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Abstract 

The recent increase in activity in the Canadian Arctic demands improvement in 
ice navigation technology. The ability to extend the shipping season safely into the 
winter season would be of great economic benefit to companies involved in mineral 
exploration and transportation. 

Winter ice conditions-in the Canadian Arctic create a dangerous environment 

_ 

for ship transit. The need arises for optimal routes through the ice which minimize 
the risk to the ship and the environment, and also minimizes schedule disruptions. 

In this thesis, an automatic route selection system for navigation in ice-covered 

waters is developed 'and implemented. Features extracted from synthetic aper— 

ture radar imagery provide clues about the strength of the ice. The dynamic pro— 
gramming formulation encourages passage through weaker ice while simultaneously 
minimizing the distance of the voyage. The desirability of the suggested route is 
quantified by estimating the transit time of the vessel.
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Chapter 1 

Introduction 

1. 1 Background 

Remote sensing of ice—covered regiOns is the subject of extensive research in Canada.
I 

Beneficiaries of Sea ice information include industries involved in the exploration 

and transportation of petroleum and mineral resources in the Canadian Arctic, 
commercial shipping companies, scientists studying the importance of ice in the 
environment, the fisheries, and the Canadian Coast Guard. 

Vessels negotiating high ice-concentration waters risk colliding with ice or being - 

beset in ice. Possible accompanying costs are excessive consumption of fuel, eco- 
nomic loss due to serious delays, damage to the vessel, environmental disaster, and 
loss of life. Ice can be avoided with better knowledge of its location and strength.
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1.2 Operational Requirements 

The operational requirements of vessels traversing ice-covered waters are divided 
into strategic, tactical, and close-range hazard detection information 

Strategic information is used for long-range planning of vessel routing. In the 

months prior to the voyage, shore-based analysis of historical trends is undertaken 
to assess ice conditions along the intended route. Included in the analysis is the. 

ship’s expected performance underthe anticipated ice conditions. Weeks before 
the voyage, information is collected on the existing ice conditions along the ship- 

ping channels and the existing meteorological conditions. Using historical evidence, 
existing ice conditions, and meteorological data, the conditions at the time of the 
voyage are forecast. As the commencement of the voyage draws near, the forecast 
of the ice conditions is compared to the actual developing conditions and updated 
as necessary. 

Tactical information is gathered about portions of the route that contain difficult 

ice one or two days ahead of the ship in transit. The information includes the type,
V 

concentration and ridging of the ice up ahead. This information is used to select a 

good route through or around the difficult ice. 

Close-range ice hazard detection information alerts the helm about ice Condi- 
tions in the immediate vicinity of the vessel. This information enables the ship to 
avoidimpact with small but dangerous ice hazards in its path. 

1.3 Information Sources 

In the past, the ship’s navigator was informed of the ice around the ship by lookouts 
in the crow’s nest. Today, a sophisticated arrangement of data sources obtained
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during each of the strategic, tactical and close-range elements of an ice navigation 

strategy is used to provide more accurate information. 

At the strategic planning level, information is obtained from historical sources, 
satellite imagery, long-range patrol aircraft, and ice charts. At the tactical level, 
information can be provided by other ships upstream, or from an aircraft flying 
over the route. At the close-range detection level, on-board marine radar is pre- 

dominantly used to monitor the immediate ice conditions. 

1.4 Specific Objectives of Report 

The objective of this report is the construction and analysis of an automatic routing 
program for vessel transit in ice-covered waters. The transit routes are generated us- 
ing information found in remotely-sensed Synthetic Aperture Radar (SAR) images 
and specific knowledge of the area and vessel. The specific knowledge is gathered 
from historical data .on ice conditions in the region and the expected performance 
of the vessel in those ice conditions. Reducing the reliance on manual photo inter- 
pretation will allow real-time processing of information and consistent output that 
does not depend on the human interpreter. An automatic route generator would 
be of use during the strategic and tactical information collection stages. 

1.5 Layout of Report 

Chapter 2 presents an introduction to the physical properties of the three major sea 
ice types: young ice, first-year ice and multi—year ice. In addition, the interactions 
between the ice and the microwaves transmitted by the SAR imaging system are
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discussed. The SAR image data used in this report is displayed and interpreted 
in Chapter 3. The ice conditions typically found in the Beaufort Sea during the 
winter season are also presented. Chapter 4 investigates several methods that are 
commonly used to generate features needed to classify the ice in the image. The 
type of ice provides some knowledge of the properties of the ice such as thickness 
and strength which are important parameters for the selection of an optimal route. 
Chapter 5 interprets the SAR image as a network and describes Dijkstra’s method

. 

for finding the optimal path joining two nodes in a netWork. In Chapter 6, the 

network links are assigned costs that reflect the ice conditions using the features of 

Chapter 4. Then, Dijkstra’s method is invoked to generate optimal routes between 
two pixels in the image. In Chapter 7, each link in the SAR image network is 
assigned a value corresponding to the traversal time of a real vessel. Optimal 
routes are generated by minimizing the traversal time. Chapter 8 concludes the 
report with a summary and recommendations for future work.
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Chapter 2 

Properties of Sea Ice 

This chapter introduces the properties of sea ice that affect the synthetic radar 

(SAR) returns captured on a SAR sea ice image. Differences in properties such 

as salinity, density, snow cover, topography, and thickness of ice can be sensed by 
SAR, but the extraction of quantitative values of ice properties is not possible. A 
SAR sensor measures the backscatter, which in the case of sea ice is largely due 
to surface and volume scattering. The degree of surface scattering depends on 
surface roughness and variations in the dielectric properties of the ice caused by 
salinity levels. Volume scattering occurs in the presence of discontinuities such as 
gas bubbles in the ice medium. 

Sea ice can be classified into three distinct categories: open water/ young ice, 
first—year ice, and multi—year ice. Young and first—year ice occur in the current year 
and multi-year ice has survived a summer melt season. Each ice category is known 
to have distinctly different microwave backscatter returns that can form the basis 
of classification.
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2.1 Physical Properties of Sea Ice 

Sea ice crystals form at temperatures close to —2°C. The crystals float to the surface 
of the water where they coalesce and form a solid surface layer up to 30 cm thick 
called young ice Salt is expelled during the freezing process so that the crystals 

are of pure ice. However brine becomes trapped in elongated vertical brine pockets 
within the solid ice matrix. As the ice ages, the brine tends to migrate downwards 
under the influence of gravity. Thus, with age, sea ice becomes progressively less 
saline and stronger as the brine pockets disappear. 

Ice undergoes extensive mechanical deformation from impact with other ice due 

to forces'of wind, waves, and ocean currents. Colliding ice sheets that are less than 
one meter in thickness [3] will form ice rafts where one ice sheet slides on top of the 

other. Thicker ice sheets usually buckle under the force of impact. The buckling 
may occur at the point of contact of the two ice sheets or along a line where the 
ice is mechanically weak. Ice is very brittle and fracture results in ridges of angular 
blocks. Ridges in first-year ice reach heights in the range of two meters Ridges 

tend to be long linear features whose lengths may be in the kilometer range but 
whose widths are typically only in the tens of meters. Rubble occurs When ridged 
ice sheets undergo the forces of compression and shear so that repeated ridging 
events occur. Estimates from submarine surveys indicate that 25% to 50% of all 
Arctic ice is contained in ridges 

At the start of the summer melt season, snow on the surface of the ice begins 
to melt. When all the snow has melted, between 75% and 95% of the surface of 
the first—year ice will be covered with several centimeters of fresh water As the 
temperature continues to increase, the sea ice starts to melt. Some ice fioes will 
melt completely, but some will survive the summer melt season. At the start of the
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new growth season, the salinity of the surviving ice has been significantly reduced 
due to flushing from fresh surface water. This ice is clear and very hard and is 

known as multi-year ice. 

Multi-year ice has a characteristic undulating appearance. The higher ice fea- 
tures are called hummocks and the lower features are re-frozen melt ponds. Pressure 
ridges formed in the current season are also present. Hummocks are smooth, raised 
features on the ice surface. They are the remains of deformed first-year ice such as 
rubble, ridges and rafted ice. The angular blocks of broken first—year ice become 
weathered during the melting period and the ice blocks are consolidated. The re— 
sulting hummocks are very strong. Hummocks have low salinities because their 
height allows gravity to drain the brine cavities during the summer. Melt ponds 
are formed primarily from melted surface snow and can be up to 20 centimeters 
deep The melt water absorbs more radiation than the surrounding ice and 
gradually deepens as the surface ice under the pond begins to melt. Much of the 
water from melt ponds will drain into cracks or holesin the ice, but some remains 
to refreeze in the winter. Melt water is fresh water and the resulting ice has zero 
salinity. The average thickness of undeformed multi—year ice is 3 to 4 m [5], but 
deformed multi-year ice thickness varies greatly. A multi-year ice floe can have 
thicknesses ranging from less than a meter to tens of meters 

2.2 SAR Signatures of Sea Ice 
Synthetic aperture radar sensors are used to image sea ice in the Arctic. SAR 
sensors operate in the microwave portion of the electromagnetic spectrum at wave- 
lengths from 2 to 24 cm These wavelengths are unaffected by adverse atmo- 
spheric conditions found in the arctic regions such as cloud cover, fog, and dark-
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ness 

In order to interpret remotely sensed observations of sea ice, it is necessary to 

understand the relationships between the variations in the microwave signatures 
and the physical properties of the various ice types. The different ice types de- 
velop distinct surface features and exhibit. properties such as salinity, density, and 
topography. If these ice properties could be sensed, then they would be useful as 
features in the classification. Experimentation and operational use has shown that 
SAR backscatter is sensitive to the physical properties of sea ice but the complete 
mapping between microwave signatures and ice properties has not been discovered. 

' However, some correlations between ice properties and microwave signatures are 
known and will be discussed in this section. 

Thin young ice is very saline and conforms to the shape of the water surface. 
In the open ocean, the water surface is affected by wind, currents, and waves and 
can be very rough. However, water that is shielded from the wind by surrounding 
ice floes has a smooth surface with correspondingly weak backscatter returns. As 
a result, open water and young ice within an ice pack have a dark representation 
in the image. 

First-year sea ice has a salinity of between 5 and 20 ppm The high salin- 
ity makes first-year ice a high-loss dielectric medium that strongly attenuates mi- 
crowave energy. There is little penetration of the microwaves into the first-year 
ice so any signal returns will be the result of surface scattering First-year ice 

can be smooth or heavily deformed. With. smooth first-year ice, very little energy 
can be expected to return to the sensor. Thus, smooth first-year ice appears dark 
in a SAR image. Rough first—year ice presents a highly reflective surface and high 
returns are expected. Pressure ridges in rough first-year ice act as strong radar 
reflectors that appear as bright lines in a SAR image.
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The weathered hummocks on the surface of multi—year ice do not reflect radar 
as strongly as first-year ice ridges. However, the lower salinity of multi—year ice 

(between 0 and 3 ppm allows radar waves to penetrate deeply into the ice. 

This penetration will allow the- radar wave to interact with the inhomogeneities 
in the ice. The upper layers of multi-year ice contain air bubbles approximately 
1-2 mm in diameter that act as internal discontinuities and cause significant radar 
backscatter The backscatter will increase as the number and diameter of the 
gas bubbles increases. 

