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ABSTRACT 

Data on four eutrophication indicators, collected in the years 

l966 to T975 by the Canada Centre for Inland Waters, have been 

summarized. The data for offshore, near-surface waters are condensed 

to summertime averages for each year, to search for trends. The parameters 

are: Secchi transparency, chlorophyll aJ particulate organic carbon, 

and total phosphorus. Basins examined are: Lakes Superior, Huron and 

Ontario and Central Lake Erie. Lake Michigan is omitted. 

A new trophic scale and classification scheme are developed to 

enhance the interpretation. Trophic indices for the four parameters 

have been assigned, based on observed relationships between the parameters. 

A medium or 'mesotrophic' range of 3 to 6 metres Secchi depth has been 

arbitrarily chosen, and corresponding ranges in the other parameters have 

been derived. 

The new trophic scale is linear with respect to plankton concentration. 

All values are trandfirmed to a scale on which l0 units is the lower limit 

for 'eutrophic'. The mean trophic indices for recent summers are: 

Lake Superior 2.7, Lake Huron 3.0, Central Lake Erie 8.0, and Lake Ontario 

ll.2. 
‘ 

* The only trend that was found among these parameters and basins 

was an increasing Secchi "turbidity”value in Lake Ontario: th- rate of 

increase was about 40% per l0 years. 

The role of dissolved oxygen conditions in the typology of lakes is 

discussed. 

F-zou (REV. 12/595 FD-c



INTRODUCTION 

1 At the present time, the primary remedial activity being undertaken \\ 

2 to improve water quality in the Great Lakes is the reduction of the </ 

<1, 3 phosphorus loadings to Lakes Erie and Ontario. This is being done to 
‘ \ 

4 cOmbat eutrophication, in particular to restore good dissolved oxygen l 

5 conditions to Lake Erie and to decrease phytoplankton abundance and /// 

6 the associated surface—water turbidity in both of the lakes. The 

7 present paper contributes knowledge relevant to this management of trophic 

3 conditions, by summarizing some of the water quality data collected by 

9 the Canada Centre for Inland Waters since 1966, and by developing a 

10 trophic scale and classification for the same data. It is intended that 

11 trend graphs published herein will be kept up—to-date in future years to 

12 show the progress of trophic management. 

13 A brief introduction to the problem of eutrOphication of lakes can 

14 be found in Hutchinson (l973). Further background information can be 

15 found in a review by Stewart and Rohlich (l967), a study by Vollenweider 

16 (l968), and the proceedings of a symposium titled "Eutrophication: 

17 Causes, Consequences, Correctives” (l969). 

18 

19 The Great Lakes Water Quality Agreement 

20 The Water Quality Agreement of l972 between Canada and the United \\\\ 

21 States established as a general water quality objective that Great Q: /.
\ 

22, Lakes waters should be free of nutrients in concentrations that create \ 

23 nuisance growths of algae, and further that dissolved oxygen conditions 

24 in Lake Erie should be improved (reference: Governments of Canada and 

25 the United States, l972). The agreement includes a specific water 2 
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1 quality objective for dissolved oxygen, approximately 50% saturation ‘\:> 

2 or greater. Phosphorus is identified as the key nutrient whose loadings 
K3 

3 are to be reduced in order to manage algal abundance and dissolved I/B 

4 oxygen. For phosphorus, the quantitative objective is given in terms \. 

5 of annual loadings, rather than concentrations within each lake. The 

6 agreement calls for the phosphorus loadings to Lakes Erie and Ontario 

.7 by l976 to be one half of the loadings in l97l. 

8 I hope that the present work will draw attention to actual lake 

9 conditions and perhaps help in the establishment of specific water 

10 quality objectives for eutrophication parameters such as chlorophyll, 

11 transparency, and total phosphorus. 

12 

13 Review of earlier Great Lakes work related to eutrOphication 

14 Beeton (l96l, l965, l966, l969) studied aspects of Great Lakes 

15? eutrophication for which data were available at the time: mainly 

16 historical changes in the concentrations of major ions and in the annual 

17 commercial fish catches. The major ion history was suggestive but not 

18 conclusive evidence of parallel changes in nutrients and plankton. The 

19 history of dissolved oxygen in central Lake Erie was just beginning to 

20 be observed and understood by Beeton and by Carr (1962). 

21 The period of recent studies of dissolved nutrients in the Great \\> 

22 Lakes began with Shiomi and Chawla's (l970) study of nutrients in Lake (*
V 

23 Ontario. They showed the large seasonal cycles in surface waters with 
fi> 

24 depletion of phosphate and nitrate in summer.
‘ 

25 Further descriptions of dissolved nutrients in surface waters of 

\I F4036 (REV. |2/69) FD-G
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Lakes Erie and Ontario were published by Gachter, vollenweider, and 

Glooschenko (l974). 

Dobson, Gilbertson and Sly (l974) published a summary of 

dissolved nutrient conditions in surface waters of the Great Lakes 

excluding Lake Michigan. The upper Great Lakes were shown to have 

abundant nitrate and silica in summer, which were not used due to an 

extreme shortage of phosphate. The two lower lakes had depletion of 

nitrate and silica in summer due to an abundant supply of phosphate. 

Schelske and Stoermer (l97l) discussed one consequence of 

eutrophication or increasing phosphorus loadings: silica concentrations 

show long-term depletion and become especially low each summer, which 

causes diatoms to be replaced in summer by green and blue—green algae. 

Lakes Erie and Ontario now show especially low silica concentrations 

(Dobson, Gilbertson, and Sly, l974), and a diatom minimum in summer ‘ 

(Vollenweider, Munawar, and Stadelmann, l974).
I 

Dobson (l967) reported on dissolved oxygen conditions in Lake 

Ontario. There was only slight depletion in the hypolimnion during 

summer l966. Such a deep lake is not likely to have an oxygen problem, 

even with considerable fertilization. 

Dobson and Gilbertson (l97l) reported the history of dissolved 

oxygen depletion each summer in the hypolimnion of central Lake Erie, 

in the period l929 to l970. In that period the depletion rate doubled; 

zero oxygen concentrations in late summer occurred after about l960. 

Chlorophyll a_distributions in surface waters of Lake Huron 

during l97l were reported by Glooschenko, Moore, and Vollenweider (l973). 

7-2036 (REV. 12/69) FD-6
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They showed that Saginaw Bay had extremely high values. Saginaw Bay 

is excluded from the 'offshore' zone used in the present paper. 

Distributions of chlorOphyll a_in surface waters of Lake Erie 

during l970 were described by Glooschenko, Moore, and Vollenweider 

(l974); Their paper shows horizontal distributions in detail, including 

the eutrophic west basin. In the present paper only the cruise-mean 

values in the offshore part of central Lake Erie are reported for that 

lake. 

David/(1964) reported phytoplankton counts at a Cleveland water 

intake (Divisibn Avenue Filtration Plant) over the years l919 to l963. 

Unfortunately, cell counts were used, rather than biomass estimates 

from counts and cell volumes. His conclusions were: the phytoplankton 

have increased in abundance; the seasonal maxima have-become more 

pronounced; the seasonal minima have become less pronounced; the winter 

minimum did not occur in some recent years; and there were changes in 

species composition. 

The direct study of Great Lakes phytoplankton has advanced to open— 

lake areas only recently. Also the useful "Uterm6hl" technique has 

been introduced in the recent work (Utennohl, l93l; Braarud, l958). 

Due to the difficult and time-consuming nature of microscopical phyto- 

plankton counting, and due to great geographical and seasonal variability, 

the phytoplankton distributions are just beginning to be observed and 

understood. It is only with great effort that long-term trends will be 

observed from microscopical counts over the next decade when the lower 

Great Lakes might recover from eutrophication. 

F-2036 (REV. 12/69) FD-G
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Recent papers on phytoplankton in the Great Lakes include those 

of Munawar and Nauwerck (1971) on Lake Ontario, and Munawar and 

Munawar (1975) dealing with the phytoflagellates. The paper by 

Munawar, Stadelmann, and Munawar (1974) was a comprehensive study of 

a nearshore and an offshore station in Lake Ontario, inclUding 

considerations of chlorophyll and dissolved nutrients in relation to 

the phytoplankton. Recent studies of phytoplankton abundance in all of 

the Great Lakes have been reviewed and synthesized by Vollenweider, 

Munawar, and Stadelmann (l974). 
‘ 

Zooplanktbn Studies of the Great Lakes have been summarized by 

Watson (1974). There is little evidence for long—term trends due to 

the sparsity of sampling in earlier years. 

A multi-parameter approach was taken by Stadelmann and Fraser
\ 

(1974) in a study of a vertical north—south mid-lake section in Lake ':> 

Ontario. Vertical structure throughout the year was emphasized, and \ 

parameters included temperatUre, dissolved inorganic nutrients, and 

organic particulate matter. For early summer, they showed that 

chlorophyll, particulate phosphorus, and particulate Organic nitrogen 

had maxima near a depth of 10 metres. This places some limitation on 

the surface—layer average values calculated in the present work. The 

reader is asked to survey the depths of near-surface samples, listed in 

the appendix herein. 

