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MANAGEMENT PERSPECTIVE 
The discharges and levels reached downstream of an ice jam when it 

breaks is not easily analyzed hydraulically because of the unknown effects from 
the ice. In this report, certain, assumptions were made and an adaptation of the 
MOBED model was applied to compute stages and discharge as a function of 
time. The results are compared with an observed collapse of an ice jam. 

The method is applicable to other situations but at this time the 

reliability of the computation is uncertain. This study represents a significant 

advance in the hydraulics of ice jams but more field data must be analyzed to 
ascertain the reliability of the computation method in a statistical sense. 

T. M. Dick 
Chief, Hydraulics Division 
National Water Research Institute 
Canada Centre for Inland Waters 
January '15, 1981



PERSPECTIVE-GES'l'ION 

11 est difficile d'analyser hydrauliquement les débits et les niveaux 
atteints ev aval ‘a cause des effets inconnus de la glace. Dans ce rapport, on a 
fait certaines suppositions et appliqué une adaptation du modéle MOBED pour . 

’ 

calcu_ler les hauteurs d'eau et le débit en fonction du temps. Les résultats sont 
comparés avec ceux d'u'ne débécle observée. 

La méthode est applicable 21 d'autres situations, mais, pour le 

moment, la fiabilit-é des calculs est in'cer't’aine. La présente étude représente ujn 
progrés important pour l'hydraulique des embécles, mais ii 'faut ‘analyser 

davantage de données recueillies sur .le terrain pour établir la fiabilité de la 
méthode de calcul au sens statistique. 

Le chef de la Division de l'hydraulique 
T. M. Dick 
Institut national de recherche sur l'eau 
Centre canadien des eaux intérieures 
Le 15 janvier 1981



SURGES FROM ICE JAM RELEASES: 
A CASE STUDY 

S. Beltaosl and B. G. Krishnappanz 

SYNOPSIS 

Witness accounts of spring ice breakup in rivers often mention 
violent ice runs with extreme water speeds and rapidly rising water levels. Such 
events are believed to followthe releases of major ice jams. However, the 
associated dynamic aspects are little known. To gain preliminary u_nderstanding 
of this problem, it is attempted to "reconstruct" a partially documented jam 
release case on the Athabasca River at Fort McMurray, reported recently by 
others. The equations of the ice.-water flow that occurs after the release of an 
ice jam are formulated. It is shown that the problem may be approximately 
treated as one-dimensional, unsteady, water-only flow of identical total depth 
and average velocity. The retarding effect of the frequently encountered intact 
ice cover belowthe jam is considered implicitly, that is, by adjusting the 
friction factor so as to match predicted and observed downstream stages. 
Predicted velocities are then shown to agree with those estimated by site 
observers. The effects of jam length are considered next by assuming longer 
jams of the same maximum depth. Peak surge velocities are only slightly 
influenced by jam length but the duration of surging velocities increases with 
length and so does the peak stage. Less than two hours afterthe jam release, 
the surge "was arrested and a new jam formed causing further stage increases. 
Present capabilities of modelling the reformation process are discussed and the 
major unknowns identified. ' 
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ELEVATIONS SUBITES DU NIVEAU CAUSE-ES PAR DES DEBACLES 

ETUDE DE CAS 

5. Beltaosl et B. G. Krishnappanz 

RESUME 
Les récits de témoins de débéicles printanniéres dans des riviéres 

"font souvent mention d'afflux violents de glaces accompagnés de trés grandes 
vitesses du courant et d'élévations rapides du niveau de l'eau. On croit que ces 
phénoménes font suite £1 des débéicles importantes. Toutefois, on connait mal 
les aspects dynamiques connexes. Afin d'acquérir une compréhension 
préliminaire du probléme, on essaie de reconstitueri un Cas de débécle 
partiellement documenté survenu sur la r'iv'i‘ere Athabaska ‘a Fort McMurray et 
récemment signalé par l'autres. Les équations de Pécoulement d'eau et de 
glace qui se produit aprés une débéele sont données, On montre que le probléme 
peut étre traité en gros comme s'il s'agissait d'un phénomene unidimensionnel, 
instable, dont le courant ne se compose que d'eau de profondeur totale et de 
vitesse moyenne identiques. L'effet retardateur de la glace intacte souvent 
rencontrée en aval de Pembéicle est considéré de fagon implicite, c'est-5-dire en 
ajustant le facteur de friction pour qu'il corresponde aux hauteurs d'eau prédites 
et obserivées en aval. On montre ensuite que les vitesses prédites concordent 
avec celles que des o_bser‘v'ateurs présent_s sur les lieux ont est_imées. On 
examine ensuite les ef-fets de la long'ueu'r de Pembécle en supposant des 
embécles plus longues de méme profondeur maximale. Les vitesses maximales 
d'élévation ne sont que légérement influencées par la longueur de Pembéicle, 
mais la durée .des vifesses de crue augmente avec la longueur et il en va de 
méme pour la hauteur d'eau maximale. Moins de deux heures aprés la débécle, 
la poussée a été stoppéé et une nouvelle embécle s'est formée, provoquant 
d'autres accroissements du niveau des eaux. Il est question des capacités 
actuelles d'établissement d'un rnodéle du processus de reformation et les 
principales inconnues sont déterminées. 
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INTRODUCTION 
Witness accounts of spring ice breakup in rivers often mention 