Multi—year melt pools have very smooth surfaces with density and salinity close 
to that of pure ice. The backscatter of melt pools is very weak because of the 
small surface and volume scattering. The intensity of the backscatter return from

, 

hummocks and‘ melt pools differs by a factor of about 32 As a result, multi-year 
ice appears rough in texture in a SAR image. 

An important consideration is the effect of the snow cover on backscatter re- 
turns. Snow cover can mask underlying ice features so that surface roughness is 

hidden to the sensor A heavy burden of snow can submerge and flood an ice 
fioe with seawater, thereby altering the surface properties of the ice. The fresh 
meltwater from snow also changes the backscatter response. Thus, the presence of 
snow affects the backscatter response and subsequently hinders the process of ice 
type discrimination. 

In summary, the dominant backscatter processes of each of the three main ice 
types are substantially different. When attempting to discriminate between the 
three ice types, the following information can be exploited:

I 

o Multi—year ice backscatter returns are dominated by volume scatter because of 
the low density in the upper portion of multi—year ice sheets caused by the presence 
of gas bubbles.
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o First—year ice produces strong surface scatterdue to the surface roughness. Any 
increases in the scale of surface roughness will produce large changes in backscatter 

returns. 

0 Young ice and open water produce weak backscatter returns Ibecause of the smooth 
surfaces.



Chapter 3 

Data 

The synthetic aperture radar imagery used in this report was obtained with the 
NASA / JPL multifrequency, multipolarization airborne SAR system [9] on March 
11, 1988 during the maximum ice extent. The two images depicted in Figures 3.1 
and 3.2 representing the same scene but in two different frequencies and polariza- 
tions. Figure 3.1 is an L—band (1.28 Horizontal—Vertical (HV) polarization 
image and Figure 3.2 is a C-band (5.3 GHZ) Horizontal—Horizontal polar- 

ization image. The site is located in the Beaufort sea at approximately 76" north 
latitude and 140° west longitude The images contain 400 pixels in the azimuth 
direction (left to right), and 400 pixels in the range direction (top to bottom). Each 
pixel covers an area of approximately 12.5 m by 12.5 m [11].

11
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Figure 3.1: Image #125 - L-band, HV polarization SAR - Beaufort sea

12
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Figure 3.2: Image #125 — C-band, HH polarization SAR - Beaufort sea

13
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3.1 Typical Ice Conditions in the Beaufort Sea in 
Winter 

The Beaufort sea contains first-year and multi—year pack ice Much of the 
Beaufort Sea exploration occurs in the dynamic region known as the transition 
zone In the transition zone, the ice moves very quickly with mean ice velocities 
of 3.0 to 13.0 km per day [12], and suffers heavy ridging and deformation. iMulti- 
year ice significantly impedes navigation by even ice-breaking vessels, and is a real 
threat to the structural integrity of vessels Nearshore multi—year ice floes are 

about 1 km in diameter. Further offshore, floe diameters in the range of 10—20 km 
have been reported [13]. In the winter, water might only be present in open leads 

_ 

for a few hours before it freezes [14]. 

The following sea ice data (Table 3.1) was compiled by Bercha [15] and gives a 

good indication of ice floe dimensions in the Beaufort sea. 

Table 3.1: Statistics of the Beaufort Sea 

Ice Type Ridge Sail 
. 
Ice Floe Ice Floe 

Height, m Thickness, 171. Size, m2 

First-year mean 4.1 1.8 5 X 104 

maximum 9.9 2.9 3.7 X 107 

Multi-year mean 3.3 2.2 1.0 X 103 

maximum 8.9 5.2 1.2 x 106
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3.2 Visual Description of Ice Types in Image 

Since in situ verification of this report’s work is impossible, interpretation of the 
images is based only on' visual inspection. Many researchers have used the 1988 
NASA/JPL data set [9, 10, 11, 16, 17]. This collection of papers provides a detailed 
description of the features in the data set. 

Three ice types are present in the image: multi—year ice, first-year ice, and 
frozen lead ice. First-year ice can be further divided into rough and smooth ice. 
The rounded features visible in both images are multi-year ice floes. In the C- 

band imagery (Figure 3.2) the multi-year floes are very bright because of the high 
backscatter penetration of the radar into the upper layer of the ice where volume 
scattering occurs from millimeter—sized gas bubbles present within the ice. Both 
images represent the high, weathered ridges and adjacent melt ponds of multi—year 
ice with mottled tones of grey. 'In Figure 3.1, the multi-year ice floes are rimmed by 
brighter ice which is likely deformed first-year ice segments that are frozen to the 
large floes. In Figure 3.2, both multi-year and sheared first-year floe boundaries are 
characterized by bright tOnes. Asa result, fragmented floe parts and rubble can 
be mistaken for multi-year ice floe fragments. In both images, smooth first-year 

ice appears darker than multi-year and first-year rubble. Structure from ridges and 
cracks in the first-year ice is very evident in the bright, linear features of the L—band 

image 3.1. The darkest regions in Figure 3.2 are smooth, young ice'(leads) that are 
created by divergence in the ice pack Ambiguity occurs in the L-band image 

(Figure 3.1) between smooth first—year ice and lead ice but the C-band image shows 
high tonal discrimination between these two ice types. 

To summarize, multi—year ice floes are very bright in the C-band image. The 
leads are very dark. Smooth and slightly deformed first—year ice is represented by a
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medium grey tone. There is ambiguity between multi—year ice and broken first-year 
ice.

' 

In the L—band image, first-year smooth ice can be mistaken for lead ice. Multi— 

year ice and rough first—year ice cannot be clearly differentiated by visual analysis. 
Ridges are very clearly delineated. 

It is generally agreed that C-band imagery provides the best'discrimination 
between first-year ice and multi-year ice [18]. For instance, the new Canadian 

satellite, RADARSAT, has been designed primarily for ice monitoring purposes 
and operates in C-band [18]. In navigation, it is most important to avoid multi- 

year ice floes at all costs. The C-band image in Figure 3.2 shows the dangerous 
multi-year ice floes clearly with a bright tone and high texture. Another item of 
importance is the location of leads that can be exploited by the ship. Leads are 

very clearly visible in C-band imagery because they are very dark and have little 
texture. The first-year ice has a medium grey tone, except for first-year rubble 
areas. These rubble areas can be mistaken for multi-year ice because they are so 
bright and the texture is similar to that of multi-year ice. However, such a mistake 
is an error on the cautious side and will not cause serious problems.
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Chapter 4 

Image Feature Extraction 

Much research has been directed towards the development of sea ice classification 
algorithms [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Classification requires the 

extraction of a distinguishing characteristic or feature that clearly separates distinct 

ice types in the image. Such features are the result of specific manipulations or 
measurements of an image such as the intensity histogram, grey-level co—occurrence 
texture features, and spatial frequency spectra. 

Two popular image properties used to describe image information are tonal and 
textural properties. The tonal properties represent the backscatter returns from 
the ice to the sensor. The textural properties describe the tonal variations within 
a small subsection of the image. 

This chapter discusses several image features that have been used by researchers 
to separate ice types in SAR sea ice images. A small number of image features found 
in the literature that were used for purposes other than sea ice discrimination are 
also presented.

17
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4. 1 
‘ 

Tonal Properties 

The first-order histogram of image intensity is the most basic feature that can be 
calculated from an image. The histogram equation is A(b) = 11519, where M is the ' 

total number of pixels in a window and N (b) is the number of pixels of intensity b 

in the window. The window may be the entire image or it may be a small. region 
surrounding a pixel. Usually, the histogram of an entire SAR sea ice image will 
be unimodal even though several ice types are present [19], and thus, meaningful 

threshold values to segment the image are difficult to compute from the histogram. 
However, a small local histogram taken from a window surrounding a pixel will 
show a bimodal distribution if the window lies on the boundary of two ice types. 
From the bimodal histogram, the local area can be separated into distinct classes. 
The size of the window is very important because if the window is too large, more 
than two ice types may be represented and if it is too small, there will not be 

enough data to construct a good histogram. Sea ice classification techniques using 
local histograms are utilized in Wackerman et al. [19] andHaverkamp et al. [20]. 

(I 

In addition, various first-order tonal statistics can be used to describe his- 

tograms. Six statistics are suggested by Pratt [30]: mean, standard deviation, 
skewness, kurtosis, energy, and entropy. The definitions and formulae are listed in 
Appendix B. Barber [21], Lyden ct al. [29], Nystuen and Garcia [24], and Shuch- 

man et al. [25] explored the utility. of tonal statistics in discriminating between 
sea ice types in SAR imagery. The statistics were computed for each ice type and 
then used to classify each pixel in the image. The results were mixed. Barber re- 
ported poor results, the findings of Lyden et al. were inconclusive, but Shuchman 
at (Ll. and Nystuen and Garcia found that standard statistics do a good job of ice 
classification.
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The most significant problem with Classification based solely on grey tone from a 
' 

single—band radar is the overlap of intensity groupings of difference ice types. Stud- 

ies have shown that the combination of textural information with tonal information 
improves image classification results for SAR sea ice [21], [26], [27]. 

4.2 Textural Properties 

Although it is quite easy for humans to recognize and describe texture, it is very 
difficult to define texture in a concise mathematical way. The following collec- 

tion of definitions demonstrates that texture is defined according to the particular 
application in which it is used. 

0 “The notion of texture appears to depend upon three ingredients: some 
local ’order’ is repeated over a region which is large in comparison to the or- 
der’s size, (ii) the order consists in the nonrandom arrangement of elementary 
parts, and (iii) the parts are roughly uniform entities having approximately 

the same dimensions everywhere within the textured region.” [31] 

0 “We may regard texture as what constitutes a macroscopic region. Its] struc- 

ture is simply attributed to the repetitive patterns in which elements or prim- 

itives are arranged according to a placement rule.” [32] 

0 “Texture could be defined as a structure composed of a large number of more 
or less ordered similar elements or patterns without one of these drawing spe- 

cial attention. So a global unitary impression is offered to the observer.” [33]
i 

Haralick [34] emphasizes the interaction between tone (i.e. grey level) and tex— 
ture in an image. He points out that tone and texture are simultaneously present
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in the image, but depending on the circumstances, one or the other may dominate. 
When there is a large tonal variation in a small region of the image, texture becomes 
the dominant property. Wherethe region shows little tonal variation, the texture 
property is suppressed and the tone property dominates. Therefore, image texture 
is characterized by the tonal elements in combination with the spatial relationships 

‘ between them. 

The literature presents two main approaches to characterize texture: first-order 
and second-order texture measures. First-order measures are statistics such as 

variance and‘higher order moments that are calculated from information about 
the pixel’s neighbourhood. First—order measures can also be obtained from one— 
dimensional vectors describing the tonal relationship between pixels in a small 
neighbourhood. second-order texture measures are statistics that use two-dimensional 

matrices derived from the grey tone values of a window of pixels to describe the 
relationship between pixels. 

4.2.1 First-Order Textural Properties 

A _simple first—order texture measure is the standard deviation. A small window is ' 

passed over the data and at each location, the standard deviation of the intensities 
inside the window is calculated and assigned to the central pixel. The size of 
the window is a significant consideration because if the window is too small, the 
statistics gathered will have little significance, while if the window is too large, 

multiple textural regions could be included. 