Another study by Stadelmann and Munawar (1974), based on data 

for various biomass parameters at two stations in Lake Ontario, 

emphasizes that much of the particulate organic carbon is in detritus 
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1 or non-living particles. The paper discusses the usefulness and 

2 limitations of the various parameters such as Chlorophyll, particulate 

3 organic carbon, and phytoplankton volume estimates, and therefore that 

4 paper is a useful background document for the present work. 

6 Background for development of a trophic scale. 

7 Two prominent limnologistsin Europe during the 1920's were 
' \x 

8 E. Naumann and A. Thienemann, who both began the field of lake 'trophic'
>/ 

9 typology or classification. Naumann characterized lakes by their {/
2 

10 phytoplankton abundance in surface waters in summer, whereas Thienemann 1 

11 emphasized the degree of depletion of dissolved oxygen in the deep
\ 

12 waters in summer and the associated types of benthic organisms (Rodhe, l969; 

13 Hutchinson, T973). It was‘probably not understood at that time that 
‘14 these two major aspects of temperate lakes are not well—correlated in a 

15‘ series of lakes, dissolved oxygen being very dependent on the thickness 

16 of the hypolimnion. The two alternative classification schemes are some— 2 

17 times contradictory. lAlso at that time practical methods for phytoplankton‘ 

18 standing stock determination, such as the chlorophyll method, were not yet
:

l
1

I 

.19 developed, and this made Naumann's classification procedure quite 

2° subjective. Classification of lakes has been quite unquantitative r 

21 nearly to the present time, and many limnologists have used the 'trophic':? 

22 scheme without clear quantitative definitions (Vallentyne, Shapiro, and y) 
23 others, 1969).

V 

24 The usual definitions of words used in the 'trophic' system in 

25 limnology, as found in Webster's Seventh New Collegiate Dictionary (l970), 

F-2036 (REV. 12/69) FD-6
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are satisfactory as a starting point, although they contain the problem, 

still customary in limnology, that Naumann's and Thienemann's approaches 

are combined: 

"Trophic: of or relating to nutrition. { 

Oligotrophic: of a lake: deficient in plant nutrients and usually 

having abundant dissolved oxygen with no marked stratification. 

M§§g_- (prefix): middle, intermediate. 

Eutrophic: of a lake: rich in dissolved nutrients but often 

shallow and with seasonal oxygen deficiency. 

hyper — (prefix): excessively.
I 

Dystrophic: of a lake: brownish with much dissolved humic 

matter, a small bottom fauna, and a high oxygen consumption." 

Naumann's concept of trophic status is contained in the following 

quotation published by Elster (l958) quoting from Naumann (l932), in 

translation from the German: "The term “eutrophic” can thus be used 

(for standing waters) only when a water rich in phytoplankton is involved 

which always shows from spring till autumn a coloring typical for 

vegetation, and in which water blooms start in summer a rather long period 

of high production. A contrast is presented by the concepts of 

oligotrophy and dystrophy, both referring to waters poor in plankton; in 

the first case there is clear water, in the second, brown water." 

Naumann's approach to lake classification is also succinctly stated 

by Hutchinson (l973): “Naumann throughout his works gives the impression 

that he liked to draw limnological conclusions, expressible in schematic 

tenns, merely from looking at lakes." For Naumann the appearance of a 

F4036 (REV. l2/69) FD-G
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lake in summer was the fundamental property. For any human observer, 

clear waters are highly valued aesthetically and are judged to be the 

most beautiful. Further, there are fewer practical problems (for 

instance in municipal drinking water systems) with clear waters than 

with those having abundant phytoplankton. Thus Naumann's approach to 

classification has continuing value and usefulness. 

But dissolved oxygen will not be neglected, it being also a 

fundamental parameter of water quality. The place of oxygen in lake 

typology is discussed later in this paper, and it is intended that 

dissolved oxygen conditions in the Great Lakes will be the subject of 

a later paper. In this present paper I advocate that dissolved oxygen in 

lakes should be studied for its own sake, and not primarily in relation 

to lake trophic classification, which concept will be narrowed to surface 

water quality only (see discussion in Jarnefelt, l958). 

Some limnologists contend the traditional or classical system of 

lake trophic types (oligotrophic-mesotrophic—eutrophic)has failed 

(e.g. Shapiro, 1975). This present paper retains part of the old system 

by introducing four quantitative trophic class ranges of four easily 

measured and inter—related parameters indicating near-surface plankton 

abundance, thus renewing and quantifying the original stance of 

Naumann. 

Parameters of eutrophication f
I 

For the measurement of trophic status and trends, useful parameters 

include standing stock of particulate organic matter, transparency of the 

F4036 (REV. 12/69) FD-G
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water, dissolved inorganic nutrients, dissolved oxygen, phosphorus 

and nitrogen loadings to the lake, and others. Table l is a list of 

individual parameters that are being measured by the Canada Centre 

for Inland Waters in its ongoing Great Lakes program. The table was 

created by Dr. R. A. Vollenweider and a Eutrophication Committee 

under his chairmanship, the committee being attached to the Great Lakes 

Research Advisory Board of the International Joint Commission. 

Standing stock of plankton and detritus, and specific fractions 

thereof, can be measured by a number of parameters, with the additional 

aid of filtration. The problem has been admirably discussed by 

Watson, Carpenter, and Munawar (l975). Two parameters for particulatev 

organic matter are used in the present work: total chlorophyll a) 

which includes active and degraded chlorophyll §_and thus measures 

detritus from the phytoplankton as well as living cells; and particulate 

organic carbon, which includes all plankton and their detritus. 

'Transparency is obtained from the traditional Secchi—disc depth 

of disappearance. 

One 'causative' variable is included in the present study, namely 

total phosphorus measured without_any filtration. 

The other variables in Table 1, especially dissolved oxygen and 

dissolved inorganic nutrients, are left for future research on trophic 

status and trends. 

It should be noted that recently the phytoplankton production 

measurement using carbon l4 has been advocated for trophic assessment 

(e.g. Rodhe, l969; Vallentyne, Shapiro, et al. l969). That parameter is 
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1 an 'activity' of the phytoplankton rather than their standing stock or 

2 concentration. For the present research, the amount of a constituent, 

3 rather than its metabolic activity, is chosen for the trophic assess- 

4 ment.

5 

6 METHODS 

7 A pictorial introductory account of the methods is contained in a 

8 report by Carew and Williams (l975). 

10 Secchi depth, l966 to l975. 

11 The 'Secchi depth' was the depth of disappearance of a white disc 

12 30 cm in diameter suspended on a line calibrated in metres. An 

13 approximate indication of precision isi at the TO metre level, i l 

14 metre; at the 3 metre level, f 0.5 metres. The ships proceeded from 

15 station to station during night-time as well as daytime, but of course 

16 Secchi observations were only made at daylight stations. Thus the 

17 Secchi depth data are not as numerOus as the other parameters. 

18 

19 Total chlorophyll a, l967 to l975. 

20 .”Total chlorophyll a_" includes pheo—pigments (degraded chlorophyll)
{ 

21 in forms such as zooplankton feces. A correction for pheo-pigments 

22 to give corrected or undegraded chlorophyll only, was not applied in 

23 the present work, it being thought that total chlorophyll a_is the 

24 better indicator of water quality, though not of live phytoplankton 
25 biomass. Pheo-pigments in Lake Ontario were discussed by Glooschenko, 

F-203G (REV.12/69) FD-G
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Moore and Vo11enweider (1972). 

For the years 1967 to 1969, the fluorescence method of 

Lorenzen (1966) was used, with continuous measurement of i__yiyg 

ch1orphy11 in a continuous f1ow system. Data for a11 'stations' 

were ektracted from the recorder-trace. Ca1ibration was done by 

comparisons with a spectrophotometric method using the equations 

of Parsons and Strick1and (1963). A correction for phaeopigments 

was not made; thus the resu1t can be ca11ed 'tota1 ch1orophy11 a_. 

For the years 1970 to 1975, the spectrophotometric method of 

Strick1and and Parsons (1968) was used except that the equation for 

computation of tota1 ch1orophy11 §_was that of 'Unesco' (1966). 

Discrete samp1es were fi1tered through a Whatman GF/A g1ass fi1ter 

to which 5 drops of a MgCO3 suspension were added. Fi1ters were 

kept, unti1 ana1ysis, at minus 100 C. Fi1ters were ground with a 

tef1on homogenizer for 1 minute in 3 m1 90% acetone’made up to 10.0 

m1 vo1ume, and p1aced in the dark at room temperature for one hour 

to improve extraction. After centrifugation for 10 minutes at 3000 

r.p.m., ch1orophy11 a_was spectrophotometrica11y determined. The 

vo1ume that was fi1tered varied according to the ch1orophy11 and 

detritus content. 

Particu1ate organic carbon, 1972 to 1975. 

The samp1e was first we11—mixed and a measured vo1ume (300 m1 

to about 1 1itre) was fi1tered through pre—ignited GF/C fi1ters. 