viole_nt ice runs with extreme water speeds and rapidly rising water levels. 
Gerard (1979) quoted several accounts of such events and suggested that they 
can only be explained by the action of surges caused by the release, and 
possibly the reformation, of major ice jams. This is plausible since an ice jam 
causes a significant local perturbation on the stage profile of a stream with 
very large gradients near its toe or downstream end. Failure of the jam 
releases a large water wave that results in high speeds and rapid stage rises at 
downstream locations. ' 

There are several practical problems that are related to surges 
from ice jam releases, such as short and long term forecasting of peak water 
levels near a populated area located downstream of a major jamming site; 
possible bed scour and bank erosion due to relatively brief but intense ice runs; 
peak stages during reformation of a released jam. Such dynamic aspects, of ice 
jamming phenomena are poorly understood at present, especially in quantitative 
terms. The writer is only aware of two pertinent investigations: an application 
of an open—water unsteady flow model to assess surge effects on bed scour 
(Mercer and Cooper 1977) and a theoretical investigation of surging and new 
jamming that is now in progress (Henderson and Gera_rd 1980). 

The lack of understanding" of ice jam dynamics is very likely due 
to the lack of pertinent quantitative data; indeed one can easily’ imagine the 
difficulties involved in.obtaining adequate documentations of jam release 
events. First, the longitudinal water level profile along and downstream of an 
ice jam must be known shortly before its release; second, water level—time 
variations at downstream locations are needed as a means of assessing the 
results of the surge; and third, channel geometryand flow conditions are 
necessary as input information prior to application of a mathematical model. 
Recently, a partially documented release case was reported by‘ Doyle and 
Andres (1979): the 1979 breakup on the Athabasca River at Fort .McMurray 
which was triggered by the release of a major ice jam upstream. Fortunately,it

A 

was possible to approximately determine the “water level profile along this ‘jam 
"and to obtain the subsequent stage-time variation at a bridge site in Fort 
McMurray. . River cross sections were surveyed later under open—water 
conditions. Though this information is far from ‘complete, it does afford an 
opportunity for an exploratory case study, principally intended to be a means of 
gaining preliminary understanding of the jam surge problem. 

In the following sec-tions, it is attempted to formulate the 
governing differential equations of the ice—water surge phenomenon and utilize 
them to "reconstruct" the results reported by Doyle and Andres (1979). 

UNSTEADY ICE-WATER FLOW 
In this section, the unsteady flow of water and ice that results’ 

from the release of an ice jam is considered. For mathematical simplicity, the 
flow is assumed to be two-dimensional" such as itfoccurs in a very wide, 
rectangular, prismatic channel. With proper adaptation, some of the final 
equations can be shown to hold for flow in a channel of-arbitrary.cross-sectional 
shape and plan view. 
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With reference to Fig. 1. two flow layers can be distinguished: (i) 
The fragmented cover of thickness t, including the water contained in its voids; 
if the porosity,e , of the cover remains the same for both the region above and 
the region below the water surface and if the ice is floating, then the 
submerged thickness of the cover is equal to s.t with s.=specific gravity of ice. 
(ii) The layer of thickness h that consists of water, between the bottom of the 
cover and the channel bed. Figure I shows the assumed velocity distribution 
across the two layers; the fragmented cover is assumed to act_as a solid due to 
interlocking among -the fragments and thence to have a uniformly distributed 
velocity, ui, 

Continuity Eguations 

Assuming that the porosity e of the cover is constantl, the mass 
conservation for ice results in (thermal effects are neglected): 