Weszka et al. describe four first-order measures used for terrain classifica- 
tion based on Grey Level Difference {GLD} statistics. The texture features are 
calculated from absolute differences between pairs of grey levels. Weszka et al.
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32120 
23012 
32102 
12112 
32311 

Figure 4.1: Image sample used to calculate the GLD matrix 

report that the gray level difference statistics perform as well as the more compu- 
tationally expensive and complicated co-occurrence matrices (subsection 4.2.2) for 
their terrain classification application. 

A small window is passed over the image and the probability distribution of 
intensity difference, P(6,-), of pairs of pixels separated by distance, d, and angle, a, 
is estimated. Therefore each pixel in the image will be associated with a P(6,-) such 
that the 6,-th component is the probability of finding an intensity difference of 5,- in 
the neighbourhood of the pixel. 

In the example of Figure 4.1, if d = 1, a = 90°, and the window is 5 X 5, then 
the GLD probability vector associated with the central pixel is: 

P(0) = 2/20 = 0.1 
P(1) = 14/20 = 0.7 
P(2) = 3/20 = 0.15 
P(3).= 1/20 = 0.05 

If the texture is coarse and distance, d, is small, then the probability values near 
(5',- = 0 will be high. A fine texture with a small distance, (1, will display more spread 
in the probability distribution. Measures of texture may be found from measures of 
spread of the probability values around the origin. Weszka’s four texture measures 

are listed and described in Appendix A.
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3. 2 1 

2 3 0 
3 2 1 

Figure 4.2: Image sample used to calculate the NGLD matrix 

Other features such as the variance, skewness and kurtosis, are also commonly 
extracted from the first-order GLD distribution [36]. 

The Neighbouring Grey Level Dependence Matrix (NGLDM) [37] is closely re- 

lated to the GLD method but avoids the angular dependence. The NGLDM con- 
siders the relationship between the grey value of a pixel and its neighbouring pixels 
in all directions simultaneously. For example, in a 3 X 3 window, the intensity 
differences are calculated between each pixel in the window and the center pixel. 
Various texture features obtained from the NGLDM are presented in [23]. 

In the example of Figure 4.2, for a 3 X 3 window, the N GLDM probability vector 
is: 

P(0) = 2/8 = 0 25 
P(1) = 3/8 = 0 375 
P(2) = 2/8 = 0 25 
P(3) = 1/8 = 0.125 

Amadasun and King [38] present the Neighbourhood Grey- Tone Difierence Ma- 
trix { N G' TDM ) which is another relation of the GLD. In this case, for each intensity 
i found within a moving window, the difference is calculated between i and the av— 
erage tone of the neighbours and summed over all instances of i. Amadasun and 

I 

King present five texture features that are extracted from the NGTDM. They are 
coarseness, contrast, busyness, complexity, and texture strength.
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Figure 4.3: Image sample used to calculate the NGTDM 

In the example of Figure 4.3, the NGTDM vector is: 

4.2.2 second-Order Textural Properties
V 

An often utilized second order statistic is the Grey Level Co-occurrence Matrix 
‘ 

(GLCM) introduced by Haraljck [39]. It has been used for automated SAR sea 
ice classification by a number of researchers including Holmes [26], Barber and 
LeDrew [22], Shokr'[40], and Nystuen and Garcia [24]. 

A GLCM is computed from a small window for each pixel in the image. The 
GLCM contains the frequencies with which a pair of grey levels, separated by a 

distance, 5, and at an angle, (9, occur within the window. From the GLCM, various 
textural features can be extracted such as those proposed in [39], and [30]. Some 
commonly used second-order textural features for sea ice are given in Appendix A. 

A small image sample in Figure 4.4 is used to illustrate the calculation of the 
grey-level co—occurrence matrix in Figure 4.5. The angle, 0, is 90" and the separation
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312 
210 
320 

Figure 4.4: Image sample used to calculate the GLCM 

Figure 4.5: Grey-level co—occurrence matrix for Figure 4.4 

is 1. 

Four parameters have to be selected in the GLCM approach: the size of the 

window, the direction (0), the separation (6), and the number of grey levels used 
in the GLCM. The size of the GLCM is given by the square of the number of grey 
levels. Using the full resolution may produce a GLCM that is very large, making 
the computations too expensive. However, if the number of grey levels is too small, 
the texture composition of the image sample will be harmed and the-texture feature 
measures will not be effective. When a convolution window is to be used, the size 
of the window is always a difficult issue. Generally, if a texture is varying slowing, 
a large analysis window should be used. With a high—frequency texture, a smaller 
window should be used. No method has been established for selecting the distance 
or direction parameters. The optimal separation, 6, is found by comparing co— 
occurrence matrices for every 6; however, this is not feasible. Generally, 6 should 

be small for quickly varying textures and larger for slowly varying textures. The 
preferred orientation is data dependent and should reflect the angle containing the 
most useful information. 

An early study by Holmes et al. [26] examined two GLCM texture features fOr
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sea ice SAR images: inertia and entropy. The study found that first-year ice and 
multi-year ice could be differentiated with the inertial texture feature, while the 

entropy texture feature was able to characterize ice floe boundaries and regions of 
rough surface. 

Shokr [40] and Barber and LeDrew [22] also applied Grey Level Co—occurrence 
Matrix texture measures to interpret SAR sea ice images. The research was aimed 
at determining the optimal combination of GLCM parameters and the best texture 
features for sea ice Classification, where optimal is that which achieves maximum 
class separation. 

Shokr computedthe GLCM for various window sizes and interpixel distances. 
GLCMs were found for all four orientations (0°, 45°, 90°, and 135°) and then 
averaged. Shokr found that the GLCM texture features were insensitive to the size 
of the convolution window and to the interpixel distance. Using a fixed window 
size of 25 X 25 pixels, Barber and LeDrew found that a distance equal to one and 
an orientation angle in the look direction of the sensor provided the best results.

2 

Both groups quantized their images to four bits in order to reduce the computation 
time. 

The features chosen by Shokr were grey tone, contrast, entropy, homogeneity, 
inverse difference moment, and maximum probability. Shokr conducted a univari- 
ate analysis to evaluate each individual texture statistic and found that the five 
GLCM texture features were highly inter-correlated, but they did not correlate 
with grey tone. Results showed that overall, the classification accuracy improved 
when grey tone and a texture feature were combined in a two-dimensional classi- 

fication space. The inverse difference moment and entropy were found to provide 
the best classification accuracies.
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Barber and iLeDrew tested the discriminability of uniformity, correlation, en- 

tropy, dissimilarity, and contrast. In addition to a univariate analysis, they also 

conducted a multivariate analysis to determine if several texture statistics together 
would provide good discrimination of sea ice types. Results showed that the best 
discrimination occurred for a combination of any three texture features. 

Nystuen and Garcia [24] compared SAR sea ice classification results using stan- 
dard statistics (mean, range, standard deviation, skewness, kurtosis, and coefficient 
of variation of the pixel grey tones) and GLCM texture features (energy, correlation, 
inertia, cluster prominence, local homogeneity, and entropy). The research found 
that the standard statistics classified ice types with a higher accuracy than GLCM 
texture statistics. When the standard statistics features were used together with 
the GLCM features, accuracy improved marginally. However Nystuen and Garcia 
maintain that the improvement does not warrant the use of the computationally 
expensive GLCM texture features and that standard statistics used alone provide 
good classification results. 

4.3 Other Features 

Kerman [17], [41], [42] constructed a two—dimensional matrix of probabilities. Po— 

sition (i, ) holds the probability that an intensity 2' has a neighbour j, where each 
pixel has eight adjoining neighbours. The probability P(z', ) is estimated by count— 
ing the frequencies of occurrence N(i, j) and dividing by the total number of bonds 
between i and each of its neighbours (usually eight bonds for every occurrence of 
intensity 

In the example of Figure 4.6, for a 3 X 3 window, Kerman’s probability vector 
is:
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Figure 4.6: Image sample used to calculate the Kerman probability matrix. 

(0 0) 

P(O, 1) = 6/11 = 0.55 
P(0,2) = 3/11 = 0 27 
P(1, 1) = 4/16 = 0.25 
P(1,2) = 6/16 = 0.38 
.P(2,2) = 4/13 = 0.31 

Kerman plotted P(i, j) versus j for every 2' with j 2 2' and discovered that 
the resulting plot was exponentially distributed. The exponential relationship is 

modeled by the equations in 4.1 and 4.2.
I 

Z. 
. = .1'e;fl(,~)x(i_j)i . H”) W) 

p 

’ 2’ ’(4.1) 

_ln(P(i’j))=fl(i)X(i“j)+ln(Q(i)),i2j 
. 

(4.2) 

where is the empirically determined slope of —ln(P(i,j)) vs (i—j), and

~ 
is the empirically determined y—intercept of —ln(P(i, vs — j 

Kerman proposes and as features to aid in the separation of ice 

types in the image. is a form of local textural information and is a 

measure of the spatial extent of the local textural information and is referred to as 
structural information.
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The Fourier Power Spectrum method { F PS ) [33] works in the frequency domain 
and describes spatial frequencies. Two common features used with the FPS are 
found by summing the spectrum contained in annular rings and in wedges. Features 
evaluated from rings measure texture coarseness, and features evaluated from wedge 
slices contain directionality information. 

The Fourier Power Spectrum method is an expensive computational procedure 
and non—square regions present a problem with the evaluation of the transform [36]. 
Fourier spectrum provides global information such as directionality and average sin 
but local information is sometimes lost in the frequency domain. Eklundh [43] found 
that phase information does not provide significant textural information. Conners 
et al. [44] and Weszka et at. [35] found that the performance of the Fourier spectrum 
method is significantly poorer than that of first and second order statistics. 

The transform of the FPS is the Autocorrelatton Function (AF) [33]. In a coarse 
texture where the primitives are large, the autocorrelation function will drop off 
slowly as the window is moved. A fine texture will yield an AF that drops off 
quickly. 

The Grey-Level Run Length Method {GLRL} [45] measures the length of con- 
nected pixels having the same grey level. With the GLRL method, coarse textures 
are assumed to have many pixels in a constant grey tone run and smooth textures 
have few pixels in a constant grey tone run. The GLRL method suffers from noise 
sensitivity and the lack of grey level transition information [36].
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4.4 Comparisons 

A significant amount of research has been conducted in comparing the many fea- 
ture extraction methods. The Grey—Level Co—occurrence Matrix is a very popular 
tool in sea ice classification, and thus it has been the focus of many comparative 
studies [44], [35], [24]. 

Conners and Harlow [44] and Weszka [35] performed studies on terrain samples 
to compare four textural feature procedures; second—order statistics (GLCM), first- 
-order statistics (GLD), Fourier analysis (FPS), and grey-level run length (GLRL) 
method. Conners and Harlow ranked the above procedures from best to worst ac— 
cording to their performance: second-order statistics, first-order statistics, Fourier 

analysis, and Grey—Level Run Length. method. Weszka et al reported similar results 
except that the second-order and first—order statistics performed equally well. 

Although the GLCM is considered to perform very well, it suffers from two main 
difficulties. First, there is no established method of selecting values fora number 
of parameters such as displacement and window-size. Second, a large number of 
features can be computed from the co—occurrence matrix, but there is no feature 
selection method to select the most relevant features. 

Nystuen and Garcia [24] compared the performance of GLCM features and 
standard statistics in the classification of sea ice images. Their results show that 
standard statistics outperformed GLCM features in classifying sea ice images. 