The residue was washed with about 4 to 5 m1 of 0.3% H2804 and then 

with about 4 to 5 m1 of carbon-free water. The residue was dried and

1 
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stored in a vacuum desiccator. For analyses, a Hewlett—Packard 

185 CHN Anaiyaer was used. Prior to 1974, peak heights were read. 

From 1974 the Anaiyzer was equipped with an integrator. Analyses 

were done about 1 to 6 weeks after sampling. Bianks were prepared 

in the fieid by washing pre-ignited GF/C fiiters with about the 

same voiume of the diiute H2504 and wash—water, and subjecting the 

fiiters to the same process as the sampies received. Precision 

at the 1eve1 of 20 ugC/iitre was is ug/iitre. 

4030 (REV. 12/69) FD-G
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Total phosphorus, l967-l975 

There was no filtration. 

Before l973, samples were acidified with l.0 ml 30% H2504 per 

100 ml sample and stored for up to one month in glass bottles. 

The samples were digested in a sulfuric acid - potassium persulfate 

mixture and then analyzed by the Auto—Analyzer I (l967—l972) and AA II 

(l973—l975) ammonium molybdate—stannous chloride colorimetric method 

for reactive phosphate, using an acid baseline (wash) water (Philbert 

and Traversy, l973). Up to l972, the samples were digested by heating 

on a gas-heated hot plate until dense white fumes appeared. From l973 

samples were digested in an autoclave aboard ship and analyzed aboard 

ship. Blanks were prepared by subjecting deionized—distilled water to 

the same treatment as the samples. ‘Approximately one in every 25 samples 

was a blank. 

Before use, the glass containers for total phosphorus samples were 

washed with chromic acid or sulfuric acid, and then rinsed with tap 

and deionized-distilled water. 

Working range was 0.5 to 50. pg P/litre. Detection limit was about 

320 ug P/litre.‘ The standard deviation near the detection limit was 

:1.0 pg P/litre. 

RESULTS 

The data—base 

The data for the four parameters are those from numerous discrete 

cruises, approximately monthly, of vessels of the Canada Centre for 

F-2036 (REV. 12/69) FD-G
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1 Inland Waters in the years 1966 to l975. 

2 It is the strategy of this work to use summertime mean values in 

3 offshore, near—surface waters. But first the seasonal cycles will 

4 be examined to understand seasonal trends occurring in the summer 

5 periodi thus all cruises having lake—wide water quality data are 

6 used. The cruise-mean values for offshore, near-surface waters are 

7 listed in the Appendix at the end of this paper: they are the 

8 foundation of the present work but also this data summary of cruise-mean 

9 values may be useful for other Great Lakes research such as plankton— 

10 modelling. 

11 Only the "offshore" zones are considered in this work. Stations in the
/ 

12 data—listings were selected on the basis of their soundings, according 

13 to the limits shown in Table 2. The offshore zones thus defined are 

14 illustrated in Figure l. 

15“ Only the near-surface data are used. Samples were chosen from the
i 

16 upper 10 metres of the water column, where possible. In the earlier 

17 years, the only sample depth available was the l—metre depth; in 

18 intermediate years, the depths l, 5, and lo metres were available; and 

19 in later years, integrated samples over the depth range 0 to 20 metres 

20 had to be used. These details are recorded in the data summary in the 

21 Appendix of this paper. 

22 The regions chosen have a thermocline in summer which isolates the
‘ 

23 near-surface waters from the bottom sediments. Resuspension of sediments
} 

24 cannot be influencing the properties of the near-surface waters of the 

25 chosen regions in summer. This point is especially important for 

F-2036 (REV. 12/69) I’D-6
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Tabie 2. The sounding criteria used for ciassifying the "offshore" 

stations in the f0ur Great Lakes basins. (See also Figure 1). 

Basin SOundings for 
"offshore" stations, 

in metres. 

Lake Superior > 100 

Lake Huron > 50 

Central Lake Erie 
’ 

> 20 

Lake Ontario > 50
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shallow Lake Erie, where a total phosphorus measurement outside the 

summer period is surely influenced by re-suspended sediment. 

The use of data for l to l0 metres below the lake surface, or the 

nearest similar depths available for particular cruises, is an attempt 

to characterize near-surface waters only. It is not intended to 

include any thermoclinic maximum standing stock which may occur, at 

some times, deeper in the water column (Watson, Thompson, and 

Elder, l975). Rather, it is intended to describe the mixed surface 

layer when it occurs. Especially at times in early summer when the 

uppermost waters are stratified in temperature and phytoplankton, a 

consistent set of depths would have been better, but this was not 

possible in the CCIw surveys. Inconsistent depths of samples are a 

limitation of the CCIw data when they are used to study trends. 

For the offshore, near-surface waters of each basin, unweighted 

cruise-mean values were calculated (see the Appendix). The station 

spaCing was usually regular enough for the unweighted means to be 

close to areally weighted mean values. Use of the latter would improve 

the mean values only slightly. 

From the cruise-mean values for each of the four parameters and 

each basin, seasonal cycle graphs were made for each year, and from 

these graphs (not shown herein), summertime mean values were obtained 

as described later in this paper. The summer period is defined 

somewhat differently for each basin, and depends on the thermal and 

‘other cycles in the surface waters. For instance, the beginning of 
“summer” must be assigned to be after the disappearance of the “thermal 

[7-2038 (REV. l2/69) FD-G
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bar" (Rodgers, l965). The definitions of “summer” for each basin 

are listed in Table 3. 

The Secchi—depth transformation. 

The reader will easily understand that larger Secchi-depth 

readings accompany smaller standing stocks of particulate matter, 

so that some kind of transformation of the readings is necessary to 

make them directly proportional to standing stock. Postma (l96l) 

experimentally determined the relations between Secchi-depths and 

suspended particle concentrations. For any one size of particles, 

their concentration was proportional to (k/Secchi depth). Postma's 

empirical work suggests that (k/Secchi depth) is an appropriate 

simple transformation of the Secchi—depth readings to get numbers 

approximately proportional to the concentration of particles. I have 

chosen {30./Secchi depth (metres)}, equals {lOO/Secchi depth (feet)}, 

to produce a medium range of 5 to l0 (m_] x 30) corresponding to Secchi 

depths from 6 to 3 metres or 20 to l0 feet. The constant '30' is 

introduced to give, in practice, simple large numbers instead of 

decimal fractions. Table 4 is a list of some Secchi depths and their 

corresponding Secchi reciprocal values, and is intended to familiarize 

the reader with their relationships and to provide a conversion guide 

for some commonly—obtained readings. 

All averaging of Secchi data in this paper was done on the 

reciprocal values, not on the untransformed readings. It is the 

reciprocal values that are additive: a mixture of two turbid samples 

F-2036 (REV. ‘2/69) FD-6
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Tabie 3. Definitions of “summer”, based on seasona] thermai and 

nutrient cycles of surface waters. 

Basin Dates 

Superior 

Huron 

Centra] Erie 

Ontario 

August and September 

Juiy 10 to September 30 

June 15 to September 5 

Juiy, August and September
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Conversion tab1e for Secchi-disc observations. Tab1e 4. 

Secchi reciproca1 value Secchi depth (metres) 
(m'1 x 30) 

5050 0112 

0065 20.87 
5050 233k 

7050 6655 5.050 

4556 

6308 4443 
5050 6778 

5320 3333 
5050 

89.90. 

.I 

7531' 

2222 

11 0 
12.0 
13 O 
14.0 

.0987 

2111..



10 

ll 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

26 

would have a reciprocal value equal to the mean of the two original 

reciprocals. The reciprocal values are proportional to the mass— 

concentrations of particles which are conserved during mixing. 

To illustrate this averaging problem, I consider two readings of 

3.0 m and 6.0 m. Obviously the straight—fonward mean value is 4.5 m. 

But the corresponding original reciprocal values are l0.0 and
l 5.0 (m‘ x 30) whose mean value is 7.5 (m'1 x 30), giving a mean 

Secchi depth of 4.0 m, not 4.5 m. 

Smoothed seasonal cycles. 

With cruises at approximately monthly intervals, the seasonal 

cycle of a property in any one year is poorly defined. seasonal cycle 

graphs for each year were drawn to calculate the summertime mean 

values, but those graphs are not shown herein. 

Average smoothed seasonal cycle graphs for all years having data. 

were drawn by plotting all cruise—mean values for one parameter and 

basin on one graph, and then drawing a curve through the numerous and 

scattered points. Only the curves themselves are illustrated here 

(Figures 2, 3 and 5). 

In Figure 2, I show the average smoothed seasonal cycles of Secchi 

reciprocal values in the four basins. Lake Ontario has a peak in 

turbidity during August,whereas Central Lake Erie has a minimum value 

in July. Lake Huron, with lower Secchi reciprocal values than Ontario 

and Central Erie, has a broad minimum in August - October- Lake Superior, 

with the lowest reciprocal values, has no apparent seasonal variation. 