Bqi 
(1) (1-6) + —3—x— = o 

in which Tztime; x=longitudina_l distance; and qizice discharge per unit width, 
given by: 

(2) qi 
= (1-€)uit 

Substituting Eq. 2 in Eq. 1 gives: 

3x (3) 3?; . = 0 

Considering the mass conservation of water, gives: 

3‘? 
(I4) zz:—.}}.+esi§a-.%.+-3—x‘—"=0 

in which qw = water discharge, given by 

(5) qw = ii‘ + euisit 

with q'=water discharge in the second layer, i.e:

h 
(6)_ q‘=fudy=Vh

0 

where V=av'erage velocity in the layer. Substituting Eq. in Eq. 4 and taking 
Eq. 3 into account, gives: 

In reality, 5 is expected to vary, but only within a narrow range. 
-3- .
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3h 3' 
(7) fi+§—§L=o 
which may be viewed as the continuity equation for the second layer. 

To write the overall mass flux equation for the ‘ice and water 
flow, multiply Eq. 1 by pi (=ice density) and Eq. 1+ by ow (= water density) and 
add, to find: 

3H apwq 
(8) pwT'+8x=o~ 
in which H = overa:ll water depth, given by: 

‘ H = h + Sit 

and pwq is the total mass flux, that is: 

(10) owq = oiqi + owqw 
It is noted that Eq. 8 is identical to the continuity equation for water flow of 
depth H and discharge q. 

Momentum Eg.ua’t‘ions 

The momentum equation for the water layer in a direction parallel 
to the channel bed is: 

(11) p(§£+ugE+v§E)=owgSo- 
‘< 

in which u, v = velocity components in the x and y directions respectively; 
gzmagnitude of the acceleration of gravit-y=9.8 m/s 2; S =channel bed slope; 
pzpressure, assumed approximately equal to the hydro tatic pressure; and 
tzshear’ stress parallel to the x—axis, acting on a plane normal to the y-axis. 
The differential equation of continuity reads: 

8 av _, 

By virtue of -Eq. 12, the bracketed term on the LHS of Eq._ 11 may also be 
written as (Bu/3T) + (Bu:/ax) + (auv/3y). Making this substitution and 
integrating both sides of Eq. 11 from y=o to y=h, gives: 

h h 
(13) ow { (5% 6" 

udy) - (u)h%|% + (T3; 
£ 

urzdy)-(u2)h + 

a 
“ ah 

(u)h(v)h} = pwg Soh — ( 3-; I pdy) + (p)h 3; - (ti+ To)
0 

-5--



in which 1' =.bed shear stress and 1'.=shea_r stress on the bottom of the cover, 
considered positive if it tends to etard the water layer and accelerate the 
cover, as sketched in Fig; I. It is noted that (u) '=u. and p.=p g (H-y). To 
determine (v)h, Eq. 12 may be integratedfrom y:o, to y=_ i; t_his givgs: - 

3h h 
(14) (oh = ui 5; — % i 

I udy 
0

. 

Using Eqs. 6, 7,9 and 14, Eq. 1.3 may be simplified to: 

in which SW = slope of thevwater surface and
h i 

(16) m' = I uzdy 

i(21) pwAh(§15. + v

0 

Consider next the momentum equation for an element of the 
cover of length dx. For simplicity, the equation is written in a direction 
parallel to the water surface so as to cancel the pressure forces; the cosines of 
small angles which would ordinarily" appear in the equation are assumed equal to 
unity. If dm. is the total, ice and water, mass of the element and ai is its 
acceleration (hote aizdui/dT=constant across the element), then: 

(17) (dmi) ai = g(dm-i) SW + tidx 

But 
dui Bui Sui 

(18) ai=ar‘=fi*+"aTx 
and 

(19) dmi = pi(4l-e) tdx + ow ésitdx .= ow sit dx 

Substituting Eqs. 18 and 19 in Eq. 17 and rearranging, gives: 

aui Sui 
(20) °w51‘(’5T*”1’z7)=°w351‘5w*Ti 
A similar form may be obtained for Eq. 15 if we make the one—dimensional flow 
approximation m"«='-Vzh and use Eq. 7 to show that: 

2%) = °wghSw' (Ti+To) 
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Once the initially stationary cover accelerates to the full water speed, the one- 
dimensional approximation will indicate that uizV. In this case, addition of 
Eqs. 20 and 21 will give: 

