convective‘ 

transport due to the time average transverse velocity in together with 

the dispersive transport and calculate an overall dispersion coefficient. 
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An inspection of the values of G(x) in tables in the Appendix A which 
represent the cumulative effect of transverse velocity Q along the 
length of the channel, indicates that both O2(x) and G(x) are of the 
same order of magnitude; This implies that the magnitude of the 
convective transport is of the same order of magnitude as the dispersive 
transport and is one reason why field measurements all reported much 
larger values of transverse dispersion than flume values. Lumping the 

‘convective transport and dispersive transport together has the following 
disadvantages. First of all, by lumping the convective transport with 
the dispersion transport and calculating the dispersion coefficient, 
it is implicitly assumed that the convective transport can also be 
given by a gradient type expression similar to Equation (6). At present, 
it is not possible to say whether it is so. Secondly, the convective 
transport changes its direction along the length of the channel, some- 
times acting in the direction of the dispersion transport and sometimes 
in the opposite direction. Inclusion of convective transport with the 
dispersive transport, therefore, would result in a larger scatter in 

figures l2 to 18, thereby making it difficult to evaluate a reliable 
value for the dispersion coefficient. In order to overcome these disad- 
vantages, in the present research, the effects of transverse velocity is 

subtracted from the total spread and hence the dispersion coefficient 
accounts for only the turbulent diffusion and the differential convection, 
which at the present state of knowledge we are not able to predict. 

The existing values for the transverse dispersion coefficients are 
usually expressed in terms of the shear velocity and the mean depth or 
the hydraulic radius. Hence, in order to compare the results of the 
present study with the existing data, the transverse dispersion coefficient 
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22 was made dimensioniess using the average shear velocity v* and the average 

hydraulic radius R and are shown in the last column of Table 2. 

The values for E2/v*R vary between 0.2l3 and 0.hl6 and are larger than 

published values for straight open channels which generally vary between 

O.l and 0.2. This is not surprising since the differential convection 

in straight channels is due to secondary circulation resulting from trans-_' 

verse variations in shear stress while in curved channels there exists 

in addition secondary currents caused by variations in centrifugal forces; 

However, the present values of E2/v*R are considerably smaller than those 

given by Chang (I) who obtained 22 by comparisons of numerical simulation 

and laboratory measurement of concentration distribution in meandering 

channels. ‘Chang (l) allowed E2 to vary with distance along the channel 

but the average values of E2/v*R were between 0.62 and 1.23. In the next 

section it will be seen that simulation of the present observed concentration 

distributions using values from Table 2 were also quite successful. There- 

fore it is suspected that the big difference in the mixing coefficients 

may be caused by the fact that Chang's measurements were made in channels 

with rectangular cross sections and flat bottoms whereas the present 

experiments were performed in channels with large transverse variation 

in depth as well as variations of cross section in the downstream 

direction. 

4. Numerical Prediction of Concentration Distribution 

Knowing the values of the E2 as a function of amplitude of meander 

to width ratio H/B and using the measured values of G and h it is possible 

to predict the concentration distribution of a pollutant in a meandering 

channel by solving Equation (10). However, it is not possible to obtain 

an analytical solution and therefore a numerical procedure is outlined 

below. 
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Expanding the RHS and rearranging terms, Equation (10) can be written 

as; 

+viaE = oazé .............(25) Q) 

x 
nu 

~| 
o: N N 

V=h_T~'_-1_§_(hhE) ‘F Tmz 1 

. ........—.(2.7) n=h- ' 

_1_'€Z
U 

Following the discretization procedure recommended by H.L. Stone and P.L.T. Brian 

(i2)(]963), Equation(iO)i can be expressed in finite difference form as: 

1A_X_ 
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For an optimum numerical solution without numerical oscillations and 

dispersion, Stone and Brian recommend the following values for 6 and e, 

with c = e/2, a = d and m = 9/2. 

e=% 

the weighting coefficients become: 

6: = 1 » 

if "‘ 6 am)
2
3 up 

a = c = d =_} 3 ex‘ % 

Knowing the concentration distribution at a station, say i, and using the 

no flux boundary conditions across the side walls, the expanded version 
of Equation (23) can be solved for the concentration distributions at 

subsequent stations i+l, i+2, etc., by solving the following matrix 
equations by Gauss‘ elimination method. 