F-2036 (REV. ‘2/89) FD‘G
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1 The graph (Figure 2) indicates that Central Lake Erie and especially 

2 Lake Ontario require numerous cruises in summer to precisely define the 

3 summertime mean value of each year. The number of cruises can be 

4 seen in the Appendix; in some years there were judged to be too few to 

5 define the summertime mean value. 
.5 ' Figure 3 illustrates the smoothed seasonal cycle of total 

7 chlorophyll a.in the surface waters of the four basins. For Lake 

8 Ontario, the curve rises in April-May—June. During that interval the 

9 data are from both sides of the thermal bar (Rodgers, 1965), so that 

10 the curve describes neither inshore nor offshore water-masses. Inshore 

11 waters at that time have the higher values. For other times of year 

12 including summer, the curve for Lake Ontario more nearly describes the 

13 whole lake—surface. 

14 Total chlorophyll a_in Lake Ontario passed through a minimum in August 

15 (Figure 3), whereas Secchi reciprocal values had a single peak in
' 

15 August (Figure 2). It might seem that turbidity in August was due partly 

17 to something other than phytoplankton, such as suspended calcium 

18 carbonate. However, it can be noted that phytoplankton biomass had a 

19 single peak in August during l970: this was reported by Munawar and 

20 Nauwerck (l97l). Perhaps the chlorophyll minimum was due to nutrient 

21 deficiency and low chlorophyll values in the phytoplankton at that time, 

22 or incomplete extraction of chlorophyll from the species of phytoplankton 

23 occurring at that time. 
24 Seasonal cycles of particulate organic carbon in Central Lake Erie, 

25 Lake Huron, and Lake Superior cannot be shown because of too few data. 

F-2038 (REV. 12/69) FD-6
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SEASONAL CYCLES OF TOTAL CHLOROPHYLL g (pg/LITRE) IN OFFSHORE, 
SURFACE WATERS OF4 GREAT LAKES BASINS. THE SMOOTHED CURVES 
WERE DRAWN FROM MEAN VALUES ON CRUISES IN THE YEARS 1967 to 1975.
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Figure 4 illustrates the unsmoothed seasonal cycles of POC in Lake 

Ontario. The values of summertime were highest in l972 (see also 

Figure ll, below). In that year there was a strong wind on June 23, 

associated with the passage of Hurricane Agnes (Phillips, l974). 

Total chlorophyll a_in Lake Ontario during summer was also highest in 

that year (Figure l0). The strong wind moved the thermocline downwards 

and entrained deep water into the epilimnion. This may also have 

entrained dissolved nutrients and thus caused an unusually high phyto— 

plankton stock in the summer of l972. 

Average smoothed seasonal cycles of total phosphorus are shown in 

Figure 5. Lake Ontario has a long period of unchanging values in late 

winter (February to May). Data for that interval in Lake Ontario will 

be examined separately (Figure l3, below). In Lake Ontario during 

summer the total phosphorus values of surface waters are declining 

due to sedimentation of plankton. (For the duration of the summer— 

thermocline, lakes become more stratified chemically.) Central Lake 

Erie had a minimum total phosphorus content in surface waters during 

June-September, and higher values in the unstratified periods before 

and after. Seasonal changes in total phosphorus are not apparent in 

Lakes Huron and Superior, from the cruise-mean values in all years. 

The time of sampling for total phosphorus in those two lakes may not 

be important. 

F-2038 (REV. 12/69) FD-6
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SEASONAL CYCLES OF TOTAL PHOSPHORUS (pg P/ LITRE) IN OFFSHORE, 
SURFACE WATERS OF 4 GREAT LAKES BASINS. THE SMOOTHED CURVES 
WERE DRAWN FROM MEAN VALUES ON CRUISES IN THE YEARS 1967 to1974.
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Summertime mean values in each year. 

For assigning trophic indices and for the study of trends, I 

calculated the summertime mean values of Secchi reciprocals, total 

chlorophyll a3 particulate organic carbon, and total phosphorus, all in 

offshore, near-surface waters. The resulting data are listed in 

Tables 5 to 8. To calculate the summertime mean values, first the 

cruise—mean values were calculated. (Results are listed in the Appendix, 

Tables A—l to A-l6). Then for each year the cruise—mean values were 

plotted against time of year. With linear interpolation between the 

points, values were extracted at lO-day intervals throughout the 

summer period, and these extracted values were averaged (arithmetic mean 

value calculated) to give the summertime mean value. The number of 

cruises associated with each summertime mean value can be ascertained 

from the Appendix. The "trophic indices" listed in the right-hand 

column of Tables 6 to 8 will be explained and used later in the 

paper. 

Development of a trophic scale. 

It was found that summertime mean values of total chlorophyll a, 

particulate organic carbon, and total phosphorus were all approximately 

proportional to Secchi reciprocal values (see Figures 6 to 8). To 

derive a simple relationship of the form (x==a.y), the grand mean values 

for Central Lake Erie and Lake Ontario in summer were calculated. Then 

the mean value for the two lakes together was calculated, with equal 

weight being given to each of the two lakes. A straight line was 

F-2038 (REV. 12/69) FD-G
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Table 5. Trophic status of the four Great Lakes basins indicated by 

Secchi reciprocals (m'1 x 30) in offshore waters during summer in the 

years 1966 to 1975. 

Lake Year Summer 
- mean 
Sécchi 

reciprocal 
(m‘1 x 30) 

Grand 
mean 
Secchi 

reciprocal 
(m‘1 x 30) 

Superior 

Huron 

Central Erie 

Ontario 

1967 
1968 
1969 
1970 
'1973 
'1966 
1968 
1969 
1970 
1971 
1972 
1974 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 

'1975 
1966 
1967 
1968 
1969 
1970 
1974 
1975 

_l—l——l NN—J 

—J 

OkOLOkO 

U‘lmC‘C‘oOWO‘IOO-fi-U'l 

wwbwbww 

WWNWN 

O‘IONOOLHUW-b 

fi—‘ONOWO-kOO-J>N 

U‘IkO—‘ONNm 

000030103 3.1 

3.7 

6.3 

10.8
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Table 6. Trophic status of the f0ur Great Lakes basins indicated by 

total chlorophyll g_in offshore, near-surface waters during summer in 

the years 1967 to 1975. 

Lake Year Summer 
, 

Grand Trophic 
-mean "mean index 
TCg_ TC§_ (pg/litre 

(pg/litre) (pg/litre) x 2.0) 

Superior l968 
l973 

Huron l968 
l97l 
l972 
l973 
l974 

Central Erie 1968 
1970 
1972 
1973 
1975 

Ontario 1967 
l969 
l970 
l972 
l974 
l975 

1.0 2.0 

1.2 2.4 

3.9 7.8 

5.3 10.6 
4>4>chm4>m 

whww-b 

—'—:c>—-a—: 

—-Io 

oooo—D-Locnm 

mmooooo 

#ooww—J 

cox:
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Tab1e 7. Trophic status of the four Great Lakes basins indicated by 

particu1ate organic carbon in offshore, near—surface waters during 

summer in the years 1972 to 1975. 

Lake Year Summer . Grand Trophic 
-mean mean index 
POC POC (ug/1itre 

(ug/1itre) (pg/1itre) x 0.020) 

Superior 1973 147. 147. 2.9 

Huron 1974 187. 187. 3.7 

Centra1 Erie 1972 450. 
1973 525. 464. 9.3 
1974 

' 

400. 
1975 480. 

Ontario 1972 676. 
1974 436. 526. 10.5 
1975 465. .
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Tab1e 8. Trophic status of the fOur Great Lakes basins indicated by 

tota1 phosphorus in offshore, near-surface waters during summer in the 

years 1968 to 1975. 

Lake Year Summer 
I 

Grand Trophic 
—mean 'mean index 

Tota1 P Tota1 P (pg P/1itre 
(pg P/1itre) (pg P/1itre) x 0.56) 

Superior 1971 3.1 
1973 6.0 4'6 2'6 

Huron 1968 4.3 
»1969 6.3 
1971 3.6 4.8 2.7 
1972 5.0 
1974 4.6 

Centra1 Erie 1970 11.2 
1971 15.4 
1972 14.9 14.2 8.1 
1974 14.3 
1975 15.4 

Ontario 1968 18.7 
1969 17.5 
1970 21.5 
1971 22.2 19.5 11.1 
1972 18.9 
1974 19.7 
1975 17.8
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derived that passed through the point for the pair of grand mean 

values and the origin. Sophisticated curve—fitting as by the least- 

squares method was not used, in order to obtain the most simple 

relationship and a zero intercept. 

cruise—mean values in summer, rather than summertime means, 

were used to calculate the grand-mean values for each of the two 

lakes, to give more weight to the summers having more data. 

At this place in the paper, I will introduce the four trophic 

classes: oligotrophic, mesotrophic, eutrophic, and hypereutrophic. 

Their quantitative ranges will be defined and derived. (1) §egghi 
reciprocal values for each trophic class: The limits of Secchi 

reciprocal values for each trophic class are chosen arbitrarily, and 

then the equivalent values for the 3 other parameters are calculated 

from their mean ratios with Secchi reciprocal in Central Lake Erie and 

Lake Ontario (Tables 9_to l2). The Secchi reciprocal values have the 

following class limits, by definition: 

oligotrophic 0 to 5 (m'1 x 30) 

mesotrophic 5 to l0 (m_] x 30)
l eutrophic ‘ _lO to 30 (m— x 30) 

-l hypereutrophic >30 (m x 30) 

(2) Total chlorophyll a, limits for each trophic class: Equivalent 

ranges for total chlorophyll a_are calculated in Table 9. By chance 

the class—limits for chlorophyll turned out to be quite simple numbers, 

(0, 2.5, 5, and l5 ug/litre) that are easy to remember. 