4.5 Summary 
This chapter has provided an overview of many popular features. In Chapter 6, a 

number of features described in this chapter will be generated from the SAR sea
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ice image. The features will then be used to assign costs to the links in the network 
sovthat an optimal path through the image can be found. The next chapter will 
describe a method of finding the optimal path between two points in a network.
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Chapter 5 

The Shortest Path Problem 

Ship routes through ice fields are easily described in the language of networks, where 
a network is a collection of connected nodes. The nodes in the network correspond 
to individual pixels in a SAR image of the area and the links between the nodes 
are weighted according to some function of the ice at that location. The optimal 
path between the origin and the destination can be found by solving a well-known 
network optimization problem, the shortest path problem. 

5.1 Network Definition 

Every network is made up of nodes and links, and a cost, Cij, that is associated with 
each link, In the sea ice network, the nodes are simply the (r0w,c0lumn) 
coordinates of the sea ice image. Every node is linked to each of its eight neighbours 
(except when the node falls on an edge of the image). Each link, (i, j), has an 
associated cost, cij, that reflects the ice. conditions between node 2' and node 
Generally, if it is difficult for a ship to travel between node 2' and node 

, then c,-_.,-
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must be large. Similarly, an easy passage between the two nodes will be indicated 

by a smaller cij. 

5.2 . Exhaustive Enumeration 

Theoretically, the shortest path network problem can be solved simply by finding 

all possible routes, calculating each of their costs and choosing the best one. This 
is the technique of exhaustive enumeration. However, as the number of nodes 
increases, the number of possible routes increases exponentially. Thus, exhaustive 
enumeration is impractical as a means for solving the route network problem. 

5.3 Dijkstra’s Method 

The shortest path problem is solved using the dynamic programming approach of 
Dijkstra [46]. Dijkstra’s method divides the nodes in the network into those whose 
minimum-cost paths from node 1 have been identified (these are members of the 
permanent set), and all other nodes in the network (members of the temporary set). 
At every iteration, a new node is chosen from the temporary set and moved into 
the permanent set. The chosen node is always the one with the shortest path to 
the origin out of all the nodes in the temporary set. 

Consider a network of nodes and links. The nodes are numbered from 1 to N. 
Each link has associated with it a cost, cij, of traveling from node 2' to node j. 
Assume that c“ = 0, but do not assume that the triangle inequality (cij + 03-], 2 0,7,)

I 

is satisfied. If there is no link between nodes i and j, then Cij = 00.
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Let P() represent the true shortest distance from node 1 to node j, where node 
j is a member of the permanent set. Let T(k) represent the upper bound on the 
shortest distance from node 1 to node k, where the temporary value T(k) may be 
updated in future iterations. Initially set P(1) = 0 and all other 2 cu, for 
i 76 1. 

Let PN represent the set of nodes that have permanent labels. Let TN represent 
the set of nodes that have temporary labels. 

Initial conditions: 

PN=[1] 
v TN=[2,3,4,5,6,7,8] 

P(1):0 

T(i)=c1,-, f0; all {g PN. 

Iterations: 

1. Find node k from set TN such that T(k) = minigpNTU). 
Set P(k) = 
PN = PNU = [1,16]. 

2. If PN contains destination node N then STOP, else GOTO 3. 
3. For each link (k,l) such that l ¢ PN (where k is from step 1) 

= + CH]. 
GOTO 1.

3 

5.3.1 Example of Dijkstra’s Algorithm 

Figure 5.1 is used to demonstrate Dijkstra’s algorithm. The shortest path from 
node 1 to node 8 is desired.
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0.6 

2 0.2 f\ 0.3 4 

Figure 5.1: Network Example 

Initial Conditions: 

P(1) = 0 

T(2) = 0.7,T(3) = 0.2,T(4) = 0.6,T(5) = 00, 
T(6) = oo,T(7) = oo,T(8) = 00 

Iteration 1: Node 3 has the smallest temporary label; node 3 is moved to the set 
of permanent nodes. At every iteration, each node’s predecessor is updated. The

_ 

predecessor of node 3 is node 1, that is, 3(3) 2 1. 

P(1) = 0 

P(3) = 0.2,B(3) = 1 

T(2) = min[T(2), P(3) + c321 = min[0.7, 0.4] = 0.4, 3(2); 3 

T(4) = min[T(4), P(3) + 634] = min[0.6, 0.5] = 0.5, 3(4) = _3 
T(5) = min[T(5), P(3) + 635] = min[oo, 1.1] = 1.1, 3(5) : 3 _’ 

‘ 
, T(6) = min[T(6), P(3) + 636] = min[oo, 1.0] = 1.0, 3(6) 2 3
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T(7), = min[T(7), P(3) + C37] = min[oo,0.7] =07, B(7) = 3 

T(8) = min[T(8), P(3) + 033] = min[oo, oo] =' 00 

Iteration 2: Node 2 has the smallest temporary label. 

P(1) : 
P(3) _ 0 2, B(3)_= 1 

P(2) = 0 4,B(2) = 3 

T(4) = min[T(4), P(2) + C24] = min[0.5, oo] = 0.5, 3(4) = 3 

T(5) = min[T(5), P(2) + 025] = minll.1,0.7] = 0.7, 3(5) = 2 

T(6) = mzn[T(6), P(2) + 026] = min[1.0,1.1]_= 1.0, 3(6) = 3 

T(7) = mm[T(7), P(2) + 627] = min[0.7, oo] = 0.7, B(7) 2 3 , 

T(8) = min[T(8), P(2) + 623] = min[oo, oo] = 00 

P(l) = 0 

P(2) = 0.4, B(2) 2 3 

P(3); 0.2, B(3) = 1 

P(4) = 0.5,B(4) = 3 

T(5) = mzn[T(5), P(4) + C45] 2 min[0.7, co] = 0.7, B(5) = 2 

T(6) = min[T(6), P(4) + em] = min[1.0, 0.9] = 1.0, B(6) = 4 

T(7) = mm[T(7), P(4) + c471 = min[0.7, 0.8] = 0.7, B(7) = 3 

T(8) = min[T(8), P(4) + C48] 2 min[oo, co] = 00 

Iteration 4: Node 5 has the smallest temporary label. 

P(l) = 0 

P(2) = 0.4,B(2) = 3 ‘ 

P(3) = 0.2, 3(3) = 1
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P(4) = 0 5,B(4) = 
P(5) = 0 7, B(5) = 2 

T(6) = mm[T(6), P(5) + 655] = min[0.9, 1.3] = 0.9, 8(6) 2 4 

fflfl=mMWUfiHM+Qfl=mmmflafl=0IMUé3 
T(8) = min[T(8), P(5) + 653] = min[oo,1.4] = 1.4, 3(8) = 5 

Iteration 5: Node 7 has the smallest temporary label. 

Hn=0 
Hm=uamm=3 
P(3) = 0.2,B(3) = 1 

Ho=aamo=3 
Hm=uzmm=2 
mn=uzmn=3 
T(6) = mzn[T(6), P(7) + C76] = min[0.9,1.2]'= 0.9, B(6) = 4 

>T(8) = mm[T(8), P(7) + C73] 2 min[1.4, 1.7] = 1.4, B(8) 2 5 

Iteration 6: Node 6 has the smallest temporary label.

\ 

Hu=0 
Hm=u¢mm=3 
mm=uzmm=1 
m®=oamo=3 
mm=ozmm=2 
mn=uzmn=3 
'mm=ua3m=4

( 

Node 8 has the smallest temporary label and it is the end point.
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3(1) = 0 

3(2) = 0.4, 3(2) = 3 

P(3) '= 0.2, 3(3) = 1 

3(4) = 0.5, 3(4) = 3 

3(5) = 0.7, 3(5) = 2 

P(6) = 0.0, B(6) = 4 

3(7) = 0.7, 3(7) = 3 

P(8) = 1.4,B(8) = 5 

The minimum cost path from node 1 to node 8 has a value of 1.4. To find the path, 
simply backtrack using the values in the B array. 

B(8) = 5 

3(5) = 2 

3(2) = 3 

3(3) = 1 

Thus the shortest path is 1 — 3 — 2 — 5 — 8. 

Note that the solution of the simple path problem by Dijkstra’s method provides 
more than just the optimal path from node A to node N; the optimal path for node 
A to every node in the network'is also included. 

5.3.2 Proof of Dijkstra’s Method 

That Dijkstra’s method finds the shortest path is proven inductively. At each 
iteration, of Dijkstra’s procedure, the nodes are separated into two sets — the 

permanent (P) set and the temporary (T) set. The values of the nodes in set P 
are the true minimum distances from node 1. The values of the nodes in set T are
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the shortest distances from node 1 that can be found using only the nodes in set ' 

P. To be proven is that the value of the smallest-valued node in set T is the 
true minimum distance and can be transferred to set P. The statement is proven by 
noting that if a shorter path between node 1 and node i existed, it would have to 

include a node ( that is in set T. However, a node in set T is necessarily farther 
from node 1 than is node 2' since node 2' has the smallest value in set T, and the 
path from node j to node i must have a non-negative length. Therefore, node 2' 

moves to set P. Node 2' is subsequently used to update the nodes in set T so that 
once again every node in set T has the smallest distance value possible using only 
the nodes in set P. 

5.3.3 Computational Efficiency of Dijkstra’s MethOd 

The number of operations required by Dijkstra’s procedure is calculated from the 
number of comparisons and additions at each iteration. There are N —»1 iterations, 
where N is the total number of nodes in the network. The first step in the procedure 
locates the smallest—valued node in the temporary set. If i is the iteration, then 

the number of comparisons is N — 1 — 2'. Next the members of set T are updated 
using T(l) = min[T(l), P(k) + cm], where l is a node in set T to be updated, k is 
the newest member of set P, and CM is the link cost between node 1:: and node I. 

Here, N — 1 — i comparisons and N — 1 —i additions are performed. In addition, 
each node in the network is marked ‘permanent’ or ‘temporary’ by an attached 
index number which changes from 0 to 1 when the node moves to the permanent

I 

set. Thus at every iteration 2', each node’s indexnumber has to be consulted 
(except for node 1) at a cost Of N — 1 comparisons. The number of comparisons is 
(N —1)?+ 22$;n —1—z') = 3(N — 1)2 — N(N — 1) = (N — 1)(2N) m 2N2. 
The number of additions is 3%q —1—i) = (N — 1)2 — N(N —1)/2 t2/2.
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Thus the total number of operations is on the order, of N 2. 

5.4 Modifications to Dijkstra’s Procedure 

I modified Dijkstra’s algorithm to include an ordered linked list that stores the 

temporary nodes and values. LLrepresents the linked list and the list entry [i, 
represents node i and a temporary value of 

Initial conditions: 

P(1)=0. 

T(i)=oo, for all temporary 2'. 

LL = [(1, 0)]. 

Iterations: 

1. Find node k from LL such that value T(k) is minimum. 

2. If k is destination node N then STOP, else GOTO 3. 
3. For each link (16,1) such that l is a temporary-valued neighbour of k (where 

k is from step 1),
I 

T(l) = min[T(l), P(k) + on]. 
Add each [l, T(l)] to LL in the order of highest to lowest T(l). 