_, 
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= 1 v . 1 d -' f=2‘ where qj 5_;__+ D'’J __ + "J _ ( c) (J .m) 

Ax A22 A2 

= - L + D. I + V I d (‘=3 
P5 -9 Ax '»J 3322 '~J Az 

J ’m) 

. = — + D I 
- v I c (5=2.m—‘r) rJ TE "J 2Az2 "J 7 - 

I _=E.. .+ei +E.. .-2.0D..+V..(d—) and SJ 1,;-l (PJ “jg;) '9J qJ Zfir |,J |.l
C 

' 

Z A 2 

ch”, (V + 2.0 g?) (j=2,m) 

The coefficients Vij and Dij (given by Equation (27l‘ can be evaluated using 

the measured values of J, h and E; and the computed values of W,‘ 

The listing of a computer programme to predict the concentration 

distributions of a tracer injected continuously in a meandering channel. 

using the measured values of E, h and E2 is given in Krishnappan and Lau (13). 

Using the above numerical scheme and the measured values of as the 

concentration distributions were predicted for all the runs and these pre- 

dictions are shown in Figures 5c to l2c. Note that a favourable agreement 

exists between the measurement and the prediction. In order to check the 

effect of the variable dispersion coefficient on the numerical scheme, 

the concentration distributions were also predicted using the dimensionless 

dispersion coefficient a2. The results indicated that there is no



significant difference between these predicted concentrations (not shown). 

This is only reasonable, because the dimensionless dispersion coefficients 

are evaluated using Equation (10) and the variances calculated from 

measured concentration distributions and hence the substitution of these 

coefficients back into the equation should yield concentration distributions 

not too different from each other. 

Holly (ll) also performed numerical simulations using experimentally 

derived dispersion coefficients and compared the simulated distributions 

with measured ones which were obtained in a straight channel of triangular 

cross section. He found that for the cases where the tracer was injected 

at the centre of the channel, different assumptions for q produced about 

the same result but for the cases where injections were made at the sides, 

only the assumption of constant 52, i,e. as, gave resonable comparison 

with measured data. 

5. Conclusions 

From the present experimental programme on the transverse dispersion 

in meandering channels, the following conclusions can be drawn. 

l. The variation of the flow depth across the width of a 

meandering channel with movable bed is large and plays 

an important role in setting up transverse currents, 

thereby affecting the dispersion processes. 

2. The convective transport in the transverse direction is 

of the same order of magnitude as the transport due to 

dispersion. 
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The transverse dispersion coefficient 52 can be treated 

as being constant and independent of z. 

The variation of the dimensionless dispersion coeffi- 

cient aa can be roughly represented by the curve shown 
in Fig. 2], although slight variations with f values can 
be expected. 

Prediction of concentration distribution of a pollutant 
in meandering channels can be achieved using the numerical 
method described in the report. 
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co-ordinate along the centre line of meandering channel 

co-ordinate along the vertical 

co-ordinate along the transverse direction perpendicular 
to both x and y 

metric coefficient 

flow depth 

average hydraulic radius over one meandering cycle 

meander wavelength 

meander amplitude 

channel width 

radius of curvature of circular arc 

density of fluid 

absolute viscosity of fluid 

velocity components in x, y and 2 directions, respectively 

average shear velocity over one meandering cycle 

volumetric concentration of tracer 

diffusion coefficient in the ith direction 

a , a and a . 

2 3 ‘O 

dimensionless dispersion coefficients in the 2-direction 
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Tabulated values of O2(x), 

APPENDIX A, 

G(x) and Fi(x) for all the runs. 
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.RUN ND: | 

‘ SECTION o’(x) 61x) F1(x) F2(x) F,(X) F.(*) T ” 

§ 

2 12.82 

3 2h.63 — 10.78 16.9 .73 5 79:9 017 9 

4 h7.38 - 16.81 33.5 115.7 1h8.h . 855.2 

5 57.18 - 5.76 49.1 222.6 216.3 1316.0 

‘ 

6 55.98 — 5.51 69.7 279.9 295.2 1798.0 

7 117.73 - 13.611 711.8 336.5 381.3 2203.0 

8 67.53 - 3.56 .85.8 392.9 473.6 2591.2 

1_ ‘I'M N0: 2 

SECTION O2(x) c(x7 F1(x) F2(x) p3(x) ph(x) 