(3) Particulate organic carbon, limits for each trophic class: Class- 

, 

F4036 (REV. 12/69) FD-G
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Computation of the trophic class ranges for total chlorophyll a 

(a) The mean values of total chlorophyll §_and Secchi reciprocals in 

Central Lake Erie during summer (June l5 - September 5): 

Mean date Cruise-mean Cruise — mean 
of cruise T01 Secchi reciprocal 

(pg/litre) (m-1 x 30) 

Aug. l, l968 3.7 8.0 
Sept. 2, l968 6.5 9.5 
July 5, 1970 ' 2.0 4.8 
July 30, l970 4.5 6.5 
Aug. 27, l970 4.9 5.9 
Aug. l9, l97l 2.4 6.7 
Aug. 30, l972 6.3 6.2 
July 27, l973 4.4 7.0 
Aug. 30, l973 5.8 9.2 
Aug. 23, 1974 3.4 4.2 
June 27, l975 2.0 4.l 
Aug. 9, 1975 4.0 5.0 

Grand mean 
summertime 4.2 ug/z 6.4 (m'1 x 30) 
values:
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(b) The mean va1ues of tota1 ch1orophy11 a_and Secchi reciproca1 in 

Lake Ontario during summer (Ju1y — September): 

Mean date Cruise-mean Cruise—mean 
of cruise TCg_ Secchi reciproca1 

(pg/1itre) (m-1 x 30) 

Ju1y 12, 1967 3.2 9.3 
Ju1y 27, " 5.5 12.0 
Aug. 7, " 3.2 10.6 
Aug. 23, " 4.8 10.5 
Sept. 7, " 5.6 8.3 
Sept. 18, " 8.4 7.4 
Ju1y 4, 1968 9.0 13.0 
Ju1y 10, 1969 5.5 11.7 
Aug. 7, " 3.9 11.1 
Sept. 7, " 3.5 10.5 
Ju1y 18, 1970 5.8 11.0 
Aug. 19, " 3.9 16.3 
Sept. 17, " 7.4 8.1 
Aug. 11, 1971 4.8 22.2 
Ju1y 19, 1972 8.1 8.8 
Sept. 7, " 6.5 14.5 
Ju1y 25, 1974 4.1 10.6 
Aug. 8, " 4.0 14.8 
Aug. 14, " 4.4 14.4 
Aug. 20, " 3.3 23.1 
Sept. 5, " 4.8 10.1 
Sept. 18, " 6.8 9.6 
Ju1y 4, 1975 5.5 8.4 
Ju1y 23, " 2.9 18.9 
Aug. 14, " 4.5 16.2 
Sept. 5, " 6.0 10.2 
Sept. 25, " 5.6 6.6 

Grand mean 
summertime va1ues: .2 ug/l 12.2 (m'1 x 30)
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(c) Computation of grand mean values, Central Lake Erie and Lake Ontario 

in summer: 

Mean total Mean Secchi 
Chlorophyll g_ reciprocal 

(pg/litre) (m'1 x 30) 

Central Lake Erie , 
4.2 

' 

6.4 

Lake Ontario 5.2 l2.2 

Grand mean values: 4.7 9.3 

(d) Computation of the lower limit of total chlorophyll g_for each 
trophic class: 

(l) mesotrophic class, Secchi reciprocal 
= 5.0 (m_1 x 30) : 

4.7 x 5.0 _ . 

573- 
— 2.5 pg/litre. 

(2) eutrophic class, Secchi reciprocal 
= l0.0 (m'1 x 30) : 

4.7 x l0.0 = 5.l = 5.0 ug/litre. 
9.3 

(3) hypereutrophic class, Secchi reciprocal 
= 30. (m'1 x 30) 

4.7 x gg;_ = 15.2 = 15.0 ug/litre. 
9.3
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limits for POC are derived in Table 10. Again by chance the class 

limits are easy to remember (0, 250, 500, l500 pg/litre). 

(4) Total phosphorus in sunmer, limits for each trophic class: 

Class—limits for total phosphorus in surface waters during summer 

are derived in Table ll. 

(5) Total phosphorus in late winter,.limits for each trophic class: 

Total phosphorus in late winter has been measured in Lake Ontario 

only. The values are quite constant in the interval February to 

May (Figure 5). Therefore data from cruises in that period in each 

year are used to derive trophic class ranges, from the relationship 

with summer-mean Secchi reciprocal values (Table l2). The class—limits 

for total phosphorus in winter are only slightly higher than the 

corresponding ranges for total phosphorus in summer. Again, by chance, 

they are simple numbers that are easy to remember (0, l0, 20, 60 ug/litre). 

The trophic system just derived is summarized in Table 13. 

Conversion factors for placing observed values on a common scale with 

Secchi reciprocals (m-1 x 30) are given in Table l4. 

The trophic scale and classification scheme just developed is 

linear with respect to plankton abundance, although the classes are 

not all of the same width. 

Trends in summer, l966 to l975 

Summertime mean values for each parameter, year and basin have 

been listed in Tables 5 to 8; they are now illustrated in 

Figures 9 to l2. Along with the data-poihts and linear interpolation 

F-2036 (REV. 12/69) FD-G
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Tab1e 10. Computation of the trophic c1ass ranges for particu1ate 

organic carbon in summer in the Great Lakes. 

(a) The mean va1ues of particu1ate organic carb0n and Secchi reciproca1 

in Centra1 Lake Erie during summer (June 15 — September 5): 

Mean date Cruise—mean Cruise-mean 
of cruise POC Secchi reciproca1 

(pg/1itre) (m'1 x 30) 

Aug. 3, 1972 
7 

337. 5.9 
Aug. 30, " 564. 6.2 
Ju1y 27, 1973 510. 7.0 
Aug. 30, " 540. 9.2 
Aug. 23, 1974 400. 4.2 
June 27, 1975 416. 4.1 

Aug. 9, “ 545. 5.0 

Grand mean 
summertime 473. ug/1itre 5.9 (m'1 x 30) 
va1ues:
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Table 10 (Cont'd) 

(b) The mean values of particulate organic carbon and Secchi reciprocal 

in Lake Ontario during summer (July — September): 

Mean date Cruise-mean Cruise-mean 
of cruise POC Secchi reciprocal 

(pg/litre) (m'1 x 30) 

July 19, 1972 733. . 8.8 
Sept. 7, " 708. 14.5 
Sept. 21, " 

' 

552. 12.3 
July 25, 1974 518. 10.6 
Aug. 8, " 432. 14.8 
Aug. 14, “ 385. 14.4 
Aug. 20, ” 374. 23.1 

Sept. 4, " 415. 10.1 

Sept. 18, " 376. - 9.6 
July 4, 1975 614. 8.4 
July 23, “ " 

336. 
I 

18.9 
Aug. 14, " 474. 16.2 
Sept. 5, " 516. 10.2 
Sept. 25, " ' 412. 6.6 

Grand mean 
summertime 489. ug/litre 12.8 (m'1 x 30) 
values:
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Table 10 (Cont'd) 

(c) Computation of grand mean values, Central Lake Erie and Lake Ontario 

in summer: 

Mean Mean Secchi 
POC reciprocal 

(pg/litre) (m'1 x 30) 

Central Lake Erie 473. 
> 

5.9 

Lake Ontario 489. l2.8 

Grand mean values: 48l. 9.4 

(d) Computation of the lower limit of particulate organic carbon for each 

trophic class: 

(l) mesotrophic class, Secchi reciprocal 

= 5.0 (m—1 x 30): 

481' X =' 256. = 250. pg/litre 

(2) eutrophic class ,Secchi reciprocal_ 

= l0.0 (m'1 x 30): 

481. x132 = 512_ = 500. pg/litr‘e 

(3) hypereutrophic class, Secchi reciprocal 

= 30. (m‘1 x 30): 

481' X5394; = 1530. = 1500. pg/litre
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Table ll. Computation of the trophic class ranges for total phosphorus 

in summer in the Great Lakes. 