' Move T(k) to permanent set: P(k) = 
Remove P(k) from LL. 
GOTO 1.
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5.4.1 Benefits of Modifications 

. _At every iteration, Dijkstra’s method requires that the smallest-valued node in the 
temporary set is located. The temporary set includes all nodes that are not in 

the permanent set including those with a value of 00. For example, at‘the first 

iteration, node 1 is in the P set and all other nodes are in the T set. All nodes 

in the T set except for a maximum of eight nodes will have a value of infinity. 
Dijkstra’s algorithm checks through all N — 1 nodes to find the minimum. In the 

modified version, the linked-list contains the ordered nodes of the temporary set 
(with values < 00). The smallest-valued node is at the end of the list so that no 
search is required. Next, if k is the newest addition to the permanent set, every 
node I in the temporary set is updated according to T(l) = min[T(l), P(k) + cm]. 
In Dijkstra’s method, a comparison and addition is made for every member l of the 
temporary set even those that are not linked to k (where ck; : 00). In the modified 
algorithm, only the immediate neighbours, if they are members of the temporary 
set, are modified for a maximum of 8 comparisons and 8 additions. 

5.4.2 Example of Modified Algorithm 

Figure 5.1 is again used to demonstrate Dijkstra’s algorithm. The shortest path is 
desired from node 1 to node 8. 

Initial Conditions: 

P(1) = 0 

T(2) = T(3) = T(4) = T(5) = T(6) ; T(7) = T(8) = 00 
LL: [(1,0)] 

Iteration 1: The temporary neighbours of node 1 = [2, 3, 4].
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P(l) = 0 

T(2) = m2n[T(2), P(l) + 012] = min[oo,0.7] = 0.7, B(2) 2 1 

_ 

T(3) = mm[T(3),P(1) + 013] = min[oo,0.2] = 0.2, B(3) 2 1 

T(4) = mm[T(4),P(1) + cm] = min[oo,0.6] = 0.6, B(4) 2 1 

0 Add T(2), T(3), and T(4) to LL in order of highest to lowest cost, c. 
0 Remove P(l) from LL. 

LL = [(2, 0.7, (4, 0.6), (3, 0.2)] 

Iteration 2: Node 3 has the smallest temporary value in LL. The temporary neigh— 
bours of node 3 = [2, 4,5, 6, 7]. 

P(l) = 0 

P(3) = 0.2, B 3 ( 1 

T(2) = min[T(2 ,

) 

) P(3) + c321 = min[0.7,0.4] = 0.4, B(2) = 3 

T(4) = min[T(4), P(3) + C34] 2 min[0.6,0.5] = 0.5, B(4) 2 3 

T(5) = min[T(5), P(3) + C35] 2 min[oo, 1.1] = 1.1, B(5) 2 3 

mg) =‘ 
min[T(6), P(3) + C36] 2 min[oo,1.0] = 1.0, B(6) = 3 

T(7) = min[T(7), P(3) + C37] 2 min[oo,0.7] = 0.7, B(7) = 3 

0 Update T(2) and T(4) in LL. 
0 Add T(5), T(6), and T(7) to LL. 
0 Remove P(3) from LL. 

LL = [(5, 1.1), (6, 1.0), (7,07), (4,05), (2,0.4)] 

Iteration 5’: Node 2 has the smallest temporary value in LL. The temporary neigh- 
bours of node 2 = [5, 6]. 

P(l) = 0 

P(3) = 0.2, B(3) 2 1
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P(2) = 0.4,B(2) = 3 

T(5) = min[T(5), P(2) + 625] = min[1.1, 0.7] = 0.7, 3(5) 
T(6) = min[T(6), P(2) + c26] = min[1.0, 1.1] = 1.0, 3(6)

2

3 

0 Update T(5) from LL. 
0 Remove P(2) from LL. 

LL = [(6, 1.0), (7, 0.7), (5,0.7), (4,0.5)] 

Iteration 4: Node 4 has the smallest temporary value in LL. The temporary neigh— 
bours of node 4 = [6, 7]. 

3(1) = 0 

P(2) = 04, 3(2) = 3 

3(3) = 0.2, 3(3) = 1 

P(4) = 0.5,B(4) = 3 

T(6) = min[T(6), P(4) + C46] = 'mz'n[1.0, 0.9] = 0.9, B(6) = 4 

T(7) = min[T(7), P(4) + c471 = min[0.7,0.9] = 07, 3(7) = 3
' 

0 Update T(6) from LL. 
0 Remove P(4) from LL. 

LL 2 [(6,0.9), (7,0.7), (5,0.7)] 

Iteration 5: Node 5 has the smallest temporary value in LL. The temporary neigh- 
bours of node 5 = [6, 8]. 

3(1) = 0 

P(2) = 04, 3(2) = 3 

3(3) = 0.2,3(3) = 1 

P(4) = 05, 3(4) = 3
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P(5) = 0.7,B(5) = 2
I 

T(6) = min[T(6), P(5) + 656] = min[0.9,1.3] = 0.9, 3(6): 4 

T(8) = min[T(8), P(5) + 658] = min[oo, 1.4] = 1.4, B(8) = 5 

0 Add T(8) to LL. 
0 Remove P(5) from LL. 

LL = [(8,1.4),(6,0.9),(7,0.7)] 

Iteration 6': Node 7 has the smallest temporary value in LL. The temporary neigh- 
bours of node 7 = [6,8]. 

P(1) = 0
I 

P(2) = 0.4, B(2) 2 3 

P(3) = 0.2, B(3) 2 1 

P(4) = 0.5, B(4) 2 3 

P(5) = 0.7,B(5) = 2 

P(7) = 0.7,B(7) = 3 

T(6) = mzn[T(6), P(7) + 076] = min[0.9, 1.2] = 0.9, B(6) = 4 

T(8) = mm[T(8), P(7) + C73] 2 min[l.4, 1.7] = 1.4, B(8) = 5 

0 Remove P(7) from LL. 

’LL = [(8, 1.4), (6, 0.9)] 

Iteration 7: Node 6 has the smallest temporary value in LL. The temporary neigh— 
bours of node 6 = 

P(1) = 0 

P(2) = 0.4, B(2) = 3 

P(3) = 0.2, B(3) = 1
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P(4) = 0.5,B(4) = 3 

P(5) = 0.7,B(5) = 2 

P(7) = 0.7,B(7) = 3 

P(6) = 0.9,B(6) _ 4 

T( ( 

0 Remove P(6) from LL. 

LL = [(8,1.4)] 

44 

Iteration 8: Node 8 has the smallest temporary value in LL. Node 8' 
is the end 

point. 

Thus the shortest path is 8 — 5 — 2 — 3 — 1. 

5.5 

P(l) = 0 

P(2) = 0.4,B(2) = 3 

P(3) = 0.2,B(3) = 1 

P(4) = 0.5, 3(4) = 3 

P(5) = 0.7,B(5) = 2 

P(6) = 0.9,B(6) = 4 

P(7) = 0.7, 3(7) = 3 

P(8) = 1.4,B(8) _ 5 

Summary 
This chapter has outlined a method of finding an optimal path through a network. 
The SAR image is the network and the pixels in the image are the nodes of the
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network. Each pair of nodes is joined by a link. The costs associated with each 
link corresponds to the difficulty faced 'by a vessel when traversing that particular 
section of water. In the next chapter, a method of calculating the link costs based 
on the features extracted in Chapter 4 is presented.



Chapter 6 

Cost Assignment 

The previous chapter discussed Dijkstra’s method for finding the minimum-cost 
path through a network. The nodes of the network are the pixels in the SAR 
sea ice image and the link costs represent the difficulty experienced by a vessel 
while traveling along the link. The costs may be related to the ice properties such 
as ice strength or thickness, or may focus on the ship’s costs such as the transit 
time, the amount of fuel consumed, or the risk of damage. In this Chapter, costs 
measured from the ice properties will be minimized; ship—related costs are the focus 
of Chapter 7. 

Features, such as standard deviation and Haralick’s features, are often used for 
classifying ice in a SAR image. In the first part of this section, several commonly 
used features will be tested for their ability to separate the three ice types. The 
successful ones will be used to assign meaningful link costs. The lowest-cost path 
will then be selected using Dijkstra’s network technique. In the second part of 
this section, the network links will be assigned costs based on K’erman’s bonding 
probability.

46
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6. 1 Methodology 

Here, the image features to be used in the cost assignment are selected. The best 
features clearly separate the three ice types. Four cost functions will be formed for 
each of the features selected. A cost function, C(z) uses a feature image to assign 
costs to each intensity in the image. Routes for three sets of starting and ending 
points will be used to compare the performance of the image features and cost 
functions. 

6.1.1 Selection ofFeatures 

Of the features introduced in Chapter 4, only four feature groups are selected: tone, 
standard deviation, Weszka’s first-order entropy, and‘mean features, and Haralick’s 

- second—order contrast and entropy features. These features successfully separate the 
three ice types in the image. Tone, standard deviation, and Haralick’s features are 
commonly used for classification purposes [21]. Weszka’s features are not as popular 
but two studies have found them to perform as well as Haralick’s features [44, 35]. 

Generation of HistOgrams 

The SAR sea ice image is classified into regions of lead, first-year, and multi-year 
ice. Many unsupervised classification approaches are available but for simplicity, a 

rough, manual technique is used. Several training regions corresponding to each of 
the three ice types are defined and three histograms are generated. Each histogram 
is normalized by first dividing by the number of pixels in the respective training 
area and then multiplying by the estimated number of pixels of the appropriate ice 
type in the image. For the C-band image (Figure 3.2), the estimated ratio of lead
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to first-year to multi-year ice is 1 : 12 : 7. 

Description of Histograms 

Figure 6.1 displays well-separated histograms of the tonefeature. Although there is} 

overlap in intensity between the three ice types, in general, as the intensity increases, 
the age of the ice increases, and the older the ice, the thicker and stronger it is. 

Figures 6.2 — 6.6 are the histograms for the texture features. These histograms are 

fairly well separated and therefore can be used to distinguish between the three ice 
types. There is generally some overlap between the first—year ice histogram and the 
multi—year ice histogram. This occurs because the first-year ice training set includes 

first-year rubble ice whose texture, like that of multi-year ice, is very rough. 

A requirement of the selected features is that lead ice is darker than first—year 
ice, which in turn is darker than multi-year ice. Therefore, the lead histogram is 

on the left, followed by the first-year ice histogram, and then the multi-year ice 
histogram.
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Figure 6.1: IntenSIty histograms for 3 ice types. 
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Figure 6.2: Standard Deviation histograms for 3 ice types.
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Figure 6.3: Weszka’s Entropy feature histograms for 3 ice types. 

Intensity Histogram (Weszka's Mean feature)
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Figure 6.4: Weszka’s Mean feature histograms for 3 ice types.
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Intensity Histogram (Haralick‘s Contrast feature) 
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Figure 6.5: Haraliok’s Contrast feature histograms for 3 ice types. 
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Figure 6.6: Haralick’s Entropy feature histograms for 3 ice types.
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Generation of Features 

Tone Feature: The tone feature is simply the C-band image (Figure 3.2). 

Standard Deviation Feature: Figure 6.7 is the standard deviation image of the 
C—band image (Figure 3.2). A 5 X 5 local window was used. 
Weszka’s Grey Level Dependence Matrix Features: Two of Weszka’s [35] texture 

features, entropy and mean, are shown in Figures 6.8 and 6.9. A 5 X 5 local 
window is used. 6 = 1 and all eight neighbours are usedsimultaneously. 
Haralick’s Grey-Level Co-occurrence Matrix Features: Two of Haralick’s second- 
order texture features [39], entropy and contrast, are generated from the C-band 
image. The number of grey levels is 16 so that the GLC matrices are 16 X 16. 
The local window is 5 x 5, the distance is 1, and all eight neighbours are used 

simultaneously. The logarithm of the contrast feature is displayed because of the 
poor contrast in the original.
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Figure 6.7: Standard Deviation image of SAR image. 