3V 3V _ ‘Z2’ DWH “a‘r* " ‘aiz’ T‘ “w 8” 5w“o 
which is the same as the momentum equation for flow of depth H and average 
veloc_ity V. Further, with u. 2V, it can be shown that q (defined by Eq. 10) 
becomes equal to VH and Eq. i reduces to 

8 H 3(VH)
3 (23) ——+——=o T 3x 

It follows that under the conditions of (i) the one-dimensional flow approxima- 
tion and (ii) full development of the speed of the cover, the overall equations 
governing the motion of water and ice are identical to those of ordinary water 
flow with depth H and average velocity V. With proper boundary and initial 
conditions“, the jam release problem could then be handled by means of existing 
unsteady flow models. It is noted that a more elaborate derivation for a 
channel of arbitrary cross—sectional shape and plan form gave the same 
correspondence between water-ice flow and water flow of the same overall 
depth and average velocity.

' 

To estimate the time required for full development of the ice 
cover speed, an order-of-magnitude analysis was performed assuming constant 
water speed and thickness t. It was found that u. becomes equal to 95 percent 
of the water speed withina few minutes. Since the acceleration time is quite 
small, it could, as a first approximation, be neglected and the computation 
based on the open-water equations from the very begi_nn_ing of the process 
(instant of release). 

FORT MCMURRAY CASE STUDY 
Figure 2 is a plan of the Athabasca River in the vicinity of the 

town of Fort McMurray (Alberta), a site notorious for troublesome ice jamming. 
The 1979 breakup at this site was documented by Doyle and .Andres (1979) who 
reported that breakup at MacEwan Bridge was triggered by the release of an ice 
jam that had formed a few kilometres upstream. The longitudinal stage profile 
of this jam was determined shortly beforeits release and can be used to define 
the initial conditions. The passage of the surge was observed at MacEwan 
Bridge and a few stage readings and velocity estimates are available. Channel 
cross sections below MacEwan Bridge have been provided by Doyle and Andres 
(1979); additional cross sections for the reach above the bridge were kindly 
provided by M. Anderson of the Transportation and Surface Water Engineering 
Division of Alberta Research Council. 

To solve the governing differential equations, a numerical 
algorithm was used that has been developed" by Krishnappan and _Snider (1977) 
for one-dimensional unsteady flow with variable channel width. Though this 
algorithm is capable of dealing with cross sections of arbitrary shape, it was 
deemed sufficient for the present purpose to assume rectangular sections, as 
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Fig. 2 Location map of study area (after Doyle and Andres, 1979 
with changes). .



follows. First, a cross section was approximated by a trapezoid of depth equal 
to the distance of the water surface from the average channel bed_level. This 
trapezoid was then approximated by a rectangle of the samedepth and Width 
equal to the average width of the trapezoid. The channel width and depth 
between successive surveyed cross sections were determined by linear 
interpolation. 

Initial conditions for the computation consist of the water surface 
and bed profiles as well as flow discharge along the study reach. For the 
jammed reach, it is assumed that flow through the voids of the jam is negligible, 
therefore the value of q is equal to q' which in turn is equal to the water 
discharge prior to release. Discharge was estimated as 900 ma/s below the 
mouth of the Clearwater River (see Fig. 2) and 700 m3/s above this site, based 
on Water Survey of Canada records. 

In addition to the initial conditions, Krishna_ppan and S_n_ider‘s 
algorithm requires depth or flow rate at the upstream and downstream 
boundaries of the study reachplus an estimate of the friction factor or of the 
ratio V/V* (V*=she_ar velocity) which is assumed independent of x and T. The 
boundary conditions were specified simply by choosing the boundaries suffi- 
ciently far upstream o_f the jam_ and downstream of MacEwan Bridge to ensure 
that surge effects do not" reach these locations during the computation period. 
The parameter V/V* was left "free", i.e. it was selected by a trial and error 
process so as to give optimum agreement between predicted and observed 
stages at McEwan Bridge. Though this parameter is known for open—water 
conditions (V/V*=16) and should probably apply to unimpeded ice-water flow, 
this value may not be appropriate for the present case study; downstream of the 
ice jam, the river was not open but covered by lm thick sheet ice with 
occasional open—wate_r sections. ‘What the friction factor should be i_n this reach 
is Unknown and certainly it would be expected to change with time and distance 
as the surge moves in and dislodges the sheet ice cover. Because this effect is 
too complex,_ it was considered reasonable to use an "average" constant value; 
clearly, this value should be less than the ope_n-water value. 