(a) The mean values of total phosphorus and Secchi reciprocal in Central 

Lake Erie during summer (June l5 — Sept. 5): 

Mean date Cruise—mean Cruise—mean 
of cruise total P Secchi reciprocal 

(pg/litre) (m'1 x 30) 

July 5, 1970‘ 10.2 '1 4.8 
July 30, ” 10.9 6.5 
Aug. 27, ” l0.4 5.9 
Aug. l9, l97l ll.2 6.7 
Aug. 3, 1972 . 13.7 5.9 
Aug. 30 “ l5.2 6.2 
Aug. 23, l974 l4.3 4.2 

Grand mean 
summertime l2.3 ug/litre 5.7 (m‘1 x 30) 
values:
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(b) The mean values of total phosphorus and Secchi reciprocal in Lake 

Ontario during summer (July — September): 

Mean date Cruise—mean Cruise-mean 
of cruise total P Secchi reciprocal 

(pg/litre) (m'1 x 30) 

July 3, l968 2l.0 13.0 
July ll, l969 l9.8 ll.7 
Aug. 7, " l7.0 ll.l 

Sept. 7, ” l6.l l0.5 
July l8, 1970 28.4 ll.O 
Aug. l9, " 20.4 l6.3 
Sept. 17, " l4.4 8.l 

Aug. ll, l97l 22.2 22.2 
July l8, l972 20.3 ' 8.8 
Sept. 7, ” l7.8 l4.5 
Sept. 2l, ” l7.0 l2.3 
Sept. 5, l974 l8.5 l0.l 

July 5, l975 20.4 8.4 
‘Sept. 5, " l6.2 lO.2 
Sept. 25, ” l5.9 6.6 

Grand mean 
summertime l9.0 pg/litre ll.7 (m‘1 x 30) 
values:
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Tab1e 12. Computation of the trophic c1ass ranges for tota1 phosphorus 

in 1ate winter in Lake Ontario. 

(a) The mean va1ues of tota1 phosphorus in 1ate winter (Feb. — May) and 

Secchi reciproca1 in summer, in Lake Ontario: 

Year Late winter Summertime 
mean va1ue mean va1ue 
of tota1 P of Secchi reciproca1 
(pg/1itre) 

_ 

(m'1 x 30) 

1968 ' 24.0 9.5 

1969 ' 22.2 10.8 

1970 23.5 ' 11.7 

1974 24.3 12.0 

1975 21.1 
. 

' 12.6 

Grand mean 23 o /1itre 11 3 (m'1 x 30) va1ues: ' “g '



Tab1e 12 (Cont'd) 

(b) Computation of the 1ower 1imit of total phosphorus in 1ate winter 

for each trophic c1ass: 

53 

(1) mesotrophic class, Secchi reciproca1_ 

= 5.0 (m‘1 x 30): 

23.0 X §;_. = ]0_2 : 10,0 pg/1itre 
—: (A) 

(2) eutrophfc c1ass ,Secchi reciproca] 

= 10.0 (m‘1 x 30) : 

23.0 x 10.0 
1. 

= 20.4 2‘ 20. ug/litre 
._l (A) 

(3) hypereutrophic c1ass, Secchi reciproca] 

= 30. (m'1 x 30): 

23.0 x $0-g = 51_1 z 50. ug/litre
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Table l4. C0nversion factors for transforming observed values to 

the scale of Secchi reciprocals (m'1 x 30). 

55 

Parameter Conversion factor 

Total chlorophyll a_ x 10.0 2 O 
- 5 0

- 

(ug/litre) ' 

Particulate organic" x 
$860 0.020 

carbon (pg/litre) 

Total phosphorus x l0.0 0 56 
in summer 18' 

(pg P/litre) 

Total phosphorus x lfiio 0.50 
in winter 

(pg P/litre)
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to give trends, I have shown the trophic class limits according to the 

trophic system just developed. 
I 

Figure 9 shows the trends and classifications for Secchi reciprocal 

values. Lake Ontario had increasing turbidity; the rate of increase 

from l968 to l975 was about 4% per year. Central Lake Erie was highly 

variable in those years. The Secchi reciprocal values can be influenced 

by particle size, as well as by mass concentration of particles. Larger 

particles produce smaller Secchi reciprocal values (Postma, l96l). 

Changes in particle size might perhaps have influenced the Secchi recip— 

rocal variability observed in Central Lake Erie. ‘Lakes Huron and Superior 

fall in the oligotrophic range of Secchi reciprocal values. 

In Figure 9 and following figures, Synonyms are introduced for the 

trophic classes, oligotrophic, mesotrdphic, eutrophic, and (off scale, 

.not shown) hypereutrophic, as follows: 

hypereutrophic = very high_ = very poor 

eutrophic = high = poor 

mesotrophic = medium = fair 

oligotrophic = low . 

= good. 

The middle set of synonyms, 'very high', etc., are only non—technical 

descriptive words intended for the layman. The right—hand set, 'very 

poor', etc., are value—judgment words being assigned to the quantit- 

ative trophic classes, intended to describe the current general thinking 

about the value of trophic status in the two areas of aesthetic worth 

and associated practical problems. Similar value—judgment words were 

introduced by Vollenweider (T968): he described specific external 

01-1075 (12/74) DOE 1075
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MEAN VALUES OF SECCHI RECIPROCAL DURING SUMMER IN THE OFFSHORE 
PART OF 4 GREAT LAKES BASINS: DATA FOR THE YEARS 1966 TO 1975. 
UNITS ARE (m" x30).
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loadings of nitrogen and phosphorus as 'permissible' and 'dangerous'. 

Such value judgments are a positive step towards defining goals in 

trophic management. 

Figure lO shows trends and classifications for total chlorophyll 

a: Lake Ontario was highly variable whereas Central Lake Erie‘s values 

were nearly constant, in the middle of the mesotrophic class. Lakes 

Huron and Superior are oligotrophic in their chlorophyll content. 

Figure ll illustrates the summertime mean values of particulate 

organic carbon. The high value for Lake Ontario in l972 has already 

been discussed in connection with Figure 4. Lakes Ontario and Central 

Erie fell near the mesotrophic/eutrophic boundary for POC. Lakes Huron 

and Superior are oligotrophic. There are too few years with data on 

POC to ascertain trends in any of the basins, except perhaps Central 

Lake Erie for which it is fairly constant. 

Figure l2 shows trends and classes for summertime total phosphorus. 

Lake Ontario was in the lower part of the eutrophic class; Central Lake 

Erie was mesotrophic with constant values from l97l to l975; Lakes 

Huron and Superior are oligotrophic. The low levels of total phosphorus 

in Huron and Superior are not accurately defined in these data. Note 

for instance the apparent doubling of summertime mean total phosphorus 

in Lake Superior, from 3 pg P/litre in l97l to 6 ug/litre in l973. 

Lake Ontario: total phosphorus trend in the late—winter period. 

Total phosphorus mean values in Lake Ontario in February to May 

of a series of years were listed in Table l2. They are illustrated 

01-1075 (12/74) DOE 1075
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MEAN VALUES OF TOTAL PHOSPHORUS DURING SUMMER IN THE OFFSHORE, SURFACE WATERS OF 4 GREAT LAKES BASINSI DATA FOR THE YEARS 1968 to 
1975. UNITS ARE MICROGRAMS PHOSPHORUS PER LITRE.
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now in Figure 13; they were nearly constant at about 23 pg P/litre from 

l968 to l975, and fell in the lower part of the eutrophic class. 

Summary of trends. 

Among these parameters, basins, and years, only SeCchi 'turbidity' 

in Lake Ontario was increasing. The other values in Lake Ontario and 

Central Lake Erie surface waters were either steady and constant over 

the years, or too variable to allow any trend or constancy to be seen. 

These conclusions are listed in Table 15. 

The rate of change of Secchi reciprocal values in Lake Ontario 

(Figure 9) was about 38% per lO years, whereas total phosphorus in 

that lake was not changing (Figure l3). Additional information about 

dissolved nutrients in Lake Ontario was contributed by A. Fraser (Can. 

Cent. Inland Waters, personal communication): dissolved inorganic 

phosphate in late winter was constant since l968, but nitrogen in the 

forms nitrate and ammonia in late winter was increasing at a rate, 

quite similar to summertime Secchi reciprocals, of about 47% per lO 

years. Apparently Lake Ontario's summertime plankton have been limited 

by nitrogen, not phosphorus. This suggests the question: how much of a 

reduction in phosphorus loading will be necessary to restore growth- 

limitation by phosphorus in Lake Ontario? 

Remarks on confidence limits. 

In Figures 9 to T3 are shown trends of four parameters in four 

basins. No confidence limits or estimates of probable error of each 

01-1075 (12/74) DOE 1075
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Tabie 15. Summary of trends of summertime mean values in Lakes Erie 

and Ontario, :1968 to 1975. 

Parameter Centra] Lake 
Lake Ontario 
Erie 

seCCh1 variable increasing, 
“turbidity” 4% per year 

Tota] constant variable 
chiorophyii a 

Particuiate 
organic constant variabie 
carbon 

TOta1 constant constant 
phosphorus
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(annual) point are shown. Therefore some remarks are necessary. 

The points represent mean Values for a variable number of stations 

and cruises, and it seems likely that geographical and temporal varia- 

tions, and likely some analytical inaccuracies, determine the degree 

of dispersion of the set of data used to derive each point. Therefore 

it seems that any Standard deviation' summarizes the variability within 

each data-set without indicating what really needs to be known: the 

uncertainty of each summertime mean value. Because of this reasoning 

no error limits are shown. They would'Only be misleading. 

However there is another consideration that is more constructive; 

the meaning of the relation of the plotted points to each other. Sub— 

jectively, the sets of points appear fairly random (eg. Figure lo: the 

curve for chlorophyll in Lake Ontario) or fairly regular without much 

scatter (eg. Figure 10: the curve for chlorophyll in Central Lake Erie). 