Figure 6.8: Weszka’s Entropy feature.
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Figure 6.9: Weszka’s Mean feature. 

Figure 6.10: Haralick’s Entropy feature.
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Figure 6.11: Harah'ck’s Contrast feature.
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' 6.1.2 Selection of Routes 

Three sets of starting and ending points are used as input. Routes are generated 
using all combinations of cost functions and-features. Table 6.1 lists the three sets 

of end—points and Figure 6.12 displays their position on the C-band image. For the 
first set of end—points, the optimal route follows the dark lead the entire way. The 
second set of end-points requires the route to follow the dark lead and then make 
a detour near the destination point. The third set of end-points are far from the 
lead. However, the straight line connecting the end—points passes through first-year 

rubble and dangerous multi-year ice floes. The optimal path crosses over to the 
lead and follows it until making a detour to the destination point. 

Table 6.1: End—Points 

Start (row,col) End .(row,col) 
1: (0,275) 1’: (399,99) 

2: (0,275) 2’: (399,253) 
3: (95,399) 3’: (399,253) 

6.1.3 Selection of Cost Functions 

Four cost functions are explored: the threshold cost function, the probability 

weighted cost function, the linear cost function, and the quartic cost function. 
A cost function is expressed as C(13), where cc is determined by the feature. The 
cost functions are illustrated using the tone feature image (Figure 3.2).
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’1 21’s!- 

Figure 6.12: End—points of the three paths. 

Threshold Cost Function 

Using Figure 6.1, two tonal thresholds can be found; one that separates easy lead 
ice from more difficult first-year ice, and one that separates first-year ice from very 
difficult multi—year ice. The thresholds are estimated at intensities 64 and 134. 
Next, the penalty attributed to each ice type is assigned. The penalty represents 
the difficulty experienced by a ship in crossing through the particular ice type. 
Penalties are assigned to the three ice types: 0.01 to lead ice, 0.1 to first—year ice, 
and 1.0 to multi—year ice. Therefore, it is 10 times more difficult to travel through 
first—year ice than lead ice, and it is 100 times more difficult to travel through 
multi—year ice than lead ice. The penalty functions were arbitrarily separated by 
a factor of 10. Lead ice is assigned the smallest penalty because it offers the least 
resistance to ships, and multi—year ice has the largest penalty because ships have
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great difficulty in passing through it. The threshold cost function is: 

0.01 :1: S 64 
0(3) = 0.1 65 < :1: < 134 

1.0 :1: Z 135 

The thresholds are located at the intersection between two histograms. Table 6.2 
lists the thresholds for all six features. The first threshold is that which separates 
lead ice from first-year ice and the second threshold separates first-year ice from 
multi-year ice. 

Table 6.2: Thresholds 

Features Thresholds 

Tone 64 134 

Std Dev 34 71 

Weszka’s Entropy 113 190 

Heszka’s Mean 20 60 

Haralick’s Entropy 122 200 

Haralick’s Contrast 130 172 

Distance traveled must also be minimized. When minimizing with Dijkstra’s 
procedure, the cost of a diagonal link is multiplied by x/i to adjust for the longer 
distance. Therefore, the cost of the link is equal to the distance between i 

and j or 1) multiplied by C(j). 

Four shortcomings are apparent with the threshold cost function: the image 
must be segmented into the three ice types, (ii) the penalties assigned to each ice 

type are arbitrary, (iii) each intensity within an ice type is treated equally even 

though some first-year ice is easier to traverse than other first-year ice, and (iv) a
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pixel with an intensity belonging to one ice type might be mis-classified as a different 

ice type. 

Probability Weighted Cost Function 

The performance of each feature may be further studied by plotting the probability 
of ice-type versus intensity. Figure 6.13 is the corresponding plot for the tone 

I 

feature. In this figure, it is clear that all pixels with an intensity of less than 48 

belong to lead ice. Pixels with an intensity of 100 have a 95 percent chance of being 

first-year ice and a 5 percent chance of being m'ulti-year ice. 

A pixel’s link cost is calculated by summing the multiplication of ice-type prob— 
ability with ice—type penalty for each ice—type, then adjusting for distance. The ’ 

ice-type penalties are the same as those of Section 6.1.3: 0.01, 0.1, and 1.0 for lead, 
first-year, and multi-year ice respectively. The cost function is: 

C(m) = 0.01P(lead|z) + 0.1P(fy|:1:) + 1.0P(my|a:) 

P(lead|m) is the probability that pixel xvis lead ice, P(fy) is the probability that 
pixel :1: is first-year ice, and P(my) is the probability that pixel :1: is multi-year ice. 

Two shortcomings of the probability weighted cost function are the image 
must be segmented, and (ii) the ice-type penalties were chosen arbitrarily. 

Linear Cost Function 

If a segmented image is not available, the previous two methods are not useful. 
However, a route can still be found. In such a case, two relationships are impor- 
tant: that between ice thickness and tone, and that between ice' thickness and 
texture. Figure 6.1 shows that the tonal intensity tends to increase with increasing
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Probability 01 Ice Type vs Intensity (C_band Image) 
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Figure 6.13: Probability of ice type, tonal feature. 

ice age, and ice thickness is correlated with. ice age. Figures 6.2 — 6.6 show that 
the intensity of textural features also increases with increasing ice thickness. Thus, 

a cost function can be defined where the cost is linearly dependent with tone or 
texture. 

The linear cost function is C(z) = where :1: is intensity and max(:c) is theL 
max(I) ’ 

maximum intensity value in the image, and where the image can be any tonal or 
textural feature. 

Quartic Cost Function 

The cost function can also be non-linear with intensity; 3. quartic function is chosen. 

The quartic function is C(m) = (J—)4, where :c is intensity and max(a:) is the max(x) 

maximum intensity value in the image. 

The power of 4 is not completely arbitrary. In an idealized image, the two
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thresholds of the three ice-type histograms are exactly %, and The 
penalty values at the two thresholds and at mama) are 0.012, 0.2, and 1.0 respec- 
tively. These numbers correspond very well to the ice-type penalties of Section 
6.1.3. 

A shortcoming of the quartic cost function approach is that it is not based on any 
underlying physical properties of the image. The power of 4 was chosen by intuitive 
means not through measurement, and may not produce similar good results with 

7 other images. The quartic cost function is just an example of a non—linear cost 
function. Any arbitrary C(11)) can be created. 

6.2 Resu1ts 

Figures 6.14, 6.15, and 6.16 display the three routes selected using the tonal feature 
Figure 3.2 and the threshold—based cost function. All three paths appear optimal. 

The paths tend to follow the dark leads as much as possible while still trying to 

minimize the distance traveled. 

Table 6.3 evaluates the three resulting paths generated by the minimization of 
each of the 24 combinations of features and cost functions. An entry is marked 
‘Good’ if the resulting paths are similar to those of Figures 6.14 — 6.16. Any 
significant deviations from the ‘Good’ paths are classed as ‘Poor’. Two examples 
of ‘Poor’ paths follow in Figures 6.17 — 6.18.
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Figure 6.14: Path 1 using tone feature and threshold costvfunction. 

Figure 6.15: Path 2 using tone feature and threshold cost function.
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Figure 6.16: Path 3 using tone feature and threshold cost function.
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Table 6.3: Summary of Results 
Cost Functions 

Features Threshold Weighted Linear Quartic 
Function Probability Function Function 

Tone Route 1 Good Good Good Good 
2 Good Good Good Good 
3 Good Good Poor Good 

Standard Route 1 Good Good Good Good 
Deviation 2 Good Good Good Good 

3 Poor Poor Poor Good 
Weszka Route 1 Good Good Good Good 
Entropy 2 Good Poor Good Good 

3 PoOr Good Poor Good 
Weszka Route 1 Good Good Good Good 
Mean 2 Good Good Good Good 

3 Good Good Poor Good 
Haralick Route 1 Good Good Poor Good 
Entropy 2 Good Good Poor Good 

3 Poor Good Poor Good 
Haralz'ck Route 1 Good Good Poor Good 
Contrast 2 Good Good Poor Good 

3 Good Good Poor Poor
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Figure 6.17: Path 3 using Tone feature and Linear cost function. 

Figure 6.18: Path 3 using Haralick’s Contrast feature and Quartic cost function.
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6.3 Cost Assignment using Kerman’s Exponen- 
tial Relationship 

As stated in Chapter 43', Kermani[17] found that for a SAR sea-ice image, the 
joint probability of intensity 1' and neighbouring pixel intensity j is exponentially 
distributed such that: 

P631”) = Qie'fi‘x“‘”,i >5 (6.1) 

fl,- and Q,- are both empirically determined and are unique for different values of 2'. 

Since the joint probability P(z', found for the C-band image (Figure 3.2) is 

not clearly exponential, the L-band image (Figure 3.1) will be used. The L-band 
image produced an excellent exponential joint probability distribution. Figure 6.19 
is the joint probability distribution for z' = 51, the intensity at which the cumula— 
tive probability function equals 50 percent. Figure 6.20 illustrates the exponential 

characteristic of the distribution by overlaying the’logarithm of the joint probability 
distribution with a straight line, P.est. 

Kerman also defines a bonding probability ([42]) according to Equation Note 
that the equation for bonding probability is similar to that of the joint probability 
with the exception of the scaling factor, 62,-. 

Pb(i,j) = aim—Mi) X (j — Z')),J' Z73 (6-2) 

The bonding probability between two adjoining pixels expresses the likelihood that 
the two pixels belong to the same material. If P(i,j) is large, the bonding probabil- 
ity between i and j is also large because neighbouring pixels with these intensities 
likely belong to the same ice type. 

The bonding probability can be used to assign costs to the Iinks in the network. 
An important assumption must first be made: if a particular pair of intensities,
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(2', j), occurs frequently through the image (that is, P(z', j) is large), then the pres- 

ence of i,j pairs signals the location of an ice type. Similarly, if P(i,j) is small, 

then it suggests either that the occurrence of the intensity pair is due to a noise 

element, or that the combination occurs along a border of two ice types. 

The larger the bonding probability, Pb(2', j), between two adjacent pixels, the 

more likely it is that the two pixels belong to the same ice type. In other words, if 
a pixel of intensity 1' belongs to ice type a, and Pb(i,j) is large, then a neigturing 
pixel of intensity j likely belongs to ice type a. We can construct a path through the 
ice by knowing the bonding probability between neighbouring pixels. The starting 
point of the path must belong to a navigable ice type such as lead ice. A cost 
is assigned to each link in the network. Since the bonding probability needs to 

be maximized, the costs assigned to the links are inversely related to the bonding 

probability. The link costs are assigned the value of l — Pb(i, 
A shortcoming of the bonding probability cost function is that the bonding 

probability is large between two intensities that occur frequently regardless of the 
ice type. Thus, two frequently occurring neighbouring intensities within difficult 

multi-year ice will exhibit high bonding probability. If the path is able to break 
through an ice-type boundary into difficult ice', the high bonding probabilities will 
suggest a path through difficult ice. There is no way to determine the ice type with 
the bonding probability alone. This method can be improved by incorporating the

F use of a' segmented image of ice type. 