Figure 3 shows the river bed profile in the study reach along with 
the initial water surface profile as documented by Doyle and Andres (1979). 
The actual data points of‘ Doyle and Andres are also plotted so as to show the 
degree of "smoothening" that was applied for computational purposes. The time 
‘_T=0 is fixed at 1950 h, April 28, 1979. 

» 2 

Figure 4 shows stage-time variations as computed for different 
values of V/V* along with available observations. The best agreement between 
computation and observation seems to be obt-ained when V/V*=9.0. Note that 
all computed curves have a peak and decline slowly afterwards. However, the. 
observations show the stage to remain fairly steady after T250 min. This is 
probably due to new jamming that occurred somewhere downstream of 
MacEwan Bridge. According to Doyle and Andres, ice movement at the bridge 
ceased at T=l65 min (2235 h, April 28) and a major jam was observed in the 
morning of April 29 with its toe 11: km below, and head 11 km above, MacEwan 
Bridge. Assuming that the new jam was initiated at the above indicated 
location , it was estimated that, with V/V*=9.0, the time of initiation would 

This is the furthest possible location from MacE-wan Bridge; the jam might 
have been initiated upstream of this site and slowly moved downstream during 
the night of April 28 to 29 by intermittent "shoves". 
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have been T270 min. For ’l'>70 min, effects of the new jamming would be 
experienced at MacEwan Bridge. 

Fi ure 5 shows the variation of V with time at MacEwan Bridge as 
computed for V V*=9.0. At ‘l'=35 min, the computed value of V is 2.2 m/s while 
the surface velocity was estimated by site observers to be between 2 and 3 m/s. 
Considering that surface velocities are typically 15 percent larger than average 
values, the agreement between prediction and observation appears satisfactory. 

3 I I I I I I I T Ie 
33 
_.:~ 2 -

O 
.9 T=35 mi_n_. 
9 est ‘d surf. vel-.. = 2-3 m/s 
(1) 1 - 
U)
S 
(D

2 
0_ l I 

g 

I 
4 

.l J I I I I 

O 20 40 60 80 100 
T= Time from release (min) 

Fig. 5' Computed velocity-time variation at MacEwan Bridge 
(V/V‘*='9). ' 

Considering again ‘Fig. 3, it may be noticed that the stage profile 
of the ice jam does not include any section parallel to the normal river slope. 
This implies that this jam did not attain equilibrium in the sense adopted by Uzuner and Kennedy (1976). This is the result of the jarn's limited length. Had 
the supply of ice been larger, an equilibrium section would have formed; this 
would have caused a longer jam than the one that actually formed, though not 
necessarily deeper. Considering that such an occurrence is not inconceivable, it 
is of interest to examine the effects of a hypothetical jam with the same maximum depth as that of "the actual jam but with larger length. Figure 6 shows the assumed initial profile of the hypothetical jam: a constant depth, 
equal to the maximum depth of the actual jam, is assumed to occur in a reach 
of length L and a horizontal water surface transition is drawn between this 
reach and t e uniform flow, open-water, reach upstream. Figure 7 shows the 
resulting peak stage at MacEwan Bridge plotted versus L using V/V* =9.0; for L :25 km, this peak would have been 1.3 m higher than gthe one that actually 
occurred. The main effect of L on V is associated with the duration of surging 
velocities. For Le=0, Fig. 5 ihdic-ates a maximum of 2.3 m/s for V, while 
velocities in excess of 2 m/s lasted for about 45 min. For L :25 km, the maximum value of V was calculated as 2.35 m/s but velocities larger than 2 m/s 
persisted for 110 min. »

' 
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DISCUSSION 

From the foregoing analysis, it appears that a one—dimensional, 
unsteady, open-water flow model can be applied to the ice-water flow that 
results from the release of an ice jam using appropriate definitions of the mass 
and momentum fluxes. Realistic predic-t_ions can be made with this approach 
provided a suitable value is selected for the coefficient V/V*. At this time, it is 
not known how this coefficient is to be predicted because of complications 
arising from the frequent existence of solid ice sheets below an ice jam_. For 
the present study, the "best" value of V/V* was found equal to 9 which is 
between the open-water value (=16) and the ap arent‘ value for flow under a 1m 
thick ice cover (:5). The apparent value of V V * is defined as the ratio of the apparent V(=q/H) to the apparent V *(= /gHS ;..S =energy slope). The apparent 
V/V_*‘ applies when the cover is stationary but has to increase when the cover is 
set in motion. Additional case studies would help to develop a method for 
predicting suitable values of V/V*. 