3 511.93 

4 54.36 2.85 7.8 
' 

52.1 122.9 413.4 

5 63.41 10.8h - 15.1 
' 

90.5 256.0 825.1 

A 

6 57.89 - 3.35 
_ 
20.0 126.ov 375.0 1211.5 

7 17.51 - 22.80 26.h 162.9 067 8 1152.5 

8 51.77 — 10.60 35.5 205.3 583;] 1696.h 

. 9 66.07 
' 

2.62 113.11‘ 
‘ 

2118.3 731.1 2061.3 

10 59.71 .3.2u 52.1 292.6 855.2 
. 
2837.6 
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RUN N0: 3 

.. 

.. 

-..~ 

-v-v---—-.-..v-———~ 

SECTION o’(x) G(x) F1(x) F2(x) F3(x) F~(x) 

{I} 
'3 

12.20 

11 59.66 9.211 13.11 107.5 200-2. 532-9 

5 66.50 6.22 37.2 210-2 '1°9-‘ ‘O55-9 

5 53_11(, - 11.39 56.0 , 288.5 579.3 11132-"1 

7 19.59 - 36.00 72.9 355.2 677.0 1650.6‘ 

8 39.31 - 32.19 91.7 335.7 798.1 1861.7 

9 65.02 - 19.98 118.8 933-3 220“-7 

10 71.115 1.32 1119.2 656.9 1183.8 2635.1 

‘fun 110:

I 

s£c11oN 02 (x) t§(x) F] (x) F27(x) F3 (11) F“ (x1 

3 15.61 

9 33.111 — 9.75 12.6 711.9 173.7 580.8 

10 33.96 — 17.112 27.1 1511.1 367.0 1138.9 

_11 25.92 ~ 29.09 50.8 2511.8 560.9 1637.8 

12 22.77 A - 27.37 88.8 391.11 770.8 2117.6 

13 26.66 -36.90 1112.3 _l176.9 1082.9 2155.5 

. 111 117.53 - 65.27 186.9 510.5. 1390.11 27011.8 

15 63.13 — 71.52 211.1 576.5 3095.5 16011.8 
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RUN NO: 5 

SECTION o‘(x) G(x) F1(x) F2(x) F3(x) F~(x) 

,4“ 5 15.87 

6 15_3h _ 0_47 22_1 77,9 335.6 516.3 

7 I, 25 _ 7_58 g5_3' 150,1 596.6 781.9 

8 22_h3 _ 8_72 52_9. 202,1 798.8 1085.0 

9 35.72 o_(,3 81.9 276.1 1121.3 1535.3 

‘ 

10 57.86 3.98 100.5 355.6 1505-5 2°5;19 T 

11 52.51 5.59 116.3 426~1 1832-2 255‘-6 

12 26.12 ~ 55.00 137.1 579.2 2251-9 233“-9 

.5011 NO: 6

1 

SECTION O2(x) . G(x) Fi(x) F2(x) F3(x) V F~(x) 

5 5.90 

5 10.61 1.05 5.6 '61.1 201.1 660.9 

6 15.56 - 0.18 13.5 130.6 393.0 1229.5 

7 8.51 — 3.85 .22.7 199.8 550.3 1656.9 

8 12.75 - 5.82. 31.9 277.5 686.5 2115.3 

9 21.59 - 0.60 50.5 357.6 868.5 2716.0 

‘t’ 
10 30.00 .5.73 58.2 

' 525.6. 1069.6 3311.7 

11 39.17 10.01 55.5 589.3 1282.0 3922.5 
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RUN NO: 7 

4 SECTION 02(x) G(x) 'F1(x) F2(x) F3(x) F“(x) 

5 16.06 

6 23.20 - 3.11 6.7 73.2 341.2 654.1 

7 21.94 — 11.76 13.9 142.8 696.6 1212.6 

8 16.22 - 17.18 41.8 309.9 1073.7 1823.5 

9 26.33 - 7.99 77.9 511.4 1487.9 2495.9 

10 43.67 3.29 95.9 614.3. 1871.7 4_ 3000.5 

11 59.69 10 05 107.1 677.6 2209.7 3404.9 

- ‘ 12 58.89 12.11 118.3 735.8 2593.8 3827.3 

13 63.58 5.56 128.1 
9 790.0 2964.4 4290.5 
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