6.3.1 Results 

Figures 6.21, 6.22, and 6.23 illustrate the three paths that are generated using 
Kerman’s bonding probability. Paths 1 and 2 appear optimal, however, Path 3



CHAPTER 6. COST ASSIGNMENT 

Figure 6.21: Path 1 using Kerman’s bonding probability. 

passes through difficult ice.
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Figure 6.22: Path 2 using Kerman’s bonding probability. 

Figure 6.23: Path 3 using Kerman’s bonding probability.
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6.4 ConClusions 

The threshold function and the weighted probability function perform very well. 

In general, the linear cost function performed poorly for all features. The his— 
tograms of the feature images (Figures 6.1 — 6.5) show that there is only a small 
separation between the three ice types. It is necessary for the cost function to fur- 

ther separate the ice types. The linear cost function provides no further separation 
and thus it performs poorly. The improved performance of the quartic cost function 
is due to its success in separating the ice types. 

Link costs based on Kerman’s bonding probability produced two paths that 
were quite good. The third path passed through difficult ice. 

The two features that performed the best overall were tone and Weszka’s mean 
feature.



Chapter 7 

Vessel Performance 

In previous chapters, the SAR sea ice image was manipulated mathematically to 
give information about the ice conditions. Chapter 6 used this ice information 

to calculate cost values for the links in the image network. The costs were not 
translated into measures of a vessel’s performance. 

In trying to quantify a vessel’s performance along an ice—COVered route, the 

interaction between the vessel and the surrounding ice must be understood. A vessel 
is described by its physical dimensions (beam, draft, length), angular geometry 

(hull bow angles), and’propulsion system. The surrounding ice is represented by 
its thickness. This chapter proposes a method for calculating the transit time of 
a vessel as a means of determining the vessel’s performance. Optimal routes can 
then be generated automatically by minimizing the transit time. 

The transit time over a route is calculated from the vessel’s velocity, where the 
velocity is dependent on the encountered ice resistance and the strength of the 
vessel. A number of experimentally-developed formulae dealing with the resistance 
of continuous ice are available in the literature [47, 48, 49, 50]. Continuous ice has
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an ice coverage of 100% and no ridges are present. Continuous ice resistance is a 

function of vessel speed, ice thickness, material constants, and vessel configuration 
parameters. 

Table 7.5, at the end of this chapter, lists the notation used. 

7. 1 Ice Resistance 

One of the earliest efforts to calculate the ice resistance on a moving vessel is that of 
Kashteljan et al. [50]. Kashteljan separated total ice resistance into three main com- 
ponents: R3, the resistance due to the breaking of the ice, (ii) R5, the resistance 
due to the turning and submerging’of the ice, and (iii) By, the velocity-dependent 
resistances Many ice resistance formulae have been developed from Kashteljan’s 
work. The basic icebreaking physics is not well understood, so most ice resistance 
formulae are empirical in nature and use various indices and coefficients deter— 

mined experimentally. There is considerable disagreement between the various ice 
resistance formulae concerning the exact relationships between resistance and ice 
thickness, and resistance and ship velocity. In selecting a suitable equation, two 

criteria were considered; the equation should consider all ship and ice parameters 
that are known to affect the resistance, and the equation should keep empirical 
constants to a minimum. In this report, Enkvist’s [49] formulation (Equation 7.1) 
was chosen to calculate the ice resistance as a function of thickness (h) and velocity 

(v) for movement in continuous ice: 

R(h,v) = (01h + 02w + (03 + 04)]; + 05 (7.1) 

Cl = BPi tan 2450 + mantle)



CHAPTER 7., VESSEL PERFORMANCE 74 

_ 1r 1 02 — Crew—16m 
02 

03 = 0391304” meme) 
04 = 90% - pi)BH(mp + Maw%) 
05 = £77111!) + nygBlpwg(§l sin 1p + HEW) 
770p = 3% w = 

_ l. 7h” — (sin 4>cos 1/1) 

_ g m“: _ l—usinzfi/ c051]; 
_ sinécosgé+p coszé 

TIM/1 _ c031]; cos d>—p. sin (15 cos 4) 

77,19 2 sin¢sina+pcosa 

7.2 Velocity 

The ice and ship parameters are used to determine the velocity at which the ship 
may proceed in continuous ice. Solving Equation 7.2 for velocity, 1), will give the 

speed in continuous ice. R(h, 'v) is the ice resistance for continuous ice, and T(v) is 
the thrust equation (Equation 7.3) given by Johansson [51].. 

~ ~ 
R(h,'v) — T(v) = 0 (7.2) 

To?) 2T0?)2 
T('v) — To — 3% 

— 
31% 

(7.3) 

If, when solving for v, the roots of the equation are negative or imaginary, 

continuous passage through the ice is not possible. In the physical sense, the thrust
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available from the propellers is not enough to overcome the ice resistance and the 

ship will be unable to continue. 

7.3 Implementation and Results 

Routes were generated for two vessels, the Canadian icebreaker “Louis S. St. Lau— 
rent” and the icebreaking bulk-carrier “M.V. Arctic”: The same three sets of start- 
ing and ending points from Chapter 6 are defined. Given ship parameters and ice 
information, the mean speed of advance across the distance represented by each 
pixel in the image was calculated. From the velocity and the distance, the time to 
travel across the pixel is found. Note that the distance through a pixel is either 
12.5 meters [11] or 12.5\/§ meters for the diagonal. 

7.3.1 Ice Parameters 

The C-band image 3.2 is classified into three ice types: lead ice, first-year ice, and 
multi-year ice. The classification was done simply by thresholding the intenSity 
values into three regions and using a 3 X 3 median filter to clean up the noisy areas. 
Figure 7.1 is the segmented image with white corresponding to multi-year ice, grey 
to first—year ice, and black to lead ice. 

Table 7.1 lists the average thickness values assigned to each ice type according 

to data collected by Bercha [15].. 

The values for the ice parameters used in the calculation of ice resistance are 
listed in Table 7.2'.
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Figure 7.1: Segmentation of image chh125 into 3 ice types. 

Table 7.1: Ice Thickness 

Ice Type Thi ckne s s [m] 

Lead 
First-year 
Multi-year 

7.3.2 Ship Parameters 

76 

The ship parameters for two ships, the M.V. Arctic and the Louis S. St. Laurent 
were compiled by Gill et al. [52] and are listed in Table 7.3. 

7.3.3 The Routes 

The travel times of the Arctic and the Louis S. St. Laurent were minimized. 
The same three sets of end—points from Section 6.1.2 were used. Figures 7.2, 7.3,
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Table 7.2: Ice Data 
Parameter Value 

Of 1 MPa (Gill) 
E 500 MPa (Gill) 

p 
‘ 

i 

0.2 (Gill) 

0 5.8 (Gill) 
p,- 900.0 leg/m3 

pw 1000.0 leg/m3 

and 7.4 are the paths generated for the M.V. Arctic. 

The first two paths are similar to the optimal paths generated in Chapter 6. 
The third path cuts through multi-year ice in order to minimize the distance. The 
paths consist of a number of long, straight line segments that turn abruptly. This 
is a result of the classified image where a pixel is classified into one of three ice. 

thicknesses. The path continues in straight line until it hits thicker ice. 

The paths for the Louis S. St. Laurent are very similar to those of the M.V. Arc- 
tic. The first path is illustrated in Figure 7.5. 

Three measures of the path are listed in Table 7.4. The total distance measures 
the length of the path in meters, the average ice thickness gives an idea about how 
thick the ice was along the route, and the total transit time measures the time 
needed by the particular vessel to traverse the path. 

7.3.4 Conclusions 

From the information in Table 7.4, two conclusions are possible. First, the L.S.S. 

Laurent prefers to go through thicker ice in order to minimize distance. This is seen
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Figure 7.2: Path 1 using the transit time, M.V. Arctic. 

Figure 7.3: Path 2 using the transit time, M.V. Arctic.
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Figure 7.4: Path 3 using the transit time, M.V. Arctic. 

Figure 7.5: Path 1 using the transit time, L.S.S. Laurent.
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Table 7.3: Shi] 3 Parameters 
Parameter M.V. Arctic Louis S. St. Laurent 

B 22.9 m 24.4 m 
H 10.9 m 9.5 m 

HEW 0.2 m 0.2 m 
L 196.7 m 111.7 m 
3 7.65 m 6.18 m 
a 33" 35° 

13 
46°. 42° 

¢> 30° 30" 

1,0 53" 46° 

AWLF 393.9 m,2 200 m2 . 

To 160 x 1'03kg 230 x 10% 
00 7.72 m/s 6.69 m/s 

80 

in the results of the first two paths. Second, the results of Route 3 show that the 
L.S.S. Laurent is capable of proceeding with greater speed than the M.V. Arctic 
through non-lead ice. 

7.4 
1 

Future Work 
This chapter has provided a good starting point for continued effort in automatic 
ship routing. However, the calculation of transit time described above is approxi- 

mate and includes a number of studied assumptions. The following improvements 
are suggested to increase the accuracy of the transit time calculation and thus 
improve the quality of the-suggested route.
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Table 7.4: Results 

Total Distance Average Ice Total Transit 
Thickness Time

I 

M.V. Route 1 6601m 0.87m 14975 
Arctic 2 7106m 0.97m 17193 

3 4776m 
I 

1.87m 1817s 
L.S.S. Routel 6321m 0.89m 12215 
Laurent 2 6843m 1.03m 1232s 

3 4776m '1 .87m 
' 

1817s 

The accuracy of the transit time estimate is highly dependent on the quality of 
the data. There is a need for detailed sea ice thickness information for the planning 
of transportation routes. In the dynamic Beaufort Sea, sea ice is continually dis- 
torted by environmental factors such as wind and waves. Thus, the variability of 
the ice thickness within each ice type is not adequately represented by one average 
ice thickness value. 

Many attempts have been made at estimating the ice thickness using imaging 
sensors including radar. However, due to the ambiguous correlation between ice 
thickness and surface characteristics, unsatisfactory results are obtained [53]. A 
practical tool for measuring sea ice thickness is the airborne electromagnetic induc— 

tion sensor [53]. Another ice thickness measurement technique uses upward—looking ' 

sonar from submarines [54]. 

Ridging information is very important in planning ship routes. First-year ridges 

are composed of piles of loose blocks of ice. In multi-year ice, ablation has caused 
the ridges to become highly consolidated. Multi-year ice ridges present such a 

serious obstacle to ships that multi-year ice is avoided when possible. Thus, ice
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data should also include the presence and thickness of ridged ice. 

For the average thicknesses given in the previous examples, the thrusts of bOth 
vessels were sufficient to overcome the ice resistance. If the ship is not powerful 

enough to overcome the ice resistance suCh as when very thick ice or a ridge is en— 
countered, the ship may resort to ramming. Ramming is a common occurrence and 
should be included in the determination of transit time. A number of researchers 
have investigated the forces present at the bow of an icebreaker during ramming 
[52, 55]. The ship’s horizontal advance per ram, 1:, can be calculated using Equa— 
tion 7.4 given by Gill et al. [52].

~ ~ 1 AV2 1 

i 

1 q2 — ct t 2—T — .2 r — — —- (20 ana anfl) ha: a: 1 
2g + 2 (pWLF + AGML) 

Kcr h2 h2 2 1 
——“C°S“ 2 f = I 7.4 ((Kaf ) ( + sinacosfl + cosfl 'UT 0 ( ) 

0c is the ice compressive strength [MPa], A is the ship’s displacement [tonnes], 

v, is the ship’s forward velocity during ramming [m/s], GML is the longitudinal 
metacentric height [m], q is the distance from the point of contact between the ice 
at the bow and the center of flotation [m], and K is a constant that varies between 
0.54 and 0.67 depending on the ship[56]. 