Points falling between adjacent points are probably more certain than 

points not between adjacent points, at least for the indication of 

trends. No attempt has been made to quantify this idea (say, by looking 

at the second derivative of the trend — Curve), but this subjective 

approach gives the reader some insight for viewing these graphs of 

trends. 

Mean trophic status, ~l970-l975. 

Mean values of four trophic indicators in the four Great Lakes 

basins, for the years l970 to l975 approximately, are listed in their 

conventional units in Table l6. For interpretation, they are listed 

01-l075 (12/74) DOE 1075
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Table l6. Four trophic status indicators for near—surface waters: 

mean summertime values for the offshore parts of 4 Great Lakes basins 

in the years l970—l975. Units in this table are the conventional ones, 

in contrast with the "indices" of Table 17. 

Basin 

Central 
Parameter Superior Huron Erie Ontario 

Secchi depth 8.8 8.3 4.4 2.5 
(metres) 

Total chlorophyll l.0 l.2 3.9 5.3 

g_(ug/litre) 

Particulate l47. l87. 464. 526. 

organic carbon 
(ug/litre) 

Total phosphorus 4.6 4.4 l4.0 20.6 

(ug P/litre)
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again in Table 17 and illustrated in Figures l4 to l7, with their 

values transformed onto the common scale developed in this paper, for 

which 'mesotrophic' is 5 to l0 units in every case. Labels can now 

be assigned for trophic classification, as follows: Lake Superior, 

oligotrophic; Lake Huron, oligotrophic; Central Lake Erie, mesotrophic 

(despite its dissolved oxygen problem); and Lake Ontario, slightly 

eutrophic (despite the absence of an oxygen problem). Also the numer— 

ical trophic indices put each basin somewhere on the trophic continuum. 

01-1075 (12/74) DOE 1075
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Table 17. Four trophic status indicators for near-surface waters: 

mean summertime values for the offshore parts of 4 Great Lakes basins 

in the years l970-l975. Values are transformed to a common scale on 

which the 'mesotrophic' range is 5 to l0 units. 

Basin 
. Central 

Parameter Superior Huron Erie Ontario 

Secchi reciprocal 3.4 3.6 6.8 ll.8 
(m—1 x 30) 

Total chlorophyll 2.0 2.4 7.8 l0.6 
§_(ug/l x 2.0)

‘ 

Particulate 2.9 3.7 9.3 l0.5 
organic carbon 
(ug/l x 0.020) 

Total phosphorus 2.6 2.5 8.0 ll.7 
(ug P/l x 0.57) 

Mean trophic 
2.7 3.0 8.0 ll.2 index fro m 

4 parameters:
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The trophic indices for particulate organic carbon in Central 

Erie and Lake Ontario are nearly equal (Figure T6), in contrast 

3 to the other parameters. One can speculate that there is relatively 

4 mo re 

5 Lake 

transparent plankton (zooplankton) in Central Lake Erie than in 

Ontario, or alternatively, there may be relatively more suspended 

6 detritus, containing carbon,in Central Lake Erie. 

.DISCUSSION ” 

Some adverse effects of eutrophication are: floating scums of 

10 algae on lake—sUrface and shOreline; difficulties in filtration and 

11 deodorization of municipal water supplies; and disappearance of valuable 

12 fish species (Hasler, l947; and Vollenweider, 1968). These aspects 

13 justify the value judgement and associated terminology that I apply to 

14 trophic classes (oligotrophic = good; mesotrophic = fair; eutrophic = 

15 poor; hypereutrophic = very poor). It is hoped that this terminology 

16 and value judgement will contribute to development of specific water 

17 quality criteria for eutrophication of surface waters. 

18 The trophic labels 'good', 'fair' and Fpoor' are assigned without 

71>

w

) 

\. 
\T

I/ 
19 any implication intended for fishery potential: fish ponds, in practice, K? 

20 are deliberately fertilized, and their labels may have to be in the 

21 reverse order. It is not clear from the literature 0n fish production 

22 in large lakes that increased fertilization enhances fish production; 

23 it may result in coarse fish replacing highly—valued types. For consid- 

24 eration of this fishery aspect see,.for example, Hoyle, l949. 

25 
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parameters such as I use in the present paper, but Findenegg's proposal 

was not very specific. He discussed the importance of dissolved oxygen 

and concluded that it confused the picture, especially for tropical 

lakes; 

Elster (1958) wrote that after Naumann's death the focus of typology 

shifted more to the hypolimnion with its oxygen deficit and faunal types. 

The definition of trophic status became more and more obscured. Then 

in an interesting passage related closely to the present work, Elster 

(l958) wrote: "... it is the unavoidable task of limnological research 

to seek a standard enabling us to fit the individual lakes or the indiv— 

idual water body into this scale. This can never be done on the basis
. 

of a complex combination of factors, unless the combined features are 

related to each other unequivocally.- Thus, it is necessary to select 

from the complex concept of trophic conditions a single, naturally 

occurring, quantitatively graded feature measurable by us directly or 

indirectly, and to establish it not only as indicator but as a definite 

content of the concept.” Elster favours the use of production, rather 

than standing stock of plankton, whereas I favour plankton standing 

stock as a valid trophic factor and water quality indicator: that is, 

how much plankton and detritus are there, rather than some measure of 

its activity. 

Returning to Thienemann's position, hypolimnetic oxygen depletion, 

rates can be adjusted to "areal" rates to compensate for morphometric 

effects and allow lakes to be compared (Elster, l958; Hutchinson, l938) 

yet there may still be difficulty with oxygen comparisons due to 

01-1075 (12/74) DOE 1075



.A'..—....' 

-:;1)-£;-"--o'-j.

. 

A"...

- 

5.1:.» 

..~. 

.._ 

A.

a 

10 

11 

12 

13 

14. 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

75 

different fallout from the epilimnion and different ratios of hypolim— 

netic metabolism versus permanent burial of the plankton and detritus. 

Elster (1958) concludes: "... in limnology new achievements will 

have to assert themselves by proving that they can c0nfirm and explain 

the "classic" types." 

The discussion — paper of Vallentyne, Shapiro et al. (l969) set 

down the problem of trophic classification in a provocatiVe way which 

stimulated the development of indices and classes in the present work. 

Shannon and Brezonik (1972) defined trophic classes by means of 

groups of actual lakes (so-called "cluster analysis") in Florida. My 

method of assigning class ranges is more arbitrary and no doubt results 

in groups of various sizes in different regions: it is the absolute 

level of trophic status that is emphasized rather than statistical 

group size in some geographical region. 

Dillon and Rigler (l974) reported total phosphorus at spring over- 

turn, summer mean chlorophyll a, and summer mean Secchi depth, for l7 

lakes in southern Ontario. Mean values were: total phosphorus 8.3 

ug/litre; summer mean chlorophyll a_l.38 ug/litre; and summer mean 

Secchi reciprocal 5.5 (m'1 x 30). Then the values corresponding to 

l0.0 (m‘1 x 30), the mesotrdphic/eutrophic boundary, would be: total 

phosphorus at spring overturn, l5.l ug/litre [compared to 20. for Lake 

Ontario]; and summer mean chlorophyll a, 2.5 ug/litre [compared to 5.0 

for Lakes Erie and Ontario]. It seems plausible that humic substances 

are more abundant in their lakes than in Lakes Erie and Ontario, 

because ratios of chlorophyll to Secchi reciprocal are relatively higher 
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in Lakes Erie and Ontario. This suggests that the lower Great Lakes 

may safely be used for equivalent trophic ranges for the four parameters 

of the present study.
I 

Norvell and Frink (l975) studied Connecticut lakes in a manner 

quite similar to the present work on the.Great Lakes. They listed 

ranges for trophic classes, as herein, but their ranges were overlapp— 

ing ones for the different classes. They studied relationships among 

parameters, using more parameters than does the present study. But 

their correlation coefficients confirm that relationships are strongest 

among the parameters used herein. 

Shapiro (l975) has reviewed trophic scales and indices, especially 

ones developed recently. There are many unique systems, and many of 

them use numerous, unrelated parameters. Some of the schemes only 

place lakes on a relative scale. 

An initial stage in the development of the present work was 

reviewed by Shapiro: he listed its advantages and disadvantages. He 

critized the use of value judgements in trophic classification such 

as the terms good, fair, poor, and very poor, applied in this work to 

trophic classes. The present writer feels that these terms enhance 

communication with the public, which Shapiro advocates. 

Shapiro, Lundquist, and Carlson (1975) described a program in 

Minnesota in which lakes were assessed by Secchi disc measurements. 