The possible effects of the jam's length on downstream flow 
conditions were, investigated using V/V*=9. It ‘was found that jams of the same maximum depth as that of, but longer than, the actual jam would have resulted 
in increased peak stages and durations of surging velocities. 
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The peak value of V at MacEwan Bridge was calculated_ as 2.3 m/s, 
occurring at T223 min. At T=35 min, the calculated V had dropped slightly to 
2.2 m/s and this is in accord with an estimated, surface veloc-ity of 2-3 m/s, 
reported by site observers. It is of interest to note here that surface velocities 
of 5-6 m/s occurred at this site during the 1977 breakup (Doyle 1977); this 

implies corresponding average velocities of '4.3-5.2 m/s which are about twice 
those of 1979. The difference could be produced by one or more of several 
factors such as a deeper jam; a jam located closer to the observation site than 
the 1979 jam; a steeper toe slope; and a higher initial discharge. Unfortunately, 
the origin of the 1977 surge is unknown but chances are that the released jam 
was located at about the same distance above MacEwan Bridge as did the 1979 
jam. The 1977 discharge was about 1300 m3/s which may account for a part but 
not for all of the difference in surging velocities. It can be shown that, other 
things being equal, surge speeds are approximately proportional to the square 
root of the initial water surface slope at the jam toe. Figure 3 indicates an 
initial toe slope of about 10'3"; hence, it is estimated that the toe slope of the 
jam responsible for the 1977 surge would be close to but not greater than 51» x 
10- 3. This value is not uncommon for ice jams in the vicinity of Fort McMurray 
(see Doyle 1977; Doyle and Andres 1978, 1979). « 

It has been pointed out that predictions cannot be expected to be 
realistic beyond T=70 min, due to new jamming that occurred at a location no 
farther than 14 km below MacEwan Bridge. The toe of the new jam was 
observed at this location about 12 hours after the surge; it is thus possible that 
jamming first occurred at a distance less than 14 km from MacEwan Bridge and 
the toe advanced by "shoves" during the intervening time. The probability of » 

this occurrence is enhanced if it is considered‘ that in 1977 a much more violent 
ice run was arrested at Poplar Island (9 km from MacEwan Bridge - Fig. 2; 
Doyle‘1977). If this had also been the case in 1979, it is estimated that 
prediction would only apply until T=l+0 min. 

Regardless of the. actual timing and location of the new jamming, 
prediction of subsequent flow conditions depends on several factors, as 
indicated below: 

(i) Upstream surge characteristics
. 

(ii) Unsteady flow equations under a stationary fragmented ice cover (new ice 
lam . 

(iii) Mechanisms of upstream propagation and vertical growth (thickening) of 
an ice jam. 

(iv) Downstream boundary condition, that is, discharge or depth variation with 
time at the jam toe. 

(v) Stability of the jam toe. 

Item (i) can be dealt with using the approach presented herein 
while item (ii) has_already been discussed in an earlier section where continuity 
and momentum equations were developed (seealso similar equations derived by 
Uzuner and Kennedy 1976 for flow, under a stationary cover). For a situation 
where an ice jam lengthens in the upstream direction, two flow models must be 
applied simultaneously: a model of ice-water flow for the region upstream of 
the jam head and a model for flow under a statio_na_ry cover for the region 
downstream of the jam head. The location of the boundary between these 
regions depends on time in a manner dictated partly by item (iii) and partly by 
the incoming ice discharge which is related to item (i). Item (iii) can be 
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formulated so as to be consistent with generally accepted theoret_ical 
developments to date (see for example R. J. Kennedy 1958; Pariset et al 1966; 
Uzuner and J. F. Kennedy 1976). Some atempts to formulate mathematically 
the propagation and thickening of an ice jam have already been made (Uzuner 
and VKennedy 1976; Mercer and Cooper 1977); these are considered of 
theoretical interest as the resulting models have not been tested against 
laboratory or field data. 