Knowing the distance gained per ram, the number of rams to cross the difficult 
ice section can be calculated, and subsequently the time delay due to ramming can 
be estimated. Another ridge penetration model is given by Abdelnour et al. [57] 

i 

where the ridges are transitted continuously with no ramming. 

If the assumption of a continuous ice field is not valid, such as in an ice floe field, 
the ice resistance will be significantly different. In a continuous iCe field, the vessel
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moves forward by breaking through the ice, while in ice floe fields, the ice is pushed 
aside by the vessel. A number of equations have been formulated to describe the 
resistance in a floe field [50, 52, 58, 59]. 

Transit time is not the only measure of a ship’s performance through a suggested 
route. Another measure is fuel consumption, a major factor in the cost of a marine 
operation. The presence of ice adds resistance which in turn leads to a higher 

fuel consumption rate. In addition, the presence of ice will potentially increase 

the voyage duration, and thus more fuel is consumed. If fuel consumption is the 

primary concern, the cost function should be based on the amount of fuel consumed, 
not travel time. 

Finally, the suggested routes must be tested for safety. For instance, in a highly 
dynamic region, a path'running through a narrow opening between two multi—year 
ice floes would present a large risk to ships. There is also the possibility that a 

section of ice has been misclassified. A path going through multi-year ice that has 
been misclassified poses a dangerous hazard to ship safety.
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Table 7.5: Notation 
Variable Definition Units 

B Ship beam m 
C Coefficient dependent on type of ice failure unitless 
E Strain modulus MPa 

Gravity constant m/s 
h Ice thickness m 
H Ship draft m 

HBW‘ Height of bow wave m 
L Ship Length m 
K Length of beam or width of broken cusp m 
g Average depth of submersion of ice m 
a Half angle of entrance of a water line 0 

,3 Angle b/w section and vertical plane 0 

¢ Angle b/w stem and horizontal plane 0 

1b Angle b/w horizontal and section perp to waterline ° 

178p Submersion ratio = S/H unitless 

mug Friction form coefficient = W unitless 

AWLF Area of water plane of entrance m2 
1]“, Friction form coefficient = unitless 

1],“2 Friction form coefficient = unitless 

77ml, Friction form" coefficient = unitless 

m9 Friction form coefficient = sinz/Jsina +pcosa unitless 

p Coefficient of friction unitless 
pi Density of ice [cg/7n3 

pw Density of water Isg/m3 

0, Ice flexural strength MPa 
T Thrust kg3 

To Bollard pull kg3 

120 Open water speed m/s



Chapter 8 

Summary 

This report has presented a framework for developing a computer—assisted route 
selection system for navigation in arctic regions. The framework consists of three 
components: a feature extractor, a cost function, and a minimization algorithm. 
The feature extractor converts a synthetic aperture radar image into easily identifi— 
able ice—types. The cost function assigns a penalty to the different ice—types which 
reflects the difficulty of passage. The minimization algorithm selects the route that 
results in the minimum total cost. 

It was necessary to combine information from several research fields to success— 
fully meet the objectives of this report. Following are the research areas that largely 
contributed to the solution of the problem of finding minimum—cost paths through 
remotely—sensed images of sea-ice. 

(i) sea ice mechanics, 

(ii) microwave remote sensing, 

(iii) operations research, 

iv) pattern recognition, and
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(v) ship-ice interaction models. 

The objectives of this report were clearly met. Good routes were generated using 
only synthetic aperture radar images of sea-ice as input. The routes generated using 
the tonal feature were particularly good. 

Areas for future work are easily identified. First, better features are desirable. A 
good feature makes the assignment of proper costs almost trivial. A good feature is 
characterized by a histogram where there is very little overlap between the different 
ice types. 

Second, it is desirable to predict fuel consumption, transit time and safety fac- 
tors-of a proposed route. This information is reflected in the cost function used 

to assign costs to the pixels in the image. While this report explored the transit 
time through continuous ice, it would be beneficial to extend the analysis to include. 

other ice types, as well as safety and fuel consumption factors.



Appendix A 

Description of Some Sea Ice 
Features 

A.1 First-Order Tonal Features 

The following measures from Pratt [30] describe the shape of a first-order probabil— 
ity distribution of intensities, P(b). The probability is usually estimated from the 
histogram. 

Mean ‘ 

Variance 

Skewness

h .1. 

a. IIo 

bs = —3 2(1) — E)3P(b) 
ab b=0
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Kurtosis . 

1 L—l _ 
bK = —4 Z(b — b)4P(b) — 3 (A.4) 

0b b=0 

Energy 
L—1 a = Dab)? (A5) 
b=0 

Entropy 
L—1 ‘ 

b=0 ' 

A.2 First-Order Texture Features 

Weskza et al. [35] suggest four first—order texture statistics that are computed at 
every pixel in the image. They are called “grey level difference statistics” and are 
described in Chapter 4. P(6;) is the probability that a difference of intensity, 6.- 

occurs within the neighbourhood of a pixel. L is the number of 65s which is exactly 
the number of grey levels in the image. 

Contrast 
L—1

' 

CON = Z 63PM.) (A.7) 
6;:0 

The contrast is the moment of inertia about the origin. The contrast is often 
called Inertia. 

Angular Second Moment 
L—1 ' 

ASM = Z P(6.~)2 ‘I (A.8) 
5;=0

. 

Angular second moment is at its minimum value when the probability values 
for each 6,- are equal. When the probability values are unequal, the ASM is 
larger. For instance, when the probability values are concentrated near the 
origin. the ASM is large. ASM is often called Energy.
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Entropy . 

L—l 
= — Z 

6.:0 ' 

The entropy is at its maximum When the probability values are equal and 
small when they are unequal. 

Mean . 

1 L—l MEAN = Z Z 6,-P(6,~) (A.10) 
6'=0 

The mean is small when the probability values are concentrated near the 
origin and large when the probability values are far from the origin. 

A.3 
i 

Second-Order Texture Features 

Haralick et al. [39] proposes a variety of measures that can extract useful textural 

information from grey level co—occurrence matrices. Three common measures are 
defined below. 

I 

Contrast 
L—l L—l 

CON = 2 Eu —j)2P(z',j) (A.11) 
i=0 j=0 

The contrast measures the degree of spread of the GLCM values. The greater 
the difference between the neighbouring grey levels, the larger the contrast 
value. The contrast is sensitive to both the tone and the amount of local 
variation in the image. Contrast is often called Inertia. 

Angular Second Moment 
L—l L—1 ASM = 2 Damn? (An) 
i=0 j=0
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The ASM has the lowest value when the P(i,j) are all equal; the ASM is large 
when some P(i, values are high and some are low. When the image region 
under the moving window has grey values that are the same, or when the 
same pair occur throughout the region, then one element of the GLCM 
will be 1 and the rest will be 0. Thus, if the image region is homogeneous or 
has a uniform texture, the ASM will be maximized. The ASM is sometimes 
called Energy or Uniformity. 

Entropy 
L 1 L — —1 

ENT = — Z Z P(i,j)logzP(z',j) (A.13) 
i=0 j=0 

Entropy is a measure of disorder within the window. As the image texture 
approaches a random state, the entropy tends towards the maximum value. 
The entropy value is maximum for equal P(z', ) and is smaller for unequal 

P(i,j). ENT is largest for equal P(i,j) and small when they are very unequal. 

Inverse Difference Moment 
L—lL—l P Z-

- 

IDM = 
, (A.14) 

IDM assumes a larger value when the pairs haVe similar grey values. A 
GLCM that has large near-diagonal elements will give a large IDM value. 
IDM is strongly but inversely related to Contrast. IDM is also known as 
Homogeneity.



Appendix B 

Glossary of Terms r 

This glossary of terms has been adapted from the World Meteorological Organiza- 
tion Definitions of Sea Ice terms [60]. 

Sea ice Any form of ice found at sea which has originated from the freezing of sea 
water. 

Ice field Area of pack ice greater than 10 km across consisting of any size of floes. 

Floe Any relatively flat piece of sea ice 20 In or more across. 

Fast ice Sea ice which forms and remains fast along the coast, where it is attached 
to the shore. 

Level ice Sea ice which is unaffected by deformation. 

Deformed ice A general term for ice which has been squeezed together and in 
places forced upwards and downwards. Subdivisions are rafted ice, ridged ice 
and hummocked ice.
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Ice pressure Caused by compaction of ice floes under the influence of wind or wa- 

ter currents, forming ice deformation of several forms (fractures, hummocks, 
ridges, rafting). 

Ice concentrations A ratio expressed in tenths describing the amount of the wa— 
ter surface covered by ice as a fraction of the whole area. 

Open water A large area of freely navigable water in which ice is present in con— 
centrations less than 1/ 10. N0 ice of land origin is present. 

Pack ice Floating ice in which the concentration is 7/10 to 10/10. The concen- 
tration ranges from floes mostly in contact with one another to floes which 

are frozen together. 

Consolidated ice Floating ice in which the concentration is 10/ 10 and the floes 
are frozen together. 

Crack Any fracture of fast ice, consolidated ice, or a single floe which may have 
been followed by separation ranging from a few centimeters to 1 m. 

Ice edge The demarcation at'any given time between the open water and sea, lake 
or river ice whether fast or drifting. May be termed compacted or diffuse. 

‘ Young ice A general term for recently formed ice, 0-30 cm thick, which includes 
new ice, grey ice, and grey-white ice. 

New ice This type of ice is composed of ice crystals which are only weakly frozen 
together. 

Grey ice Young ice 10-15 cm thick. Less elastic than new ice and breaks on swell. 
Usually rafts under pressure.
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Grey-white ice Young ice 15—30 cm thick. Under pressure it is more likely to 
ridge than to raft. 

First-year ice Ice of not more than one winter’s growth, 30—200 cm thick. 

Multi-year ice Sea ice which has survived at least one summer’s melt. Topo- 

graphic features generally are smoother than first-year ice. 

Hummock A hillock of broken ice which has been forced upwards by pressure. 
May be fresh or weathered. 

Lead Any fracture or passage-way through sea ice which-is navigable by surface 
vessels. 

Rafted ice Type of deformed ice formed by one piece of ice overriding another. 
‘

J 

Ridge A line or wall of broken ice forced up by pressure. May be fresh or weath— 
ered. 

Shearing An area of pack ice is subject to shear when the ice motion varies signif- 
icantly in the direction normal to the motion, subjecting the ice to rotational 
forces. 

Diverging Ice fields or floes in an area are subjected to diverging. or dispersive 
motion, thus reducing concentration and/or relieving stresses in the ice. 

Compacting Pieces of floating ice are said to be compacting when they are sub— 
. jected to a converging motion which increases ice concentration and/or pro- 
duces stresses which may result in. ice deformation. 

Fracture Any break or rupture through pack ice or a single floe'resulting from 
deformation processes.
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Weathering Processes of ablation and accumulation which gradually eliminate 
irregularities in an ice surface. 

Beset Situation of a vessel surrounded by ice and unable to move. 

Ice under pressure Ice in which deformation processes are actively occurring and 
hence a potential impediment or danger to shipping.
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