They affirmed that the Secchi disc method is elegantly Suited to 

limnological assessment carried out by non-limnologists, that is, by 

the lay public. However, their 'trophic state index' is more complex 
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1 

than the one used herein: their index is l0 (6 - logz SD(m)) whereas 

'mine is 30/SD(m). They also mention that chlorophyll and total phos— 

.phorus are useful parameters. Their trophic scale is non-linear with 

respect to plankton'abundance, whereas_m1ne is linear and therefore 

easier to understand. 
‘ - 

Carlson (in press, l976, "Limnology and Oceanography“) presented 

his system of numerical classification of lakes using primarily Secchi 

depths but also chlorophyll and total phosphorus. His strategy is 

quite similar to that of the present paper, except that he establishes 

a logarithmic Scale rather than a linear one. Also he does not retain 

the classical terminology for lake types. The reader can choose one 

of the two systems. 

The dystrophic lake type: a suggestion for classification. 

A two—dimensional lake type system can be constructed with trophic 

status along one axis and humic content along the other axis. Euhumic' 

(= dystrophic) lakes can be either oligotrophic or eutrophic (Hansen, 

l962). To establish a quantitative scale and classes for humic content, 

one can use the Secchi depth criteria again: given a lake for which 

the transparency is caused by humic content and not by suspended plankton, 

mesohumic can be defined as humic contents giving Secchi depths from 

3 to 6 metres, and hyperhumic can be defined as thosehumic contents 

giving Secchi depths of one metre or less. If a pure humic lake cannot_ 

be found for calibrating the scale, then the Secchi reciprocal for a 

mixed type can be adjusted by subtracting the fraction caused by plankton
0 
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as measured by chlorophyll content, and the residual Secchi reciprocal 

value can be correlated with humic content. 

A similar approach could be taken for shallow lakes with frequent 

resuspension of sediments. It is useful to keep the four parameters 

separate in assessing the conditions: suspended sediment will cause a 

high ratio of Secchi reciprocal/chlorophyll. Secchi depth and water 

clarity are, in general, not pure indicators of trophic status. 

Dissolved oxygen in temperate lakes. 

Dissolved oXygen is another very important parameter of eutrophi— 

cation. A serious study of oxygen is not attempted for the present 

paper, but some remarks will be made to make the author's position 

clear.
I 

A lake with a thin hypolimnetic layer may have an oxygen problem ( 

in summer even when the surface waters are quite clear: for example,
W 

Lake Erie's central basin (see Dobson and Gilbertson, l97l, and Dobson,\ 

Gilbertson and Sly, l974). 

For assessment of trophic status, the depletion rate of dissolved ?> 

oxygen per unit area in the hypolimnion can be studied. Hutchinson ‘3 

(1938) helped to develop the use of the arealoxygen depletion rate 

in limnology. The rate of disappearance from the hypolimniOn in summer 

was expressed as mg/cmZ/month and this was found to be proportional 

to plankton stocks in surface waters. Hutchinson suggested that a 

small but fairly constant fraction of the falling plankton is represented 

by the hypolimnetic oxygen depletion rate. 

F4036 (REV. 12/69) FD-G
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Hutchinson put forward a clasSification scheme, as follows: 

oligotrophic <O.5 mg/cmZ/month 

mesotrophic 0.5 to 1.0 mg/cmZ/month 

and eutrophic >l.0 mg/cmZ/month 

Future work on the Great Lakes data may possibly be used to define 

classes of oxygen depletion rate consistent with the trophic classes 

of surface parameters in this paper. 

The areal oxygen depletion rate allows oxygen regimes to be 

compared among lakes with different morphometry, for the purpose of 

trophic classification. However it should not be forgotten that the 

oxygen concentration in mg/litre is the fundamental water quality 

aspect of dissolved oxygen, and this latter property is linked to hypo— 

limnetic thickness in a way that plankton stocks are not: thus lakes 

with thin hypolimnions are susceptible to oxygen problems even when 

surface waters are sparsely populated with phytoplankton. Oxygen 

concentrations (mg/litre) cannot be correlated with surface—water 

trophic classification in a series of lakes. I do not try to fit 

oxygen into my trophic system, but only emphasize that oxygen in lakes 

must be studied for its own sake, and only incidentally be used for 

trophic classification. 

Train (1972) asked the question: "How important is dissolved 

oxygen compared to turbidity...?” Here a partial answer has been 

attempted for the case of seasonally-stratified lakes: both aspects 

_are vitally important and they both deserve to be assessed separately. 
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Propects for recovery: VLake Washington. 

15’ 

The eutrophication and recovery of Lake Washington at Seatt1e, 

U.S.A., have been we11 described in a series of papers by w.T. Edm0ndson 

and others (Edmondson, AnderSOn and Peterson, 1956; Anderson, 1961; 

EdmondSon, 1961, 1966, 1968, 1970, 1972a, 1972b, 1973). Intensive 

study of the 1ake began in 1957; ‘Increasing sewage diversion to ocean 

waters occurred from 1963 to 1968. The 1ake responded quick1y with 

1ower wintertime phosphorus concentrations, 1ower summertime ch1orophy11 

and increased transparency in summer. The 1ake's surface water conditions 

in Summer (EdmondSon, 1972a), using the trophic system of the present 

paper, changed from mesotrophic in 1950 to s1ight1y hypereutrophic in 

the years 1963 to 1965, and back to s1ight1y eutrophic by 1969. The 

rapid response of Lake Washington to remedia1 measures suggests that 

other 1akes may a1so be responsive. 

The “ELA” experiments. 

Schind1er and Fee (1974) and Schind1er (1974) summarized the resu1ts 

of experiments with sma11 1akes in the "Experimenta1 Lakes Area” in g; 

northwestern Ontario. The 1akes responded to ferti1ization with phos—
8 

phate and nitrate._ Additiona1 carbon was not needed for eutrophicationfl/ 

response. A1so, recovery swift1y fo11owed when phosphate additions / 
a1one were stopped. Schind1er (1974) thought his resu1ts indicated 

that the 1ower Great Lakes aTSo wou1d respond quick1y to reduced phos— 

phorus Toadings. 
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The mean residence time of total phosphorus in Lakes Erie and Ontario. 

The mean residence time of phosphorus in a lake is defined as the 

(annual mean) mass of particulate and dissolved phosphorus in the lake 

waters, divided by the annual flux of phosphorus in or out of the lake 

waters. 

From the graph of total phosphorus seasonal cycles (Figure 5, this 

paper) we can take as an approximate mean concentration of total phos- 

phorus in recent years: 

Lake Erie l9. pg P/litre 

Lake Ontario 24. pg P/litre 

Taking as volumes Lake Erie 492 km3; Lake Ontario l636 km3, we get the 

following mass of phosphorus in each lake:
. 

Lake Erie .9.3 x l06 kg. 

Lake Ontario 39.3 x l06 kg. 

The external loading of total phosphorus into each lake has been 

reported for l967 by the International Joint Commission (l970), and for 

l97l by the Great Lakes Water Quality Board (l973), as follows: 

Lake Erie — 

l967: 27.3 x l06 kg/year 

l97l: 28.3 x l06 kg/year ,7 

mean: 27.8 x l06 kg/year 

Lake Ontario- 

l967: l2.4 x_l06 kg/year
I 

l97l: l6.3 x l06 kg/year 1/ 

mean: 
_ 

l4.4 x lo6 kg/year 
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Then the phosphorus residence times are as foTTows: 

mass in Lake Erie 
fTux into Lake Erie 

= _2;§_ZLJ£E:J§1_____ = 0.33 years 
27.8 x 106 kg/year 

and 

mass in Lake Ontario 
flux into Lake Ontario 

é 39.3 x 105 kg = 2.7 years 
14.4 x 106 kg/year - 

ct” 

These phosphorus residence times are remarkabTy shorter than those of 

chToride which are 2.6 years for Lake Erie and 7.8 years for Lake 

Ontario (Rainey, T967). ApparentTy the phosphorus residence times are 

shortened by sedimentation of organic particTes. This evidence contrad- 

icts Cur] (1967) who thought that recycTing of phosphorus between Take— 

water and sediments must cause the phosphorus residence time to be even 

longer than that of chToride. 

Lakes Erie and Ontario wiTT probabTy respond quickly to changes in 

the externa] phosphorus Toading. 

CONCLUSION 

The present work suggests the use of four reTated parameters which 

are fairly practicaT for actuaT meaSurements and which together confirm 

each other in Takes for which turbidity is planktonic, or quaTify each 

other in Takes for which turbidity is partTy due to stirred—up sediment 
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or humic substances. 

Dissolved oxygen should be included in any complete assessment of 
water quality. 

To end with a little environmental philosophy: a new eutrophication 

management attitude is now needed, to which the present work is thought 

to contribute. We need to elevate our management efforts with lakes 

to the category of caretaking rather than merely manipulating. With a 

new attitude, there need to be value—judgements applied to trophic
) 

conditions, including aesthetic value judgements for water-clarity but \7 
also judgements related to an understanding of the range of ideal trophic 

conditions for lakes and their living populations. This concept of I) 

ideal conditions is only clear at the present time for one parameter: 

dissolved oxygen should be greater than 50% saturation for the sake of 

fish and zooplankton. Eventually a consensus may develop for an ideal 

range of planktOn abundance.‘ The quantitative value judgements contained 

in this present paper are thought to be a useful suggestion along the above 

lines for this common water-quality problem of the eutrophication of 

surface waters. 
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