Items (iv) and (v), that is, flow and stability conditionsat thejam 
toe are, to a large degree, unknown. For example, Uzuner and Kennedy (1976) 
did not attempt to solve their time-dependent equations largely because the 
downstream boundary conditions were unknown. On the other hand, Mercer and 
Cooper (1977) assumed a floating toe with equilibrium thickness which permits 
one to consider the water surface along the jam_ an M2 curve. Though floating 
‘toes have been observed occasionally-, groundedltoes seem to be commonplace 
(Beltaos 1980). Evidence for the latter situation can be either direct (water 
surface located farther below the top of the jam than one tenth of the available 
channel depth) or indirect (mode of failure of an icejam, locally very steep 
slope of water surface). For the secondice jam at Fort3-McMurray in 1979, the 
results of Doyle and Andres indicate a toe slope of 0.005 over a distance of 500 
m; this is 26 times the normal channel slope at the same location. To withstand 
"the resulting forces (streamwise weight component plus bottom shear stress) an 
ice jam would have to be much thicker than the available flow depth. 

When a jam toe is grounded), the downstream boundary condition 
may be formulated in terms of a seepage-type equation which relates the 
discharge to the water depths upstream and downstream of the grounded 
portion. if it is assumed that at the time of formation of the toe, the flow is 
stopped completely, i.e. discharge becomes zero momentarily, the upstream 
depth will subsequently increase and the downstream‘ depth will decrease; this 
will establish a hydraulic gradient which, in turn, will cause the discharge to 
increase. This concept could be formulated mathematically and incorporated in 
an overall model of the jam formation process; however, there is an additional 
consideration that requires investigation. As the hydraulic head across the jam 
toe increases, the seepage force also increases while the jam's ability to resist. 
this force may decrease if increased water stages cause partial floatation of the 
grounded ice. Therefore, there must be a. limit of stability beyond which the 
jam would fail and move downstream but it is not known how a pertinent 
criterion should be expressed quantitatively. It would thus appear that research 
on the mechanics of grounded jams is necessary before a complete model of ice 
jam formation processes can be produced. ' 

SUMMARY AND CONCLUSIONS 
The results of a preliminary investigation into the mechanics of 

surges due to ice jam releases have been reported in the previous sections. The 

3Note that similar toe slopes for ice jams near Fort McMurray have also been 
reported regarding the 1977 and 1978 breakup periods (Doyle 1977; Doyle and 
Andres I978). 
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invest_igation was prompted by a recent report (Doyle and Andres 1979) that 
includes a partially documented case of ice jam ‘release. 

The differential equations for the ice-water ‘flow that occurs 
subsequent to the release of an ice jam were formulated and it was shown that, 
with plausible approximations, the problem may be treated as one—dimensional, 
open-water flow of identical total depth H and average velocity V. This applies 
to situations where the river is free of ice downstream of the released ice jam. 
Though this does occur in natureocc-asionally, the downstream reach is often 
covered with an undisturbed or deteriorated ice sheet. Arrival of the surge 
lifts, breaks and sets in motion this ice sheet; this phenomenon_is too complex 
to model butgits main effect is to retard the advance of the surge. "For 

practical purposes, it was assumed that this effect may be handled by an 
increased friction factor or a reduced ratio V/V*. 

The data provided by Doyle and Andres pertaining to the release 
of an ice jam on the Athabasca River above Fort McMurray were reprocessed to 
define the initial and boundary conditions necessary for the computation. 
Stream geometry was defined on _the basis of several surveyed cross sections; 
each cross section was approximated by a rectangle of average width and depth 
for simplicity. The computation was carried out by means of an algorithm 
developed by Krishnappan and Snider (1977) for u_nsteady, one-dimensional, 
open-water flow. This algorithm uses a constant value of V/V* which, in view 
of previous comments, appears to be the weakest" assumption of the present 
study. The value V/V*:9 was found to adequately reproduce available stage and 
velocity estimates at a down_stream location. This value is between the 
corresponding open-water value (16) and the apparent value (5) for flow under a 
solid ice sheet. 

Using V/V*’=9, it was found further that, if the jam had been of 
the same maximum depth but longer than the one that actually occurred, the 
peak surge stages and durations of surge velocities would increase. 

From the data of Doyle and Andres (1979), it appears that the 
surge was arrested at a location no more distant than 11+ km below MacEwan 
Bridge and the present computation cannot be expected to be realistic for T> 70 
min due to changed downstream conditions. Preliminary considerations on 
mathematical modelling of jam reformation indicated that the major unknowns 
are the flow and stability conditions at the toe of an ice jam, especially in cases 
where the toe is grounded. 
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